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Abstract

Design method for uncertain non-minimum phase and unstable plants in the Quantita-

tive Feedback Theory (QFT) developed by Horowitz and Sidi (Horowitz and Sidi, 1978;

Horowitz, 1992) is revisited in this paper. It is illustrated that the existing method

may not work since some design rules have not been clearly specified by several exam-

ples including non-minimum phase plants and unstable plants. Then stability of a new

nominal plant is carefully examined and analysed, and an improved design method is

presented. The result in this paper provides mathematical justification of the QFT de-

sign procedure for non-minimum phase and unstable plants in Horowitz and Sidi (1978)

and Horowitz (1992).

Keywords: Robust control, frequency domain, Quantitative Feedback Theory (QFT),

non-minimum phase systems, unstable systems, robust stability
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1 Introduction

Quantitative Feedback Theory (QFT) was initially proposed by Horowitz and further

developed by him and others (Horowitz, 1963; Horowitz and Sidi, 1972; Horowitz and

Sidi, 1978; Horowitz, 1992; Houpis, 1995). It is considered as an efficient design method

of robust controllers for plants with structured uncertainties, unstructured uncertain-

ties and mixed uncertainties, and has been applied in aircraft, missiles, compact disk

mechanisms, etc (Pachter and Houpis, 1997; Chait et al., 1994).

QFT is considered as an engineering oriented methodology. Unlike other robust

control design methods, initially QFT was not received detailed mathematical analysis

of its basis. Thus it has been criticised by lack of rigorous mathematical basis such as the

existence of a controller; for example, see Doyle (1986), Ballance and Gawthrop (1992)

and Ballance (1992). Although this situation has been significantly improved due to the

efforts of many researchers (Yaniv and Horowitz, 1987; Nordgren et al., 1994; Jayasuriya

and Zhao, 1994b; Jayasuriya and Zhao, 1994a; Chen and Ballance, 1999), there are still

a number of “ad-hoc” design rules being used which are not explicitly evident in the

stated design procedure.

This paper considers and adds to the design method for uncertain non-minimum

phase and unstable plants proposed by Horowitz and Sidi (Horowitz and Sidi, 1978;

Horowitz, 1992). This method was developed for uncertain non-minimum phase plants

by Horowitz and Sidi (1978) about twenty years ago and then was extended to the

unstable case by Horowitz in his book “Quantitative Feedback Theory” (Horowitz, 1992).

This method is now recognised as an efficient method of dealing with non-minimum

phase and unstable plants within the QFT formula; for example see Yaniv and Horowitz

(1987) and Nordgren et al. (1994).

The key idea behind the Horowitz and Sidi method is to convert a loop-shaping

problem for an unstable and/or non-minimum phase nominal plant to that for a stable

minimum phase nominal plant by shifting robust stability and performance bounds.

The reason is that in numerical design it is more convenient to work with a minimum

phase function because the Bode integrals (Bode, 1945) can be used and the optimal

loop shaping can be derived (Horowitz and Sidi, 1972; Horowitz and Sidi, 1978). In

addition, although the same limitations imposed by right plane zeros and poles exist
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whatever choice is made and appear in one form or another, this method explicitly

reveals the limitations on the open loop transmission L(jω) and makes it much easier to

see if assigned specifications can be satisfied. In what follows, this method is reviewed

carefully and some mathematical basis is established. Several examples including the

non-minimum phase case and the unstable case which show deficiencies in this method

are given. That is, the stability requirement for the new nominal plant is not clearly

specified. It is shown that in addition to shifting robust bounds, stability of the new

nominal plant must be reconsidered. Hence in order to achieve the expected result by

employing this method, it requires modification or the implicit rules must be clarified

and made explicit.

