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Abstract 

A series of graphene based conductive and anticorrosion coatings were developed in 

this project. Multi-layer coating consists of EPD pristine graphene coating, 

PU/graphene primer and PU/graphene topcoat was developed. A simple 

mechanical-chemical approach was suggested to fabricate graphene with low cost and 

high efficiency. XRD was used to characterize the exfoliation efficiency of graphite. 

TEM was used to examine the size of the graphene sheets. SEM was used to 

characterize the surface morphology of the coatings. The particle size of all the carbon 

materials used was characterised by Malvern particle sizer. FTIR and XPS were used 

to characterize the chemical composition of the graphene powder and the coatings 

fabricated. MDSC and FTIR were used to monitor the cure dynamic of PU. 

 

The proposed mechanical-chemical approach was cost effective and suitable for 

large-scale production of graphene. XRD results indicated that the graphite layers 

were exfoliated efficiently and TEM results confirmed the existence of graphene. 

EPD was used to deposit graphene and PP10 graphite on steel substrates. With fine 

control of the EPD conditions and thermal treatment, electrical conductive coatings on 

steel substrates were produced successfully. The best electrical conductivity was 10 

times higher than the electrical conductivity than steel substrate. The anticorrosion 

properties of the EPD coatings were not good due to their porous nature. Therefore, a 

polymeric protective coating is needed to improve the anti-corrosion properties. 

Hybrid filler was adopted in the PU nanocomposites and the performance of the 

nanocomposites reinforced by hybrid filler was the best. The conductive mechanism 

of the nanocomposites was proposed. From the results of FTIR and MDSC, graphene 

had catalytic effect and steric hindrance effect on the cure of PU where catalytic effect 

was more obvious at high cure temperature and steric hindrance effect was more 

dominated with high graphene loading. GO also showed catalytic effect and steric 

hindrance effect. In addition, the functional groups on the GO surface can participate 



 
 

 
 

in the reaction with PU. Therefore, the reaction mechanism was altered. From the 

results, the addition of excessive amount of filler can significantly affect the cure 

behaviour of two-part PU and even reduce the crosslink density and weaken its 

mechanical properties. 
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Chapter 1 Introduction 

Polymer nanocomposites are polymer matrices reinforced by nanofillers. 

Nanocomposites can be classified into three categories according to the dimensions of 

dispersed particle in nanoscale: such as spherical silica nanoparticles [1], carbon 

nanotube [2] and nano-clay [3].  Nanofillers have been widely used in the polymer 

industry for reinforcement of polymers. For example, the rubber used for engineering 

applications usually contains nanofillers for improving performance. Polyurethane 

(PU) is an extremely versatile material for engineering applications because the wide 

range of formulations and types of PU available. PU can find a broad range of 

industrial applications include: coating, elastomers, adhesives, medical devices, foam 

products and sealants [4]. The versatility of PU in different applications is due to the 

enormous selection of isocyanate, polyol and chain extenders. PU coatings can be 

found on different materials to improve their lifetime and appearance. Formulations 

and processing techniques were developed continuously according to the modern 

requirements of coating. PU coating consists of one-part and two-part systems in 

general. In terms of automotive applications, PU coating provide exterior high gloss, 

improves starch resistance, improved colour retention and excellent corrosion 

resistance. In the case of construction area, PU coatings are applied by spray coating 

method on building floors, concrete supports and steel trusses for improving durability, 

reducing maintenance cost and improving weathering resistance [5]. Although the 

properties of PU coatings are excellent, the requirements of different application are 

increased with the technology developed. Hence, the utilisation of filler in PU coating 

for superior properties is good way to develop the products that meet the high 

standards. 

 

The properties of fillers are important to the performance of nanocomposites. With 

application of appropriate fillers, the performance of a polymer matrix can be 
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enhanced dramatically. Graphene has received more and more attention since its 

discovery. Owing to the unique tightly packed sp
2
 bonded two dimensional 

honeycomb lattice, graphene processes many extraordinary properties such as electron 

transportation properties [6,7], mechanical properties [7–9], thermal properties [10], 

and barrier properties [11]. The potential applications of graphene are broad, including 

energy storage devices [12], coating applications [13], nanocomposites [14] and so on. 

As a result of the extraordinary properties of graphene, it is an attractive filler to 

reinforce different polymeric matrices. PU has wide applications in industry and, 

therefore, the researches on incorporating graphene in PU had been conducted widely 

in the world. Graphene can be incorporated into PU coating to produce electrical 

conductive coating [15], anti-corrosion coating [16], scratch resistance coating [17] 

and other functional coatings. Graphene oxide (GO) can react with PU to form a 

dense thermoset network which improve the mechanical properties of PU based 

materials significantly [18]. The works of utilising graphene in PU were generally lab 

based. There are several problems that need to be solved before large scale 

commercialisation: 1. the large-scale production of graphene is expensive; 2. suitable 

dispersion methods and procedures are needed to disperse graphene in coating 

uniformly; 3. a suitable coating method to apply coating on steel substrate. In terms of 

electrical conductive coating, a low percolation threshold to make the polymer 

conductive was achieved, but the conductivity values were not high. In addition, the 

anti-corrosion properties of the conductive nanocomposites which relate to 

commercial application closely did not report a lot.  

 

In this project, graphene based fillers were incorporated in some in-line products 

supplied by TATA steel in investigate the possibility of utilising graphene in a 

commercial scale. Several objectives were set to achieve the expectations: 

1. Investigation of the possibility of apply pristine graphene/graphite coating on steel      

substrates via electrophoresis deposition; 
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2. Development of a suitable method to produce pristine graphene from graphite; 

3. Suggestion on suitable procedures to incorporate graphene based fillers in PU 

topcoat and primers; 

4. Understanding of the effect of fillers on electrical conductivity and anti-corrosion 

properties; 

5. Investigation of the surface morphology and properties of the nanocomposite 

coatings; 

6. Understanding of the effect of graphene based fillers on the cure dynamics of PU; 
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Chapter 2 Literature Review 

2.1 Introduction 

A coating is usually employed to improve the surface properties of a substrate, wettability, corrosion 

resistance and adhesion, for example. The coating industry has been driven by economic benefits 

and growing environmental concerns to seek new technologies and materials to improve the 

efficiency of coatings. There are several factors affect the effectiveness of a coating against all the 

possible damaging sources: they are the quality of the coating, the substrate characteristics, the 

properties of the coating/substrate interface, and the corrosiveness of the environment [1]. In order 

to satisfy the industrial requirements nowadays, polymer nanocomposites have been increasing 

investigated and applied in coatings because nanocomposites provide superior properties at a 

relatively low cost. Additionally, the processing procedure can be much less complicated than 

multi-layer coatings [1,2].   

 

Graphene, a new generation material, is an allotrope of the carbon, which was first isolated by 

simple mechanical exfoliation in 2004 [3]. It is a two dimensional honeycomb single layer crystal 

lattice formed by the tightly packed sp
2
 bonded carbon atoms. Owing to the unique structure of 

graphene, these carbon atoms form an excellent electronic carrier space. Therefore, graphene has 

extraordinary electrical properties such as high electron mobility at room temperature (250,000 

cm
2
/V) [4,5] and ballistic transport and quantum hall effect at room temperature [6]. In addition, 

graphene also has excellent optical properties [5]. Excellent mechanical properties of graphene (i.e. 

1TPa Young’s Modulus and 130GPa tensile strength) have also been reported and the mechanical 

properties relate to the number of graphene layers and the internal defects of the graphene layers 

[5,7,8]. It is possible that the energy band gap of graphene can be changed by applying a uniaxial 

strain on graphene which is in turn able to affect the electronic properties of graphene [9,10]. In 

terms of thermal properties, the highest thermal conductivity at room temperature has been reported 

as 5000 Wm
-1

K
-1

 [11]. Some potential applications of graphene have been suggested by researchers 

such as gas detection [12], transistors [13], nanocomposites [14], energy storage devices [6], barrier 

applications [15] and so on. However, graphene is still a giant gold mine that can be dug deeper. 
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Owing to the excellent properties of graphene, it is believed that it can be used to enhance the 

performance of coatings significantly. Graphene is very ideal to be efficient filler for high quality 

polymer matrix nanocomposite coating. In addition, it can be used as a sole high quality coating or 

with nano-particles to form graphene-nanoparticles composites coating. Graphene is identified as a 

high water and oil repellent material while graphene oxide (GO) is hydrophilic [16]. This property 

can make graphene suitable for the coating that provides water and oil resistance. An analysis of 

frictional properties and wear resistance of a film made up of multi graphene layer films was 

performed using an AFM by Lin and his co-workers [17]. Superb frictional properties and high 

wear resistance were reported. These results mean that graphene is able to become a protective 

coating against scratch or other physical damage toward a substrate. Graphene was also proved to 

be an effective corrosion barrier material because it was considered inert under the conditions where 

chemical reactions of other substrates will take place [18]. As a result, it is also promising in 

improving the anti-corrosion properties of a coating system. 

 

In coating applications, graphene is believed to be promising, but the articles designated for coating 

applications are limited. In this review, the synthesis methods and functionalization of graphene 

were described briefly. The articles about utilization of graphene in coating published in recent 

years were reviewed. The conclusions summarized the published researches and suggested the 

future research perspectives.  

 

2.2 Graphene based materials: Synthesis methods and functionalization 

2.2.1 Synthesis methods 

Different methods have been developed to synthesize graphene, but, not all of them can be used to 

synthesize good quality graphene efficiently. Three major routes: mechanical exfoliation, reduction 

from graphene oxide, and chemical vapour deposition (CVD), are regarded as the most promising 

routes to synthesize graphene and they have the potential to be used for large scale graphene 

production in the future. Among them, the chemical route, graphene reduced from graphene oxide 

have frequently been used to study the utilization of graphene based materials in different 

applications. 
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Mechanical exfoliation The first graphene sheet was produced by simple mechanical exfoliation 

[3]. Therefore, initially mechanical exfoliation became a very attractive method for the researchers 

to produce graphene initially. The very first mechanical exfoliation method was a simple peeling 

process where pre-treated graphite was fixed on a photoresist and graphene layers were peeled off 

by a scotch tape [3]. Although this simple method can produce graphene with extraordinary 

properties, it is limited by its low efficiency. Many efforts have been made to improve mechanical 

exfoliation method. Ultrasonic devices, solvent and surfactants were used to modify this process to 

produce high quality graphene on larger scales. The solvents and the surfactants can be intercalated 

into the atomic layers of graphite to form graphite intercalation compounds to prevent 

agglomeration and assist further separation of graphene single layer [5,19,20]. The influence of 

ultrasonic power, time and solvent used on the volume of graphite intercalation compounds was 

also investigated [5]. Although the use of solvent and surfactants can help to produce good quality 

graphene in larger scale, their major drawbacks are high solvent cost and the difficulties in 

following graphene deposition caused by high solvent boiling point [5,19]. Graphite oxides 

produced by chemical methods were also used in mechanical exfoliation. However, the subsequent 

produced graphene had inevitable structure defects which could disrupt the electronic structure of 

graphene. These structural defects could not be restored by chemical reduction or thermal annealing 

[21–23]. Hence, physical exfoliated graphene is preferred when graphene structure is required in 

most applications. However, it is still extremely challenging to scale up mechanical exfoliation 

process to produce large amount of graphene in a cost effective way with commercial available 

technologies and devices.  

 

Chemical vapour deposition (CVD) Chemical vapour deposition was first reported in 2006. Ni foil 

was used as a substrate and camphor was used as precursor [24]. Since then, the chemical vapour 

deposition method has received more and more attention for being regarded as a new promising 

route to produce graphene on a large scale [5]. In addition, this method was able to control the 

number of graphene layers and minimize the folding of graphene, and this meant controlled 
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thickness graphene film could be synthesized [5,23,25,26]. Medium-high carbon solubility (>0.1 

atomic%) substrates like Ni and low carbon solubility (<0.1 atomic%) substrates like Cu have 

different graphene growth mechanisms [5]. For a high carbon solubility substrate, a graphene layer 

is grown from the precipitation of carbon on the substrate, which is dissolved into the substrate 

earlier, after cooling. A typical CVD process generally has three steps [26,27]:  

 

1. The substrate is put into a chemical vapour deposition chamber at a setting vacuum and 

temperature with a diluted hydrocarbon gas.  

2. The dissolution of the carbon atoms into the substrate starts at a relatively low temperature.  

3. Graphene layers are formed from the out-diffused dissolved carbon atoms in the followed rapid 

quenching. 

 

The type and concentration of the hydrocarbon gas and the thickness of the substrate determine the 

concentration of dissolved carbon atoms. Both cooling rate and the concentration of dissolved 

carbon atoms control the thickness and the crystal structure of the graphene layers [26,27]. For the 

low carbon solubility substrate, the growth of graphene does not company with a diffusion process. 

The graphene layers are grown on the surface of the substrate and this process is a four-step process 

[28]: 

 

1. Methane is deposited on the substrate to form CxHy with exposing the substrate to hydrogen. 

2. Nuclei start to form from the local supersaturation of CxHy on the substrate. 

3. Graphene islands are grown from the nuclei on the substrate surface. 

4. Graphene covers the substrate surface. 

 

Whether graphene can cover the whole substrate surface depends on the amount of CxHy on the 

substrate. Some modifications of the chemical vapour deposition method have been carried out in 

recent years. For example, plasma can be used to enhance chemical vapour deposition process that 

provides a route to synthesize graphene with lower temperature and shorter deposition time [29]. 

Although CVD is believed to be an ideal route to synthesize large area graphene sheet, the graphene 
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produced from this technique still has intrinsic defects which allow the transportation of some 

molecules. Therefore, detrimental effect on the barrier properties of graphene sheet is resulted [30]. 

In addition, the cost of equipment and the time required to synthesise large amount of graphene are 

the key limitations.  

