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Summary 

 

Fault Tree Analysis is a commonly used means of assessing the system reliability 

performance in terms of its component’s reliability characteristics. More recently, 

significant advances have been made in methodologies to analyse the fault tree 

diagram.  The most successful of these developments has been the  Binary Decision 

Diagram (BDD) approach.  The Binary Decision Diagram approach has been shown 

to improve both the efficiency of determining the minimal cut sets of the fault tree 

and also the accuracy of the calculation procedure used to determine the top event 

parameters. 

 

To utilize the Binary Decision Diagram approach the fault tree structure is first 

converted to the BDD format.  Implementing the conversion of the tree is relatively 

straight forward but requires the basic events of the tree to be placed in an ordering. 

The ordering scheme chosen is critical to the size of the BDD produced, and hence the 

advantages of this technique. Alternative ordering schemes have been investigated 

and no one scheme is appropriate for every tree structure.  

 

The work presented in this paper takes a machine learning approach based on Genetic 

Algorithms to select the most appropriate ordering scheme.  Features which describe a 

fault tree structure have been identified and these provide the inputs to the machine 

learning algorithm.   A set of possible ordering schemes has been selected based on 

previous heuristic work.  The objective of the work detailed in the paper is to predict 

the most efficient of the possible ordering alternatives from parameters which 

describe a  fault tree structure. 

 

1. Introduction 
 

Over the past five years an alternative technique, to the Kinetic Tree Theory 

(Vesely
1
), known as the Binary Decision Diagram (BDD) method has been 

developed
2-7

 to analyse the fault tree.  This method has proved to be more accurate 

and efficient than the conventional approaches.  In calculating the system or top event 

parameters it does not need to first evaluate all the minimal cut sets, nor does it 

require the use of approximations, the exact calculations can be performed. 

 

To take advantage of these features, the fault tree constructed to represent the system 

failure mode must first be converted to a BDD.  To accomplish this the basic events in 

the fault tree are placed in an order.  A good ordering of the basic events can result in 

a very efficient analysis, a poor ordering can lead to problems. 
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Several research papers have been published which investigate different ordering 

strategies for the BDD
8-9

.  As yet no rule based approach to identify a scheme which 

yields an efficient ordering for each tree has been produced.  Lack of this efficient 

ordering for any tree structure is probably the reason that no commercially available 

code has been produced which is based on this method. 

 

This paper presents a method of identifying a ‘good’ ordering scheme based on a 

machine learning approach, in conjunction with a genetic algorithm. 

 

2. Binary Decision Diagrams 

 

A BDD is a directed acyclic graph, as shown in figure 1.  All paths through the BDD 

start at the root vertex and terminate in one of two states, either a 1 state which 

corresponds to a system failure, or a 0 state which corresponds to a system success. A 

BDD is composed of terminal and non-terminal vertices, which are connected by 

branches.  Non-terminal vertices correspond to the basic events of the fault tree. 
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Figure 1: A Binary Decision Diagram. 

 

All the left branches leaving a vertex are the 1 branches and all the right branches the 

0 branches.  Every path starts from the root vertex, and proceeds down through the 

diagram to the terminal vertices.  Only the vertices that lie on a 1 branch on the way 

to a terminal 1 vertex are included in the path.  All the paths terminating in a 1 state 

give the cut sets of the fault tree. For example, the cut sets for the BDD shown in 

figure 1 are: 

    1) X1,X2,X3   2) X1,X4. 

 

2.1. Variable Ordering 
 

In constructing the BDD, the ordering of the basic events is crucial to the size of the 

resulting diagram.  Using an inefficient ordering scheme will produce a non-minimal 

BDD structure.  Alternative ordering schemes will produce BDD’s of different sizes, 

the smaller the BDD the more optimal the diagram. To illustrate this fact, consider the 
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simple fault tree shown in figure 2. The tree has four basic events, where X2 is 

repeated. 
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Figure 2 : A simple fault tree. 

 

If the basic event ordering permutation of X1<X2<X3<X4 is taken, the resulting 

BDD is shown in figure 3.  This structure consists of only four nodes, it is a minimal 

structure and hence produces only minimal cut sets.   
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Figure 3 : Resulting BDD from ordering X1<X2<X3<X4. 

