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1. Introduction

A significant amount of research has been undertaken into the
study of structural vibrations and methods to reduce the resonant
amplitudes, including analyses which determine how to modify
the structure to avoid coupling resonant frequencies with excita-
tion sources, incorporating damping materials or the inclusion of
special geometries to attenuate energy at specified frequencies
[1]. More emphasis is also now placed on the optimisation of the
design, in terms of the placement of the natural frequencies [2]
and reducing the amount of damping material, in order to decrease
the carbon footprint and installation time.

Many structural plate elements are formed from rectangular
plates with various shapes machined into them, either for mass
reduction or so that access holes are present for cables or control
boxes. There is then the problem of determining the natural fre-
quencies and minimising the coupling of different resonances. In
order to reduce the vibration amplitude, damping material with
a high stiffness and loss factor can be attached to the plate surface.
A significant amount of the literature on thick and thin plates is
available for regular shapes, see for example the work of Leissa
[3,4] or Liew et al. [5].

When part of a structure containing flexural waves tapers to a
sharp point, care must be taken in a finite element representation
[6] to avoid errors. For example, as the local flexural wavenumber
at a position increases, the nodal density must also increase (this
rapid increase in mesh density is computationally undesirable)
and without the variation in mesh density, either the whole struc-
turemust bemeshed to an extremely high fidelity (computationally
significantly undesirable) or the finite element representation at the
local position will be incorrect. In this paper, a relatively simple
method is used to obtain the natural frequencies of a plate which
has a section where the thickness varies with position using a con-
tinuous integration. While few papers consider the variation of
thickness with position [7], even fewer consider the inclusion of
variable thickness sections into constant thickness plates, see
O’Boy et al. for examples [8,9], despite the interesting engineering
applications for such plate structures. The aim of this paper is to
illustrate how simple designs for plates with indentations may be
tested rapidly with good accuracy using existing methods.

1.1. Vibration advantages for plates with profiled indentations.

It has previously been shown that a profiled indentation can be
attached to a plate edge which can yield a greater loss factor for
flexural vibrations, especially at higher mode numbers (a more
efficient damping method) [8]. Although higher attenuation was
obtained, the rectangular plate was left with a sharp edge which
is relatively weak. By incorporating the tapering thickness into
the centre of a structure, where access holes are required for
cables/ conduits, this disadvantage can be overcome.
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Fig. 2. Dimensions of the structural plate idealised in the numerical model, with a
central quadratic power-law profile with truncation position leaving a gap in the
centre of the plate.
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When a flexural wave travels into a plate where the thickness is
reduced, the amplitude of vibration increases and the phase speed
of the wave decreases. There exist a limited number of mathemat-
ical profiles where analytical solutions to the simplified bending
plate equation of motion can be found, one such group is a
power-law profile, where the thickness varies according to
hðxÞ ¼ �xc, where c and � are positive constants. In beams for
example, an analytical solution involving Bessel’s functions is
available for the case of a linear tapered profile [10] (c ¼ 1) but
higher powers require a numerical approximation, while Mironov
[11] has shown that the group velocity of a wave moving towards
the end of the beam x ¼ 0 asymptotically decreases to zero, when
the power-law is c P 2. It therefore never reaches the end and can-
not reflect back from the free edge of the beam. When a truncation
to the profile is included, the reflection coefficient again increases,
but this can be negated through the application of polymeric
damping layers [12,13]. As the incident flexural wave travels into
the profile, the decreased thickness of material results in larger
amplitude displacement away from the neutral layer and the
damping material is extended and compressed at an amplified rate.

The application of thin damping layers to beam and plate struc-
tures is a well known damping method [14,15], however, the inte-
gration of a specified change in thickness as a means of reducing
reflections from free edges is a novel concept. This tapering of
the thickness has been reported as a viable means of reducing
vibration, where the thickness of a section of a rectangular or cylin-
drical plate is reduced according to the power-law profile, where
c P 2. Experimental measurements and numerical predictions
were carried out on a rectangular plate with and without a wedge
of quadratic power-law profile added to one side, as shown in
Fig. 1. It was shown that when a layer of damping tape was applied
to the plain plate, only a reduction of 1–5 dB of cross-point mobil-
ity amplitude was found. When the damping tape was applied to
the wedge profile, a reduction of 10–15 dB was found [8].

In this paper, a simple Rayleigh–Ritz variational model is docu-
mented which determines the vibration characteristics of an asym-
metric or symmetric profile into a rectangular plate in any
arbitrary position, such as Fig. 2. The first natural frequency is pre-
dicted for the case of a double groove machined into the centre of
the plate, utilising both linear and quadratic power-laws, of vary-
ing sizes, to an accuracy which would be acceptable for use by
most design requirements.

The numerical Rayleigh–Ritz variational model is detailed in
Section 2, both for a constant thickness plate and the modifications
required for the addition of a profiled section. Then, numerical
results are shown in Section 2.3 with comparisons to the other
results in the literature, as a means of validation of the methods
used.

