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ffiadcatfr*m mf s*usid hgr grcw*r$mg eneeks
V. V. Krylov

It is well known that the folmation and growtli of
cracks are accompanied by the radiation of acor:lstic waves
into the solid containing the crach and into the surround-
ing space; the intensity of the radiation is sometimes so
great as to be per:ceptible to the ear. 'l'he practical value
of this effect, which is one of the manilestations of acous-
tic emission,l'2 lie" mainly in two aspects: its utility in
physical experiments to study the dynamics of cracks ancl
the feasibility of predicting processes of catashophic
damage to engineering structures by means of the effect,
The latter aspect is particuiarly important insofar as the
recording instr-ument in this case responds to dynamically
active cracks, which present the greatest danger.

The existing theoretical studies of crack acoustics
ean be conditionally classified inio two g:roups. The first
group contains model-type studies, in which craclts of
arbitrary configuration are described by means of equiv-
alent three-dimensional multipole sources under various
simplifying assumptions.2-6 Tire second group includes
studies characterized by the rigorous forrnulation of a
boundary-value problern for cracks of simple geomehrv
(e.g., semiinfinite linear cracks) and its subsequent solu-
tion with the recruitment of ponderous mathematical meth-
ods, in particular the Wiener-Hopf method.?-l1 T'he ob-
jective of the present study, which is rnore closely allied
with the second group, is to clevelop a sufficienily genera-l
andr.at the same time, rigorous approach based on Huy-
genst principle for anal5rzilg dre radialion of sound by
cracks of arbilrary configuration (including finite cracks)
ald to discuss some specific results obtained by application
of the method.

Let a growing crack L be situated in tire inierior of
an elastically stressed solid boundecl by a smooth surface.
For definileness we consider the surface to be plane (Fig.
1). The boundary conditions of zero normal stresses must
be satisfied at the edges of the crack and on ihe free sur-
face of the soiid in this case. We adopt zero-valued initial
conditions, It is more convenient to represent the basic
problem of the crack in an elastically sf,ressed mediuln
as the superposition of fwo problems (this can be done in
the Iinear formulation): 1) the problem of the stressed
solid without the crack, u'hieh is of no interest in the given
case; 2) the problem of a crack with nonzero norma-l
sfresses nioij = -nioii0 apptied to its edges in the absence
of other sfress souices,l2 Flere the quanrities o!. represeni.
the stresses of the first problem, caLculated at t?e site
of the crack {the net stresses, or the sfresses acting on
ihe edges of the crack in the basic problem, are eogal to
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zero in this case, as requir-eri). We shall be conce::necl
with the second probiem.

The,ensuing considerations are based on lluygensr
principle for solid eiasiic media.13 Applying it to the given
problem (we tre at bhe two*dimensionaL case), we choose e

closed contour S r-unning along the surface z = 0 around a
cut denoting the possible path of crack propagation (this
path is assumed to be knorvnlz) and ciosed by a semicircle
of infinite raciius. Then the corresponding rnatbematical
representation of lluygenst principle for tirne-harmonic
fieids, being the analog of the first llelmho1tz integral
formutra, takes the lorm

a-(r):J [riooG'.(", r')-ntctinpt(r')C,-,0(r,r')]dS, (1)

rvhere the pointr lies insicle the contour S, ui is the dis-
placement vector, ni is the ouivard unit no::mal to the
contour, Gim(r, rt) is the Cynamic Greents tensor, whicir
satisfies the equation c,:r,Gw.,oipo'C;-:-6;-d (r-r') and the
conditions at infinity, cli;3 denctes the elastic consiants,
and Gn,e:dG,,,,/0r0. The integral over the infinite semi-
eircle vanishe s because of the radialion conc,litions,l3 and
so the inlegration in (1) is actually carried out only along
the edges of the cut passing through the crack and a,lorg
the boundary of the half-space. We note, in adclition, that
the first term in (1) vanishes in integration along.tire free
surface owing to the boundary conditions on the surface
z = 0. But if the boundary condition of zero sbresses on
the boundary is imposed on Greenls function n. 1r rr1
i. e., if Grce nr s t" n"o."tli',,1; ffi- r;;;;';,;";(T:;'] ;."
introduced (see, e.g., Ref. 14), expression (1) is lurther
simplified and reduced io an integral over the region of
the crack. We recall that the cluantities oi3 on the surface
of the crack are deternined by the vaLres bf the external