 

However, if the alternative ordering permutation of X4<X3<X2<X1 is taken the 

resulting BDD consists of seven nodes, it is non-minimal and yields non-minimal cut 

sets (shown in figure 4).  From this result it can be shown that for larger fault tree 

structures the resulting BDD would be much larger, and in the worst case of using a 

poor ordering permutation, the diagram may be unsolvable.   
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Figure 4 : Resulting BDD from ordering X4<X3<X2<X1. 

 

The objective would be to produce an ordering scheme which achieves the ‘best’ 

BDD.  Numerous studies have investigated the effects of variable ordering schemes 

on the BDD size and it has been shown
9
 that there is no universal scheme which will 

always guarantee the ‘best’ BDD formation, and the most appropriate scheme must be 

selected depending on the characteristics of the fault tree. 

 

3. Pattern Recognition Approaches 

 

One approach to the problem of variable ordering is to consider pattern recognition 

techniques. There are many alternatives.  These include classifier systems
10

, ID3
11

,  

neural networks
12

, Bayesian methods and fuzzy logic
13

.  There is no way to determine 

which of these would be the most effective to apply to the ordering problem.  

Therefore, classifier systems have been initially selected and investigated in this 

paper. 

 

4.  Machine Learning Systems - The Classifier Model 
 

Classifier systems are a kind of rule-based machine learning system, with general 

mechanisms for processing rules in parallel, for testing the effectiveness of existing 

rules and for adaptive generation of new rules
21

. A classifier system, depicted 

schematically in figure 5, consists of three main components: 

   1) Rule and message system. 

   2) Apportionment of credit system. 

   3) Rule/message generation system. 
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Figure 5: A Classifier System. 
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The environment posts an input message which is sent to the internal message list. 

The messages activate classifiers, matching classifiers bid to place their messages on 

the message list. In the case of more than one match the winning classifier is decided 

by a bidding process in the apportionment of credit system.  Once a winning classifier 

has been found, this then posts its message to the message list, and the process is 

repeated several times until an action is then produced.  The input corresponds to a 

fault tree structure and the action specifies the best way of ordering the basic events. 

 

4.1  The Rule and Message System. 

 

The rule and message system forms the computational backbone of the machine 

learner. A classifier consists of two main parts: (1) a message part; and (2) a 

condition part. It has simple syntax: 

    classifier ⇒ condition : message  

 

A message within the classifier system is a means of information exchange, and is 

simply a finite length string over some finite alphabet, in terms of a binary alphabet, 

we have:  

        message  ⇒ {0,1}
n
 

 

Thus, the message is defined as a concatenation of 0's and 1's of length n.  The 

condition is a simple pattern recognition device where a wild card character (#) is 

added to the underlying alphabet. 

    condition  ⇒ {0,1,#}
n
 

Thus, a condition matches a message if at every position a ‘0’ in the condition 

matches a ‘0’ in the message, a ‘1’ matches a ‘1’, and a ‘#’ matches either. 

 

Both the condition and the message parts of a classifier contain coded characteristics 

of the problem and coded outputs of the problem. An example condition or message 

part of a classifier is: 

 

   0 1 1 0 1 1 0 1 1 0 1 1 1  0 1 0 0 1 1 

   coded characteristics      | action or output  

   which describe problem | of the problem 

 

Once a classifier matches a previous message from the message list, whether it posts 

its message is determined by the outcome of the bidding process determined in the 

apportionment of credit system. 

 

4.2  Apportionment of Credit Algorithm (A.O.C) 

 

The A.O.C is the competition phase of the classifier system, implemented in terms of 

a bidding process.  This bidding process is referred to as the bucket brigade algorithm.  

A classifier, when matched, makes a bid proportional to a product of its strength and 

the bid coefficient. 

 

Winning classifiers must then pay their bid to other classifiers for matches rendered.  

The matched and activated classifier divides its bid, to those classifiers responsible for 

posting the messages that matched the bidding classifiers condition.  This division of 

payoff among contributing classifiers helps to ensure the formation of an appropriate 
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sized subpopulation of rules
10

. 

 

To illustrate the workings of the A.O.C system we consider five classifiers, see table 

1.  Assuming initial strength values of 500 for all five classifiers, we post the initial 

input (environmental) message 0101, where {01} represents the characteristics of the 

problem and the {01} represents the action/output of the problem.  We assume a bid 

coefficient of 0.1 and take the bid as the product of this bid coefficient, and strength.  

