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Nonlinear disturbance observer based robust control

for systems with mismatched

disturbances/uncertainties

Jun Yang∗, Wen-Hua Chen†, and Shihua Li∗

Abstract: Robust control of nonlinear systems with disturbances and uncertainties is addressed in

this paper using disturbance observer based control technique. In this framework, the “disturbance”

is a generalized concept, which may include external disturbances, unmodeled dynamics, and sys-

tem parameter perturbations. The existing disturbance observer based control (DOBC) methods

were only applicable for the case where disturbances and uncertainties satisfy so called matching

condition, i.e., they enter the system in the same channel asthe control inputs. By appropriately

designing a disturbance compensation gain vector in the composite control law, a nonlinear distur-

bance observer based robust control (NDOBRC) method is proposed in this paper to attenuate the

mismatched disturbances and the influence of parameter variations from system output channels.

The proposed method is applied to a nonlinear missile systemin the presence of various uncertain-

ties and external disturbances. Simulation shows that, compared with the widely used nonlinear

dynamic inversion control (NDIC) and NDIC plus integral action (NDIC+I) methods, the proposed

method provides much better disturbance attenuation ability and stronger robustness against vari-

ous parameter variations. The proposed method significantly extends the applicability of the DOBC

methods.

Keywords: Mismatched disturbances/uncertainties, nonlinear disturbance observer, disturbance

compensation gain, nonlinear missile.

1 Introduction

Disturbances including external disturbances, unmodeleddynamics, and parameter perturbations,

widely exist in aerospace engineering, such as aircrafts, missiles, and satellites, and also many other

engineering systems. Generally speaking, the control performance of these systems is severely af-

fected by disturbances and uncertainties. Disturbance attenuation is of great importance in control

system design.

Disturbance observer based control (DOBC) provides a promising approach to handle system
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disturbances and improve robustness [1, 2]. In this framework, a base line controller is firstly de-

signed under the assumptions that there are no disturbancesand uncertainties, and then a compen-

sation is added to counteract the influence of disturbances and uncertainties that is estimated by a

properly designed disturbance observer (DOB) [3].

Compared with other robust control schemes, DOBC approach has two distinct features. One

feature is that disturbance observer based compensation can be considered as a “patch” for exist-

ing controllers that may provide good stability and tracking performance but have unsatisfactory

disturbance attenuation and robustness against uncertainties. The benefits of this is that there is no

change to the base line controller which may have been widelyused and developed for many years

such as classical flight control systems. After the base linecontroller is designed using the existing

procedures, the disturbance observer based compensation is added to improve the robustness and

disturbance attenuation. Instead of employing a complete new and different control strategy which

demands a new verification and certification process, the verification of DOBC can be developed

based on the existing verification process to ensure safety and reliability. The second feature is that

DOBC is not a worst case based design. Most of the existing robust control methods are worst

case based design, and have been criticized as being “over conservative”. Promising robustness is

achieved with the price of degraded nominal performance. InDOBC approach, the nominal per-

formance of the base line controller is recovered in the absence of disturbances or uncertainties.

Although in the worst cases for described uncertainties, DOBC’s performance may be poorer than

that of other robust controllers, the overall better performance may be achieved as a dynamic system

more likely operates around its nominal condition.

Disturbance observer technique was firstly presented by Ohishi et al. [4] for a motion servo

system in the late of 1980s. During the past two decades, DOBCschemes for linear and nonlinear

systems have been successfully developed and applied in various engineering systems, such as servo

control system [2], robotic system [5], hard disk drive system [6], position system [7], grinding

system [8, 9], etc.

Note that the above mentioned DOBC schemes are generally designed according to linear con-

trol theory, even if the actual controlled plant is nonlinear [10]. In the presence of strong nonlin-

earities, the validity of using linear analysis and synthesis technique may be doubtful [11, 12, 13].

