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Nonlinear disturbance observer based robust control
for systemswith mismatched
disturbances/uncertainties

Jun Yang, Wen-Hua Chehy and Shihua L

Abstract: Robust control of nonlinear systems with disturbances awedainties is addressed in
this paper using disturbance observer based control geénin this framework, the “disturbance”
is a generalized concept, which may include external distaces, unmodeled dynamics, and sys-
tem parameter perturbations. The existing disturbancerebs based control (DOBC) methods
were only applicable for the case where disturbances andriaiaties satisfy so called matching
condition, i.e., they enter the system in the same channtfeasontrol inputs. By appropriately
designing a disturbance compensation gain vector in theosite control law, a nonlinear distur-
bance observer based robust control (NDOBRC) method isogeapin this paper to attenuate the
mismatched disturbances and the influence of parameteatizans from system output channels.
The proposed method is applied to a nonlinear missile systehe presence of various uncertain-
ties and external disturbances. Simulation shows thatpeoed with the widely used nonlinear
dynamic inversion control (NDIC) and NDIC plus integraliact(NDIC+l) methods, the proposed
method provides much better disturbance attenuationtyabitid stronger robustness against vari-
ous parameter variations. The proposed method significarténds the applicability of the DOBC

methods.

Keywords: Mismatched disturbances/uncertainties, nonlinear diafwce observer, disturbance

compensation gain, nonlinear missile.

1 Introduction

Disturbances including external disturbances, unmodeéjedmics, and parameter perturbations,
widely exist in aerospace engineering, such as aircrafssil®s, and satellites, and also many other
engineering systems. Generally speaking, the controbpegnce of these systems is severely af-
fected by disturbances and uncertainties. Disturbaneauwstion is of great importance in control
system design.

Disturbance observer based control (DOBC) provides a miogniapproach to handle system
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disturbances and improve robustness [1, 2]. In this framlewa base line controller is firstly de-
signed under the assumptions that there are no disturbandesncertainties, and then a compen-
sation is added to counteract the influence of disturbantésiacertainties that is estimated by a

properly designed disturbance observer (DOB) [3].

Compared with other robust control schemes, DOBC approashwo distinct features. One
feature is that disturbance observer based compensativhecaonsidered as a “patch” for exist-
ing controllers that may provide good stability and tragkperformance but have unsatisfactory
disturbance attenuation and robustness against undertaiithe benefits of this is that there is no
change to the base line controller which may have been wigksdg and developed for many years
such as classical flight control systems. After the basedargroller is designed using the existing
procedures, the disturbance observer based compensatimtdéd to improve the robustness and
disturbance attenuation. Instead of employing a completeand different control strategy which
demands a new verification and certification process, théication of DOBC can be developed
based on the existing verification process to ensure safietyediability. The second feature is that
DOBC is not a worst case based design. Most of the existingstotontrol methods are worst
case based design, and have been criticized as being “onsem@tive”. Promising robustness is
achieved with the price of degraded nominal performanceD@BC approach, the nominal per-
formance of the base line controller is recovered in the mis®f disturbances or uncertainties.
Although in the worst cases for described uncertaintiesBD® performance may be poorer than
that of other robust controllers, the overall better perfance may be achieved as a dynamic system

more likely operates around its nominal condition.

Disturbance observer technique was firstly presented bghDbt al. [4] for a motion servo
system in the late of 1980s. During the past two decades, D&BEmMes for linear and nonlinear
systems have been successfully developed and applieddusangineering systems, such as servo
control system [2], robotic system [5], hard disk drive syst[6], position system [7], grinding
system [8, 9], etc.

Note that the above mentioned DOBC schemes are generalfynéesaccording to linear con-
trol theory, even if the actual controlled plant is nonlingE0]. In the presence of strong nonlin-
earities, the validity of using linear analysis and synibhéschnique may be doubtful [11, 12, 13].
To this end, research of DOBC using nonlinear system theasydnawn much attention in the past
decade. Recent developments of nonlinear disturbancevelndeased control (NDOBC) can be
seenin[3,11, 12, 13, 14, 15]. In [14], a sliding mode basedinear disturbance observer (NDOB)
was proposed for motor control. Using Lyapunov stabilitgdty, Chen et al. [11] developed a
nonlinear disturbance observer for a single-input-shkaglput (SISO) nonlinear system subject to
unknown constant disturbance and applied it to a two-linkimalator. Rigorous exponential sta-
bility analysis of NDOBC was established based on Lyaputabikty theory in [3]. Guo and Chen

[12] proposed a DOBC method for a class of multi-input-malitput (MIMO) nonlinear systems



with well-defined nonlinearity. Composite methods whicimtine DOBC with terminal sliding
model control orH,, control were proposed to solve the problem caused by destwds model

perturbations in Ref. [12, 13, 15].

