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ABSTRACT 

Hybrid electric vehicles offer significant fuel economy 

benefits, because battery and fuel can be used as 

complementing energy sources. This paper presents the use of 

dynamic programming to find the optimal blend of power 

sources, leading to the lowest fuel consumption and the lowest 

level of harmful emissions. It is found that the optimal engine 

behavior differs substantially to an on-line adaptive control 

system previously designed for the Lotus Evora 414E. When 

analyzing the trade-off between emission and fuel 

consumption, CO and HC emissions show a traditional Pareto 

curve, whereas NOx emissions show a near linear relationship 

with a high penalty. These global optimization results are not 

directly applicable for online control, but they can guide the 

design of a more efficient hybrid control system. 

INTRODUCTION 

Hybrid vehicles use more than one type of powertrain, in order 

to combine their advantages. Typically, this is an internal 

combustion engine paired with an electric motor and battery 

which provide higher efficiency and the ability to recuperate 

energy during braking. The drivetrain elements can be 

arranged in various ways to suit the application and the 

preferences of manufacturer and customer.  

The Lotus Evora’s range extender hybrid architecture consists 

of a battery power electric power train in which the battery can 

be recharged from the second power source, the internal 

combustion engine (ICE) generator (series hybrid). This 

engine can be much smaller than a typical traction engine and 

it is decoupled from the drivetrain, which means that it can be 

operated in regions of maximum efficiency. Charging the 

batteries through plug-in capabilities enables further fuel 

consumption reductions.  

The control strategy of the ICE can make a significant 

difference to the fuel economy of the hybrid vehicle.  Finding 

the most efficient operating point is not a trivial problem 

because it also depends on the state of the other system 

components, especially the battery and the electric motor. The 

optimal input also depends on the future demand for power. 

This paper looks at the power control strategy from the point 

of view of global optimization over a given driving cycle. This 

eliminates the challenge of predicting future demand, because 

by definition of the problem the full driving cycle is known in 

advance. This enables a clever management of the energy 

sources. The solution can be calculated in an efficient way 

using Dynamic Programming (DP) techniques as proposed in 

[1]. The globally optimal solution is not directly applicable as 

an online controller, because it relies on the prediction of 

future demand. However, it could be turned into an online 

algorithm using a receding horizon approach using a limited 

prediction, or it could provide further insides in how to design 

a fuel efficient power controller using only available 

measurements.  

The paper is structured as follows: Section II provides the 

background on the Lotus Series Hybrid; Section III introduces 

the vehicle model; Section IV and V define the optimization 

problem and the solution strategy; Section V contains the 

results and conclusions. 

BACKGROUND 

The Lotus Evora 414E is a hybrid sports car and a low carbon 

concept vehicle designed by Lotus Engineering. The 

architecture of the vehicle is shown in Figure 1. The series 

hybrid driveline comprises of the 35kW normally aspirated 

Lotus Range Extender Engine [2] coupled to a permanent 

magnet generator. The range extender engine, generator and 

generator inverter forms the Auxiliary Power Unit (APU). The 

battery pack comprises of 1,792 Lithium Iron Phosphate 

(LiFePo) cells configured as a 112 Series-16 Parallel pack. 

Propulsion is provided by two independently driven rear 

wheel motors. For plug-in functionality, the vehicle is 

equipped with a 3kW onboard charger.  
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Figure 1.  Evora Hybird Powertrain Architecture 

The on-board electronic systems are highlighted in Figure 2. 

There are two states where the battery energy may be 

replenished. The condition where energy is returned to the 

battery via the range extender engine or via the on-board 

charger is termed a “recharging”. The state where energy is 

returned to the battery through regenerative braking is termed 

as “recovering”. Both conditions may exist simultaneously 

where the energy returning to the battery is the algebraic sum 

of the powers from APU charging and kinetic energy 

recovery.  

The battery assumes the operation of a bidirectional electrical 

power system while the APU assumes operation of a 

unidirectional power delivery system. Power flow control is 

achieved by regulating the voltage and currents of the 

generator inverter as well as engine speed and torque. The 

power flow convention is illustrated in Figure 3. Bidirectional 

arrows indicate bidirectional power and current flow. 

