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Radiation of sound by growing cracl

V. V. Krylov

Physics Faculty, M. V. Lomonosov State University, Moscow
(Submitted May 31, 1982)

Akust. Zh, 29, 790-798 (November-December 1983)

A general method is proposed for the analysis of sound radiation by cracks of arbitrary configuration
propagating in bounded clastic solids. The method is based on the application of Huygens’ principle and
makes it possible to determine both the law governing the movement of the edges of a crack under the action

of applied external stresses and the radiation from it.

PACS numbers: 46.30.Nz, 43.40.Le

It is well known that the formation and growth of
cracks are accompanied by the radiation of acoustic waves
into the solid containing the crack and into the surround-
ing space; the intensity of the radiation is sometimes so
great as to be perceptible to the ear. The practical value
of this effect, which is one of the manifestations of acous-
tic emission,!»? lies mainly in two aspects: its utility in
physical experiments to study the dynamics of cracks and
the feasibility of predicting processes of catastrophic
damage to engineering structures by means of the effect.
The latter aspect is particularly important insofar as the
recording instrument in this case responds to dynamically
active cracks, which present the greatest danger.

The existing theoretical studies of crack acoustics
can be conditionally classified into two groups. The first
.group contains model-type studies, in which cracks of
arbitrary configuration are described by means of equiv-
alent three-dimensional multipole sources under various
simplifying assumptions.?~% The second group includes
studies characterized by the rigorous formulation of a
boundary-value problem for cracks of simple geometry
(e.g., semiinfinite linear cracks) and its subsequent solu-
tion with the recruitment of ponderous mathematical meth-
ods, in particular the Wiener—Hopf method.”” 1! The ob-
jective of the present study, which is more closely allied
with the second group, is to develop a sufficiently general
and, at the same time, rigorous approach based on Huy-
gens' principle for analyzing the radiation of sound by
cracks of arbitrary configuration (including finite cracks)
and to discuss some specific results obtained by application
of the method.

Let a growing crack L be situated in the interior of
an elastically stressed solid bounded by a smooth surface.
For definiteness we consider the surface to be plane (Fig.
1). The boundary conditions of zero normal stresses must
be satisfied at the edges of the crack and on the free sur-
face of the solid in this case. We adopt zero-valued initial
conditions. Itis more convenient to represent the basic
problem of the crack in an elastically stressed medium
as the superposition of two problems (this can be done in
the linear formulation): 1) the problem of the stressed
solid without the crack, which is of no interest in the given
case; 2) the problem of a crack with nonzero normal
stresses 007y =—njoij° applied to its edges in the absence
of other stress sources.!? Here the quantities cr({- represent
the stresses of the first problem, calculated at the site
of the crack (the net stresses, or the stresses acting on
the edges of the crack in the basic problem, are equal to
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zero in this case, as required). We shall be concerned
with the second problem.

The ensuing considerations are based on Huygens'
principle for solid elastic media.'® Applying it to the given
problem (we treat the two-dimensional case), we choose a
closed contour S running along the surface z = 0 around a
cut denoting the possible path of crack propagation (this
path is assumed to be known!?) and closed by a semicircle
of infinite radius. Then the corresponding mathematical
representation of Huygens' principle for time-harmonic
fields, being the analog of the {irst Ilelmholtz integral
formula, takes the form

U (£) = j [1164Gim (2, 7") = nyeiuine (x") Gim (v, x7) 1S, (1)

where the pointr lies inside the contour S, uj is the dis-
placement vector, n; is the outward unit normal to the
contour, Gim(r, ') is the dynamic Green's tensor, which
satisfies the equation ¢yuGim wtpe?*Gim=—0..8(r—r') and the
conditions at infinity, Cijki denctes the elastic constants,
and G, ,=dG,./9z.. The integral over the infinite semi-
circle vanishes because of the radiation conditions,' and
so the inlegration in (1) is actually carried out only along
the edges of the cut passing through the crack and along
the boundary of the hall-space. We note, in addition, that
the first term in (1) vanishes in integration along the free
surface owing to the boundary conditions on the surface
z = 0. But if the boundary condition of zero stresses on
the boundary is imposed on Green's function Gimp(T, ),
i.e., if Green's tensor for the half-space Gju’(r, ') is

