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Abstract  

In the present paper, the effects of focusing of ground vibrations generated by high speed 

trains travelling at trans-Rayleigh speeds, i.e. under the condition of ground vibration boom, 

are considered theoretically. These effects are similar to the effects of focusing of sound 

waves radiated by supersonic aircraft. In particular, if a railway track has a bend, e.g. to 

provide the possibility of changing direction of train movement, the Rayleigh surface waves 

generated by high-speed trains under the condition of ground vibration boom may become 

focused. This results in concentration of their energy along a simple caustic line at one side of 

the track and in the corresponding increase in ground vibration amplitudes. The effect of 

focusing of Rayleigh waves may occur also if a train moves along a straight line with 

acceleration  a  and its current speed  v(t) is higher than Rayleigh wave velocity in the ground. 

In the present paper, both the above-mentioned focusing mechanisms are investigated in 

detail using the Green’s function formalism and the expressions for space-time distributions 
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of track-train-induced dynamic forces that take into account either track curvature or train 

acceleration. It is shown that in both these cases the effect of focusing can result in noticeable 

increase in generated ground vibrations. The obtained results are illustrated by numerical 

calculations.  

 

Keywords:  Ground vibrations; High-speed trains; Focusing.  

_______________________________________________________________________ 

 

1.  Introduction  

 

High-speed trains represent a convenient and environmentally friendly alternative to road and 

air transportation. The last two decades have been marked by rapid development of high-

speed railway systems in many countries throughout the world. As many other means of 

transportation, high-speed trains are not free of environmental problems. In particular, ground 

vibrations generated by high-speed trains is one of the major environmental problems that 

must be mitigated to allow high-speed trains to be used in densely populated areas.  

      It is well known that, if train speeds increase, the intensity of railway-generated vibrations 

generally becomes larger. For modern high-speed trains the increase in generated ground 

vibrations is especially high when train speeds approach certain critical velocities of elastic 

waves propagating in a track-ground system, the most important of them being the velocity of 

Rayleigh surface wave in the supporting ground. As was theoretically predicted by the present 

author [1- 4], if a train speed  v  exceeds the Rayleigh wave velocity  cR  in supporting soil, a 

ground vibration boom occurs. This phenomenon is similar to a sonic boom for aircraft 

crossing the sound barrier, and it is associated with a very large increase in generated ground 
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vibrations, as compared to the case of conventional trains. The existence of ground vibration 

boom has been later confirmed experimentally [5, 6], which implies that one can speak of 

'supersonic' ('superseismic') or, more precisely, 'trans-Rayleigh' trains [7-9] in the same way as 

people speak of supersonic aircraft. The increased attention to the problems of ground 

vibrations associated with high-speed trains is reflected in a growing number of theoretical 

and experimental investigations in this area (see, e.g. [10-18]).  

      The aim of the present paper is to investigate the effect of focusing of ground vibrations 

generated by high-speed trains that may take place under the condition of ground vibration 

boom, i.e. at trans-Rayleigh train speeds, even in a homogeneous ground. Some preliminary 

results on this topic have been reported earlier [19]. The two specific cases to be considered 

are focusing due to track curvature and focusing due to train acceleration, which are of the 

same physical nature as similar cases of focusing of a sonic boom from supersonic aircraft, 

sometimes called 'superbooms' [20-22]. It will be demonstrated that in both these cases the 

effect of focusing can result in noticeable increase in generated ground vibrations.  

      It should be noted that any properly designed high-speed line will be built to ensure that 

trans-Rayleigh conditions will never be reached at operational train speeds. Therefore, 

practical cases of the focusing discussed in this paper are highly unlikely to appear. In spite of 

this, it is essential that the physical phenomenon of focusing of railway-generated ground 

vibrations be properly described and fully understood.  

