
 1

 Efficient Basic Event Ordering Schemes for Fault Tree

Analysis

L.M. Bartlett and J.D. Andrews

Mathematical Sciences Department

Loughborough University

Loughborough

Leicestershire

LE11 3TU

Summary

Fault Tree Analysis is a commonly used means of assessing the system reliability

performance in terms of its component’s reliability characteristics. More recently,

significant advances have been made in methodologies to analyse the fault tree

diagram. The most successful of these developments has been the Binary Decision

Diagram (BDD) approach. The Binary Decision Diagram approach has been shown

to improve both the efficiency of determining the minimal cut sets of the fault tree

and also the accuracy of the calculation procedure used to determine the top event

parameters.

To utilize the Binary Decision Diagram approach the fault tree structure is first

converted to the BDD format. Implementing the conversion of the tree is relatively

straight forward but requires the basic events of the tree to be placed in an ordering.

The ordering scheme chosen is critical to the size of the BDD produced, and hence the

advantages of this technique. Alternative ordering schemes have been investigated

and no one scheme is appropriate for every tree structure.

The work presented in this paper takes a machine learning approach based on Genetic

Algorithms to select the most appropriate ordering scheme. Features which describe a

fault tree structure have been identified and these provide the inputs to the machine

learning algorithm. A set of possible ordering schemes has been selected based on

previous heuristic work. The objective of the work detailed in the paper is to predict

the most efficient of the possible ordering alternatives from parameters which

describe a fault tree structure.

1. Introduction

Over the past five years an alternative technique, to the Kinetic Tree Theory

(Vesely
1
), known as the Binary Decision Diagram (BDD) method has been

developed
2-7

 to analyse the fault tree. This method has proved to be more accurate

and efficient than the conventional approaches. In calculating the system or top event

parameters it does not need to first evaluate all the minimal cut sets, nor does it

require the use of approximations, the exact calculations can be performed.

To take advantage of these features, the fault tree constructed to represent the system

failure mode must first be converted to a BDD. To accomplish this the basic events in

the fault tree are placed in an order. A good ordering of the basic events can result in

a very efficient analysis, a poor ordering can lead to problems.

 2

Several research papers have been published which investigate different ordering

strategies for the BDD
8-9

. As yet no rule based approach to identify a scheme which

yields an efficient ordering for each tree has been produced. Lack of this efficient

ordering for any tree structure is probably the reason that no commercially available

code has been produced which is based on this method.

This paper presents a method of identifying a ‘good’ ordering scheme based on a

machine learning approach, in conjunction with a genetic algorithm.

2. Binary Decision Diagrams

A BDD is a directed acyclic graph, as shown in figure 1. All paths through the BDD

start at the root vertex and terminate in one of two states, either a 1 state which

corresponds to a system failure, or a 0 state which corresponds to a system success. A

BDD is composed of terminal and non-terminal vertices, which are connected by

branches. Non-terminal vertices correspond to the basic events of the fault tree.

X1

X2

X4X3

1 1 00

0

ROOT VERTEX

TERMINAL 1 VERTEX TERMINAL 0 VERTEX

1 0 1 0

01

1 0

NON-TERMINAL
 VERTEX

Figure 1: A Binary Decision Diagram.

All the left branches leaving a vertex are the 1 branches and all the right branches the

0 branches. Every path starts from the root vertex, and proceeds down through the

diagram to the terminal vertices. Only the vertices that lie on a 1 branch on the way

to a terminal 1 vertex are included in the path. All the paths terminating in a 1 state

give the cut sets of the fault tree. For example, the cut sets for the BDD shown in

figure 1 are:

 1) X1,X2,X3 2) X1,X4.

2.1. Variable Ordering

In constructing the BDD, the ordering of the basic events is crucial to the size of the

resulting diagram. Using an inefficient ordering scheme will produce a non-minimal

BDD structure. Alternative ordering schemes will produce BDD’s of different sizes,

the smaller the BDD the more optimal the diagram. To illustrate this fact, consider the

 3

simple fault tree shown in figure 2. The tree has four basic events, where X2 is

repeated.