FiG. 1. Crack in an

face; s denotes the
elastically stressed medium bcunded by a smooth sur-

external tensile stresses.
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stlesses applied to flrc solid, i.e., are knorvn. .l,he va.lues
of lr; at tho edges o1 ilte cut, r]esc::ibing.lhe cracir_grori,th
dtrn,,t,r'tt"", must br: cr.ctclnrinecl in sor,e rvay fro.m {.he }inol,,,n
rluantiiies oii. 'fhe solution of this rather complicaLer)
pl.orrle|n tn lracture mechanics has been flre topic ol an
exhaustive literahrre (see Ref. 12), which rve shall not
tliscu.ss. We note, holever, that r-ri can also be deter_
mined, in particular, by solving the integral equation ob-
talncd directly from (1) as the observation point r tends
to the surface of the c::acl<. Once the vaiues of ui have
becn rlctermined, rlre fielcls of all the waves exciied by
the cracl<, incluciing surface waves, can be cal.culated by
clirect integration of (1).

Because of Ure e.xh:eme difficulty of cletermining the
larv of nrotion of the edges of the cracl< by means of the
integral equation in the gene::al case, it nray be useful in
practical celctiiations to let the role o{ ui be tal<en by ap_
plo-ximate solutions based on physically obvious assump_
tions (see belotv) or by solutions obtained for sinrpler
(reference) problems.

To nral<e lhe lransition lrom ex?ression (1), which
is va-lid for time-harmonic external e.xcitations, to the
fransient time-dependent problems lqpical of real grow*
ing cracks, it is necessary to investigate the following
cases. Let Ure cracl< represent an initial break in continu*
ity (cut), rvhich opens out uncler the action of external
stresses applied to lhe soiid, without cbanging its length
(Such a crack is equivalent to the moclel of an rinstan_
taneouslypropagating craclin ). This tlpe of situation is
realized in practice wlien the sfress intensity factors at
&e tips of the crack clo not exceecl their critical va-lues at
which the crack begins to grow.lz In this case ilre fielrl
',rariables involvecl in {1) must be interpreted as the.cor_
responding specfral densities oi3(r, o) and ui(r, c"r). The
final result can then be obtained"by means of the inverse
Fourier transform of u6(r, a,). A more complicated sifu_
ation arises u.hen the cracl< propagates at a fi nite rate,
because now the sfres
i n a no n d e ge n e r a re * j; ? T 

"" 
; ff ;*i:: :: jl; r,'. of."' o

malte use to iiuygensr principle in this case it is necessary
to ialre ihe Fourier transform of both sides of (1) with
respect to the space coordinate measured along the cut
and then, getting rid of the corresponding coordinate on
the right-hand side of (1), to take the invlrse Fourier
transform with respect to it. CIearly, this can be done
fairly simply incases where the function Gip(r, rr) on
lhe cut passing through the cut depenris only on the dif_
lcrence between the correspontiing coorclinzrtes, for e:<-
alrple on tl-re coordinates x and xr, i.e., Giry1(x, xr) =Ciry,(x--xt1. This is alv.'ays true for a cracli in an un_
I:ounded space or in sihrations where the cracl< is parallel
!o the lree surlace" Then flre theorem of the convolution
sp€chum can be used to re,lvrite er?ression (1) in the
lorrn

4:-
u^(r, i):;J 

J tt"1-,",1-l 1ar t ;+zj+,o,1*, (r, h)lG,^(a,h)

(2)

-",,n, Ir,,t-'u,t]lr, ,rl *ri ' ulo' (r, a) I Gr-r (o,, rt)] etk,-,', da d,rc,

rvhere aII the information about the law governing the
motion of the tips of .the crack is contained in the functions
n;,1- 11, , k) anrl aii(+)(c",, k); the superscripls (- ) and (+)
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refer to the lou'er a.ncl upler: eclges of the cut, respec.;ively
(se e beiow for _more rietails).

We have assunlecl up to tronr flrat boundary conditiorls
are not imposed on the Greenrs function useo. in writing
Fluygenst princi.ple or that the conditions of zero sfresses
on the free surface of ilre half*space are applied to it.
However, in a number of sifuations, e.g., in the case of
crack propagation in an unboundecl medium, it is con_
venient to choose the Greenr s tensor in such a way that
a definite fype of boundary condition selected on the
basis of convenience considerations will be satisfied on
a surface passing betrveen the edges of the crack. We
illustrate the foregoing in the exa,mple of a linear normal_
fracture crack propagating in an unbounded medium sub_
jected to the action of tensile stresses o^r,= rs(t). Accord_
ing to the foregoing discussion, ihe acHf,n"of the latter is
equivalent to tlie action of stresses -u(t) applied to the
edges of the crack (Fig. 2). Owing to the symmetry of the
problem about the x axis in flre given case, it is sufficient
to investigate the field only in one half space, sayflre lorver.
We now have mixed boundary conditions on.the surface
z=0fRef. 12):