 

Reduction and synthesis of graphene oxide Although mechanical exfoliation and CVD can 

produce high quality graphene, it is still extremely challenging to enlarge the synthesise scale cost 

effectively with commercial available technologies and devices. Researchers focus more on the 

reduction and synthesis of graphene oxide because graphene oxide and reduced graphene oxide can 

be synthesized easier than pristine graphene. Graphene oxide is usually synthesized from the 

oxidation of graphite by strong oxidants based on Brodie [31], Staudenmaier [32], Hummers’ 

method [33] or some other modification of these methods. Hummers’ method was more widely 

used and many modifications had been made to synthesize graphene oxide for designated 

applications [5,13,34]. GO can be easily dispersed in many solvents and especially well in water 

which facilitate any subsequent processing [35]. The reduction of GO to is basically a chemical 

route to produce graphene with compromised properties induced by the chemical process. GO can 

be reduced in either chemical routes or thermal routes. Various chemicals had been reported to 

reduce GO such as hydrazine [23], hydroquinone [36], sodium borohydride (NaBH4) [37] and 

ascorbic acid [38]. Hydrazine hydrate reductant was found to be the best one to produce thin and 

fine RGO. However, NaBH4 exhibited the best efficient to reduce graphene oxide although it can 

react slowly with water [5]. Thermal reduction of GO utilizes heat treatment to remove oxide 

functional group on GO to produce reduced graphene oxide (RGO) [5,13]. A simple and low 

temperature one-step solvothermal method was reported by Dubin et al. [39]. The reduction of GO 

was resulted from thermal reduction at 200 and the reaction with N-methyl-2-pyrrolidinone (NMP) 

molecules. The detailed chemistry of reduction and the study toward synthesizing ROG withbetter 

properties will grow rapidly as the research in graphene moving forward. 

 

 

 



Chapter 2 Literature Review 

 10 
 

2.2.2 Functionalization of graphene 

The functionalization of graphene is the major route to stabilise graphene suspensions in a complex 

environment without agglomeration takes place. For composites based coatings, functionalization of 

graphene plays a very important role to achieve good interfacial bonding between matrices and 

graphene sheets. Graphene functionalization can be achieved via physical or chemical approaches 

and there are three major categories of functionalization: functionalization via organic species, 

functionalization via macromolecules and functionalization via nanoparticles [40].  

 

Many organic substances can react with the π bonds of graphene and, therefore, different functional 

groups can be introduced for different purposes. The oxidation of graphite can generate oxidised 

functional groups on graphene layers which gives the opportunity to produce stable graphene 

suspension in water or some organic solvents. Graphene oxide (GO) is easy to disperse in water 

because of its hydrophilic nature. However, it is not soluble in every organic solvent and, therefore, 

functionalization of graphene is necessary to enable formation of stable graphene suspension with 

different organic solvent [40,41]. Further treatments of the oxidised groups of GO by organic 

species can also introduce functional groups such as carboxylic groups,  enabling graphene to be 

available for more applications [42,43]. According to literature, radical reactions can be used as the 

second route to synthesize graphene oxide and further functionalization. One example is the 

utilization of benzoyl peroxide to synthesize graphene oxide [44]. The preparation procedure is 

shown in Figure 2.1. The functionalization of graphene via macromolecules is achieved by grafting 

macromolecules on to graphene sheets. There are two kinds of methods for this type of 

functionalization: “Graft from” method and “Graft to” method [40]. For “Graft from” method, 

initiators are immobilized on graphene network for further reaction to take place. One example of 

this method is the grafting of polypropylene chains onto graphene network by in situ Ziegler-Natta 

polymerization (Figure 2.2) [45]. In terms of “Graft to” method, the key point is incooperating 

Figure 2.1 The procedure to prepare GO and reduced GO using BPO [44] 
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graphene into polymer matrixes to form composites with the presence of functional groups on 

graphene sheet which able to form covalent bonds with polymer matrixes. One example for this 

kind of method is the formation of nanocomposites by ring opening reaction between epoxide and 

graphene pre-functionalized by amines [46]. Comparing “Graft to” and “Graft from” methods, 

“Graft from” method is more likely to improve the compatibility of graphene with organic solvents 

and polymer matrixes whilst “Graft to” method is to fabricate graphene-polymer nanocomposites by 

covalently bonding functional groups on graphene network to polymer matrices [40] .  

 

The third route to functionalize graphene is essentially the route to fabricate graphene-nanoparticles 

(G-NPs) composites. The nanoparticles are well investigated in these years and they are widely 

regarded as providing profound property enhancement in many applications. The combination of 

graphene and nano-particles is to achieve the synergistic effects of both materials with the goal of 

developing excellent properties composites. There are three main strategies to synthesize 

graphene-nanoparticles composites: pre-graphenization, post-gaphenization and syn-graphenization 

[5]. For pre-graphenization, reduced graphene oxide is synthesized first and then mixed with 

nanoparticles to form composites. One example for this strategy is the synthesis of Pd nanoparticles 

on graphene oxide sheets via electrochemical method [47]. The solubility of reduced graphene 

oxide in different organic solvent and the addition of second phase nano-particles are the major 

Figure 2.2 Procedure to graft PP chains on graphene via in situ Ziegler-Natta polymerization [45] 
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consideration in this strategy. In post-graphenization, nanoparticles are prepared first and, then, 

nanoparticles and appropriate metal salt precursors are mixed with graphene oxide suspension 

followed by reduction. The synthesis of RGO/TSCuPc Composite is an example for 

post-graphenization. RGO solution was prepared first and then it was mixed with TSCuPc aqueous 

solution for subsequent processes which deposited NPs on RGO network [48]. Syn-graphenization 

is a one-step approach in which the second component of the composites functions as a stabilizer to 

improve the composites’ properties. A good example for syn-graphenization can be the study of 

synthesizing graphene-CdS quantum dot nanocomposites by a one-step facial method. In this 

one-step facial method, solvothermal reduction of GO and deposition of CdS on GO network took 

place simultaneously [49].  

 

2.3. Applications of graphene in coating 

2.3.1 Pristine graphene based materials coating 

It may be convenience and cost effective to use pristine graphene based materials directly without 

further processing such as synthesize graphene on a substrate to form a coating layer with 

commercial available technique. The published papers indicated that this concept was possible and 

the coated substrates showed improved properties. However, some problems still need to be 

resolved before commercialization. 

 

Coatings for electrical applications: For the utilization of graphene, the electrical properties of 

graphene are often the most favourable because they are the most promising and attractive 

properties in industry. A potential transparent conductive coating suitable for the practical touch 

panel application was fabricated on copper substrate via the combination of plasma CVD and 

roll-to-roll process [50]. Improved electrical conductivity and highly uniform transmittance and 

haze were reported. Although the electrical conductivity was improved, the measured sheet 

resistance was still so high that could not meet the requirements in electrical applications. A large 

conductive transparent chemical converted graphene film was fabricated via spray coating method 

[51]. Graphene oxide was synthesized from expandable graphite according to modified Hummer’s 

method and mixed with hydrazine monohydrate afterward. The substrate used for coating was 
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quartz. The conductive film exhibited low sheet resistance of 2200 Ωsq
-1

 and high transmittance of 

84%. However, the stabilization time of GO-hydrazine suspension is a few weeks long and this 

limits the conductive film to be used in commercial applications. The success of electrophoresis 

deposited graphene film on glass substrate was reported by Ishikawa et al. [52]. Graphene was 

reduced from GO, which was produced by modified Hummers’ method, after being electrical 

deposited on glass substrates. The lowest sheet resistant and highest transmittance measured were 

4.59 x 10
4
 Ω sq

-1
 and 83.8%, respectively. The sheet resistant measured here was lower than the 

CVD fabricated graphene film mentioned previously, but it is still too high to be used in a 

commercial product. Uniform reduced GO film for soft touch screen was able to be fabricated on 

polyethylene terephthalate substrate via large scale rod-coating [53]. The reduced GO film reported 

has even lower sheet resistance which is up to 1,800 Ω sq
-1

 and high transparency and high 

flexibility were also reported. 

 

Although the most attractive property of graphene is electrical conductivity, other outstanding 

electrical properties such as fast electron mobility make it promising in improving other electrical 

properties other than electrical conductivity. A hierarchical graphene oxide/MnO2 nanostructure 

sponge was fabricated by dipping commercial available macroporous sponge into graphene oxide 

and MnO2 solutions in a sequence [54]. The graphene oxide used was produced by modified 

Hummer’s method. The results showed that this coated sponge could be used as super capacitor or 

be used in batteries because of high specific capacitance, wide operation range, good energy and 

power density, and excellent cycling stability. Its outstanding properties included about 10% 

degradation after 10,000 cycles at a charge–discharge, specific current of 10 A/g, retaining 90% of 

its capacitance after 10,000 cycles under a scan rate of 10 V/s, maximum E of 2.08 Wh/kg and 

highest P of 94 kW/kg at the operate voltage of 0.8 V. For the utilization of electron mobility of 

graphene, Jeon et al. reported than moderately reduced graphene oxide could be used as the hole 

transporting layer (HTL) in polymer solar cells (PSCs) [55]. The reduction of graphene oxide was 

performed via the thermal treatment of solution processed graphene film at about 250℃ under air 

atmosphere. The reduced graphene oxide layer was coated on to indium tin oxide (ITO) coated 

glass substrate by spin coating method. Compared to poly(3, 4-ethylenedioxythiophene): poly 
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(styrene-sulfonate) HTL, the transportation efficiency of moderately reduced graphene oxide HTL 

was improved slightly, but it was much more stable after exposing the HTL into air. In terms of 

transmittance properties, an example is the attempt to use reduced graphene oxide coating on 

aluminium film for an effective optoacoustic transmitter used high pressure and high frequency 

ultrasound generation [56]. Graphene oxide was synthesized by modified Hummer’s method and 

then it was reduced to form RGO. RGO was spin coated on glass substrate before the aluminium 

film deposition on the RGO. The RGO coated aluminium transmitter generated enhanced 

optoacoustic pressure of 64 times the aluminium-alone transmitter under a pulsed laser excitation. 

As a result, this RGO coated aluminium film was very ideal for laser-induced ultrasound 

application. In addition, graphene based materials could be used to improve the photocatalytic 

activity of TiO2 film [57]. Graphene oxide was synthesized through a modifed Hummers’ method 

and it was coated on TiO2 film by spin coating method. The graphene oxide coated TiO2 film 

exhibited better photocatalytic activity, due to the giant π-conjuction system and two demensions 

planar structure. However, the photocatalytic activity decreased on higher graphene oxide loading 

as a result of absorbance and scattering of photons via excess cabon in the system. There are still a 

lot of studies related to utilize graphene based materials as coatings in electrical applications and 

some of them are listed in Table 2.1.  

Table 2.1 Pristine graphene based coatings used in electrical applications 

Coating 

types 
Substrates Applications 

Improved 

properties 

Coating 

methods 
Ref 

Graphene 
Li[Li0.2Mn0.54Ni0.13Co0.13

]O2 
Cathod materials 

Cycling 

performance and 

rate capacity 

Spray drying [58] 

Graphene Carbon coated LiFePO4 
Cathod of Li-ion 

battery 
Discharge capacity 

Rapid, 

one-pot, 

microwave-ass

isted 

hydrothermal 

[59] 
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method 

Few layers 

graphene 
Porous Li4Ti5O12 Energ storage 

Capacities, cyclic 

performance and 

capacity retention  

 

Direct 

pyrolysis of 

C28H16Br2 

[60] 

Graphene Al2O3  
Dye-sensitised 

solar cells 

Energy conversion 

efficiency 
Doctor-blading  [61] 

Graphene PtRh electrodes 
Electrochemical 

sensitivity 
Electron transfer  Dip coating [62] 

Few layers 

graphene 
Iron oxide nanoparticles 

 

Units of 

hyperthermia 

therapeutics 

Magnetic 

properties 

In situ 

polymerizatoin 

with precursor 

[63] 

Graphene 

oxide 

Core-shell structure 

Polystyrene  

Electrorheological 

smart materials 

Electrorheological 

properties 

Strong π– π 

stacking 

interaction 

[64] 

Graphene 

oxide 

saturable 

absorbers 

ITO glass  

Passively 

Q-switched 

operation 

Pulse width and 

peak power 
Spin coating [65] 

Graphene Al2O3 Photoanodes 

Superior 

phoroelectrochemic

al responses 

Direct 

synthesis 
[66] 

Graphene 

oxide 
FTO glass 

Electrode for 

battery 

High open circuit 

volate (~250mV) 

and short circuit 

current (0.31mA) 

Spin coating [67] 
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Coatings for protection purposes: The extraordinary properties of graphene make it become an 

effective barrier toward oxidation and corrosion of a substrate (mention the properties of the sheet 

for permeability). In terms of barrier properties, a graphene oxide/poly (ethylene imide) (PEI) 

oxygen barrier coating was studied [68]. Graphene oxide was produced by oxidizing and exfoliating 

graphite according to modified Hummers’ method. The coating was deposited onto a PET film 

through layer-by-layer method to form graphene oxide/PEI bilayer. The oxygen barrier properties 

were measured by MOCON and the OTR values indicated that OTR of a deposited coating 

decreased with the increasing numbers of graphene oxide/PEI bilayers (Figure 2.3). However, the 

water vapour barrier properties were not improved. For water barrier properties,  a 

superhydrophobic structures was fabricated by coating multi-walled carbon nanotubes (MWCNTs) 

and ROG on to silica colloids [69]. Graphene oxide was produced by modified Hummer’s method 

and then it was reduced to form RGO. RGO and MWCNTs were coated on to the colloids by LBL 

in which RGO sheets were negatively charged and MWCNTS were positively charged. The 

fabricated composites exhibited controllable surface hydrophobicity which could be readily 

controlled from 119 to 151
°
C by controlling the number of the bilayers deposited on to the colloidal 

particles. In addition, graphene fluoride was adopted as transparent hydrophobic coating 

innovatively by Zhang et al. [70]. Graphene fluoride was produced from liquid phase exfoliation of 

graphite fluoride and graphene fluoride coating was spin coated on glass substrate for further 

Figure 2.3 OTR versus number of bi layers [70] 
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characterization. The measured contact angle was 123⁰ and the light transmittance was up to 92% 

both indicated that a good candidate for transparent hydrophobic coating was produced. Moreover, 

long service life of graphene fluoride coating was detected in water erosion experiments and 

ultraviolet aging tests.  

 

The efficiency of graphene based materials as anti-corrosion and anti-oxidation coating on different 

substrates with different coating methods was reported [71–77]. Most of reported graphene coating 

layer was fabricated by CVD and their results were summarized in Table 2.2. Nilsson and his 

co-workers suggested the limitations of graphene coating for corrosion inhabitation on metal 

surfaces where graphene coated by CVD could only function as corrosion inhibitors at low gas 

pressure [73]. Nayak et al. indicated that graphene was a good protective coating due to its inertness 

to oxidizing gas and liquid solutions, but its oxidation resistance was limited below 500℃ [74]. An 

anti-corrosion mechanism of CVD graphene coating on copper substrate was proposed by Singh 

Raman et al. and this mechanism may be used to explain the anti-corrosion behaviour of graphene 

film on different metal substrates (Figure 2.4) [75]. Apart from CVD, spray coating was used to 

Figure 2.4 Schemes of anti-corrosion mechanism of CVD graphene coating on copper [75] 
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coat graphene on gold coated cuprous substrates by Noel et al. [77].  Graphene solution was 

purchased from market directly. The coated substrates had less weight gain during corrosion test 

than pure gold coated substrates and low contact resistance and low friction coefficient were also 

identified. The spray coated graphene was not only be used as anti-corrosion coating but also be 

used as surface protection coating resulted from its low friction coefficient. Dry contact sliding was 

carried out by Won and his co-workers to test the durability and degradation mechanisms of 

graphene coating on copper substrates [78]. The graphene coating was grown on Cu substrates by 

CVD. The friction coefficient of graphene was obtained as about 0.18 and remained stable up to 

several thousand cycles. As a result of the formation of amorphous carbon layer on the wear crack, 

an increase of friction coefficient after a certain time was detected. From these results, pristine 

graphene can be a good candidate as surface protection coating.  