In Section 3, the numerical method is then used to predict the
first natural frequency for a range of plate dimensions, where the
length of the tapering profiles are varied. An example of the indus-
trial use of such plates with access holes, in terms of the damping
of vibration, is provided in Section 4.
Fig. 1. Rectangular plate incorporating a quadratic wedge of power-law profile
machined onto the end. Damping tape is applied to the very tip of the wedge.
1.2. Numerical solutions to plate vibration involving a change in
thickness

The use of rectangular plates is widespread, many of which suf-
fer from excessive vibration causing joint fatigue, tactile discom-
fort and acoustic problems [16] [17, pp. 2-42]. The behaviour of
flexural and extensional plate vibrations has been explored by
Mansfield [18] using infinite series solutions to determine the nat-
ural frequencies where the thickness varies exponentially and an
annular plate where the thickness varies as a power of the radius,
including a variation in temperature. Additional numerical solu-
tions to variable thickness plates can also be found in Trapezon
[19], Lardner [20] or Wang [21].

The most common numerical solutions to the vibration of
tapered plates use this method of an infinite power series in the
displacement function. Jain and Soni [22] have a thorough analysis
of the free vibrations of rectangular plates where the thickness var-
ies according to a parabolic curve. Tomar et al. [23] have also used
a similar method to analyse the vibrations of an infinite plate with
a linear variation in thickness, with results for the first two modes
of vibration determined.

The Rayleigh–Ritz variational method has been applied to rect-
angular plates by a range of authors and the methods used in this
paper build upon this work, adding to the literature, see for exam-
ple Young [24] and Warburton [25] for rectangular plates or Gupta
and Bhardwaj [26] for orthotropic elliptical plates (see also Chak-
raverty et al. [7] for a generalised method for inhomogeneous
orthotropic circular plates). In order to remove a rectangular sec-
tion of plate, the Ritz method by Laura et al. [27,28] will be
employed and is applicable with the simple shape function used
in this paper for a variety of rectangular aspect ratios, in different
positions on the plate [29]. As the method is based on energy dis-
tribution in the plate, it readily lends itself to the analysis of com-
plex plate shapes. It is not the intention to demonstrate the most
efficient convergence, rather that complicated shapes can be
obtained without recourse to more complicated techniques such
as finite element.
2. Numerical model of a plate with a profiled section in the
centre

A numerical model is required to determine the natural fre-
quencies of three distinct plates; a plain rectangular plate, a plate
with a square shouldered hole and a plate with a double quadratic
power-law profile across the width of the plate, the subject of this
paper illustrated in Fig. 2.
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The overall plate has material properties of Young’s modulus E1

Pa, density q1 kg/m3, Poisson’s ratio m1 and dimensions in ðx; yÞ of
ða; bÞ m respectively. The flexural displacement from the neutral
layer is denoted by wðx; yÞ m assuming harmonic vibration of
frequency x rad/s. The bending stiffness of the plate is

D1 ¼ E1h
3
1=12ð1� m21Þ Nm where h1 m is the constant thickness.

The Rayleigh–Ritz variational method is an energy method, so
that a central rectangular section can be removed from this plate,
to be replaced with another plate with properties denoted
E2; q2; m2 and thickness which varies with position h2ðx; yÞ. The
properties of plate 1 will always be the same as plate 2 and the
solutions gathered are the undamped natural frequencies.
2.1. Rayleigh–Ritz variational method for uniform plate vibration

The Rayleigh–Ritz variational method is documented by Young
[24], although a simpler set of admissible functions are utilised, as
also discussed by Warburton [30], which provides an
CðijÞ
mn ¼ D1

R a
0

R b
0

@2Xm
@x2

� �2
Y2

n þ X2
m

@2Yn
@y2

� �2
dxdyþ 2m1½EmmFnn� þ 2ð1� m1ÞHmmKnn

� �
for mn ¼ ij;

D1fm1½EmiFjn þ EimFnj� þ 2ð1� m1ÞHimKjng for mn– ij;

8<
: ð7Þ
approximation of the natural frequencies and locations of nodal
points for a given geometry by equating the maximum potential
energy with the maximum kinetic energy at resonant frequencies.
The maximum potential energy of the (constant thickness) plate
flexural vibration is given by,

UMax ¼ D1

2

ZZ
@2w
@x2

 !2

þ @2w
@y2

 !2

þ 2m1
@2w
@x2

@2w
@y2

8<
:

þ 2ð1� m1Þ @2w
@x@y

 !2
9=
;dxdy ð1Þ

and the maximum kinetic by,

TMax ¼ 1
2
q1h1x2

ZZ
w2 dxdy: ð2Þ

The displacement is assumed to be an infinite series of admissi-
ble shape functions in the x and y directions. This numerical
method constrains the total number of shape functions in the
two directions to a maximum of M; N terms respectively, with
amplitudes bmn.

wðx; y; tÞ ¼
XM
m¼1

XN
n¼1

XmðxÞYnðyÞbmneixt : ð3Þ

When the series solution is substituted into Eqs. (1) and (2), an
expression is obtained which is a function of the amplitudes bmn. If
the difference in the potential and kinetic energy is denoted J, then
the Rayleigh–Ritz method requires the minimisation of J with
respect to these amplitudes, obtained by taking the partial deriva-
tives of J with respect to bmn and setting equal to zero.