In the initial step (t=0), classifier 1 and classifier 4 match the input and bid 50 units, 

since they both have the same bids the tie is broken by random selection, the winning 

classifier sends its message during the next time step.  Classifier 4 pays its bid to the 

party responsible for its activation; in this case, the input (environment) strength is 

increased by 50 units as the environmental message was responsible for activating 

classifier 4.  In subsequent time steps, activated classifiers make their payment to 

previously active classifiers.  Finally, at time step 4, a reward comes into the system 

and is paid to the last active classifier, classifier 3 where the action corresponds to the 

input action (i.e. the last two digits are the same). 

 
                                                              -----------    t = 0   ----------------                           ------------    t = 1  ----------------              

 Classifier Strength Message M Bid Strength Message M Bid 

1 01## : 0000    500  e  50    450       

2 00#0 : 0011    500       500     

3 11## : 1001    500       500    

4 0#01 : 0001    500  e  50    450 0001* 4  45 

5 ##01 : 1100    500       500  4  50 

 Environment      0 0101        50    

                                                                           -----------    t = 3   ----------------              -------  t = 4  -------- 

 Classifier Strength Message M Bid Strength Message Payoff Strength 

1 01## : 0000    450       450     450 

2 00#0 : 0011    500       500     500 

3 11## : 1001    500   5 50    450 1001 1000 1450 

4 0#01 : 0001    455       455      455 

5 ##01 : 1100    450  1100      500     500  

 Environment      50         50      50 

*when two bids are equal, tie broken by random selection. 
Table 1: Apportionment of Credit System. 

 

5.  Rule and Message Generation System 

 

Injecting new possibly better rules into the system requires the use of a rule / message 

generation system, in this instance a genetic algorithm. 

 

5.1  Genetic Algorithms  

 

Genetic algorithms (G.A's) are search algorithms based on the mechanics of natural 

selection and natural genetics
1
 . They originated from the studies of Holland and 

colleagues at the University of Michigan
15

.  A genetic algorithm is composed of three 

operators: Reproduction, Crossover and Mutation.  

 

Reproduction is a process in which individual strings are copied according to their 

fitness values.  The reproduction operator is implemented by creating the equivalent 

of a biased roulette wheel in the computer, where each current string in the population 

has a roulette wheel slot sized in proportion to its fitness.  The effect of roulette wheel 

parent selection is to return a randomly selected parent. This parental selection 

technique has the advantage that it  directly promotes reproduction of the fittest 

population members by biasing each members chances of selection in accordance 
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with its evaluation
16

.  

 

Next crossover may proceed in two steps.  First, members of the newly reproduced 

strings are paired at random.  Second, each pair of strings undergoes crossover as 

follows: an integer position k along the string is selected at random between 1 and the 

string length less one [1,t-1].  Two new strings are created by swapping all characters 

between positions k+1 and t inclusively.  For example, consider strings A1 and A2: 

    A1 = 0 1 1 0  1 0 1 

    A2 = 1 1 0 0  0 1 0 

Suppose in choosing a random number between 1 and 6, we obtain a k=4 (as 

indicated by the separator symbol ).  The resulting crossover yields two new strings: 

    A1' = 0 1 1 0 0 1 0 

    A2' = 1 1 0 0 1 0 1  

 

Mutation, the final G.A operator, is the occasional (with small probability) random 

alteration of the value of a string position. It is an insurance policy against premature 

loss of important notions. 

 

6. Rule and Message Classification 

 

The first portion of the classifiers and their messages represents the fault tree 

characteristics, hence it is essential to code characteristics defining the fault tree 

structure in some form. Several characteristics can be used to represent the significant 

features of the trees.  Figure 6 indicates a simple fault tree structure with common 

distinguishing elements labelled. 
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Figure 6: A simple fault tree with labelled elements. 

 

By examining the combinations of these factors a fault tree structure can be described. 

The list of possible characteristics is endless.  Some possibilities include: number of 

gates; number of events; number of repeated events; number of levels, etc. It is clearly 

impractical  to code all possible characteristics, hence a select few need to be 

extracted which represent the most significant tree features with relevance to the BDD 
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construction.  In this study eleven characteristics were chosen as an initial starting 

point to investigate the potential of the classifier system.  The characteristics are 

applied once the fault tree has been represented as an alternating sequence of AND 

and OR gates. 