Table 2.2 Performance of graphene produced by CVD as anti-corrosion and anti-oxidation coating 

Substrates The performance of graphene coating Ref 

Cu and Cu/Ni alloy 
Metal surfaces were well protected from oxidation even after 

heating at 200℃ in air for up to 4 h 
[71] 

Cu 
Deterioration was not detected under vigorous flow boiling 

conditions for long exposure 
[72] 

Pt 
Reconstruction of Pt could be preserved in O2 pressures as high 

as 10
-4

 mbar and CO pressures below 10
-6

 mbar 
[73] 

Ni  
Oxidation resistance of the coating was effective up to post 

annealing of 500℃ 
[74] 

Cu 
Corrosion resistance of coating is 1.5 orders of higher magnitude 

tan uncoted substrates 
[75] 

Cu and Ni 

In an aerated Na2SO4 solution:  

Direct coated copper films were corroded 7 times slower than 

bare copper. 

Direct coated nickel substrates were corroded 20 times slower 

than bare nickel. 

[76] 
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Coatings for sensing and absorbent applications: The unique structure of graphene based materials 

makes it a promising candidate in sensing and absorbent applications [4]. A superhydrophobic and 

superoleophilic sponge was fabricated by coating graphene on melamine sponge via dip coating 

[79]. This graphene coated sponge exhibited high absorption capacities up to 165 times of its weight, 

high selectivity, good recyclability, lightweight, robustness, and inertness to corrosive environments. 

Biochar, a attractive material has potential applications in many environmental areas, could be 

coated by graphene to enhance thermal stability and absoption properties [80]. Graphene was 

produced by mechnical exfoliation from graphite powder and it was coated onto cotton wood by dip 

coating before pytolysis into biochar. Thermal decomposition temperature of graphene coated 

biochar was 64℃ higher than pure biochar and enhanced absoption ability to aqueous methylene 

blue was also identified.  

 

Compared to absorbent applications, graphene based materials had attracted more attention of the 

researchers in sensing applications. Graphene was coated on quartz crystal microbalance (QCM) by 

solution drop-coating method for the detection of formaldehyde [81]. The QCM-type sensor 

showed frequency change when exposed to different concentrations of formaldehyde. Perfect linear 

correlation between frequency shifts versus concentration change of HCHO was achieved during 

the analysis. A potensial bio-sensor was produced via coating reduced graphene oxide nano ribbons 

(rGONRs) on Si/SiO2 substrates by spray coating [82]. GONRs were fabricated through chemically 

unzipping multi-walled carbon anotubes and they were deposited on Si/SiO2 substrates before 

reduction. High on/off ratio and ability of detecting adenosine triphosphate (ATP) molecules were 

identified in this rGONRs network. Graphene based materials can also be used in water sensing 

applications. Yao et al. developed a graphene oxide/silicon bilayers for humidity sensing 

applications [83]. The ultimate sensitivity could reach 79μV/%RH with a wide detection range of 

10–98%RH and the humidity sensibility could be enhanced by increasing the thickness of the 

graphene oxide coating. A humidity sensing mechanism was also proposed (Figure 2.5). Graphene 

oxide coated quartz crystal microbalnce was also used for humidity detection [84]. Graphene oxide 

was synthsized by the modified Hummers method and spin cotaed on quartz crystal substrates. The 

GO coated quartz crystal substrates showed excellent humidity sensing properties and a linear 
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frequency response versus RH in the wide detection range of 6.4–93.5% RH was obtained.  

 

Apart from using graphene based materials to develop new sensinng structure, graphene based 

materiasl can also be coated onto commercial available equipments such as probes to improved 

their performance. As reported by Zhange et.al., graphene can be coated onto a plunger-in-needle 

microsyring for solid-phase microextraction (SPME) device as a sorbent material toward UV filters 

[85]. The graphene was coated on the microsyring by sol-gel method. Compared to other 

commercial available SPME fibres, graphene coated mocrosyring exhibited different selectivity and 

showed high extraction effciency for light polar salicylates and 4-MBC. There are a lot of related 

reports about the utilization of graphene based materials in SPME and they were summarized in 

Table 2.3. The performance of graphene and graphene oxide coated columns as station phase for 

capillary electrochromatography and capillary liquid chromatography was investigated by Qu et al. 

[86]. Graphene oxide was synthsized by the modified Hummers method and then was coated on a 

capillary column via 3-aminopropyldiethoxymethyl silane as coupling agent. Graphene coated 

column was reduced from GO coated capillary. Effective sepration of of natural, basic and proteins 

were observed on the GO coated column. However, graphene coated column had poor seperation 

performance. Graphene coated Fe3O4 nanoparticles coule also be used as adsorbent material for 

Figure 2.5 Humidity sensing mechanism of graphene oxide/silicon bilayer [84] 
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high-performance liquid chromatography [87]. Graphene was synthsized via the reduction of 

graphene oxide obtained by modified Hummer’s method. Graphene was coated on Fe3O4 

nanoparticles by in situ chemical coprecipitation of Fe
2+

 and Fe
3+

 in an alkaline solution in the 

presence of graphene. Compared to other methods (e.g. SPME), the type of magnetic nanoparticles 

exhibited high adsorption capacity, rapid adsorption rates, low amount of sorbents can be used and 

short equilibrium time to extract triazine herbicides. Similar study was conducted for gas 

chromatography using graphene oxide [88]. GO was synthsized by a modified Hummer’s method. 

The capillary column was pretreated with 3-AMDS toluene solution and it was then dipped into GO 

solutoin to form GO coated collumn. Separation of various organic compounds with good 

separation effciencies was achieved. 

 

Table 2.3 Graphene based coatings used in SPME application 

Coating type 
Synthesis 

method 
Substrates 

Coating 

methods 

Materials 

detected 
Ref 

Graphene 
Reduction of 

graphene oxide 

Stainless steel 

sire fibre 
Dip coating 

Six selected 

pyrethroid 

pesticides 

[89] 

Graphene - 
Stainless steel 

wire 
Sol-gel 

Organochlori

ne pesticides 

(OCPs) 

[90] 

Graphene nano 

sheets 

Microwave 

assisted 

reduction of 

graphene oxide 

Stainless steel 

wire 
Dip coating OCPs [91] 

Graphene 
Their previous 

work 

Stainless steel 

wire 
Dip coating 

Triazines 

herbicides 
[92] 

Graphene 
Reduction of 

graphene oxide 

Stainless steel 

wire 
Dip coating Carbamates [93] 
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C18 functionalized 

graphene oxide 
- 

Stainless steel 

wire 
LBL 

Polycyclic 

aromatic 

hydrocarbons 

(PAHs) 

[94] 

 

Signal enhancement is also an area that can be benifited from graphene based materials. According 

to Hao and his coworkers, graphene can also be cated onto conventional metallic surface-enhanced 

Raman scattering (SERS) substrates to improve the sensitivity of SERS detection [95]. Graphene 

was synthsized by CVD on copper foil and then was transferred to gold nanostructures 

(nanoparticles or nanohole arrays). The graphene coated substrates exhibited 3-fold or 9-fold 

enhancement in Raman signal of methylene blue compared to bare nanohole or nanoparticle 

substrates, respectively. Kim et al. developed a GO/polyallylamine hydrochloride (PAA) – Ag 

nanoparticles (AgNPs)/PAA-RGO three layers films for SERS enhancer and anti-corrosion coating 

[96]. The preparation procedure is shown in Figure 2.6. Graphene oxide was synthesized by their 

method and graphene oxide was reduced by hydrazine monohydrate. Raman signal on R6G on was 

enhanced by 6 fold on GO/PAA-AgNPs/PAA-RGO whilst AgNPs/PAA-RGO film was 1.67 fold. 

The GO/PAA-AgNPs/PAA-RGO films exhibited prolonged lifetime up to 72 days against oxidation 

under ambient conditions. Cobalt nanoparitlces ocated by graphene surface functionalized with 

benzylamine groups were nanomagnets that were able to broaden the range of analytes for 

surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) analysis [97]. This G 

coated CoNPS was prepared using flame spray pyrolysis with metal containing organic precursors. 

The nanomagnets were also able to extract perfluorooctanesulfonate from large volumes of aqueous 

solutions by magnetic separation. 

 Figure 2.6 Preparation procedure of G/PAA-AgNps/RGO sandwich structure [96] 
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2.3.2 Graphene based nanocomposites coating 

As reported previously, pristine graphene based materials coating exhibited excellent properties in 

different applications. However, it is still challenging when proceeds to large scale 

commercialization. Adhesion is the critical factor of coating durability and applicability. Some 

surface treatments and graphene functionalization routes can help to achieve good adhesion but 

these may not good enough for long term durability. In addition, the pristine graphene based coating 

layer may not dense and many micro channels may exist between graphene sheets. The existence of 

micro channels is detrimental to long term durability as these micro channels allow erosion and 

corrosion to take place easily. A porous coating layer is impossible to be commercialized. The 

technologies nowadays are difficult to produce perfect defect free graphene based materials. 

Therefore, the development of graphene based nanocomposites is an alternative route to trigger the 

commercialization of graphene based materials. In coating applications, researchers mainly focus 

on polymeric graphene based nanocomposites and graphene-nanoparticles composites (G-NPs).  

 

Graphene-nanoparticles composites as coatings: In G-NPs, graphene based particles are usually 

coated on to nanoparticles first and then the coated nanoparticles can be used as coating materials. 

There are some published articles related to electrical properties improvement by G-NPs. Wang et 

al. reported that graphene oxide wrapped sulphur particles could be used to modify the capacity and 

cycling stability of rechargeable Lithium-sulfur battery cathode material [98]. The resulting 

composites exhibited high and stable specific capacities up to about 600 mAhg
-1

 over more than 

100 cycles. Another example is the attempt to adopt SnO2-SiC/G nanocomposite for high 

performance lithium-ion storage [99]. SnO2-SiC/G nanocomposite was in situ generated by simple 

ball milling method and it was graphene coated on to SnO2-SiC core-shell structure in which SnO2 

nanoparticles were uniformly deposited onto SiC core.  Graphene was produced from reduction of 

graphene oxide. The nanocomposite exhibited a high reversible capacity of 810 mA h g
−1

 and 83% 

capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g
−1

. A 

high reversible capacity of 425 mA h g
−1

 was obtained at a rate of 2 A g
−1

as well. A reversible 

capacity of 1451 mA h g
−1

 and good cyclability were measured when discharged to a higher 

potential at 3.0 V. G-NPs were also used to improve photo-activity in their related applications. A 
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graphene- TiO2 nanoparticles composite coating was prepared and coated on to a conducting 

support medium for enhanced photoelectrocatalytic activity [100]. Graphene was reduced from 

graphene oxide produced from modified Hummers’ method. The composite coating was applied on 

to F-doped tin oxide (FTO) via dip coating method to form a film electrode. Compared to pure TiO2 

film electrode, graphene-TiO2 composite exhibited better photoelectrocatalytic capacity. In addition, 

a TiO2-dextran-graphene oxide nanocomposite, which was prepared by an environmental friendly 

strategy, could be used to enhanced photocatalytic activity [101]. This composite coating was 

applied onto the substrates via spin-coating method. The results showed that TiO2-dextran-graphene 

oxide composite exhibited excellent photocatalytic activity and photovoltaic response than pure 

TiO2 because the electron-hole pairs in the composite had longer life time. Graphene based TiO2 

nanocomposites were mostly studied in photocatalytic activity, but there were many other systems 

could be used as potential coating on a substrate to improve photocatalytic activity as suggested by 

Zhang et al. and Yang et al. [102,103]. In their group, the utilization of G-NPs in both ‘selective’ 

and ‘non-selective’ processes were studied extensively [104–106], and the effect of different carbon 

based materials for photocatalytic activity was investigated as well [107]. 

 

In terms of barrier properties, there is only one related report. Kou et al. have developed a facial 

strategy to synthesize GO-SiO2 nanohybrids as general building blocks for large area super 

hydrophilic coating [108]. GO was synthesized according to their own method and SiO2 

nanoparticles were deposited on to GO nanosheets via in situ hydrolysis of TEOS. Ceramic, PP and 

lotus leaf were used as substrates. Compared to bare substrates, all the coated substrates had much 

smaller contact angles which indicated excellent wettability of water was achieved. In addition, 

GO-SiO2 sheets could be made into paper film by a filtering technique and exhibited high 

conductivity of 10
3
–10

4
 Sm

-1
 after reduction by hydrazine vapour. G-NPs can also be used in SPME 

application to improve extraction performance. ZnO/graphene nanocomposite for SPME silica fibre 

coating was developed by Zhang et al. [109]. Graphene was produced by reduction from graphene 

oxide obtained according to modified Hummers’ method. The SPME fibres coated by 

ZnO/graphene nanocomposite exhibited enhanced durability, enlarged surface area, higher 

extraction selectivity and sensitivity toward sulphur compounds.  
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The challenges of G-NPs commercialization are similar to pristine graphene based materials 

coatings.  A dense layer G-NPs coating layer without any pores is difficult to achieve. The process 

of coating graphene based materials on nanoparticles is complicated and is not cost-effective. 

G-NPs may have better properties but the cost to produce this type of composites is much higher 

than using pristine graphene based materials.  