The standard vehicle employs an adaptive energy management 

technique to control the power delivery between battery and 

Lotus Range Extender (LRE) to the electric motor. This 

approach has proved beneficial in reducing fuel consumption 

and emissions compared to less adaptive methods [3]. The 

approach operates online by solving a semi-global 

optimization problem based on the expected drive cycle. 

Previous Approach: Semi-Global 

The Evora 414E currently implements a two-stage solution to 

minimize fuel consumption; the Static Instantaneous 

Optimization (SIO) performs an initial calculation and the 

second phase further optimizes the ICE use through Dynamic 

Compensation Optimization (DCO) [2]. This method looks at 

the average vehicle power demand over the previous20 

seconds and calculates a minimum cost for near future power 

demand. 

 

Figure 2.  Evora Driveline Schematics and Powerflow Conventions 

In order to negotiate between the two energy sources, an 

equivalent fuel consumption is defined for the electrical 

energy supplied by the battery. This is used to calculate the 

cost function:  

𝐽𝑡(𝑃𝑎𝑝𝑢, 𝑃̇𝑎𝑝𝑢, 𝑆𝑜𝐶) = 𝐶𝑎𝑝𝑢(𝑃𝑎𝑝𝑢, 𝑃̇𝑎𝑝𝑢) + 𝐶𝑏𝑎𝑡(𝑃𝑏𝑎𝑡, 𝑆𝑜𝐶)    (1) 

 

Where 

 𝐽𝑡     is the fuel-equivalent cost at time, 

𝑃𝑎𝑝𝑢 is the vehicle’s electrical power consumption, 

𝑃̇𝑎𝑝𝑢  is the rate of change in vehicle electrical power, 

𝑆𝑜𝐶 is the battery State of Charge at time 𝑡, 

𝐶𝑎𝑝𝑢 is the fuel cost of auxiliary power unit (APU) energy, 

𝐶𝑏𝑎𝑡  is the fuel cost of battery energy, 

𝑃𝑏𝑎𝑡  is the battery power. 

Research presented in [4] also employs the equivalent fuel 

consumption concept for a charge sustaining strategy. Control 

strategies are presented in [5] for a fuel cell and electric 

battery design as well as a diesel ICE and battery design, 

giving strong evidence that this method has robustness in real 

world driving. This technique satisfies the need for real-time 

system response, however there are limitations in terms of 

complete optimization for a given drive cycle as the future 

conditions are not known. The aim of the work in this paper is 

to explore the losses incurred when the future is unknown. 

This approach is semi-global, because it only looks at 

optimality at one point in time. The equivalent cost of the 

battery energy helps to strike the main balance between the 

two energy sources, but it fails to represent any other effect of 

the engine, such as emissions, the impact of engine start, or 

further system states.  

Proposed Global Approach 

To address these issues, a global optimization approach over 

the full cycle is proposed. An offline solution like this is often 

used to find the optimal solution from a theoretical point of 
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view, without considering the impact of limited information 

availability. The approach is non-causal, because the future 

demands of the drive cycle are assumed to be known 

precisely, which is not typically the case. Boundary and initial 

conditions provide constraints to the input and state variables, 

which can be dealt with using a DP algorithm. This offline 

approach is to be compared to the ECMS algorithm presented 

in [3] in the Lotus Evora 414E to assess the optimality of this 

controller. 

The object of the controller is to minimize the emissions and 

fuel consumption i.e. to minimize the ‘cost’ of using the 

powertrain. An important aspect of such a problem is that the 

decision cannot be singled out; we need to balance the desire 

for low present cost with the undesirability of high future 

costs. DP captures this issue perfectly and highlights the 

tradeoff. The decision at each stage is made based on the sum 

of present plus expected future costs, assuming optimality for 

future. The basic model of the problem is a time-discrete 

system with a cost function which is additive over time. 

DP operates by optimizing over a fully-known driving cycle 

and therefore lends itself to a globalised fuel minimization 

problem [6]. This method works well with relatively large 

time steps (1 second or longer), and few input variables [7] 

and states as the complexity of this problem is exponential to 

the number of states. Research in [8] presents a MATLAB 

function for solving a DP problem, the method is successful 

when applied to the nonlinear, discrete-time, constrained 

nature of a dynamic model and this is indicative of a hybrid 

electric vehicle model. 

