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Abstract 

 

Fault tree analysis is often used to assess risks within industrial systems.   The technique 

is commonly used although there are associated limitations in terms of accuracy and 

efficiency when dealing with large fault tree structures.  The most recent approach to aid 

the analysis of the fault tree diagram is the Binary Decision Diagram (BDD) 

methodology. To utilise the technique the fault tree structure needs to be converted into 

the BDD format.  Converting the fault tree requires the basic events of the tree to be 

placed in an ordering.  The ordering of the basic events is critical to the resulting size of 

the BDD, and ultimately affects the performance and benefits of this technique.   A 

number of heuristic approaches have been developed to produce an optimal ordering 

permutation for a specific tree.  These heuristic approaches do not always yield a minimal 

BDD structure for all trees.  This paper looks at a heuristic that is based on the structural 

importance measure of each basic event.  Comparing the resulting size of the BDD with 

the smallest generated from a set of six alternative ordering heuristics, this new structural 

heuristic produced a BDD of smaller or equal dimension on 77 percent of trials. 
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1.  Introduction 

 

There are a number of assessment methods that can be adopted to qualify and quantify 

the risk of hazardous incidents within an industrial system.  The most common approach 

is that of fault tree analysis, which is based on Kinetic Tree Theory
[1]

.  Despite its 

widespread use the fault tree methodology has limitations, especially when analysing 

large tree structures.  To overcome these limitations, over the last five years a completely 

new approach has been generated.  This new approach is called the Binary Decision 

Diagram (BDD) methodology
[2-7]

.  Utilising this new technique involves converting the 

fault tree into an alternative representation.  If this transformation is possible then the 

analysis procedure is qualitatively more efficient and quantitatively more accurate.  

However, these benefits can only be used if the BDD can be generated, and one which is 

minimal in size.  To make the conversion the basic events of the fault tree need to be 

taken in a specified order. This ordering is crucial to the size of the resulting BDD, where 

a good ordering can result in a very efficient analysis and a poor ordering can lead to 

problems. 

 



 2 

Within the literature there are a number of possible ordering heuristics to convert the fault 

tree structure
[8-12]

.  There are two types of ordering heuristic reported namely 

neighbourhood and weighting methods.  Neighbourhood methods produce an ordering by 

performing a systematic traversal of the tree adding the basic events to the ordered list as 

they are encountered.  Weighting methods usually make two passes of the tree.  On the 

first pass a weight is given to each basic event and gate within the tree, and the second 

pass then orders the basic events depending on the weights allocated in the first pass.  

Using both these types of heuristic the resulting size of the BDD is variable, where 

sometimes a minimal BDD will be produced for a tree and the same heuristic applied to a 

different tree will result in a BDD of incredible size.  On reviewing the heuristics 

currently in the literature certain problem areas were evident.  To try and overcome these 

limitations the structural importance measure was investigated.  

 

 

2.  Binary Decision Diagrams 

 

A BDD is a directed acyclic graph, as shown in figure 1.  All paths through the BDD start 

at the root vertex and terminate in one of two states, either a 1 state which corresponds to 

a system failure, or a 0 state which corresponds to a system success. A BDD is composed 

of terminal and non-terminal vertices, which are connected by branches.  Non-terminal 

vertices correspond to the basic events of the fault tree. 
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Figure 1: A Binary Decision Diagram 

 

All the left branches leaving a vertex are the 1 branches (component failure occurs) and 

all the right branches the 0 branches (component functional).  Every path starts from the 

root vertex, and proceeds down through the diagram to the terminal vertices.  Only the 

vertices that lie on a 1 branch on the way to a terminal 1 vertex are included in the path.  

All the paths terminating in a 1 state give the cut sets of the fault tree. For example, the 

cut sets of figure 1 are: 

    1) X1X2X3    2) X1X4. 
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3.  Variable Ordering Problem 

 

In constructing the BDD, the ordering of the basic events is crucial to the size of the 

resulting diagram.  Using an inefficient ordering scheme will produce a non-minimal 

BDD structure.  Alternative ordering schemes will produce BDD’s of different sizes, the 

smaller the BDD the more optimal the diagram.  To illustrate this fact, consider the 

simple fault tree shown in figure 2. The tree has four basic events, where X2 is repeated. 