2 Illustrative examples

2.1 Non-minimum Phase Plants

Example 1 : Consider the following non-minimum phase plant

P (s) =
k(2− s)

(s + a)(s + 1)
(1)

where the uncertain parameters belong to the set

k ∈ [1, 10]; a ∈ [0.1, 1]. (2)

There is one right half-plane zero. For the sake of simplicity, only the robust stability is

considered hereafter and robust performance is not considered. This is justified on the

basis that a method must be able to guarantee robust stability if it is to be considered

for robust performance. The robust stability requirement can be imposed by
∣∣∣∣

L(s)
1 + L(s)

∣∣∣∣ ≤ 2.1 for all a ∈ [0.1, 1], k ∈ [1, 10], (3)

where

L(s) = P (s)G(s), (4)

and G(s) is the controller. Condition (3) defines a region around the critical point

(−1, 0). It is required that the open loop transmission loop under the controller G(s)

and uncertainties should not touch this region. In the QFT framework, this condition

together with the stability requirement for the nominal plant guarantees the robust
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stability of the closed-loop systems under the described uncertainties with the gain and

phase margins defined by (3) (Jayasuriya and Zhao, 1994b; Jayasuriya and Zhao, 1994a).

The nominal plant is chosen for the uncertain parameters a = 0.1 and k = 1, i.e.,

Po(s) =
2− s

(s + 0.1)(s + 1)
. (5)

The plant templates in Nichols chart are shown in Fig. 1 at frequency points ω= 0.1,

0.3, 1, 2, 3, 6, 10, 50 where ”?” denotes the nominal case.

Figure 1 should be here

Figure 2 should be here

Figure 3 should be here

Figure 4 should be here

The robust margin bounds at these frequencies are depicted in Fig. 2. Since the

nominal plant (5) can be rewritten as

Po(s) =
s + 2

(s + 0.1)(s + 1)
2− s

2 + s
= P ′

o(s)A(s) (6)

where

P ′
o(s) =

s + 2
(s + 0.1)(s + 1)

(7)

is defined as the new nominal plant. Obviously it is a stable minimum phase plant. The

component

A(s) =
2− s

2 + s

is all-passing with the following properties

|A(jω)| = 1, arg(A(jω)) = −2 tan−1 0.5ω, ω ∈ [0,∞). (8)

At frequency ωi, Horowitz and Sidi (1978) pointed out that the new robust bounds

for the new nominal plant, P ′
o, is obtained by shifting the previous robust bounds by

φ(ωi) = 2 tan−1(0.5ωi). (9)

The new bounds for the nominal plant P ′
o(s) are depicted in Fig. 3. Horowitz and Sidi

(1978) claimed that the QFT controller design for the nominal plant Po(s) is equivalent
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to that for the nominal plant P ′
o(s) with the shifted bounds. So the subsequent design

procedure is the same as the QFT design procedure for the minimum phase case devel-

oped in Horowitz and Sidi (1972). After manual loop-shaping in the CAD environment

of QFT toolbox (Borghesani et al., 1995) in Matlab, a controller

G(s) =
5.845

s/1.324 + 1
(10)

is yielded. The loop transmission L′o(s) = P ′
o(s)G(s) is plotted in Fig. 3. All the

robust margin bounds are satisfied under this controller. Moreover using the Nichols

chart stability criterion (Cohen et al., 1992), the new nominal plant P ′
o(s) under the

controller (10) is stable since the loop transmission does not intersect the stability line

R = {(r, φ) : r > 0dB,φ = −180◦}. It can also be shown that there is no right half-plane

zero-pole cancellation in G(s)P (s) for all k and a within the prescribed ranges (2). The

plant family under this controller should be robustly stable. Unfortunately the systems

are not robustly stable since, as shown in Fig. 4, the Nyquist plots of the closed-loop

systems encircle the point −1 + j0. the key issue here is that the stability of the “new”

nominal plant does not imply that of the old nominal plant P (s).

2.2 Unstable plants

The idea for non-minimum phase plants in Horowitz and Sidi (1978) was further ex-

tended to the unstable case in Horowitz (1992, Chapter 8). The underlying idea is the

same as above, that is, to convert the problem of loop-shaping of an unstable nominal

plant to that of a stable minimum phase nominal plant by shifting robust bounds.

Example 2 : Consider a simple second order unstable plant

P (s) =
k(s + a)
s(s− 2.5)

(11)

where the uncertain parameters k and a are within the same ranges in (2). This plant

has one fixed unstable pole. For simplicity, as in Section 2.1, only robust stability is

concerned.