@J
@bij

¼ 0 ¼ @UMax

@bij
� @TMax

@bij
; ð4Þ

where the indices i; j represent any of m; n. This latter equation
produces an M � N system of linear homogeneous equations in
the unknown amplitudes bmn. For a suitable set of orthogonal shape
functions, the matrices determining the natural frequencies of
vibration may be written as,XM
m¼1

XN
n¼1

½CðijÞ
mn � kdmn�bmn ¼ 0; ð5Þ

where k ¼ x2 and for the case of a solid rectangular plate,

dmn ¼ q1h1ab=4 for mn ¼ ij; 0 for mn– ij:
� ð6Þ

Two simple shape functions are implemented in this paper,
XðxÞ ¼ sinðmpx=aÞ; YðyÞ ¼ sinðnpy=bÞ, which completely satisfy
the simply supported boundary conditions on the outer edges of
the plates, but only approximate the edges on the inside of the
plate. This is admissible when using the Rayleigh–Ritz method as
the approximate boundary condition becomes more accurate as
the number of terms in the series increases to infinity (subject to
numerical considerations), see Larrondo et al. [31] who also
employs a double Fourier series of shape functions to investigate
a rectangular plate with a linear variation in thickness. The individ-
ual terms in the matrix are given by,
where

Eim ¼
Z a

0
Xi

@2Xm

@x2
dx; Emi ¼

Z a

0
Xm

@2Xi

@x2
dx; Fjn ¼

Z b

0
Yj

@2Yn

@y2
dy;

Fnj ¼
Z b

0
Yn

@2Yj

@y2
dy; Him ¼

Z a

0

@Xi

@x
@Xm

@x
dx; Kjn ¼

Z b

0

@Yj

@y
@Xn

@y
dy:

ð8Þ
Eq. (5) takes the form of a secular determinant [24], with a sep-

aration of odd and even modes of vibration where these decouple
[27,30] due to lines of symmetry. The numerical solution utilised a
size for M and N of 30 terms to obtain both the resonant frequency
for each mode number and also the mode shapes. The natural
frequency for the plate is non-dimensionalised and represented
by X ¼ a2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1h1=D1

p
.

2.2. Inclusion of a power-law profiled section in the plate

The numerical model must be able to calculate not just the
natural frequencies of a rectangular plate, but the modifications
which arise when a linear or quadratic power-law profile is
machined in the plate centre, see Fig. 2. For the double profile along
the coordinate x, it is assumed that it extends from x1 to x2, so that
the thickness is given by hðxÞ ¼ �jðx� aÞjc m where the constant
a ¼ ðx1 þ x2Þ=2 m locates the profile in the centre of the plate,
c ¼ 1 for a linear wedge and c ¼ 2 for a quadratic profile.

The expressions for the maximum potential and kinetic energy
are also valid where the plate thickness varies with the position,
provided the varying bending stiffness in Eq. (1) is taken inside
the integral and the integration is carried out over the whole plate
area. Similarly, the change in thickness in the kinetic energy, Eq. (2)
is also required to be calculated over the whole region of the
integral, as detailed by Nallim et al. [32] through the application
of the Rayleigh–Ritz method in polygonal plates with a linear
variation in thickness.

The inclusion of a profiled section in the centre of the plate as
shown in Fig. 2 requires the energy terms associated with a hole
of dimensions (x ¼ x1 to x2; y ¼ y1 to y2) to be removed from
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Fig. 3. Convergence of X1 with increasing size of the secular determinant M, for the
case of (solid line) a linear wedge and (dashed line) a quadratic wedge in a square
plate with variously sized inner profile, � a1=a ¼ 0:0; �� a1=a ¼ 0:1;�o a1=a ¼
0:2; �} a1=a ¼ 0:3; �þ a1=a ¼ 0:4. Truncation position at ðx2t � x1tÞ=a ¼ 0:1a1=a.

Table 1
First non-dimensionalised natural frequency X1 for a rectangular plate with
rectangular hole. Values in brackets are given by Laura [28].

a1=a b=a

1.0 0.9 0.8 0.7 0.6

0.10 19.486
(19.800)

21.766
(22.120)

24.935
(25.360)

29.533
(30.070)

36.576
(37.320)

0.20 19.169
(19.630)

21.396
(21.920)

24.456
(25.070)

28.837
(29.610)

35.459
(36.500)

0.30 19.481
(19.850)

21.728
(22.140)

24.768
(25.250)

29.056
(29.650)

35.438
(36.220)

0.40 20.788
(21.150)

23.166
(23.570)

26.334
(26.810)

30.727
(31.310)

37.155
(37.930)

0.50 23.491
(23.840)

26.158
(26.550)

29.652
(30.110)

34.414
(34.970)

41.251
(41.980)
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Eq. (5), and the energy terms associated with the profiled plate
substituted in, these having bending stiffness D2. The modified
integrals E0

im; E0
mi are introduced and H0

im where the limits now
exist between x1 and x2. Similarly in the y axis, the modified inte-
grals are now F 0

jn; F 0
nj and K 0

jn with limits from y1 to y2. Then follow-
ing the procedure by Laura [33], the method to remove a central
hole of the plate and replace it with a different constant thickness
plate modifies the matrix element, Eq. (7) as follows,

CðmnÞ
mn ¼ D1

Z a

0

Z b

0

@2Xm

@x2

 !2

Y2
n þ X2
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@2Yn

@y2

 !2

dxdy

8<
:

9=
;

� ðD1 � D2Þ
Z x2

x1

Z y2

y1

@2Xm

@x2

 !2

Y2
n þ X2

m
@2Yn

@y2

 !2

dxdy

8<
:

9=
;

þ 2m1D1 EmmFnn½ � � 2½D1m1 � D2m2� E0
mmF

0
nn

� 	
� 2½D1ð1� m1Þ � D2ð1� m2Þ�H0

mmK
0
nn

þ 2D1ð1� m1ÞHmmKnn for mn ¼ ij; ð9Þ

CðijÞ
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n þ X2
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þ D1m1 EmiFjn þ EimFnj
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h i
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ð10Þ

dmn ¼
q1h1ab=4� ðq1h1 �q2h2Þ

R x2
x1

R y2
y1

X2
mY

2
ndxdy for mn¼ ij;

�ðq1h1 �q2h2Þ
R x2
x1

R y2
y1

X2
mY

2
ndxdy for mn– ij:

8<
:

ð11Þ
An analytical form of this integration (with the bending

stiffness term inside the integral) is used at all times for this inner
section based on the summation of each individual power of xwith
the shape function.

