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Abstract 
Assessment of the energy release rate (ERR) of layered material structures with account for 

dynamic and vibration effects is important for understanding and predicting fracture behavior 

in various engineering applications. In this work, the pure-mode-I interfacial fracture 

behavior of a symmetric double cantilever beam (DCB) under constant-rate opening 

displacement is studied using a dynamics and vibration analysis of Euler-Bernoulli beams, 

and the ERR is derived. Furthermore, a ‘dynamic factor’ that quantifies the dynamic effect in 

relation to the static component of ERR is defined. The resulting expressions are relatively 

short, mathematically elegant and convenient-to-use by engineers and researchers, which 

increases their usefulness. It is found that the dynamic factor is a function of the characteristic 

time only, and that this is an intrinsic property of DCB structures. An approximate method is 

also proposed to predict the crack extension. Predictions of ERR and crack extension are in 

good agreement with results from numerical results with finite-element method (FEM) 

simulations. Using only the first vibration mode is sufficient to capture the amplitude and 

frequency of ERR variation predicted by the FEM. Using higher-order vibration modes 

causes divergence in the amplitude of ERR oscillation; this is due to the limitation of Euler-

Bernoulli beams in vibration analysis. 

Keywords: beam dynamics; energy release rate; double cantilever beam; dynamic factor; 

vibration 
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Nomenclature 
A   Area of cross-section of beam 

0A   Crack area 
b   Width of beam 
E   Young’s modulus 
( )F x   Shifting function 

dynf   dynamic factor 
G   Energy release rate 

staG , dynG   Static and dynamic components of energy release rate 

cG   Fracture toughness 
h   Thickness of beam 
I   Second moment of area of beam 
K   Kinetic energy 
L   Length of beam 
t   Time 
U   Strain energy 
v   Applied constant loading rate 
( ),w x t , ( )fv ,w x t  Total transverse deflection; transverse deflection for free vibration 

( )iW x    Normal mode 

extW   Work done by external force 
Γ   Energy dissipated to increase crack area 
( )0iη , ( )0iη&   ith modal displacement and velocity 

ρ   Density 
τ   Characteristic time 
( )i xφ   ith mode shape function 

ω   Angular frequency 
 
Abbreviations 
DCB  Double cantilever beam 
ERR  Energy release rate 
FEM  Finite-element method 
VCCT  Virtual crack closure technique 

1. Introduction 

Composite materials have been increasingly applied over the past few decades for their 

superior properties over their metallic counterparts. One of the challenges with composite 

laminates is their propensity for interfacial delamination when subjected to various in-service 

conditions, including both quasi-static and dynamic loads. The former condition has received 

significant research attention. Dynamic fracture has, however, was considerably less studied, 

and is far more complicated. 
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Under transient or varying external loads, the dynamic effect can become significant due 

to inertial and strain-rate effects. Conventionally, dynamic fracture is studied using 

elastodynamics, which considers the stress-wave propagation and stress superposition, or by 

using energy methods, which include applying a ‘crack-tip energy flux integral’ [1]. For an 

engineering composite structure, however, there seem to be few applicable analytical 

solutions for energy release rate (ERR) or stress intensity factor, which include dynamic 

effects. 

The double cantilever beam (DCB) is considered to be a fundamental structure for the 

study of fracture behavior in layered structures. DCBs have been used on several occasions to 

study loading-rate effects with constant loading rates and to generate a fundamental 

understanding of dynamic fracture behavior. Smiley and Pipes [2] proposed a ‘crack-opening 

displacement rate’ and used this parameter to calculate the kinetic energy of a DCB. They 

then derived the ERR of a stationary crack and the initiation fracture toughness by assuming 

the same deflection as for a static beam. Blackman et al. [3] derived the ERR for a steady-

state propagating crack based on the same approach. There were also experimental studies 

[4][5] using Smiley and Pipes’ method. This method as well as Blackman et al.’s, however, 

provides a ‘smoothed’ ERR as a quadratic function with respect to time, without considering 

the beam vibration that leads to the oscillating ERR shown by experiments [6] and by 

numerical simulations [7]. Vibration may be one of the reasons why experiments used to 

measure initiation fracture toughness disagree on loading-rate effects [8]. Abdelmoula and 

Debruyne [9] investigated dynamic crack growth and arrest in a bimaterial DCB, using Euler-

Bernoulli beams. Their theoretical model, which must be solved numerically, agrees well 

with the finite-element method (FEM). 