TOP

G1

G2 G3

 X2 X3 X2 X4

 X1

Figure 2 : A simple fault tree.

If the basic event ordering permutation of X1<X2<X3<X4 is taken, the resulting

BDD is shown in figure 3. This structure consists of only four nodes, it is a minimal

structure and hence produces only minimal cut sets.

X1

X2

X3

X4

1

1 0

0

1

Figure 3 : Resulting BDD from ordering X1<X2<X3<X4.

However, if the alternative ordering permutation of X4<X3<X2<X1 is taken the

resulting BDD consists of seven nodes, it is non-minimal and yields non-minimal cut

sets (shown in figure 4). From this result it can be shown that for larger fault tree

structures the resulting BDD would be much larger, and in the worst case of using a

poor ordering permutation, the diagram may be unsolvable.

 4

X4

X3

X2

X1

1

1 0 0

1

X3

X2

X1

1

1

Figure 4 : Resulting BDD from ordering X4<X3<X2<X1.

The objective would be to produce an ordering scheme which achieves the ‘best’

BDD. Numerous studies have investigated the effects of variable ordering schemes

on the BDD size and it has been shown
9
 that there is no universal scheme which will

always guarantee the ‘best’ BDD formation, and the most appropriate scheme must be

selected depending on the characteristics of the fault tree.

3. Pattern Recognition Approaches

One approach to the problem of variable ordering is to consider pattern recognition

techniques. There are many alternatives. These include classifier systems
10

, ID3
11

,

neural networks
12

, Bayesian methods and fuzzy logic
13

. There is no way to determine

which of these would be the most effective to apply to the ordering problem.

Therefore, classifier systems have been initially selected and investigated in this

paper.

4. Machine Learning Systems - The Classifier Model

Classifier systems are a kind of rule-based machine learning system, with general

mechanisms for processing rules in parallel, for testing the effectiveness of existing

rules and for adaptive generation of new rules
21

. A classifier system, depicted

schematically in figure 5, consists of three main components:

 1) Rule and message system.

 2) Apportionment of credit system.

 3) Rule/message generation system.

MESSAGE LIST

CLASSIFIERS

 Match / Bid

A.O.C

Message Action

Learning

Classifier System

Genetic Algorithm

Figure 5: A Classifier System.

 5

The environment posts an input message which is sent to the internal message list.

The messages activate classifiers, matching classifiers bid to place their messages on

the message list. In the case of more than one match the winning classifier is decided

by a bidding process in the apportionment of credit system. Once a winning classifier

has been found, this then posts its message to the message list, and the process is

repeated several times until an action is then produced. The input corresponds to a

fault tree structure and the action specifies the best way of ordering the basic events.

4.1 The Rule and Message System.

The rule and message system forms the computational backbone of the machine

learner. A classifier consists of two main parts: (1) a message part; and (2) a

condition part. It has simple syntax:

 classifier ⇒ condition : message

A message within the classifier system is a means of information exchange, and is

simply a finite length string over some finite alphabet, in terms of a binary alphabet,

we have:

 message ⇒ {0,1}
n

Thus, the message is defined as a concatenation of 0's and 1's of length n. The

condition is a simple pattern recognition device where a wild card character (#) is

added to the underlying alphabet.

 condition ⇒ {0,1,#}
n

Thus, a condition matches a message if at every position a ‘0’ in the condition

matches a ‘0’ in the message, a ‘1’ matches a ‘1’, and a ‘#’ matches either.

Both the condition and the message parts of a classifier contain coded characteristics

of the problem and coded outputs of the problem. An example condition or message

part of a classifier is:

 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1

 coded characteristics | action or output

 which describe problem | of the problem

Once a classifier matches a previous message from the message list, whether it posts

its message is determined by the outcome of the bidding process determined in the

apportionment of credit system.

4.2 Apportionment of Credit Algorithm (A.O.C)

The A.O.C is the competition phase of the classifier system, implemented in terms of

a bidding process. This bidding process is referred to as the bucket brigade algorithm.

A classifier, when matched, makes a bid proportional to a product of its strength and

the bid coefficient.

Winning classifiers must then pay their bid to other classifiers for matches rendered.

