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Abstract

A current trend in the design of modern aero engines is the transition to-
wards leaner combustion as a solution to satisfy increasingly stringent emis-
sion regulations. Lean combustion systems are often more susceptible to
thermoacoustic instability and the fuel injector can play a critical role. This
paper presents an analytical study on the unsteady air flow through a generic
injector passage in response to incident acoustic waves. The injector passage
is represented by a simplified geometry which comprises the main geomet-
rical passage features. The unsteady flow through the passage is obtained
by combining the elemental solutions for different parts of the passage. This
enables the transfer impedance of the injector passage to be determined and
the effects of different design parameters on the sensitivity of the air flow
to acoustic perturbations to be examined. The convective wave associated
with the unsteady swirl vane wakes is also visited and compared with the re-
sults from the numerical simulations obtained in previous works. In addition
to helping derive design practices for injector passages from the perspective
of thermoacoustic instability, the current analysis can also be applied as a
preliminary design tool to assess the acoustic characteristics for an injector
passage of the axial swirler type.
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Nomenclature

A area
Ain inlet area of acoustic element
c speed of sound in base flow
Cσ coefficient of contraction
dv pitch of swirl vane row
He Helmholtz number
i imaginary unit
k wave number in still air
L length
La length of swirl vane straight section
Lc end correction
m,n mode number
ṁ mass flow rate of base flow
˜̇m fluctuation in mass flow rate
M Mach number of base flow
p base flow pressure
p̃ pressure fluctuation
ptot total pressure
∆p nominal pressure drop across injector

Q̂ complex amplitude of volume flow rate fluctuation
rm median radius of passage inlet
R transfer resistance
RB characteristic dimension of injector
Rin inlet resistance
Rrad radiation resistance
∆Rs resistance jump at sudden geometric change
St Strouhal number
t time
ũ,ũ velocity fluctuation in one-dimension and in vector form respectively
U ,U base flow velocity in one-dimension and in vector form respectively
Up characteristic velocity based on mean pressure drop across injector
X transfer reactance
Xin inlet reactance
Xrad radiation reactance
Z transfer impedance
Zin inlet impedance
Zrad radiation impedance
Zx,u upstream impedance condition
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Zx acoustic impedance
ηa coefficient of aerodynamic efficiency of injector passage
θ swirl vane turning angle
ρ base flow density
ρ̃ density fluctuation
ρ0 air density in plenum

φ̃ fluctuation in velocity potential
ω angular frequency

Accents

˜ fluctuation in time
ˆ complex amplitude of fluctuation

1. Introduction

Depending on the application either liquid or gaseous fuel is introduced
into the combustion system of modern gas turbines through fuel injectors.
These injectors are designed to enable the combustion system to fulfil a
number of operability requirements which include the need to avoid ther-
moacoustic instabilities over the engine operating range. However, the drive
to reduce pollutant formation has resulted in a transition towards lean com-
bustion which makes the system more prone to such instabilities. Exten-
sive research on this phenomenon has been reported in the literature, e.g.
[1, 2, 3, 4, 5, 6, 7, 8, 9]. In the thermoacoustic feedback loop the pressure
waves generated in the combustion process, typically by unsteady heat re-
lease, interact with the fuel injector and induce fluctuations in the air flow
passing through it and entering the combustion zone. As a result further
unsteadiness in the combustion process can be provoked. At the same time,
fluctuations in the injector flow can lead to perturbations in stoichiometry
of the flow being delivered to the heat release region, as well as affecting the
atomisation process when liquid fuel is used. These factors also contribute to
the unsteadiness of the combustion process. The role played by the fuel in-
jector in the thermoacoustic instability is of particular significance, and more
so for lean combustion systems, in which the majority of the combustor air
flow passes through the fuel injector.

The injectors used within modern gas turbines have evolved into highly
complex geometries displaying a variety of different styles. However, the main
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considerations in injector design are generally focused around generating flow
conditions that enhance fuel/air mixing and produce a flow region dedicated
to flame stabilisation. Typically modern fuel injectors consist of one or more
passages through which the air flow passes whilst tangential momentum (i.e
swirl) is imparted to it. This is usually accomplished via turning vanes which
creates a downstream recirculation region within which the flame is stabilised.
As the flow passes through the injector gaseous or liquid fuel is introduced
into the airstream. Numerous studies (e.g. [10, 11, 12, 13, 14, 15]) have
been carried out to understand the various aerodynamic processes and flow
field features generated by the injector such as vortex breakdown, precessing
vortex core (PVC), and central toroidal recirculation zone (CTRZ), etc. The
findings from these works are in general most beneficial for optimising injec-
tor design with the aim of improving combustion efficiency and reducing the
formation of pollutants. However, also of concern is the unsteady flow gen-
erated by the fuel injector due to incident acoustic perturbations on account
of its effect on thermoacoustic instability. Studies on both non-reacting (e.g.
[16, 17, 18, 19, 20]) and reactng (e.g. [5, 21, 22, 23, 24, 25]) scenarios have
been reported.

The stability of the whole combustion system has been conveniently eval-
uated using low order network models such as those introduced by Dowling
and Stow [26] and Paschereit et al. [27]. In such a model each acoustic
element can be characterised with an acoustic transfer matrix (e.g. [28, 29,
30, 31]). Given the acoustic boundary conditions of the system, the acoustic
impedance at any point in the acoustic network can be calculated from the
transfer matrices of the acoustic elements. When the base flow in a sys-
tem is supplied by atmosphere from upstream, the acoustic impedance at a
point in the acoustic network is defined as Zx=−p̂/Q̂ observed from down-
stream relative to the air supply. Here p̂ and Q̂ are the complex amplitudes
of the fluctuations in pressure and volume flux respectively. The acoustic
impedance describes the stiffness of the air flow response to the pressure
fluctuation imposed at the corresponding location of the system. Alterna-
tive to transfer matrix, the passive acoustic elements in a system can often
also be represented by their transfer impedances (e.g. [32, 33, 34]) when
an acoustic circuit type of approach is adopted. The transfer impedance of
an acoustically compact element is generally calculated as the ratio between
the fluctuation in pressure difference across the acoustic element and the
fluctuation in volume flux through it. It is essentially equal to the acoustic
impedance change across the element. Considering this and the variation of

4



unsteady volume flux within a non-compact acoustic element, the transfer
impedance of the injector is defined in a generalised sense here to match the
acoustic impedance change across the injector:

Z = Zx,d − Zx,u =
p̂u

Q̂u

− p̂d

Q̂d

= R + iX (1)

where ‘u’ and ‘d’ denote the flow conditions upstream and downstream of
the injector respectively.

The transfer impedance, Z, has real (transfer resistance, R) and imag-
inary (transfer reactance, X) components. It can also be derived from the
transfer matrix of the injector. As will be discussed in Section 3.2.2, the in-
fluence of the upstream impedance condition, Zx,u = −p̂u/Q̂u, on the transfer
impedance defined by Eq. (1) is estimated to be of second order of combi-
nations of small non-dimensional parameters including Helmholtz number,
Mach number and the cross-section area ratio between the injector passage
and upstream plenum. For a typical gas turbine setup this influence is shown
to be small as far as the current study is concerned. Meanwhile, according to
its definition Z is not a function of the transfer impedances of the acoustic
elements downstream. Based on the above, the transfer impedance can be
practically considered as a local property of the injector. For low Helmholtz
numbers (e.g. less than 0.5), the difference between Q̂u and Q̂d is small and
the inverse of Z indicates the sensitivity of air flow rate through the injec-
tor with respect to the fluctuation in pressure difference across the injector.
When Zx,u has been determined with the acoustic boundary condition and
elements upstream of the injector, the acoustic impedance at the injector exit
is obtained by combining Zx,u and the injector transfer impedance directly.
For the frequency range relevant to thermoacoustic instability, the injector
transfer impedance is an important constituent of the acoustic impedance at
the injector exit.

As previously described the incident acoustic waves generated by the
unsteady heat release from the combustion process can lead to fluctuation in
the air flow through the injector. It is obvious that a large injector transfer
impedance is desirable for combustion stability. In this aspect, characterising
a fuel injector with the transfer impedance provides a convenient way to
define a design target for fuel injector from the thermoacoustic perspective
based on a largely local property of the injector. The transfer resistance
is generally dominated by the loss associated with the mean/base air flow
through the injector. Considering the amount of air flow through the fuel
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injector in a lean combustion system, it is crucial that the efficiency of the
injector air flow under nominal operating conditions be not compromised for
an injector design intended to increase transfer resistance. Meanwhile, the
transfer reactance mainly corresponds to the inertia of air flow within the fuel
injector and, in general, increases with the injector length. This, however, will
be constrained by the physical dimension of the whole combustion system.

For a low-order thermoacoustic network model another important compo-
nent is the flame transfer/describing function (FTF/FDF) which correlates
the unsteady air flow through the fuel injector with the fluctuation in flame
heat release. For swirl stabilised flames, which are widely adopted in modern
gas turbine engines, the combustion process is also affected by the circumfer-
ential component of the injector air flow. This can often be analysed through
the non-dimensional swirl number [35, 36] parameter. It is well recognised
that acoustic perturbation also induces a circumferential velocity fluctuation
downstream of the swirl vanes, which is convected at the local air flow ve-
locity [18, 37, 38, 39]. Indeed a convective wave had been earlier identified
in a study on sound transmission through a blade row [40], but has to date
mostly been ignored by acousticians because it does not induce any pressure
fluctuation (c.f. Section 5). It can, however, have a significant effect on the
combustion process, and therefore needs to be included in the analysis of
thermoacoustic instability. Based on the corresponding FTF/FDF, Palies et
al. [38] and Candel et al. [39] showed that the effect of circumferential veloc-
ity fluctuation on the unsteady heat release can interact either constructively
or destructively with that due to the axial velocity fluctuation depending on
the excitation frequency.

On account of the general geometric complexity of the fuel injector, accu-
rate characterisation, for example, by transfer matrix or transfer impedance,
of the acoustic response of injector air flow is often carried out by experi-
mental or numerical means (e.g. [19, 21, 28, 30, 31, 38]). On the other hand,
a widely adopted approach in analytical studies is to simplify the injector
as a constant-sectioned duct which is defined by a characteristic area and
an effective length, plus a loss coefficient (e.g. [3, 26, 29]). This has been
extended to using a series of connected ducts for a more generalised represen-
tation of the fuel injector [30, 41]. Despite extensive research efforts on the
acoustic response of injector air flows, a large part of the studies available in
literature have been focused upon extracting/predicting the acoustic charac-
teristics of the injector as a lumped acoustic element and their subsequent
application for stability analysis of the combustion system. There are rela-
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tively limited results published with regard to generic design practices that
optimise the acoustic characteristics of fuel injector for the benefit of com-
bustion stability. The aforementioned duct approximations for fuel injectors
generally suggest that contracting the injector exit cross-section increases
acoustic damping and hence the transfer resistance, whilst lengthening the
injector results in higher transfer reactance. Nevertheless, in a practical de-
sign the former modification will inflict higher loss on the base flow and the
latter is limited by the combustion system geometries. Instead of increasing
the transfer impedance, manipulating the convective time lags of the fluctu-
ations of various combustion-controlling quantities, such as equivalence ratio
and swirl number, was also discussed [38, 42]. The corresponding injector
design changes will, however, to a large extent depend on the actual combus-
tion process which is at the same also determined by the other components
of the combustion system.