 

TOP

G1

G2 G3

     X2      X3      X2      X4

     X1

 
 

Figure 2: A Simple Fault Tree 

 

If the basic event ordering permutation of X1<X2<X3<X4 is taken, the resulting BDD is 

shown in figure 3.  This structure consists of only four nodes, it is a minimal structure 

and hence produces only minimal cut sets.   
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    Figure 3: Ordering X1<X2<X3<X4            Figure 4: Ordering X4<X3<X2<X1 
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However, if the alternative ordering permutation of X4<X3<X2<X1 is taken the resulting 

BDD (shown in figure 4) consists of seven nodes, it is non-minimal and yields non-

minimal cut sets.  To analyse the second BDD would involve a minimisation procedure 

to find the minimal cut sets and the quantification would be less efficient.  For larger fault 

tree structures the efficiency of the resulting BDD is more critical, and in the worst case 

of using a poor ordering permutation, the diagram may be unsolvable. 

 

 

4.  Drawbacks of Current Heuristics 

 

On reviewing the heuristics currently in the literature certain problem areas were evident.  

One was that many of the heuristics were affected by how the fault tree was drawn, 

therefore for the same logic expression a number of different BDDs could result 

depending on how the fault tree was represented.  Also many of the heuristics have a 

structured pattern.  That is, the ordering permutation is generated by going from the top 

of the tree to the bottom, and it does not allow for components to be selected from 

different branches of the tree and lie next to each other in the ordering list.  Another 

problem is how to deal with events that occur more than once.  For heuristics that 

incorporate weights, different sized BDDs may result when the order in which 

components with the same weighting are separated.  For example, if a top-down approach 

of ordering is applied to the tree and the equally weighted component highest up the tree 

is taken first this may result in a different ordering than when considering ordering the 

weighted component that occurs most often first.  

 

From this the properties required in a good ordering heuristic seem to be: 

 

- The contribution of an event to the system failure mode must be reflected in the 

ordering produced. 

- The ordering must be robust i.e. the ordering must be dependent upon the logic 

function represented by the fault tree and not influenced by the way the fault tree 

has been drawn.  

- To uniquely map the fault tree onto a single event ordering. 

 

Considering these points the structural importance measure was investigated.  This 

heuristic satisfies two out of the three points above.  It does represent the contribution 

each component makes to the occurrence of the top event, and it is also unaffected by the 

way the tree is written or drawn.  However, the ordering produced is not unique because 

some components will have the same contribution and the means of breaking these ties 

will affect the ordering.  
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5.  Structural Importance Measures 

 

5.1.  Definition of Importance Measures 

 

A very useful piece of information, which can be derived from a system reliability 

assessment, is the importance measure for each component or minimal cut set.  For each 

component it’s importance signifies the role that it plays in either causing or contributing 

to the occurrence of the top event.  This role is given a rank in terms of a numerical 

value. 

 

Importance measures can be categorised in two ways: (1) deterministic; and (2) 

probabilistic. As the ordering issue does not depend on the probabilistic failure 

characteristics of the components just it’s position in the tree, the deterministic structural 

importance measure is analysed and discussed as a potential ordering mechanism. 

 

 

5.2.  Deterministic Measures of Importance 

 

Deterministic measures assess the importance of a component to the system operation 

without considering the component’s probability of failure.  One such measure is the 

structural measure of importance, SMI, which is defined for a component, i, as 

 

componentsremainingntheforstatesofnumbertotal

icomponentforstatessystemcriticalofnumber
SMI i

)1( −
=  

 

A critical state for component i is a state for the remaining (n -1) components such that a 

failure of component i causes the system to go from a working state to a failed state.  

 

 

5.3.  Calculation Method For Deterministic Structural Importance Measure 

 

To illustrate this structural importance measure, consider the fault tree drawn in figure 5.  

The logic expression for the top event is:   CBDBATOP .. ++=  

 

Therefore, the top event will occur (or top event failure) if A occurs, or both B and C 

occur, or B and D both occur. To generate a variable ordering the structural importance 

measures of each component need to be calculated.  The procedure to carry out this 

process can be simplified as follows: 

 

For each component: 

1. Find the possible states for the remaining components. 

2. Test whether each of the remaining states are critical for the 

chosen component. 