In this work, the ERR of a symmetric DCB under constant-rate opening displacement is 

derived using a dynamics and vibration analysis of Euler-Bernoulli beams; a dynamic factor 

to quantify the dynamic effects is defined; and an approximate method is proposed to predict 

the crack extension. To the authors’ knowledge, this is achieved for the first time, and the 

resulting expressions are relatively short, mathematically-elegant and convenient-to-use by 

engineers and researchers. Finally, the theory is validated against FEM simulations. 

2. Theory 

Figure 1a shows a DCB in its initial undeformed condition with its geometry, and with 

equal and opposite displacements ( )0w t vt=  applied to the midplane of the free ends. The 
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crack tip is at the location annotated ‘B’. It is assumed that there is no interface contact in the 

crack region, that parts ① and ② of the DCB in Figure 1a are thin and approximately 

classical Euler-Bernoulli beams, that the displacement are small, and that no longitudinal 

forces are developed. It should be noted that Euler-Bernoulli beams are inaccurate in 

predicting the dynamic response due to higher-order vibration modes because the phase speed 

increases indefinitely with increasing wave numbers [10]. Labuschagne et al. [11] proved that 

the eigenvalues predicted by Euler-Bernoulli theory deviate from the 2D-elastic solution very 

quickly with increasing mode number, and concluded that only the first two vibration modes 

are acceptable. In fact, for their cantilever beam configuration, they showed that the error of 

the second vibration mode with respect to the 2D-elastic solution is 10.5%, but the first mode 

is accurate. Therefore, in this study, only the first vibration mode is considered, and this is 

verified as accurate in determining ERR using FEM simulation results. 

a) 

 

b) 

 

Figure 1: (a) Symmetric double cantilever beam; (b) effective boundary conditions on beam 

section ① 

Under the stated assumptions, beam section ①, which represents the top thin layer of the 

symmetric DCB, can be considered in isolation with the effective boundary conditions shown 

in Figure 1b. The origin of the x coordinate is at the crack tip, and positive towards to the 

right. L  is variable to allow crack propagation. These effective boundary conditions are in 

accordance with conventional methods to determine the ERR of a symmetric DCB [12]. 

To determine the ERR of the DCB shown in Figure 1a, consider the conservation of 

energy for an elastic structure with a crack area of 0A  [12], which is  

 ext ,W U K= + +Γ& & & &  (1) 

where extW&  is the instantaneous power of the external forces; U& and K& are the changing rates 

of strain energy and kinetic energy respectively; and Γ& is the rate of energy dissipation due 
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to the increasing crack area. Based on this energy balance, and since 

0 0 0 0t A t A A A∂ ∂ = ∂ ∂ ⋅∂ ∂ = ⋅∂ ∂& , the ERR can be written as 

 ext

0 0 0 0

.W U KG
A A A A

∂∂Γ ∂ ∂
= = − −
∂ ∂ ∂ ∂

 (2) 

2.1. Dynamic transverse response of thin beam 

Since the applied constant-rate displacement has a finite number of linearly-independent 

derivatives, the dynamic transverse response (deflection) of beam in Figure 1b can be derived 

by introducing a shifting function and enforcing homogeneous conditions [13]. For constant-

rate displacement, ( )0w t vt= , the transverse deflection of the beam is of the form 

 ( ) ( ) ( )fv, , ,w x t w x t F x vt= +  (3) 

where ( )fv ,w x t  represents the free vibration of the beam and ( )F x  is the shifting function. 

The governing equation for vibration of Euler-Bernoulli beams [14][15] under plane-stress 

conditions (in the xz plane) is 

 ( ) ( ) ( )4 , , 0.EIw x t Aw x tρ+ =&&  (4) 

For plane-strain beams, E  must be replaced with ( )21E ν− . By combining Eqs. (3) and (4), 

and forcing homogeneous conditions, the following differential equations are obtained: 

 ( ) ( ) ( )4
fv fv, , 0 ,EIw x t Aw x tρ+ =&&  (5) 

 ( ) ( )4 0.F x =  (6) 

The boundary conditions for ( ),w x t  are ( )0, 0w t = , ( ) ( )1 0, 0w t = , ( ),w L t vt= , and 

( ) ( )2 , 0w L t = . By using these boundary conditions for ( ),w x t  in Eq. (3), and forcing 

homogeneous conditions, the boundary condition for the free-vibration component ( )fv ,w x t  

and the shifting function ( )F x  are obtained. 