As lean combustion technologies gain more popularity in future gas tur-
bine design, it is of importance to gain more insight into the acoustic response
of the injector air flow and continue exploring generic and applicable injector
design practices that help alleviate thermoacoustic instability. This paper
presents an analytical study on the unsteady air flow in a generic injector
passage triggered by incident acoustic waves. At first the passage geometry
is divided into various zones and the corresponding unsteady flow solutions
for individual zones are obtained separately. These elemental solutions are
subsequently assembled to form the complete solution for the whole passage.
The sensitivity of air flow within the injector passage with respect to acoustic
perturbation is investigated mainly based on the transfer impedance of in-
jector passage calculated from the unsteady flow solution. By examining the
relevant physics and the effects of different design parameters of the injector
passage on its transfer impedance, this study helps shed light on design prac-
tices that reduce the sensitivity of the injector air flow to incident acoustic
waves (or, equivalently, increase the transfer impedance). In addition, the
convective wave associated with the circumferential velocity fluctuation is
revisited, adding more physical insight to its influence on the unsteady air
flow inside the injector passage. Provided with suitable mean flow parame-
ters, the analysis can be readily applied at a preliminary design stage for an
injector passage of the generic type considered in this paper.
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2. Experimental and Numerical Studies

The acoustically excited unsteady flow in a generic single-passage injector
configuration has been investigated in a combined experimental and numer-
ical study reported by Su et al. [19]. The experiments were conducted with
an impedance tube style setup using the multi-microphone technique. The
test facility is isothermal, operating at atmospheric conditions. A depiction
is given in Fig. 1. A centrifugal fan was used to generate a suitable pres-
sure drop across the fuel injector such that the mean baseline flow was at a
Mach number comparable with engine conditions. The flow was produced
by atmospheric air from the upper plenum passing through the fuel injector,
before continuing down a straight square-sectioned duct and entering the
exhaust plenum, where it was extracted back to atmosphere. In this study
the mean pressure drop, ∆p, across the injector is approximately 3% of the
pressure in the upstream plenum. The mean mass flow rate, ṁ, through the
injector can be measured with a metering orifice deployed in the duct. For
the single-passage injector the total aerodynamic loss, ∆ptot (i.e. loss in total
pressure), incurred by the injector passage on the air flow can be expressed
as below in terms of a coefficient of aerodynamic efficiency, ηa, defined as the
ratio between the actual and ideal mass flow rate:

∆ptot = ∆p(1− η2
a), ηa =

ṁ

ρ0AoutUp cos θ
, Up =

√
2∆p

ρ0

(2)

where ρ0 is the air density in the upstream plenum, Aout is the the outlet area
of the injector passage and θ is the swirl vane turning angle. Generally ηa is a
characteristic property of the injector passage, which is mostly independent
of ∆p. The generic axial swirler type of annular passage considered in this
work is representative of the main passage designs commonly found in the
fuel injectors of medium and large lean combustion gas turbine engines. Such
type of injector passage is in general significantly larger in dimension than its
counterpart for rich burn injectors, typically at least twice as large in radius
and more than three times as long in length.

Acoustic measurements were conducted without the metering orifice. Plane
acoustic waves were created by two loud speakers located near the down-
stream end of the duct, with the waves travelling upstream towards the
injector and against the base flow direction. In the experiments, the en-
gine frequency range of concern is scaled down to atmospheric conditions by
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matching the Strouhal number defined as:

St = ωRB/Up (3)

where ω is the angular frequency and RB is a characteristic dimension of the
injector. Four Kulite dynamic pressure transducers were installed at different
axial locations along the duct to measure the unsteady pressure downstream
of the injector. A detailed description of the test facility, instrumentation and
data processing methodology are given in [43] and [44]. From the unsteady
pressure measured by the Kulites, the incident and reflected acoustic waves
were reconstructed based on the multi-microphone technique, whereby the
pressure and velocity fluctuations at the injector exit, i.e. p̂d and ûd, can be
determined.

In the current experimental setup, the pressure fluctuation in the up-
stream plenum is nearly zero except for a small region in the vicinity of
the injector inlet. This provides a datum upstream condition of p̂u≈ 0 and
Zx,u≈0, so that the measured transfer impedance is essentially Z=−p̂d/Q̂d.
In an industrial gas turbine the injector inlet is open to an upstream chamber
of finite size, which imposes an upstream impedance condition Zx,u 6= 0. In
Section 3.2.2 the influence of this impedance condition on Z, as defined by
Eq. (1), is estimated to be small for the current study. Meanwhile, finite-
ness of the upstream chamber results in negligible change in the transfer
resistance but a lower transfer reactance compared to that under the infinite
plenum condition. As to be discussed in Section 3.2.1 this is due to a reduced
end correction at the passage inlet. For the single passage considered here
the percentage of such a change in the transfer reactance is estimated to be
small and does not affect the following analysis on the internal geometric
parameters of injector passage.

In [19] numerical simulations with computational fluid dynamics (CFD)
were also reported based on the experimental scenario. The computational
domain is illustrated in Fig. 2. It consists of a duct section whose length is
more than ten times the injector diameter, the full injector geometry and a
hemispherical artificial plenum. A schematic of the single-passage injector is
included in Fig. 2. The commercial package ICEM- CFD was used to gen-
erate the computational grid (also shown in Fig. 2). The CFD calculations
were performed with the open-source programme OpenFOAM [45] (version
2.1.1). The approach of unsteady Reynolds-averaged Navier-Stokes simula-
tion (URANS) was adopted with the k−ω shear-stress-transport (SST) turbu-
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lence model. The compressible unsteady flow was solved using the pressure-
based algorithm of Pressure Implicit with Splitting of Operator (PISO) intro-
duced by Issa [46]. At the same time, suitable acoustic boundary conditions
were derived from the Euler equations and applied in the simulations to
match the corresponding experimental conditions. Specifically plane pres-
sure waves of specified frequencies and amplitudes are injected at the outlet
of the duct section, whilst the hemispheric inlet surface of the plenum is set
to be non-reflective. Details of the numerical methodology and simulation
parameters are given in [19]. An example of the instantaneous flow field is
given in Fig. 3 showing the axial velocity contour and the flow streamlines
in the injector centre cross-plane. In the plot L is a characteristic injector
length scale and Up is the velocity scale introduced in Eq. (2). From the sim-
ulation results the injector transfer impedance was determined in the same
manner as in the experiments by application of the multi-microphone method
to the pressure data at the same axial locations as those of the Kulites in the
experiments.

The results obtained from the experiments and the CFD simulations re-
spectively are reproduced in Fig. 4. The Strouhal number is defined with
the median radius, rm, of the passage inlet as the characteristic dimension
(i.e. RB = rm). The passage inlet area, Ain, is used as the reference area
for non-dimensionalisation of Z. The frequency range considered in this
work corresponds to 0.18<St<0.2, which includes the frequency span most
relevant to thermoacoustic instability plus a small margin at both the low
and high frequency ends. The accuracy of numerical simulations is veri-
fied by the agreement between the experimental measurements and CFD
results. Thus having validated the CFD methodology one can interrogate
these CFD solutions for details of the acoustically perturbed unsteady flow
field inside the injector passage which is difficult to access by experimental
means. The experimental and CFD studies together provide the data for
comparison with the analysis to be presented in the following sections of the
paper. Thereby this analysis can be applied to identify the effects of various
geometric features of the injector passage on its response characteristics to
incident acoustic waves.

3. Propagation of Acoustic Waves through Injector Passage

In this work, an analytical study is carried out for the acoustically per-
turbed unsteady flow inside the single-passage injector configuration shown
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in Fig. 2.

3.1. Formulation of Problem

When the disturbances are significantly smaller than the base flow states,
the acoustically perturbed unsteady flow can be described by the linearised
continuity, momentum (i.e. Navier-Stokes equations) and energy equations
around the base flow conditions. The set of equations is completed with the
equation of state, for which the ideal gas law is assumed. In high Reynolds
number flows, the viscous effect is usually confined to certain compact regions
(e.g. boundary layers and vortex sheets). As a result, for the bulk flow the
Navier-Stokes equations may be reduced to the Euler equations. In this
section the acoustic propagation within the injector passage is considered
by solving the linear wave equations, complemented by the assumption of
concentrated hydrodynamic losses, for a simplified geometry that includes
the passage design parameters to be studied.

3.1.1. Simplified Geometry for Analytical Study

For the passage dimensions and frequency range considered in the present
work no persistent radial or circumferential modes can be established inside
the passage. On account of an outer-inner radius ratio close to one, the
radial variation of the flow field is ignored. The annular passage can be
approximated by a straight flow channel between two bounding walls. The
span of the channel is equal to the median line circumference at the passage
inlet. The distance between the bounding walls at an axial location is defined
such that the channel cross-section area matches that of the actual passage
geometry at the same location. By virtue of periodicity the flow channel
can be extended spanwise to form an infinite self-repeating domain. But the
transfer impedance will be calculated only over one span. The mid-plane
section of the channel is represented by the simplified geometry illustrated in
Fig. 5 including notations of the main passage geometric parameters. The
swirl vanes are assumed to be of zero thickness and their shape is simplified
to a circular arc connected to a straight tangent line segment. The pitch of
swirl vane row is measured at the swirl vane midspan. The entire passage is
divided into four zones along the axial direction. Zone I extends from just
downstream of the bell-mouthed inlet up to the leading edge of the swirl vane
row. Zone II is the front turning sections of the pathways formed between
neighbouring swirl vanes, whilst the rear straight sections of the pathways
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are designated as zone III. The remaining part of the passage (from the swirl
vane trailing edges to the passage exit) is zone IV.

3.1.2. Hydrodynamic Loss at Sudden Geometrical Change

A concentrated hydrodynamic loss usually arises at the location of a ge-
ometrical discontinuity, such as a sudden change of cross-section area. At
the steady state (i.e. base flow) this loss (in total pressure) across the dis-
continuity can be expressed in terms of a coefficient of contraction, Cσ, as
follows:

∆ptot =
1

2
ρdU

2
d

(
1

C2
σ

− 1

)
(4)

where ρd and Ud are the base flow density and velocity downstream of the
geometrical change respectively. The lossless condition is Cσ=1. On account
of its compactness, such a region of sudden geometrical change is modelled
with a jump in transfer resistance when calculating the transfer impedance
of the whole injector passage. Assuming that its variation with frequency is
small, this resistance jump is effectively equal to its value at the quasi-steady
state (i.e. ω≈0), ∆Rs, given as:

∆Rs = ṁ

[(
1

CσAd

)2

−
(

1

Au

)2
]

(5)

where Au and Ad are the cross-section areas upstream and downstream of
the geometrical change respectively. When Eq. (5) is applied to an orifice
connecting two plenums, ∆Rs ≈ ṁ/(CσA)2 at the orifice inlet and ∆Rs ≈ 0
at the exit assuming negligible pressure recovery. Their sum is equivalent to
the corresponding term accounting for the acoustic resistance of the orifice
in the works by Luong et al. [47] and Bellucci et al. [48]. In this case Cσ at
the orifice inlet is essentially the discharge coefficient.

3.1.3. Hydrodynamic Loss in Turbulent Boundary Layer

In a wall-bounded internal flow such as that within the injector passage,
the effect of viscosity is most prominent in the boundary layers (laminar
or turbulent). Given the conditions of low Mach number flows (typically
M < 0.2) and adiabatic walls (negligible heat transfer) this effect is mainly
of a hydrodynamic nature and its contribution to the transfer impedance
can be assessed at the incompressible limit. To this end, the incompressible
oscillating straight channel flows at representative base flow conditions within
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the passage are considered for an estimation of the viscous effect on the
unsteady passage flow.

The base flow Reynolds number based on the passage annular gap width
suggests that it belongs to the turbulent regime. Using Prandtl’s mixing
length hypothesis, Howe [49] derived an analytical expression for the atten-
uation of acoustic waves in parallel turbulent channel flows. More recently
Weng et al. [50] reconsidered the same problem using a Reynolds stress trans-
port model in the Reynolds-averaged Navier-Stokes (RANS) equations. Both
theories predicted that, for the Reynolds number and frequency range con-
sidered in the present paper, the variation of transfer resistance with respect
to frequency is small due to turbulence relaxation (i.e. delay in the response
of turbulence to acoustic perturbation), whilst the boundary layer effect on
the transfer reactance is negligible compared to the inertia of the flow itself.
The flow through the passage is not actually parallel to the passage walls
as the boundary layers are developing on both walls. Using URANS CFD
simulations, Su [51] investigated the incompressible oscillating flows with de-
veloping turbulent boundary layers for a two-dimensional straight channel
whose length is equal to the passage length and width equal to the passage
annular gap width. Two flow speeds were considered, corresponding the flow
conditions in the passage upstream and downstream of the swirl vane row
respectively. The results obtained led to a judgement on the boundary layer
effects concurring with that derived from the theories by Howe and Weng et
al.