To this end, research of DOBC using nonlinear system theory has drawn much attention in the past

decade. Recent developments of nonlinear disturbance observer based control (NDOBC) can be

seen in [3, 11, 12, 13, 14, 15]. In [14], a sliding mode based nonlinear disturbance observer (NDOB)

was proposed for motor control. Using Lyapunov stability theory, Chen et al. [11] developed a

nonlinear disturbance observer for a single-input-single-output (SISO) nonlinear system subject to

unknown constant disturbance and applied it to a two-link manipulator. Rigorous exponential sta-

bility analysis of NDOBC was established based on Lyapunov stability theory in [3]. Guo and Chen

[12] proposed a DOBC method for a class of multi-input-multi-output (MIMO) nonlinear systems
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with well-defined nonlinearity. Composite methods which combine DOBC with terminal sliding

model control orH∞ control were proposed to solve the problem caused by disturbance model

perturbations in Ref. [12, 13, 15].

In the previous literature, the DOBC methods were only applicable to disturbances satisfying

matching condition [16]. Here matching condition means that the disturbances appear in the same

channels as the control inputs. For mismatched disturbances, i.e., the disturbances or the influence

of uncertainties enter the system in different channels from the control inputs, the existing DOBC

methods are not applicable. It should be pointed out that mismatched disturbances are more practical

and widely exist in engineering systems. Taking aircraft asan example, the lumped disturbance

torques caused by unmodeled dynamics, external winds, and parameter perturbations may influence

the states directly, rather than through the input channels.

The problem of mismatched disturbances have been concernedin [13, 15] where the matched

disturbances were canceled by DOBC while the mismatched disturbances were attenuated byH∞

control [15] or variable structure control [13]. It was alsoreported that some constrains with the

mismatched disturbances (such as with boundedH2 norm) were required in [13, 15]. In the presence

of mismatched disturbances/uncertainties, a widely used practical method is to add an integral action

in the feedback control law to remove offset of the closed-loop system [17], which will be compared

with the proposed method in this paper.

In this paper, a nonlinear disturbance observer based robust control (NDOBRC) method is pro-

posed to solve the disturbance attenuation problem of nonlinear systems subject to mismatched

disturbances/uncertainties. In the presence of mismatched disturbances and uncertainties, it is un-

likely to achieve asymptotic stability as the disturbance and the control inputs do not appear in the

same channels and the influence of the disturbances can not becompletely canceled. Instead, the

design objective is to remove the influence of disturbances and uncertainties from the output. The

key issue here is how to design a disturbance compensation gain vector to assure that the mismatched

disturbances can be completely eliminated from the output channels. With the proposed NDOBRC

method, the prominent “patch” feature retains, the robustness and disturbance attenuation against a

much wider range of uncertainties and disturbances are significantly improved without sacrificing

the nominal performance of the original nonlinear control strategy.

To demonstrate the feasibility and effectiveness of the proposed method, control design of a

missile system using NDOBRC is investigated in this paper. The missile system considered is subject

to mismatched disturbances that include not only external disturbances, but also model uncertainties.

The rest of the paper are organized as follows. In Section 2, apreliminary regarding nonlinear

disturbance observers is presented for the convenience of the readers. The problem formulation is

then described. Design and analysis of the proposed NDOBRC is presented in Section 3. In Section

4, the proposed NDOBRC is applied to a nonlinear missile system. Simulation studies and results

are presented in Section 5. The conclusions are finally givenin Section 6.
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2 Preliminaries and problem formulation

2.1 Nonlinear disturbance observer

A general single-input-single-output (SISO) affine nonlinear systems with lumped disturbances is

represented as






ẋ = f(x) + g1(x)u+ g2(x)d,

y = h(x),
(1)

wherex ∈ Rn, d ∈ Rn, u ∈ R andy ∈ R are the state vector, lumped disturbance vector, input

and output variables. It is assumed thatf(x), g1(x), g2(x) andh(x) are smooth functions in terms

of statex.

For system (1), the following nonlinear disturbance observer (NDOB) is proposed in [1, 3, 18]

to estimate the unknown disturbancesd, given by







d̂ = z + p(x),

ż = −l(x)g2(x)z − l(x)[g2(x)p(x) + f(x) + g1(x)u],
(2)

whered̂ andz are the estimates of the unknown disturbances and the internal states of the nonlinear

observer, respectively, andp(x) is a nonlinear vector-valued function to be designed. The nonlinear

observer gainl(x) is defined as

l(x) =
∂p(x)

∂x
. (3)

Assumption 1: The lumped disturbanced is slowly time-varying, i.e.,ḋ ≈ 0.

