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Summary 

Vibrational power flow or structural intensity analysis is used to study the many paths of 

vibrational energy flow around complex flexible lightweight structures such as cars and aircraft. 

The vibrational power flow approach was developed so that the various paths of energy flow in the 

structure could be ranked in a rational way. A series of fundamental studies of power flow in simple 

structural elements, such as beams and plates, has been conducted over the last 25 years. These 

methods of measuring power flow have relied heavily on arrays of accelerometers mounted directly 

onto the structure. However, the practical application of power flow analysis has been limited by 

the lack of suitable measuring equipment. This paper reports on a preliminary case study which 

demonstrates the application of electronic speckle pattern interferometry (ESPI) also known as ‘TV 

holography’ to measure the vibrational power flow due to flexural vibrations in an experimental 

beam with anechoic terminations. Results obtained from the ESPI based measurements at three 

different frequencies are compared to conventional two-accelerometer power flow measurements 

and also to the measured power input to the structure. Although it is difficult to draw general 

conclusions about the ESPI based system from a single case study under ideal “infinite” beam 

conditions a number of observations about using the measurement system are summarised at the 

end of the paper. 

 

 

PACS numbers: 

43.40.-r Structural acoustics and vibration 
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1. Introduction 

 

Vibrational power flow or structural intensity analysis is used to study the many paths of 

vibrational energy flow around complex flexible lightweight structures. For example, a flexible 

structure such as a car body when subjected to an excitation, or source of vibration, will transmit 

vibrational energy through the various parts of its structure. Eventually some of this energy will be 

radiated as unwanted noise often in areas remote from the source. The vibrational power 

transmission approach was developed so that the various paths of energy flow in the structure could 

be ranked in a rational way. 

A series of fundamental studies of vibrational power flow in simple structural elements has 

been conducted over the last 25 years. Two notable contributions being by Noiseux in reference [1] 

and Pavic in reference [2]. However, the practical application of power flow analysis has been 

limited by the lack of suitable measuring equipment. Current methods of measuring power flow 

rely heavily upon arrays of accelerometers mounted directly onto the structure [3]. However, due to 

the practical limitation of using large arrays of accelerometers this method has severe drawbacks. 

For example [3], the vibrational power carried by bending waves in a plate can be expressed in 

terms of spatial derivatives of the normal (out of plane) vibrational velocity. To estimate the spatial 

derivatives using accelerometers finite difference approximations are introduced. For the complete 

formulation, 4 transducers are required for each power flow measurement location. However, the 

added mass of a large number of accelerometers may alter the dynamic characteristics of a 

lightweight structure. Further, noise contamination in the acquired data can lead to significant 

errors when estimating higher order spatial derivatives [4]. The method also requires a phase 

matching between transducer channels of less than 0.5˚. This is at the very limit of present 

accelerometer/charge amplifier technology. 

Recent advances in laser technology have led to the development of non-contacting 

transducers capable of measuring the vibrational power or structural intensity of vibrating 

structures. In the simplest development laser vibrometers take point measurements of the structure 
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in a manner analogous to the current accelerometer technique [4]. However, this method does not 

overcome the errors associated with the finite difference approximation. Thus, an alternative 

wavenumber domain approach was suggested by Williams, Dardy and Fink in reference [5]. This 

method was applied analytically to a beam in flexure by Unglenieks and Bernard [6] and 

implemented experimentally using scanning laser vibrometers by Morikawa, Ueha and Nakamura 

[7]. However, the scanning vibrometer method is still cumbersome when mapping complex built-up 

structures. 

A non-invasive technique that circumvents the limitations of the finite difference 

approximation is known as Nearfield Acoustic Holography (NAH) [8]. In this method the out-of-

plane velocity of the structure is obtained by measuring the pressure field a fraction of a wavelength 

away from the surface of the structure. However, at frequencies much less than the critical 

frequency of the structure errors can be introduced in the reconstruction of the vibrational field 

from the acoustical pressure measurements. An alternative laser transducer system for vibrational 

power flow measurement is holographic interferometry. This method takes whole field 

measurements of the entire structure in a single instant [9]. Electronic Speckle Pattern 

Interferometry (ESPI), a development of holographic interferometry, uses a CCD video camera to 

capture this data every 1/25th of a second, and is thus known as ‘TV holography’ [10]. However, 

conventional TV holography has the effect of averaging out the vibration phase information, thus, 

the resulting data represents the vibration amplitude field only. Both amplitude and phase are 

required for power flow analysis. Attempts to extend the method to enable measurement of the 

vibration phase are based upon stroboscopic illumination of the test structure. Recent developments 

by Jones et al. [11] and Towers et al. [12] use a stroboscopic phase stepping algorithm to accurately 

calculate a contiguous phase distribution of the vibrating surface. 