For the free-vibration component ( )fv ,w x t , the boundary conditions are ( )fv 0, 0w t = , 

( ) ( )1
fv 0, 0w t = , ( )fv , 0w L t =  and ( ) ( )2

fv , 0w L t = . Note that these boundary conditions represent 

a fixed-pinned beam in free vibration. For the shifting function ( )F x , the boundary 

conditions are ( )0 0F = , ( ) ( )1 0 0F = , ( ) 1F L =  and ( ) ( )2 0F L = . 
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Beam vibration under constant-rate displacement is treated here as free vibration without 

any external force, with this vibration being solely excited by initial conditions. The initial 

conditions for free vibration ( )fv ,w x t  can be derived from the initial transverse deflection 

( ),0w x  and the initial transverse velocity ( ),0w x& . 

At 0t = , the transverse deflection is ( ),0 0w x = , and the transverse velocity is 

( ),0 0w x =& . These initial conditions give the initial conditions for the free vibration 

component as ( )fv ,0 0w x =  and ( ) ( )fv ,w x t F x v= −& . 

The free-vibration response is the linear summation of all the modal vibrations of the 

beam. It can be derived by using the separation of variables method [14][15], in the form 

 ( ) ( ) ( ) ( )
fv

1

0
, 0 cos sin .i

i i i i
i i

w x t W x t t
η

η ω ω
ω

∞

=

 
= + 

 
∑

&
 (7) 

In Eq. (7), ( )2 2
i i L EI Aω λ ρ−= , which is the angular frequency of ith modal vibration; 

( )iW x  represents the ith normal mode, which is given by ( ) ( ) ( )1 2
i iW x AL xρ φ−= , and 

( )i xφ  represents the mode shape, which is given by 

 ( ) cosh cos sinh sin .i i i i
i ix x x x x

L L L L
λ λ λ λφ σ  = − − − 

 
 (8) 

Solution of the frequency equation tan tanh 0i iλ λ− = , which is derived by using the 

boundary conditions, determines the values of the constants iλ  in Eq.(8), and then iσ  is 

given by ( ) ( )cosh cos sinh sini i i i iσ λ λ λ λ= − − . Also in Eq. (7), ( )0iη  and ( )0iη&  are ith 

modal displacements and modal velocities, respectively, which are determined from the 

initial conditions using following equations [14]: 

 ( ) ( ) ( )fv0
0 ,0 ,

L

i iAW x w x dxη ρ= ∫  (9) 

 ( ) ( ) ( )fv0
0 ,0 .

L

i iAW x w x dxη ρ= ∫& &  (10) 

The shifting function can be obtained by solving the fourth-order differential equation, 
( ) ( )4 0F x = , together with corresponding boundary conditions, which gives 

 ( ) 3 2
3 2

1 3 .
2 2

F x x x
L L

= − +  (11) 
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Note that the product of the shifting function ( )F x  and the applied constant loading rate v  is 

the same as the ‘crack opening displacement rate’ in Smiley and Pipes’ approach [2]. 

Now, combining Eqs. (7) and (11), the transverse deflection of a beam under the constant 

loading rate v  at the free end from 0t =  is obtained as 

 ( ) ( )2 2 2 2 2 3 3
3

1

3 1, sin ,
2 2

i
i i

i i

A EIw x t vL x L t L x L x vt
EI A
ρ φ λ

λ ρ

∞
− − −

=

 Λ  = + − ⋅       
∑  (12) 

where ( ) 2 21 1 1i
i i iσ σΛ = − + + − . 

2.2. Energy release rate 

The transverse deflection in Eq. (12) is now used to determine the strain energy and 

kinetic energy of the vibrating beam. This will allow the ERR, as given in Eq. (2), to be 

determined. 

2.2.1. Strain energy 

The strain energy of a beam is ( ) ( )2

0
, 2

L
U M x t dx EI= ∫ ,where ( ) ( ) ( )2, ,M x t EIw x t= , 

which is the internal bending moment. The strain energy of the vibrating beam with constant-

rate displacement at the free end is therefore 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 22 2 2 2
fv fv0

1 , 2 , .
2

L
U EIw x t EIw x t EIF x vt EIF x vt

EI
   = + +   ∫  (13) 

Let 1U , 2U  and 3U  correspond in order to each of the three terms in Eq. (13), representing 

the strain energy due to localized free vibration, the strain energy due to the coupling of 

vibration and static motion, and the strain energy due to pure static motion (in the form of the 

shifting function), respectively. 