o",":-o(t), I'l<t, o*:0, Irl<-, u,-0, Irl>J (B)

witir the initial conditions 1r,-1,:ri*:ri,:0. In order to
applv lluygens' principle to the given problem we select
Ure contour S as shown in Fig. 2, Then expression (1)
acquires the form

u^(r, z) : 
1_t-r",Al,,,^(2, 

r-x,) * ci,o,u.i(t,) G ,^,,(2, ,'-'x,) ld.z, .

' (4)

Various boundary coqditions at z = 0 can be imposecl on
Greents function Gim, as mentioned. In particular, Gisl
can be tire nolv-familiar Greenls function Gi* satisfying
the condition of zero sfress on the plane .orT*"u, *i,i"f,
is the surface z = 0 in the given sihration. Now the second
term is omitted in the integral (4). With the remaining
expression we can then determine both the law of motion
of the edges of the crack and the radiation field fwe note
that the problem of deterrnining the clisplacements of the
edges of the crack in the general case reduces to solr.,ing
a system of two inlegral bquations in the given sifuation
as a result of the mjxed bounclary conclitions (3) at z = 61.
A -different boundary condition at z = g can also be im_
posed on Greenr s function. Specifically, it can be required
that it satislv the relations

I o,=:0, u,:0, lrl<*_ (b)

In this case, obviously, tlie first term is omittecl in (4)
fsince the additional conc]ition ux = 0 for I -xl < * follows
from (5)l and the radiation fielcl can be caiculated from the
known values of usls={ = u"0, rvhich can be determined in
some way indirectly, for example e:,perimentally or by
solving tlie system of integral equations. It is clearly
impossible to &termine the displacements of the eclges
of the crack by means of (4) direcily in this case, because
choosing Green's function Gi6 from (4) eliminates the ex_
ternal forces o acting on {*re surface of the crack. It may
seem at first glance that the seiection ol Greenr s function
satisfving the boundary conclitions (b) rvould not cffer any
advantages in the caiculations. Holvever, this is not the
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l-cra
Here the index n talies the va,lues ! and Z, where e 1 = g,
6z = {, and lrndenotes the Greenrs function for the po-
lentials, whlch is related to gzm by llc1s. (?). tt'he ootenlirl"q
<p and t! in this case must satisl'y the wave equations

A'q d'q 1 a'rp-_- n
Ar'' a:' c,' i)( u'

l:rl' , r/'1rl' 1. 0!',p

A.r" At c,'AP

( 1r)

FlG. 2. Linear normal-fracture crack in an unbounded elastic medium.

case. The investigated Greenrs function, as ex1:ected, is
far simpler (see below) than the function satislying the
free-surface conditions, The price that must be paid for
this simplification is that the problem of determining the
displacements u[ ol the eilges of the crack in this case
must be solved in isolation frorn the radiation prol:lem.
We note that the method ol calculating the sound radia-
tion from a crack on the basis of specification of the law
governing the motion of its edges was evidenUy first pro-
posed in Ref. 9 (see also Ref. 1), a large part of which is
devoted to testing the eflieiency of the method by numeri-
cal experiment. Theformalismproposed above therefore
enables us to erplain the significance of the correspond-
ing integra-l erpressions in Ref. 9, which are derived as
a direct result of solving the restated (with a^llowance for
the specification of ut) boundsry-value problem.

Afier'the foregoing generaJ considerations, we now
discuss the fundamenta-i properiies of the radiation from
the investigated simple crack (see Fig. 2) in nrore de-
ta.il,.using the Greents function Gip satisfying the boundary
conditions (5) for the analysis. Bearing in mind the pos-
sibility of describing a propagating eracii, we proceed from
the Fourier-transformed egtression (4), r'liich is con*
veniently v'ritten as follows in the given sitration;

L f f
u^(2,2, t):-l I u,'(,,r, k)5"^G,a,k)e't"-t'tdadk, (6)