The objective of this paper is to report on a preliminary case study which demonstrates the 

application of ESPI to measure the vibrational power flowing along an experimental ‘infinite’ beam 

structure at three different frequencies. In Section Two the definition of power flow in a beam is 

given along with equations to calculate the power flowing into and along a beam excited by a point 
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force. In Section Three the experimental beam apparatus is described and the equipment used for 

the measurement of the amplitude and phase of the flexural displacement is outlined. In Section 

Four the wavenumber technique used to calculate the power flow in the beam is explained. In 

Section Five the results of calculating the power flow along the beam from ESPI measurements are 

compared to measurements of the input power and to calculations of the power flow made using 

traditional accelerometer based measurements. The final section summarises the main findings of 

the case study. Of course, it is difficult to draw general conclusions about the accuracy of the ESPI 

power flow method from an investigation based upon the single case of a beam with anechoic 

terminations excited at a few selected frequencies. However, a number of observations are made 

regarding use of the ESPI based power flow system, in particular when compared to the 

conventional two-accelerometer measurement technique. Some suggestions for future study are also 

given. 

 

 

2. Theory 

 

2.1 Vibrational power flow in a beam 

A derivation of vibrational power formulations based upon the forces and moments defined by 

classical Euler-Bernoulli theory for a beam in flexure is given in references [1,2]. The beam is 

considered to be lossless and is assumed to be homogeneous, isotropic and uniform. In terms of the 

complex vibrational displacement u(x,t), the time-averaged power flow, Px, which represents the 

power flowing along the beam in the x-direction is given in reference [6] as: 

 

Here, *, denotes complex conjugate of the normal and angular velocities and, ℜ, denotes the real 

part of the complex power flow. It can be seen in equation (1) that the product of half of the 

bending stiffness, EI/2, with spatial derivatives of the lateral out of plane displacement, u(x,t) is 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
⋅

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⋅
∂
∂

ℜ=
**

x tx
u

x
u

t
u

x
uEIP

2

2

2

3

3

2
. (1)



First author: Eck. Page 6 

power flow propagating through a cross section of the beam. Thus, to determine the power flow in a 

beam spatial derivatives of the displacement have to be estimated. 

 

2.2 Spatial derivative calculation 

The traditional way of determining the spatial derivatives of the transverse displacement is to use a 

finite difference approximation [1,2]. An alternative approach, known as wavenumber technique, k-

space method or Spatial Derivative technique, was proposed by Williams, Dardy and Fink [5] in 

1985. This method utilises the spatial Fourier transform to evaluate the required spatial derivatives. 

When using a temporal Fourier transform the acquired time signal is transformed into the 

frequency domain to detect its frequency components. Similarly, when using the spatial Fourier 

transform the acquired displacement signal is transformed into the wavenumber domain to detect its 

wavenumber spectrum. Mathematically, the forward and inverse spatial Fourier transforms are 

given, respectively, by 

 

 

where, u(x) is the spatial displacement, U(k) is the wavenumber spectrum, FT denotes the forward 

Fourier transform and FT −1 denotes the inverse Fourier transform. 

The spatial derivatives of the original signal are evaluated by multiplication of the 

wavenumber spectrum, U(k), with the product of square root of minus one, j, and the respective 

wavenumber, k, of order n. This process can be expressed mathematically as: 

 

The wavenumber domain signal is then transformed back into the spatial domain using the inverse 

spatial Fourier transform. Thus, to calculate the power flow in the beam given by equation (1), 

spatial derivatives of the displacement are evaluated and multiplied by their respective velocity 
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components. The real part is then extracted and multiplied by half the bending stiffness, EI/2, 

giving a time-averaged value for the power flow, Px, along the beam. 

 

2.3 Measurement of input power due to an applied force 

One method of determining the power input to flexural waves in a beam by a transverse force is to 

use the theoretical value of point mobility of the equivalent infinite structure [13] given by 

 

where, A is the cross-sectional area, and ρ the density of the beam. The input power is then simply 

the product of the input force power spectral density, Gff, and the real part of the point mobility. 

Hence, the input power, (Pin)FP, is given by: 

 

For sinusoidal excitation this becomes 

 

where, F is the amplitude of the harmonic force signal. 

An alternative method to estimate the input power is to measure it directly using the 

imaginary part of cross-spectral density between the force and acceleration response at the 

excitation location. The input power, (Pin)FA, can be calculated by integrating the cross-spectral 

density between the force and response acceleration, GFA, as follow: 

 

 

2.4 Accelerometer measurement of transmitted power 

One technique to measure power flow in the far field of beam bending vibration uses a pair of 

accelerometers spaced between 0.15 and 0.2 of a wavelength [18]. The cross-spectral density 
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between the accelerometers, GA2,A3, is measured and the power flow, Ptrans, is calculated from the 

imaginary part using the following expression 

 

where, Δ is the spacing between the two-accelerometers. If details of the test structure, such as the 

excitation frequency, and material and geometric properties, are known then a correction for the 

finite-difference approximation, can be applied [18]. Thus, the corrected power flow estimate, 

(Ptrans)true, is 

 

where the correction factor is kΔ/sin(kΔ) and, k is the wavenumber. 