Finally, it is impossible to machine a power-law profile with
such precision that it can extend to zero thickness, rather, in the
manufacturing process, the profile is truncated at a position
x ¼ x1t on one side and at a position x ¼ x2t on the other, where
the length of the power-law profile can be manipulated by varying
this truncation position in terms of the limits of the integration in
Eqs. (10) and (11). The truncation is necessary for convergence, as
discussed in Krylov [12], while Zhou describes the application of a
boundary condition to a beam with a sharp point. It is pointed out
that any solution found in this case would be inconsistent as the
beam with a sharp point cannot sustain a bending moment or
shear force and that the deflection is required to be finite at the
end of the beam [34]. In the case of finite elements, the mesh den-
sity would still have to be increased significantly closer to the trun-
cation point, even with the truncation. The analytical integration is
efficient in this case.

2.3. Series convergence

Results are shown for a steel material, a Poisson’s ratio of
m ¼ 0:3, with the convergence of natural frequency for a square
plate (a ¼ b) and central hole incorporating a linear and quadratic
power-law profile in Fig. 3. The size of the central hole is given as a
ratio a1=a; b1=b where a1 ¼ x2 � x1; b1 ¼ y2 � y1. The truncation
position of the power-law profile is set at ðx2t � x1tÞ=a ¼ 0:1a1=a.

The first mode is obtained with sufficient accuracy after
approximately M ¼ N ¼ 21 terms. The following results in this
paper are obtained with 30 terms, sufficient to resolve the change
in resonant frequency to within one percent. As an example, a
square plate with a central hole a1=a ¼ 0:2 and truncation point
ðx2t � x1tÞ=a ¼ 0:1a1=a with a linear wedge has first natural fre-
quency X1ðM ¼ N ¼ 28Þ ¼ 19:013 and X1ðM ¼ N ¼ 30Þ ¼ 19:008,
a reduction of 0.03 percent. For the case of a quadratic
power-law, the convergence is X1ðM ¼ N ¼ 28Þ ¼ 18:954 and
X1ðM ¼ N ¼ 30Þ ¼ 18:949, a reduction of 0.02 percent. Although
this simple method always overestimates the resonant frequency
through an upper bound, it still can provide an estimate to within
acceptable accuracies for most engineering applications. For the
ninth frequency, the reduction between 28 and 30 terms is 0.32
percent.

2.4. Validation

The variational method has been successfully used to predict
the natural frequencies of a plate with a central square or rectan-
gular hole, see for example the work of Laura et al. [27,28]. The
method used in this paper does not differ in the mathematical
approach, only the likely numerical implementation. The natural
frequencies of a rectangular plate with rectangular central hole
are provided in Table 1, where it may be seen that using N ¼ 30
terms, the natural frequencies in [28] can be obtained (the
variation is due to a different number of terms in the variational
method).

It remains to provide a validation for the use of the variational
Rayleigh–Ritz method for a thickness varying profile. The compar-
ison is made with the finite element results published by Larrondo
et al. [31] for a single linear rectangular wedge. In this case, the
linear profile extends from x ¼ x1 ¼ 0 to x ¼ x1t ¼ a (the second
profile using dimensions x2 and x2t are not utilised), where the
thickness variation hðxÞ ¼ �ða� xÞ is dictated by the constant f,
the taper constant � ¼ fh1=a and a ¼ ð1þ fÞa=f. The natural fre-
quencies predicted by this paper for the range of taper geometries



Table 2
First natural frequency X1 for a rectangular plate with a single linear taper in one
direction only, simply supported on all edges. Validated results in brackets are finite
element calculations given by Larrondo et al. [31].

b=a f

0.2 0.5 0.8

4.00 11.508 (11.508) 12.958 (12.956) 14.335 (14.329)
2.00 13.549 (13.549) 15.302 (15.301) 16.995 (16.993)
1.00 21.692 (21.692) 24.557 (24.556) 27.363 (27.362)
0.50 54.161 (54.161) 61.010 (61.011) 67.537 (67.539)

Table 4
First natural frequency X1 for a square plate with profiled inner double quadratic
power-law profile. Variation of the size of the outer profile and truncation length.

a1=a ðx2t � x1tÞ=a1
0.00 0.05 0.10 0.15 0.20 0.25

0.10 19.453 19.453 19.453 19.453 19.454 19.455
0.17 19.057 19.057 19.058 19.059 19.061 19.064
0.20 18.871 18.871 18.872 18.873 18.877 18.882
0.30 18.521 18.521 18.523 18.528 18.537 18.551
0.33 18.495 18.496 18.498 18.504 18.516 18.535
0.40 18.588 18.589 18.593 18.604 18.623 18.654
0.50 19.048 19.050 19.059 19.081 19.122 19.185
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and rectangular plate sizes are compared to the finite element cal-
culations in Table 2 with excellent accuracy and agreement.