. introduced (see, e.g., Ref. 14), expression (1) is further

simplified and reduced to an integral over the region of
the crack. We recall that the quantities oijj on the surface
of the crack are determined by the values of the external
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FIG. 1. Crack in an elastically stressed medium bounded by a smooth sur-
face; o denotes the external tensile stresses.
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stresses applied to the solid, i.e., are known. The values
of u; at the edges of the cut, describing the crack-growth
dynamics, must be determined in some way from the known
guantities oy;. The solution of this rather complicated
problem in fracture mechanics has been the topic of an
exhaustive literature (see Ref, 12), which we shall not
discuss, We note, however, that uj can also he deter-
mined, in particular, by solving the integral equation ob-
tained directly from (1) as the observation point r tends
to the surface of the crack. Once the values of uj have
been determined, the fields of all the waves excited by
the crack, including surface waves, can be calculated by
direct integration of (1).

Because of the extreme difficulty of determining the
law of motion of the edges of the crack by means of the
integral equation in the general case, it may be useful in
practical calculations to let the role of uj be taken by ap-
proximate solutions based on physically obvious assump-
tions (see below) or by solutions obtained for simpler
(reference) problems,

"To make the transition from expression (1), which
is valid for time-harmonic external excitations, to the
transient time-dependent problems typical of real grow-
ing cracks, it is necessary to investigate the following
cases. Let the crack represent an initial break in continu-
ity (cut), which opens out under the action of external
stresses applied to the solid, without changing its length
{such a crack is equivalent to the model of an "instan-
taneously propagating crackr). This type of situation is
realized in practice when the stress intensity factors at
the tips of the crack do not exceed their critical values at
which the crack begins to grow.!? In this case the field
variables involved in (1) must be interpreted as the cor-
responding spectral densities Uij(r, w) and ui(r, w)., The
final result can then be obtained by means of the inverse
Fourier transform of um(r, w). A more complicated situ-
ation arises when the crack propagates at a finite rate,
because now the stresses ojj on the edgesof the cut depend
in a nondegenerate way on the time and coordinates, To
make use to Huygens' principle in this case it is necessary
to take the Fourier transform of both sides of (1) with
respect to the space coordinate measured along the cut
and then, getting rid of the corresponding coordinate on
the right-hand side of (1), to take the inverse Fourier
transform with respect to it. Clearly, this can be done
fairly simply incases where the function Gim(r, ') on
the cut passing through the cut depends only on the dif-
ference between the corresponding coordinates, for ex-
ample on the coordinates x and x', Le., Gim(x, x') =
Gim(x—x"). This'is always true for a crack in an un-
bounded space or in situations where the crack is parallel
to the free surface, Then the theorem of the convolution

spectrum can bhe used to rewrite expression (1) in the
form

Un (1, i)=%_u‘ {[n,‘“’o,ﬁ"? (o k) -'rn,(ﬂcéﬂ (@0,k)1Cim(0, k)

e [ni w7 (0, k) AP ot (0, %) 1G1mp (0, k) } ™=t dey d,

where all the information about the law governing the
motion of the tips of the crack is contained in the functions
U”(‘ (w, k) and Uij(+)(w,1{); the superscripts (=) and (+)
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refer to the lower and upper edges of the cut, respectively
(see below for more details),