ZnJ J

where the quantity E,-(2, u, k) :c""61G6,0 obviously describes
the response of an elastic half-space with the boundziry
conditions (5) tp a unit delta-type displacement of the sur-
face points in the direction of the normal, The function
gr-, which has the significance of the renormalized
Greenrs function, can be calculated from tl-ie known G76
by passing to the limlt zt - 0. In the Eliven siluation,
however, it is simpler to find it directly by solving the
comesponding boundary-value problem, In tire case of
isofropic solids it is convenient to work with the Lam6
potentials (p aod {), which are relafed to the component u1
and us by the equations

u":0q/As-6*/02, u,:Arp/0210fi/0a, (7)

ancl to lransform lrom (6) 10 the elTrression

4 ^^
Q,(qz t)::[ | ul(a;, k)f""(z,a,h)e'*-i"drorllt. (B)

rvhere c,: [(i'+zp) /pj'i' and c,:1p lp)"' aye the longitudinaL
and transverse lvave velocities, and also the bounda::y con-
ditiorrs al"z-0

o,,:0, u.":fj(r-r')b(t-t'). (10)

We note that tire investigated bwo-dimensional problem
is valid not only when the iields are independent of the
third coorclinate y (planar defornerl state), but also in
the case of lhin pl:rfes (planar stressed stalei.12'l '' tn Oru

latfer case relations (?) and Jiqs. (g) remain valid, ]:ut
now cl and c1 rnust l-re inlerp::eted as the iimiting velocity
of the lowest symmetrical Lamb mode cr:I Q,+Zp")lp]'t"-
(1.-2"'t)'t"l(1,-r) and the velocity of the lowest SH-mode
t,:(prlp)'/'',respectively, where z is the Poisson ratio
for the mediun. The displace ment uy in this case is rela-
ted touoanduzblrtheequation u,:-ltrJ/ )(1-v)l (r", "*u". "),
where d is the thichness of tire plate. Applying the stan-

'dard Fourier translorm proceciure to (9) and (10), we can
readily shor.v ttrat the e:'pressions for l' and l' have the
form

I,t(2, a, k): i

.-z
tt,z s

Cr" ra' r'/'e.xpii ^-ft'I z,
\Cr. I

i11)

r,,(:. c,r. t;) : t Zti 
r*p i(9]- r,)'" r.

+ 
\c'l' t

We now considet various rcgimes of growth of the
investigated crack, which obvioustry are completeiy de-
scribed by specifi.cation of the function u[. tn the special
case of instantaneous opening ol a crack v;ith tip coordi-
nates I and -l under the action of uniform tensile stresses
o(t) = ofoi1;, i"here h{t) i s the He avi side step function, it is
convenient to use the loliorving simple approximation of
the function u[(x, t) {Ref. 9):

t u,o (t) ' Irl<1,
" o/- +):le' \&'s/ [ o, l"rl>i'

where u[it1 tahes the values st for 0(r€2Llc, and s2t/c1

fot: 1>!l/gt s:o/pct. 'fire given approximation has a simple
physicatr significance: The rate of opening of the crack js
determined as the result of clividing the tensile si:ress o by
the wavd resjstance pcJ of the rnedium to no::rna-l pressurc.
The crack opens up at tl.ris rate to the ievel 2sl/e7 corre-
sponding to the steady state (Westergaard's soiution)"
The ellipticity of the crack opening is disregarded in the
given approximation, because it does not produce any
fundamental changes in 1*re radialion fiei.d. The spectrC

/ tj" \ '/, r,rt| 
--1, 

i\ c,' / c,'
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Censitv ol lie varial:ie u[, is cleternrined by rneans ol the
e,'llre ssi0n

) aI

u,o(ro, ft): ^ | | u,o(t)eiut-iL' dt dx
'Lrt r J

0 _l

and has the form

tire lactor {(u/ cy,1\R)'t/2 clesc::ibes the hlgh-frequency
attenuation of the signai as a result of cvli.ndrica,l diver-
Efence, ancl the factors of the form sin [(o:/,:1,,)1sin0l 1ftolc,.,1.
I sin 0 descrilte tire additional spreading of the vraveform
in the lateral directions.

We next con.sider the cese of a propagating crack
whose tips move with constant velocities v. and v, in A

tirne.interval 0 s t s T. The function u[(x, 0 in this case
can be approximated by the relationr

its specfrum is given by the expression

t @ql

u,'(oi, /c)- j J J 
a,'(r)e'"'-ik dt dr.