In the previous literature, the DOBC methods were only alie to disturbances satisfying
matching condition [16]. Here matching condition meang tha disturbances appear in the same
channels as the control inputs. For mismatched disturlsanee, the disturbances or the influence
of uncertainties enter the system in different channelsiftoe control inputs, the existing DOBC
methods are not applicable. It should be pointed out thatatished disturbances are more practical
and widely exist in engineering systems. Taking aircrafaasexample, the lumped disturbance
torques caused by unmodeled dynamics, external winds,anadngter perturbations may influence

the states directly, rather than through the input channels

The problem of mismatched disturbances have been conceri#8, 15] where the matched
disturbances were canceled by DOBC while the mismatchedrdences were attenuated By,
control [15] or variable structure control [13]. It was alsgported that some constrains with the
mismatched disturbances (such as with bounfdedorm) were required in [13, 15]. In the presence
of mismatched disturbances/uncertainties, a widely usactipal method is to add an integral action
in the feedback control law to remove offset of the closempleystem [17], which will be compared

with the proposed method in this paper.

In this paper, a nonlinear disturbance observer basedtrobogol (NDOBRC) method is pro-
posed to solve the disturbance attenuation problem of meati systems subject to mismatched
disturbances/uncertainties. In the presence of mismatdsturbances and uncertainties, it is un-
likely to achieve asymptotic stability as the disturbannd the control inputs do not appear in the
same channels and the influence of the disturbances can moifydetely canceled. Instead, the
design objective is to remove the influence of disturbanogsumcertainties from the output. The
key issue here is how to design a disturbance compensaiiomegtor to assure that the mismatched
disturbances can be completely eliminated from the outpahcels. With the proposed NDOBRC
method, the prominent “patch” feature retains, the rolesgrand disturbance attenuation against a
much wider range of uncertainties and disturbances aréfisamtly improved without sacrificing
the nominal performance of the original nonlinear conttradtegy.

To demonstrate the feasibility and effectiveness of the@sed method, control design of a
missile system using NDOBRC is investigated in this papke fissile system considered is subject
to mismatched disturbances that include not only exteristidances, but also model uncertainties.
The rest of the paper are organized as follows. In Section @ebminary regarding nonlinear
disturbance observers is presented for the conveniendeeottiders. The problem formulation is
then described. Design and analysis of the proposed NDOBRsented in Section 3. In Section
4, the proposed NDOBRC is applied to a nonlinear missileesgstSimulation studies and results

are presented in Section 5. The conclusions are finally giv&ection 6.



2 Preliminariesand problem formulation
2.1 Nonlinear disturbance observer

A general single-input-single-output (SISO) affine noa#in systems with lumped disturbances is
represented as
{ z = f(x)+ gi1(x)u+ g2(x)d, 1)
y = h(z),

wherex € R",d € R", u € R andy € R are the state vector, lumped disturbance vector, input
and output variables. It is assumed tlfétc), g1 (x), g=(x) andh(x) are smooth functions in terms
of statex.

For system (1), the following nonlinear disturbance obse(}DOB) is proposed in [1, 3, 18]

to estimate the unknown disturbaneggiven by

{ d:z+p(w), )

z = —l(x)g2 ()2 - l(z)[g2(x)p(x) + (2) + g1(@)u],

whered andz are the estimates of the unknown disturbances and the atgtates of the nonlinear
observer, respectively, andx) is a nonlinear vector-valued function to be designed. Theinear

observer gaiti(x) is defined as
Op(x)
or

lz) = ®)

Assumption 1: The lumped disturbanag is slowly time-varying, i.e.d ~ 0.
It can be proved that, under the assumption that the distadzare slowly time—varying;i

approached asymptotically ifp(x) is chosen such that

é(t) + 2 ga(w)e(t) =0, @

e=d—d. (5)

Clearly, any nonlinear vector-valued functidfx) which makes Eq. (4) asymptotically stable
can be chosen to guarantee the asymptotic convergence estiheation error.