We have assumed up to now that boundary conditions
are not imposed on the Green's function used in writing
Huygens' principle or that the conditions of zero stresses
on the free surface of the half-space are applied to it.
However, in a number of situations, e.g., in the case of
crack propagation in an unbounded medium, itis con-
venient to choose the Green's tensor in such a way that
a definite type of boundary condition selected on the
basis of convenience considerations will be satisfied on
a surface passing between the edges of the crack, We
illustrate the foregoing in the example of a linear normal-
fracture crack propagating in an unbounded medium sub-
jected to the action of tensile stresses Opp = o(t). Accord-
ing to the foregoing discussion, the action of the latter is
equivalent to the action of stresses —o(t) applied to the
edges of the crack (Fig. 2). Owing to the symmetry of the
problem about the x axis in the given case, it is sufficient
to investigate the field only in one half space, say the lower
We now have mixed boundary conditions on the surface
z =0 (Ref, 12):

A lz|>1 (3

lz]<l, 0.=0, |z|<eo, w,=0,
with the initial conditions U=, =u.=i,=0. In order to
apply Huygens' principle to the given problem we select
the contour S as shown in Fig. 2. Then expression (1)

acquires the form

Un(z,2) = j [—0. (2") Gz, z~z’) +C;mru.‘<xl> G:m,;,(z, ;—a:") 1dz’.
= @

Various boundary conditions at z = 0 can be imposed on
Green's function Gy, as mentioned. In particular, Gim
can be the now-familiar Green's function Ggm satisfying
the condition of zero stress on the plane surface, which

is the surface z = 0 in the given situation. Now the second
term is omitted in the integral (4). With the remaining
expression we can then determine both the law of motion
of the edges of the crack and the radiation field [we note
that the problem of determining the displacements of the
edges of the crack in the general case reduces to solving
a system of two integral equations in the given situation
as a result of the mixed boundary conditions (3) at z. = 0].
A different boundary condition at z = 0 can also be im-
posed on Green's function, Specifically, it can be required
that it satisfy the relations

0.:=0, u,=0, ‘]x[<oo_ (5)

In this case, obviously, the first term is omitted in 4)
[since the additional condition Uy = 0 for | x| <= follows
from (5)] and the radiation field can be calculated from the
known values of uy| ;- = u,’, which can be determined in
some way indirectly, for example experimentally or by
solving the system of integral equations. It is clearly
impossible to determine the displacements of the edges

of the crack by means of (4) directly in this case, because
choosing Green's function Giy, from (4) eliminates the ex-
ternal forces o acting on the surface of the crack. It may
seem at first glance that the selection of Green's function
satisfying the boundary conditions (5) would not offer any
advantages in the calculations. However, this is not the
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FIG. 2. Linear normal-fracture crack in an unbounded elastic medium.

case. The investigated Green's function, as expected, is
far simpler (see below) than the function satis{ying the
Iree-surface conditions. The price that must be paid for
this simplification is that the problem of determining the
displacements u‘fé of the edges of the crack in this case
must be solved in isolation from the radiation problem.
We note that the method of calculating the sound radia-
tion from a crack on the basis of specification of the law
governing the motion of its edges was evidently first pro-
posed in Ref, 9 (see also Ref. 1), a large part of which is
devoted to testing the efficiency of the method by numeri-
cal experiment. Theformalism proposed above therefore
enables us to explain the signiﬁoance of the correspond-
ing integral expressions in Ref. 9, which are derived as
a direct result of solving the restated (with allowance for
the specification of u}) boundary-value problem.

After the foregoing general cousiderations, we now
discuss the fundamental properties of the radiation from
the investigated simple crack (see Fig. 2) in more de-
tail, using the Green's function Gjp, satisfying the boundary
conditions (5) for the analysis. Bearing in mind the pos-
sibility of describing a propagating crack, we proceed from
the Fourier-transformed expression (4), which is con-
veuniently written as follows in the given situation:

{7 .
Un (2, 2,8) = —j j 2.2(0, k) g (2, 0, k) €= do dk, (6)
2n )

— o

where the quantity g.m(z, @, k) =c,.uGim, » ~Obviously describes
the response of an elastic half-space with the boundary
conditions (5) to a unit delta-type displacement of the sur-
face points in the direction of the normal. The function
gzm, which has the significance of the renormalized
Green's function, can be calculated from the known Gymp
by passing to the limft z» — 0. In the given situation,
however, it is simpler to find it directly by solving the
corresponding boundary-value problem. In the case of
isotropic solids it is convenient to work with the L.amé
potentials ¢ and ¢, which are related to the component ux
and uy by the equations '