It can be proved that, under the assumption that the disturbances are slowly time-varying,̂d

approachesd asymptotically ifp(x) is chosen such that

ė(t) +
∂p(x)

∂x
g2(x)e(t) = 0, (4)

is globally stable for allx ∈ Rn, where the estimation error is defined as

e = d− d̂. (5)

Clearly, any nonlinear vector-valued functionl(x) which makes Eq. (4) asymptotically stable

can be chosen to guarantee the asymptotic convergence of theestimation error.

Remark 1: The rigorous asymptotic convergence of NDOB has been established under the con-

dition that the disturbances vary slowly relative to the observer dynamics (i.e., Assumption 1). It has

been also reported that the observer (2) can track some fast time-varying disturbances with bounded

error as long as the derivative of the disturbances is bounded [11].

Remark 2: In the presence of uncertainties, the lumped disturbances would be a function of the

states, which can be reasonably estimated if the disturbance observer dynamics is faster than the

closed-loop dynamics. The same argument for the state observer based control methods is applica-

ble.
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2.2 Problem formulation

In the previous literature, the DOBC methods only deal with the case of matched disturbances, i.e.,

the lumped disturbancesd enter the system with the same channels as the control inputs. Precisely

speaking, the matched disturbances means that the following two conditions are satisfied: (i) the

control inputsu and the lumped disturbancesd have the same dimension, and (ii)g1(x) = g2(x)

in Eq. (1). These conditions have restricted the application of DOBC strategies to more general

controlled plants.

Remark 3: Note that the NDOB (2) is applicable for the case of mismatched disturbances.

However, the estimates of NDOB can not be used to compensate the disturbances directly because

the disturbances are not in the same channels with the control inputs.

It should be pointed out that in general, the influence of the mismatched disturbances can not

be removed from state variables. In this paper, based on the disturbance estimate of NDOB (2), the

composite control law asu = α(x) + β(x)d̂ is designed to remove the influence of the lumped

disturbance from the output channel by appropriately designing the compensation gainβ(x). This

will substantially extends the application fields of the DOBC strategy.

A general design procedure of nonlinear disturbance observer based robust control (NDOBRC)

for system (1) subject to mismatched disturbances is proposed as follows:

(i) Design a base line nonlinear feedback controller to achieve stability and performance specifi-

cations without taking into account disturbances/uncertainties.

(ii) Lump the external disturbances and the influences of theuncertainties, and then design a non-

linear disturbance observer to estimate the lumped disturbances.

(iii) Design a disturbance compensation gain vector to achieve desired performance specification in

the presence of external disturbances and uncertainties.

(iv) Construct the composite NDOBRC law by integrating the nonlinear feedback controller and

the disturbance observer based compensation part.

3 NDOBRC for nonlinear systems with mismatched disturbances

3.1 Composite control law

For the nonlinear systems (1) with mismatched lumped disturbances, the composite control law of

NDOBRC is designed as

u = α(x) + β(x)d̂, (6)

whereα(x) is the feedback control law without considering the disturbances,β(x) is the disturbance

compensation gain vector to be designed, andd̂ is the disturbance estimate based on the NDOB (2).

Obviously, the composite control law (6) consists of two parts: one is the nonlinear feedback

control partα(x), and the other is the disturbance compensation termβ(x)d̂ based on the NDOB.
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Note that in the composite control law (6), the disturbance compensation termβ(x)d̂ is just

designed for disturbances, i.e., the NDOB works if and only if disturbances exist. Thus it just

works like a “patch” for the existing controller to improve its disturbance attenuation and robustness

against uncertainties. In the absence of disturbances and uncertainties, the nominal performance of

the existing controller recovers.

3.2 Stability analysis

To establish the stability of the closed-loop system, the following preliminary result is required.

Lemma 1: Consider a nonlinear systeṁx = H(x,d) with statex ∈ Rn, inputd ∈ Rm, in

whichH(0,0) = 0. Suppose the equilibriumx = 0 of ẋ = H(x,0) is globally asymptotically

stable. Then there exists anm × m matrix M(x) of smooth functions ofx, which is defined for

all x ∈ Rn and is nonsingular for allx, such thatẋ = H(x,M(x)d) is input-to-state stable (ISS)

[19].