The strain energy due to localized free vibration 1U  expands to 
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( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

22 2 2
1 30

1

2

24 2 2 2
30

1

2
21

1 13
1

21
1 13

1

4 2

1 sin
2

1 sin
2

sin

   2 sin

1 lim
2

L i
i i

i i

L i
i i

i i

n

EIU L v AEI x L t dx
EI A

EIAL v x L t dx
A

x t

x t

AL v

ρ φ λ
λ ρ

ρ φ λ
λ ρ

φ ω
λ

φ ω
λ

ρ

∞
−

=

∞
−

=

→∞

   Λ =          
   Λ =          

 Λ
 
 

Λ
+

=

∑∫

∑∫

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
3

2

2
22

2 230
2

2 22
2 23 3

32

2
2

3

sin

sin .

   2 sin sin

sin

n
j

j j
j j

L

n
j

j j
j j

n
n n

n

x t

x t dx

x t x t

x t

φ ω
λ

φ ω
λ

φ ω φ ω
λ λ

φ ω
λ

=

=

 
 
 
 Λ 
 
 
  Λ +  

  
 ΛΛ +
 
 
  Λ
+ +  

   

∑

∫

∑

K

 (14) 

Now, by applying the property of orthogonality, that is, 

( ) ( ) ( ) ( ) ( ) ( )2 2

0 0
0

L L

i j i jx x dx x x dxφ φ φ φ⋅ = ⋅ =∫ ∫  with i j≠ , Eq. (14) simplifies to 

 
2

2 2 2 2
1 2

1

1 sin .
2

i
i

i i

EIU ALv L t
A

ρ λ
λ ρ

∞
−

=

 Λ
=   

 
∑  (15) 

Eq. (15) shows that the localized free-vibration strain energy is the summation of each 

orthogonal vibration mode’s strain energy. 

Next, by expanding the strain energy term due to the coupling of local vibration and static 

motion, it is found to be zero (i.e. 2 0U = ). This shows that static motion doesn’t alter the 

local vibration of this type of structure. And then, by expanding the strain-energy term due to 

static motion of the beam, it is found to correspond to the static strain energy due to the 

applied displacement, which is 

 3 2 2
3

3 .
2

U EIL v t−=  (16) 

The total strain energy is therefore as follows: 

 
2

2 2 2 2 3 2 2
2

1

1 3sin .
2 2

i
i

i i

EIU ALv L t EIL v t
A

ρ λ
λ ρ

∞
− −

=

 Λ
= +  

 
∑  (17) 
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2.2.2. Kinetic energy 

The kinetic energy of the beam is 

 ( ) ( ) ( ) ( )2 2 2
fv fv0

1 , 2 , .
2

L
K A w x t w x t F x v F x v dxρ  = + + ∫ & &  (18) 

Note that ( )fv ,w x t&  represents the transverse velocity of the free vibration, and that ( )F x v  is 

the static motion due to the applied constant-rate displacement. In a similar way to that used 

before for strain energy, let 1K , 2K  and 3K  correspond in order to each of the three terms in 

Eq. (18), representing the kinetic energy due to localized vibration, the kinetic energy due to 

the coupling of localized vibration and static motion, and the kinetic energy due to pure static 

motion, respectively. 

The localized vibration kinetic energy 1K  expands to 

 

( )

( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2
1 fv0

2

2 2

0
1

2

1
1 1

1

1
1 1

21

2
2 2

2 2
2

2
2 2

2

1 ,
2

1 cos
2

cos

    2 cos cos

1 lim cos
2

    2 cos cos

L

L i
i i

i i

n
j

j j
j j

n

j
j j

j j

K A w x t dx

EIA v x L t dx
A

x t

x t x t

Av x t

t x t

ρ

ρ φ λ
λ ρ

φ ω
λ

φ ω φ ω
λ λ

ρ φ ω
λ

φ ω φ ω
λ λ

∞
−

=

=

→∞

=

=

  Λ =       

 Λ
 
 

ΛΛ
+

 Λ
= +  

 
ΛΛ

+

∫

∑∫

∑

&

( ) ( )

0

3

2

.

cos

L

n

n
n n

n

dx

x tφ ω
λ

 
 
 
 