Simulations work is conducted over the NEDC, Artemis and 

WLTP drive cycles to ensure a large range of driving 

conditions are covered. 

VEHICLE MODEL 

The series hybrid architecture contains the Auxiliary Power 

Unit (APU), which consists of the 35kW normally aspirated 

LRE [9], permanent magnet generator and inverter. The APU 

delivers electrical charge to the HV batteries or conversely 

extra power to the traction motors. With this design the 

vehicle delivers electric only driving through two 152kW 

motors at each rear wheel. The engine has stop-start 

capabilities and this function is to be optimized during a drive 

cycle. Further details of the hybrid design are outlined in [3]. 

Engine Model 

The optimal efficiency trace of the APU is shown in Figure 3, 

where the green line represents the optimal APU operation 

locus. The equivalent fuel consumption for a given APU 

power output is shown in Figure 4 – this is similar to the 

Brake Specific Fuel Consumption (BSFC), but also include 

generator efficiency. The efficiency of the APU is consistently 

good when operating above about 20kW of electrical power.  

The emissions profile is given in Figure 5. This graph is a 

steady state approximation, and it is only partially applicable 

to transient operation, because the temperature of the catalyst 

can make a significant difference. At low power, the 

temperature may be too low for it to be entirely effective, and 

at high power the increased fuel rate and exhaust flow rate 

make the catalyst less efficient. This defines a window 

between about 12kW and 28kW where the emissions are 

consistently low. In addition, there is a penalty for starting the 

engine (in start & stop operation), because it takes some time 

for the air and fuel system to settle after engine start.  

 

Figure 3.  APU efficiency with 𝑸𝒇= 43x106 J/kg. Green line shows optimal 

APU operation locus 

 

Figure 4.  Test data - BSFC trace for APU Power of Lotus Range 

Extender 

Catalyst Model 

A catalyst is used in the vehicle to reduce the emissions that 

are emitted into the atmosphere. The effectiveness of the 

catalyst varies over the power range of the engine, so the 

optimal setting for each NOx, CO and HC is different and 

therefore this introduces a trade-off between them. Typically 

NOx is produced most prominently at high temperatures when 

the engine is running at maximum power. At high speed high 

torque combinations (an area neglected by typical drive 

cycles), enrichment may be used to provide engine cooling, 

 

 



Page 4 of 10 

 

and this increases CO emissions dramatically. If emissions are 

considered relevant, this area has to be avoided.  

 

Figure 5.  Test data – Normalised emissions over APU power of Lotus 

Range Extender 

Motor Model 

The total power required is calculated from the drive cycle 

demands, which will be split into a demand from the APU and 

battery. The electricity to meet these demands is sent to the 

rear wheel motors, which operate at 95% efficiency. Battery 

Model 

The internal resistance of the battery varies according to the 

battery State of Charge (SOC). The voltage trace for battery 

depletion is taken at 1% intervals where the corresponding 

internal resistance increases as SOC becomes low. Safety 

threshold limits applied to the battery mean it operates 

between 30%-70% of maximum charge. Battery power is 

calculated as 

    𝑃𝑏𝑎𝑡 =  𝑃𝑡𝑜𝑡 −  𝑃𝑎𝑝𝑢                                                    (2) 

This means that the total power demand from the drive cycle 

is a summation of battery and APU power delivery. 

OPTIMIZATION PROBLEM 

The goal of this work is to solve the global optimization 

problem by finding the engine power profile with the lowest 

fuel consumption and the lowest total emissions for a given 

cycle. To make the problem deterministic, it is assumed that 

the cycle is known in advance, which would not be true in a 

real time application. This may be considered “cycle beating” 

and therefore inappropriate for regulatory purposes, but it is a 

useful tool to analyze the physical capabilities of the 

powertrain.  