 

2.5 Measurement of reflection coefficients 

The reflection coefficient, R1, for bending waves in the far field of the beam vibration is given by 

the ratio of reflected wave amplitude, Ar, to incident wave amplitude, Ai. Thus 

 

An investigation of experimental methods to determine reflection coefficients in beams is given in 

reference [19]. For the research reported in this paper a relatively simple two-accelerometer 

technique appropriate for the vibrational far field is adopted. This has the advantage that the 

measurement of reflection coefficients can be made at the same time and using the same 

transducers as utilised for the two-accelerometer transmitted power measurements. Thus, an 

estimate of the reflection coefficient, R2, is given by [19] 

 

where HA2,A3 is the frequency response function calculated between accelerometer signals A2 and A3 
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where GA2,A2 is the autospectral density from accelerometer A2. 

 

 

3. Experimental Apparatus 

 

3.1 Experimental “infinite” beam 

The experiment was conducted on an “infinite” beam undergoing flexural motion. To simulate 

“infinite” wave propagation each end of a 6 m long, 60 mm by 10 mm cross-section, mild steel 

beam was embedded in a 1 m long box containing foam and sand to achieve an anechoic 

termination. The beam was suspended from a metal frame and the excitation point was in the 

middle of the beam as shown in Figure 1. ESPI measurements of vibration amplitude and phase 

were carried out in a region of the beam to the right of the excitation point at least 3/4 of a 

wavelength, λ, away from the excitation point or the anechoic termination. In the ESPI 

measurement region it was assumed that the near field wave component had already vanished and 

that only travelling waves existed. 

To compare the ESPI power flow measurements with the traditional two-accelerometer 

technique, a pair of lightweight accelerometers were placed 51 mm apart within the ESPI 

measurement window as shown in Figure 1. The accelerometer spacing was chosen to be between 

0.15 and 0.2 of a wavelength. The excitation force and point response were measured using a force 

transducer and accelerometer at the excitation location. All four channels were recorded on a multi-

channel spectrum analyser. 

 

3.2 ESPI measurement system 

The ESPI measurement system is composed of a laser generation unit in combination with an 

optical head as shown in Figure 2. Conventional TV holography has the effect of integrating out the 
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phase information and, therefore, only the amplitude information is normally recorded. However, 

for power flow calculations the phase is also required. To measure the phase, a laser beam from a 

150 mW continuous Frequency Doubled Nd:YAG laser was applied with a stroboscopic pulse that 

was synchronised with the excitation frequency of the structure. The optical modulator used to 

convert the continuous laser to stroboscopic pulses is known as Pockels cell. The Pockels cell, 

operating as a shutter, is located close to the laser generation unit as shown in Figure 2. From here 

an armoured fibre cable conducted the stroboscopic laser light to the optical, or interferometer, 

head. A directional coupler divided the laser beam into an object and a reference beam. In this 

device a piezo-electric crystal was used for phase modulation. The scattered object beam was 

focused by the SLR lens and produced interference fringes at the CCD camera lens interfering with 

the reference beam. The ESPI image was then recorded by a 512x512 low-light monochrome CCD 

camera with a 4:3 aspect ratio working with 25 frames per second. The dashed line in Figure 2 

displays the components that are integrated into the optical, or interferometer head. The ESPI 

system was connected to a PC that triggered the Pockels cell with respect to the excitation 

frequency and was used to record the acquired image for post processing. 

 

 

4. Method 

 

A flow diagram of the power flow estimation method is shown in Figure 3. Stage 1 is to acquire the 

transverse displacement signal using the ESPI acquisition system described in Section 3. Also in 

Stage 1, the acquired ESPI data are manipulated in the spatial domain prior to Fourier 

transformation. The ESPI data window has a resolution of 512 by 512 pixels. From the beam 

displacement pattern lying within the ESPI data window a single row of pixels lying near the 

centre-line region of the beam was extracted. To satisfy the criterion for Fourier transform at least 

one cycle of the signal must be analysed. Further, to avoid problems of leakage associated with the 

rectangular window function, an integer number of waves must be used. Thus, as will be shown in 
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Section 5, a single cycle of the displacement wave data from the centre-line region of the beam was 

extracted. 

The single cycle displacement data were transformed into the wavenumber domain by 

applying a spatial Fast Fourier transform (FFT) as shown in Stage 2. Thus, the wavenumber 

spectrum of the signal is calculated. Noise in the wavenumber spectrum will be amplified when 

calculating spatial derivatives because of the multiplication process. To diminish the effect of noise 

the use of an ideal k-space filtering process was also investigated. The ideal k-space filter was 

similar to those described in references [6, 14 and 15] and consisted of setting all amplitudes in the 

wavenumber spectrum equal to zero except for those wavenumbers corresponding to the excitation 

frequency. This procedure is indicated in Stage 3 of Figure 3. In Stage 4 spectral derivatives are 

calculated by multiplying the wavenumber spectrum, U(k), with the square root of minus one, j, and 

the respective wavenumber k. This process is described mathematically by equation (4). The spatial 

derivatives of the signal are inverse Fourier transformed back into the spatial domain, shown within 

Stages 5 and 6. The final stage of the method, Stage 7, is to evaluate the time-averaged power flow 

in the beam by combining all the relevant signals to form equation (1). 