Remark 1: The rigorous asymptotic convergence of NDOB has been ésttall under the con-
dition that the disturbances vary slowly relative to theeslier dynamics (i.e., Assumption 1). It has
been also reported that the observer (2) can track somernfesiarying disturbances with bounded
error as long as the derivative of the disturbances is balifidsg.

Remark 2: In the presence of uncertainties, the lumped disturbanoegvibe a function of the
states, which can be reasonably estimated if the distuebabserver dynamics is faster than the
closed-loop dynamics. The same argument for the statevardesised control methods is applica-

ble.



2.2 Problem formulation

In the previous literature, the DOBC methods only deal whil ¢ase of matched disturbances, i.e.,
the lumped disturbancebenter the system with the same channels as the control inpresisely
speaking, the matched disturbances means that the foliobwia conditions are satisfied: (i) the
control inputsu and the lumped disturbancdshave the same dimension, and gi)(z) = g2(x)

in Eq. (1). These conditions have restricted the applicatibDOBC strategies to more general
controlled plants.

Remark 3: Note that the NDOB (2) is applicable for the case of mismalctisturbances.
However, the estimates of NDOB can not be used to compenrsatdidturbances directly because
the disturbances are not in the same channels with the ¢amtrdgs.

It should be pointed out that in general, the influence of tliematched disturbances can not
be removed from state variables. In this paper, based onshelshnce estimate of NDOB (2), the
composite control law a8 = «(x) + B(x)d is designed to remove the influence of the lumped
disturbance from the output channel by appropriately desgthe compensation gai#(x). This
will substantially extends the application fields of the DOBtrategy.

A general design procedure of nonlinear disturbance obséased robust control (NDOBRC)

for system (1) subject to mismatched disturbances is pezpas follows:

(i) Design a base line nonlinear feedback controller to @ahistability and performance specifi-

cations without taking into account disturbances/unaetits.

(i) Lump the external disturbances and the influences ofitieertainties, and then design a non-

linear disturbance observer to estimate the lumped dighads.

(i) Design a disturbance compensation gain vector to@chdesired performance specification in

the presence of external disturbances and uncertainties.

(iv) Construct the composite NDOBRC law by integrating tlmmlinear feedback controller and

the disturbance observer based compensation part.

3 NDOBRC for nonlinear systemswith mismatched disturbances
3.1 Composite control law

For the nonlinear systems (1) with mismatched lumped distures, the composite control law of
NDOBRC is designed as
u=a(z)+ Bx)d, 6)
wherea(x) is the feedback control law without considering the distmdes/3(x) is the disturbance
compensation gain vector to be designed, dilthe disturbance estimate based on the NDOB (2).
Obviously, the composite control law (6) consists of twotpaone is the nonlinear feedback

control parto(z), and the other is the disturbance compensation f8fmd based on the NDOB.



Note that in the composite control law (6), the disturbanoegensation terr;tB(az)d is just
designed for disturbances, i.e., the NDOB works if and oflglisturbances exist. Thus it just
works like a “patch” for the existing controller to improus disturbance attenuation and robustness
against uncertainties. In the absence of disturbancesrarettainties, the nominal performance of

the existing controller recovers.

3.2 Stability analysis

To establish the stability of the closed-loop system, thiedieng preliminary result is required.
Lemma 1: Consider a nonlinear systein= H (x, d) with statex € R", inputd € R™, in
which H(0,0) = 0. Suppose the equilibriume = 0 of & = H(«x, 0) is globally asymptotically
stable. Then there exists am x m matrix M (x) of smooth functions of, which is defined for
all z € R™ and is nonsingular for alt, such thatt = H (x, M (x)d) is input-to-state stable (ISS)
[19].
Consider the lumped disturbancésas the inputs of the closed-loop system, also the system

statex and observer stateas of the state of the closed-loop system. Let

r
()
e

( F(z) + g1 (x)a(z) — g1 (x)B(x)e ) |
—l(x)ga2(x)e

F(z) = (8)