 

2.  Outline of the theory of railway-generated ground vibrations  

 

The main mechanisms of railway-generated ground vibrations are the wheel-axle pressure 

onto the track, the effects of joints in unwelded rails, the dynamically induced forces of 
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carriage- and wheel-axle vibrations excited due to unevenness of wheels and rails, as well as 

variations in sleeper-ground contact from sleeper to sleeper and lateral inhomogeneities in the 

ground. In this paper we consider only the first mentioned generation mechanism that is 

present even for ideally flat rails and wheels – namely, the quasi-static pressure of wheel axles 

onto the track, which is also responsible for railway-generated ground vibration boom. The 

quasi-static pressure generation mechanism results from load forces applied to the railway 

track from each wheel axle that cause downward deflections of the track. These deflections 

produce a wave-like motion along the track at speed of the train that results in a distribution of 

each axle load over all the rail sleepers involved in the track deflection distance. Each sleeper, 

in turn, acts as a vertical force applied to the ground during the time necessary for a deflection 

curve to pass through the sleeper. These vertical forces are considered as point forces applied 

to the ground's surface directly, so that the spatial distribution of the sleeper forces through the 

ballast is disregarded in the model. To determine the track deflection curve and thus the time 

dependence of the forces applied from each sleeper to the ground the system of track and 

ground is modelled as an Euler-Bernoulli beam resting on Winkler foundation.  

      According to the earlier developed general theory [1-4, 7-9], in order to calculate ground 

vibrations generated by a train due to the quasi-static pressure mechanism, one needs to take 

into account the superposition of waves generated by each elementary source of ground 

vibrations (sleeper) activated by wheel axles of all carriages, with the time and space 

differences between sources (sleepers) being taken into account. Using the Green's function of 

an elastic half space  Gzz(ρ,ω), the frequency spectrum of the normal component of ground 

vibration velocity on the ground surface  vz(x, y, ω)  can be written as  
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where  P(x',y',ω)  is the Fourier spectrum of distributed dynamic forces acting from all 

sleepers to the ground, and  ρ  is the distance from each sleeper to the point of observation 

characterised by the coordinates  x, y. The expression for the Green's function in (1), in which 

we take into account only the contribution of generated Rayleigh waves, can be written at 

large distances in the form (see e.g. [9, 23, 24])  
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and the factor  F'(kR) = [dF(k)/dk]|k=kR  is a derivative of the so-called Rayleigh determinant  
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taken at  k = kR.  The structure of the function  P(x',y',ω), i.e. the Fourier transform of the 

spatial distribution of time-dependent dynamic forces acting from sleepers to the ground, will 

be discussed below.  

      The notations in (1)-(4) are as follows:   ρ = [(x-x')2 + (y-y')2 ]1/2  is  the distance between 

the source (with current coordinates  x', y')  and the point of observation located on the 

surface (with the coordinates  x, y),  ω  is a circular frequency,  kR = ω/cR  is the wavenumber 
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of a Rayleigh surface wave,  cR  is  the Rayleigh wave velocity,   kl = ω/cl  and  kt = ω/ct  are 

the wavenumbers of longitudinal and shear bulk elastic waves, where  cl = [(λ + 2µ)/ρ0]1/2  

and  ct = (µ/ρ0)1/2  are longitudinal and shear wave velocities,  λ  and  µ  are the elastic Lame′ 

constants,  ρ0  is mass density of the ground,  q = (kR
2 - kl

2)1/2, and  γ = 0.001 - 0.1  is a non-

dimensional loss factor describing the attenuation of Rayleigh waves in soil.  

      As was mentioned above, function P(x',y',ω)  describes the frequency spectrum of the 

spatial distribution of all load forces acting along the track. This spectrum can be found by 

taking a Fourier transform of the time and space dependent load forces P(t, x', y') applied 

from the track to the ground. Note that the function  P(t, x', y')  does not depend on possible 

layered structure of the ground and remains the same for both vertically homogeneous and 

inhomogeneous half spaces. In the model under consideration, all properties of track and 

train, which determine generation of ground vibrations, are described by the above mentioned 

function of load forces P(t, x', y').  

      Being interested in fundamental features of the phenomenon of focusing of railway-

generated Rayleigh waves, in this paper, for the sake of simplicity, we consider ground 

vibrations generated by a single axle load only. We recall that for a single axle load moving at 

speed  v  along a straight track (located at  y = 0), the load function has the form [2, 9]: 
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where  P(t-x'/v)  is the time-delayed dynamic force acting from a sleeper with a coordinate  x'  

to the ground surface, and the delta-function  d(x'-nd)  takes the periodic distribution of 

sleepers into account, where  d  is the periodic inter-sleeper distance. Using the expression for 