 

 

5. Results 

 

5.1 Experimental “infinite” beam 

Figure 4(a) displays the modulus of the measured point mobility of the experimental beam over a 

frequency range of 10 Hz to 10,000 Hz. Also shown in Figure 4(a) is the theoretically determined 

driving point mobility of the equivalent infinite beam at the point of excitation. Taking into account 

the accelerometer spacing of Δ=51 mm, the beam’s material as well as geometrical properties, the 

excitation frequency has to be in the range of 800 Hz and 1430 Hz to minimise the effect of 

accelerometer phase mismatch [19]. For clarity reasons the frequency range of interest is enlarged, 

which can be seen in Figure 4(b). It can be seen in Figure 4 that the theoretical point mobility of the 
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equivalent infinite structure lies between the peaks and troughs of the measured data indicating, as 

expected, beam like behaviour of the test structure and also correctly assumed values for the 

material properties of the experimental beam. It is also apparent from the magnitude of the maxima 

and minima in the frequency spectra shown in Figure (4) that the anechoic terminations have a 

significant effect in reducing reflections from the boundaries of the experimental beam. Reflection 

coefficients for the beam measured at the specific ESPI excitation frequencies are discussed in 

Section 5.3. 

 

5.2 ESPI displacement data 

For the ESPI measurements the experimental beam as illustrated in Figure 1 was excited at three 

specific frequencies, 801 Hz, 1112 Hz and 1146 Hz, by the electro-dynamic exciter. As can be seen 

in Figure 4(b) these frequencies were selected as representing a local minima in the frequency 

response at 1112 Hz, a local maxima in the frequency response at 1146 Hz and a frequency close to 

the theoretical infinite beam response at 801 Hz. At each of these frequencies the amplitude and 

phase of the displacement within the ESPI data window were recorded.  

In this work only the far field is considered, since the nearfield is almost vanished after a 

distance of approximately ¾ of the wavelength, λ, away from the excitation point. Thus, since wave 

motion within the ESPI window is assumed to be due to waves travelling in mutually opposite 

directions with amplitudes Ai and Ar, the complex beam displacement, u(x,t), can be expressed as 

 

where, A is the measured ESPI amplitude and, φ the measured ESPI phase. For ease of notation, 

equation (14) can be simplified by neglecting the harmonic temporal dependent term, ejωt, since 

ESPI works at one particular frequency only and the image is time-averaged. 

Figures 5, 6 and 7 show the measured ESPI amplitude and phase data at the excitation 

frequencies. The amplitude scale in Figure 5(a), Figure 6(a) and Figure 7(a) is shown in the bar on 

the right hand side and is given in meters and the phase scale in Figure 5(b), Figure 6(b) and Figure 
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7(b) is shown in radians in the range from +π to –π. The x- and z-axis scales are given in terms of 

the number of data points recorded. As mentioned in Section 3 the CCD camera has a resolution of 

512 by 512 points. The x-axis extends over the whole length of the ESPI data window from 0 to 

512 data points. Since the beam width, 60 mm, was less than the height of the ESPI window and 

extended over approximately 50 rows, the z-axis is only shown from rows 120 to 190. The beam is 

shown lying between rows 129 and 179. It can be seen in Figure 5 that approximately two 

wavelengths of data have been recorded at 801 Hz. Similarly from Figure 6 and 7 it can be seen that 

approximately two and one half wavelengths of data have been recorded at 1112 Hz and 1146 Hz, 

respectively. 

Figure 8 shows the same amplitude data as Figure 7 but with regions of high amplitude at 

the edges of the beam highlighted with circles. Thus, it can be seen in Figure 8 (here 1146 Hz) and 

to a lesser extent in Figures 5 and 6 that the amplitude as well as the phase is not constantly 

distributed across the beam width. This indicates an unwanted torsional vibration of the beam 

superimposed upon the lateral out of plane displacement and may have been due to the electro-

dynamic exciter being located slightly away from the centre line of the beam. Clearly, for an 

idealised beam structure, such as this, the flexural and torsional vibrations should be uncoupled. 

However, any displacement in the beam due to torsional vibration will be interpreted by the ESPI 

power flow method as due to flexural waves, and, hence, corrupt the measured result. 

Figures 9, 10 and 11 show three-dimensional plots as well as two-dimensional maps of the 

real part of the beam displacements generated by the recorded amplitude and phase, shown 

previously in Figures 5, 6 and 7. In all three figures it can be seen that the data in the x-direction 

beyond 400 points contains blank data regions because the ESPI measurement was not completely 

successful in recording the displacement at these locations. Unfortunately, this has the effect of 

reducing the useable range of data to less than two wavelengths at each excitation frequency. 

Further, to avoid problems of smearing and sidelobe leakage in the wavenumber domain it is 

desirable to use an integer number of wavelengths for Fourier analysis. Hence, a single cycle of 

displacement was extracted before transformation to the wavenumber domain. This was 
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accomplished by visually inspecting the displacement data in row 150, lying approximately along 

the centreline of the beam, and selecting the data between two successive peaks in the real part of 

the signal. 

Figures 12, 13 and 14 show the single cycles of displacement data extracted from row 150 

of the respective acquired ESPI data at each excitation frequency. Both, the real and imaginary 

parts of the signals are shown. In each case the real part is represented by a cosine type function and 

the imaginary part by a negative sine type function. However, it can be seen in Figures 12, 13 and 

14 that the displacement data contain noise introduced by the optical ESPI measurement system. 