Based on the above discussion, the viscous effect appears to the unsteady
passage flow as mostly a distributed hydrodynamic loss. Such a loss is gen-
erally difficult to separate from the total flow loss. To reduce the complexity
of the problem for the current analytical study, the contribution of viscous
effect to the transfer impedance is simplified to a concentrated hydrodynamic
loss and merged with that occurring at a more distinguishable geometrical
location within the passage where the highest loss is observed.

3.1.4. Governing Equations of Inviscid Unsteady Flows

The linearised continuity and Euler equations for the unsteady flow within
the injector passage read:

∂ρ̃

∂t
+∇ · (ρũ + ρ̃U) = 0 (6)

ρ
∂ũ

∂t
+ ρ(U · ∇ũ + ũ · ∇U) + ρ̃U · ∇U +∇p̃ = 0 (7)
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where U is the base flow velocity, and ρ̃ and ũ are the fluctuations in density
and velocity respectively. In the absence of any entropy waves, the inviscid
and adiabatic assumptions reduce the equations of energy conservation and
state to the following relation between p̃ and ρ̃ [52, pp. 120]:

p̃/ρ̃ = c2 (8)

where c is the speed of sound in the base flow. In parallel with the inviscid
condition, it is further assumed that any vorticity is confined to compact
regions of singularities that occupy only infinitesimal volumes of the flow
field (e.g. a vortex sheet). Thereby the unsteady flow field is irrotational
and can be expressed in terms of a fluctuating velocity potential, φ̃, such
that ũ=∇φ̃.

The base flow states in the injector passage need to be specified for Eqs.
(6)-(8). The process of establishing the base flow is outlined in Appendix
A. The base flow parameter required as the external input is the coefficient
of aerodynamic efficiency, ηa. It can be obtained from experiments, CFD, or
in a preliminary design stage through empirical estimations. In the current
analysis the value derived from the base flow CFD simulation is adopted.
By minimising the uncertainties in the base flow conditions, this enables
a direct comparison of the following analytical calculations with the CFD
simulations of the acoustically excited unsteady flow. With the flow details
accessible from the CFD results such a comparison helps gain more insight of
the unsteady flow. The air flow within the injector passage is assumed to be
lossless except at certain locations of geometrical discontinuity, where con-
centrated hydrodynamic losses are introduced. Different ways of distributing
the total loss along the passage were attempted in [51]. The changes in the
results, particularly the total passage transfer impedance, were found to be
negligible. From the base flow CFD result the profile loss at the swirl vane
leading edges is identified as the largest contributor to the total loss for the
flow inside the injector passage. As a practical choice, the total loss is sim-
plified to a hydrodynamic loss concentrated at the swirl vane leading edges,
which can be calculated with ∆p and ηa, c.f. Eq. (2).

3.2. Solutions for Representative Constitutive Geometries

Starting from Eqs. (6)-(8), different formulations are applied for the
unsteady flow in the different passage regions illustrated in Fig. 5. The in-
dividual solutions for the representative geometrical features comprising the
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passage are presented here as the building elements for the whole passage so-
lution. The transfer impedance of the passage inlet consists of the radiation
impedance and a resistive component associated with area contraction. Its
estimation is described in Section 3.2.1. In zone I the passage cross-section
area can generally vary along the axial direction and the unsteady flow is
solved using a quasi one-dimensional approach as presented in Section 3.2.2.
It is noted that for the injector passage considered here the cross-section area
is constant in zone I and a closed-form solution of the unsteady flow in this
zone is available. Based on the argument to be given in Section 3.2.3, the
unsteady flow in zone II is also calculated with the quasi one-dimensional
formulation. In zones III and IV combined, the problem is presented as the
interaction between a flat plate array and incident acoustic waves approach-
ing from downstream. In zone IV the variation of passage cross-section area
normal to the axial direction is small in the current analysis. Hence the
passage cross-section area in zone IV is assumed to be constant and equal to
that in zone III such that the base flow for Eqs. (6)-(8) is uniform in these
two zones. A closed-form solution of the unsteady flow in zones III and IV
can be obtained as to be described in Section 3.2.4.

3.2.1. Radiation and Inlet Impedances

With the injector passage open to an ample upstream plenum, there arises
a radiation impedance at the passage inlet. In the experiment the injector is
mounted in a plate of a width more than eight times the median radius of the
passage inlet, which can be treated effectively as an infinite flange. Therefore
the radiation impedance of the passage inlet is initially estimated following an
approach similar to that described in [52, §7.5(a)] and [53, §302] for a flanged
circular inlet but adapted here for a flanged annular inlet. The fluctuating
flow at the inlet cross-section of the passage is modelled as an annular piston
vibrating along its axis with a fluctuating velocity ũ. The annular piston is
represented by a collection of infinitesimal baffled point sources of strength,
ũdA, where dA is the elemental area occupied by a baffled point source on
the piston. An illustration of the baffled point source and the annular piston
is given in Fig. 6, where r1 and r2 are the inner and outer radii of the annular
passage inlet respectively.

The total force induced by the baffled point sources upon the annular
piston itself is given by the double integral below [52, pp. 185]:

f = i
ρωũ

2π

∫∫
e−ikz

z
dAdA′ (9)
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where k=ω/c is the wave number in still air and z is the distance between
the elemental areas dA and dA′. In Eq. (9) both integration regions A and
A′ refer to the surface of the annular piston. The base flow states are taken at
the passage inlet, i.e. ρ=ρin and c= cin. Following the procedure described
in [52, §7.5(a)], the double integration of Eq. (9) is evaluted in the form
below:

f = ρincinũ

[
fc(r2)− fc(r1)− 4i

∫ r2

r1

∫ arccos(
r1
r

)

− arccos(
r1
r

)

e−ikr cos Φ sin(krσ)dΦdr

]

fc(r) = πr2

[
1− J1(2kr)

kr
+ i

H1(2kr)

kr

]
, rσ =

√
r2

1 − r2sin2Φ

(10)

where J1 is the first order Bessel function of the first kind and H1 is the
first order Struve function. Once f is calculated, the radiation impedance is
obtained accordingly as:

Zrad =
f/A

Aũ
=

f

[π(r2
2 − r2

1)]
2
ũ

= Rrad + iXrad (11)

The radiation impedance of the passage inlet calculated as above for different
frequencies is plotted in Fig. 7. The frequency is expressed as the dimen-
sionless Helmholtz number He(r) = krm where rm = (r1+r2)/2 is the median
radius of the passage inlet. The frequencies of interest in the current study
correspond to 0.05<krm<0.25.

The radiation impedance can also be expressed in terms of a length end
correction, Lc, and a pressure reflection coefficient, |Rp|,as:

Zrad = Rrad + iXrad =
ρincin

Ain

· 1− |Rp|e−i2kLc

1 + |Rp|e−i2kLc

≈ ρincin

Ain

· 1− |Rp|
1 + |Rp|

+ i
ρinωLc

Ain

(kLc � 1)

(12)

The calculation presented so far for the radiation impedance has not taken
into account the presence of the bellmouth at the passage inlet. It was shown
by Selamet et al. [54] that an inlet bellmouth is expected to increase Lc. In
the current analysis, such an increase in Lc is estimated by interpolation from
the plots given in [54] using the ratio between the bellmouth radius, rb, and
the annulus half width, ha = (r2 − r1)/2, in place of the ratio between the
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bellmouth radius and the circular duct radius. This produces an end correc-
tion change of δLc≈ 0.3ha for the geometry considered here. Meanwhile, in
the low frequency range the change in |Rp| caused by the bellmouth is shown
to be small in [54]. Thus the influence of bellmouth on Rrad can be assumed
to be negligible. Accordingly the radiation impedance calculated with Eq.
(11) is supplemented by the additional term, iρinωδLc/Ain.

In addition to the radiation impedance, the transfer impedance of the
passage inlet also includes a resistive component, Rs,in, that arises due to the
area change (contraction). As discussed in Section 3.1.2 this is modelled with
Rs,in = ṁ/(CσAin)2, given by Eq. (5) with Au =∞ and Ad =Ain. Combining
it with the corrected radiation impedance, the transfer impedance for the
bellmouth inlet of the single injector passage considered here is predicted as:

Zin = Rin + iXin = Rs,in + Zrad + i
ρinωδLc

Ain

(13)

For Rs,in, ṁ is obtained from ηa and the given mean pressure drop ∆p. As
aforementioned the CFD-calculated value of ηa is used here and the loss at
the passage inlet is assumed to be negligible. A comparison of Zin estimated
with Eq. (13) and that calculated from CFD simulations is presented in Fig.
8. The same normalisations as those in Fig. 4 are applied.

The estimated Rin is lower than that calculated with CFD. This is ba-
sically due to the assumption Cσ = 1. The actual Cσ can be found when
provided with the base flow pressure at the passage inlet, which is available
from the CFD result but not from experiments. The corrected inlet resis-
tance calculated with the actual Cσ is also produced in Fig. 8 and shows an
improved match with the CFD values. Nonetheless, Cσ is in general close to
one for a bellmouth, and as indicated in Section 3.1.4 separating the inlet loss
from the total loss within the passage only results in a negligible change in
the prediction of total passage transfer impedance. To minimise the external
input for the current analysis the assumption Cσ =1 is retained for the pas-
sage inletand the inlet loss is combined into the concentrated hydrodynamic
loss reflected by ηa. On the other hand, the inlet reactance is well predicted
by analytical means.

The calculation of Zrad in this section for a flanged annular aperture
matches the current experimental setup and is valid when the upstream
plenum is sufficiently large. In an industrial gas turbine setup (particularly
in aerospace application) the injector passage is usually open to an upstream
chamber of limited volume. Following the work by Ingard [55] and Yang and
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Morgans [56], the radiation impedance should be substituted by a transfer
reactance representing an end correction lower than that corresponding to
the infinite plenum scenario. In [55] Ingard also adopted the vibrating pis-
ton approximation for evaluation of the end correction of a flanged aperture
open to a rectangular or circular chamber. This can be easily adapted for an
annular opening by changing the integration limits; for example, one has for
a square-sectioned chamber:

Lc =
16π

a2

∑
m

′∑
n

′ [r2J1(αmnr2)− r1J1(αmnr1)]2

α3
mn(r2

2 − r2
1)

(14)

where a is the side of the chamber and αmn=2π
√
m2 + n2/a. The prime on

the summation sign indicates that the term of m= n= 0 is excluded. For
the frequency range considered in the current work, the inlet impedance in
a finite upstream chamber can be estimated accordingly as:

Zin = Rs,in + i
ρinω(Lc + δLc)

Ain

(15)

It is noted that when a→∞ the end correction approaches that in an infinite
plenum. However, for such a case a large number of terms are needed in Eq.
(14) for the result to converge and the approach based on Eqs. (9) to (11) is
preferred when an infinite plenum is present. If Eq. (14) is used for estimation
of Lc of the current passage inlet geometry in a medium to large aero-engine
setup and δLc is assumed unchanged, the resultant decrease in Xin compared
to the infinite plenum scenario is typically no more than 40% of that shown
in Fig. 13 for the frequency range considered here. In Section 3.3 it will
be demonstrated that such a change is small relative to the total passage
reactance. The finiteness of the upstream chamber cross-section also leads
to a lower value of Rs,in compared to the infinite plenum scenario. However,
the difference is usually negligible for a general gas turbine setup as ∆Rs is
a function of the square of cross-section area ratio.