Consider the lumped disturbancesd as the inputs of the closed-loop system, also the system

statex and observer statee as of the state of the closed-loop system. Let

x̄ =





x

e



 , (7)

F (x̄) =





f(x) + g1(x)α(x)− g1(x)β(x)e

−l(x)g2(x)e



 . (8)

The input-to-state stability of the closed-loop system is established by the following theorem.

Theorem 1: The closed-loop system consists of nonlinear system (1), composite control law (6)

and nonlinear disturbance observer (2) is ISS if the following conditions are satisfied:

(i). the nonlinear system (1) under the original designed controlleru = α(x) is globally asymptot-

ically stable in the absence of disturbances,

(ii). the vector-valued functionp(x) is chosen such that the observer error system (4) is globally

asymptotically stable,

(iii). there exist a disturbance compensation gainβ(x) such that

g2(x) + g1(x)β(x) = G(x̄)M(x̄), (9)

holds, whereG(x̄) is an arbitrary matrix andM(x̄) is a matrix such that

˙̄x = F (x̄) +





G(x̄)M(x̄)

0



d, (10)

is ISS.

6



Proof: Combining system (1), composite control law (6), disturbance estimation error function

(4) and (5) together, the closed-loop system is obtained










ẋ = [f(x) + g1(x)α(x)]− g1(x)β(x)e+ [g2(x) + g1(x)β(x)]d,

ė = −
∂p(x)

∂x
g2(x)e.

(11)

Combining Eqs. (7), (8) with (11), the closed-loop system isgiven as

˙̄x = F (x̄) +





g2(x) + g1(x)β(x)

0



d. (12)

With the conditions given in (i) and (ii), it can be shown that˙̄x = F (x̄) is asymptotically stable

in the absence of disturbances. This means that there existsaC1 positive definite and proper function

V (x̄) and a classK∞ functionγ(·) such that

∀x ∈ Rn/0 ⇒
∂V

∂x̄
F (x̄) < −γ(‖x‖), (13)

where‖·‖ denotes Euclidean norm of a vector, definitions of classK andK∞ functions can be found

in [19](pp. 1).

Considering the following system

˙̄x = H (x̄,d) = F (x̄) +





G(x̄)

0



d. (14)

Combining (13) with (14) gives

∀x ∈ Rn/0 ⇒
∂V

∂x̄
H(x̄,0) < −γ(‖x‖). (15)

Similar with the proof of Lemma 1 in [19](pp. 27-28), it can beshown that there exists an× n

matrixM(x) which is defined for allx ∈ Rn and is nonsingular for allx, such that for some class

K functionχ(·)

∀ ‖x‖ ≥ χ(‖d‖) ⇒
∂V

∂x̄
H (x̄,M(x̄)d) < −

1

2
γ(‖x‖). (16)

Consider the condition given in (iii) and (16), it can be concluded that the closed-loop system

(12) is ISS.�

3.3 Design of the disturbance compensation gain

The nonlinear systems (1) and the composite control law (6) can be rewritten and expressed as







ẋ = f̄(x)x+ g1(x)u+ g2(x)d,

y = h̄(x)x,
(17)

and

u = ᾱ(x)x+ β(x)d̂, (18)

wheref̄(x) = f(x)/x, h̄(x) = h(x)/x, andᾱ(x) = α(x)/x.
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Theorem 2: Suppose Assumption 1 is satisfied. Consider nonlinear system (1) under the com-

posite control law (6) consisting of the nonlinear feedbackcontrol lawα(x) and the disturbance

compensation termβ(x)d̂ based on the estimates of the NDOB (2). The influence of the lumped

disturbances can be eliminated from the output channel in steady-state if the nonlinear disturbance

compensation gainβ(x) is selected such that

(i). the closed-loop system (11) is ISS.

(ii). the following condition holds

β(x) = −
{

h̄(x)
[

f̄(x) + g1(x)ᾱ(x)
]−1

g1(x)
}−1

×h̄(x)
[

f̄(x) + g1(x)ᾱ(x)
]−1

g2(x).
(19)

Proof: Considering the closed-loop system (11) with Eqs. (17) and (18), the states can be

expressed as

x =
[

f̄(x) + g1(x)ᾱ(x)
]−1

{ẋ− g1(x)β(x)e− [g1(x)β(x) + g2(x)]d}. (20)