P(t) (see [4, 8, 9]), taking the Fourier transform of (5) to calculate  P(x',y',ω), and substituting 
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the result into (1) using the expression for Green's function  Gzz(ρ,ω)  (see formulas (2)-(4)) 

results in the following expression for the vertical vibration velocity  vz  of  Rayleigh waves 

generated on the ground surface (z = 0) at the point of observation with the coordinates  x, y  

by a single axle load moving along the straight track at speed  v:  
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Here  ρn = [(x - nd)2 + y2]1/2  is the distance from the sleeper characterised by the number  n  

to the observation point. The function  P(ω)  in (6) has the following form (see [4, 8, 9] for 

detail):  
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where  T  is the axle load,  cmin  is the minimal phase velocity of track flexural waves 

propagating in a track/ground system (this velocity is related to  cR  via the parameters of 

Winkler foundation expressed in terms of the ground elastic parameters, and it is usually 

larger than  cR  by 10-20 %),  β  is the parameter dependent on the elastic properties of track 

and ground [8] and measured in  m-1, and  η  is a non-dimensional track damping parameter. 

For relatively low train speeds, i.e., for  v < cR,  the dynamic solution (7) for the force 

spectrum  P(ω)  goes over to the quasi-static one [8, 9]. As train speeds increase and approach 

or exceed the minimal track wave velocity, the spectra  P(ω)  become broader and larger in 

amplitudes, and a second peak appears at higher frequencies.  
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       Note that the expression (7) has been obtained in the assumption that the ground 

supporting the track is considered as a linear elastic medium. Over the last two decades 

though, the increasing attention has been paid also to nonlinear behaviour of the supporting 

ground, especially in the case of trains travelling at or above track critical speeds [25-27].  

      For ‘trans-Rayleigh trains’, i.e. for trains travelling at speeds  v  higher than Rayleigh wave 

velocity in the ground cR, the analysis of the expression (6) shows that maximum radiation of 

ground vibrations takes place if the train speed  v  is larger than Rayleigh wave velocity  cR  

[1-4, 7-9]. Under this condition, a ground vibration boom takes place, i.e., ground vibrations 

are generated as quasi-plane Rayleigh surface waves symmetrically propagating at angles  Θ = 

cos-1(cR/v)  in respect to the track, and with amplitudes much larger than in the case of 

conventional trains. This phenomenon is similar to the well-known phenomenon of sonic 

boom from supersonic aircraft.  

       Note that for trans-Rayleigh trains these symmetrically propagating Rayleigh surface 

waves are generated equally well on tracks with and without railway sleepers, whereas for 

conventional trains the presence of sleepers for the possibility of generation of Rayleigh 

waves is paramount. Without them no propagating waves are generated in the framework of 

the quasi-static pressure generation mechanism. This reflects the well-known fact that, if a 

point force of constant amplitude is moving at constant sub-Rayleigh speed along the ideally 

flat surface of an elastic half-space, there are no any generated elastic waves from such a 

force. Only quasi-static localised displacements are present that are moving along with the 

force. However, if the speed of the moving force exceeds the Rayleigh wave velocity, then 

Rayleigh waves are radiated. If the same force is moving along the railway track supported by 

discrete sleepers, Rayleigh waves are generated even at sub-Rayleigh load speeds  (this is 

observed in practice via the presence of the so-called sleeper passage frequencies in the 

spectra of generated ground vibrations). For trans-Rayleigh trains, the amplitudes of generated 
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Rayleigh waves grow substantially, and it does not matter in this case if the sleepers are 

present or not [2].   

 

 

3.  Focusing due to track curvature  

 

      If a track has a bend of radius R to provide the possibility of changing direction of train 

movement, the wave fronts of Rayleigh ground waves generated under the condition of 

ground vibration boom may become concave at one side of the track, instead of being convex 

(under usual circumstances) or plane (under the condition of ground vibration boom). This 

may result in focusing of generated ground vibrations (Rayleigh surface waves) along a 

simple caustic line at one side of the track accompanied by the corresponding increase in their 

amplitudes. According to the geometrical acoustics approximation, this increase is up to 

infinity. However, because of the diffraction limit, the real increase for this type of caustic is 

much more modest and does not exceed 2-4 times.  