 6 

 

 

 
Figure 5: Simple Fault Tree Structure 

 

Taking component A from figure 5 as an example, there are eight states for the remaining 

components these are: 

 

1. B working, C working and D working )( DCB  

2. B failed, C working and D working )( DCB  

3. B working, C failed and D working )( DCB  

4. B and C failed, and D working )( DBC  

5. B working, C working and D failed )( DCB  

6. B and D failed, and C working )( DCB  

7. B working, and C and D failed )( CDB  

8. B, C and D failed )(BCD  

 

To explain the theory behind a critical state, each of the eight states for the remaining 

components needs to be examined.  If component A is working and given the states of the 

remaining components the system works (top event non-occurrence) then this reflects the 

possibility of a critical state.  The determining factor is whether failure of component A 

causes the system to fail.  If it does then this is referred to as a critical state for 

component A. 

 

Given one state for the remaining components, namely B, C and D all working )( DCB , 

with component A working ( A ) the system would be working.  If component A then 

failed the system would fail, and this can be defined as a critical state.  Therefore, the 

structural importance measure for component A (SMIA) is calculated as shown in table 1. 

 

 

 

 

TOP

CB

A

DB
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States for other components Critical State for A 

DCB  
Yes 

DCB  
Yes 

DCB  
Yes 

DBC  
No 

DCB  
Yes 

DCB  
No 

CDB  
Yes 

BCD  No 

(NB. the  means component works) 

Table 1: Calculation of The Structural Importance Measure For Component A 

 

There are eight states for the remaining components, of which five of these are critical for 

component A, hence SMIA = 5/8. 

 

The same process is repeated for all of the other components, in this example variable B, 

C and D.  Hence, the structural importance measure of component B is 3/8, and the 

structural importance of both component C and D is 1/8. 

 

On gaining each of the importance measures, the remaining factor is to order the 

components in descending order depending on the values calculated. 

 

 

5.4.  Problems Implementing Methodology 

 

To calculate the structural importance measure for all the components within a fault tree 

as illustrated above even for small trees is relatively time consuming.  This is ever more 

prevalent with large fault tree structures where the number of possible combinations of 

the working and failed states of the components is exponentially increasing with respect 

to the number of components.  

 

Programming the method utilised in section 5.3 would not be very efficient, as the 

process would require the following: 

 

 1.  The logic expression for top event. 

 2.  For each component, the program would need to repeatedly substitute in values for 

the remaining components in the system, for every state combination. 

 

Whilst simple in concept it is computationally time consuming to perform the procedure 

for each variable. 
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5.5.  Using Birnbaums’s Structural Importance Measure 

 

An alternative method to calculate the structural importance measure involves the 

probabilistic importance measure of Birnbaum, namely Birnbaums Measure of 

Criticality.  Lambert
[13]

 stated that this probabilistic measure could be used to evaluate 

the structural importance measure.  However, this still requires the system probability 

function Q(q) or an approximation of it.  

 

Birnbaums measure of criticality (Gi(q)) is defined as: 

  

    Gi(q) = Q(1i, q) - Q(0i, q)     

 

where Q(q) is the probability that the system fails, and  

 

Q(1i, q) = (q1, q2, …..,qi-1, 1, qi+1,…….qn)    

and    Q(0i, q) = (q1, q2, …..,qi-1, 0, qi+1,…….qn).   

 

From Lamberts
[13]

 paper it states that if the probability of failure of component i, qi(t), is 

set equal to ½ for all i ≠ j, then the number of states in which component i is critical, 

denoted by Bi, is defined as:  

 

Bi = { Q(1i, 1/2) - Q(0i, 1/2) }         

 

Implementing this numerically for the tree in figure 5, the top event probability 

expression is given as: 

 

Q(q) = qA + qBqC  + qBqD - qAqBqC  - qAqBqD  - qBqCqD + qAqBqCqD 

 

Calculating the structural importance measure for A; 

 

Q(1A,q) = 1 

Q(0A,q) = qBqC + qBqD - qBqCqD 

 

Therefore, BA(q) = 1 – (qBqC + qBqD - qBqCqD), and BA(1/2) = 1 – (3/8) = 5/8.  
 

The same principle is applied to B, C and D, resulting in BB(1/2) =3/8, BC(1/2) = BD(1/2) 

1/8. 