Although the original problem is time continuous, cycles are 

typically given in time discrete form, and therefore a time 

finite horizon discrete model is more appropriate. Using a time 

step of 1 seconds, the model can be described as a function 

from one state to the next 

    𝑥𝑘+1 =  𝐹𝑘(𝑥𝑘 , 𝑢𝑘),        𝑘 = 0,1, … , 𝑛 − 1                    (3) 

where 𝑥𝑘 contains the state variables of the system and 𝑢𝑘 the 

control input variables. The optimization problem is to 

minimize the cost function through the optimal use of the 

control input, 𝑢𝑘. The cost function is given as 

    𝐽 =  ∑ 𝐿{𝑥(𝑘), 𝑢(𝑘)}𝑛−1
𝑘=0 =  ∑ 𝐿(𝑘)𝑛−1

𝑘=0                  (4) 

where 𝑛 represents the drive cycle duration and L represents 

the instantaneous step-by-step function.  All aspects of the 

costs are weighted sums of the fuel consumptions and the 

emission profile: 

    𝐽 = 𝛼𝐽𝐹 + 𝛽𝐽𝑁𝑂𝑥 + 𝛾𝐽𝐻𝐶 + 𝛿𝐽𝐶𝑂      (5) 

where the coefficients 𝛼, 𝛽, 𝛾, 𝛿 are weighting factors, and the 

four cost components are the fuel consumption, Oxides of 

Nitrogen (NOx) emissions, Hydrocarbon (HC) emissions, and 

Carbon Monoxide (CO) emissions. The coefficients are 

essentially the specific cost of fuel and of emissions, and they 

are chosen so that the overall cost is roughly comparable.  

Approaching the problem in this way reduces computational 

complexity by keeping the number of states low. Only two 

states are used: state 1 is the battery state of charge, while state 

2 denotes whether the engine was on or off in the previous 

time step. Only one input variable is used, which determines 

both, whether the engine is on or off and if on, what power it 

runs at.  

In addition to the system model, constraints are applied to the 

state 𝑥𝑘. In order to reduce battery ageing, the battery SOC is 

always kept within a reasonably narrow range of 

approximately 40% of the complete capacity. 

The step-by-step cost function has two aspects: 

    𝐿(𝑘) = 𝐿1(𝑢𝑘) + 𝐿2(𝑥𝑘 , 𝑥𝑘+1).                                      (6) 

The first part: 𝐿1 captures fuel consumption and emissions as a 

function of the engine power. The second part: 𝐿2 penalizes a 

change in the engine operating state from off to on, and it 

represents the energy and the additional emissions generated 

during engine start-up. A zero value 𝐿2 = 0 is used for time 

steps when the engine is not started between 𝑥𝑘 and 𝑥𝑘+1. 

The final battery state of charge may contain a significant 

amount of stored energy. In order to create a level playing 

field, the final battery state is required to be at least as high as 

the initial battery state. The optimal solution typically leads to 

a battery state that is only very slightly over this limit. For 

improved accuracy, the battery state is translated into a cost 

based on the optimal engine operating point. This equivalent 

cost is applied as a final state cost 𝐶𝑘(𝑥𝑘) to the optimization 

problem.  
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OPTIMIZATION STRATEGY AND 

LIMITS 

Dynamic Programming  

The optimization problem can be solved globally using 

dynamic programming. The main part of the optimization goes 

backwards from the final cost 𝐶𝑛(𝑥𝑛) to find the best input 

𝑢𝑛−1 and best cost to go 𝐶𝑛−1 for the transition to the last step, 

described by 

   𝑢𝑛−1: 𝐶𝑛−1(𝑥𝑛−1) = min 𝐿𝑛−1(𝑥𝑛−1, 𝑢𝑛−1) + 𝐶𝑛(𝑥𝑛)    (7) 

Therefore, by the definition of dynamic programming, the cost 

function in (7) is additive over time; a combination of the 

expected cost in (4) and the final cost. 

This process is repeated to find the optimal cost and the 

optimal input for each state at each time step. The 

computational complexity is polynomial, making this one of 

the most efficient optimization algorithms. Once the cost map 

has been found, a forward simulation is performed from the 

given initial state to find the optimal trajectory and optimal 

cost solution. Therefore as uk calculated for each xk minimizes 

the right hand side of (7), for each state the policy of control 

decisions from n-1 to 0 is optimal. 