The plant with the parameters k = 1 and a = 1 is chosen as the nominal case, giving

by

Po(s) =
(s + 1)

s(s− 2.5)
. (12)
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The plant templates at frequencies ωi = 0.1, 0.3, 1, 2, 3, 6, 10, 50 are plotted in Fig. 5

where ”?” denotes the nominal plant Po(jω). Since this is a plant with negative gain

and one integral term, the Nichols plot begins from -270◦ at low frequency. The robust

bounds for the nominal plant Po(s) are shown in Fig. 6. Choosing

P ′
o(s) =

(s + 1)
s(s + 2.5)

(13)

as the new nominal plant, the relationship between the nominal plant Po(s) and the new

nominal plant P ′
o(s) is given by

|Po(jω)| = |P ′
o(jω)|

and

arg Po(jω) = arg P ′
0(jω)− 180◦ + 2 tan−1(0.4ω), ω ∈ [0,∞).

Figure 5 should be here

Figure 6 should be here

Figure 7 should be here

Figure 8 should be here

Thus the bounds for the new nominal plant P ′
o(s), as shown in Fig. 7, are yielded

by shifting the bounds of the nominal plant Po(s) right by

180◦ − 2 tan−1(0.4ω), for all ω ∈ [0,∞). (14)

The problem now becomes to design a controller such that the loop transmission

L′(s) satisfies all the bounds in Fig. 7 for the plant P ′
o(s). The Nichols plot of the loop

transmission L′(s) after the loop shaping is depicted in Fig. 7 and the corresponding

controller is given by

G(s) =
1.571

s/0.2616 + 1
. (15)

Once again all the robust bounds are satisfied and the new nominal closed-loop system

is stable under this controller. The controller G(s) should stabilise the uncertain plant

(11). However as shown in Fig. 8, the closed loop system is not robustly stable. The

Nyquist plots encircle the point −1 + j0 in the clockwise direction once and since the
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open loop plant has one unstable pole, the closed-loop system has two unstable poles.

It should be noted that the Nyquist plot of the plant P ′
o(s) is also drawn in Fig. 8 and

it does not circle the point −1 + j0 since the low frequency gain of P ′
o(s) is positive

and there is no unstable pole in P ′
o(s). So the controller G(s) in (15) stabilises the

new nominal plant P ′
o(s) but does not stabilise the uncertain plant P (s) (11). The

relationship between the stability of the new nominal plant P ′
o(s) and the previours

nominal plant should be examined.

3 Robust bounds and stability for the new nominal plant

In Section 2, two examples are presented to show that the design method for non-

minimum phase and unstable plants developed in Horowitz and Sidi (1978) and Horowitz

(1992) may not work. It is believed by some researchers in QFT community that in loop

shaping, the open loop transmission L(jω) must pass the corresponding QFT bounds on

the right hand. This rule, however, has not been clearly stated and, more importantly,

there is no any mathematical justification on it. In this section, the relationship between

an unstable and/or non-minimum phase nominal plant and a “new” stable, minimum

phase nominal plant is examined carefully. Some implicit rules in Horowitz and Sidi

(1978; 1992) are clarifies and an improved method is given.

3.1 QFT bounds

Consider a SISO uncertain plant

P (s) =
N(s)N̂(−s)
D(s)D̂(−s)

(16)

where D̂(−s) and N̂(−s) denote the parts with right half-plane poles and zeros explicitly.