Combining Eqs. (19), (20) with the output equation in (17) yields

y = h̄(x)
[

f̄(x) + g1(x)ᾱ(x)
]−1

ẋ+ h̄(x)
[

f̄(x) + g1(x)ᾱ(x)
]−1

g2(x)e. (21)

Since the closed-loop system is stable, the following two conditions are satisfied, i.e.,lim
t→∞

ẋ(t) → 0

and lim
t→∞

e(t) → 0. The later follows from the properly designed disturbance observers. It can be

shown that the disturbances can be finally attenuated from the output in steady-state asy = 0. �

Remark 4: Let g2(x) = (g21(x), g22(x), · · · , g2n(x)), a more explicit expression of the dis-

turbance compensation gain can be given as

β(x) = (β1(x), β2(x), · · · , βn(x)) , (22)

where

βi(x) = −

det





f̄(x) + g1(x)ᾱ(x) g2i(x)

−h̄(x) 0





det





f̄(x) + g1(x)ᾱ(x) g1(x)

−h̄(x) 0





.

In fact,

h̄(x)
[

f̄(x) + g1(x)ᾱ(x)
]−1

g1(x) =
h̄(x)adj

(

f̄(x) + g1(x)ᾱ(x)
)

g1(x)

det
(

f̄(x) + g1(x)ᾱ(x)
)

=

det





f̄(x) + g1(x)ᾱ(x) g1(x)

−h̄(x) 0





det
(

f̄(x) + g1(x)ᾱ(x)
) ,

(23)

similarly, for all i = 1, 2, · · · , n,

h̄(x)
[

f̄(x) + g1(x)ᾱ(x)
]−1

g2i(x) =

det





f̄(x) + g1(x)ᾱ(x) g2i(x)

−h̄(x) 0





det
(

f̄(x) + g1(x)ᾱ(x)
) ,

(24)
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Combining Eqs. (19), (23) and (24), yields the result of Remark 4.

Remark 5: Note that the nonlinear disturbance compensation gain vector β(x) in (19) is a

general case and suitable for both matched and mismatched disturbances. In the matched case, i.e.,

g1(x) = g2(x), it can be obtained from (19) that the nonlinear disturbancecompensation gain

vector reduces toβ(x) = −1 which is widely used in the previous DOBC designs [1, 12, 13, 15].

4 Control design of a nonlinear missile

4.1 Longitudinal dynamics of a missile system

The model of the longitudinal dynamics of a missile under consideration is taken from Refs. [1, 20],

described by

α̇ = f1(α) + q + b1(α)δ + d1, (25)

q̇ = f2(α) + b2δ + d2, (26)

whereα is the angle of attack (degrees),q is the pitch rate (degrees per second), andδ is the tail fin

deflection (degrees). The disturbancesd1 andd2 denote the lumped disturbance torques which may

be caused by unmodeled dynamics, external wind, and variation of aerodynamic coefficients, etc.

The nonlinear functionsf1(α), f2(α), b1(α), andb2 are determined by aerodynamic coefficients.

When the missile travels at Mach 3 at an altitude of 6,095 m (20,000 ft) and the angle of attack

|α| ≤ 20 deg, they are given by

f1(α) =
180gQS
πWV

cos( πα
180

)(1.03× 10−4α3 − 9.45× 10−3α|α| − 1.7× 10−1α), (27)

f2(α) =
180QSd
πIyy

(2.15× 10−4α3 − 1.95× 10−2α|α|+ 5.1× 10−2α), (28)

b1(α) = −3.4× 10−2 180gQS

πWV
cos(

πα

180
), (29)

b2 = −0.206
180QSd

πIyy
. (30)

The tail fin actuator dynamics are approximated by a first-order lag process, i.e.,

δ̇ = (1/t1)(−δ + u) + d3, (31)

whereu the commanded fin defection (degrees),d3 the disturbance which may influence the actuator

dynamics (e.g. frictions) andt1 the time constant (seconds). The physical meaning and values of the

parameters in Eqs. (27)-(31) for the missile under consideration are listed in Table 1.