3.2.2. Quasi One-Dimensional Inviscid Unsteady Flow

When the variation in the cross-section of a duct is continuous and higher
order transverse modes are absent, the following quasi one-dimensional equa-
tions can be derived from Eqs. (6) and (7) together with the adiabatic rela-
tion Eq. (8) for approximation of the unsteady axial inviscid flows through
the duct:

d ˆ̇m

dx
= −i

ωA

c2
p̂ (16)
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(1−M2)A
dp̂

dx
= −

(
2

dU

dx
+ iω

)
ˆ̇m+

[
d(M2A)

dx
+ i

2ωUA

c2

]
p̂ (17)

where ˜̇m is the fluctuation in mass flow rate, given to the first order as:

ˆ̇m = ṁ

(
û

U
+

p̂

ρc2

)
=

(
− ρ

Zx
+

ṁ

ρc2

)
p̂ (18)

In Eqs. (16) and (17) the duct cross-section area, A, can vary with x. When
the pressure fluctuation, p̂in, and acoustic impedance, Zx,in, at the duct inlet
are specified, the corresponding mass flow fluctuation, ˆ̇min, is determined by
Eq. (18). The pressure and mass flow fluctuations at the duct outlet can then
be obtained by solving the first order ordinary differential equation (ODE)
system of Eqs. (16) and (17) with p̂in and ˆ̇min as the initial conditions.
Thereafter the acoustic impedance at the duct outlet, Zx,out, is calculated
using Eq. (18). With the duct inlet defined at x=0, the upstream impedance
condition is specified as Zx,u =Rx,u+iXx,u at x=0−. The acoustic impedance
at the duct inlet is Zx,in =Zx,u+Zin at x=0+ when there is a sudden geometric
change across x=0. An example of the inlet impedance Zin is that described
in Section 3.2.1. The duct transfer impedance is given as Z =Zx,out−Zx,u.
Here Zin is included in the duct transfer impedance based on the argument
that the control volume used for the definition of Eq. (1) should enclose the
duct inlet. It is noted that Z depends on Zx,in only but not p̂in because Eqs.
(16) and (17) are linear. Indeed one can derive from Eqs. (16) and (17) the
first order ODEs for Zx as well as R and X, which are given in Appendix
B by Eqs. (B.1), (B.2) and (B.3) respectively. To calculate Z alone it is
sufficient to solve Eq. (B.1) or Eqs. (B.2) and (B.3), but to determine the
quasi one-dimensional unsteady flow (p̂, ˆ̇m and û) Eqs. (16) and (17) need
to solved. There is no general closed-form solution for Eqs. (16) and (17)
or Eqs. (B.1), (B.2) and (B.3) except for certain special cases; for example,
a straight duct of uniform cross-section. For the calculations in the current
work the linear ODE system of Eqs. (16) and (17) is used, which is of simpler
forms than Eqs. (B.1), (B.2) and (B.3) and can be numerically integrated to
any practical accuracy efficiently.

In view of the base flow condition and the frequency range considered in
the current study, the transfer impedance for a duct of length L is examined
at small Mach number M and Helmholtz numbers He(L) = kL and He =
k(L+Lc). Here M , He(L) and He are of similar orders. For such an analysis
it is more convenient to consider an asymptotic form of Eqs. (B.2) and
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(B.3) to be derived below with representative Zx,u and Zin. As indicated in
Section 2, upstream of the injector in a gas turbine is generally a chamber
of finite volume. A typical upstream condition for this chamber in turn is a
choked inlet [26]. The upstream impedance observed by the injector is usually
dominated by a reactanceXx,u∝cot(kLp) in a one-dimensional setting, where
Lp is a characteristic length of the chamber. For the frequency range of

interest here, Xx,uA

ρc
is negative and typically of the order of the cross-section

area ratio, β=A/Ap, where Ap is a characteristic area of the chamber cross-
section. On the other hand, Rx,u is usually negligible, for example, compared
to Rin. From Section 3.2.1 RinA

ρc
is typically O(M) and XinA

ρc
is O(kLc).

The leading order of duct transfer impedance is determined by integrals
of the terms in the right hand side (RHS) of Eqs. (B.2) and (B.3) that do
not depend on R and X themselves or Zx,u. The leading-order terms of the
transfer resistance and transfer reactance, Ro and Xo, are hence identified
as:

Ro = Rin +
ṁ

A2
− ṁ

A2
in

, Xo =

∫ x ρω

(1−M2)A
dx+Xin (19)

Ro+iXo gives the exact transfer impedance of an incompressible flow at the
limit of M→0 and He→0. For a compressible flow, RoA

ρc
is O(M) and XoA

ρc
is

O(He), which are also the leading orders for RA
ρc

and XA
ρc

respectively. For a
leading-order analysis it is desirable to decouple the transfer resistance and
transfer reactance equations from each other so that they can be examined
separately. To this end X appearing in the RHS of Eq. (B.2) is substituted
with Xo, and R in the RHS of Eq. (B.3) with Ro. Additionally, the nonlinear
termX2 in Eq. (B.3) is replaced byXoX which is linear. It is further assumed
that Rx,u is negligible. Thereupon one arrives at the following equations:

dR

dx
= ṁ

d

dx

(
1

A2

)
− 2

dM2

dx
R +

2k

1−M2
· (Xx,u +Xo)A

ρc
·R (20)

dX

dx
=

ρω

(1−M2)A

[
1−

(
RoA

ρc

)2

+

(
Xx,uA

ρc

)2
]
− 2

dM2

dx
(Xx,u +X)

+
k

1−M2
· (2Xx,u +Xo)A

ρc
·X

(21)

Same as Eqs. (B.2) and (B.3), the initial conditions for Eqs. (20) and (21)
are R=Rin and X=Xin respectively at x=0. Based on the discussion above
on Zx,u it is identified from Eq. (20) that relative to Ro the influence of
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Zx,u on R is O
(
He(L) ·β

)
for the frequency range of interest here. On X the

influence of Zx,u is O
(
He(L) ·β, β2,M2β/He

)
relative to Xo. The influence of

Zx,u is therefore of second order in terms of combinations of the small scaling
parameters, M , β, He(L) and He. For a single injector passage this influence
is generally small considering the relevant values of these parameters.

In Eq. (21) the dominant term on the RHS is ρω/A(1−M2), integrating
to Xo. With respect to this leading-order term the relative orders of the terms
containing Xx,u have been discussed above and the remaining higher order
terms are O(M2, He2) compared to the leading-order term. Considering the
relative orders between the terms in Eq. (21), maximising X can be largely
achieved by maximising Xo. By observation of the form of Xo it can be
deduced that when the inlet and outlet areas as well as length of the duct
are fixed, the transfer reactance of the duct can be increased by reducing
the cross-section area of the duct portion between duct inlet and outlet. In
Eq. (20) the first term on the RHS integrates to Ro. The second term can
be approximated to the leading order of M2 by −2Ro

dM2

dx
, which can be

expressed as a complete integral in terms of M2. Its integration is therefore
mainly dependent upon the duct inlet and outlet conditions, and the influence
of area variation in between is small. The last term on the RHS of Eq.
(20) reflects the amplification of transfer resistance due to non-compactness,
which results in the growth of transfer resistance with frequency. To the
leading order this term is proportional to ωM(Xx,u+Xo). For the frequency
range of interest here Xx,u+Xo increases with x and is negative only within
a small interval of the integration range [0, L]. Since contracting the duct
portion between inlet and outlet increases Xo (and therefore Xx,u +Xo), it
reduces the x-interval of negative Xx,u +Xo at the same time. Meanwhile,
decreasing A also lead to higher M . Based on the above, reducing the cross-
section area of the duct portion between duct inlet and outlet promotes the
growth of transfer resistance with frequency. Eqs. (20) and (21) can be
solved analytically. However, the solutions are lengthy and do not provide
more information than the equations themselves as far as the influence of the
relevant parameters, i.e. Zx,u and A, is concerned. For conciseness they are
given in Appendix B without further discussion.

In a practical problem, the duct external dimensions, i.e. Ain, Aout (outlet
area), and L, are often constrained by factors such as base flow loss and geo-
metrical confinement, etc. The above discussion on duct transfer impedance
suggests that when Ain, Aout, and L are fixed, Z is increased by reducing the
cross-section area of the duct portion between inlet and outlet. This may
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be illustrated by applying Eqs. (16) and (17) to the three duct geometries
depicted in Fig. 9, namely ducts with a contraction, a uniform cross-section
and a bulge respectively. The cross-section areas at the duct inlet and outlet
are fixed to that of the passage inlet, and the duct length is similar to that of
the injector passage. For duct (a) in Fig. 9 the cross-section area decreases
to 0.5Ain in the central half of the duct. In contrast, the cross-section area
is expanded to 1.5Ain at the same part of duct (c). A half cosine function
is adopted for smooth transition of the cross-section areas in both ducts. At
all the three duct inlets, the base flow states are the same as at the injector
passage inlet and the inlet impedance (Zin) as calculated in Section 3.2.1 is
applied as a representative duct inlet impedance. The upstream impedance
condition, Zx,u, is defined based on the upstream chamber used by Stow and
Dowling in [3], which is subject to the choked inlet condition and of the
dimensions Lp = 0.1m and Ap =0.015m2 (per injector). It is given as:

Zx,u = ρpcp

(1 +Mp) exp
(

i kLp

1−Mp

)
+ (1−Mp) exp

(
−i kLp

1+Mp

)
(1 +Mp) exp

(
i kLp

1−Mp

)
− (1−Mp) exp

(
−i kLp

1+Mp

) (22)

where the subscript ‘p’ denotes conditions in the chamber. Because Zx is not
affected by downstream conditions, it is sufficient in the current example to
only consider a domain terminating at x=L.

The duct transfer impedance is obtained by solving Eqs. (16) and (17)
and calculating Z = Zx,out−Zx,u. The results are presented in Fig. 10 for
comparison. The base flow axial velocity at the inlet is adopted as the velocity
scale for normalisation such that Rin is normalised to approximately one.
The frequency range of interest in the current study corresponds to 0.08<
kL < 0.4. The results in Fig. 10 show that, in accordance with the above
proposition, a substantial increase in both the transfer resistance and transfer
reactance is achieved by contracting the cross-section of the duct middle
portion without altering the external dimensions of the duct. For comparison
Zx,u is also plotted in Fig. 10. As indicated above, Rx,u is almost negligible for
the relevant frequency range. Meanwhile the frequency at which X=−Xx,u

corresponds to the resonance frequency of the duct and upstream chamber
combined.

To examine the influence of Zx,u, the duct transfer impedance was re-
calculated for duct (a) assuming Zx,u = 0 and compared with that given in
Fig. 10. The results are plotted in Fig. 11 and the influence of Zx,u on Z
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is shown to be small, as discussed above. For completeness the duct trans-
fer impedance evaluated with Eq. (B.4) is also included in Fig. 11. Both
the transfer resistance and transfer reactance are close to the exact values
obtainable by solving Eqs. (16) and (17).

It is indicated in Section 3.2.1 that finiteness of the upstream chamber has
negligible effect on Rin but lowers Xin by reducing the inlet end correction.
To examine the influence of such an inlet reactance change, the transfer
impedance of ducts (a) and (b) are recalculated with Zx,u and Rin unchanged
whilst Xin is lowered by 40% following the discussion in 3.2.1. The difference
in transfer impedance between ducts (a) and (b), ∆Z=∆R+i∆X=Z(a)−Z(b)

where the subscripts denote the corresponding duct, is compared with that
calculated with the transfer impedances shown in Fig. 10. The results are
plotted in Fig. 12. ∆R exhibits a slight drop due to reduced non-compactness
with smaller Lc, but there is almost no perceivable change in ∆X. The above
discussion regarding the effects of duct cross-section area on the duct transfer
impedance remains valid for different Zin of practical interests.