The input-to-state stability of the closed-loop systenstmblished by the following theorem.
Theorem 1: The closed-loop system consists of nonlinear system (f)posite control law (6)

and nonlinear disturbance observer (2) is ISS if the follmpéonditions are satisfied:

(i). the nonlinear system (1) under the original designetdralier v = «(x) is globally asymptot-

ically stable in the absence of disturbances,

(ii). the vector-valued functiop(x) is chosen such that the observer error system (4) is globally

asymptotically stable,
(iii). there exist a disturbance compensation gai) such that
g2(z) + g1(x)B(x) = G(2) M (z), (©)

holds, where& () is an arbitrary matrix and/ (z) is a matrix such that

(10)

x=F(z)+ ( Gl@M(@) ) d,

0

is ISS.



Proof: Combining system (1), composite control law (6), distudEastimation error function
(4) and (5) together, the closed-loop system is obtained
@ = [f(x) + gi(z)a(r)] — g1 (x)B(x)e + [g2(x) + g1 (x)B(x)]d,

11
agf)m @e. (11)

e = —
Combining Egs. (7), (8) with (11), the closed-loop systemiien as

A ( 92(2) + g1 () B(x) ) . 2
0

With the conditions given in (i) and (ii), it can be shown that= F'(z) is asymptotically stable
in the absence of disturbances. This means that there axistpositive definite and proper function

V(z) and a clas& ., function~(-) such that

Vo e R0 = V(@) < —(a). (13)

where||-|| denotes Euclidean norm of a vector, definitions of class1dX, functions can be found

in [19](pp. 1).

Considering the following system

L _ _ ( G(j) )
x=H (z,d) = F(z) + d. (14)
0
Combining (13) with (14) gives
Ve e R"/0 = %H(i,o) < =v(||=|])- (15)

Similar with the proof of Lemma 1 in [19](pp. 27-28), it can &l@own that there existsrax n
matrix M (x) which is defined for alle € R™ and is nonsingular for alt, such that for some class
K function x(-)

ov

Vil 2 x(ldl) = 5o H (@, M(@)d) < ~ 3. (16)

Consider the condition given in (iii) and (16), it can be doed that the closed-loop system
(12)is 1SS

3.3 Design of the disturbance compensation gain

The nonlinear systems (1) and the composite control lawdb)oe rewritten and expressed as

{ i = _f(a:)a: + gy ()u + g2 (2)d, 17
y = h(x)z,
and

u=a(x)r+ ﬂ(.’n)ci, (18)



Theorem 2: Suppose Assumption 1 is satisfied. Consider nonlinearmsygle under the com-
posite control law (6) consisting of the nonlinear feedbaoktrol law a(x) and the disturbance
compensation terrﬁ(az)d based on the estimates of the NDOB (2). The influence of thepdaim
disturbances can be eliminated from the output channekmudststate if the nonlinear disturbance

compensation gai#(x) is selected such that
(i). the closed-loop system (11) is ISS.

(ii). the following condition holds

/6(33) = __{B(w>_[f(w> + gl(:v)&<il!)_]1_1 gl(ac)}i1 (19)
xh(z) [f(z) + gi(x)a(z)]  ga(z).
Proof: Considering the closed-loop system (11) with Egs. (17) d@), (the states can be

expressed as

z = [f) + g1(@)@@)] " {2 - g1(@)B(x)e — [01()B(x) + g2(x)] d}. (20)

Combining Egs. (19), (20) with the output equation in (1 Blgs

y = h(@) [f(2)+ gi()a(@)] " @+ k(@) [f(2) + g1 (2)&(@)]

Yga(z)e.  (21)

Since the closed-loop system is stable, the following twadétions are satisfied, i.etl_iglo z(t) > 0

andtli>r£1O e(t) — 0. The later follows from the properly designed disturbanbseovers. It can be

shown that the disturbances can be finally attenuated freroudtput in steady-state gs= 0. [
Remark 4: Let ga(x) = (g21(x), goo(x), -+ , gan(x)), @ more explicit expression of the dis-

turbance compensation gain can be given as

ﬂ(.’L‘) = (Bl(w)>ﬁ2(m)7 7Bn(w))7 (22)
where
» ( f@)+gi@a) gl )
—h(x 0
P 7 () |
o ( F@) +gi(@)ax) gi(@) )
—h(x) 0
In fact,
h(z) [f(2) + g1 (@)a(@)]  gi(@) = h(w)a(?i,tE;‘Z;iiigzgggl@
o ( F(@)+ g (@)a(x) gi() ) 23)
—h(x) 0