4.2 Nonlinear dynamic inversion control

In the absence of disturbancesd1, d2 andd3, an autopilot for the missile to track an angle-of-attack

referenceω(t) may be designed using the nonlinear dynamic inversion control (NDIC) [21]. The

output is chosen as

y = α+ kqq, (32)
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Table 1: Parameters in longitudinal dynamics of the missile

Parameter Symbol Value

Weight W 4,410 kg

Velocity V 947.6 m/s

Pitch moment of inertia Iyy 247.44 kg· m2

Dynamic pressure Q 293,638 N/m2

Reference area S 0.04087 m2

Reference diameter d 0.229 m

Gravitational acceleration g 9.8 m/s2

Time constant of tin actuator t1 0.1 s

wherekq is a chosen constant. The resultant control law is given by

undic = δ − [t1/(b1 + kqb2)]{k1(y − ω)

+ k2[f1 + q + b1δ + kq(f2 + b2δ)− ω̇] +m− ω̈},
(33)

where

m = m1[f1(α) + q + b1(α)δ] + f2(α) + b2δ, (34)

m1 =
∂f1(α)

∂α
+

∂b1(α)

∂α
δ + kq

∂f2(α)

∂α
, (35)

andk1, k2 are constant gains to be designed according to desired closed-loop behaviors.

Suppose that the command signalωcmd is filtered by a low-pass prefilter to provide the reference

for tracking

G(s) = ω2
n/(s

2 + 2ςωns+ ω2
n). (36)

Substituting the NDIC law (33) into the longitudinal dynamics of the missile, the closed-loop

error dynamics are given by

ÿ(t)− ω̈(t) + k2[ẏ(t)− ω̇(t)] + k1[y(t)− ω(t)] = 0. (37)

In this paper, the parameters in Eqs. (32)-(37) are chosen as

ς = 0.7, ωn = 10(rad/s), (38)

kq = 0.06(s), (39)

k1 = 15(1/s2), k2 = 6(1/s). (40)

As shown in Eq. (37), the longitudinal dynamics of the missile is feedback linearized by NDIC.

The closed-loop poles under NDIC is given by−7.0± 7.14j, thus promising tracking performance

is achieved under the control law in the absence of disturbances. However, it is reported that such

NDIC scheme has poor robustness and disturbance rejection ability [1, 22].
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4.3 NDOBRC for the missile system

Define the state vector of the missile system asx = [α, q, δ]T . Rearranging the state equations of the

missile systems (25), (26), (31) and the output equation (32), the formulation like affine nonlinear

systems (1) is obtained. The concrete nonlinear vector-valued functions are denoted as

f(x) =











f1(α) + q + b1(α)δ

f2(α) + b2δ

−(1/t1)δ











, (41)

g1(x) =











0

0

1/t1











, (42)

g2(x) =











1 0 0

0 1 0

0 0 1











, (43)

h(x) = α+ kqq. (44)

The lumped disturbance vector is

d =











d1

d2

d3











. (45)

Using the nonlinear disturbance observer (2) introduced inSection 2, the lumped disturbances

in the missile system can be estimated.

To determine the nonlinear disturbance compensation gain vector for the missile system follow-

ing from the procedure proposed in Section 3, the above dynamics are reformulated as Eq. (17). The

nonlinear matrix-value functionsg1(x) andg2(x) are the same as those in Eqs. (42) and (43), while

f̄(x) andh̄(x) are denoted as follows

f̄(x) =











f1(α)/α 1 b1(α)

f2(α)/α 0 b2

0 0 −1/t1











, (46)

h̄(x) =
(

1, kq, 0
)

. (47)

Rearranging the NDIC law (33), gives

undic = ᾱ(x)x+ γ(ω, ω̇, ω̈), (48)

whereᾱ(x) = [ᾱ1(x), ᾱ2(x), ᾱ3(x)], and

ᾱ1(x) = −
t1

b1 + kqb2

[

k1 + (k2 +m1)
f1(α)

α
+(1 + k2kq)

f2(α)

α

]

, (49)
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ᾱ2(x) = −
t1

b1 + kqb2
(k1kq + k2 +m1), (50)

ᾱ3(x) = 1−
t1

b1 + kqb2
(k2b1 + k2kqb2 +m1b1 + b2), (51)

γ(ω, ω̇, ω̈) =
t1

b1 + kqb2
(k1ω + k2ω̇ + ω̈). (52)

Since all nonlinear functions includinḡf(x), h̄(x), g1(x), g2(x) andᾱ(x) have been obtained,

the nonlinear disturbance compensation gain vectorβ(x) can be obtained by using Eq. (19).