=09/ 0z—p/dz, u.,=d¢p/dz+0y/0z, (7)

and to transform from (6) to the expression

.z, z )= —1—j J‘ u. (@, k) Lon (2, ©, k) e do di. (8)
2n y
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Here the index n takes the values 1 and 2, where @, = ¢,
&, =1, and I;pdenotes the Green's function for the po-
lentials, which is related to gy by Igs. (7). The potentials
¢ and ¥ in this case must satisfy the wave equations

d*q d9*¢ 1 J*@

PR A ]

da® dzF e O (9)
9 0 4 G

&,z-r:)_z S F 2
Z dz ¢t vl

where c=[(A+2n)/p}” and ¢,=(u/p)” are the longitudinal
and transverse wave velocities, and also the boundary con-
ditions atz = 0

0=0, u,=6(x—z")6(t—1’). (10)
We note that the investigated two-dimensional problem
is valid not only when the fields are independent of the
third cooxrdinate y (planar deformed state), but also in
the case of thin plates (planar siressed state).!?*!" In the
latter case relations (7) and Egs. (9) remain valid, but
now ¢ and ct must be interpreted as the limiting velocity
of the lowest symmetrical Lamb mode c=[(A+2p)/p]"-
(1—2v) "/ (1—v) and the velocity of the lowest SH-mode
co=(uw/p)"™, respectively, where v is the Poisson ratio
for the medium. The displacement uy in this caseis rela-
ted tou,anduybythe equation u,=~[vd/2(1—v)] itz « Tt 5,
where d is the thickness of the plate., Applying the stan-

* dard Fourier transform procedure to (8) and {10}, we can

readily ‘'show that the expressions for 'y, and I',, have the
form :

[0))
2/t — —
ctz 2 . l/7
FZ!<Zim7k)= s s = e\pi<*——k“) Z,
© )/7 2 Clz
—— — I/Z
Cy ¢t
(i1
2k w? \ e
Ta(z,0,k) =i— e}:pi(——z——~lcz} z.
® ¢

o

We now consider various regimes of growth of the
investigated crack, which obviously are completely de-
scribed by specification of the function uoz_. In the special
case of instantaneous opening of a crack with tip coordi-
nates / and — under the action of uniform tensile stresses

o(t) = oh(t), where h(t) is the Heaviside step function, it is

convenient to use the following simple approximation of
the function ul(x, t) (Ref. 9):

u (1), |zt<l,

0, lz>1,

. (2, 1) =‘{

where u)(t) tadkes the values st for 0<t<2{/c, and s2l/e,

for ¢>2l/c;; s =o/pc. The given approximation has a simple
physical significance: The rate of opening of the crack is
determined as the result of dividing the tensile siress ¢ by
the wavé resistance pcy of the medium to normal pressure.
The crack opens up at this rate to the level 2sl/c; corre~
sponding to the steady state (Westergaard s solution),

The ellipticity of the crack opening is disregarded in the
given approximation, because it does not produce any
fundamental changes in the radiation field, The spectral
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density of the variable u’, is determined by means of the
expres

i
2m

u, (o, k)=

cg.,.—,
13

1
j\ u, (1) e =" dt dx
-1

and has the form

m
2 oW iy b 1
22 e M sin k&l
0 . ] 1 b i .
ut (0, 1) = e, f © K (12)

€

Substituting (12) and (11) into (8) and using the steepest-

descent method to compute the integrals with respect to

k, we obtain expressions for the potentials ¢ and ¥ in the
far radiation field of the crack:

® . w o, .
o ;9,8in—1[ sin (—~Ism())
',

sl ¢y
0 (R,0,1) = —; —
o (f V=img B 0 o, 2 ysing
c; o

o 4, i R—ial
__._'_¢> ¢ ! do,

— R
\ C[
; - i sinﬂl sm(——lsln@\
PR, 0, 1) = — S T !
e 90 O, —1sin0
(4] ¢
(0]
Ly vy, b Riwt
R “ do (13)
k 2o
Ct

Here R and 6 are the polar coordinates of the observation
point: x =R sinf and z =R cosf. An analysis of the inte-
" grands in (13) shows that the radiation directivity pattern
of longitudinal waves (the potential ¢) for the spectral
component with frequency w has a maximum at 6 = 0° and
the width of the major lobe is determined by the formula
Af = 2 arcsin(weg/wl). For example, for 2/ = 1 mm and
_a frequency of 3 MHz we have A0 ~ 100°, For w l/?TCZ «< 1
the directivity pattern no longer depends on w or [ and is
determined by the factor 2(c{?/c;?) sin?6—1. The trans-
verse-wave directivity pattern has a zero minimum at
6 = 0°, as is physically obvious, and for this reason it
has two major lobes, the total width of which is deter-
mined by the e\'presswn Af = 2 arcsin(rey/wl). To trans-
form from the potentials ¢ and i to the displacements up
and ug it is necessary to apply the relations w,~d¢p/oR
and u,~—3d@/dR, which are valid in the far zone. As a
result, the expressions for up and ug differ from (13) only
in the presence of iw/c; and iw/cy in the integrands. We
" now tender several remarks concerning the temporal
waveform of the signal received in the far zone, Unfor-
tunately, the integrals with respect to w in (13) are too
cumbersome to be evaluated by analytical methods. How-
ever, these integrals usually do not have to be computed
along the entire frequency axis, because the acoustic-
emission signals from cracks are recorded mainly by
narrowband receivers, which cut a narrow spectrum of
frequencies out of the received signal. But if we assume
that the receiver is a wideband instrument, we can an-
alyze the distortion of the original waveform of the signal
u@L( t) gualitatively. In particular, it is seen at once that
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the factor '(u)/c; a‘R1"/2 describes the high-frequency
attenuation of the signal as a result of cylindrical diver-
gence, and the factors of the form sin [(w/c, )Isin0]/{(w/cy )
Isin 6 describe the additional spreading of
in the lateral directions.

the waveform

We next consider the case of a propagating crack
whose tips move with constant velocities vy and v, in a
time interval 0 = t= T, The function u)(x, t)in this case
can be approximated by the relation®

u,’(2), vit<z<uvt;
we(z 0= {
‘ 0, a<—uvi; z>vt
°(t) { s{vitv)t/e, O<I<T;
St (t)=
1 s(vitv,) T/ey, t>T;

its spectrum is given by the expression

1 oo vyl ) .
w0, 1) = - j j w0 (8) e dt do.
I

gy

The integration of this expression in general form yields
an extremely cumbersome result, It is therefore more
practical to analyze a few important special cases, We
first discuss the symmetrical, unlimited (T — =) prop-

agation of a crack with velocities v, = v, = v, In this
case '
4se @\
. Oy
(@, ) ine et kv (14)

Substituting expression (14) into (8) with allowance for
(11) and applying the steepest-descent method, we obtain
the following expressions for the potentials ¢ and ¢ in the
radiation far field:

22 1‘ v, =
(P(R167t):_ TTQC’I S I (sz_\_ 8—1)
} o 3 i —C“’l— R—io!
x ( [ ———(0—— & aw,
' — A
¢
2wt ¢ 1 »?
IR 0—
P(R,0,1) g, M =5 ( sin 1)

(15)

v, 1—[(—0—— R—iowt
) e ! da.