Specifications in the QFT formulation are generally expressed by the following three

item

1. Robust Stability Margin ∣∣∣∣
L(s)

1 + L(s)

∣∣∣∣ ≤ γ; (17)

2. Tracking Performance

a(ω) ≤
∣∣∣∣
F (jω)L(jω)
1 + L(jω)

∣∣∣∣ ≤ b(ω); (18)
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3. Disturbance Attenuation Performance
∣∣∣∣

P (jω)
1 + L(jω)

∣∣∣∣ ≤ d(ω) (19)

where

L(s) = P (s)G(s),

and G(s) and F (s) are the controller and the prefilter respectively. In addition, it is

important to note that to ensure robust stability of the closed loop systems, the nominal

closed-loop system must be stable. So the QFT design problem is to find a controller

G(s) and a prefilter F (s) such that conditions (17), (18) and (19) are satisfied and

an arbitrarily chosen nominal plant is stabilised. An arbitrarily chosen nominal plant

within the plant family is given by

Po(s) =
No(s)N̂o(−s)
Do(s)D̂o(−s)

. (20)

If

A(s) =
N̂o(−s)D̂o(s)
N̂o(s)D̂o(−s)

, (21)

then the new nominal plant is defined as

P ′
o(s) = Po(s)A(s)−1 =

No(s)N̂o(s)
Do(s)D̂o(s)

. (22)

Obviously P ′
o(s) is a stable minimum phase plant. Furthermore we have

L(s) = P (s)G(s) = P ′(s)G(s)A(s) = L′(s)A(s) (23)

where

P ′(s) =
N(s)N̂(−s)N̂o(s)D̂o(−s)
D(s)D̂(−s)N̂o(−s)D̂o(s)

. (24)

and

L′(s) = P ′(s)G(s) (25)

Since A(s) defined in (21) is all-passing, it gives

|A(jω)| = 1 for all ω ∈ [0,∞). (26)

This implies

|1 + L(s)| = |1 + L′(s)A(s)| = |A(s)−1 + L′(s)|. (27)
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The stability margin in (17) becomes
∣∣∣∣

L(jω)
1 + L(jω)

∣∣∣∣ =
∣∣∣∣

L′(jω)
A(jω)−1 + L′(jω)

∣∣∣∣ ≤ γ. (28)

L′(jω) under the allowable uncertainties must satisfy condition (28). That is, on the

Nichols chart the stability margin bounds on L(jω) defined in (17) are regions with the

centre (0◦, 0db) but the stability margin bounds on L′(jω) defined in (28) are regions

with the centre of (arg(A(jω)−1), 0db) which varies with the frequency ω. To show it,

note that

L(jω) =
P (jω)
Po(jω)

Lo(jω).

It follows that the robust stability bound for the nominal case Lo(jω) is calculated from

the inequality ∣∣∣∣∣∣

P (jω)
Po(jω)Lo(jω)

1 + P (jω)
Po(jω)Lo(jω)

∣∣∣∣∣∣
≤ γ. (29)

Similarly, for the new nominal loop transmission, L′o(jω), we have
∣∣∣∣∣∣

P (jω)
Po(jω)L

′
o(jω)A(jω)

1 + P (jω)
Po(jω)L

′
o(jω)A(jω)

∣∣∣∣∣∣
≤ γ. (30)

At a prescribed frequency ωi, the bound for Lo(jωi) is derived from condition (29).

Let

Lo(jωi) = rejφ.

It follows from (29) that ∣∣∣∣∣∣

P (jωi)
Po(jωi)

rejφ

1 + P (jωi)
Po(jωi)

rejφ

∣∣∣∣∣∣

=

∣∣∣∣∣∣

P (jωi)
Po(jωi)

rej(φ−arg A(jωi))A(jωi)

1 + P (jωi)
Po(jωi)

rej(φ−arg A(jωi))A(jωi)

∣∣∣∣∣∣
. (31)

Now let

L′o(jω) = r′ejφ.

Substituting it into (30) and then comparing with (31) yields

φ′ = φ− argA(jω), r′ = r.

This implies that if the bound on the magnitude |Lo(jωi)| is ro at the phase φ, then the

bound on the magnitude of |L′o(jωi)| is also ro at the phase φ− arg A(jωi). Hence the

bound on L′o(jωi) can be obtained by shifting the bound on Lo(jω) by -arg A(jωi).
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Similar conditions can be found for the bounds of tracking performance and distur-

bance rejection.