      It can be easily shown that if a train moves along a circular bend of radius  R  at speed  v  

(with v > cR)  then the caustic line formed by rays of Rayleigh waves radiated at Mach angles  

Θ  is a concentric circle of a smaller radius  r  (see Fig. 1). Indeed, one can see from Fig. 1 

that  r = R sin(900- θ) = R cosθ.  On the other hand, as it was mentioned in the previous 

section, under the condition of ground vibration boom  cosΘ = cR/v.  Therefore, the radius  r  

of the concentric circle forming the caustic line is defined by the obvious simple expression:  

 

v
cRr R=  .                                                              (8)  
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Note that, in the case of layered ground, generated Rayleigh waves become dispersive, i.e.  cR  

= cR(ω).  Therefore, the position of the caustic in this case will depend on frequency, thus 

reducing the efficiency of focusing for Rayleigh waves described in a space-time domain.  

      The wave analysis of the above problem is rather straightforward and is based on the 

rewriting the expression for a distributed axle loads that takes into account the two-

dimensional geometry of a track with curvature. Namely, for a curved track, the expression 

(5) should be modified following the geometry of the curved track shown in Fig. 2.  

      As it follows from Fig. 2, ϕsinRCDAB == ,  ϕcosROC = , and 

)cos1( ϕ−=−== ROCOAACDB .  Therefore, instead of the above-mentioned formula (5) 

for  P(t, x', y' =0), the following expression for  P(t, x', y')  should be used:  
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where the coordinate  s'  is measured along the curved track. Taking the Fourier transform of 

(9), substituting it into (1) and taking into account that for a sleeper with the number n the 

angle  ϕ = ϕm = nd/R,  where  d  is a sleeper periodicity, one can obtain the following formula 

for the spectral component of vertical vibration velocity  vz(x,y,ω)  of  Rayleigh waves 

generated on the ground surface at the point of observation with the coordinates  x, y  by a 

single axle load moving along the curved track at speed  v:  
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Here the distance  ρc
n  from the sleeper characterised by the number  n  to the observation 

point is described by the formula:  
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and the other notations are the same as in the previous section.  

      The results of the calculations of the spatial distribution of ground vibration field  

vz(x,y,ω)  over the surface area of  75 × 75 m (i.e. the wave snapshot shown in arbitrary units 

as a greyscale plot) generated at the frequency component  f = 10 Hz  by a single axle load 

travelling along the curved track with the radius of curvature R = 100 m are shown in Fig. 3 

as a greyscale contour plot. The horizontal and vertical axes in Fig. 3 represent surface 

rectangular coordinates in normalised (non-dimensional) units changing from 0 to 1:  xn = 

x[m]/75[m]  and  yn = y[m]/75[m].  The direction of travel is from left to right. The load 

speed is  v = 50 m/s, and the velocity of Rayleigh wave in the ground was set as  cR = 45 m/s  

(this corresponds to the value of Mach number M = v/cR = 1.11).  Other relevant parameters 

were as follows:  d = 0.7 m,  β = 1.28 m-1, which is typical for British railway tracks, and  γ = 

0.001.  

      It can be clearly seen from Fig. 3 that the wave fronts of generated Rayleigh waves 

become concave on the left-hand side of the track (in respect of the direction of travel), which 

results in focusing of Rayleigh waves along the caustic line accompanied by the increase in 

their amplitudes. Numerical values, that are not displayed here for clarity, show that the 

average increase in amplitudes due to focusing is about two times. Although this increase is 
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rather small, one should keep in mind that it appears in addition to the already very large level 

of generated vibrations due to the ground vibration boom.  

      Figures 4 and 5 show the same results presented as a colour contour plot and as a 

greyscale surface plot respectively. Larger wave amplitudes in the area of focusing can be 

clearly seen in Fig. 4 from brighter red and blue areas corresponding to positive and negative 

vertical wave displacements. Figure 5, a three-dimensional surface plot, gives a direct 

representation of the wave amplitude distribution over the area by simply showing real 

vertical displacements. The locations of the curved track can be easily identified in Figs. 3-5. 

They are also shown by white dashed lines in Figs. 3 and 4.  