The energy method has been validated in stages against pub-
lished results from the literature, showing that the method can
be used to determine the plate shape for variable thickness sec-
tions, providing that the integrals in Eq. (10) can be completed suc-
cessfully. In order to improve accuracy for the natural frequencies
of the higher order modes, alternative shape functions in Eq. (3)
and non-dimensionalised coordinates could be incorporated. For
example, polynomial co-ordinate functions can yield excellent
accuracy for the fundamental frequency in addition to allowing a
simple integration method for the case of a non-linear thickness
or inhomogeneous medium (note that in this paper, the shape
function also allows a highly computationally efficient analytical
integration method to be employed). Often the specific choice of
shape functions is determined by the boundary conditions or
numerical implementation [34].
3. Results

The natural frequencies are presented for various configurations
of the plate with a profiled inclusion, including both square and
rectangular plate sizes and various ratios a1=a to vary the outer size
of the profile. The truncation positions are also varied which has
the effect of increasing or decreasing the overall size of the inner
hole.

A table of results showing the variation of non-dimensionalised
natural frequency for a square plate with a variable size inner hole
containing a linear profile section is shown in Table 3 where the
truncation position of the linear wedge is also altered. Varying
the truncation position also varies the size of the inner aperture.
The same comparison is produced for a quadratic power-law pro-
file in Table 4.

It can be seen that the natural frequency of the plate with a lin-
ear wedge is generally higher than with a quadratic power-law
profile for small inner profile sizes, as with the quadratic profile
the material becomes thinner approximately half way down the
wedge length, with the associated reduction in flexural stiffness.
As the size of the inner profile is increased, the natural frequency
varies, initially decreasing and then increasing. As the truncation
Table 3
First natural frequency X1 for a square plate with profiled inner double linear profile.
Variation of the size of the outer profile and truncation length.

a1=a ðx2t � x1tÞ=a1
0.00 0.05 0.10 0.15 0.20 0.25

0.10 19.486 19.487 19.488 19.491 19.494 19.497
0.17 19.076 19.078 19.082 19.090 19.099 19.109
0.20 18.858 18.860 18.867 18.878 18.892 18.907
0.30 18.282 18.289 18.307 18.335 18.370 18.415
0.33 18.135 18.144 18.167 18.203 18.250 18.309
0.40 17.916 17.929 17.966 18.022 18.099 18.197
0.50 17.738 17.761 17.827 17.931 18.075 18.252
positions are increased (increasing the aperture hole in the centre
of the plate) the natural frequency decreases as the overall stiffness
is decreased.

The vibration modes of the plate for higher natural frequencies
are shown in Fig. 4 for a square plate with a double quadratic
power-law profile, where the outer size of the power-law profile
is a1=a ¼ 0:2 and the truncation position is ðx2t � x1tÞ=a ¼ 0:1a1=a.
It can be seen that the addition of a damped profile will especially
influence the forced vibration amplitude of the second, sixth, sev-
enth and ninth natural frequency, as the anti-nodal locations are
located close to the profile, parallel to the axis of displacement
where any amplified motion will cause compression and extension
of any damping layer attached to the profile.

If the outer dimension of the power-law profile, a1=a ¼ 0:2 is
maintained and the truncation position of the profiles are
altered, the impact on the first natural frequencies can be seen in
Fig. 5(a)–(c) for the case of a linear and quadratic power-law vari-
ation. The variation in frequency is much larger with the linear
case than the quadratic, indicating that the trade-off between mass
and flexural stiffness reduction is more sensitive in the former
case. Interestingly the first natural frequency can be designed to
be the same with either profile, although this possibility does not
exist with the higher modes, as the truncated profile is not near
any anti-nodes at these frequencies.

The variation in the natural frequency for the case where the
outer and inner rectangular plates are rectangular rather than
square are now presented. The case of a linear profile where
b=a < 1 are shown in Table 5, whereas the case where the profile
is larger, b=a > 1 is shown in Table 6.

The identical cases for a profile with a quadratic power-law
variation is shown in Tables 7 and 8 for the case of b=a < 1 and
b=a > 1 respectively. The trend of variation in frequency parameter
where the ratio of the plate dimensions are altered agrees with the
study by Jain and Soni, who also found that X increases with an
increase in the a=b ratio [22].

4. Impact of a profiled inclusion on the damped natural
frequencies

Damping added to the plate, which is consistent with typical
industrial solutions to noise and vibration issues is now shown.
It is assumed that the structure represents a panel with access
holes for cables or conduits, see Fig. 6 for an example of an automo-
tive panel with holes for weight saving.