 

7. Variable Ordering Schemes 

 

As previously mentioned the ordering placed on the basic events of a fault tree will 

determine the size of the resulting BDD
17-19

, and hence the number of cut sets.  It is 

beneficial to achieve an ordering which is optimal in terms of the resulting size of the 

BDD. 

 

It is clear that numerous methods of variable ordering  are available  In previous 

research
20

  6 different ordering schemes which lead to a reduction on the size of the 

resulting BDD for different tree structures, have been identified.  These are: top-

down, left-right approach; modified top-down, left-right approach; depth first 

approach; modified depth first approach; priority depth first approach; and modified 

priority depth first approach. 

 

The top-down, left-right approach is the most common, and is produced by listing the 

variables in a top-down , left-right manner from the original fault tree structure.  The 

depth first approach involves breaking the whole tree structure into smaller trees 

(subtrees) and looking at the optimal ordering of these subtrees.  The depth first 

ordering scheme gives each subtree a top-down, left-right ordering, working from the 

first gate inputs of the top event.  The priority depth first approach takes the depth 

first approach one step further and considers subtrees with only basic event inputs 

first.  All the modified versions of each approach consider repeated events of each 

gate with basic events inputs first.  If the gate has more than one repeated event as an 

input then the most repeated event is placed first, if they occur the same number of 

times then the events are taken in gate list order to break the tie.  The differences in 

these scheme options are highlighted in Andrews and Bartlett
22

. 

 

This short list of schemes have been adopted to investigate the potential of the 

classifier approach. 

 

8. Breakdown of Input / Output variable coding 

 

Each classifier message and condition comprises of 34 bits, which can be broken 

down to two main sections, namely: the characteristics coding and the scheme coding.  

The characteristics coding comprises 33 bits and is broken down to: 

   4 bits for percentage of and gates; 

   5 bits for percentage of different events repeated; 

   5 bits for percentage of total events repeated; 

   1 bit for top gate type; 

   2 bits for number of outputs from top gate; 

   2 bits for number of levels of tree; 

   3 bits for number of basic events 

   3 bits for maximum number of gates in any level; 

   3 bits for number of  gates with gate outputs only; 

   3 bits for number of gates with event outputs only; 
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      and  2 bits for highest multiple of a repeated event. 

    

The scheme coding comprises of 1 bit of either a 0 or a 1, where a 1 represents that 

scheme as a  ‘good’ schemes and a 0 as a bad scheme. Results to date have shown that 

testing each scheme separately produces improved accuracy.  This involves training a 

classification scheme for each of the different ordering options. To run the prediction 

program a tree is tested against each scheme classification system, starting at scheme 

1, and producing an output of scheme 1 or not.  Trees which produce a negative result 

are then further processed against the other ordering options until one scheme is 

chosen.  In the event that no numbering option is selected scheme 1 can be used as the 

default. 

 

9.  Training and Test Data 
 

Fault tree structures used in the training and test phases were obtained from industry 

and also by random production using a computer program.  Each tree structure was 

analyzed for the chosen characteristics, and these characteristics were converted to the 

appropriate binary representation. 

 

Each tree was analyzed prior to training for the best ordering scheme for the most 

efficient BDD representation.  The best scheme was identified by the minimum 

number of nodes in the BDD structure. 

 

To evaluate the performance of the learning classifier system a test set of data was 

produced with different tree structures and known best ordering schemes.  The output 

scheme coding bits for prediction purposes are set to wildcard characters.  The 

performance is evaluated by comparing the number of correct scheme outputs 

predicted. 

 

10. Results 

 

Results for the number of correct scheme predictions for the test data have been 

encouraging. For the smaller fault tree structures the results have been more accurate.  

The significant characteristics that have been considered in this study may for the 

larger tree structures require more research.  More tests need to be undertaken to 

provide further evaluations. 

 

11. Conclusions 

 

Initial predictions using the classifier approach have indicated promising results in 

determining the best of alternative ordering schemes to yield an efficient BDD 

representation, and hence an efficient analysis. 

 

With slight alterations to the set of factors chosen to adequately represent the 

complexity of the fault tree structure, and also by increasing the size of the training 

data set, it is predicted that the results for larger trees will be as convincing as that 

currently shown for the smaller sized fault trees. 
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