3.2.3. Propagation of Acoustic Waves through Bends

The unsteady flow between two neighbouring swirl vanes in the injector
passage resembles that through a bend which is connected with straight sec-
tions both upstream and downstream. In the review given by Rostafinski
[57] it is indicated that for a smooth bend of small cross-section, the evanes-
cent higher order modes created within and in the vicinity of the bend only
penetrate the straight sections for a short distance. For the frequency range
and swirl vane geometry considered in the current work the lowest high or-
der mode has decayed by more than 20dB at a distance of 0.8dv from the
bend, where dv is the pitch of swirl vane row. At the same time, the reflected
waves resulting from the bend are negligible. Therefore, as far as the funda-
mental mode is concerned, the bend can be practically treated as a length
measured along its centreline at a sufficiently low Helmholtz number. This
approximation is adopted in this paper, and the pathway between two neigh-
bouring swirl vanes is modelled as a lossless straight channel of an equivalent
length but with varying cross-section area. Accordingly the flow past the
front turning sections of the swirl vane row (zone II in Fig. 5) is treated
as quasi one-dimensional and solved numerically from Eqs. (16)-(17) as in
Section 3.2.2. The underlying geometric parameters, i.e. A and L, as well
as the base flow for this section of the injector passage, are established as
described in Appendix A. It is noted that the definition of A here is mostly
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geometrical because, except at the start and end points, determining the di-
rectionality of the wave front requires solving both the two-dimensional mean
flow and wave equations. Nevertheless the way A is defined for this section
of the injector passage has negligible influence on the transfer impedance of
the whole injector passage since it typically comprises only a small fraction
of the total passage length.

3.2.4. Propagation of Acoustic Waves through an Array of Flat Plates

As depicted in Fig. 5, the rear straight sections of the swirl vane row
are modelled by an infinite array of parallel flat plates of zero thickness (i.e.
zone III). Applying Green’s function in conjunction with the Wiener-Hopf
method, Heins solved the problem of the interaction between general plane
waves and such an array subject to either the Dirichlet condition [58] or the
Neumann condition [59] on the plate surfaces respectively. The more specific
scenario of sound propagation through blade rows with a mean flow was stud-
ied by Mani and Horvay [40] and Kaji and Okazaki [60] by different means.
Mani and Horvay [40] also applied the Wiener-Hopf method, while following
the dual integral equation approach. On the other hand, Kaji and Okazaki
modelled each blade with a distribution of doublets, which was solved for
numerically. More recently Palies et al. [38] and Candel et al. [39] revisited
the same problem considering only the fundamental acoustic modes. How-
ever, to match the sudden change of acoustic propagation direction across
the swirl vane trailing edges the higher order evanescent modes also need to
be taken in account. The simplistic analysis in [39] does not reproduce the
swirl angle dependence of acoustic propagation manifested in the exact an-
alytical results from [40] and [59]. The current work follows the approaches
of [40] and [59]. The solution given in [59] was for general wave propagation
and did not take into account any base flow present in an acoustic/fluid me-
chanics problem, whilst in [40] only the wave amplitudes were derived but
not the phase relations. In this subsection, the results from [40] and [59] are
combined to obtain the complete solutions for the fundamental modes of the
acoustically induced unsteady flow through the swirl vane row within the
injector passage.

An illustration of the infinite array of parallel flat plates representing the
rear straight sections of the swirl vane row is given in Fig. 13. The low Mach
number base flow is along the positive x-direction. In this study the incident
angle of the incident wave is equal to the swirl vane turning angle and also
denoted by θ, whereby α+θ=π/2 in Fig. 13. As remarked in Section 3.1.4,
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the base flow in zones III and IV is uniform. The following linear convective
wave equation can be derived from Eqs. (6)-(8):

1

c2

(
∂

∂t
+ U · ∇

)2

φ̃−∇2φ̃ = 0 (23)

At the same time, p̃ and φ̃ are connected by the following relation [61]:

p̃ = −ρ
(
∂

∂t
+ U · ∇

)
φ̃ (24)

The unsteady flow in zones III and IV combined is determined by solving
Eq. (23) subject to the Neumann boundary condition on the flat plates. The
general solution derived in [59] is suitable for the problem of still air. It is
adapted for the current case with the following transformations:

x = xt

√
1−M2, k = kt

√
1−M2, φ̂ = φ̂te

ikMx/(1−M2) (25)

where the variables with the subscript ‘t’ correspond to the variables appear-
ing in the wave equation solved in [59]. The angles in Fig. 13 are converted
accordingly as:

tanαt =
√

1−M2tanα, sinθt = −
√

1−M2sinθ

1−Mcosθ
(26)

By direct calculation it is found that no propagating diffracted waves exist
for the geometry and frequency range considered in this paper. Meanwhile,
the incident and reflected waves can be shown to travel parallel to ξ-axis
but in opposite directions because α+θ= π/2. Hence the solutions for the
propagating waves are given as:

φ̂ = Cφ exp

(
− ikx

M − 1

)
+Dφ exp

(
− ikx

M + 1

)
(x→−∞) (27)

φ̂ = Aφ exp

(
− ikξ

Msinα− 1

)
+Bφ exp

(
− ikξ

Msinα + 1

)
(ξ→∞) (28)

Eq. (27) describes the acoustic field between neighbouring plates up-
stream of the plate trailing edges (i.e. zone III in Fig. 5) and Eq. (28) is
for the free space downstream of the plate array (i.e. zone IV in Fig. 5). Aφ
and Cφ represent the upstream travelling waves in the corresponding regions.
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Bφ and Dφ are the downstream travelling waves. For φ̂ being a continuous
solution downstream of the array of plates, one has from [59] the following
scattering matrix between the waves:[
Bφ

Cφ

]
=

[
GI FE

FI GE

] [
Aφ
Dφ

]

=


iK̄∗+(σ2)

ktsin(2αt−θt)
−bK̄∗+(kt)

e−ikt(ρt−at)−1

iσ2K̄∗+(σ2)

ktsin(2αt−θt)
−ktbK̄∗+(kt)

e−ikt(ρt−at)−1


−1 

iK̄∗+(σ1)

ktsinθt

−bK̄∗+(−kt)
e−ikt(ρt+at)−1

iσ1K̄∗+(σ1)

ktsinθt

ktbK̄∗+(−kt)
e−ikt(ρt+at)−1


Aφ
Dφ

 (29)

where σ1 and σ2 are given as:

σ1 = ktcosθt, σ2 = ktcos(2αt − θt) (30)

and the split function K̄+ according to [58, 59] is given in Appendix C includ-
ing the definitions of ρt and at. The symbol ‘*’ denotes complex conjugate.

Eq. (29) represents an unsteady flow that negotiates the sharp turn from
the vane direction (x-direction) to the passage axial direction (ξ-direction)
without loss. This is true when the base flow is absent or entering the plate
array along the negative x-direction (i.e. corresponding to the swirl vane
leading edges instead). However, in the scenario considered here the base
flow leaves the plate array along the positive x-direction. Unsteady wakes
are formed downstream of the trailing edges of plates (i.e. swirl vanes) in
the presence of acoustic perturbation. A general approach to accommodate
wakes in a flow solution is by introduction of discontinuities in φ̂ across them,
which was applied by Mani and Horvay in [40]. Based on the Fourier trans-
forms given in [40], the scattering matrix between [Aφ Dφ]T and [Bφ Cφ]T is
modified as follows:[

Bφ

Cφ

]
=

[
GI,w FE,w

FI,w GE,w

] [
Aφ
Dφ

]

=

GI · 1+M cos θt
1+M cos(2αt−θt) FE · 1−M

1−M cos θt

FI · 1+M cos θt
1+M

GE

Aφ
Dφ

 (31)

where the matrix components differ from those in Eqs. (29) by factors arising
due to the additional pole associated with the unsteady shed wakes. Based
on the swirl vane row dimensions considered in the current study it is found
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that at a distance of 0.1dv from the swirl vane trailing edges the magnitudes
of the lowest high order evanescent modes are reduced to less than 2% of the
fundamental modes in the corresponding regions. This justifies the omission
of high order evanescent modes from the calculation of acoustic propagation.

The reflection and transmission coefficients for the incident wave Aφ are
defined respectively as:

RA = |Bφ/Aφ|, TA =
∣∣∣(Cφ√cos θ

)
/Aφ

∣∣∣ (32)

and the corresponding coefficients for Dφ are:

RD = |Cφ/Dφ|, TD =
∣∣∣Bφ/

(
Dφ

√
cos θ

)∣∣∣ (33)

By inspection of Eq. (31) and the split function K̄+ it can be seen that the
reflection and transmission coefficients are functions of the incidence angle
(or equivalently the swirl vane turning angle), θ, Mach number, M , as well
as the Helmholtz number, He(d) = kdv. RA, TA, RD and TD are plotted in
Fig. 14 against He(d) for the Mach number and swirl vane turning angle
considered in the current study. Additionally, the loss coefficients of acoustic
energy, calculated as ∆EA=1−R2

A−T 2
A and ∆ED=1−R2

D−T 2
D for Aφ and Dφ

respectively, are also included. The influence of the Helmholtz number on
the above acoustic coefficients is found to be very small since the wavelengths
of the acoustic waves considered here are much larger than the pitch (i.e. dv)
of plate array. The conversion of part of the acoustic energy into vorticity in
the unsteady shed wakes is demonstrated by the non-zero loss coefficients. It
is instructive to also examine the variations of the above acoustic coefficients
with respect to the base flow conditions θ and M . This is given in Appendix
D for completeness.

The dependence between Cφ and Dφ can be specified in terms of the
impedance condition, Zx,up, at a location upstream of the trailing edges of

the plates. For the simplified passage geometry in Fig. 5, Zx,up =Z
(3)
x,in at the

inlet of zone III and the following linear relation between Cφ and Dφ exists:

Zx,up

ρc
=
Z

(3)
x,in

ρc
=

Cφ
M−1

exp
(
i kLa

M−1

)
− Dφ

M+1
exp

(
i kLa

M+1

)
Cφ
M−1

exp
(
i kLa

M−1

)
+

Dφ
M+1

exp
(
i kLa

M+1

) (34)

where La is the length of the straight vane section included in the array. The
fundamental modes Bφ, Cφ and Dφ can then be determined in terms of Aφ
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from Eqs. (31) and (34). It is noted that downstream of the plate array
there exists a convective wave due to the unsteady shed wakes. It will be
demonstrated in Section 5 that this wave does not produce any pressure fluc-
tuation or contribute to the fluctuation of volume flux in the axial direction
of the injector. Hence the convective wave is not included in the calculation
of transfer impedance.