This optical noise will also be transformed into the wavenumber domain and, therefore, as shown in 

Section 5.3 will be filtered out prior to the spatial derivation process. 

 

5.3 Wavenumber data 

The extracted single cycle of each frequency were transformed into the wavenumber domain by 

applying the spatial Fourier transform. The spatial resolution, Δx, in the x-direction of the ESPI data 

acquisition process was Δx=1.7·10-3 m, or 588 samples per meter. Thus, each cycle of extracted 

data contained approximately 200 data points. Hence, the wavenumber resolution, Δk, was 

approximately, (588⋅2π)/200≈20 radians/m. The resulting real parts of the wavenumber spectra of 

the respective frequencies are shown in Figures 15, 16 and 17. The wavenumber axis extends from -

500 to +500 rad/m. It can be seen in Figures 15, 16 and 17 that there are components (spikes) at 

negative wavenumbers k=-18 rad/m, k=-21.7 rad/m and k=-22 rad/m, respectively, and components 

at positive wavenumbers k=18 rad/m, k=21.7 rad/m and k=22 rad/m, respectively. These 

wavenumbers correspond to the excitation frequencies of 801 Hz, 1112 Hz and 1146 Hz, 

respectively. 

It can be seen in Figures 15, 16 and 17 that the negative wavenumber components are 

significantly larger than the respective positive components. This is to be expected as the negative 

wavenumber components represent waves travelling to the right through the ESPI window and the 

positive wavenumber components represent waves travelling to the left. Thus, the wave travelling 
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to the right is the incident wave propagating from the source and the wave travelling to the left is a 

wave reflected from the “anechoic” termination. The amplitudes of the right and left going waves 

shown in Figures 15, 16 and 17 are tabulated in Table 1. Also shown in Table 1 are the amplitudes 

of the reflection coefficients of the beam calculated directly from the wave amplitude data by using 

equation (11). As a comparison the amplitudes of the reflection coefficients calculated at each 

excitation frequency using the two-accelerometer method given by equation (12) are also tabulated 

in Table 1. It can be seen from inspection of the wave amplitudes and reflection coefficients 

tabulated in Table 1 that the amplitudes of the left going waves reflected from the anechoic 

termination are approximately one tenth of the amplitudes of the right going waves propagating 

directly from the electro-dynamic exciter. It can also be seen in Table 1 that the reflected wave 

component at 801 Hz is less than at the other two measurement frequencies. This pattern of 

behaviour is confirmed by the two-accelerometer calculation of reflection coefficients also shown 

in Table 1. It can be seen in Figures 15, 16 and 17 that there is also some low level noise in the 

wavenumber spectrum at wavenumbers not corresponding to the excitation frequency. This noise 

was removed with the ideal k-space filter mentioned in Section 4, before the spatial derivatives of 

the displacement were calculated. 

 

5.4 Single-row power flow analysis 

At each excitation frequency of the beam values of the input power and the transmitted power were 

calculated. These values are shown graphically in Figures 18, 19 and 20 and are tabulated in Table 

2. Values of power input to the structure were estimated by applying equation (7) and also by 

applying equation (8). Because of the symmetrical nature of the experimental beam apparatus it was 

assumed that half the input power flowed away to the right and half away to the left of the electro-

dynamic exciter. Therefore, the values for input power shown in Figures 18, 19 and 20 and 

tabulated in Table 2 are for the total input power divided by two. The values calculated using 

equation (7) are labelled ‘Input power (Pin)FP’ and those calculated using equation (8) are labelled 

‘Input power (Pin)FA’. For comparison with the ESPI power flow data the input power values are 
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drawn as constants against distance along the ESPI window shown along the x-axis in Figures 18, 

19 and 20. It can be seen in Figures 18, 19 and 20 that at each excitation frequency the values of 

input power calculated using equation (7) differ from the corresponding values calculated using 

equation (8). It is assumed that the measurements of input power based upon equation (8), which 

uses the cross-spectral density between the applied force and the resulting point response are more 

accurate than those obtained using equation (7) which relies upon a theoretical value of the 

equivalent infinite structure. This may explain the discrepancies between the values of ‘Input power 

(Pin)FP’ and ‘Input power (Pin)FA’ shown in Figures 18, 19 and 20. For example, it was shown in 

Figure 4 that the point mobility of the experimental beam followed the trend of the equivalent 

infinite beam but did not match it at all excitation frequencies. Hence, any measurement of input 

power based upon using the theoretical value of the infinite beam response may differ from the 

actual power input to the structure. However, the values of input power calculated using the infinite 

beam response, (Pin)FP, are retained in the following analysis as they act as a secondary check on 

the data. 

Values of the transmitted power calculated using the traditional two acceleration technique 

described in Section 2 are also shown in Figures 18, 19 and 20 and tabulated in Table 2. The values 

of transmitted power calculated using equation (9) are labelled ‘Transmitted power Ptrans’. 