 

Polymeric graphene based nanocomposites as coatings: The incorporation of graphene based 

materials into polymer not only can improve one property of a polymer, but also enhance several 

properties at the same time such as electrical properties and mechanical properties. Polyurethane 

acrylate (PUA) coating reinforced by graphene was synthesized by Liao et al. using in-situ 

polymerization on a TEFLON plate [110]. The graphene used was thermal reduced graphene 

received from a company. Their results showed that the electrical conductivity of the composite 

increased with increasing graphene loading. The cured composites exhibited lower percolation 

concentration than uncured composite and the addition of graphene could reinforce the mechanical 

properties of PUA coating in rubbery region. A graphene reinforced poly(butylene terephthalate) 

(PBT) composite was synthesized by Fabbri et al. and they suggested that this composite could be a 

potential conductive coating [111]. The graphene nanoplatelets used were purchased from a 

company. The key results of this study are shown in Table 2.4. The decomposition temperature 

under oxygen atmosphere exhibited optimum value at 0.75 wt% graphene loading while the melting 

temperature decreased with the increase of graphene loading. The Percolation threshold appears 

between 0.5 wt% and 0.75 wt% graphene loading. The composite with 0.5 wt% graphene loading 

had optimum hardness but the hardness decreased with the increase of graphene loading. The 

performance of DSSCs could also be improved by using Graphene/Nafion
®
 composites as counter 

electrode [112]. Graphene was reduced from the GO synthesized according to Staudenmaier’s 

method and graphene/ Nafion
®
 was coated on ITO glass by drop coating method. A 

solar-to-electricity conversion efficiency (η) of 8.19% was achieved by using this type of composite. 

Although it was only a little smaller the η of s-Pt film (8.89%), the cost is much lower. A 

transparent conductive graphene oxide/ poly (ethylene glycol) diacrylate coating was developed for 

magnetic shielding and anti-static applications [113]. The coating was applied on to glass substrates 



Chapter 2 Literature Review 

 26 
 

and cured by UV light. The percolation threshold was 0.02 wt% and the lowest sheet resistance 

measured was 6300 Ω sq
-1

.  

Table 2.4 Comparison of pure PBT and PBT/Graphene coatings 

Samples Ti. ox (℃) Tm(℃) 
Electrical 

resistance (MΩ) 
Hardness (HV) 

PBT 389 228.4 - 15.1±1.2 

PBT/G 0.5 wt% 388 223.6 760 26.6±1.8 

PBT/G 0.75 wt% 404 214.2 200 23.1±1.7 

PBT/G 1.0 wt% 390 212.3 50 9.5±2.6 

 

 

In terms of protective coatings, there are a few researches published in recent years. An 

anti-corrosion polyaniline/graphene composite coating for steel has been prepared by Chang and his 

co-workers [114]. The graphite powders were exfoliated and functionalized with 4-aminobenzonic 

acid (ABA), and the graphene and graphene-like sheet were obtained from a direct electrophilic 

substitution reaction in a PPA/P2O5 medium. Compared to bare steel, PANI coating and clay 

reinforced PANI coating, graphene reinforced PANI coatings exhibited the best electrochemical 

corrosion resistance, oxygen barrier efficiency and water barrier efficiency (Table 2.5). Graphene 

reinforced poly(phenylene sulphide) (PPS) was reported that exhibited seven times higher wear life 

than pure PPS coating [115]. Graphene oxide was synthesized by the Hummer’s method and it was 

functionalized to yield organophilic graphene. The as-produced solution was coated on steel 

substrates through spray coating. The major wear form was identified as abrasive wear for graphene 

reinforced PPS coating whilst the wear form of pure PPs coating was adhesive wear. In addition, 

polyamide 11 (PA11)/graphene coating could also be used to improve tribological properties of 

PA11 [116]. Graphene oxide was prepared through the Hummer’s method and it was functionalized 

to produce organophilic graphene. The PA 11 and organophilic graphene composites were spray 

coated on to steel substrates. The wear life of the composite coating increased by 460%–880% 

compared with that of pure PA 11 coating, but the values of friction coefficients had hardly changed. 
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Higher performance polyurethane (PU)/functionalized graphene nanocomposites was developed by 

Cai and his co-workers for mechanical and thermal stability improvement and it could be a potential 

surface protection coating [117]. The GO used was prepared by their method. The morphology of 

resulted composites is shown in Figure 2.7 and a good dispersion of GO was observed. Improved 

scratch resistant, thermal stability, hardness indentation and Young’s modulus were reported. A 

study suggested that graphene could be used as nano-additives in galvanic corrosion protection 

coating [118]. Graphene was purchased from a company and ITO and graphene were used as 

additives of primer epoxy coating which spray coated on the surfaces of carbon fibre composites. 

The results showed that both ITO and graphene could be used for lighting strike protection, but ITO 

had better protection efficient.   

                (a)                                       (b) 

Figure 2.7 SEM images of GO/PU nanocomposites (a) 1 wt% of GO (b) 4 wt% of GO [117] 

 

Table 2.5 Comparison of PANI coating, Steel and composite coatings 

Samples 

Electrochemical corrosion 

measurements 
Oxygen 

Permeability (barrer) 

Vapour Permeability 

Rate ( g/hr.m
2
) 

Ecorr (mV) Icorr (μA/cm
2

) 

Steel -789 14.71 N/A N/A 

PANI -647 307 0.75 170 

0.5 wt% Graphene 

reinforced PANI 
-537 0.38 0.13 20 



Chapter 2 Literature Review 

 28 
 

0.5 wt% Clay 

reinforced PANI 
-584 1.38 0.35 60 

 

Conductive coatings and protective coatings receive a lot of attraction, but the study toward 

mechanical properties and thermal stability of a coating is important as well. A graphene-reinforced 

waterborne polyurethane nanocomposite coating was fabricated by the sol-gel method using 

silane-functionalized graphene nanosheets [119]. The graphene oxide powder was synthesized 

according to Hummer’s method and the graphene oxide powder was chemically reduced to form 

graphene nanosheets suspension. With increasing the weight percent of graphene in the coating 

(from 0 to 5 wt%), the tensile strength increased from 11.8 MPa to 20.2MPa, the Young’s modulus 

increased from 69.8 MPa to about 118 MPa and the elongation at break reduced from 324% to 

138%. In addition, the thermal properties of the waterborne coating were improved by graphene 

where the decomposition temperature increased from about 258℃ to about 270℃. PUA coating 

could be reinforced by functionalized GOto obtain improved thermal stability and mechanical 

properties according to Yu et al. [120]. GO was synthesized according to Hummer’s method and it 

was functionalized to be UV curable with PUA. The initial degradation temperature of the PUA 

composite with 1.0 wt% functionalized graphene oxide was increased to 316 °C from 299 °C (pure 

PUA). The storage modulus and tensile strength of the PUA composite with 1.0 wt% functionalized 

graphene oxide were increased by 37% and 73%, respectively, compared with those of neat PUA. A 

functionalized graphene sheets/UV cured epoxy nanocomposite coating was developed to seek 

better mechanical properties by Martin-Gallego et al. [121]. The coating was coated on glass 

substrates and cured by UV-light for subsequent characterizations. Compared to pure epoxy resin, 

graphene reinforced epoxy nanocomposite exhibited higher glass transition temperature, higher 

stiffness and higher storage modulus for high temperature. The toughening effect of graphene 

platelets toward epoxy resin, which is widely used in coating application, was investigated [122]. 

The graphene platelets were produced from direct mechanical exfoliation and chemical modified for 

interfacial strength study. The glass transition temperature (Tg) had a 14.7% increase compared to 

pure Bisphenol A diglycidyl ether (DGEBA) and the highest fracture energy release rate G1c 

obtained was 613.4 Jm
-2

. The toughening mechanisms were identified as voiding, micro-cracking 
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and breakage of graphene platelets. The possibility of polymeric graphene based composites being 

used in SPME application was studied by Zou et al. [123]. Graphene/Polypyrrole composite was 

coated on to stainless steel wire by in situ polymerization. The prepared graphene/polypyrrole 

coated fibre showed the highest extraction efficiency toward five phenols compared to a number of 

commercial fibres and polypyrrole or GO/polypyrrole coated fibres. The graphene/polypyrrole 

composite coating on fibre also exhibited good thermal and mechanical stability, excellent adhesion 

and long lifetime.  

 

The published papers about graphene based materials reinforced composites are numerous and they 

may be used in coating applications if proper processing techniques are used. Yoo et al. summarized 

a list of graphene based materials reinforced polymers nanocomposites which could be used in all 

sorts of applications. Corrosion resistance and erosion resistance are vital for the commercialization 

of a coating because they relate to the life time of a coating system. It is worthwhile to 

commercialize a coating system only when it process both good properties and long life time. 

Orientation, particle size, aspect ratios, number and winkles of graphene based materials in polymer 

matrix are the major factors that affect the corrosion and erosion resistance. The process of 

corrosion and erosion is basically a process that corrosive substances diffuse through the coating 

layer and damage the substrate. The utilization of fillers and produce defect free composites is to 

diminish or lengthen the diffusion paths of these substances. In order to achieve maximized barrier 

efficiency of the graphene based materials: 1) good dispersion of graphene based materials must be 

achieved;  2) the orientation of graphene sheets should be parallel to coating layer; 3) the aspect 

ratios of graphene sheets are high and the particle size of graphene particles is large; 4) aggregation 

and wrinkles of graphene sheets should be prevented; and 5) larger numbers of graphene sheets 

presented in the polymer matrix can help to increase the diffusion paths [15]. The most attractive 

property of graphene is its electrical conductivity. Although the graphene based materials can 

improve the electrical properties of a polymer, the achieved electrical properties still cannot meet 

the requirements of electrical applications. In general, the resistant of a filler reinforced polymer 

composite is determined by the tunnelling resistant between the particles and the contact resistant 

between fillers [124]. The electrical conductivity of polymers is generally low. Although graphene 
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can improve their electrical conductivity, it is still not high enough to fulfil the industrial 

requirements. The combination of small particle size and large particle size conductive fillers is a 

way to further improve the electrical conductivity of polymer nanocomposites because small 

particle size fillers can act as bridges between two large sized particle to reduce the tunnelling 

resistance between them [124].  

 

2.4. Polyurethane based coatings 

2.4. 1 Building blocks and synthesis of polyurethane 

Figure 2.8 The basic reactions of isocyanate group with other functional groups 

The key reaction to produce PU is the reaction between isocyanate group and active hydroxyl group. 

Apart from this reaction, the isocyanate group can also react with other functional groups because it 

is very reactive. Its reactions can be divided into two main categories: (1) the reactions of 

isocyanates with compounds containing active hydrogen, (2) the reactions of between isocyanate 

groups (self-condensation). The basic reactions of isocyanates with other substances are shown in 

Figure 2.8 [1,125].  The pronounced positive electro character of the C atom in –N=C=O is the 



Chapter 2 Literature Review 

 31 
 

main reason for the high reactivity of isocyanate groups towards nucleophilic agents. The large 

electrophilic character of the carbon atom is imparted from the electronegativity of the oxygen and 

the nitrogen in –N=C=O. In the reaction systems to produce PUs, diisocyanates, polyols, catalysts 

and even chain extenders are usually be used. Therefore, the final structure and properties of a PU 

polymer are highly dependent on the structure and properties of the components used to synthesize 

PUs.  

2.4.1.1 Isocyanates 

Figure 2.9 The chemical structures of some commercial diisocyanates 

 

Aromatic, aliphatic, cycloaliphatic or polycyclic multifunctional isocyanates can be used to 

manufacture PU coatings.  The multifunctional isocyanates commonly used in industry are toluene 

diisocyanate (TDI), methylene diphenyl diisocyanate (MDI), xylene diisocyanates (XDI), 

tetramethyl xylene diisocyanates (TMXDI), hydrogenated xylene diisocyanate (HXDI), 

hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 4, 4-dibenzyl diisocyanates 

(DBDI) etc [1]. The chemical structures of some diisocyanates are shown in Figure 2.9. Compared 

to other types of diisocyanates, the PUs produced from aromatic diisocyanates have greater rigidity, 

higher oxidation resistance and lower ultraviolet resistance [126]. As mentioned before, the 
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properties of final PU products have high dependent on the structures of the reactants  

 

2.4.1.2 Polyols 

The polyols used for polymerizing PUs can be a multifunctional polyether e.g., poly(ethylene glycol) 

and poly(propylene glycol), polyether polyol (PEPO), acrylic polyol (ACPO), polycarbonate polyol 

etc. and a mixture of different polyols. Different kinds of crosslinked or branched polymers can be 

achieved with adopting different molecular weight and functionalities hydroxyl-containing reactants 

or isocyanates. For example, utilizing low molecular weight reactants such as ethylene glycols and 

1, 4-butane diol can give hard and stiff polymers as a result from a high concentration of urethane 

groups. On the other hand, more flexible polymer chains can be achieved by utilizing high 

molecular weight polyols. Soft and elastomeric PU can be obtained from long-chain polyols with 

low functionality (1.8-3.0) while more rigid, crosslinked product can be obtained from short-chain 

polyols of high functionality (>3) [1]. In industrial applications, polyesters are usually prepared 

from a mixture of two or more diacids reacted with two or more polyols which result in a range of 

very complex product [127,128].  PEPO- and ACPO- derived PUs have good resistance against 

normal weathering, but the hydrolysis of ester groups lead to deterioration of mechanical properties 

under prolonged exposure to humid atmosphere. In order to slow down the hydrolysis process, 

polycarboimides can be added as acid scavengers and suppress the autocatalytic effect [129,130]. 

PEPO-based PU coatings have superior heat stability, adhesive properties and oil resistance. In 

addition, this type of coating also has low manufacturing cost which is favoured by a wide range of 

commercial applications.  

 

2.4.1.3 Catalysts 

With the addition of catalysts, the reactions to produce PUs can be carried out at lower temperatures 

and at a more rapid rate. The most often used catalysts used in the reaction between isocyanates and 

alcohols are tertiary amines [131](i.e.1,4-diazabicyclo [2.2.2] octane (DABCO)), triethyl amine 

(TEA), and organo tin compounds [132](i.e. stannous octoate). The catalytic effect of 

organometallic compound is resulted from their complex forming ability with isocyanate and 

hydroxyl groups [133]. The proposed mechanisms of organometallic catalysts and tertiary amines 
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are shown in Figure 2.10 [134,135]. The interaction of metal cation with isocyanate and alcohol 

leads to an intermediate complex which can readily rearrange to yield the urethane product (Figure 

2.10 (a) and (b)). The catalytic mechanisms of tertiary amines contain the complexation of the 

amine and isocyanate group (Figure 2.10(c)). Afterward, the complex formed react with alcohol to 

form urethane product (Figure 2.10(d)). 