 
 
 
  
 
 
 
 
 
 
  Λ
+ +  

   

∫

∑

K

 (19) 

As before, by applying the property of orthogonality, Eq. (19) simplifies to 

 
2

2 2 2 2
1 2

1

1 cos .
2

i
i

i i

EIK ALv L t
A

ρ λ
λ ρ

∞
−

=

 Λ
=   

 
∑  (20) 

By expanding the remaining terms, the kinetic energy due to the coupling of localized 

vibration and static motion is obtained as 

 
2

2 2 2
2 2

1
cos ,i

i
i i

EIK ALv L t
A

ρ λ
λ ρ

∞
−

=

 Λ
= −   

 
∑  (21) 
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and the kinetic energy due to static motion is obtained as 

 2
3

33 .
280

K ALvρ=  (22) 

Note that 3K  is the total kinetic energy used in Smiley and Pipes’ [2] and Blackman et al.’s 

[3] work. The total kinetic energy in this work, however, is as follows: 

 
2 2

2 2 2 2 2 2
2 2

1 1

1 33cos cos .
2 280

i i
i i

i ii i

EI EIK ALv L t L t
A A

ρ λ λ
λ ρ λ ρ

∞ ∞
− −

= =

    Λ Λ = − +            
∑ ∑  (23) 

2.2.3. Energy release rate 

The ERR of the DCB shown in Figure 1a (i.e. comprising two single beams in Figure 1b 

with equal and opposite displacements) is now obtained using Eq. (2) along with Eq. (17) and 

Eq. (23), which gives 

 

2
4 2 2 2 2 2

2
1

2 2 2 2 2

1

9 2 cos 1
1 ,

4 sin

i
i

i i

i i
i

EIEIL v t Av L t
A

G
b EIAEI L v t L t

A

ρ λ
λ ρ

ρ λ
ρ

∞
− −

=

∞
− −

=

   Λ
 + −       =  

  + Λ    
  

∑

∑
 (24) 

in which 2 2

1
33 140i i

i
λ

∞

=

Λ =∑ . Note that the ERR is proportional to the square of applied 

constant loading rate v . 

Since only the first vibration mode is considered in this work, the ERR becomes 

 

2
4 2 2 2 2 21

12
1

2 2 2 2 2
1 1

9 2 cos 1
1 .

4 sin

EIEIL v t Av L t
A

G
b EIAEI L v t L t

A

ρ λ
λ ρ

ρ λ
ρ

− −

− −

   Λ
 + −       =  

  + Λ    
  

 (25) 

The first term is the static component of the ERR, that is, ( )2 2 4
sta 9 /G EIv t bL= . The 

remaining terms are due to dynamic effects considering the vibration of the beam. The 

dynamic terms can be grouped together and denoted as dynG , so that sta dynG G G= + , where 

 
22

2 2 2 2 2 21
dyn 1 1 12

1

2 cos 1 2 sin .v EI EIG A L t AEI L t L t
b A A

ρ λ ρ λ
λ ρ ρ

− − −
     Λ = − + Λ               

 (26) 

A dynamic factor dynf  and a characteristic time τ  are defined as, respectively, 
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 dyn
dyn

sta

G
f

G
=  (27) 

and 

 2 .EIL t
A

τ
ρ

−=  (28) 

Combining Eqs. (25) to (28) gives the dynamic factor in the following convenient form: 

 ( ) ( )
2

2 2 21
dyn 1 1 12 2

1

2 1 4 1cos 1 sin .
9 9

f λ τ λ τ
τ λ τ

Λ  = − + Λ   (29) 

Based on the above definitions, the ERR is given by ( )sta dyn1G G f= + . The ERR is 

proportional to the static component of the ERR with the ratio determined by the 

characteristic time only; this is an inherent property of the DCB (since iλ  is determined by 

boundary conditions alone). Note that 1 3.9266λ ≈ . 

2.2.4. Properties of dynamic factor 

The variation of dynamic factor dynf  with characteristic time τ , as described by Eq. (29), 

is shown by the solid line in Figure 2. 

 
Figure 2: Dynamic factor versus characteristic time 

Figure 2 shows that the dynamic factor is less than −1 during parts of the first two 

vibration periods, which leads to negative ERR. This finding is consistent with the previous 

studies of Smiley and Pipes [2] and Blackman et al. [3], although they reported infinite 

negative ERR at 0t = , whereas in this work, ERR is always finite. According to fracture 

mechanics, negative ERR impedes crack propagation [16], because if ERR is negative, then 
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crack growth increases the potential energy of the cracked solid, rather than decreasing it 

[17]. 