The composite nonlinear disturbance observer based robustcontrol (NDOBRC) law is given by

u = undic + β(x)d̂, (53)

whereundic is the NDIC law (33),β(x) is the disturbance compensation vector given by (19), andd̂

is disturbance estimate governed by (2). The control structure of the nonlinear disturbance observer

based NDIC scheme is shown in Fig. 1.

NDIC

z

+

+

cmd 

Nonlinear

Equation

NDOB

  

External 

Disturbances

d̂

yNonlinear System

with Uncertainties
Prefilter

   

 
ndicu

)(x!

)(xp

"
z 

u

x

d

Figure 1: Control structure of nonlinear disturbance observer based robust control (NDOBRC)

scheme.

5 Simulation studies

In this paper, the nonlinear vector-valued functionl(x) in NDOB (2) is chosen as

l(x) =











10 0 0

0 10 0

0 0 10











. (54)

It is reported that the NDIC method has a poor disturbance rejection ability and robustness [1].

Integral action is a practical and most widely used method toeliminate the steady-state error in

the presence of disturbances/uncertainties [17]. To demonstrate the effectiveness of the proposed

method, in addition to the NDIC method, NDIC plus an integralaction (called NDIC+I) is also

12



employed for comparison. The control law of the NDIC+I is represented as follows

undic+i = δ − [t1/(b1 + kqb2)]{k0
∫

(y − ω)dτ + k1(y − ω)

+ k2[f1 + q + b1δ + kq(f2 + b2δ)− ω̇] +m− ω̈},
(55)

where the integral coefficient is chosen ask0 = 20 to achieve a satisfactory performance.

It can be seen from the control law (55) that the NDIC+I methodhas a PID like structure.

Furthermore, the closed-loop system under Eq. (55) is givenby

ÿ − ω̈ + k2(ẏ − ω̇) + k1(y − ω) + k0
∫

(y − ω)dτ = 0. (56)

As will be shown by simulation later, the offset caused by disturbances and uncertainties can be

eliminated by the NDIC+I method.

5.1 External disturbance rejection ability

In this subsection, the external disturbance rejection ability of the missile system under the proposed

NDOBRC method is investigated. Considering the case that the external disturbancesd1 = 1 is

imposed on systems att = 6 sec whiled2 = 5 enters att = 2 sec, the response curves of both

the output and input under three control methods are shown inFig. 2. The corresponding response

curves of the states are shown in Fig. 3.

It can be observed from Fig. 2(a) that the NDIC method resultsin a large steady-state error. As

for the NDIC+I method, there is no steady-state error any more, but large overshoot and long settling

time are experienced. The proposed NDOBRC exhibits a much better transient and steady-state

performance, such as small overshoot, short settling time and zero steady-state error. The control

profile in Fig. 2(b) shows that no excessive (or) high gain is demanded for all the three methods.

Fig. 3 shows that all states under the three methods remain within allowable regions. This

means that the proposed method gains much better external disturbance rejection performance than

the other two methods without bringing adverse effects to all the states.

5.2 Robustness against model uncertainties

The robustness against model uncertainties of the proposedNDOBRC is tested in this part. To

investigate the performance of robustness in detail, threecases of model uncertainties are considered.

Case I: bothf1(α) andf2(α) have variations of +20%.

For the first case of model uncertainties, the response curves of the output/input and the states

under the three control methods are shown in Figs. 4 and 5, respectively. It can be observed from

Fig. 4(a) that the NDIC scheme has resulted in large steady-state error. For the NDIC+I method, the

steady-state error was eliminated but quite slowly. The proposed NDOBRC method approaches to

the reference setpoint rapidly without steady-state error.

As shown in Figs. 4(b) and 5, both the control input and the states remain within allowable

13
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Figure 2: Response curves of the output and input in the presence of external disturbances under the

control laws of NDOBRC (53) (solid line), NDIC (33) (dashed line), and NDIC+I (55) (dash-dotted

line). The reference signal is denoted by dotted line.

regions. These variables under the NDOBRC method converge to the desired equilibrium point

much quicker than those under the other two methods.

Case II: f1(α) andf2(α) have variations of -20% and -5%, respectively.