The matched and activated classifier divides its bid, to those classifiers responsible for

posting the messages that matched the bidding classifiers condition. This division of

payoff among contributing classifiers helps to ensure the formation of an appropriate

 6

sized subpopulation of rules
10

.

To illustrate the workings of the A.O.C system we consider five classifiers, see table

1. Assuming initial strength values of 500 for all five classifiers, we post the initial

input (environmental) message 0101, where {01} represents the characteristics of the

problem and the {01} represents the action/output of the problem. We assume a bid

coefficient of 0.1 and take the bid as the product of this bid coefficient, and strength.

In the initial step (t=0), classifier 1 and classifier 4 match the input and bid 50 units,

since they both have the same bids the tie is broken by random selection, the winning

classifier sends its message during the next time step. Classifier 4 pays its bid to the

party responsible for its activation; in this case, the input (environment) strength is

increased by 50 units as the environmental message was responsible for activating

classifier 4. In subsequent time steps, activated classifiers make their payment to

previously active classifiers. Finally, at time step 4, a reward comes into the system

and is paid to the last active classifier, classifier 3 where the action corresponds to the

input action (i.e. the last two digits are the same).

 ----------- t = 0 ---------------- ------------ t = 1 ----------------

 Classifier Strength Message M Bid Strength Message M Bid

1 01## : 0000 500 e 50 450

2 00#0 : 0011 500 500

3 11## : 1001 500 500

4 0#01 : 0001 500 e 50 450 0001* 4 45

5 ##01 : 1100 500 500 4 50

 Environment 0 0101 50

 ----------- t = 3 ---------------- ------- t = 4 --------

 Classifier Strength Message M Bid Strength Message Payoff Strength

1 01## : 0000 450 450 450

2 00#0 : 0011 500 500 500

3 11## : 1001 500 5 50 450 1001 1000 1450

4 0#01 : 0001 455 455 455

5 ##01 : 1100 450 1100 500 500

 Environment 50 50 50

*when two bids are equal, tie broken by random selection.
Table 1: Apportionment of Credit System.

5. Rule and Message Generation System

Injecting new possibly better rules into the system requires the use of a rule / message

generation system, in this instance a genetic algorithm.

5.1 Genetic Algorithms

Genetic algorithms (G.A's) are search algorithms based on the mechanics of natural

selection and natural genetics
1
 . They originated from the studies of Holland and

colleagues at the University of Michigan
15

. A genetic algorithm is composed of three

operators: Reproduction, Crossover and Mutation.

Reproduction is a process in which individual strings are copied according to their

fitness values. The reproduction operator is implemented by creating the equivalent

of a biased roulette wheel in the computer, where each current string in the population

has a roulette wheel slot sized in proportion to its fitness. The effect of roulette wheel

parent selection is to return a randomly selected parent. This parental selection

technique has the advantage that it directly promotes reproduction of the fittest

population members by biasing each members chances of selection in accordance

 7

with its evaluation
16

.

Next crossover may proceed in two steps. First, members of the newly reproduced

strings are paired at random. Second, each pair of strings undergoes crossover as

follows: an integer position k along the string is selected at random between 1 and the

string length less one [1,t-1]. Two new strings are created by swapping all characters

between positions k+1 and t inclusively. For example, consider strings A1 and A2:

 A1 = 0 1 1 0 1 0 1

 A2 = 1 1 0 0 0 1 0

Suppose in choosing a random number between 1 and 6, we obtain a k=4 (as

indicated by the separator symbol). The resulting crossover yields two new strings:

 A1' = 0 1 1 0 0 1 0

 A2' = 1 1 0 0 1 0 1

Mutation, the final G.A operator, is the occasional (with small probability) random

alteration of the value of a string position. It is an insurance policy against premature

loss of important notions.

6. Rule and Message Classification

The first portion of the classifiers and their messages represents the fault tree

characteristics, hence it is essential to code characteristics defining the fault tree

structure in some form. Several characteristics can be used to represent the significant

features of the trees. Figure 6 indicates a simple fault tree structure with common

distinguishing elements labelled.