 

 

6.  Results Using BDD For Calculation Procedure 

 

To test the potential of the component structural importance method to the problem of 

generating a variable ordering heuristic to yield an optimal BDD the Birnbaum structural 
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importance measure was used. Software was available to produce the Birnbaum Measure 

of Criticality from the BDD.  As initially it is the validity of the measure that is being 

established and not the efficiency of the technique then a BDD, which has been 

constructed using a different variable ordering, has been used to gain the importance 

measures. 

 

To establish the influence of the new ordering permutation a comparison was made with 

the best of the six previously identified alternative heuristics
[14]

. It is the number of nodes 

of the BDD structure that are used in the comparison process.  The reason for this was 

that the smaller the initial BDD, from which the quantification process can be carried out, 

the more efficient the quantification process, and also to determine the minimal cut sets  

less work is involved in minimisation. 

 

In table 2 three groupings relating to the number of nodes in the BDD have been 

identified for the comparison.  These are less than the previous best, equal to the previous 

best, and greater than the previous best. For this method to be successful then the 

majority or all of the trees when converted using this new ordering need to result in a 

BDD of the same or smaller dimension than the previous best of the set of six 

alternatives. Two hundred and twenty five fault trees were compared and the results are 

shown in table 2.  

 

Nodes in comparison  

(to best) 

No. of trees % of trees Total =/< 

= 77 34.2  

< 96 42.7 76.9 % 

> 52 23.1  

 
Table 2: Results of Comparison of Structural Importance Ordering and Previous Best Ordering on BDD 

Size 

 

From these results, it is concluded that approximately 77 % of all the trees tested within 

the data set, using the structural importance ordering yields a BDD of equal or smaller 

dimension than the previous best scheme ordering.  Of the remaining 23 percent of trees, 

which had BDDs of greater size than the previous best, the BDDs were larger by varying 

degrees of magnitude.  Some BDDS were only a couple of nodes larger whereas others 

were a couple hundred nodes larger. 

 

From the set of six orderings the distribution of ‘best heuristics’ is illustrated in table 3. 

The total number of trees that each scheme predicts the best result for is greater than 225 

in total as some heuristics produce a BDD of equal size to another.  The best heuristic out 

of the six for overall performance is the modified top-down, left-right approach, although 

the winning margin is very small.  This new structural importance ordering heuristic 

clearly outperforms all of these six heuristics individually and more research is needed to 

unravel it’s full potential and try to establish an efficient method of calculation. 
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Ordering Heuristic Number of Instances Minimal 

BDD Produced 

Percentage of Times Best 

BDD Produced 

Top-down, left-right 87 15.4 

Modified Top-down, left-right 169 29.8 

Depth-First 120 21.2 

Modified Depth-First 117 20.6 

Priority Depth-First 36 6.3 

Modified Priority Depth-First 38 6.7 

 
Table 3: Performance of Six Different Ordering Heuristics in Producing BDDs 

 

8.  Approximated Structural Importance Method 

 

Having established the value of the structural importance approach to variable ordering 

an efficient means of calculating this ranking is required.  To find an alternative method 

of calculating the mathematical structural importance measure without generating the 

BDD first an approximation technique was used.  The principle of the Birnbaum 

structural importance measure was applied directly to the tree. Using this technique, the 

selected component assumes the failure probability of 1 and 0 on two consecutive runs, 

the rest of the components are given failure probabilities equal to ½ and the probability of 

occurrence of the top event is evaluated by working up through the tree structure.   The 

BDD variable ordering is generated depending on the basic event that generates the 

largest probability value contribution for the top event.  The difference with this and the 

exact version of Birnbaum’s structural measure is the terms in the unavailability 

expression of the top event.  When this approximation method is applied to a tree the 

logical redundancies have not been reduced by Boolean algebra and so the cut sets may 

not be minimal.  For this reason the structural importance values and resulting weights 

are not exactly the same but it may still offer a relatively good ordering heuristic.  

 

To illustrate the application of this proposed Birnbaum method, consider the tree whose 

data file representing the fault tree structure would be written in the following format: 

 

TOP  OR  2  1 Gate1   Gate2  A 

Gate1    AND  0  2 B  C 

Gate2  AND  0 2 B  D 

 

The code written to establish the structural importance value for each component within 

the data file follows these steps: 

  

1. Make a list of all the components within the tree structure, easiest method using a top-

down, left-right approach. 