 

Figure 2.10 Reaction mechanism for the reaction of polyurethanesdue to: (a) and (b) organometallic catalysts, 

and(c) and (d) tertiary amine catalysts 

 

2.4.1.4 Chain extenders (CEs) 

Chain extenders are low molecular weight reactants that can extend the chain length in PUs 

formulas in order to produce elastomeric properties. These reactants are commonly hydroxyl or 

amine terminated and their molecular weight usually ranges from 40 to 300.  The chain extenders 

should be difunctional to act as chain extending elements in the systems. If the functionality of the 

chain extenders greater than three, they will be regarded as cross-linkers. The chain length, 
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molecular weight, functionality and conformation of CEs can influence the mechanical properties 

and thermal and hydrolytic stability via influencing the packing of hard segments in thermoplastics 

PUs [136–138]. 1, 4 butane diol, ethylene diamine and trimethylol propane are three commonly 

used chain extenders [1]. The CEs containing amine groups react faster but the reaction rates 

sometimes too fast to control and the final product may have bad smell. The reactions between 

isocyanate groups and hydroxyl based CEs usually have slow reaction rates and even require 

catalyst. In addition, hydroxyl based CEs have poor solubility in polyols which profoundly limit 

their adoption in PUs formulas [139]. 

 

2.4.1.5 Stoichiometry for PUs reactions  

The structure and properties of reactants are important to the properties of PUs but the 

stoichiometry and formulations of the reactants are important as well. The amount of reactants used 

is crucial to the properties of the final products. Therefore, the calculations of the PUs formulae 

need to be strict and concise. The terms and equations needed for PUs formulae calculations are 

listed below [140]: 

 

 (1). Functionality: It represents the number of active functional groups in a molecule. For polyols, 

their functionality depends on the number of active hydroxyl groups. For example, the functionality 

of 1, 4 butane diol is 2.  

 

(2). Hydroxyl value (OHV). The value of OHV is determined by the how many miligrammes of 

potassium hydroxide needed to neutralize the acetic acid which combines on acetylation of one 

gram of sample and is usually supplied by the manufacturers for a given glycol. It is affected by 

acid value (AV). 

 

(3). Weight percentage of hydroxyl (OH%). When OHV is not supplied, OH% is used to evaluate 

the hydroxyl content of a polyol. The relationship between OHV and OH% is: 

OHV = OH% × 33 
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(4) Molecular weight of polyols. Molecular weight of polyols can be calculated according to the 

equation below (56.1 is the molecular weight of KOH): 

M𝑤 =
56.1 × functionality × 1000

OHV
 

 

(5) NCO content (NCO%). NCO% can be calculated according the equation below and one example 

calculations are shown as examples: 

NCO% =
42 × functionality

Melecular weight of isocyanates
 

For TDI, 𝑁𝐶𝑂% =  
42 ×2

174
= 48% 

(6) Equivalent weight. This term represents the molecular weight of each unit of functionality. For 

example, 1 mol NCO reacts with 1 mol OH and then 1g equivalent isocyanate needs 1g equivalent 

polyol to react. The equations to calculate equivalent weight of reactants for PU formulations are 

listed below: 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑠𝑜𝑐𝑦𝑎𝑛𝑎𝑡𝑒 =
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦
=

42 × 100

𝑁𝐶𝑂%
 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑜𝑙𝑦𝑜𝑙 =
56100

𝑂𝐻𝑉
 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 =
18

2
= 9 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑐𝑖𝑑 =
56100

𝐴𝑉
 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑎𝑚𝑖𝑛𝑒 =
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡

2
 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑎𝑚𝑖𝑛𝑒 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 

 

(7) Isocyanate index. The equation shown below show the definition of this term: 

𝐼𝑠𝑜𝑐𝑦𝑎𝑛𝑎𝑡𝑒 𝑖𝑛𝑑𝑒𝑥 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑖𝑠𝑜𝑐𝑦𝑎𝑛𝑎𝑡𝑒

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑖𝑠𝑜𝑐𝑦𝑎𝑛𝑎𝑡𝑒
 × 100% 

 

2.4.2 PU based coatings 

ASTM has summarized six different PU coating types in the ASTM standard D16 and they are 

shown in Table 2.6 [141]. Apart from the classification from ASTM, PU based coatings can be 
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classified into thermoplastic and the thermoset coatings in general. A brief introduction to these two 

kinds of coatings will be given. 

 

Table 2.6 Six different types of PUs in ASTM standard 

 Type I Type II Type III Type IV Type V Type VI 

ASTM 

description 

One-package 

Pretreated 

One-package 

moisture 

cured 

One-package 

heat cured 

Two-package 

catalyst 

Two-package 

polyol 

One-package 

non-reactive 

lacquer 

Characteristics 

Unsaturated 

drying oil 

modified; no 

free 

isocyanate 

Contains free 

isocyanate 

Blocked 

isocyanate 

Isocyanate 

prepolymer 

plus catalyst 

Part A – 

isocyanate 

rich; 

Part B – 

Polyols or 

amines 

Fully 

polymerized 

polyurethane 

dissolved in 

solvents 

Main curing 

mechanism 

Oxidation of 

drying oil; 

Solvent 

evaporation 

Reaction with 

atmospheric 

moisture 

Thermal 

release of 

blocking 

agents and 

then reaction 

Reaction of 

isocyanate 

with moisture 

and/or 

components 

in catalysts 

Reaction 

between Part 

A and B; 

instant curing 

possible 

Solvent 

evaporation 

Polymer 

Alcoholysis 

products of 

drying oils 

reacted with 

isocyanate 

Higher 

molecular 

weight diols 

and triols 

Prepolymer 

forms to an 

adduct with 

blocking 

agents such 

as phenol 

Prepolymer 

similar to 

Type II but 

catalysts 

could contain 

polyol/amine 

Relatively 

lower 

molecular 

weight 

Thermoplastic 

polymer with 

relatively high 

molecular 

weight 

Chemical 

resistance 
Fair Fair to good 

Good to 

excellent 

Fair to 

excellent 

Good to 

excellent 
Fair 

Corrosion Poor Poor to good Fair to good Fair to Fair to Poor to fair 
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resistance excellent excellent  

Corrosion 

protective 

applications 

Exterior or 

interior; 

non-immersi

on services; 

Wood; 

Concrete; 

Metal 

Exterior or 

interior; 

non-immersi

on services; 

Wood; 

Concrete; 

Metal 

Not used for 

anticorrosive 

coatings in 

the field; 

Automotive 

and product 

finishes 

Similar to 

Type I but 

the design of 

catalyst may 

change the 

properties; 

Some 

suitable for 

immersion 

Used for 

many 

substrates; 

Elastomer for 

concrete; 

Rigid for 

metals 

Not normally 

used for 

corrosion 

protection; 

Automotive 

and product 

finishes 

Special 

considerations 

Better 

abrasion than 

most oil 

paints 

Properties 

and curing 

affected by 

humidity 

Heat required 

for cure 

Similar to 

Type II but 

with speed of 

curing 

Special 

equipment 

may be 

required 

VOC limitation 

 

2.4.2.1 Thermoplastic PU based coatings 

The effect of HSs and SSs play dominated role in the properties of thermoplastic PU coatings 

because thermoplastics PUs can be regarded as a linear structural block copolymer of hard segments 

(HSs) and soft segments (SSs) [1]. The properties of HS and SS vary significantly and, therefore, 

phase separation may be observed in the final product. Phase separation takes place due to the 

incompatibility or thermodynamic immiscibility between HSs and SSs. The HSs usually consist of 

polar materials and they tend to form cluster or aggregate into ordered hard domains due to 

carbonyl or amino hydrogen bonds. Meanwhile, SSs form amorphous domains [142]. 

Schollenberger first studied these segmented PUs in 1959 [143]. Cooper and Tobolsky further 

investigated these segmented PUs and found out that the hard segments acted as filler particles as 

well as crosslinkers which lead to the restriction of the motion of the amorphous soft segments 

[144]. Composition variables and processing conditions such as properties and structure of HSs and 

SSs, synthesis methods and thermal history of the PUs are very important for the properties of the 
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final product [1]. 

 

The structure, length and distribution of HS can strongly affect morphology, thermal behaviour and 

performance of PU coatings [145,146]. In polyether based PU coatings, their mechanical properties 

depend mainly on the HS content. The presence of hydrogen bonding in the hard segments domains 

leads to strong domain cohesion. A morphological change from interconnecting to isolated hard 

segments domains takes place when the HS content is increased [147].  By measuring the Tg of the 

SS, the effect of HS content on the phase separation can be investigated [148]. The Tg of SS is 

influenced by the restrict movement induced at the HS junctions or phase boundaries where HS acts 

as a filler particle [149]. In addition, the variation in mechanical properties was regarded as the 

result from the morphology change induced by the variation of HS content [150]. Models 

containing MDI/BDO repeating units were used to investigate the melting behaviours of PUs and 

those studies indicated that the melting of model compounds increases with the number of HS units, 

which are MDI units, and an extrapolated value of homopolymer accounting for the chain end 

effects was also investigated [151–155].  The model compounds R-(MDI-HQE)p-1-MDI-R’ (where 

p=1,2,3; R,R’ is ethanol and/or 2-phenoxythanol; and HQE is bis(2-hydroxyethyl) ether) had been 

utilized to indicate the relationship between melting points and oligomer length and the results 

showed that the melting point increases with increasing the oligomer length [156]. A limiting value 

for melting points for infinite molecular weight was also calculated from the model compounds 

[157].  

 

The properties of the final coatings are affected by the chemical composition and molecular weight 

distribution of the incorporated soft segment (i.e. multifunctional polyols). The thermal deformation 

and thermal properties of the PUs are strongly affected by the molecular weight of SS. In addition, 

the chemical structure of SS influences the solubility parameter of SS and, therefore, the 

compatibility between SSs and HSs in PU coatings [158]. When HS length is fixed, increasing the 

molecular weight of SS raise the tendency of the isolation of HS domains in the SS matrix. This 

phenomenon results in a higher degree of phase separation between SSs and HSs and a lower Tg 

will be resulted as well [159,160]. When the functionality of SS is fixed, increasing the molecular 
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weight of SS has similar effect which leads to increased thermodynamic incompatibility between 

hard and soft segments [161]. If the functionality of SS is increased, the strength of PUs will be 

increased and the overall degree of phase separation will be reduced as well as a result from the 

increased domain boundary mixing [162].  

 

The effect of hydrogen bonding in thermoplastic PUs plays a major role in their macroscopic 

properties. The high electronegativity of nitrogen atom in urethane attracts N-H bonded electron 

and partial positive charge on the hydrogen is developed. Therefore, hydrogen bonding can be 

formed between N-H and the neighbouring oxygen atoms. In polyurethanes, the N-H group is the 

donor group and the acceptor group can be carbonyl of the imide groups, C=O in the PUs or the 

oxygen atom of the ester or ether linkage when polyester or a polyether are used as the SSs. The 

hydrogen bonding presented in PUs develops physical crosslinks and, therefore, can provide 

enhanced strength and stiffness [163,164]. Pimentel and Sederholm suggested a linear relationship 

between the length of the hydrogen bonding and phase separation behaviour in PUs. The shorter the 

hydrogen bonding , the stronger the bonding [165].  

 

2.4.2.2 Thermoset PU based coatings and coating selection  

Although thermoplastic PUs have excellent properties as coatings, their poor resistance towards 

mechanical strains and higher temperature deformation/ degradation are the major drawbacks. In 

general, their working temperatures are below 100 ⁰C [166].  Thermoset PU coatings provide 

superior tensile strength, scratch resistance and chemicals resistant than thermoplastic PU coatings 

as a result from the presented crosslinks. In order to improve the performances of thermoset PU 

coatings, the effect of different crosslinkers in PU structure was evaluated. Utilizing the soft 

segments with functionalities greater than two, isocyanates with functionalities greater than two, 

peroxides and tri-functional chain extenders are common methods to produce thermoset PU 

coatings. A careful calculation of the amount of reactants used to produce thermoset PU coating is 

needed to produce a product with desired properties [1]. There are ten different kinds of thermoset 

PU coatings included: high solid coatings, moisture-cured polyurethanes (MCPUs), polyurethane 

imide, polyurea coatings, UV-curable coatings and waterborne coatings. Each kind of coating has 
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its own advantages and major drawbacks. The selection of PU coatings should be considered 

carefully according to specific applications and modifications of backbone structure of PU coatings 

can be adopted if necessary with the consideration of the end use of the coating and the cost of 

modification. There are several factors need to be considered when selecting a PU coating to a 

specific application [1,167].  

 

1. The properties of the modified PU coating such as mechanical properties, thermal stability and 

corrosion resistance. 

2. The resistance of the coating against environmental damage.  

3. The compatibility of the coating and the targeted substrate within the expected environment and 

working temperature. Good coating-substrate adhesion must be guaranteed. 

4.  When an application is critical and the consequences of failure are disastrous, a particular 

coating must be used even the cost is very high, particularly when there is no other option.   

5. For better protection of substrate, knowledge of the following parameters is very important: 

coating application method, composition, thickness, mechanical properties, coating-substrate 

adhesion, friction coefficient, thermal expansion coefficient, heat conductivity, density, specific heat 

and the overall stress level exhibited by the coated body. 

 

2.4.2.3 Why we use PU/graphene based coatings for protective coating 

With careful tailoring of PU formulation, PU can be an excellent choice for protection coating. 

Compared to other polymers as coating, PU has better mechanical properties and the adhesion 

between PU and steel is excellent without any surface treatment which allows PU to be a perfect 

choice of protective coating for steel substrates [1,168,169]. Although PU based coatings have been 

widely adopted, the application of PU is limited by its thermal stability, stiffness, scratch resistance, 

tensile strength, friction resistance, wear resistance and anti-corrosion properties [170,171]. 

Therefore, modification of PU is necessary to enhance its performance. The widely accepted 

method of modification is to produce PU nanocomposites via adding nanofillers such as graphene, 

nano-clay and carbon nanotube etc. Since the discovery of 2004, graphene is regarded as the 

miracle materials in the world and it is believed that it can significantly improve the performance of 
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a polymer by acting as a reinforcement. The extraordinary properties make it an excellent choice for 

performance enhancement of PU. The excellent mechanical properties of graphene make it a good 

reinforcement for the stiffness and thermal stability of PUs. In addition, the high aspect ratios and 

low gas and water permissibility of graphene indicates that graphene has outstanding barrier 

properties. Graphene was also reported as a potential anti-corrosion coating which block the 

electrochemical corrosion in electrolytes [18]. Although graphene can act as corrosion protective 

coating, it can only work as a short term measure because researchers had found out that graphene 

might facilitate corrosion in long term. The graphene produced in labs or industries so far is not 

perfect. The corrosion media can penetrate through the defects of graphene and react with the metal 

substrates in long term experiments [172]. In addition, the cost of producing graphene is still very 

high using current technology and it is difficult to obtain defect-free graphene. Therefore, pristine 

graphene as corrosion protective coating is not suitable for long-term cost-effective application. In 

order to develop a protective coating with desired durability and good corrosion resistance, an 

effective route is to produce PU/graphene nanocomposite coating. 