3.2.5. Outlet Impedance

At the passage outlet the air flow effuses into the downstream square-
sectioned duct as shown in Fig. 1 through a sudden expansion. Assuming
minimum pressure recovery along the passage and duct axial direction, the
following expression for Cσ can be obtained from Eq. (4) together with the
Borda-Carnot relation (see, e.g. [62]):(

1

Cσ

)2

− 1 =

(
Ad

Aout

− 1

)2

(35)

where the passage outlet area, Aout, is equal to Ain in the current study and
Ad is equal to the test duct cross-section area. The outlet resistance of the
injector passage, Rs,out, is then calculated by Eq. (5). It is negative and
offsets approximately 15% of Rs,in which is due to contraction at the passage
inlet. The outlet reactance is associated with an end correction, Lc,out. As the
flow speed in the downstream test duct is very low (<0.02Ma), it is estimated
using Eq. 14 with a being the side of square duct. Due to the confinement
of the downstream duct, Lc,out is found to be approximately 32% of the end
correction corresponding to Xrad calculated in Section 3.2.1 for the passage
inlet. Combining the above, the outlet impedance of the passage is given as:

Zout = Rout + iXout = Rs,out + i(ρωLc,out/Aout) (36)

3.3. Assembly of Wave Propagation for Complete Injector Passage

The complete solution of the unsteady passage flow associated with acous-
tic fluctuation is constructed by combining the results from Section 3.2. For
the experimental setup described in Section 2 the upstream impedance con-
dition is Zx,u =0. The acoustic impedance at the inlet of zone I is therefore

Z
(1)
x,in = Zin, where Zin is estimated in Section 3.2.1. Although the current

calculation is based on the experimental setup, both Zx,u and Zin can be
substituted by the ones that match the engine condition if the combustor
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design is given. The acoustic impedance at the end of zone I, Z
(1)
x,end, is cal-

culated by solving Eqs. (16) and (17) with A = Ain. Across the interface
between zones I and II a jump in transfer resistance is added to account for
the aforementioned concentrated hydrodynamic loss. This is given as follows
by combining Eqs. (2), (4) and (5):

∆RLE =
ṁ (1− η2

a)

A2
incos2θ

(37)

The acoustic impedance at the inlet of zone II is then given as Z
(2)
x,in =Z

(1)
x,end+

∆RLE. Thereupon the acoustic impedance at the end of zone II, Z
(2)
x,end, is

determined by solving Eqs. (16) and (17) with A defined as in Appendix A.
The flow is continuous at the interface between zones II and III. The acoustic
impedance at the inlet of zone III is Z

(3)
x,in =Z

(2)
x,end. When the incident wave,

Aφ, is specified, the fundamental modes Bφ, Cφ and Dφ in zones III and
IV are solved for in terms of Aφ using Eqs. (31) and (34). The acoustic
impedance at the end of zone IV (passage exit) is then obtained as:

Z
(4)
x,end = ρc

(1 +M cos θ)Ãφ,4 + (1−M cos θ)B̃φ,4

(1 +M cos θ)Ãφ,4 − (1−M cos θ)B̃φ,4

(38)

Ãφ,4 = Aφ exp

(
− ikL4

Msinα− 1

)
, B̃φ,4 = Bφ exp

(
− ikL4

Msinα + 1

)
where L4 is the length of zone IV. It is noted that for the calculation of Z

(4)
end

the actual value of Aφ is not important and can be specified to any convenient
value. The outlet impedance of the injector passage is estimated as outlined
in Section 3.2.5. Since Zx,u =0 in the current setup, the transfer impedance of

injector passage is determined as Z=Z
(4)
x,end+Zout−Zx,u =Z

(4)
x,end+Zout. Given

the test conditions and passage geometric information, the only parameter
required in the whole calculation is ηa.

The passage transfer impedance of calculated as above is plotted in Fig.
15 together with those obtained from experiments and CFD simulations,
showing all three data sets in good agreement. The transfer impedance
at the quasi-steady condition (i.e. St→ 0) is resistive only and composed
of three parts. The first is associated with the flow acceleration through
the injector passage and the subsequent dump loss when the flow exits the
injector passage. It is equal to Rs,in +(ṁ/A2

out)− (ṁ/A2
in)+Rout, which is
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essentially (ṁ/A2
out)+Rout here, and accounts for 37% of the quasi-steady state

transfer impedance, Zss, for the injector passage considered in this paper.
Secondly, the contribution from the flow loss within the passage is given by
Eq. (37) and constitutes 42% of Zss. The remaining part (21%) of Zss is
due to unsteady vortex shedding at the swirl vane trailing edges. As shown
in Fig. 14, the analytically estimated acoustic transmission and reflection
coefficients remain essentially constant in the frequency range considered
here, implying that the conversion of acoustic energy into unsteady shed
wakes at the swirl vanes trailing edges is largely independent of the frequency
of acoustic perturbation. This suggests that the rise of transfer resistance
with frequency, as predicted by the above analytical approach, is mainly due
to the effects of compressibility and acoustical non-compactness discussed in
Section 3.2.2. Such effects are only notable at high frequencies, for example,
at St=0.95 they contribute 21% of the total transfer resistance of the injector
passage studied here. The transfer resistance due to flow acceleration and
dump loss is mainly controlled by Aout which is generally subject to the
requirement of delivering the nominal air flow rate without causing excessive
pressure drop across the injector passage. Meanwhile, the transfer resistance
associated with unsteady vortex shedding at the swirl vane trailing edges is
determined by θ which will be mainly designed for flame stabilisation. On
the other hand, the transfer resistance due to aerodynamic loss within the
injector passage occurs mainly across the swirl vane row and is expected
to be reduced substantially with an improved aerodynamic design. As the
passage cross-section area is mostly constant, one can obtain from the transfer
reactance an effective length, Leff = Ain

ρ
· dX

dω
, for the injector passage. From

the analytical estimation it is found to be approximately 1.46L where L is
the passage length measured along the injector axis. The end corrections
at the inlet and outlet amount to 0.3L and 0.1L respectively. Between the
swirl vanes the acoustic waves travel at an angle inclined to the injector axis.
This extends the acoustic path within the injector passage and contributes to
the remaining difference between Leff and L. It is indicated in Section 3.2.1
that the inlet end correction of the same injector passage in a gas turbine
environment is expected to be lower than that in the current experimental
setup. However, following the estimation in Section 3.2.1 this difference in
Lc is less than 10% of Leff and does not affects the current analytical study
on the acoustically induced unsteady flow within the injector passage.

In a preliminary design stage the aerodynamic loss within the injector
passage is usually estimated, for example, by empirical correlations. This
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is the main source of uncertainty in the estimation of ηa which is the single
external parameter required for the transfer impedance calculation in the cur-
rent section. This uncertainty is expected to decrease with the aerodynamic
loss. In view of the dependence of transfer resistance on ηa, the prediction of
transfer resistance as described above is in general as accurate as the estima-
tion of base flow aerodynamic loss. On the other hand, the transfer reactance
is mainly determined by the passage geometry and the influence of base flow
is O(M2). The prediction of transfer reactance is therefore insensitive to ηa.
Because the aerodynamic efficiencies of all the preliminary passage designs
will be estimated using a common method, the modelling approach presented
in the current study for the acoustically perturbed unsteady flow through the
injector passage can be applied in an early design stage to provide representa-
tive quantitative comparisons for the transfer impedance of different passage
designs.

4. Effects of Swirl Vane Row Design Parameters

Following its validation with the experimental and CFD data, the ana-
lytical approach described above to estimate the passage transfer impedance
is applied to examine the influences of certain general parameters of the
swirl vane row (specifically, pitch and chord length) on the overall transfer
impedance of injector passage. In an actual design process, an appropriate
pitch-to-chord ratio may be maintained to achieve the desired turning of the
passage flow. Such a design constraint only entails setting up the correspond-
ing simplified geometry. Nonetheless, in the current analysis the dependency
between pitch and chord length has been disregarded in order to examine the
effects of these two parameters independently. The current section is con-
cerned with the swirl vane row design only and the cross-section of injector
passage remains the same as the baseline configuration.

First the swirl vane row pitch is doubled whilst other dimensions remain
unchanged, equivalent to reducing the vane count by half. The influence of
chord length is assessed by extending the rear straight section of the swirl
vane such that the total vane length measured along the injector axis, Lv, is
doubled, while maintaining the original vane count. The transfer impedances
for these two geometric variations are estimated with the analytical approach
illustrated above assuming ηa is unchanged. The results are presented in
Fig. 16 in comparison with the baseline case. In addition, the trends for the
variation of transfer impedance with pitch and chord length have also been
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examined at a fixed frequency by changing one of the two design parameters
over a range of values with the other kept at the baseline value. The results
for St = 0.76 are plotted in Fig. 17, where the letter ‘B’ in the subscript
denotes baseline values. Note that in these calculations the chord length is
modified by shortening or extending the rear straight sections of swirl vanes
only.

It can be seen that extending the rear section of swirl vane tends to in-
crease both components of the transfer impedance, more notably the transfer
reactance, with the physical overall length of the passage unchanged. The
effects of lengthening the swirl vane by the aforementioned manner are three-
fold. Firstly between the rear sections of two neighbouring vanes, i.e. zone
III in Fig. 5, the acoustic waves travel in a direction with an inclined angle
to the injector axis and thereby over an effective length longer than the axial
length. Moreover, in zone III the base flow is of the highest velocity and the
effective passage sectional area normal to the acoustic propagation directions
(Ain cos θ instead of Ain) is the smallest within the whole passage. According
to the discussion in Section 3.2.2 these three factors are all expected to result
in higher transfer impedance. On the other hand, a larger vane pitch is shown
to have negligible effect on the transfer resistance but lead to a slight drop in
the transfer reactance. It has been shown in Fig. 14 that for the frequency
range of interest, the interaction between the acoustic waves and the swirl
vane row, i.e. transmission and reflection, is mostly invariant with regard to
the change in pitch considered here. Hence the transfer impedance is mainly
determined by the apparent effective length observed by the travelling waves.
With the mean centre streamline for zone II defined as in Appendix A, the
combined effective length for zones II and III is reduced for a larger pitch.
Therefore a gradual decrease in transfer reactance is predicted.

The swirl vane turning angle is another important design parameter for
the swirl vane row. In general it is decided mainly by the requirements on
air-fuel mixing and flame stabilisation. Nonetheless, it is instructive to also
examine the variation of transfer impedance with swirl vane turning angle.
With all the other geometric parameters fixed including the passage cross-
section area, the passage transfer impedance was estimated for three different
swirl vane turning angles, namely 0.8θB, θB and 1.2θB, where θB is the baseline
value. The hydrodynamic loss associated with the base flow in the passage is
in general a function of swirl. Because estimation of the base flow efficiency
is not within the scope of the current study, this factor is disregarded here to
confine the problem to the physics described by the analytical solutions dis-
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cussed in Section 3.2. Accordingly the flow is assumed lossless (ideal) within
the entire passage and correspondingly, ∆RLE = 0. The results obtained
based on this assumption are presented in Fig. 18. The increase in transfer
resistance with larger swirl vane turning angles corresponds to an increased
amount of acoustic energy being transferred to the velocity fluctuations asso-
ciated with the unsteady shed wakes (mainly the transverse/circumferential
velocity component as demonstrated in Section 5). On the other hand, the
change in transfer reactance caused by the variation of swirl vane turning
angle is negligible. It is noted that the passage cross-section area often needs
to be adjusted in a practical design based on the swirl vane turning angle in
order to achieve the desired air flow rate. Although it is not included in the
current analysis for isolation of the effects of θ from other geometric design
parameters, such a constraint can be applied in the actual design process by
adjusting the simplified geometry for the analytical calculation accordingly.

5. Convective Wave and Unsteady Shed Wakes

Because of the assumptions of inviscid flow and zero swirl vane thickness,
the idealised steady state base flow in the simplified geometry of Fig. 5 leaves
the swirl vane trailing edges uniformly. However, unsteady shed wakes are
formed in the presence of acoustic perturbations due to the sudden misalign-
ment between the acoustic wave propagation directions and the base flow
direction near the swirl vane trailing edges. As a result of the unsteady shed
wakes, a significant part of the acoustic energy is converted into a fluctuat-
ing circumferential velocity component. It has previously been shown (see
for example [18, 37, 38, 39]) that while the bulk axial velocity fluctuation is
mostly of acoustic nature and propagates at the speed of sound, the circum-
ferential velocity fluctuation is convected at the base flow velocity. This was
also demonstrated in the CFD simulations of [19] by tracing the unsteady
flow field along a streamline of the base flow through the injector passage.