The dynamic factor attenuates significantly with respect to the characteristic time. At 0τ =

, the dynamic effect is at its maximum. The limit of dynf  at 0τ =  is 

 ( ) 2 2
dyn 1 10

1lim 9.721.
3

f
τ

τ λ
→

= Λ ≈  (30) 

The dynamic factor, however, decays to dyn1.0 1.0f− < <  after one characteristic time period. 

It then continues to drop steadily. After around 10 characteristic time periods, the dynamic 

effect reduces to dyn0.1 0.1f− < < , which can be regarded as insignificant. Note that the 

dynamic ratio is independent of applied opening rate and that this is an intrinsic property of 

this type of structure. 

2.2.5. Comparison with Smiley and Pipes [2] 

Smiley and Pipes’ [2] approach gives the ERR as 

 4 2 2 21 339 .
140

G EIL v t Av
b

ρ− = − 
 

 (31) 

This ERR only considers the transverse static motion along the beam regardless of the kinetic 

energy and strain energy induced by the beam vibration. It also predicts a negative singular 

ERR at 0t = . 

Note that Smiley and Pipes’ ‘crack opening displacement rate’ corresponds to the product 

of the shifting function and constant loading rate in this work Therefore, the crack opening 

displacement rate effect was still included in this work. 

Smiley and Pipes also obtained the dynamic factor as a function of the characteristic time 

τ  only, that is, 2
dyn 11 420f τ −= − . Smiley and Pipes’ dynamic factor is shown by the dashed 

line in Figure 2 for comparison. 

2.3. Crack propagation 

Consider a steadily propagating crack with constantcG G= =  and assume that the 

contribution to strain energy and kinetic energy due to the speed of crack propagation is 

small. Some works, for example Ref. [18], report that fracture toughness depends on crack 

propagation speed, but this is not considered in this work. The crack propagation speed can 

be approximately determined as 
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( )
( )

.
2

c

c

G G tdL G t L
dt G G L G L t

∂ − ∂ ∂ ∂
= − = − =

∂ − ∂ ∂ ∂
 (32) 

In evaluating the terms G t∂ ∂  and G L∂ ∂  based on Eq. (25), and substituting them into 

Eq. (32), all of the oscillatory terms cancel out, and consequently the crack propagation rate 

shows no oscillatory behavior. It should be remembered that Eq. (32) only applies under the 

stated conditions, namely, steady and slow crack propagation without contact. Physically it 

means that during crack propagation, the time-oscillation of the ERR is balanced by the 

gradient of ERR. 

Note that the crack propagation speed obtained in Eq. (32) is the same as that obtained for 

a DCB under quasi-static loads [3]. Nevertheless, it was derived using the theory developed 

above for dynamic interfacial fracture and is therefore also valid for dynamic crack 

propagation under the stated assumptions and limitations. Eq. (32) gives the crack extension 

as 

 ( ) 0 ,L t C t=  (33) 

where 0C  is a coefficient that can be determined using the condition that cG G=  when 0t t= , 

which is the time when the crack starts to propagate. 

Eq. (33) is only applicable to brittle materials with a moderate material density. If the 

material density is high, inertia effects can cause the crack surfaces to close and there will be 

crack arrest. The theory, however, cannot predict crack arrest for two reasons: (1) The 

condition used in deriving Eq. (33) is that cG G=  at all times after crack initiation, meaning 

that the crack must always propagate. (2) The theory does not consider contact between crack 

surfaces, and furthermore, interpenetration of crack surfaces gives non-zero ERR. For 

materials with higher density, Eq. (33) can still accurately predict the slope of the crack 

extension-time curve. 

3. Finite-element method verification 

3.1. Finite-element method verification for energy release rate 

To verify the analytical solution for ERR in Section 2, the symmetric DCB in Figure 3 was 

considered. The width of the DCB is 1 mm. An isotropic elastic material was used with the 

Young’s modulus of 10 GPa, Poisson’s ratio of 0.3, and density of 103 kg m-3. 
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Figure 3: Geometry of DCB for numerical verification 

A 2D FEM model was built using plane stress elements (CPS4R) in Abaqus/Explicit, 

which includes the inertia effects. In total, 32000 elements were used to simulate the DCB 

specimen. The damping ratio was set to zero. The virtual crack-closure technique (VCCT) 

was used to determine the ERR numerically. No contact model was used. The FEM results 

are compared with the developed analytical theory in Figure 4. 