      Note that the radius of track curvature  R = 100 m,  for which the results of Figs. 3-5 have 

been calculated, is rather small for real high-speed trains that require much larger radii of 

curvature to avoid derailment (e.g. for a train speed of 33 m/s  (or 120 km/h) the value of R 

should be not less than 450 m). However, using the unrealistically small value of  R = 100 m  

for the example calculations presented in Figs. 3-5 helps to illustrate the phenomenon of 

focusing due to track curvature more clearly.  

       Figure 6 shows in greyscale the calculated spatial distribution of ground vibrations  vz(x, 

y,ω)  over the surface area of  75 × 75 m generated by a single axle load travelling along the 

curved track with a more realistic larger radius of curvature R = 300 m.  All other parameters 

are the same as in Figs. 3-5. Like in Figs. 3-5, the location of the curved track can be easily 

identified in Fig. 6. One can also see from Fig. 6 that the focusing of generated Rayleigh 

waves, although less pronounced than in the case of  R = 100 m,  is still clearly visible on the 

left from the curved track relative to the direction of travel. Amplification in the area of 

focusing is smaller in this case, about 1.3 times.  
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      Figure 7 presents a greyscale contour plot showing the calculated spatial distribution of 

ground vibrations  vz(x, y,ω)  over the surface area of  75 × 75 m generated by a single axle 

load travelling along the curved track with a very large radius of curvature R = 5000 m. With 

such a large radius of curvature, the curved track is expected to behave as straight track for 

generation of ground vibrations within the surface area of 75 x 75 m near the track. All other 

parameters are the same as in the previous figures. One can see from Fig. 7 that, as expected, 

there is no focusing any more, and the spatial distributions of generated ground vibrations 

(Rayleigh waves) are perfectly symmetric in respect of the track, thus illustrating classical 

Mach angles formed by the flat wave fronts.  

 

 

4.  Focusing due to train acceleration  

 

The effect of focusing of Rayleigh waves generated by high-speed trains may occur also in 

the case of a train accelerating along a straight line if its current speed,  v = v(t) = v0 + at,  is 

higher than Rayleigh wave velocity in the ground  cR  (here  v0  is the initial train speed and  a  

is the acceleration). The geometrical acoustics consideration of this effect is illustrated in Fig. 

8 for three different positions of a moving train characterised by the changed angles of 

radiation of Rayleigh wave rays - angles  θ1,  θ2  and  θ3 respectively. One can see that the 

caustic line in this case is not confined to the area near the train path, but moves away from it 

as the train moves along the track and its speed increases.  

       To apply the wave approach to this problem, it is convenient to express the train current 

speed  v  as a function of the distance  s  measured along the track. It follows from the 

kinematics of motion of a particle with acceleration  a  that  
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Expressing the distance as  s = nd  and substituting the expression (12) for  v  into (6) gives 

the following formula for ground vibration velocity generated by a single load moving with 

acceleration  a: 
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The meaning of the other functions and parameters in the expression (13) remain the same as 

in the previous sections.  

      The results of calculations of the spatial distribution of ground vibrations over the area of 

75×75 m generated at the frequency component  f = 10 Hz  by a single axle load travelling 

along the straight track with a train acceleration  a = 1 m/s2  are shown in Fig. 9 in the form of 

a greyscale contour plot. The initial load speed was  v0 = 50 m/s, and the velocity of Rayleigh 

wave in the ground was set as  cR = 45 m/s  (this corresponds to the initial value of Mach 

number  M0 = v0/cR = 1.11). Figure 10 presents the same results in the form of a colour 

contour plot.  

      It is seen from Figs. 9 and 10 that on both sides of the track the concave wave fronts of 

Rayleigh waves are formed symmetrically, and the focusing occurs, accompanied by some 

amplification of Rayleigh wave amplitudes in the focusing areas. Like in the case of curved 

tracks with the radius of curvature  R = 100 m,  this amplification is rather moderate, about 
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two times. Note that the focusing areas (caustics) are moving away from the track with the 

distance, in agreement with the geometrical acoustics consideration discussed above.  

      Figure 11 shows (in greyscale) the results of similar calculations of the spatial distribution 

of ground vibrations generated over the area of 75×75 m by a single axle load travelling along 

the straight track with a smaller acceleration  a = 0.255 m/s2 (other parameters are the same 

as in Figs. 9 and 10). It can be seen from Fig. 11 that in this case of smaller acceleration the 

focusing is still present, but it becomes less pronounced, as expected. It is worth to remind the 

reader that focusing of railway-generated Rayleigh waves due to train acceleration affects 

both sides of a straight track, and it is symmetrical in respect of the track.  