 

Ramezanzadeh and his co-workers developed a PU/graphene coating with improved barrier and 

anti-corrosion properties for steel substrates [173]. Graphene oxide was produced by modified 

Hummer’s method. In order to improve the interfacial bonding between PU and graphene oxide, 

graphene oxide sheets were functionalized by polyisocyanate first and then mixed with polyol and 

isocyanate to produce PU/graphene nanocomposite coatings. The effect of GO and functionalized 

GO on the performance of PU was compared. The EIS results and salt-spray (5wt% NaCl solution)  

indicated that the functionalized GO reinforced PU had the best barrier properties and 

anti-corrosion properties. The addition of GO and functionalized GO can block the diffusion of 

corrosive substances (water, oxygen and alkaline solution etc.) which improve the barrier properties 

of the PU. In addition, the ionic resistance of the PU will be improved as well. Owing to the 

excellent electrical properties of GO, the GO sheets were negatively charged, which improves the 

ionic resistance of PU because the charged GO sheets prevented the anions from diffusing into the 

coating-substrate interface. The tribological and anti-corrosion properties of PU nanocomposite 

coatings reinforced with functionalized graphene and GO were investigated by Mo et al. [170]. The 
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graphene and GO were functionalized with 3-amino-propyltriethoxysilane (APTES). After APTES 

functionalization, the dispersions of G and GO were more uniform in the PU matrix. The 

enhancement of tribological and anti-corrosion properties was attributed to the lubricant effect and 

excellent barrier properties of graphene as GO because GO had worse chemical stability than 

graphene owing the functional groups on GO surface. The optimised filler loading was between 

0.25% and 0.5%. Compared to PU/functionalized graphene coating, the coating reinforced by 

functionalized GO had better tribological performance but the anti-corrosion property was worse. 

Apart from anti-corrosion property, the electrical properties of PU can be improved by adding 

graphene. The investigation of the effect of graphene on electrical conductivity, rheology and 

crystallinity on PU was conducted by Canales and his colleagues [174]. The graphene used was 

thermal reduced graphene produced in their lab. Crystallisation during cooling affected the 

distribution of graphene in PU matrix and the electrical conductivity decreased first and then 

increased; the highest electrical conductivity achieved was 6.1 × 10
-4 

S/cm.  

 

From the literature, graphene can improve the anti-corrosion and electrical properties of PU 

significantly even in low filler content. The reported PU/graphene nanocomposites had excellent 

anti-corrosion properties and electrical properties which indicated that the advantages of PU and 

graphene could be combined effectively. However, the preparation of graphene and the mixing of 

graphene with PU are complicated, which limits the commercialisation of PU/graphene 

nanocomposite coatings. A low cost and efficient way to disperse graphene in PU is necessary for 

large scale coating production.  

 

2.5. Coating methods  

Different coating methods have been used by recent studies and they were summarized in this 

section. Their possible advantages and limitations are discussed and their availability for different 

types of graphene based coatings is suggested.  

 

CVD. Chemical vapour deposition method is a method to synthesize graphene layers on a substrate 

and transfer to other substrates. When utilizing this method in coating, graphene can be deposited 
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on to the target substrates without the transfer process. More detailed graphene growth mechanisms 

were stated in the former graphene synthesis method section. CVD is a method with great potantial 

to produce graphene in large scale and this also suggests that large scale coating is also foreseeable. 

In addition, pure and dense coating can be produced by CVD method, and the CVD parameters can 

be adjusted to produce coatings with different surface morphology, thickness and even crystal 

structure. The major disadvantages of CVD are safety and hazard issues caused by the precursor 

gases, difficulty of depositing multicomponent materials and high equipment cost [175]. In general, 

CVD is suitable to apply highly dense and pure graphene based coatings such as pristine graphene 

on a substrate. The coating structure can be controlled at the atomic level or nanometre level.  

 

Dip coating. Dip coating is a convenient method to coat thin film on a substrate and it is very 

frequently used for research purposes. However, it is not suitable for industrial processes due to the 

inconsistent coating quality. Compared to dip coating, spin coating is often used in industrial 

processes. The dip coating process generally has five steps [176]: 

 

1. The substrate is dipped into the solution of the coating material at a constant speed. Before this 

step, pre-treatment process may be conducted according to different substrates. 

2. The substrate remains in the solution for a designated time and is starting to be pulling up. 

3. The coating thin film begins to deposit on the substrate while the substrate is pulled up. The 

thickness of the coating depends on the speed used in pulling up process. Slower pulling up gives 

thinner coating layer. 

4. Excess liquid will be drained from the substrate surface. 

5. Solvent evaporates from substrate surface to from a thin film. The evaporation may begin in step 

3 if the solvent is volatile. 

 

In research, dip coating is more convenience and feasible than other methods because it is a very 

simple method and do not require sophisticated equipment. Because of its simplicity, the coating 

layer produced by this method may not have good quality. For graphene based composite coating, 

the thickness distribution can be a problem. In terms of pristine graphene based materials coating, 
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the coating layer produced may not be dense enough to provide extraordinary properties. In addition, 

the substrate cannot be too large and complicated. However, the biggest advantage of dip coating is 

simplicity. Although dip coating is more suitable in lab, it still can be a potential large scale coating 

method to produce products that can satisfy the applications for low standard requirements with a 

competitive price. This approach is possibly more suitable to produce graphene based composite 

coating than pristine graphene based coating because the viscosity of the graphene based composite 

coating is much higher. Therefore, it can develop a better interfacial adhesion toward a substrate 

and a more uniform coating layer. A subsequent treatment process may need to form a solid coating 

layer. 

 

Spin coating. Spin coating is a process widely used for applying uniform thin film on a flat 

substrate. The applied materials are usually polymeric coatings and they are applied onto flat 

substrates in the form of solution. The solvents used are usually volatile. The driving force that 

drives the solution rapidly of the substrate is centrifugal force and a machine used for spin coating 

is called spin rotator spinner The centrifugal force is applied continuously until desired film 

thickness is achieved [176,177]. Several factors can affect the final film thickness: 1. kinematic 

viscosity; 2. coefficient of solvent diffusion; 3. the critical shear rate for onset of shear thinning of 

the viscosity; 4. the rotational speed; 5. the radius of the substrate; 6. the coating solution 

concentration. The two major influenced factors are the rotational speed and the coating solution 

concentration [176–178]. A typical spin coating process is a four steps process [176,178,179]: 

 

1. Polymer solution is deposited on the substrate with an excess amount to cover the substrate 

completely. 

2. The substrate spins rapidly to displace the polymer solution with centrifugal force. 

3. Laminar radial flow of the liquid layer of uniform thickness remaining on the substrate. 

4. Removal of solvent via evaporation until the film stops flowing and is dried completely. 

 

Some treatments were used to assist the coating process. For example, N2 gas was used to blow the 

graphene oxide coated silicon chip to accelerate the evaporation of water during the process of spin 
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coating [83]. All the assisted treatments during or after the spin coating process are to obtain 

uniform continuous graphene based materials thin film. Compared to dip coating, the coating layer 

produced by this approach is denser and more uniform. The substrate shape and size is limited by 

the spin coating apparatus. Only flat surface can be spin coated. The spin coating method is not 

suitable for complicate shape product. In addition, this method is more suitable to coat pristine 

graphene based coatings or graphene-nanoparticles composite coatings on a substrate. 

 

Layer by layer self-assembling (LBL). In multi-film production, layer-by-layer self-assembling 

method is very ideal. This method utilize the attraction between positive and negative charges to 

make the films self-assemble on a substrate and the this method is also called layer-by-layer 

deposition method [180,181]. In layer-by-layer self-assembling process, the films are deposited 

onto a substrate by immerging the pre-treated substrate into graphene solutions and polymer 

solution cyclically to form multi-layers films [180]. The substrate is pre-treated into positively 

charged by introducing positive charged functionalities such as amine functionalities [181]. The 

graphene solution can be directly used as negatively charged dipping particles but the polymer 

solution may need to be changed the pH to for subsequent dipping process [180,181]. This method 

is a method suitable for producing two components multi-layers coating. However, only some 

research papers investigated its applicability for graphene based materials. There is no direct 

indication of utilizing this method for coating applications. This method is similar to dip coating 

method where the substrates are dipped into the coating solution and are withdrawn to form coating 

layer, but the coating layer produced by LBL is denser due to the compact force originated from the 

attractive force between negative and positive charges.  

 

Sol-gel approach. The sol-gel process is a widely used wet-chemical process and it has been 

studied extensively since its discovery. Sol refers to the colloidal solution which acts as the 

precursor and it will evolve to gel which refers to the integrated network. The precursor sol can be 

deposited onto a substrate (e.g. via dip coating), casted into a mould with the designated shape or 

used to synthesize powders. The gel is generally a gel-like biphasic system containing both solid 
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and liquid phases. Large quantity of liquid needs to be removed for sol turn into gel and the 

simplest method is pour off the liquid after sedimentation which requires a certain amount of time 

to take place. Drying process is required in sol-gel method to remove the liquid phase in the system. 

Severe densification and shrinkage always accompany the drying process. After the drying process, 

a thermal treatment is usually necessary for further polycondensation, mechanical properties 

enhancement and structural stability.  The advantages of sol-gel process are cheap, low 

temperature and fine control of the final product’s chemical composition  [182,183]. The coating 

film produced by sol-gel method tends to crack and there is a thickness limitation of each layer 

(about 1 micron) [175]. This method is suitable to apply graphene based composite coating onto a 

substrate and the substrate can have complicate shape.   

 

Direct apply and curing. This method is a very simple coating method that a coating mixture is 

coated onto a substrate directly and cured under ambient conditions. The coatings that can be cured 

under ambient conditions such as curing at room temperature are suitable to use this method, UV 

curable nanocomposite coatings, for example. The interfacial bonding between the substrate and the 

coating may be weak because this method is applying a coating directly without any treatments or 

subsequent processes. The substrate shape and size are not limited and coating can be applied onto 

some vital parts of a component directly. This method is more suitable to apply graphene based 

composite coatings.  

 

Spray drying. Spray drying is a technique to produce dry powder from solution or suspension by 

rapid drying with the aid of a hot gas. The heating gas used in spray drying unique is usually air. 

However, nitrogen is used when the liquid is flammable solvent or the product is oxygen sensitive 

[184]. The liquid dried is dispersed into a controlled drop size spray by atomizer or spray nozzle. 

The drop size rages from 10 μm to 500 μm according to different process needs [185]. Spray drying 

technique is only suitable to produce powder form product and one vital requirement to produce 

graphene coated powder is that the particle size of graphene must be much smaller than the target 

powder. The graphene is coated onto a powder form substrate during the spraying process. Powder 
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agglomeration and uneven coating may be problems when using this method. This method is more 

suitable to process pristine graphene based materials and graphene-nanoparticles composite coating.  

Spray coating. Spray coating is a technique for depositing thin film on a substrate. This technique is 

widely used in industrial coating, painting and graphic art [186]. This large output technique is able to 

deposit a broad range of materials on various substrates with different morphologies and it is usually 

used in in-line production. In addition, it can be easily scaled to larger substrates or roll-to-roll 

manufacturing. The substrates with different shape can be processed and the fluids with different 

characteristics can be used. As a result, solutions with different properties can be readily deposited 

onto different shapes’ substrates to obtain films with desired properties [186,187]. The apparatuses 

for spray coating employ compressed gas (airbrush gun) to plasma torch (plasma spray coating) to 

fulfil different product requirements. Different apparatuses should be selective carefully to process 

graphene based coatings. Both pristine graphene based coatings and graphene based composites 

coatings can be processed by this method.  

 

In-situ polymerization. The in-situ polymerization method is suitable for the unstable reactants that 

must be synthesized in-situ. The polymerization happens in a continuous phase to make all the 

unstable reactants in the reaction mixture but not isolated on their own. The reaction mixture can be 

applied onto a substrate as coating before the viscosity of the mixture becomes too high. However, 

there still no study about applying the mixture on a substrate as coating right after the mixture is 

in-situ polymerized. This method may not suitable to be used in coating industries.  

 

Electrophoretic deposition (EPD). EPD is a technique that attracts lot of attentions because of its 

high versatility usage with different materials and their combinations. It is also a cost-effective 

process and requires very simple equipment. This method was first widely used in ceramic coating 

and it began to be used in other materials when more and more interests were received. This process 

is a colloidal process and its advantages are short deposition time, simple apparatus, low coast, little 

restriction of the shape of substrate and easy control of deposited layer thickness and surface 

morphology. The film produced also exhibited good microstructure homogeneity and high packing 
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density. The only intrinsic limitation of EPD compared to other colloidal process is that water 

cannot be used as its liquid medium because the applied voltage in water triggers the generation of 

hydrogen and oxygen gases at the electrodes which have negative effects on the quality of the 

deposited films and potential safety threats [188].  

 

In this process, the solid particles are charged under electric filed. Then, the charged particles are 

attracted to move toward the substrates with opposite charge to form deposited layer via particle 

coagulation[188,189]. There are two types of EPD process: cathodic and anodic. When the particles 

are positively charged, they are attracted to deposition onto negative electrode (cathode). The reason 

for anodic EPD is similar where the particles are negatively charged. The substrates used in EPD 

must be conductive and the required conductance of liquid medium is lower than electroplating 

[190]. The principle driving force of EPD process is the charge on the particles and the 

electrophoretic mobility of the particles in the solvent under applied voltage. There are two major 

groups of parameters can influence film quality and film characteristics: (1) those parameters 

related to the suspension and (2) those parameters related to the process. In terms of the parameters 

relate to the suspension, many of them must be considered. However, particle size, dielectric 

constant of liquid, conductivity of suspension, viscosity of suspension, zeta potential and stability of 

suspension are more influencing among those suspension parameters. Regarding the parameters 

relate to the process, deposition time, applied voltage, concentration of solid suspension and 

conductivity of substrate [188]. To ensure a successful EPD process, powder washing, which 

removes any impurities on the powder, is very vital because it contribute to the careful control of a 

defined chemistry of particle suspension [191]. One problem must be prevented in EPD process is 

the formation of drying cracking. Several approaches have been published such as careful control of 

the EPD process with moderate control of subsequent drying [188,192].  

 

EPD has been adopted to fabricate carbon nanotube coatings [193]. The carbon nanotube coatings 

produced via EPD can be used in biomedical, structural and functional applications [189,193]. For 

carbon nanotubes coatings, the suspension for EPD is usually prepared by adding carbon nanotubes, 
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Triton X100 as an ionic surfactant and iodine 99.9% as a charger to an aqueous solution. The 

resulted suspension mixture is centrifuged to remove large carbon nanotubes agglomerations [189]. 