Similarly, the values of transmitted power calculated using equation (10) are labelled ‘Corrected 

transmitted power (Ptrans)true’. As these measurements were made at a single location on the beam 

they are drawn as constants against distance along the x-axis in Figures 18, 19 and 20. It can be 

seen in Figures 18, 19 and 20 that the corrected values for transmitted power, (Ptrans)true, lie closer to 

the cross-spectral density measurements of input power, (Pin)FA, than the non-corrected values of 

transmitted power, Ptrans, except for the 1112 Hz measurement. Since the values of corrected 

transmitted power, (Ptrans)true, are not biased by the finite difference approximation they are 

assumed to give a more accurate estimation of the transmitted power than the non-corrected values 

of transmitted power, Ptrans. Although in practical situations prior knowledge of the beam’s 
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excitation frequency and material and geometric properties, which enable the finite difference 

correction to be made, may not be available. 

As noted earlier, row 150 of the ESPI data coincided approximately with the centre-line of 

the beam. Hence, this single row was selected for ESPI power flow analysis. Thus, at each position 

along row 150 the vibrational power flow was calculated using equation (1). Figures 18, 19 and 20 

show the ESPI calculated power flow due to the propagating, right going, waves against distance in 

meters along the section of beam inside the ESPI window. The power flow calculated without using 

the ideal k-space filter is labelled as ‘Raw ESPI power (Px)raw’. Similarly, the power flow calculated 

by applying the ideal k-space filter is labelled as ‘Filtered ESPI power (Px)filtered’. Figures 18, 19 

and 20 indicate that the ESPI calculated power flow varies with distance along the beam. This was 

not expected, as the energy flow should be constant along the length of the beam. However, this 

erroneous variation in power flow may be due to the effect of the torsional vibration identified 

earlier or noise on the acquired ESPI data. It can also be seen in Figure 18, 19 and 20 that the 

filtered ESPI power flow values, (Px)filtered, exhibit less variability with distance along the beam 

than the corresponding values for the non-filtered ESPI power flow values, (Px)raw’. Hence the k-

space filtering operation appears to have smoothed the estimation of ESPI power flow. It should 

also be noted that because of the size of the ESPI window only one wavelength of the displacement 

was used for the ESPI power flow calculation. Increasing the size of the ESPI window to include 

more wavelengths will improve the resolution in the wavenumber domain and, therefore, would be 

expected to provide a more accurate estimation of the power flow. 

A summary of the various power quantities, obtained by analysing row 150, is tabulated in 

Table 2. The transmitted power values derived from the ESPI measurement data were formed by 

taking an average of all the calculated values of transmitted power along row 150. One advantage 

of wavenumber domain processing over the traditional accelerometer based power flow techniques 

is that the vibrational power associated with left and right going waves can be identified. Hence, the 

transmitted power due to the waves reflected from the anechoic termination and, thus, travelling to 

the left are also listed in Table 2. It can be seen in Table 2 that the filtered ESPI transmitted power 
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values due to the reflected waves travelling to the left are significantly less than the corresponding 

power values due to the respective propagating waves going to the right. This corresponds to the 

observation made about the wavenumber spectrum in Section 5.3, where it was noted that the 

propagating wave amplitudes were approximately ten times the amplitude of the respective 

reflected wave amplitudes. Since the power in a signal is related to the square of its amplitude it can 

be expected that the transmitted power due to the reflected waves will be approximately 1% of the 

transmitted power due to the respective propagating waves. 

 

5.5 Multi-row power flow analysis 

It was shown in Figures 5-8 that to varying degrees at each measurement frequency, unwanted 

torsional vibration was superimposed upon the flexural beam vibration. Potentially this will affect 

the measured ESPI power flow results. In the previous section, row 150, lying in the centre-line 

region of the beam, was selected in order to minimise the influence of torsion upon the measured 

results. However, as an alternative an average value of the power flow can be formed by using a 

multi-row analysis. For this approach, the previously described power flow procedure, by means of 

ESPI data acquisition, single cycle extraction, ideal filtering procedure as well as determination of 

the power flow was carried out for each useable row of ESPI data across the beam width. 

Figures 21, 22 and Figure 23 show the result of the multi-row analysis of all three excitation 

frequencies for both the right and left going waves. The distribution of the power flow is shown 

versus the ESPI displacement row number across the beam width and the dashed line displays an 

average formed from all the single-row power flow data. It would appear from Figures 21, 22 and 

23 that the power flow along the beam varies with each row across the beam width. This should not 

be the case for pure bending waves in a straight beam. Thus, Figures 21, 22 and 23 indicate that the 

ESPI power flow technique is sensitive to the actual row selected for analysis. Therefore, an 

average value of the ESPI power flow formed from a multi-row analysis should be more 

representative of the actual transmitted power flow along the beam than the values calculated from 
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a single row, such as row 150. Thus, the average values of ESPI power flow calculated from the 

multi-row analysis are also tabulated in Table 2. 