 
Figure 4: Comparison of energy release rate from FEM simulation and from the developed 

analytical theory with first vibration mode (a), and with first two vibration modes (b). 

The results based on the developed analytical approach with the first vibration mode are in 

good agreement with the results from the numerical simulation: the analytical results capture 

the amplitude and frequency of ERR variation predicted by the FEM. The analytical theory is 

slightly out-of-phase with the FEM, which is due to the difference in boundary conditions: 

the FEM model simulates a full DCB, whereas the theory models the effective boundary 

conditions shown in Figure 1b. 

It is worth noticing that the ERR with dynamic effects oscillates about a mean value—the 

static ERR. The oscillation amplitude is well predicted by the product of the dynamic factor 

and static ERR. In Eq. (29), the dynamic factor decays quickly with time, but in Figure 4, the 

oscillation amplitude actually increases with time. This indicates that the dominant 

contribution to this vibration amplitude is the increasing static component of ERR. 



15 

When the first two vibration modes are included (Figure 4b), the amplitude of ERR 

oscillation begins to diverge: this is due to the limitation of Euler-Bernoulli beams in 

vibration analysis, where higher-order modes work in the same way as the lower-order modes 

in determining the ERR. Consequently, Euler-Bernoulli beams show a dispersive property 

and stress wave speed approaches to infinity with increasing natural frequency. This could be 

alleviated by including rotational and/or shear effects [19], but this is beyond the scope of this 

manuscript, and the lower-order modes are sufficient for this work. 

3.2. Finite-element method verification for crack propagation 

For crack propagation, the same geometry and material properties were used, but the 

fracture toughness of the material was set to 200 N m-1, and the width of the specimen set to 

0.05 mm. The crack extension was calculated using both the developed analytical theory and 

FEM simulation in conjunction with the VCCT and without modeling contact between the 

crack surfaces. Both results are plotted versus time in Figure 5 for comparison. Note that the 

FEM simulations in this verification exercise used 128000 3D stress elements (C3D8R) with 

one element in the widthwise direction. Widthwise displacement was constrained, which 

simulated a plane-strain condition. Consequently, the effective Young’s modulus of 

( )21E ν−  was used in the analytical calculations. 

 
Figure 5: Comparison of crack extension obtained from FEM simulation and from developed 

analytical theory 

Both analytical and numerical methods predict the same crack initiation time, and they 

also agree well with each other for the period just following crack initiation. This is as 

expected, since the theory has already been shown to agree well with the FEM in predicting 

the ERR. Subsequently, however, the FEM shows a period of crack arrest of about 0.0005 s 
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after crack initiation, after which the crack grows steadily with a slope that is well predicted 

by the theory. The FEM captures the crack arrest period, but the analytical theory does not for 

the reasons explained in Section 2.3. 

This comparison shows that, for a brittle material with moderate density, the analytical 

method proposed in this study can predict the ERR well (and thus the crack initiation time), 

as well as the slope of crack-extension curve. 

4. Conclusions 

The ERR for a symmetric DCB configuration under constant-loading-rate displacement 

was derived accounting for the dynamics and vibration effects. The corresponding dynamic 

factor and characteristic time were also defined. Furthermore, an approximate method was 

proposed to predict the crack extension. 

Predictions of ERR are in good agreement with results from 2D FEM simulations. Using 

only the first vibration mode was adequate to capture the amplitude and frequency of ERR 

variation predicted by the FEM. Using higher-order vibration modes causes divergence in the 

amplitude of ERR oscillation; this is due to the limitation of Euler-Bernoulli beams in 

vibration analysis. For crack extension, the agreement is also good in terms of crack initiation 

time and crack propagation speed, but crack arrest cannot be captured. This will be 

exacerbated for high-density materials, which have increased inertia effects. 

The dynamic factor, which quantifies the dynamic effect in relation to the static 

component of ERR, was shown to be a function of the characteristic time only. This is an 

intrinsic property of DCB structures. 

To the authors’ knowledge, this work presents these expressions, which are relatively 

short, mathematically-elegant and convenient-to-use, for the first time. They are not restricted 

to any particular application, and are expected to be useful to both engineers and researchers. 
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