Implementation 

The function dpm.m in version 1.1.2 is used to implement the 

optimization algorithm [10]. This function is a generic 

implementation of DP for discrete and continuous variables 

that has been successfully applied to electric vehicles [8]. In 

addition to this function, a problem definition and a cost 

function are required. The cost function contains the vehicle 

models and cost aspects discussed above. 

The computational complexity of the implementation is 

moderate, because only two system states are used in the 

model: battery SoC and engine on/off. Overall, the model has 

to be evaluated at about 8 × 107grid points, which takes just 

under a minute of computation time on T4200 CPU. The 

model is already vectorised, which means that the numerical 

computations should be reasonably efficient, and overhead is 

very much reduced over an iterative approach. While some 

further performance improvement could be expected by 

rewriting the function in ‘C’ coding language, it is not 

considered worthwhile at this point of the work.  

State Limits 

Dealing with limits in the system is a challenge for DP. The 

most important limit is the minimum and maximum battery 

SOC. Because of the influence from the drive cycle, this limit 

changes over time. For example the upper limit is 0.7 of the 

total capacity, but before a regeneration phase the battery state 

must be less than this to allow of the increase in charge due to 

regeneration. Controlling charge (and wasting the recuperated 

power) is possible, but it was not considered relevant in the 

context of optimizing fuel economy. 

State Discretization 

The dpm code automatically performs discretization of the 

state space and the input space, and it interpolates the cost 

function as required. This introduces a small element of error, 

which can become more significant in the vicinity of limits.  

The discretization creates an issue for tracking the state limits, 

because the physical limits may not fall on the discretized 

states. The DPM function offers three approaches to limits: 

apply a penalty cost (MyInf), which needs to be high enough 

to avoid violating the limits, track the boundaries exactly via 

interval bisection (Boundaries), or avoid any discretized states 

that could potentially lead to a violation (LevelSet). The 

boundary method is not applicable for more than one state 

(although it may be possible to extend it, because the limit 

only affects one of the states). The level set option was found 

to be too conservative, leading to distinctly suboptimal results 

unless a very high number of states are used. Therefore the 

appropriate option is to use the penalty cost approach. The 

penalty was carefully chosen to avoid limit violations without 

causing the controller to be too conservative. If the penalty is 

set too high, it can “bleed” into perfectly possible states due to 

the repeated cost interpolation, and if it is too low, a constraint 

may be violated in the final simulation.  

The sensitivity of the control input and the resulting cost to the 

grid size was determined experimentally, and it was concluded 

that a reasonably high number of grid point of the battery SOC 

is required for an accurate solution. Therefore 1001 states are 

used for this dimension. Higher values had little effect on the 

solution, but increased the computation time beyond 

reasonable limits, while lower number of states lead to 

distinctly inferior solutions.  

Input Discretization 

The input vector also requires discretization before the 

optimum solution can be selected. Since only limited 

experimental data was available, the same steps (full kW) are 

used here.  

The optimal input can be interpolated between the neighboring 

states, but this did not lead to acceptable results. The reason is 

the non-convex BSFC curve (see Figure 2), which leads to 

distinct minima for different circumstances. An interpolating 

controller may instead use an input between two minima, 

which means that it could it a local maximum.  

In order to avoid the input interpolation, the input was 

declared as a discrete variable. This means only full kW steps 
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can be commanded. The available inputs are aligned with the 

experimental data.  

RESULTS AND CONCLUSIONS 

Optimal APU Usage 

The use of the APU is compared for a strategy to minimize 

fuel and a second strategy to minimize emissions. Fig. 3 

shows the comparison of two strategies for optimizing the 

APU usage to minimize fuel (red) and NOx (green). For the 

minimal NOx strategy the engine does not turn off once 

started and this is due to the penalty cost associated with 

startup scenarios. More engine start/stop scenarios occur in the 

minimal fuel strategy, which shows that this condition doesn’t 

penalize the fuel cost as much. 

Optimizing for minimal NOx shows a dramatic decrease, from 

1.532g to 0.323g (see Table 1). In terms of meeting European 

emissions regulations [11] the total NOx emissions must be 

below 1.036g for this particular Artemis Road drive cycle. The 

solution employed here is to find the necessary trade-off in the 

cost function to reduce the total NOx output just below this 

limit. The resulting solution then provides the best fuel 

consumption satisfying the emission limits. This approach 

avoids the computational complexity of formulating NOx 

emissions as an optimization limit, because that would require 

a further state in the system to track emissions.   