7

55y o

. 27
X sin20| — .
35

. — R
Cy

It is inferred at once from (15) that the potentials ¢ and ¢
are proportional to v? for small values of v and the di-
rectivity of the radiation is very weak., With an increase
in v the directivity patterns become sharper in the normal
direction. As in the case of instantaneous opening of a
crack, longitudinal waves have the maximum intensity at
6 = 0°, and transverse waves are not radiated in this
direction. An interesting feature typical of a propagating
crack is the fact that the function uZO(w, k) contains poles
at k = £w/v, which must be taken into account formally in
computing the integrals (8) for contour integrals on the
complex plane of k., It is readily shown, however, that
the contribution of the poles describes static fields local~
ized near the tips of the propagating crack, since the
crack propagation velocity v cannot he greater than the
Rayleigh wave velocity (or the velocity of a wave that
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is analogous to a Rayleigh wave and that propagates along
the edge of a thin plate).!? If we make the formal assump-
tion that the velocity v can be greater than cj or ¢y, the
static fields will be converted into radiation dnalogous

to Cerenkov radiation. Inasmuch as such a possibility

is purely speculative, we shall not consider it in detail.

4

We now turn to the case of
unlimited (T — «) propagation of a crack with velocities
vi=0and v, = u. In this case u,"(w, k)=s{2(w/kv)-1] /
2nikive, (1—w/kv)*(w/kv)*  and, as is readily verified, the
expressions for the potentials ¢ and ¢ acquire the form

asymmeltrical (unilateral)

1 (EZ—-—Z-)—SID@)

sv? > c &
(70,4 ’;‘rb'zc S W v l 2 (2 _C_’__Sm29__ i)
Rl . (——sin@——i) ¢
¢y
‘ 2mti 1, i - R-iw?
_ ; dw,
x( = ) g @
—
¢
. 2 — —5ind
; svr ¢ 1 ( e / :
P(R,0,t) = — e S - . — sin 20

An analysis of the derived expressions shows that the
longitudinal —wave directivity patterns in the given case
are asymmetrical about the z axis, deviating in the direc-
tion of movement of the crack.

Finally, we look briefly at the case of limited crack
propagation. We assume here that vy =V, = v and that the
time T satisfies the condition kvT <« 1, which implies that
the size of the jump made by the crack is much smaller
than the wavelength in the investigated part of the radiation
spectrum. . The constraints imposed on the law governing
the motion of the crack are not of a fundamental nature and
serve merely to simplify the calculations. Itis readily
verified that the expression for uzo(w, k) takes the form

i2sv? 7= 2 27

weta b= [(1 e (E”Z;) s em}‘ (16)
It follows from (16) that the quantity does not depend on

k in the given approximation, and so the radiation direc-
tivity patterns are determined only by the properties of
Green's function I'yy, in expression (8). This fact is fully
obvious insofar as the crack is equivalent to a point source
for kvT « 1, Itis also instructive to discuss the situation

in which the crack experiences a symmetrical jump-type
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growth, not from zero, but from a certain initial state,
which we characterize by the positions of the tips x = %/,
(the second and subscquent stages of intermitient growth
of the crack). It is readily verified that the function
uzo(m, k) for this case can he represenied as follows for
small jumps, i.e., for kvl « 1:

L w, /)—-((,‘ (o, /(/7 !«, (o, i) (17

Here il( w, k) is a quantity analogous to the corresponding
funcLon Ior an instantaneously opening crack of length 2]
{see expression (12)] and differing from it only in the re-
placement of the factor 7% in ( 12) by I;vT and of the quantily
wl/cy by wvT/cj. The function u,'(w, ) represents nothing
more than expression (16) multiplied by coskil,. Thus, it
follows from (17) that the radiation from the crack in the
given situation can be represented by the superposition of
the radiations from an instantaneously opening crack of
length 27;, but with a somewhat modified law governing the
displacement of the edges {the quantity  in the temporal
spectrum ﬁzo(w) is replaced by vT], and from a crack
growing from zero and emitting radiation with a direct-
ivity pattern characterized by, in contrast with (16), the
presence of the additional factorcos [(wl/c, () sin 6], which
narrows the angular spectrum. This implies that the
second and subsequent stages of intermittent growth of

the crack are accompanied by a sharpening of the direc-
tivity pattern of the sound waves generated by it.
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