Failure Of Water

from Hose

No Water from

Nozzle

No Water To

Nozzle

 N

No Water To

Hose
Hose Blocked

 H

Tap Blocked No Water

 T W

TOP EVENT

SUB-EVENT

OR GATE

BASIC EVENT

AND GATE

Figure 6: A simple fault tree with labelled elements.

By examining the combinations of these factors a fault tree structure can be described.

The list of possible characteristics is endless. Some possibilities include: number of

gates; number of events; number of repeated events; number of levels, etc. It is clearly

impractical to code all possible characteristics, hence a select few need to be

extracted which represent the most significant tree features with relevance to the BDD

 8

construction. In this study eleven characteristics were chosen as an initial starting

point to investigate the potential of the classifier system. The characteristics are

applied once the fault tree has been represented as an alternating sequence of AND

and OR gates.

7. Variable Ordering Schemes

As previously mentioned the ordering placed on the basic events of a fault tree will

determine the size of the resulting BDD
17-19

, and hence the number of cut sets. It is

beneficial to achieve an ordering which is optimal in terms of the resulting size of the

BDD.

It is clear that numerous methods of variable ordering are available In previous

research
20

 6 different ordering schemes which lead to a reduction on the size of the

resulting BDD for different tree structures, have been identified. These are: top-

down, left-right approach; modified top-down, left-right approach; depth first

approach; modified depth first approach; priority depth first approach; and modified

priority depth first approach.

The top-down, left-right approach is the most common, and is produced by listing the

variables in a top-down , left-right manner from the original fault tree structure. The

depth first approach involves breaking the whole tree structure into smaller trees

(subtrees) and looking at the optimal ordering of these subtrees. The depth first

ordering scheme gives each subtree a top-down, left-right ordering, working from the

first gate inputs of the top event. The priority depth first approach takes the depth

first approach one step further and considers subtrees with only basic event inputs

first. All the modified versions of each approach consider repeated events of each

gate with basic events inputs first. If the gate has more than one repeated event as an

input then the most repeated event is placed first, if they occur the same number of

times then the events are taken in gate list order to break the tie. The differences in

these scheme options are highlighted in Andrews and Bartlett
22

.

This short list of schemes have been adopted to investigate the potential of the

classifier approach.

8. Breakdown of Input / Output variable coding

Each classifier message and condition comprises of 34 bits, which can be broken

down to two main sections, namely: the characteristics coding and the scheme coding.

The characteristics coding comprises 33 bits and is broken down to:

 4 bits for percentage of and gates;

 5 bits for percentage of different events repeated;

 5 bits for percentage of total events repeated;

 1 bit for top gate type;

 2 bits for number of outputs from top gate;

 2 bits for number of levels of tree;

 3 bits for number of basic events

 3 bits for maximum number of gates in any level;

 3 bits for number of gates with gate outputs only;

 3 bits for number of gates with event outputs only;

 9

 and 2 bits for highest multiple of a repeated event.

The scheme coding comprises of 1 bit of either a 0 or a 1, where a 1 represents that

scheme as a ‘good’ schemes and a 0 as a bad scheme. Results to date have shown that

testing each scheme separately produces improved accuracy. This involves training a

classification scheme for each of the different ordering options. To run the prediction

program a tree is tested against each scheme classification system, starting at scheme

1, and producing an output of scheme 1 or not. Trees which produce a negative result

are then further processed against the other ordering options until one scheme is

chosen. In the event that no numbering option is selected scheme 1 can be used as the

default.

9. Training and Test Data

Fault tree structures used in the training and test phases were obtained from industry

and also by random production using a computer program. Each tree structure was

analyzed for the chosen characteristics, and these characteristics were converted to the

appropriate binary representation.

Each tree was analyzed prior to training for the best ordering scheme for the most

efficient BDD representation. The best scheme was identified by the minimum

number of nodes in the BDD structure.

To evaluate the performance of the learning classifier system a test set of data was

produced with different tree structures and known best ordering schemes. The output

scheme coding bits for prediction purposes are set to wildcard characters. The

performance is evaluated by comparing the number of correct scheme outputs

predicted.