The two strategies show different desirable power ratings to 

run at for long periods of time. The red line for fuel 

minimization runs at 26kW for the majority of the drive cycle. 

This can be attributed to the lowest BSFC at this power rating 

of 250g/kWhr (see Fig. 2). The peaks and troughs up to 

maximum and minimum APU power ensure that the battery 

SOC remains within feasible limits and returns to the starting 

value at the end of the cycle. 

For the NOx minimization strategy the APU frequently runs at 

28kW, which corresponds to the region of the catalyst model 

that delivers maximum conversion rate. The APU runs at 

minimal in this strategy as opposed to switching off due to the 

penalty associated to NOx for an engine off/on scenario. 

Incidentally the fuel minimization strategy opts to run at 5kW 

instead of 4kW due to the improved efficiency.  

The results obtained from this global approach differ from the 

simulation work for an online solution shown in [2]. 

Comparing the APU profile to the online controller in the 

Lotus Evora 414E, far fewer operating points are seen for the 

global solution. Generally the engine is working at four main 

points for fuel minimization: off (0kW), minimum (4kW), 

maximum (35kW) and most efficient setting (26kW); whereas 

an adaptive online solution shown in Fig. 4 sees much more 

variation in operating points. Due to the nature of the BSFC 

curve (Fig. 2) there will be small benefits to using maximum 

power and similarly using minimum power instead of 

switching off. This optimal behavior can be introduced into an 

online control management system. 

TABLE 1: Table of comparisons for two global 

minimisation strategies for fuel and NOx emissions. 

 Min. Fuel Strategy Min. NOx Strategy 

Fuel usage (litres) 
1.635 1.761 

NOx emissions (gram) 
1.532 0.323 

 

Figure 6.  Graphical representation of two minimisation results over 

Artemis Road drive cycle  

 

Figure 7.  APU profile for online management system in Evora 414E for 

NEDC drive cycle [2] 

The SOC of the battery takes different paths for the two 

strategies, more continuous electric driving is apparent in the 

NOx minimization strategy, which requires a large amount of 

charging after 400sec into the cycle. This characteristic is the 

cause of penalizing the fuel consumption. The battery is 

slightly more efficient at higher voltage (higher state of 

charge), therefore the trace for fuel minimization operates the 

battery at consistently higher charge levels.  
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Figure 8.  SOC trace comparison for the two optimization strategies for 

Artemis Rural drive cycle 

Fuel vs. Emission Trade-off 

Further simulation results showing the trade-off between fuel 

and emissions are represented through Pareto curves, where a 

weighting is applied at increasing intervals generating a range 

of optimal solutions within this multi-criteria optimization 

problem. Fig. 9 shows the trade-off for NOx and fuel, where a 

linear relationship is apparent in the central part of the graph. 

Therefore reducing NOx comes at a high cost for fuel. The 

European legislations require that the level of NOx is below 

60mg/km, and this is always satisfied. The NOx Pareto curve 

is surprisingly straight, which indicates that there are 

essentially only two solutions, and these are blended in 

different ratios.  

Fig. 10 shows the relationship of CO emissions and fuel 

consumption. This graph shows a more traditional relationship 

according to the law of diminishing return. Initially, the fuel 

penalty for reducing CO emissions is small; but as the 

emissions reach the lower limit, the fuel penalty increases 

significantly. The legislation limits CO to 1000mg/km [10], 

which the algorithm can achieve with good scope to achieve a 

level below 600mg/km, if desired.  

 

Figure 9.  Pareto Curve NOx vs. Fuel for Artemis Rural drive cycle 

 

Figure 10.  Pareto Curve CO vs. Fuel for Artemis Rural drive cycle 

 

Figure 11.  Pareto Curve HC vs. Fuel for Artemis Rural drive cycle 

The Pareto curve in Fig. 11 again shows a strongly curved 

relationship, this time for HC emissions. The first four data 

points show potential to reduce HC at low fuel cost; thereafter 

the penalty increases for a smaller reduction in emissions. The 

simulations in this result all achieve the legislation limit of 

100mg/km [11] so therefore it would be desirable to select a 

solution that favors minimal fuel consumption. It is interesting 

to compare the behaviors of the three emissions: the absence 

of a diminishing return for the NOx trade-off is clearly 

standing out. The linear relationship indicates that the solution 

is moving from one strategy to another without any better 

intermediate solution.  