       Note that the value of train acceleration  a = 0.255 m/s2 used in the above calculations is 

typical for French TGV trains, when they depart from railway terminals and move until they 

reach the maximum operational speeds. The same value of train acceleration is expected to be 

used for the proposed high-speed railway network HS2 in the UK. It should be noted that 

during braking the associated train deceleration may easily reach  0.5 m/s2.  However, as it 

follows from the above theory, focusing of train-induced ground vibrations can be caused 

only by train acceleration. Deceleration does not cause focusing because radiated wave fronts 

in this case are convex rather than concave.  

       Returning to acceleration, one should mention that, in order to reach the projected 

maximum operational speed  (400 km/h for HS2), a train will need to pass a certain 

acceleration distance  s. This distance can be easily calculated using Equation (12), in which 

one should put the initial velocity  v0 = 0,  if a train departs from the railway terminal. 

Calculation for  a = 0.255 m/s2  gives the value of acceleration distance  s  equal to 24.1 km. 

This is a rather large distance that illustrates the fact that in densely populated countries, with 

relatively short distances between railway terminals, a significant proportion of the routes, 

sometimes 40-60 %, will be covered by trains travelling with acceleration and deceleration. 
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This means that focusing of ground vibrations due to train acceleration can be a more 

frequent occasion than focusing due to track curvature.  

 

 

5.  Conclusions  

 

It has been demonstrated in this paper that, for high-speed trains travelling along curved 

tracks at constant speeds that are larger than Rayleigh wave velocity in the ground (i.e. under 

the condition of ground vibration boom), the effect of track curvature may result in focusing 

of railway-generated ground vibrations (Rayleigh surface waves) at one side of the track and 

in the corresponding increase of their amplitudes.  

      The focusing effect for Rayleigh waves generated by high-speed trains may occur also in 

the case of a train accelerating along a straight line if its current speed is larger than Rayleigh 

wave velocity in the ground. In this case the focusing occurs symmetrically on both sides of 

the track.  

       It is unlikely that the described effects of focusing of railway-generated ground vibrations 

will make a detrimental impact on the environment. The reason for this is that railway 

operators try to avoid train operations at trans-Rayleigh speeds altogether. Nevertheless, it is 

important to understand that these effects should be taken into consideration, where 

appropriate, for more accurate predictions of ground vibration boom from high-speed trains. 

This applies mainly to 'sensitive' locations along the proposed high-speed railway routes 

characterised by low Rayleigh wave velocity in the supporting ground. Possible effects of 

focusing of generated ground vibrations, especially due to train acceleration, should be taken 

into account before considering suitable protection measures for these locations.  
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Figure captions  

 

Fig. 1. Geometrical acoustics explanation of the focusing of Rayleigh waves radiated by a 

train (a single axle load in this example) travelling at speed  v  along a curved track of 

radius  R  under the condition of ground vibration boom  (v > cR). The focusing occurs 

along the caustic line formed by a concentric circle of smaller radius  r.  

 

Fig. 2. Geometry of the problem of the curved track.  

 

Fig. 3. Spatial distribution of ground vibration field (in arbitrary units, greyscale contour 

plot) generated over the area of 75×75 m by a single axle load travelling at speed  v 

= 50 m/s  on a curved track (shown by a white dashed line) with the radius of 

curvature R = 100 m.  

 

Fig. 4. Spatial distribution of ground vibration field (the same as in Fig. 3, but presented as 

a colour contour plot) generated by a single axle load travelling at speed  v = 50 m/s  

on a curved track (shown by a white dashed line) with the radius of curvature R = 

100 m.  

 

Fig. 5. Spatial distribution of ground vibration field (the same as in Fig.3, but presented as 

a greyscale surface plot) generated by a single axle load travelling at speed  v = 50 

m/s  on a curved track with the radius of curvature R = 100 m.  
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Fig. 6. Spatial distribution of ground vibration field (in arbitrary units, greyscale contour 

plot) generated over the area of 75×75 m by a single axle load travelling at speed  v 

= 50 m/s  on a curved track with the radius of curvature  R = 300 m.  