Following ∣∣∣∣
F (jω)L(jω)
1 + L(jω)

∣∣∣∣ =
∣∣∣∣

F (jω)L′(jω)
A(jω)−1 + L′(jω)

∣∣∣∣ , (32)

condition (18) becomes

a(ω) ≤
∣∣∣∣

F (jω)L′(jω)
A(jω)−1 + L′(jω)

∣∣∣∣ ≤ b(ω). (33)

Similarly, the disturbance attenuation performance (19) can be written as
∣∣∣∣

P ′(jω)
A(jω)−1 + L′(jω)

∣∣∣∣ ≤ d(ω). (34)

It can also be shown that the bounds imposing on L′(jω) by (33) and (34) are the

same as the bounds imposing on L(jω) by (18) and (19) but with horizontal shift of

-arg A(jω), which is similar to the stability margin bounds (17).

The bounds for stability margin, tracking and disturbance attenuation for the stable

minimum phase nominal plant P ′
o(jωi) are therefore the same as that for the unstable

and/or non-minimum phase nominal plant Po(jωi) but with a horizontal (in the Nichols

plane) shift of phase -arg(A(jωi)) at frequency ωi. That is, the bounds for the new

nominal plant P ′
o(jωi) are obtained by shifting the bounds for the nominal plant Po(jωi)

by − arg(A(jωi)). This conclusion is the same as that of Horowitz and Sidi (1978) and

Horowitz (1992) but a strictly mathematical derivation is not given there. However, an

important requirement, the stability of the nominal closed-loop system, is not clearly

specified by Horowitz and Sidi (1978) and Horowitz (1992).

3.2 Stability analysis

Next a stability criterion for the new nominal plant P ′
o(s) is proposed. First some

necessary preliminaries are given. The stability line in Nyquist plot is defined as

Rc =: {(x, y) : y = 0, x < −1}. (35)

which is shown in Figure 9. According to the relationship between the Nyquist plot and

Nichols plot, as shown in Figure 9, the stability line in single sheet Nichols chart is given

by

Rn =: {(φ, r) : φ = −180◦, r > 0}, (36)
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and the stability lines in the multiple sheet Nichols chart are given by

Rn = {(φ, r) : φ = −(2q + 1)180◦, r > 0, q = 0,±1,±2, . . .}.

A crossing occurs when the plot of L(s) intersects the stability line Rc. The crossing is

said to be positive if the direction is upward, and negative otherwise, as shown in Fig 9.

Lemma(Graphical stability criterion on Nyquist plot (Vidyasagar et al., 1988)): For

a plant with n right half plane poles, the closed loop system is stable if and only if the

number of positive crossings minus the number of negative crossings is n and L(jω) does

not intersect with the point −1 + j0.

The Nyquist plot does not intersect the point (−1 + j0) implies

1 + L(jω) 6= 0. (37)

It follows from (23) that

L′(jω) 6= −A(jω). (38)

Thus the critical point moves with frequency instead of the fixed point −1 + j0. Noting

that |A−1(jω)| = 1, the critical point moves on the boundary of the unit circle as shown

in Fig. 10.

Figure 9 should be here

Moreover, according to the positive crossing and negative crossing definitions in

Fig. 9, a crossing occurs at frequency ωi if and only if

1 + L(jωi) = −k

where k is an arbitrary positive real. This implies

L′(jωi) = −(k + 1)A−1(jωi). (39)

Therefore L(jω) intersects the stability line Rc in (35) at frequency ωi is equivalent to

that L′(jω) intersects the line −(k +1)A−1(jω) for k > 0 at frequency ωi. The stability

lines for L′(jω) with respect to the stability line Rc in (35) for L(jω) are shown in

Fig. 10. At frequency ωi, the stability line for L′(s) in the Nyquist plot is given by

Rc(ω) =: {(x, y) : x = −(k + 1) cos(arg(−A(jω)),

y = −(k + 1) sin(arg(−A(jω)), k > 0}. (40)
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This implies the stability line for L′(s) moves with frequency instead of a fixed

negative real axis for L(s). In the Nichols chart the stability lines become a series of

vertical lines as shown in Fig. 10, given by

Rn(ω) = {(φ, r) : φ = −(2q + 1)180◦ + arg(A−1(jω)),

r > 0, q = 0,±1,±2, . . .}. (41)

Following the analysis in the above, a crossing occurs for L′(jω) only when the plot of

L′(jω) intersects the stability line Rn(ω) at the same frequency ω. The above result is

summarised in Theorem.