. 0 -D,l

The integration of this expression in general form yields
an extremely cumber'sorne result. It is therefore more
practical to analyze a ferv impr:rtant special cases. We
first discuss the symmefrical, unlimited (T * @) prop-

:13:t* 
of a crach with velocities v1 = Vz = v. In this

u,"(a,k):-!!-[t-(#)'] ' 
(14)

Subsiituting erpression (14) into {8) rvith a^llorvance for
(11) and applying the steepest-descent method, rve obtain
the following e;'pressions for the potentials qa anci 0 in ihe
radiation far field: '

r",,: T 4 ,' ,,! \-:
rc{r9.0. 1):- -: \ --{-sin20-11

,Jl'tt J (D" \ c/- /

u :..t2
tr," (0), / )

JI (r)C7

--. / I) A +\lir lirr u, r t 
-.........i-'L 

| /

.I:
rl' (/1, F). r) : I'n-ft

(r)
* ;'a7 sin 

- 
1

l'("t tI
.16)0i,

-Icl

'- 
1 sin t)

ct

i -9J- p-i61
e Q|.1D1

i -'i t s;n -1- /,t (t srn/,1
,- --n-' (12)

_l
t1

Substituting (12) and (11) into (8) and using the steepest-
dr:scent rnethod to compute the integrais with respect to
k, we obtain ex?ressions for the potentials g and i/ in the
far radiatlon field of the cracl<:

,in (9rr;ns)

, (::-sin,o-r)/- :..i 
1't''\-F'""',-"( _u )

sirill .in (''l7r;og)
); {'i -

-L
ill.ino
t7

, '' dttt. (13)

C1

/ 2ri \t/
.t sinf{) i-----l

io., I\ -/{ /
' fi

Here R and 0 are ihe polar coorclinates of the observation
point: x = R sinO and z = R cos0. An analysis of the inte-
lpands in (13) shows tirat the radiation directivify pattern
oI longitudinal vraves (the potential. rp) for the specfral
component with frequency o has a maximum at 6 = 6" *n6
the rvidth of the major Iobe is determined bv the formula
LO = 2 arc sin {rc1/ ."lt). For example, fo'r 2l = 1 mm and
a frequency of 3 X{Hz we have AO = l[9.. Tor u l/rct << t
the directivjty pattern no longer depends on cd oT I and is
determinecl by the faclor zkt2/ct\ sin2 0-1. The trans-
verse-wave directivity patteln has a zero mininum at
0 = 0', as is physically obvious, and for this reason it
has tvu'o rnajor iobes, ihe total width of which is deter-
mined by the e;'pression A0 = 2 ar,csin (trct/rll). To trans-
form from the poleritials f rnd {, to the cljsplacements ug
and ug it is necessaly to applv the rela.tions un=i)q/All
&flnd lru:*iq/0R' , which a.r'e va-lid in the l'ar zone. As a
result, the e-rpressions for uR and u6 differ from (13) only
in the p::esence of iu/ cy and iut/ c1. in the integrands. We
norv tender severa-l remarks concerning the temporal
wavelorm of the signal receivecl in the far zone, Unfor*
tunafely, the integrals with respect to co in (13) are too
eumbersorre to be evaluated by anal.ytical methods. How-
ever, these integra-ls usually do not have to be compuied
a-long the entire frequency a-\is, because the acoustic-
emission signals frorn cracks are recorded mainly by
narrorvband receivers, which cut a narrow spectrum of
frerquencies out of the receivecl signal. But if we assllme
that the receiver is a wideband instrument, rve can an-
aJyze the cjistortion of the original waveform of the signal
u[(t) qualitatively" In particular, it is seen at once t]rat

2ni
toR
ct

2c.l d t r 12 \-l1l'(n,0,1):- -; \ -"-{ " sin:0- 1l' 1i-c7 _J_ tti" \ c1'

/ 2ni \"' '+ o-'"''.' (15)\sin10 l- ." | , ' dc,.r.

I 6r-l
\ 

-rr 
r' 

.tr
It is inferrecl at once from (1"5) that the polentials p and {i
are proportiona-l to v2 for small values of v and the di-
rectivity of the radiation is very weak. With an increase
in v the directivitv patterns become sharper in the normal
direction. As in the case ol instantaneous openi.ng of a
crach, longitudinal waves have the maximum intensity at
0 = 0', and transverse waves a-re not radiated in this
direction. An interesting feature tSrpical of a propagating
crack is the fact that the function u"o(cr, k) contains poles
u1y = + a/ v , \uhich must be taken into account formally in
computing the integrals {8) for contour integ-rals on the
complex plane of k. It is readily shown, however, that
the contribution of the poles deseribes static fieids local-
ized near the tips of t}le propagatlng crack, since the
crach propagation velocity v cannot be greater than the
Rayleigh wave velocity (or the velocity of a wave that

/ ^2 \ /
x12:+sin'o -1ll-\ct"\

.,,- i -9 1-161

)". 
", rrto,
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is analogous to aRayleigh u,ave and that propag;ates along
lhe edge of a thin plaie).12 If we make the fornral assump-
tion Urnt tho velocity v can be greater than c; or c1, thr:
static fields will be converted into radiation analogous
to Cerenliov radiaiion. Inasmuch as such a possibilitv
is purely speculative, we sliall not consider it in detail.