EPD has been widely used to coat graphene based materials on different substrates [194]. It is 

believed to be a promising method to produce high quality graphene based coatings. There are still 

a lot of works needed to be done to find out suitable conditions for different coating applications. 

This method is more suitable to produce pristine graphene based coatings and 

graphene-nanoparticles composite coatings 

 

2.6. Conclusions and future perspectives 

It is evidenced that graphene exhibit many extraordinary properties from many published 

characterization results. Graphene based materials have wide range of potential applications such as 

flexible transparent electrode, sensors and electronic components. Graphene based polymeric 

nanocomposites also show very low percolation threshold of electrical conductivity, and improved 

mechanical, thermal, and barrier properties. However, there are still lots of challenges lie on the 

path toward mature graphene utilization. Defect-free graphene is the perfect materials for being 

used in all kinds of applications but the fabrication techniques are still not mature. Moreover, the 

scale-up of fabricating graphene based materials with acceptable coast is still extremely challenging. 

Essentially, the potential health risks of graphene based materials need to be evaluated before large 

scale utilization.  

 

The potential electrical properties, barrier properties, mechanical properties and thermal properties 

were identified when coated pristine graphene based materials and graphene based composites on a 

substrate. In addition, other properties were also identified such as catalytic activity, sensing 

sensitivity, and barrier efficiency. However, most of the published articles on utilizing graphene in 

coating focus on electrical properties. Much more efforts need to be given in for fully understand 

the potential applications of graphene based coatings. The influence of graphene coated surface 

morphology on improvement efficiency needs to be investigated as well. No matter how the 

graphene is synthesized, the ease for subsequent coating processing needs to be considered. If the 
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synthesized graphene can be readily used without any treatment, the cost can be lowered and a good 

quality coating may be produced as well. In order to optimize the properties of polymer graphene 

based composites, the control of graphene based materials orientation and dispersion during 

processing is critical. Much more effort in nano-engineering is needed to understand the behaviour 

of graphene based materials in polymer processing. In coating applications, coating methods have a 

profound effect on the properties and morphology of the resulted coating. Two or more coating 

techniques may be used at the same time to produce a multilayer graphene based coating system to 

meet the industrial requirements as the current techniques are difficult to satisfy industrial standards 

when they are used separately. The development of new technologies for graphene based materials 

fabrication and processing is still essential to face the demands and challenges in industries 

nowadays.  
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Chapter 3 Experimental 

3.1 Materials 

3.1.1 Carbon based particles 

TIMREX PP10 natural graphite (PP10) which supplied by TATA steel was purchased 

from TIMCAL Ltd (100% graphite). The expandable graphite was purchased from 

China Qing Dao Graphite Company (100% expandable graphite). MWCNT was 

purchased from a company in China (100% CNT).  

 

3.1.2 PU topcoat, primer and reactants 

In the case of producing PU nanocomposite conductive coatings, matured PU topcoat 

and primer were supplied by TATA steel.  The pigments and the corrosion inhibitor 

were removed from the coating. The information of the coating is as followed: 

Topcoat 

Product name: Chocolate Brown HMPU 

Product No.: 301/M07363 

Contains: 1,6-diisocynatohexane Homopolymer, Methylethylketone oxim-blocked 

(PU >80%),  hydrocarbons, C10, aromatics, >1% naphalene 

Primer 

Product name: P21PR00/CF79 BPRIM 266 WHITE PR 

Product No.: 330/0068 

Contains: EPOXY RESIN (Number average Mw<= 700, >80%), hydrocarbons, C10, 

aromatics, >1% naphalene 

 

For the investigation of cure dynamic of PU, model PU was used. The selection of the 

reactants based on the feasibility of cure dynamic investigation. The reaction rate of 

the model PU is moderate and fillers can be mixed with the PU with ease. The 

information of the reactants with chemical structures is shown below: 
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Isocyanate  

4,4’-methylenebis (cyclohexyl isocyanate) (HMDI) (purchased from Sigma 

Aldrich, >90% isomer) 

Molecular weight: 262.35 

Equivalent weight: 262/2=131 

Appearance: colourless liquid 

Density (at 20 °C): 1.066 g/ml 

Flash point: >110 C 

NCO content: 32% 

 

Polyol 

Lupranol 2090 (>99.5%) 

Molecular weight: 6000  

Equivalent weight: 2,000 

Appearance: colourless liquid 

Density (at 20 °C): 1 g/ml 

Flash point: N/A 

OHV: 28.05 

 

Chain extender 

1,4 – Butandiol (purchased from Sigma Aldrich, >99.5%)) 

Molecular weight: 90.12 

Equivalent weight: 45.06 

Appearance: colourless liquid 

Density: 1.017g/ml at 25 °C 

Flash point: N/A 
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Catalyst 

The catalyst used for this system is DABCO-33LV supplied by Air Products and 

Chemicals, Inc. It is a mixture of triethylenediamine and di (propylene glycol).  

3.1.3 Steel substrates 

Cold rolled steel ‘Black Plate’, which was used as substrates, was provided by TATA 

Steel R&D. The BP steel was a 0.2mm thick steel sheet initially and it was cut into 

20mm by 50mm steel sheets for subsequent coating processes. Apart from BP, there 

are other steel substrates will be used for comparison test in EPD graphene coating 

sections which will be described in detail later.  

Code Description 

13KE005 316 stainless steel 

13KE008 Black plate with better roughness 

13KE009 Carbon steel nickel plated 

13KE21 Special treatment steel 

 

3.1.4 Other chemicals 

Acetone (99.5% purity) and iodine (>99%) were purchased from Sigma Aldrich. 

Melamine which was used for graphene exfoliation was purchased from Sigma 

Aldrich. H2SO4 (>95%), HNO3 (70%), HCl (38 wt% concentration), KMnO4 (>99%), 

30% H2O2 solution, NaCl (>99.5%) and BaCl2 (>99.5%) were purchased from Fisher 

Ltd (UK). 

 

3.2 Graphene fabrication 

Sample preparation 

Graphene (G) was produced by mechanochemical method from expandable graphite 

in the lab [1]. Expandable graphite was mixed with melamine in volume ratios of 1:1 
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and 1:3 to produce powder mixtures. The mixtures were then mixed with de-ionised 

water to form suspensions and the concentrations were 1g/100ml. The suspensions 

were then kept at 80
 °
C for 1 hour with constant magnetic stirring around 200 rpm to 

allow the melamine to fully penetrate the expandable graphite galleries. After stirring, 

the suspensions were filtrated and dried at 80
 °

C for 5 hours. The dried powder 

mixtures were then underwent ball-milling for graphene exfoliation. The ball milling 

machine ran for 500 rounds and 1000 rounds. The milled mixtures were then washed 

by de-ionized water and the second exfoliation process would be performed. The 

initial exfoliated mixtures were then exfoliated by 1 hour ultrasonication (Fisher 

Scientific Sonic Dismembrator Model 500, 300 W), 1 hour mechanical stirring or 4 

hours mechanical stirring. After second exfoliation process, the mixtures were washed 

by hot water to remove melamine completely. The washed particles were put into a 

drying cabinet overnight for water removal. The table below summarized the 

graphene produced by the above methods.  

 

Code name 

Graphite to 

Melamine 

Volume Ratio 

Ball-milling 

Revolutions 

Exfoliation 

Method 

Exfoliation 

Time (hours) 

A 1:1 1000 Ultrasonic 1 

B 1:1 1000 Mechanical 4 

C 1:3 1000 Mechanical 4 

D 1:3 1000 Ultrasonic 1 

E 1:3 1000 Mechanical 1 

F 1:3 500 Mechanical 4 

 

Characterisation  

The effectiveness of the exfoliation procedures of flake graphite was determined by 
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x-ray diffraction (XRD) scans on the D2 phaser (Brunker Corporation) from 1
o
 to 30

o
 

(2theta) with a step size of 0.02
 o

. The morphologies of the graphene flakes were 

observed under the JEM-2000FX transmission electron microscope (TEM) (JEOL 

Limited.). XPS testing was carried out on the Thermo Scientific K-Alpha XPS system 

(Thermo Fisher Scientific Inc.) with an Al K-α X-ray source with a power of 200 W 

and under 10
-7

 Torr vacuum. The Fourier transform infrared (FTIR) spectra were done 

on the FTIR-8400S Fourier Transform Infrared Spectrophotometer (Shimadzu 

Corporation) with 4 cm
-1

 resolution over 64 scans. The graphene EPD coating was 

done on steel substrates with 40 V and 2 mA for 5 minutes. The conductance of the 

graphene coating was measured by the four-point conductivity test, on the 

multi-height microposition probing system (Jandel Engineering Limited). The basic 

introduction of the techniques used would be covered in 3.6.  

 

3.3 Carbon based conductive coating 

Sample preparation 

Graphene (G) or graphite (PP10) was mixed with acetone to form a suspension. 

Iodine was then added into the suspension and stirred until fully dissolved. The 

resulted mixture was ultrasonicated for 30 minutes by using Fisher Scientific Sonic 

Dismembrator Model 500 at room temperature. The BP substrates were cleaned by 

acetone and then it was degreased in 5% alkaline solution at 70 ⁰C for 3 minutes. The 

distance between two electrodes was 10mm and a voltage of 40V was applied for 30 

seconds initially. The DC source used in EPD was Consort EV265.  EPD coated 

samples were thermal treated in a furnace (Carbolite RHF 16/8) with different 

temperatures for different times. Different EPD conditions were used as well to 

investigate the optimized EPD conditions for the best conductivity.  The materials, 

heat treatment temperature and time, and EPD conditions are shown in the tables 

below.  
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Heat treatment temperature trials 

Materials Heat treatment temperature (°C) 
Treatment 

time (mins) 

PP10 520, 540, 560, 580, 600,610, 620, 

630,660,700 
5 

Graphene 

 

Heat treatment time trials 

Materials Heat treatment temperature (°C) 
Treatment 

time (mins) 

PP10 600 1, 2, 3, 4, 5 

 

EPD conditions trials 

Iodine amount change 

Sample Name 
Voltage 

(V) 
Current (mA) 

Time 

(mins) 

Iodine weight in 80 ml 

acetone (mg) 

DP1061 40 12 2 14 

DP1062 40 25 2 35.5 

DP1063 40 40 2 59.3 

DP1064 40 51 2 79.1 

DP1065 40 53 2 100.7 

 

Deposition time change 

Sample Name 
Voltage 

(V) 
Current (mA) 

Time 

(mins) 

DP1066 40 20 0.5 

DP1067 40 20 1 

DP1068 40 20 1.5 
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DP1069 40 20 2 

DP10610 40 20 2.5 

 

Voltage change 

Sample Name 
Voltage 

(V) 
Current (mA) 

Time 

(mins) 

DP1866 20 7 2 

DP1867 30 13 2 

DP1868 40 17 2 

DP1869 50 20 2 

DP18610 60 24 2 

 

In the EPD conditions test, all the samples were heat treated at 580 ⁰C for 5 minutes 

Characterisation 

Carl Zeis (Leo) 1530VP Field Emission Gun Scanning Electron Microscope 

(FEG-SEM) and Thermo Scientific K-Alpha X-ray Photoelectron Spectroscopy (XPS) 

were used to characterize the surface morphology and surface composition of the 

coated samples respectively. The electrical conductivity of the coated samples was 

measured by using a FLUKE PM6306 programmable automatic RCL meter with a 

four point probe. Relative electrical conductivity Cc/Cs was used show the electrical 

conductivity enhancement, where Cc represents the measured electrical conductivity 

of the coated samples and Cs represents the measured electrical conductivity of bare 

steel.  Electrochemical impedance spectroscopy (EIS) was used to characterize the 

corrosion resistance of the coatings. The basic introduction of the techniques used 

would be covered in 3.6.  
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3.4 PU nanocomposite coatings 

Sample preparation 

For the fabrication of nanocomposite coatings PP10, G, MWCNT and TEG were used. 

Initially, topcoat was stirred by a glass rod to let the polymer particles disperse 

uniformly in the suspension and then a calculated amount of PU topcoat was poured 

into a glass bottle for latter mechanical stirring. The total weight of the composite was 

6g. A calculated amount of filler was added into the PU topcoat during mechanically 

stirring. The duration of mechanical stirring was 4 hours. In the single filler trials, 

only G and PP10 were used. The stirring time was set according to the results 

obtained from 3.2.  

 

For hybrid filler filled coating, the total weight of the composite was 6g. According to 

the filler ratio, calculated amount of TEG, G or PP10 and MWCNTs were added into 

a glass bottle and a suitable amount of acetone was added as well. The resulted 

suspension was ultrasonicated for 30 minutes. After ultrasonication, the glass bottle 

was put into a fume cupboard to evaporate the acetone until a filler paste was resulted. 

Calculated amount of topcoat was added into the glass bottle and the mixture was 

mechanical stirred at 1000 rpm for 4 hours. The preparation procedure of primer 

based nanocomposite coatings was similar. 

 

All the resulted mixtures were coated on to the BP steel by hand draw bar which 

performed with a glass rod. Before coating, The BP substrates were cleaned by 

acetone and then they were degreased in 5% alkaline solution at 70 ⁰C for 3 minutes. 

The coated samples were put into an oven at 290 ⁰C for 4 minutes 40s for fully cured. 

For EPD + topcoat system, topcoat was directly coated on to EPD deposited layer by 

hand draw bar. The as-prepared sample was cured at the same conditions as other 

samples. For multi-layer system, epoxy primer was directly coated on to EPD 

deposited layer by hand draw bar and cured in the oven at 290 ⁰C for 3 minutes. PU 
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top coat was subsequently coated on to the coated sample by hand draw bar and the 

resulting multi-layer coating was put into the oven for 4 minutes 40s. 

 

Single filler weight percent trial 

PP10 was incorporated into topcoat primarily. G filler and primer was used as 

comparison. The weight percent used was shown below. 

Primer codename PP10 loading (wt%) 

EPP6 6 

EPP8 8 

EPP10 10 

Topcoat codename PP10 loading (wt%) 

PPPU1 1 

PPPU2 2 

PPPU3 3 

PPPU5 5 

PPPU6 6 

PPPU7 7 

PPPU8 8 

PPPU10 10 

PPPU12 12 

PPPU14 14 

PPPU17 17.39 

Topcoat codename G loading (wt%) 

GPU1 1 

GPU3 3 

GPU5 5 

GPU8 8 
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Stirring rate trial 

The effect of stirring rate on the electrical conductivity of the topcoat was examined 

and the stirring rates used were shown below. 

Topcoat codename PPPU8500 PPPU8750 PPPU81000 PPPU81500 

Stirring rate (rpm) 500 750 1000 1500 

 

Primer + topcoat initial trial 

1 wt% Primer/PP10 composite was coated onto the steel substrate and cured in an 

oven for under-cure. Topcoat was coated on to the primer coated substrates at room 

temperature and then the topcoat and primer were fully cured in an oven.  