Figure 10 should be here

Definition: Suppose that at any ω, L(ω) and R(ω) are a point and a line in the

complex plane respectively. We say, with ω from 0 to ∞, the curve L(ω) crosses the line

R(ωi) if L(ωi) is on the line R(ωi) at ωi. Moreover we say the curve L(ω) crosses the

line R(ωi) with positive direction if the the curve L(ω) intersects the line R(ωi) with

the clockwise direction, and negative otherwise.

Theorem: For a plant L(s) with n right half plane poles, the closed-loop system is

stable if and only if L′(jω) defined in (23) does not intersect the point −A(jω) at the

same frequency ω and the net number of positive and negative crossings on the stability

line Rn(ω) in (41) at the same ω is n.

3.3 Design Guidelines in QFT

When the loop shaping problem in QFT for a non-minimum phase and/or unstable

nominal plant, Po(s), is transformed to that for a stable minimum phase nominal plant,

P ′
o(s), beside the bounds for the nominal plant Po(s) should be moved with -A(jωi) at

the frequency ωi, stability of the new nominal plant P ′
o(s) must be reconsidered. That is,

not only the robust bounds but also the stability line must be shifted with the frequency.

The new stability criterion is presented in Theorem. It is important to notice that in

the loop shaping procedure, whether or not the loop transmission L′(jω) must intersect

the stability line R(ω) depends on the number of unstable poles in the original nominal

plant, Po(s), rather than that in the new nominal plant, P ′
o(s). For example, if Po(s)
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has one unstable pole, to ensure stability of the nominal closed-loop system, the loop

transmission L′(jω) must intersect the stability line R(ω) with one positive crossing

although it has no unstable poles.

It has become customary that in QFT and other control design methods to use only

half of the Nyquist plot. Because of conjugate symmetry, each crossing of the half plot

is equal to two crossing of the complete plot. If the half plot crosses the stability line at

the beginning, it’s counted as one half crossing.

Since the stability line is connected to the QFT bounds at each frequency ωi, it is

also shifted with the same horizontal distance as the QFT bounds. For a non-minimum

phase plant, it’s easy to find that a necessary and sufficient condition for stability is that

the net number of positive and negative crossings is zero and the Nyquist plot of the

open loop transmission passes the corresponding QFT bounds on the right hand. For

an unstable system, as shown in Theorem, stability depends on the number of unstable

poles and the net number of the positive and negative crossings.

To summary, some design guidelines of Horowitz and Sidi method for non-minimum

phase and unstable plants are clarified as follows:

1. When transferring the loop shaping problem for a non-minimum phase and/or

unstable nominal plant Po(s) to that for a stable, minimum phase nominal plant

P ′
o(s), the stability line must be shifted with the same distance as robust stability

and performance bounds.

2. In the loop shaping, to ensure stability of the closed-loop system, the net number

of the positive and negative crossings of the open loop transmission L′(jω) depends

on the number of unstable poles in the original nominal plant Po(s), rather than

that in the new nominal plant P ′
o(s)

3. For a non-minimum phase plant, a necessary and sufficient condition for the nomi-

nal system to be stable is that the open loop transmission L′(jω) does not intersect

the point −A(jω) at the same frequency and the net number of positive and neg-

ative crossings is zero. Moreover in this case, the Nyquist plot of the open loop

transmission passes the corresponding QFT bounds on the right hand.

4. For an uncertain plant with n unstable poles, a necessary and sufficient condition

for the closed-loop system is stable is that the half of the Nyquist plot of the
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open loop transmission L′(jω) does not intersect the point −A(jω) at the same

frequency and the net number of positive and negative crossings on the stability

line is n/2.