A comparison can now be made between the power transmitted along the beam calculated 

using the two-accelerometer method and the multi-row filtered ESPI power flow technique. It is 

assumed that the values of half the input power calculated using the cross-spectral density method, 

(Pin)FA, provide the best estimates, or reference values, for power flow to the right of the electro-

dynamic exciter. It can be seen from inspection of the values tabulated in Table 2 that the corrected 

accelerometer technique produced the best estimate of power flow along the beam at all three 

excitation frequencies. It can also be seen from inspection of the values in Table 2 that at 801 Hz 

and 1112 Hz the filtered ESPI multi-row net power technique produced better estimates than the 

non-corrected accelerometer method. However, at 1146 Hz the non-corrected accelerometer value, 

Ptrans, gave a better estimate than the corresponding filtered ESPI net power flow value,      

(Px)filtered-net-multi. This may be due to the greater sensitivity of the ESPI method to unwanted 

torsional vibration or to the effect of higher amplitude reflected waves at this frequency. 

 

6. Summary 

 

This paper has reported on a preliminary case study which has demonstrated the application of 

ESPI to measure the vibrational power flow in a straight beam with anechoic terminations. The 

experimental “infinite” beam apparatus was excited at three different frequencies by an harmonic 

force and the power flow due to flexural waves was measured in the vibrational far field away from 

the source of excitation and the anechoic terminations. Measurements made using the ESPI based 

power flow method were compared to measurements made using the traditional two-accelerometer 

technique as well as to measurements of the power input to the structure. Of course, it is difficult to 

draw general conclusions about the accuracy of the ESPI power flow system from a single case 

study based on ideal “infinite” beam conditions. However, a number of observations were made 

when using the ESPI based power flow method and there are summarised below: 
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1. The ESPI power flow technique was more time consuming to apply than the two-

accelerometer method as individual cycles of data need to be extracted manually from 

the ESPI data. 

2. The wavenumber domain resolution and, hence, accuracy of the ESPI power flow 

technique was limited by the number of complete wavelengths of displacement available 

for analysis in the vibrational far field. 

3. Noise in the wavenumber spectrum was amplified when calculating spatial derivatives 

because of the multiplication process. More accurate estimates of the power flow were 

obtained if this noise was filtered out prior to the ESPI power flow calculation. 

4. The ESPI technique was sensitive to the row location across the beam width selected for 

analysis. Therefore, an average power flow value formed from all the rows across the 

beam width was assumed to be more representative than the power flow value calculated 

from a single row. 

5. The ESPI technique was less accurate than the two-accelerometer method which 

employs a correction for the finite difference approximation. 

6. The ESPI technique was more accurate than the simple two-accelerometer method 

which does not employ a correction for the finite difference approximation. However, 

this was only found to be true for the most favourable cases, 801 Hz and 1112 Hz, when 

the experimental beam best replicated “infinite” beam conditions. At the other excitation 

frequency, 1147 Hz, when larger amplitude reflected bending waves were present in 

combination with unwanted torsional motion the accuracy of the ESPI method decreased 

to less than that of the simple two-accelerometer technique. 

Further work is now required to investigate the accuracy of the ESPI power flow technique 

in high standing wave environments. In principle, the ESPI power flow method can be applied 

under such conditions since this investigation has shown that the beam displacement can be 

decomposed into incident waves propagating from the source and reflected waves due to 
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discontinuities. However, practical issues, such as the corrupting effect of noise on the measured 

data, will need to be carefully addressed. An extension of the method to the near field of the 

vibration, close to the source of excitation or to discontinuities, would also be desirable. This would 

enable more wavelengths of the displacement to be recorded, hence, improving the wavenumber 

domain resolution. Having an advanced whole field laser measurement technique in place the 

extension to two-dimensional plate vibration will also be a future objective. 
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Figure 4. Driving Point mobility of the experimental “infinite” beam, measured (     ) and 
theoretical (-----), (a) 10-10kHz, (b) 750-1450 Hz. 
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 Figure 5. ESPI image of beam displacement excited by a harmonic force at 801 Hz, (a) 

amplitude, (b) phase. 
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Figure 6. ESPI image of beam displacement excited by a harmonic force at 1112 Hz, (a) 
amplitude, (b) phase. 
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Figure 7. ESPI image of beam displacement excited by a harmonic force at 1146 Hz, (a) 
amplitude, (b) phase. 
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Figure 8. Beam displacement amplitude showing regions of high vibration amplitude due to 
torsional vibration at 1146 Hz (indicated with circles). 
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Extracted cycle of data

Figure 9. Real part of the beam displacement at 801 Hz showing the single cycle extracted for 
wavenumber transformation: (a) three-dimensional plot, (b) two-dimensional map. 
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Figure 10. Real part of the beam displacement at 1112 Hz showing the single cycle extracted for 
wavenumber transformation: (a) three-dimensional plot, (b) two-dimensional map. 

Extracted cycle of data
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 Figure 11. Real part of the beam displacement at 1146 Hz showing the single cycle extracted for 
wavenumber transformation: (a) three-dimensional plot, (b) two-dimensional map. 