The cases will be compared for a plate of dimension
ða; bÞ ¼ ð1:0;0:5Þ m, with central inner profile size
ða1; b1Þ ¼ ð0:3; 0:3Þ m with reference to Fig. 2. The double profile
is quadratic in the x direction with truncation points
ðxt1; xt2Þ ¼ ð0:485;0:515Þ m. The plate materials are considered to
be rolled mild steel with Young’s modulus, density and Poisson’s
ratio given by E1 ¼ 190 GPa, q1 ¼ 7850 kg/m3 and m ¼ 0:3 respec-
tively. The inherent damping in the metal is approximated as
g ¼ 0:01.
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The properties of the viscoelastic damping layer reflect a mate-
rial such as butyl rubber, with thickness hd ¼ 1 mm, Young’s mod-
ulus Ed ¼ 15 MPa and loss factor gd ¼ 0:8, where the loss factor is
incorporated into the numerical prediction through making the
Young’s modulus complex, E0

d ¼ Edð1þ igdÞ. By fully attaching the
damping layer to a steel sheet, the overall composite loss factor
gCOMP for flexural waves at any local position can be obtained (com-
posite defined as steel and damping layer). Oberst [14] provides an
approximation dependent on the extensional stiffness of the two
layers as,

gCOMP ¼
gda½12b2 þ C2ð1þ aÞ2�

½1þ a�½12ab2 þ ð1þ aÞð1þ aC2Þ� ð12Þ
where the subscript p denotes plate material and d the damping
material. The terms C ¼ hd=hp; a ¼ CEd=Ep and b ¼ ðhd þ hpÞ=2hp.

Three test cases are shown as industrial examples. The first is a
rectangular plate with a thin rectangular slot at the truncation
positions. The only damping is the inherent metal damping. This
is termed the ‘‘plain plate”. The second case is the plain plate with
a layer of damping material of thickness 1 mm applied to
the whole surface, termed the ‘‘plain damped”. Finally the last case
shown is the rectangular plate with a double quadratic profile
extending to the truncation positions, which has a layer of
damping material on top. This is termed the ‘‘profiled plate”.

All three cases are illustrated as cross-sections on the left-hand
side of Fig. 7 (note axes not to scale). On the right-hand side are the



Table 5
First natural frequency X1 for a rectangular plate with profiled inner double linear
profile where b < a. Variation of the size of the outer profile and truncation length.

b=a a1=a ðx2t � x1tÞ=a1
0.00 0.05 0.10 0.15 0.20 0.25

0.600 0.10 36.724 36.725 36.728 36.733 36.739 36.745
0.17 35.856 35.859 35.868 35.883 35.902 35.922
0.20 35.391 35.396 35.410 35.433 35.461 35.493
0.30 34.146 34.159 34.195 34.253 34.326 34.415
0.33 33.812 33.828 33.875 33.949 34.044 34.159
0.40 33.281 33.307 33.381 33.496 33.648 33.833
0.50 32.737 32.785 32.919 33.127 33.402 33.733

0.700 0.10 29.604 29.605 29.607 29.611 29.616 29.621
0.17 28.966 28.969 28.976 28.988 29.002 29.019
0.20 28.627 28.631 28.642 28.660 28.682 28.707
0.30 27.734 27.744 27.773 27.818 27.876 27.946
0.33 27.503 27.516 27.553 27.611 27.686 27.778
0.40 27.152 27.173 27.231 27.322 27.443 27.593
0.50 26.837 26.875 26.981 27.146 27.367 27.636

0.800 0.10 24.967 24.967 24.969 24.973 24.977 24.981
0.17 24.453 24.455 24.462 24.471 24.483 24.497
0.20 24.181 24.185 24.194 24.208 24.227 24.247
0.30 23.472 23.480 23.504 23.541 23.589 23.648
0.33 23.292 23.303 23.334 23.382 23.444 23.521
0.40 23.028 23.045 23.094 23.169 23.270 23.396
0.50 22.814 22.846 22.933 23.071 23.257 23.485

0.900 0.10 21.776 21.777 21.779 21.781 21.785 21.789
0.17 21.331 21.333 21.338 21.346 21.357 21.368
0.20 21.094 21.097 21.105 21.118 21.133 21.151
0.30 20.478 20.485 20.506 20.537 20.578 20.629
0.33 20.322 20.332 20.358 20.399 20.452 20.519
0.40 20.094 20.109 20.151 20.215 20.302 20.412
0.50 19.916 19.943 20.018 20.136 20.298 20.497

Table 6
First natural frequency X1 for a rectangular plate with profiled inner double linear
profile where b > a. Variation of the size of the outer profile and truncation length.

b=a a1=a ðx2t � x1tÞ=a1
0.00 0.05 0.10 0.15 0.20 0.25

1.100 0.10 17.786 17.786 17.788 17.790 17.793 17.796
0.17 17.391 17.393 17.397 17.404 17.412 17.421
0.20 17.180 17.183 17.189 17.199 17.211 17.224
0.30 16.616 16.622 16.638 16.663 16.695 16.735
0.33 16.469 16.477 16.498 16.530 16.572 16.625
0.40 16.243 16.255 16.288 16.338 16.407 16.496
0.50 16.045 16.067 16.125 16.219 16.348 16.509

1.200 0.10 16.488 16.488 16.490 16.492 16.494 16.497
0.17 16.097 16.099 16.103 16.109 16.116 16.124
0.20 15.887 15.889 15.895 15.904 15.915 15.926
0.30 15.316 15.321 15.337 15.359 15.387 15.424
0.33 15.164 15.171 15.190 15.219 15.257 15.306
0.40 14.922 14.933 14.963 15.009 15.072 15.153
0.50 14.695 14.715 14.768 14.852 14.971 15.119

1.300 0.10 15.474 15.474 15.476 15.477 15.480 15.482
0.17 15.079 15.081 15.085 15.090 15.097 15.104
0.20 14.866 14.868 14.873 14.882 14.891 14.902
0.30 14.278 14.283 14.297 14.317 14.343 14.376
0.33 14.118 14.124 14.142 14.168 14.203 14.248
0.40 13.856 13.866 13.894 13.936 13.994 14.070
0.50 13.594 13.612 13.661 13.739 13.848 13.986