similarly, foralli =1,2,--- | n,




Combining Egs. (19), (23) and (24), yields the result of Rexda

Remark 5: Note that the nonlinear disturbance compensation gairowedtr) in (19) is a
general case and suitable for both matched and mismatckeudltdinces. In the matched case, i.e.,
gi1(x) = g2(x), it can be obtained from (19) that the nonlinear disturbacm@pensation gain

vector reduces t@(x) = —1 which is widely used in the previous DOBC designs [1, 12, B, 1

4 Control design of a nonlinear missile
4.1 Longitudinal dynamics of a missile system

The model of the longitudinal dynamics of a missile undersideration is taken from Refs. [1, 20],
described by
&= fi(a) + ¢+ by (a)d +dy, (25)

4= fa(a) + b2d +da, (26)

whereq is the angle of attack (degrees)is the pitch rate (degrees per second), aiglthe tail fin
deflection (degrees). The disturbandesindds, denote the lumped disturbance torques which may
be caused by unmodeled dynamics, external wind, and \ariafi aerodynamic coefficients, etc.
The nonlinear functiong; («), f2(«), b1 (), andb, are determined by aerodynamic coefficients.
When the missile travels at Mach 3 at an altitude of 6,095 mO@Dft) and the angle of attack

|a] < 20 deg, they are given by

fi(a) = 189995 cos(22)(1.03 x 10~%a® — 9.45 x 10~ 3ala| — 1.7 x 10~ a), (27)
fa(a) = %‘3?(2.15 x 107*a® — 1.95 x 10~ 2ala] + 5.1 x 10~ 2a), (28)

_5,1809QS TQ

- 2 o
b1(a) = —3.4x 10 WV cos( 180)’ (29)

1
by = —0.206 80Q5d (30)
mlyy
The tail fin actuator dynamics are approximated by a firseolal process, i.e.,

0= (1/t1)(—0 +u) + ds, (31)

whereu the commanded fin defection (degreek)the disturbance which may influence the actuator
dynamics (e.qg. frictions) and the time constant (seconds). The physical meaning ands/afube

parameters in Egs. (27)-(31) for the missile under conaté®r are listed in Table 1.

4.2 Nonlinear dynamic inversion control

In the absence of disturbancés d> andds, an autopilot for the missile to track an angle-of-attack
referencev(t) may be designed using the nonlinear dynamic inversion eb(DIC) [21]. The
output is chosen as

Y=+ keq, (32)



Table 1: Parameters in longitudinal dynamics of the missile

Parameter Symbol Value
Weight W 4,410 kg
Velocity v 947.6 m/s
Pitch moment of inertia Iy 247.44 kg m?
Dynamic pressure Q 293,638 N/m
Reference area S 0.04087 m
Reference diameter d 0.229m
Gravitational acceleration g 9.8 m/¢
Time constant of tin actuator  ¢; 0.1s

wherek, is a chosen constant. The resultant control law is given by

Undic = 0 — [t1/(b1 + kgb2){k1(y — w)

(33)
+ka[f1 + g+ b10 + ky(fa + 020) — @] + m — &},
where
m = mq[fi(a) + ¢+ b1 (a)d] + fa(a) + bad, (34)
my = agfj‘) + 865((1“)5 Tk, 22 (35)

da '
andk;, ko are constant gains to be designed according to desireddelosp behaviors.

Suppose that the command sigaal, 4 is filtered by a low-pass prefilter to provide the reference
for tracking

G(s) = w2 /(s* + 25wns + w?). (36)

Substituting the NDIC law (33) into the longitudinal dynaiof the missile, the closed-loop

error dynamics are given by
§(t) = () + ka[y(t) —w(®)] + Fa[y(t) — w(t)] = 0. @7

In this paper, the parameters in Egs. (32)-(37) are chosen as

¢=0.7, w, = 10(rad/ s), (38)
kq = 0.06(S), (39)
k= 15(1/82), ko = 6(1/s). (40)

As shown in Eq. (37), the longitudinal dynamics of the misssifeedback linearized by NDIC.
The closed-loop poles under NDIC is given by.0 £+ 7.145, thus promising tracking performance
is achieved under the control law in the absence of distudmnHowever, it is reported that such

NDIC scheme has poor robustness and disturbance rejetdility fl, 22].