10. Results

Results for the number of correct scheme predictions for the test data have been

encouraging. For the smaller fault tree structures the results have been more accurate.

The significant characteristics that have been considered in this study may for the

larger tree structures require more research. More tests need to be undertaken to

provide further evaluations.

11. Conclusions

Initial predictions using the classifier approach have indicated promising results in

determining the best of alternative ordering schemes to yield an efficient BDD

representation, and hence an efficient analysis.

With slight alterations to the set of factors chosen to adequately represent the

complexity of the fault tree structure, and also by increasing the size of the training

data set, it is predicted that the results for larger trees will be as convincing as that

currently shown for the smaller sized fault trees.

References

 10

1. Vesely W.E., “A Time Dependent Methodology for Fault Tree Evaluation”,

 Nuclear Eng and des., 13, 1970, pp337-360.

2. Bryant R.E., “New Algorithms for Fault Tree Analysis”, Reliability

 Engineering and System Safety, vol 40,1993, pp203-211.

3. Sinnamon R.M. and Andrews J.D., “ New Approaches to Evaluating Fault

 Trees”, Proceedings of ESREL 95 conference, June 1995.

4. Sinnamon R.M. and Andrews J.D., “Fault Tree Analysis and Binary Decision

 Diagrams”, Proceedings RAMS 96, Las Vegas, Jan 96.

5. Rauzy A., “A Brief Introduction to Binary Decision Diagrams”, European

 Journal of Automation”, Vol 30, No 8, 1996.

6. Sinnamon R.M. and Andrews J.D., “Quantitative Fault Tree Analysis using

 Binary Decision Diagrams”, European Journal of Automation”, Vol 30, No 8,

 1996.

7. Dugan J.B. and Doyle S.A., “Incorporating Imperfect Coverage into Binary

 Decision Diagrams”, European Journal of Automation”, Vol 30, No 8, 1996.

8. Boussiou M., ”An Ordering Heuristic for building Binary Decision Diagrams

 from Fault Trees”, Proceedings RAMS 96, Las Vegas, Jan 96.

9. Sinnamon R.M., “Fault Trees and Binary Decision Diagrams”, PhD Thesis,

Loughborough University, 1997.

10. Goldberg D.F., “Genetic Algorithms in Optimization and Machine Learning”,

 Addison Wesely 1997.

11. Quinlan J.R., “Discovering rules from large collections of examples: a case

 study”, Expert Systems in the Macro Electronic Age (D. Michie Ed),

 Edinburgh University Press.

12. Bishop C.M. “Neural Networks for Pattern Recognition”, Clarendon, 1995.

13. Eberhart, Simpson and Dobbins, “Computational Intelligence PC Tools”, AP,

 1996.

14. Davis,R. and King, J., “An overview of Production Systems.” In E.W. Elcock

 and D. Michie (Eds.), Machine Intelligence 8 (pp300-332), 1976. New York:

 Wiley.

15. DeJong, K.A., “Genetic Algorithms: A 10 year perspective,” Proceedings of

 an International Conference on Genetic Algorithms and Their Applications,

 1985, pp169-177.

16. Davis, L., "Handbook of Genetic Algorithms"New York: Van Nostrand

 Reinhold, 1991.

17. Bryant, R.E., “Graph-Based algorithms for Boolean function,” IEEE Trans.

 Computers, vol C-35, 1986, No. 8, pp667-691.

18. Akers, S.B., “Binary decision diagrams,” IEEE Trans. Computers, vol C-27,

 1978, No. 6, pp509-561.

19. Rauzy, A., “New algorithms for fault tree analysis,” Reliability Engineering

 and System Safety, vol 40, 1993, pp203-211.

20. Sinnamon, R. and Andrew, J.D., “Improved Efficiency in Qualitative Fault

tree analysis”, Advances in Reliability Technology Symposium, Manchester,

1996.

21. Michalewicz, Z., "Genetic Algorithms + Data Structures = Evolution

 Programs", Springer, 1992.

22. Andrews, J.D., and Bartlett, L.M., "Efficient Basic Event Orderings For

Binary Decision Diagrams", Proceedings of the Annual Reliability and

Maintainability Symposium, 1998.