2. Repeat step 2 twice, first setting the selected component failure probability to 1 and 

the second time with the selected component failure probability set to 0. 

a. Start at the top of the data file. 

b. Repeat the following steps: 

• Work through the data file and find gates with only basic events, substitute 

in value for selected component and ½ for the remaining component 

failure probabilities. 
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• Calculate intermediate values of importance – if the gate is an AND gate 

multiply values of inputs, if an OR gate then use ∏
=

−−
n

i

iq
1

)1(1 . 

• Substitute in data file value for gate just calculated. 

• Continue through the data file, if at bottom, start process again at top 

searching for gates whose inputs all have a calculated value. 

• Calculate new intermediate results. 

• Continue until the Top Event gate has been given a value. 

c.  Record value. 

3. Subtract the value gained from the second run from the first.  The result is the 

approximation for the structural importance value of the component. 

 

Therefore, the structural measure for each component in the data file is: 

 

• Measure for A = 1 – 7/16 = 9/16 

• Measure for B = 7/8 –1/2 = 3/8 

• Measure for C = 13/16 – 5/8 = 3/16 

• Measure for D = 13/16 – 5/8 = 3/16 

 

From these values and using the top-down, left-right method of ordering for matched 

components, the ordering would be: 

 

A < B < D < C 

 

This is the same as that generated with the mathematical structural importance measure. 

 

The approach was tested on a number of trees with non-repeated events, some produced 

the same order others did not.  As no approach so far has given exact results as compared 

to the mathematical structural importance measure, this approximated measure was 

evaluated further.  

 

Computer code was produced to generate the variable ordering list for two hundred and 

twenty five fault trees (used for other mathematical method) using the Birnbaum measure 

applied directly to the tree.  The number of trees for which the BDD produced was equal 

to, greater than, or less than the size of the BDD derived from the best scheme of the six 

alternatives is given in table 4. 

 
Outcome Percentage 

<    77  

=   74 67.1 

>   74 32.9 

 
Table 4: Results Using Approximation Method  

 

From table 4 it can be seen that for 67.1 % of the test set of trees the BDD produced was 

of equal or smaller dimension than the BDD produced using the best scheme option from 
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a set of six.  This result is the highest percentage of equal or smaller BDDs of the three 

approximation methods tested.  In comparison to the mathematical structural importance 

measure, whose percentage for this category of BDDs was 77.3%, this approximated 

figure is nearing the same accuracy. 

 

 

9.  Summary of Structural Measure Findings 
 

• Static variable orderings can be created in two ways: 

- A structured traversal of the tree (preserving neighbourhoods) 

- A method allocating weights to events (not necessarily preserving 

neighbourhoods) 

• The result of both ordering methods are dependent on the way the tree has been 

drawn, not the logic function it represents. 

• A deterministic importance measure has been applied to generate an ordering of 

the variables of a fault tree, the structural measure, which is dependent upon the 

logic function and not the drawing of the fault tree. 

• To assess the effectiveness of the structural measure BDDs using this ordering 

have been compared to BDDs generated by using other variable ordering 

heuristics applying a structured traversal. The results proved to be consistently 

good. 

• The structural importance approach has proven to produce a BDD of equal or 

smaller dimension than the previous best result from an ordering selected from six 

structured traversal alternatives on 77 % of occasions. 

• Using the two pass approach, such that the structural importance is generated 

using the system probability function from the BDD generated using the best 

ordering over a selection of trees – modified top-down, left-right traversal.  A 

second BDD is then produced using the importance ordering.  

• To improve upon the efficiency of the two pass method, an approach to find an 

alternative structural importance measure was to use the Birnbaum measure 

applied directly to the fault tree.  Results using this technique produced equal or 

lesser sized BDDs on 67 % of occasions. 

• It is felt that this approximated structural importance ordering heuristic is the best 

method to date in trying to achieve a minimal or near minimal BDD structure for 

any given fault tree. 

• Future work in this area needs to focus on improving the simplified versions of 

the structural importance measure and finding an alternative method that 

approaches the 77 percent performance of the mathematical measure. 
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