10



4.3 NDOBRC for the missile system

Define the state vector of the missile systenxas [, ¢, §]7. Rearranging the state equations of the
missile systems (25), (26), (31) and the output equatioi, (82 formulation like affine nonlinear

systems (1) is obtained. The concrete nonlinear vectaredaiunctions are denoted as

fi(a) + g+ b1 (a)d

f(z) = fa(a) +b20 ; (41)

—(1/t1)6

0
g1(X) = 0 ) (42)
1/t

1 0 O
g2lx)=| 0 1 0 [, (43)

0 0 1
h(z) = a+ kyq. (44)

The lumped disturbance vector is
dy
d=| d, |. (45)
ds

Using the nonlinear disturbance observer (2) introduce8eiction 2, the lumped disturbances
in the missile system can be estimated.

To determine the nonlinear disturbance compensation gaitorfor the missile system follow-
ing from the procedure proposed in Section 3, the above dipsaare reformulated as Eq. (17). The
nonlinear matrix-value functiong, () andg.(x) are the same as those in Egs. (42) and (43), while

f(x) andh(x) are denoted as follows
Fx)=1| fola))a 0 by , (46)

R@)=( 1, ky, 0)- (47)
Rearranging the NDIC law (33), gives
Undic = a(x)T + (W, w, ), (48)
wherea(x) = [ay(x), a2 (x), as(x)], and

Oél($) = ]Cl + (kg -+ ml) % +(1 + ]Cgkq)@ 5 (49)

1
b1 + k‘qbg

11



az(x) = —m(klkq+k2+m1)7 (50)
t
as(z) =1-— mwl + kokgbz + maby + by), (51)
Coen 131 o
Y(w,w, &) = b b (k1w + kow + ©). (52)

Since all nonlinear functions includingyx), h(z), g1(z), g=(x) anda(zx) have been obtained,
the nonlinear disturbance compensation gain ve@tar) can be obtained by using Eq. (19).

The composite nonlinear disturbance observer based robnsbl (NDOBRC) law is given by
U = Unaic + B(x)d, (53)

whereu,,q4;. is the NDIC law (33)3(x) is the disturbance compensation vector given by (19) cand
is disturbance estimate governed by (2). The control straatf the nonlinear disturbance observer

based NDIC scheme is shown in Fig. 1.
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Figure 1: Control structure of nonlinear disturbance obsebased robust control (NDOBRC)

scheme.

5 Simulation studies

In this paper, the nonlinear vector-valued functi¢m) in NDOB (2) is chosen as

10 0 0
llx)=] 0o 10 0 |- (54)
0 0 10

It is reported that the NDIC method has a poor disturbaneztien ability and robustness [1].
Integral action is a practical and most widely used methodlitminate the steady-state error in
the presence of disturbances/uncertainties [17]. To detrate the effectiveness of the proposed

method, in addition to the NDIC method, NDIC plus an integaation (called NDIC+I) is also

12



employed for comparison. The control law of the NDIC+I isnegented as follows

Ungicti = 0 — [t1/ (b1 + kgb2)[{ko [(y — w)dr + k1 (y — w)
+ kalf1t +q + 10 + kg (f2 + 020) — W] +m — &},

(59)

where the integral coefficient is chosenkgs= 20 to achieve a satisfactory performance.
It can be seen from the control law (55) that the NDIC+l metlhad a PID like structure.

Furthermore, the closed-loop system under Eq. (55) is diven

G— 0+ ko(y—w)+ki(y —w)+ ko [ (y —w)dr =0. (56)

As will be shown by simulation later, the offset caused byutizances and uncertainties can be

eliminated by the NDIC+l method.

5.1 External disturbance reection ability

In this subsection, the external disturbance rejectiolityabf the missile system under the proposed
NDOBRC method is investigated. Considering the case thlee#ternal disturbances = 1 is
imposed on systems at= 6 sec whileds = 5 enters at = 2 sec, the response curves of both
the output and input under three control methods are showigir2. The corresponding response
curves of the states are shown in Fig. 3.