Further optimization work could include different engine 

calibrations, i.e. spark timing or lambda control could bring 

further emission benefits with a moderate fuel economy 

penalty.  
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Combined Cost Function 

TABLE 2: RESULTS FOR DIFFERENT TRADE-OFFS 

 
European 

Legislation 

Theoretical 

Global 

Minimum 

Weighted 

Trade-off 

Relative 

trade-off 

weight 

FC (g/km) - 52.19 53.34 1 

CO2 (g/km) 130 53.79 54.97 - 

NOx (mg/km) 60 17.35 44.85 40 

CO (mg/km) 1000 3.08 578.17 4 

HC (mg/km) 100 1.44 17.84 8 

For the energy management system it is desirable to apply a 

penalty cost to each of the four given variables, fuel, NOx, CO 

and HC. This will allow a compromise across the board to 

meet emission legislations and acceptable fuel consumption. 

The design of the cost weights will depend on the relative 

desire to minimize each variable. An example is shown in 

Table 2 below that meets the European emission legislations, 

whilst also maintaining the fuel consumption close to its 

theoretical global minimum. These combined weights are 

shown in Figs. 9-11. 

Causal Implementation 

As stated above, the globally optimal controller is specific to a 

certain drive cycle. This means it assumes knowledge of the 

future, which makes the control non-causal and therefore not 

directly suitable for real time applications.  

In an experiment to investigate the validity of a causal 

controller, optimal APU powers at each second in a large 

database of measured and synthesised European drivecycles 

[12, 13] were calculated with dynamic programming. From 

the simulation output, a dataset of vehicle speed, acceleration, 

power-demand, battery SoC and distance from the end of the 

cycle were recorded and fed into the Weka open-source 

machine learning software [14]. An ensemble of J48 decision-

trees were trained to classify optimal APU power to the 

nearest kilowatt, using the AdaBoost M1 algorithm with ten 

folds for cross-validation.  

When distance from the end of each cycle was included in the 

training data, the optimal APU power was determined by the 

classifier with a precision of 94.3%. When distance-to-go was 

neglected from training data, classification precision reduced 

to 87.6%. Classifier performance implies that near optimal 

control behaviour could be generalised with machine 

intelligence for use in a causal energy management system. 

The results are shown in Figures 12 to 15 over different cycles 

– blue is the non-causal optimal controller (dpm), and red the 

causal suboptimal controller (weka).   

 

Figure 12.  NEDC Results 

 

Figure 13.  Artemis Urban Results 

 

Figure 14.  Artemis Road Results 
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Figure 15.  Artemis Motorway Results 

OUTLOOK 

A successful global optimization algorithm has been 

implemented over various drive cycles for a model of the 

Lotus Evora 414E. This optimal solution presents a 

benchmark for sub-optimal controllers, with the aim of 

minimizing losses for driving conditions where the future is 

unknown. The current energy management system in the 

vehicle can now be assessed against the optimum global 

solution. Work will progress to develop an online controller 

that achieves results as close to the global solution as possible. 

Benchmarking simulations can have a significant effect on 

design parameters in future powertrains. The optimization 

results discussed in this paper clearly highlight the abilities of 

the particular powertrain in the Lotus 414E.  

The implementation of the current simulation is done directly 

in MATLAB using a code which is customized from the 

original modular function explained in [8]. Although this 

paper has highlighted the reasons why a global optimization 

solution as one presented here cannot be used in real-time; 

with some forward thinking a strategy can be implemented for 

use of such ‘smart optimizations’. The cost functions derived 

during DP can be used to construct a semi-global optimal 

controller that is well suited to any similar driving style. 

Further research is planned in this direction, to look at ways to 

include demand prediction and adaptation to different driving 

styles.  
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Definitions/Abbreviations 

APU Advanced Power Unit 

BSFC Brake Specific Fuel 

Consumption 

DP Dynamic Programming 

PM Particulate Matter 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