In such case, Figs. 6 and 7 show the response curves of the output/input and states under the

three control methods. It can be observed from Fig. 6(a) thatthe output under the NDIC method

substantially departs from the desired reference trajectory. Essentially, this implies that the missile

becomes unstable as the model is only valid when|α| ≤ 20 degrees, but the angle of attack reaches

70 degrees in simulation. Fig. 6(a) shows that the output under the NDIC+I method asymptoti-

cally approaches to the setpoint with oscillation and largeovershoot. The proposed NDOBRC has

achieved the best performance, including a small overshoot, a short settling time, no oscillation and

zero steady-state error.

As shown in Fig. 6(b), the magnitude of the control input under the NDOBRC is much smaller

14



than those under the other two methods. The NDIC method is unusable in this case because the

magnitude of the control input is huge and over the actuator constraint. Also from the response

curves of the states in Fig. 7, it can be concluded that the proposed method gains the best performance

of robustness among all the three methods.

Case III: f1(α)andf2(α) have variations of -20% and -7%, respectively.

The case of an even more severe model uncertainties is investigated in this part. The response

curves of the output/input and states are shown in Figs. 8 and9, respectively.

In this case, the control performances under the NDOBRC and NDIC are quite similar with

those inCase II. However, the response curves under the NDIC+I method becomes oscillating and

unstable. This shows that the proposed NDOBRC achieves muchbetter robust performance and

stability compared with other two methods.

6 Conclusion

As clearly demonstrated in the missile example in this paper, external disturbances, unmodeled dy-

namics and parameter perturbations always bring adverse effects to stability and performance of con-

trol systems. Disturbance observer based control (DOBC) has provided a solution to this problem.

It can significantly improve disturbance attenuation ability and robustness against uncertainties, and

acts like a “patch” to the existing design without considerably changing the nominal control design.

Existing DOBC methods were only applicable to matched disturbances. To this end, a nonlinear

disturbance observer based robust control (NDOBRC) methodhas been proposed for nonlinear sys-

tems in the presence of mismatched disturbances and uncertainties. It is shown that by appropriately

design the nonlinear compensation gains, zero steady-state tracking error can be achieved on system

output. Simulation studies of a missile system have been carried out to demonstrate the validity of

the proposed NDOBRC method. The results have shown that the proposed method obtains much

better disturbance rejection ability and robustness against model uncertainties as compared with

nonlinear dynamic inversion control (NDIC) and nonlinear dynamic inversion control plus integral

action (NDIC+I) methods.
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Figure 3: Response curves of the states in the presence of external disturbances under the control

laws of NDOBRC (53) (solid line), NDIC (33) (dashed line), and NDIC+I (55) (dash-dotted line).
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Figure 4: Response curves of the output and input in the first case of model uncertainties (bothf1(α)

andf2(α) have variations of +20%) under the control laws of NDOBRC (53) (solid line), NDIC (33)

(dashed line), and NDIC+I (55) (dash-dotted line). The reference signal is denoted by dotted line.
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Figure 5: Response curves of the states in the first case of model uncertainties (bothf1(α) andf2(α)

have variations of +20%) under the control laws of NDOBRC (53) (solid line), NDIC (33) (dashed

line), and NDIC+I (55) (dash-dotted line).
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Figure 6: Response curves of the output and input in the second case of model uncertainties (f1(α)

andf2(α) have variations of -20% and -5%, respectively) under the control laws of NDOBRC (53)

(solid line), NDIC (33) (dashed line), and NDIC+I (55) (dash-dotted line). The reference signal is

denoted by dotted line.
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Figure 7: Response curves of the states in the second case of model uncertainties (f1(α) andf2(α)

have variations of -20% and -5%, respectively) under the control laws of NDOBRC (53) (solid line),

NDIC (33) (dashed line), and NDIC+I (55) (dash-dotted line).
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Figure 8: Response curves of the output and input in the thirdcase of model uncertainties (f1(α)

andf2(α) have variations of -20% and -7%, respectively) under the control laws of NDOBRC (53)

(solid line), NDIC (33) (dashed line), and NDIC+I (55) (dash-dotted line). The reference signal is

denoted by dotted line.
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Figure 9: Response curves of the states in the third case of model uncertainties (f1(α) andf2(α)

have variations of -20% and -7%, respectively) under the control laws of NDOBRC (53) (solid line),

NDIC (33) (dashed line), and NDIC+I (55) (dash-dotted line).
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