It can be observed from Fig. 2(a) that the NDIC method resuléslarge steady-state error. As
for the NDIC+I method, there is no steady-state error anyantaut large overshoot and long settling
time are experienced. The proposed NDOBRC exhibits a mutteriteansient and steady-state
performance, such as small overshoot, short settling tindezaro steady-state error. The control
profile in Fig. 2(b) shows that no excessive (or) high gairemended for all the three methods.

Fig. 3 shows that all states under the three methods remaininwallowable regions. This
means that the proposed method gains much better extestiafldince rejection performance than

the other two methods without bringing adverse effectsltthelstates.

5.2 Robustness against model uncertainties

The robustness against model uncertainties of the propf#aBRC is tested in this part. To
investigate the performance of robustness in detail, ttmees of model uncertainties are considered.

Case |I: both f1 («) and f2(«) have variations of +20%.

For the first case of model uncertainties, the response swifvihe output/input and the states
under the three control methods are shown in Figs. 4 and pectsely. It can be observed from
Fig. 4(a) that the NDIC scheme has resulted in large stetadg-srror. For the NDIC+I method, the
steady-state error was eliminated but quite slowly. Theppsed NDOBRC method approaches to
the reference setpoint rapidly without steady-state error

As shown in Figs. 4(b) and 5, both the control input and théesteemain within allowable
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Figure 2: Response curves of the output and input in the peesef external disturbances under the
control laws of NDOBRC (53) (solid line), NDIC (33) (dashéad), and NDIC+I (55) (dash-dotted

line). The reference signal is denoted by dotted line.

regions. These variables under the NDOBRC method convergieet desired equilibrium point

much quicker than those under the other two methods.
Casell: f1(«) and f2(a) have variations of -20% and -5%, respectively.

In such case, Figs. 6 and 7 show the response curves of thetfmppt and states under the
three control methods. It can be observed from Fig. 6(a)ttr@butput under the NDIC method
substantially departs from the desired reference trajgctessentially, this implies that the missile
becomes unstable as the model is only valid when< 20 degrees, but the angle of attack reaches
70 degrees in simulation. Fig. 6(a) shows that the outpututite NDIC+] method asymptoti-
cally approaches to the setpoint with oscillation and largershoot. The proposed NDOBRC has
achieved the best performance, including a small overslasiiort settling time, no oscillation and

zero steady-state error.

As shown in Fig. 6(b), the magnitude of the control input urtte NDOBRC is much smaller
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than those under the other two methods. The NDIC method isalie in this case because the
magnitude of the control input is huge and over the actuatositaint. Also from the response
curves of the states in Fig. 7, it can be concluded that theqzed method gains the best performance

of robustness among all the three methods.
Caselll: f1(«)andf2(«) have variations of -20% and -7%, respectively.

The case of an even more severe model uncertainties isigatest in this part. The response

curves of the output/input and states are shown in Figs. ®arespectively.

In this case, the control performances under the NDOBRC abtCNare quite similar with
those inCase II. However, the response curves under the NDIC+l method besascillating and
unstable. This shows that the proposed NDOBRC achieves toeittér robust performance and

stability compared with other two methods.

6 Conclusion

As clearly demonstrated in the missile example in this papdernal disturbances, unmodeled dy-
namics and parameter perturbations always bring adveesgsfo stability and performance of con-
trol systems. Disturbance observer based control (DOB€phavided a solution to this problem.
It can significantly improve disturbance attenuation &p#ind robustness against uncertainties, and
acts like a “patch” to the existing design without consitidyahanging the nominal control design.
Existing DOBC methods were only applicable to matched distuces. To this end, a nonlinear
disturbance observer based robust control (NDOBRC) mdthsdeen proposed for nonlinear sys-
tems in the presence of mismatched disturbances and uintiedalt is shown that by appropriately
design the nonlinear compensation gains, zero steadyissaking error can be achieved on system
output. Simulation studies of a missile system have beaiedaput to demonstrate the validity of
the proposed NDOBRC method. The results have shown thatrtged method obtains much
better disturbance rejection ability and robustness agaimodel uncertainties as compared with
nonlinear dynamic inversion control (NDIC) and nonlinegndmic inversion control plus integral

action (NDIC+I) methods.
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