Extracted cycle of data
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Figure 12. Real part (    ) and imaginary part (----) of row 150 from a single cycle of beam 
displacement at 801 Hz. 
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Figure 13. Real part (    ) and imaginary part (----) of row 150 from a single cycle of beam 
displacement at 1112 Hz. 
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Figure 14. Real part (    ) and imaginary part (----) of row 150 from a single cycle of beam 
displacement at 1146 Hz. 
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Figure 15. Real part of the wavenumber spectrum of the displacement showing propagating and 
reflected wave components at 801 Hz. 
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Figure 16. Real part of the wavenumber spectrum of the displacement showing propagating and 
reflected wave components at 1112 Hz. 

Propagating wave 
amplitude 

k = - 21.7 rad/m 

Reflected wave 
amplitude 

k = 21.7 rad/m 



Figure 17. 
First author: Eck. 
 

 

Figure 17. Real part of the wavenumber spectrum of the displacement showing propagating and 
reflected wave components at 1147 Hz. 
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 Figure 18. Comparison of measured input power and measured transmitted power against 

distance along the ESPI window of the experimental beam at 801 Hz, row 150. 

Input power (Pin)FP 

Input power (Pin)FA 

Transmitted power Ptrans Corrected transmitted power (Ptrans)true 

Raw ESPI power (Px)raw 

Filtered ESPI power (Px)filtered 



Figure 19. 
First author: Eck. 
 

 

Input power (Pin)FP 

Input power (Pin)FA 
Transmitted power Ptrans Corrected transmitted power (Ptrans)true 

Raw ESPI power (Px)raw 

Filtered ESPI power (Px)filtered 

Figure 19. Comparison of measured input power and measured transmitted power against 
distance along the ESPI window of the experimental beam at 1112 Hz, row 150. 
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Figure 20. Comparison of measured input power and measured transmitted power against 
distance along the ESPI window of the experimental beam at 1146 Hz, row 150. 
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 Figure 21. Power flow distribution across the beam width, raw ESPI power (······), filtered ESPI 

power (      ) and averaged value (----) at 801 Hz: (a) right going wave; (b) left going wave. 

(a) 
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Figure 22. Power flow distribution across the beam width, raw ESPI power (······), filtered ESPI 
power (      ) and averaged value (----) at 1112 Hz: (a) right going wave; (b) left going wave. 

(a) 
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Figure 23. Power flow distribution across the beam width, raw ESPI power (······), filtered ESPI 
power (      ) and averaged value (----) at 1146 Hz: (a) right going wave; (b) left going wave. 

(a) 

(b) 



 

 801 Hz 1112 Hz 1146 Hz 

Wave amplitudes 

Right going wave, |Ai| [m] 1.140⋅10-7 6.588⋅10-8 1.567⋅10-7 

Left going wave, |Ar| [m] 8.994⋅10-9 7.473⋅10-9 2.184⋅10-8 

Reflection coefficients    

ESPI measurements, |R1| 0.0789 0.1134 0.1394 

Two-accelerometer measurements, |R2| 0.0896 0.1255 0.1239 
 

Table 1. Wave amplitudes and reflection coefficients. 



 

Power quantity 801 Hz 
[Watts] 

1112 Hz 
[Watts] 

1146 Hz 
[Watts] 

Input power measurements 

Half input power, (Pin)FP 5.23⋅10-4 2.88⋅10-4 1.41⋅10-3 

Half input power, (Pin)FA 4.04⋅10-4 2.45⋅10-4 1.58⋅10-3 

Two-accelerometer measurements    

Transmitted power, Ptrans 3.46⋅10-4 2.26⋅10-4 1.20⋅10-3 

Corrected transmitted power, (Ptrans)true 4.03⋅10-4 2.80⋅10-4 1.49⋅10-3 

ESPI measurements, single row analysis 

Raw ESPI power right, (Px)raw 4.11⋅10-4 2.93⋅10-4 1.99⋅10-3 

Filtered ESPI power right, (Px)filtered 4.09⋅10-4 2.91⋅10-4 1.98⋅10-3 

Raw ESPI power left, (Px)raw -1.40⋅10-6 -2.68⋅10-6 -4.65⋅10-5 

Filtered ESPI power left, (Px)filtered -⋅1.39⋅10-6 -2.67⋅10-6 -4.63⋅10-5 

Raw ESPI net power, (Px)raw-net 4.09⋅10-4 2.90⋅10-4 1.93⋅10-3 

Filtered ESPI net power, (Px)filtered-net 4.08⋅10-4 2.89⋅10-4 1.93⋅10-3 

ESPI measurements, multi-row analysis 

Raw ESPI power right, (Px)raw-multi 4.18⋅10-4 2.97⋅10-4 1.93⋅10-3 

Filtered ESPI power right, (Px)filtered-multi 4.15⋅10-4 2.93⋅10-4 1.89⋅10-3 

Raw ESPI power left, (Px)raw-multi -1.52⋅10-6 -1.87⋅10-6 -4.08⋅10-5 

Filtered ESPI power left, (Px)filtered-multi -1.51⋅10-6 -1.85⋅10-6 -4.02⋅10-5 

Raw ESPI net power, (Px)raw-net-multi 4.16⋅10-4 2.95⋅10-4 1.89⋅10-3 

Filtered ESPI net power, (Px)filtered-net-multi 4.13⋅10-4 2.91⋅10-4 1.86⋅10-3 
 

Table 2. Input power and transmitted power values. 

 