 

Fig. 7. Spatial distribution of ground vibration field (in arbitrary units, greyscale contour 

plot) generated over the area of 75×75 m by a single axle load travelling at speed  v 

= 50 m/s  on a curved track with the radius of curvature R = 5000 m.  

 

Fig. 8. Geometrical acoustics explanation of the focusing of Rayleigh waves radiated by a 

train (a single axle load in this example) travelling with constant acceleration  a  

along a straight track under the condition of ground vibration boom  (v > cR). The 

focusing occurs along the caustic line that is moving away from the track as the 

train passes by with acceleration.  

 

Fig. 9.  Spatial distribution of ground vibrations (in arbitrary units, greyscale contour plot) 

generated over the area of 75×75 m by a single load travelling on a straight track 

(shown by a white dashed line) with acceleration  a = 1 m/s2  and initial train 

speed  v0 = 50 m/s.  

 

Fig. 10. Spatial distribution of ground vibrations (the same as in Fig. 9, but presented as a 

colour contour plot) generated by a single load travelling on a straight track 

(shown by a white dashed line) with acceleration  a = 1 m/s2  and initial train 

speed  v0 = 50 m/s.  

 



 23 

Fig. 11. Spatial distribution of ground vibrations (in arbitrary units, greyscale contour 

plot) generated over the area of 75×75 m by a single load travelling on a straight 

track with acceleration  a = 0.255 m/s2  and initial train speed  v0 = 50 m/s.  

 

 



Figures 

Fig. 1. Geometrical acoustics explanation of the focusing of Rayleigh waves radiated 

by a train (a single axle load in this example) travelling at speed  v  along a 

curved track of radius  R  under the condition of ground vibration boom  (v > 

cR). The focusing occurs along the caustic line formed by a concentric circle 

of smaller radius  r. 
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Fig. 2. Geometry of the problem of the curved track. 
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Fig. 3. Spatial distribution of ground vibration field (in arbitrary units, greyscale contour 

plot) generated over the area of 7575 m by a single axle load travelling at speed  

v = 50 m/s  on a curved track (shown by a white dashed line) with the radius of 

curvature R = 100 m. 



Fig. 4. Spatial distribution of ground vibration field (the same as in Fig. 3, but 

presented as a colour contour plot) generated by a single axle load travelling at 

speed  v = 50 m/s  on a curved track (shown by a white dashed line) with the 

radius of curvature R = 100 m. 



Fig. 5. Spatial distribution of ground vibration field (the same as in Fig.3, but 

presented as a greyscale surface plot) generated by a single axle load travelling 

at speed  v = 50 m/s  on a curved track with the radius of curvature R = 100 m. 



Fig. 6. Spatial distribution of ground vibration field (in arbitrary units, greyscale contour 

plot) generated over the area of 7575 m by a single axle load travelling at speed  

v = 50 m/s  on a curved track with the radius of curvature  R = 300 m. 



Fig. 7. Spatial distribution of ground vibration field (in arbitrary units, greyscale contour 

plot) generated over the area of 7575 m by a single axle load travelling at speed  

v = 50 m/s  on a curved track with the radius of curvature R = 5000 m. 



Fig. 8.  Geometrical acoustics explanation of the focusing of Rayleigh waves radiated 

by a train (a single axle load in this example) travelling with constant 

acceleration  a  along a straight track under the condition of ground vibration 

boom  (v > cR). The focusing occurs along the caustic line that is moving away 

from the track as the train passes by with acceleration. 
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Fig. 9. Spatial distribution of ground vibrations (in arbitrary units, greyscale contour 

plot) generated over the area of 7575 m by a single load travelling on a 

straight track (shown by a white dashed line) with acceleration  a = 1 m/s2  and 

initial train speed  v0 = 50 m/s. 



Fig. 10. Spatial distribution of ground vibrations (the same as in Fig. 9, but presented 

as a colour contour plot) generated by a single load travelling on a straight 

track (shown by a white dashed line) with acceleration  a = 1 m/s2  and initial 

train speed  v0 = 50 m/s. 



Fig. 11. Spatial distribution of ground vibrations (in arbitrary units, greyscale contour 

plot) generated over the area of 7575 m by a single load travelling on a straight 

track with acceleration  a = 0.255 m/s2  and initial train speed  v0 = 50 m/s. 
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