The convective wave associated with the unsteady shed wakes is often
ignored in acoustic studies (e.g. [40, 61]) as it does not contribute to any
pressure disturbance. However, this convective wave is an integral part of the
acoustically induced unsteady flow within the injector passage, and its the
characteristics is of importance from the thermoacoustic perspective because
the flow swirl fluctuation induced by the convective wave can affect the com-
bustion process downstream. Palies et al. [38] presented a phenomenological
analysis assuming that the unsteady vorticity generated downstream of the
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swirl vane row results in only a single fluctuating velocity component in the
circumferential direction and this fluctuating velocity is uniform in the cir-
cumferential direction. However, the vorticity field derived from the analysis
in [38] implies the generation of vorticity within the flow itself, whilst in a
non-reacting flow vorticity can only be produced on a solid boundary and
convected by the base flow (see, e.g. [62]). In view of this difficulty, the prob-
lem is revisited here by considering a more complete functional form of the
convective wave. On account of the hydrodynamic nature of the unsteady
shed wakes, the oscillating flow is treated as incompressible in this section
without loss of the quintessence of the problem. The schematic of unsteady
flow near the swirl vane trailing edges for the incompressible scenario is re-
produced in Fig. 19. The base flow is along the positive x-direction and
of a uniform velocity U . The upstream condition is the velocity fluctuation
ũup = ûupe

iωt along the x-axis. The same general assumptions as those in
Section 3.2.4, i.e. inviscidity, periodicity and compactness of the wakes, apply
here.

The equation to solve for a small perturbation incompressible unsteady
flow is the Laplace equation ∇2φ̃=0. The periodic condition downstream of
the swirl vane row is φ̃(ξ, η) = φ̃(ξ, η + dv), or equivalently φ̃(x, y) = φ̃(x +
dv sin θ, y+dv cos θ) in the x−y coordinates. Across the wakes the conditions
of continuity in pressure and the velocity component normal to the wakes
apply. Instead of a full derivation of the solution to the problem formulated
above, the current discussion is mainly concerned with its functional forms
for the region downstream of the swirl vane row (i.e. ξ > 0). The complete
solution of φ̃ = φ̂eiωt is comprised of components which are continuous or
discontinuous across the wakes. One obvious continuous solution is:

φ̂a = ûupξ cos θ + Cξ (39)

where Cξ is a constant. This solution corresponds to the axial velocity fluc-
tuation downstream of the swirl vane row. The associated unsteady velocity
is ûξ,a = ûup cos θ along the ξ-axis. When finite pressure is required for ξ→∞,

the remaining continuous solutions of φ̂ that satisfy the periodic condition
are of the form:

φ̂e =

[
En sin

(
2nπ

dv

η

)
+ Fn cos

(
2nπ

dv

η

)]
exp

(
−2nπ

dv

ξ

)
(40)

which decays quickly over a short distance in the positive ξ direction. Thus
Eq. (39) is the only persistent continuous component in the region of ξ>0.
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By substituting the corresponding pole into the Fourier transform given
in [40] one can prove that the unsteady shed wakes are convected at the base
flow velocity. The solution representing this convective wave is of the form:

φ̂w =
(
Cwe

kwy +Dwe
−kwy

)
e−ikwx, kw =

ω

U
(41)

where the constants Cw and Dw assume different values in different regions
separated by the unsteady shed wakes downstream of the swirl vane row.
Without loss of generality, the region labelled with ‘2’ in Fig. 19 is considered.
From Eq. (24) one can easily verify that φ̂w does not contribute to the
pressure fluctuation. The continuity condition for pressure across the wakes
is automatically satisfied by φ̂w. Application of the continuity condition for
the unsteady normal velocity across the wake together with the periodic
condition leads to the following relation between Cw and Dw:(

Cwe
kwdv cos θ −Dwe

−kwdv cos θ
)
e−ikwdv sin θ = Cw −Dw (42)

The Kutta condition at the swirl vane trailing edges is that the flow

direction is parallel to the swirl vane surfaces, i.e. ûy= ∂φ̂
∂y

=0 at the swirl vane
trailing edges, so that the unsteady flow leaves the swirl vane trailing edges
smoothly without sudden change in the flow direction. When this condition
is satisfied by the sum of the two persistent modes, i.e. Eqs. (39) and (41),
it is expressed as follows at (x, y)=(0, 0), or equivalently (ξ, η)=(0, 0):

kw(Cw −Dw)− ûup sin θ cos θ = 0 (43)

which also holds for (x, y)=(dv sin θ, dv cos θ), or equivalently (ξ, η)=(0, dv),
due to periodicity. Accordingly, the evanescent solutions, Eq. (40), should
satisfy a Neumann type of condition at the same locations, which are not
considered further. It is recognised that Eqs. (42) and (43) determine the
values of the constants Cw and Dw in Eq. (41) uniquely. This in turn
completes the solution given by Eq. (41). The unsteady velocity components
in the ξ and η directions are obtained respectively as:

ûξ,w =− kwCw(sin θ + i cos θ)e−kw(sin θ+i cos θ)(ξ+iη)

+ kwDw(sin θ − i cos θ)ekw(sin θ−i cos θ)(ξ−iη)
(44)

ûη,w =− ikwCw(sin θ + i cos θ)e−kw(sin θ+i cos θ)(ξ+iη)

− ikwDw(sin θ − i cos θ)ekw(sin θ−i cos θ)(ξ−iη)
(45)
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The amplitude profiles of both ûξ,w and ûη,w remain unchanged while
they are transported downstream by the uniform base flow. These profiles
at any fixed ξ location are plotted against the η coordinate in Fig. 20 for
two example frequencies, St = 0.38 and 0.66. Because the η-coordinate of
region 2 at a ξ location is ξ tan θ to ξ tan θ+dv, the horizontal axes in Fig.
20 are chosen as η−ξ tan θ normalised with dv. The amplitude of ûξ,w(ξ, η) is
normalised with |ûξ,a| and that of ûη,w(ξ, η) with |ûξ,atanθ|. The axial velocity
fluctuation ûξ,w due to the unsteady shed wakes is shown to be significantly
smaller than the unsteady bulk axial flow ûξ,a. Moreover, through direct

integration one can show
∫ ξ tan θ+dv
ξ tan θ

ûξ,w(ξ, η)dη= 0 by invoking the relation

of Eq. (42). This indicates that the solution φ̂w does not contribute to the
net unsteady flux through a plane normal to the ξ-axis (which aligns with the
passage axis). On the other hand, the transverse velocity fluctuation (ûη,w)
due to the compact unsteady shed wakes is more significant and mostly equal
to the transverse component of the unsteady bulk flow through the swirl vane
row. It corresponds to the circumferential velocity fluctuation downstream
of the swirl vane row which was revealed in the CFD simulations of [19].

Following the above discussion, the persistent unsteady flow downstream
of the swirl vane row is essentially determined by the sum of φ̂a and φ̂w.
In [51] the unsteady velocities were examined from the CFD solutions along
a circumference at the median radius of the passage exit. The results for
St= 0.38 and 0.66 are presented in Figs. 21 and 22 together with the un-
steady velocities calculated from φ̂a + φ̂w at the same axial location. The
reference unsteady axial velocity for the CFD results is that averaged over
the whole circumference, whereas for the analytical results it is ûξ,a. The
same normalisation as in Fig. 20 is applied in the amplitude plots, while
the phases of the unsteady velocities are calculated with respect to that of
the corresponding reference unsteady axial velocity. The unsteady velocities
obtained from CFD simulations exhibit a much more pronounced variation
around the circumference of the injector passage. The dominant factor is
the significant width of the wakes, which results from the finite swirl vane
trailing edge thickness and the wake growth due to viscous diffusivity and tur-
bulence. Notwithstanding, the qualitative signatures related to the idealised
shed wakes can still be retrieved. The actual unsteady flow field downstream
of the swirl vane is more involved than the inviscid simplification here. The
main complications include the wakes in the base flow itself and the turbu-
lence. These are in general hydrodynamic phenomena and the conversion
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of acoustic energy into vorticity is mostly a local event taking place at the
trailing edges of the swirl vanes. Therefore it is argued that the evolution of
the shed wakes and the associated flow unsteadiness have only small effects
on the propagation of acoustic waves within the injector passage.

In contrast to the analysis in [38], it is demonstrated above that the cir-
cumferential velocity fluctuation exhibits a notable variation in phase along
the transverse/circumferential direction, whilst associated with the convec-
tive wave there also exists an unsteady axial velocity component (i.e. ûξ,w).
From the amplitude and phase plots in Figs. 20 to 22 one can infer that
the unsteady shed wake at a swirl vane trailing edge is originated from the
phase difference between the unsteady flows on either side of the swirl vane.
The convective wave leads to circumferential variation of the unsteady flow
(in both the axial and circumferential velocity components) downstream of
the swirl vane row, which becomes more significant at high frequencies. Be-
cause of the relatively large main passage radius for a lean burn injector as
mentioned in Section 2, such a periodic non-uniformity in the unsteady pas-
sage flow can result in distinctive structures in the unsteady flame response,
which can be of importance to the stability of the combustion process. This,
however, is outside the scope of the current study and will not be considered
further here. Another consequence of the convective wave is the flow swirl
fluctuation, induced by the unsteady circumferential velocity. Its influence
on the combustion process and its control through axial repositioning of the
swirl vane row have been discussed in [20] and [38].

6. Conclusions

This paper presents an analytical study for the acoustically perturbed
unsteady flow inside a generic gas turbine injector passage based on invis-
cid theory. The solution for the unsteady flow is constructed from those for
the elementary geometrical features comprising the passage. The transfer
impedance of the injector passage is calculated from this solution and shows
good agreement with that obtained from experimental measurements and
CFD simulations. One primary objective in injector design for acoustic per-
formance is to reduce the sensitivity of injector flow to acoustic perturbations,
and this can in principle be achieved by improving the transfer impedance of
individual passages. The upstream acoustic condition for the fuel injector in
a gas turbine engine is usually imposed by a finite-sized chamber whose inlet
is connected to the compressor exit. In this work it is shown that the influence
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of such an upstream condition on the transfer impedance of injector passage
is in general small for the frequency range of relevance to thermoacoustic
instability. The analytical solution for the unsteady flow demonstrates that
part of the acoustic energy is dissipated through unsteady vortex shedding
at the swirl vane trailing edges, which increases with the swirl vane turning
angle and base flow Mach number. This contributes to a considerable part of
transfer resistance on top of that associated with the viscous damping within
the passage and the acoustic dissipation at the passage exit due to sudden
expansion. In addition, it is shown that compressibility and the acoustical
non-compactness of injector passage lead to a notable rise of transfer resis-
tance as the frequency increases. Meanwhile, the transfer reactance is mainly
a function of the length of effective propagation path for acoustic waves and
the passage cross-section area.

For an injector passage design, the passage inlet/outlet areas and the
swirl vane turning angle are mainly specified according to the requirements
on base flow under nominal operating conditions. Meanwhile, the passage
length will be subject to the geometric constraints on the injector size. Based
on the findings from the current work, two design practices are proposed with
the objective to attain higher transfer impedance for the injector passage
under the aforementioned design specifications (i.e. the inlet/outlet areas
and length of the passage as well as the swirl vane turning angle have been
fixed and will not be changed during the acoustic design):

1. It is recommended to minimise the cross-section area of the part of
passage between inlet and outlet. This in general implies contraction
downstream of the inlet followed by (smooth) diffusion to restore the
passage cross-section area to the specified value at the outlet. Since the
passage outlet area is unchanged, the desired base flow rate is largely
retained under the nominal operating pressure drop across the passage.

2. For an axial swirler it is recommended to maximise the length of the
swirl vane section which is at an inclined angle with respect to the
injector axis. To accommodate a longer swirl vane within the limit
of specified passage length this can also suggest turning the air flow
within the passage as early as possible. An example of more ambitious
design is to over turn the air flow in the front part of the passage before
restoring flow swirl to the designed level in the rear part of the passage.

The viscous loss within the passage is expected to increase as a result
of the design modifications guided by the two designed practices suggested
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above. Generally this can be minimised with optimised aerodynamic de-
signs such that the desired acoustic characteristics of injector passage can be
achieved with only minor compromise on the base flow efficiency.

In [19] the axial and circumferential velocity fluctuations downstream of
the swirl vane row were analysed from the results of CFD simulations. Follow-
ing this study the current paper provides a functional analysis on the convec-
tive wave associated with the unsteady shed wakes downstream of the swirl
vane trailing edges. It is demonstrated that the unsteady shed wakes are orig-
inated from the phase difference between the acoustically induced unsteady
flows on either side of each swirl vane. The convective wave comprises fluctu-
ating axial and circumferential velocity components which are convected with
the base flow. The convective wave does not contribute to any pressure fluc-
tuation or unsteady volume flux through the injector passage. However, the
associated unsteady velocities exhibit frequency-dependent variations in the
circumferential direction, which become more significant at high frequencies.