1.400 0.10 14.666 14.667 14.668 14.670 14.672 14.674
0.17 14.263 14.264 14.268 14.273 14.279 14.285
0.20 14.043 14.045 14.051 14.058 14.067 14.076
0.30 13.432 13.437 13.450 13.469 13.493 13.523
0.33 13.262 13.268 13.285 13.309 13.342 13.384
0.40 12.979 12.988 13.014 13.052 13.107 13.178
0.50 12.681 12.697 12.742 12.814 12.916 13.045

Table 7
First natural frequency X1 for a rectangular plate with profiled inner double quadratic
power-law profile where b < a. Variation of the size of the outer profile and
truncation length.

b=a a1=a ðx2t � x1tÞ=a1
0.00 0.05 0.10 0.15 0.20 0.25

0.600 0.10 36.604 36.604 36.605 36.605 36.607 36.609
0.17 35.668 35.669 35.669 35.672 35.676 35.683
0.20 35.211 35.211 35.212 35.216 35.222 35.233
0.30 34.213 34.214 34.217 34.226 34.244 34.272
0.33 34.044 34.045 34.049 34.062 34.085 34.122
0.40 33.956 33.957 33.966 33.988 34.028 34.089
0.50 34.321 34.325 34.348 34.402 34.492 34.621

0.700 0.10 29.528 29.528 29.528 29.529 29.530 29.531
0.17 28.864 28.864 28.865 28.867 28.870 28.876
0.20 28.546 28.546 28.547 28.550 28.555 28.563
0.30 27.901 27.902 27.905 27.912 27.926 27.948
0.33 27.821 27.822 27.825 27.835 27.854 27.883
0.40 27.870 27.871 27.878 27.895 27.926 27.975
0.50 28.381 28.383 28.399 28.439 28.507 28.607

0.800 0.10 24.914 24.914 24.914 24.914 24.915 24.917
0.17 24.396 24.396 24.397 24.398 24.401 24.406
0.20 24.152 24.152 24.153 24.155 24.159 24.166
0.30 23.685 23.685 23.688 23.694 23.705 23.724
0.33 23.645 23.645 23.648 23.656 23.672 23.696
0.40 23.745 23.746 23.751 23.765 23.791 23.832
0.50 24.284 24.286 24.299 24.331 24.386 24.468

0.900 0.10 21.736 21.736 21.736 21.736 21.737 21.739
0.17 21.298 21.298 21.299 21.300 21.302 21.306
0.20 21.093 21.093 21.094 21.096 21.099 21.105
0.30 20.710 20.711 20.713 20.718 20.728 20.744
0.33 20.684 20.685 20.687 20.694 20.708 20.729
0.40 20.792 20.793 20.798 20.810 20.832 20.867
0.50 21.305 21.307 21.317 21.344 21.390 21.461

Table 8
First natural frequency X1 for a rectangular plate with profiled inner double quadratic
power-law profile where b > a. Variation of the size of the outer profile and
truncation length.

b=a a1=a ðx2t � x1tÞ=a1
0.00 0.05 0.10 0.15 0.20 0.25

1.100 0.10 17.756 17.756 17.756 17.757 17.757 17.758
0.17 17.380 17.380 17.380 17.381 17.383 17.387
0.20 17.201 17.202 17.202 17.204 17.207 17.212
0.30 16.855 16.855 16.857 16.861 16.869 16.882
0.33 16.822 16.822 16.824 16.830 16.841 16.858
0.40 16.888 16.888 16.892 16.902 16.919 16.948
0.50 17.284 17.285 17.293 17.313 17.349 17.405

1.200 0.10 16.460 16.460 16.460 16.460 16.461 16.462
0.17 16.090 16.090 16.090 16.091 16.093 16.096
0.20 15.912 15.912 15.912 15.914 15.917 15.921
0.30 15.551 15.551 15.553 15.557 15.564 15.576
0.33 15.507 15.507 15.509 15.514 15.524 15.540
0.40 15.541 15.541 15.545 15.553 15.570 15.596
0.50 15.868 15.869 15.876 15.895 15.928 15.979

1.300 0.10 15.447 15.447 15.447 15.447 15.447 15.448
0.17 15.073 15.073 15.074 15.075 15.076 15.079
0.20 14.892 14.892 14.893 14.894 14.897 14.901
0.30 14.508 14.508 14.509 14.513 14.520 14.532
0.33 14.450 14.451 14.452 14.457 14.467 14.482
0.40 14.450 14.451 14.454 14.462 14.477 14.501
0.50 14.709 14.710 14.717 14.733 14.764 14.811

1.400 0.10 14.638 14.638 14.639 14.639 14.639 14.640
0.17 14.257 14.257 14.257 14.258 14.260 14.263
0.20 14.070 14.070 14.070 14.071 14.074 14.078
0.30 13.657 13.657 13.658 13.662 13.669 13.679
0.33 13.585 13.586 13.587 13.592 13.601 13.615
0.40 13.551 13.551 13.554 13.562 13.576 13.599
0.50 13.744 13.744 13.751 13.766 13.795 13.839
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Fig. 6. Illustration of a typical automotive panel (bonnet shown) with holes for
weight saving and attachment of the heavy trim liner (bottom of the photo).
Automotive bulkheads typically have access holes for cables and heating ducts.
Typical solutions for noise and vibration include attachment of viscoelastic
damping layers.
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composite loss factors for every position on the cross section. For
the plain plate, only inherent damping g ¼ 0:01 is present. For
the plain plate with damping layer, the composite damping rises
to gCOMP ¼ 0:0101 (an increase of only 1%) as the plate properties
dominate Eq. (12). This shows the relative futility of covering the
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Fig. 7. Three industrial cases compared, a plain plate with only inherent damping (top)
damped profiled indentation (bottom). Cross sections through the material are shown o
whole plate with damping material, as is the usual solution to plate
vibration problems.