4 Examples revisited

4.1 Non-minimum Phase Plants

Example 1 in (1) is a non-minimum phase plant without unstable poles. When the loop

shaping problem for the non-minimum phase nominal plant, Po in (5), is transferred

to that for the minimum phase nominal plant, P ′
o in (7), the stability line should also

be shifted with the same distance as the robust bounds in Figure 3. It is easy to find

that the open loop transmission crosses the stability line one time in Figure 3. Hence

from the stability result in this paper, the nominal system is unstable. This can also be

shown by that the loop transmission passes the corresponding robust bound on the left

hand.

4.2 Unstable Plants

Figure 11 should be here

Figure 12 should be here

Similar to Example 1, Example 2 in Section 2 is revisited here. Shifting the robust

margin bounds and the stability line simultaneously yields the robust margin bounds

and the stability lines in Fig. 11. Now we check the loop shaping result in Figure 7

under the controller (15). When ω is zero, the stability line is shifted to 0 deg phase.

There is one negative half crossing at the beginning of the Nyquist plot of the open loop

transmission. There is no other crossing. Hence the number of crossings of the complete

Nyquist is −1. This plant has one unstable pole. Hence the nominal system is unstable.

Now we redesign the controller for Example 2 by taking into account the new stability

requirement. For this special plant, only a simple gain controller is needed to satisfy the

robust margin bounds and the stability requirement of the nominal case, given by

G(s) = 6.582. (42)
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As shown in Figure 11, at the beginning of the Nyquist plot, the loop transmission

L′(jω) has one negative half crossing. Then it intersects the stability line with one

positive crossing. (Chen and Ballance (1998) has developed a series of simple rules

to calculate the net number of crossing for complicated plants). The net number of

the positive and negative crossings is 2 × (1 − 1/2) = 1. The nominal plant under

this controller is stable since the plant Po(s) has one unstable pole. So it implies the

closed-loop systems are robustly stable and with the stability margin defined in (3). The

Nyquist plots of the closed-loop system are also given in Fig. 12, which also show that

it is robustly stable.

5 Conclusion

This paper revisits the QFT design method for non-minimum phase and unstable plants

developed by Horowitz and Sidi (1978) and Horowitz (1992). Motivated by two examples

including unstable and non-minimum phase plants, we show that the closed-loop systems

under the controller resulting from the existing Horowitz and Sidi method may not be

robustly stable and the guidance in the existing method should be clarified or modified.

By the rigorous mathematical induction, it is shown that the reason is that the stability

requirement of the new nominal plant is not clearly specified. It is pointed out that the

stability line of the new nominal plant varies with frequency instead of a fixed negative

real axis. The mathematically sound basis for transferring the robust bounds of an

unstable and/or non-minimum phase nominal plant into that of a stable minimum phase

nominal plant is also established. This paper takes a further step toward establishing

the mathematical justification of the current QFT design procedure and providing clear

guidelines for control system designers wishing to use QFT.
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Figure 1: Plant templates and the nominal plant for Example 1
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Figure 2: Robust margin bounds of Example 1: the nominal plant Po(s)
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Figure 3: Robust margin bounds for the new nominal plant P ′
o(s) and loop-shaping

result for Example 1: the QFT bounds from the left to the right and the circles on the

loop transmission from the top to the bottom corresponding to frequencies ωi = 0.1,

0.3, 1, 2, 3, 6, 10, 50
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Figure 4: Nyquist plots under the resulting controller for Example 1
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Figure 5: Plant templates and the nominal plant for Example 2
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Figure 6: Robust margin bounds for Example 2: nominal plant Po(s)
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Figure 7: Robust margin bounds for the new nominal plant P ′
o(s) and loop-shaping for

Example 2: the QFT bounds from the right to the left and the circle points on the loop

transmission from the top to the bottom corresponding to frequencies ωi = 0.1, 0.3, 1,

2, 3, 6, 10, 50
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Figure 8: Nyquist plots under the resulting controller for Example 2
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Figure 11: Loop-shaping for Example 2

29



−30 −25 −20 −15 −10 −5 0
−50

−40

−30

−20

−10

0

10

20

30

40

50

Real Axis

Im
ag

 A
xi

s

Figure 12: Nyquist plots under the new controller for Example 2
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