By taking into account the main geometric features of the injector pas-
sage, the analytical approach presented in this work provides a cost-effective
means to assess the general acoustic characteristics of a preliminary injector
passage design of the axial swirler type, for example, in terms of transfer
impedance. This enables the acoustic performance of injector passage to be
included during exploration of a broad design envelope. The external input
required in the calculation is the coefficient of aerodynamic efficiency of in-
jector passage, which can often be estimated empirically in an early design
stage. With modern computing resources it can also be obtained from a rou-
tine steady RANS calculation efficiently. The current analytical calculation
could be extended to predict the transfer impedance of a multi-passage in-
jector, although in such a case the interaction between the unsteady flows at
different passage inlets and outlets also needs to be modelled, for example,
by modification of the method used in [55].
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Appendix A. Base Flow in Simplified Passage Geometry

The external setup conditions to be specified include the total pressure
p0, and total temperature, T0, in the plenum and the nominal pressure drop,
∆p, across the injector passage. Ignoring any heat transfer, the total temper-
ature is equal to T0 throughout the whole passage. The parameter required
for the passage base flow is ηa. Given these parameters and the simplified
passage geometry, the base flow conditions M , p and T can be determined.
Subsequently ρ and c are obtained from p and T for an ideal gas, and U is
equal to Mc.

For low Mach number, the following base flow conditions at the passage
inlet are obtained assuming Cσ=1:

Min ≈
Aoutηa cos θ

Ain

√
2∆p

γp0

, pin ≈ p0 −∆p

(
Aoutηa cos θ

Ain

)2

, Tin ≈ T0

(A.1)
ρin, cin and Uin are found afterwards as described above. The base flow
conditions are constant in zone I, i.e. M1 =Min, p1 = pin, T1 = Tin, ρ1 = ρin,
c1 =cin and U1 =Uin, where the number in subscript indicates the zone.

As discussed in Section 3.2.3 the flow through the front turning section
of the swirl vane row, i.e. zone II, can be treated as quasi one-dimensional.
The geometrical relation for definition of the varying cross-section area, A,
along the mean streamwise distance, x, is illustrated in Figs. A.1 and A.2.
The turning part of the swirl vane is modelled with a circular arc, followed
by a straight section that is tangent to it. In Figs. A.1 and A.2 the origin
is at the centre of the circle which the circular arc of the lower swirl vane
belongs to. lv is the length of the turning part of the swirl vane measured
along the axial direction of the injector. The mean streamline (denoted by
the dash-dot line) is formed by the centre points of the segments of dashed
lines between the swirl vanes as shown in Fig. A.1. A is given as follows:

A = Ain
ax − av

dv

(A.2)

where dv is the pitch, i.e. midspan space between adjacent vanes. It is noted
that the definitions of x and A above are approximate and not unique.

As assumed in Section 3.1.2, the total loss within the injector passage
is modelled as a concentrated hydrodynamic loss at the leading edge of the
swirl vane, calculated from ∆p and ηa with Eq. (2). For the current case
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the change in Mach number across the swirl vane leading edges due to ∆ptot

is small enough to be considered negligible. Based on this argument the
base flow conditions M2, p2 and T2 in zone II are determined from basic gas
dynamics as below:

M2A(
1 + γ−1

2
M2

2

) γ+1
2(γ−1)

=
MinAin(

1 + γ−1
2
M2

in

) γ+1
2(γ−1)

p2 =
p2,tot(

1 + γ−1
2
M2

2

) γ
γ−1

, T2 =
T∞

1 + γ−1
2
M2

2

(A.3)

ρ2, c2 and U2 are then calculated from M2, p2 and T2 accordingly. The base
flow conditions are constant and uniform from the end of turning section of
the swirl vane row up to the exit of injector passage. Therefore, M3 =M4 =
M2,end, p3 = p4 = p2,end, T3 = T4 = T2,end, ρ3 = ρ4 = ρ2,end, c3 = c4 = c2,end and
U3 =U4 =U2,end. For conciseness the notation of zone number for the base
flow conditions is suppressed in the main text.

Appendix B. Differential Equation for Impedance in Quasi One-
dimensional Flow

Using the substitution Zx = Z+Zx,u, the following first order Riccati
equation for the duct impedance can be obtained from Eqs. (16) to (18):

dZ

dx
=ṁ

d

dx

(
1

A2

)
+ i

ρω

(1−M2)A
·

[
1−

(
ZA

ρc
+
Zx,uA

ρc

)2
]

− 4− (γ + 1)M2

1−M2
· 1

2 + (γ − 1)M2
· dM2

dx
· (Z + Zx,u)

+
ρU

(1−M2)A
· γ − 1

γ
· 1

p
· dp

dx
·
(
ZA

ρc
+
Zx,uA

ρc

)2

(B.1)

In Eq. (B.1) the first term on the RHS is related to area change, c.f. Eq.
(5) when Cσ=1. The second term can actually be derived from the acoustic
propagation within a uniform duct of infinitesimal length. The last two
terms are associated with density change along the duct. Usually the base
flow pressure variation within the duct is much smaller than the absolute
pressure, making the last term mostly negligible compared to the other terms
(for example, it is O(M4) relative to the first term). Eq. (B.1) becomes
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singular at M→ 1, corresponding to the choked condition. The differential
equation for the duct transfer impedance can be obtained by substituting
Zx = Z+Zx,u into Eq. (B.1). Neglecting the last term on the RHS of Eq.
(B.1) and retaining the Taylor expansion of the third term up to the leading
order of M2, one arrives at the following equations for transfer resistance and
transfer reactance respectively:

dR

dx
= ṁ

d

dx

(
1

A2

)
+

2kA(R +Rx,u)(X +Xx,u)

ρc(1−M2)
− 2

dM2

dx
(R +Rx,u) (B.2)

dX

dx
=

iρω

(1−M2)A

[
1−

(
R +Rx,u

ρc
A

)2

+

(
X +Xx,u

ρc
A

)2
]
−2

dM2

dx
(X+Xx,u)

(B.3)
The initial conditions for Eqs. (B.2) and (B.3) are R=Rin and X =Xin at
x= 0 respectively. The following approximate solutions can be obtained for
R and X by solving Eqs. (20) and (21):

R =

∫ L
e
∫ x Pr(x′)dx′Qr(x)dx+Rin

e
∫ L Pr(x)dx

, X =

∫ L
e
∫ x Pi(x

′)dx′Qi(x)dx+Xin

e
∫ L Pi(x)dx

(B.4)

where,

Pr = ṁ
d

dx

(
1

A2

)
, Qr = 2

dM2

dx
− 2ω(Xx,u +Xo)A

γ(1−M2)p

Pi =
ρω

(1−M2)A

[
1−

(
RoA

ρc

)2

+

(
Xx,uA

ρc

)2
]
− 2

dM2

dx
+

2ωXx,uA

γ(1−M2)p

Qi = 2
dM2

dx
− ωXoA

γ(1−M2)p

Appendix C. Split Function K̄+ for Wiener-Hopf Decomposition

From [59], the split function K̄+ in Eqs. (29) is expressed explicitly as:

K̄+(w) =
M+(w)

L̄+(w) exp[−χ̄(w)]
(C.1)

L̄+(w) =
∞∏
n=1

(√
1− k2

t b
2

n2π2
− iwb

nπ

)
eiwb/nπ (C.2)
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M+(w) =
∞∏
n=1

(Γn + iΨn) exp

[
wat − ktρt − iwb

2πn
+ i
(π

2
− αt

)]
·
∞∏
n=1

(Γ′n − iΨ′n) exp

[
ktρt − wat − iwb

2πn
− i
(π

2
− αt

)] (C.3)

where,

at =
b

tanαt

, ρt = atcosθt + bsinθt

Γn =

√
sin2αt

(
1 +

ktρt

2πn

)2

−
(
bkt

2πn

)2

Γ′n =

√
sin2αt

(
1− ktρt

2πn

)2

−
(
bkt

2πn

)2

Ψn = cosαt

(
1 +

ktρt

2πn

)
− wb

2πnsinαt

Ψ′n = cosαt

(
1 +

ktρt

2πn

)
+

wb

2πnsinαt

The infinite products in K̄+ are calculated directly with the first 20 terms,
beyond which the change in the products is found to be less than 0.1%. It
can be shown that the factor function χ̄(w) is of the following form:

χ̄(w) = χ(w) + i
wb

π
= −i

wb

π

[(
αt −

π

2

)
cotαt − (ln2)sinαt

]
+ i

wb

π
(C.4)

where χ(w) is as specified in [58].

Appendix D. Variations of Reflection and Transmission Coeffi-
cients with Mach number and Incidence Angle for
Array of Flat Plates

The acoustic coefficients RA, RD, TA, TD, ∆EA and ∆ED for an infinite
array of flat plates are plotted in Fig. D.1 against the incidence angle with
He(d) =0.15 and the base flow Mach number kept at the operating condition
considered in this work. As expected, the reflection coefficients increase with
θ whilst the transmission coefficients decrease. At the same time, as the
ratio between the transverse/circumferential and axial velocity fluctuations
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increases with θ, one should also expect a higher proportion of acoustic energy
being converted into vorticity accordingly. This is demonstrated by the plots
of ∆EA and ∆ED. Similarly, the variations of the above acoustic coefficients
against M are examined by fixing He(d) = 0.15 and θ at the design value of
the swirl vane row considered in the current study. The results are presented
Fig. D.2. It is shown that the loss coefficients of acoustic energy increase
with the base flow Mach number. This corresponds to more vorticity energy
being convected downstream within a unit time due to a higher base flow
velocity.
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Figure 1: Schematic of experimental setup
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Figure 2: Computational domain and grid for CFD simulation of injectors
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Figure 3: Flow field in centre cross-plane of single passage injector [19]
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Figure 4: Transfer impedance of baseline single-passage injector configuration

Figure 5: Simplified geometry for analytical study
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(a) Baffled point source (b) Passage inlet plane

Figure 6: Inlet plane of injector passage as vibrating annular piston

Figure 7: Radiation impedance of flanged annular inlet
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Figure 8: Baseline passage inlet impedance

(a) Contraction (b) Uniform (c) Expansion

Figure 9: Straight ducts with varying cross-section areas
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Figure 10: Transfer impedance of straight ducts with varying cross-section areas

Figure 11: Influence of upstream impedance on transfer impedance of duct with contrac-
tion
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Figure 12: Influence of inlet reactance on transfer impedance change due to duct cross-
section contraction

Figure 13: Acoustic wave incident upon an infinite array of parallel flat plates
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Figure 14: Reflection and transmission coefficients as function of Helmholtz number

Figure 15: Analytical estimation of transfer impedance of injector passage
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Figure 16: Transfer impedances of passages with different chord and pitch of swirl vane
row

Figure 17: Variation of transfer impedance with vane length and pitch (St = 0.76)
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Figure 18: Variation of transfer impedance with change of swirl vane turning angle

Figure 19: Incompressible oscillating flow with swirl vane wakes
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(a) Axial (b) Transverse

Figure 20: Amplitude of velocity fluctuation due to shed wakes
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(a) Amplitude

(b) Phase

Figure 21: Axial velocity fluctuation at passage exit
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(a) Amplitude

(b) Phase

Figure 22: Tangential velocity fluctuation at passage exit
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Figure A.1: Geometric relations of turning section of swirl vane

(a) (b)

Figure A.2: Geometric relation for determination of A: (a) θx<θ
∗, (b) θx>θ

∗.
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Figure D.1: Reflection and transmission coefficients as function of incidence angle

Figure D.2: Reflection and transmission coefficients as function of base flow Mach number
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