The composite damping when applied to the profile shows a
significant rise close to the truncation point. Any flexural waves
which have a sufficiently high wavelength will be able to propa-
gate into the profile and be attenuated. Indeed, such is the lack
of impact covering the constant thickness sections, it would make
as much sense to just apply damping to the tapering thickness
areas.

This composite loss factor, which varies according to position
on the structure, leads to an overall modal loss factor for each
natural frequency. The damped natural frequency kr for the
rth mode is related to the undamped natural frequency xr and
the modal loss factor gr through k2r ¼ x2

r ð1þ igrÞ (with associated
non-dimensional parameter �Xr).

The damped natural frequency and the modal loss factors are
shown in Table 9 for the three case studies. It can be seen that
when the mode shape indicates an incident angle for the flexural
wave into the profiled section which is large, the modal loss factor
is relatively low (yet still higher than for the constant thickness
plate). However, for higher modes, the profiled plate shows a more
significant and more effective increase in the modal damping. This
is consistent with shorter wavelength flexural waves propagating
into the tapering section where the damping layer is then forced
to extend and compress significantly.

The mass of the damping material for the damped plain plate
and profiled plates are approximately equal, however, the mass
of damping material could be further reduced by not covering
the constant thickness sections of the profiled plate, as these parts
do not generate a significant reduction in amplitude. Along with an
appreciable increase in the modal damping, the reduction in damp-
ing mass will lead to financial and carbon cost reductions. It is a
simple step to generate the frequency response functions for the
forced case through a modal summation, to obtain the point
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, the same with a layer of damping tape applied (middle) and a plain plate with a
n the left and the composite damping at each position on the right.



Table 9
Comparison of three test cases for enhanced damping in a plate structure with an
access hole. Damped natural frequencies �Xr for different modes r, with associated
modal loss factor gr %.

Mode number Plain plate Plain damped Profiled plate

1 49.24 (1.00) 49.24 (1.02) 44.38 (1.11)
2 78.92 (1.00) 78.92 (1.02) 76.07 (1.06)
3 127.72 (1.00) 127.72 (1.02) 129.16 (1.03)
4 167.51 (1.00) 167.51 (1.02) 135.40 (1.19)
5 196.74 (1.00) 196.74 (1.02) 181.87 (1.10)
6 197.33 (1.00) 197.33 (1.02) 187.48 (1.06)
7 246.66 (1.00) 246.66 (1.02) 227.36 (1.06)
8 284.50 (1.00) 284.50 (1.02) 281.17 (1.08)
9 314.22 (1.00) 314.22 (1.02) 296.69 (1.07)

10 365.26 (1.00) 365.26 (1.02) 317.76 (1.77)
11 394.24 (1.00) 394.24 (1.02) 352.58 (1.28)
12 394.77 (1.00) 394.77 (1.02) 380.88 (1.05)
13 404.63 (1.00) 404.63 (1.02) 383.59 (1.05)
14 444.94 (1.00) 444.94 (1.02) 390.59 (1.33)
15 511.03 (1.00) 511.03 (1.02) 454.21 (1.23)
16 511.78 (1.00) 511.78 (1.02) 455.68 (1.41)
17 520.98 (1.00) 520.98 (1.02) 484.62 (1.08)
18 603.89 (1.00) 603.90 (1.02) 513.88 (1.79)
19 639.35 (1.00) 639.35 (1.02) 523.31 (1.36)
20 642.46 (1.00) 642.46 (1.02) 528.80 (1.06)
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mobility of each plate, where the larger modal loss factor would
lead to a reduction in vibration amplitude.
5. Conclusions

It has been shown that the natural frequencies of vibration of a
complex plate structure can be approximately determined using a
variational Rayleigh–Ritz method. The plate is a square or
rectangular structure of constant thickness incorporating a central
double profiled indentation of power-law profile (linear or quadra-
tic). The size of the truncation position of the power-law profile can
be moved to alter the size of the inner aperture.

The natural frequencies have been predicted for a range of plate
dimensions and truncation sizes using a variational Rayleigh–Ritz
method incorporating 30 terms, sufficient to resolve the change
in natural frequency with subsequent additional terms to within
one percent. The numerical model has been validated in sections
against numerical predictions published in the literature with
excellent agreement against finite element calculations. It has been
shown that a plate with a double linear power-law profile has a
higher natural frequency than a similar plate with a quadratic
power-law indentation for small profile sizes.

The method is sufficiently adaptable to allow the movement of
the aperture to any location on the plate and many other thickness
variations can be employed provided the numerical integrals can
be completed.

A demonstration of the use of tapered indentations as
highly efficient damping mechanisms for flexural waves has been
shown.
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