We norv l',rrn to ti're c:rse oi asyrnrnetrical (LLni.1aleral.)
unlinrited (T .* *) propagatlor: ol a craclr r','ilh veiocities
vr = 0 and v2 = u. In lhis cits€ 1i,0(6, lt):sl2(t':/l;o)-\l /
2nik'uc,{L-ialku)'{a/i;u)" and, as i.s readiiy ver:ifierj, the

expressions for the potentials E and rp acquire tlre lorm

{: --L.in o)
rp1.r/,0,r):- +- ( ju t,, ', 

"'" 
,l (z ti,i"'e- r)!!:rzct J^ td' (_Lsln0 _ 1')' \ cr' /

t ,,,t 1'r,';;-"_,j,xl_ 
-l 

c ub,\ +n,,
.r l' ^ 

(, - 
t- .ioo)

1 1ir,0,,, : - fi; j js- g'i"zo
\ n 

:tuu- r7

glowth, not from zero, but from a certain initial sta,,e,
which we characterize by the positions of tire tlps x = *ln
(the sccond and subserluent sll1.1cs of inLcrnrlilcnl grorvth
of lhe craclt). It is readily verilied that lire frrnction
uro(co, k) for this case can be rcpr.esenled as foliolvs for
smali jumps, i"e., for kvT << 1:

u,'(ar, /i):7,"(o, l,:)irt,"(r,,, i,) (t?l

I'lere [zt](r',J, li) is a quantity analogous to tire corresponcling
lunction lor :Ln insiantancousiy opening crack of length 2i,
[sce cxpression {12)] ancl dilfering from it only in thc re-
placement of the factor Z2 in 1fZ)_fy lxv'l' ancl ol the qurntitv
ul/qby uvT/c1. l'he function i,'(nr, /i; represents nothing
more than expression (16) multiplied by cosl</0, Thus, it
follorvs frorn (l-7) that the radiation frorn the crach in lhe
given sifu.ation can be reprcsented by the superposition oi'

the raciiations from an instantaneously opening crack of
length ZJo, br-rt rvith a somervl:at modified lar,v governing the
displacement of the edges [the quanlity I in the tcrnporal
speclrum frro1a..,) is replaeed b)' vll], and frorn a cracli
growing lrom zero and emitting racliation with a di::ec[-
ivity pattern characterized by, in confrast with (16), the
presence of the additional laciorcos [ (rololc,. ,) sil 0], rvhich
na'rro\vs tl're anguiar speclrum. 'Ihis implies that the
second and subsequent stages of inferraittent grorvth.cf
the ciack are accompaniecl by a sharpening of the clirec-
tivitypatternpfthe sound lvaves generaled by it.
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'l'ransiateci by J. S. Wood
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An analysis of the derived erpressions shows that the
,longitudinal-wave directivity patterns in the given case
are asymmelrical about the z axis, deviating in the direc-
tion of movement of the crack.

f inally, we look briefly at the case of limited erack
propagation. We assume here that vr = vr = v and that the
time T satislies lhe condition kvT <<1, which implies that
the size of the jump made by the crack is rouch snra-ller
than the wavelength iu the investigated part of the radiation
speclTurrr. The constraints imposed on the law goveming
the motion of the crach are not of a fundamental nature and
serve merely to sirnplify the calcula'iions" It is readily
verified.that the e;'pression for uzo(t,r, k) takes the forn

,.f
. ,,- '; -3- 6-161

)" 
, "' rtry.

u,,(a,t):j?sr Iir-u,"'; e-i\- ''1 r,,,1Jlcr L \o' e'I @" J (16)

It follorvs lrom (16) that the quantity does not depend on
k in the given approximation, and so the radj.ation direc-
tivitypatterns are determined only by the properties of
Greent s function frn in expression (8). This fact is fully
obvious insofar as the crack is equivalent to a point source
for kvT << 1. It is also insfructive to discuss the sihration
in which the cracli e>rperiences a symmelTical jump-fpe
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