Code name PP10 loading (wt%) 

EPPPU7 7 

EPPPU8 8 

EPPPU10 10 

EPPPU12 12 

EPPPU14 14 

EPPPU17 17.39 

 

Hybrid filler trials 

In the first hybrid filler trial, the effects of adding MWCNT and G were evaluated. 

Code name HIPU8 HIIPU8 HIIIPU8 

Filler ratio in 

weight 
PP10:MWCNT:G = 1:1 PP10:MWCNT= 1:1 PP10:G = 1:1 

 

After the investigation, the hybrid filler system with best electrical conductivity was 

used in primer system from comparison.  

Code name HIIEPP4 HIIEPP8 

Filler ratio in weight PP10:MWCNT = 1:1 PP10:MWCNT= 1:1 
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Weight percent 4 wt% 8 wt% 

 

In order to improve the electrical conductivity of the coating further, TEG was used. 

TEG was prepared from heat treatment of expandable graphite. The expandable 

graphite was put into an oven under 900°C for about 90s. Afterwards, the heat treated 

expandable graphite was obtained. The electrical conductivities of epoxy primer 

loaded with the fillers with different ratios were tested. The filler ratios and 

corresponded code name was shown below. 

Code name HIVE21000 HVE21000 HVIE21000 

Filler ratio in weight TEG:MWCNT = 1:1 TEG:MWCNT = 2:1 TEG:MWCNT = 1:2 

Weight percent (%) 2 2 2 

 

After comparing the effect of hybrid filler ratios, the effect of weight percent on the 

conductivity of primer was investigated.  

Code name TEG loading (wt%) 

HIVE21000 2 

HIVE41000 4 

HIVE51000 5 

HIVE61000 6 

HIVE71000 7 

HIVE81000 8 

    

Multi-layer coating trial 

The electrical conductivity and anti-corrosion resistance of multi-layers coatings were 

investigated. The tri-layers coating systems and bi-layers coating systems were 

prepared with the coating below: 

Code name Coating system 

MI(1) EPD+HIIEPP8+HIIPU8 
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MI(2) EPD+HIIEPP4+HIIPU8 

MII(1) HIIEPP8+HIIPU8 

MII(2) HIIEPP4+HIIPU8 

 

Slat addition  

Sodium chloride was added into the HIVE61000 mixture before mechanical stirring. 

The electrical conductivity values after and before salt addition were compared.  

 

Characterization 

The electrical conductivity of the coated samples was measured by using a FLUKE 

PM6306 programmable automatic RCL meter with a four point probe. Relative 

electrical conductivity Cc/Cs was used show the electrical conductivity enhancement, 

where Cc represents the measured electrical conductivity of the coated samples and Cs 

represents the measured electrical conductivity of bare steel. Optical microscopy 

(Leica DFC480) and FEGSEM (Carl Zeis (Leo) 1530VP) were used to characterize 

the surface of the coated samples. EIS was used to characterize the corrosion 

resistance of the coatings. The basic introduction of the techniques used would be 

covered in 3.6.  

 

3.5 PU cure dynamic 

Stoichiometry 

Equivalent weight of isocyanates = 131 g/mol 

Equivalent weight of polyol = 2000 g/mol 

For theoretical reactions, 1 unit isocyanate needs to react with 1 unit polyol 

5g of polyol is used in the experiment. 

The molar value of OH group in 5g poly (propylene glycol) = 
5

2000
= 0.0025 𝑚𝑜𝑙 

 If there are three batches where 26 wt%, 30 wt% and 34 wt% hard segment content 

(HS%) are used, 
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HS wt% =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐻𝑀𝐷𝐼 + 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐵𝐷𝑂

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑃𝑈 𝑠𝑦𝑠𝑡𝑒𝑚
 

 

The required HMDI and BDO for 26 wt% hard segment content = 
5×0.26

0.74
= 1.76𝑔 

The required HMDI and BDO for 30 wt% hard segment content = 
5×0.3

0.7
= 2.14𝑔 

The required HMDI and BDO for 34 wt% hard segment content = 
5×0.34

0.66
= 2.57𝑔 

Chain extender 1,4-butandiol will be used as well and the  hard segment content 

includes the weight of chain extender and the weight of isocyanate needed. Took 26wt% 

hard segment content as example and assumed x g BDO, y g HMDI were used and the 

isocyanate index was n. Therefore, two equations could be obtained: 

                          𝑥 + 𝑦 = 1.76                            (1) 

             
5

2000
+

𝑥

45.06
=

1

𝑛
 ×

𝑦

131
            (2)  

When the isocyanate index was fixed, the required amount of BDO and HMDI could 

be obtained from equation (1) and (2). The calculation results were listed as followed. 

26 wt% HS% 30 wt% HS% 34% HS% 

Index 
HMDI 

(g) 
BDO(g) Index 

HMDI 

(g) 

BDO 

(g) 
Index HMDI (g) BDO (g) 

1 1.39 0.37 1 1.68 0.46 1 2.00 0.57 

1.05 1.41 0.35 1.05 1.70 0.44 1.05 2.02 0.55 

1.1 1.43 0.33 1.1 1.72 0.42 1.1 2.04 0.53 

1.15 1.44 0.32 1.15 1.73 0.41 1.15 2.07 0.50 

1.2 1.46 0.30 1.2 1.75 0.39 1.2 2.09 0.48 

1.25 1.47 0.29 1.25 1.77 0.37 1.25 2.10 0.47 

1.3 1.48 0.28 1.3 1.78 0.36 1.3 2.12 0.45 

1.35 1.49 0.27 1.35 1.80 0.34 1.35 2.14 0.43 

1.4 1.50 0.26 1.4 1.81 0.33 1.4 2.15 0.42 
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1.45 1.51 0.25 1.45 1.82 0.32 1.45 2.17 0.40 

1.5 1.52 0.24 1.5 1.83 0.31 1.5 2.18 0.391 

 

The amounts of filler needed in each system are listed in the table below    

HS content (wt%) 26 30 34 

0.5 wt% filler (g) 0.0338 0.0357 0.0379 

1 wt% filler (g) 0.067 0.072 0.0757 

2 wt% filler (g) 0.137 0.146 0.1514 

4 wt% filler (g) 0.280 0.298 0.3028 

 

Procedure of sample preparation 

In this cure dynamic study, 26wt% HS content PU, 1.05 isocyanate index for G and 

PP10, and 1.1 isocyanate index for GO was adopted. In order to disperse graphene 

oxide, calculated amount of GO was added in to acetone first and magnetically stirred 

for 48 hour to break the GO sheets into small flakes. The mixture was then 

ultrasonicated 30mins. After mixing with polyol by mechanical stirring for 30 minutes, 

the resulted mixture was put into a vacuum oven under 80 °C for 2 hours to remove 

the water and acetone in the polyol. After that, the resulted mixture was mixed with 

calculated amount of isocyanate at room temperature and stirred for 10 minutes to 

achieve a uniform mixture. Calculated amount of graphene was added into acetone 

and ultrasonicated 30mins. After mixing with polyol by mechanical stirring for 30 

minutes, the mixture was put into a vacuum oven under 80 °C for 2 hours to exclude 

the water in the polyol. After that, the resulted mixture was mixed with calculated 

amount of isocyanate at room temperature and stirred for 10 minutes to achieve a 

uniform mixture. The preparation procedure of PP10 filled PU was similar to the 

preparation procedure of graphene filled PU.  
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Characterization 

TA Instruments Differential Scanning Calorimetry (DSC) 2920 calorimeter was used 

for non-isothermal and quasi-isothermal cure dynamic test. Nitrogen gas rate was set 

at 50 ml/min. All the tests were carried out in modulated temperature DSC mode. For 

non-isothermal test, the samples were tested from room temperature to 250 °C with a 

heat rate of 10 °C/min. The modulation amplitudes were ±0.2 °C, ± 0.4 °C and ±1 °C 

and a modulated period of 60s. The results obtained from different modulation 

amplitudes were compared. The cure temperatures for isothermal tests were selected 

according to the non-isothermal tests. For quasi-isothermal tests, the samples were put 

into the MDSC at a certain cure temperature for 300 minutes with modulation 

amplitude of ± 0.4 °C and a modulated period of 60s. The FTIR spectra from 4000
-1 

cm to 600
-1 

cm of the samples with different cure times at different cure temperature 

were obtained via Shimadzu FTIR-8400s spectrophotometer with a 2 cm
-1

 resolution 

over 64 scans. The samples were coated on to a KBr disk and then the coated disk was 

put into an oven for curing. The basic introduction of the techniques used would be 

covered in 3.6.  

 

3.6 Introduction of the characterisation techniques 

3.6.1 Four point probe method 

Figure 3.1 The electrodes arrangement of the linear array four point probe [2] 
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Four point probe method is a common methods to measure resistivity and it can be 

readily coupled with computer to perform rapid and automatic testing [2,3]. There are 

two types of probe arrangement: linear array and square array [4]. Linear array probe 

is adopted in the project. The classical arrangement of linear four point probe consists 

of four equal length needle-like electrodes and the distance of adjacent electrodes is 

the same (Figure 3.1) [2]. The current is injected into the material via the outer two 

electrodes and the inner electrodes were used to measure the resultant electric 

potential distribution. The contact resistance between the probe and the materials can 

be neglected by using the separate electrodes for the current injection and electric 

potential measurement [5]. Inhomogeneity, shape and dimensions of the sample will 

affect the results of four point probe test [3,6,7]. In this project, the resistivity of the 

coated sample is calculated by the equation below [2,8]: 

𝜌 =  
𝜋𝑤

𝑙𝑛2
(

𝑉

𝐼
) = 4.5342 × 𝑤 × (

𝑉

𝐼
) 

Where w is the thickness of the sample, V is the voltage and I is the current. Relative 

electrical conductivity Cc/Cs was used show the electrical conductivity enhancement, 

where Cc represents the measured electrical conductivity of the coated samples and Cs 

represents the measured electrical conductivity of bare steel. The thickness of the steel 

substrate is 0.1mm. In order to reduce the experimental error, the thickness of the 

coated sample is assumed to be nearly the same as the steel substrate.  

 

3.6.2 EIS 

Electrochemical impedance spectroscopy is a convenient and powerful technique to 

investigate the mechanisms of electrochemical reactions, the properties of porous 

electrodes, passive surfaces and transport properties of materials [9,10]. The 

advantages of using EIS include: (1) the results can be interpreted by linear systems 

theory because EIS is a linear technique; (2) via linear electrical response techniques, 

the impedance (or admittance) can be obtained from EIS when the measurement is 

done over infinite frequency range; (3) the efficiency of this technique is very high; (4) 
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the data obtained is determined by integral transform techniques (the Kramers – 

Kronig transform) which is not affected by the physical process involved during 

measurement (5) it is non-destructive and does not accelerate corrosion reactions [11]. 

Owing to the power of EIS, it is frequently to evaluate the performance of coated 

metal system (organic coating and inorganic coating etc.).  In terms of organic 

coatings coated metals, the corrosion mechanism, the defects, the degradation and the 

lifetime of the organic coating can be investigated by EIS [10,12,13]. The information 

acquired from EIS would be very useful for coating development. The electrical 

resistance of the coating some time can be a general indicator of its anti-corrosion 

performance where coatings have over 10
8 

Ωcm
-2

 resistance can provide good 

corrosion protection while that with under 10
6 

Ωcm
-2

 has poorer corrosion protection 

[14]. During EIS measurement, voltage with a small-amplitude sinusoidal variation 

(Et) is applied onto the polymer in the range from mini-Hz to million Hz. The resulted 

current waveform (It) at each frequency is measured. The value of impedance is the 

ratios between Et and It and it can be expressed as a complex number. The results of 

EIS are usually presented in three plots: (1) Bode plot where the impedance in 

logarithm is plotted against the frequencies in logarithm (2) Nyquist plot where the 

real component of the impedance is plotted against the complex component of the 

impedance. (3) The plot of phase angle (the difference in the phase between voltage 

and current) against frequency in logarithm.  

 

3.6.3 MDSC 

DSC is a thermal technique that measures the differences in heat flow between a 

sample and a reference as a function of sample temperature when the two are 

underwent a controlled temperature changing condition. It is a calorimetric method 

which can measure the differences in energy between the references and the samples. 

In addition, DSC was developed to avoid the difficulties when using DTA or 

quantitatively compensate to those difficulties such as the temperature dependences of 
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thermal transport and sensor sensitivity [15,16]. There are two types of DSC 

instruments: power compensation and heat flux mode. The DSC used in this 

experiment is heat flux DSC. In this type of DSC, heat flows into both the sample and 

the reference material through electrically heated constant thermoelectric disk. Then 

heat is transferred into the sample and the reference via the two pans [15]. Heat flux 

DSC has a similar operative mechanism to a conventional DTA, except the 

quantitative compensation for the problems’ areas mentioned above. DSC can 

determine specific heat, glass transition temperature, melting and crystallization 

points, heats of fusion and crystallization and heat of reaction. Only small amount of 

specimen (5mg - 40mg) is required for each run. Modulated temperature DSC 

(MTDSC) was developed to increase the sensitivity for polymer transitions. The 

simultaneous measurement of the amplitude (modulus) of the complex heat capacity, 

the heat flow and the phase angle between heat flow and heating rate ( heat flow 

phase) enables a more detailed study of complicated materials systems, both in 

quasi-isothermal and non-isothermal conditions. In other thermal analysis techniques 

that use an oscillating excitation of the materials, dynamic mechanical analysis, 

dielectric thermal analysis and dynamic rheometry, for example, a phase angle is 

defined between the modulated input and the resulting output signal. MDSC can help 

to characterize the reaction of thermosetting materials and facilitate the cure dynamic 

study of PU nanocomposites.   

 

3.6.4 FTIR 

Infrared spectroscopy is one of the most important analytical techniques that can 

identify the composition of matter. The most significant advantage of infrared 

spectroscopy is that it can study states of the substance. Solid surface, solutions, 

liquids, pastes, powders, films, gases and other states can be examined through 

appropriate sampling techniques and many samples that hard to be examined before 

can be studied now because of the development of technology. The instrument for this 
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experiment is Fourier-transform infrared (FTIR) spectroscopy. It is an advance 

instrument that quality of infrared spectra is improved and the time of obtaining the 

data is minimized as well. The principle for Infrared spectroscopy to identify different 

substance is identifying the vibrations of the atoms of a molecule. In term of polymer, 

infrared spectroscopy examines different groups according to the six different 

vibration of the atomic bonding. The peak, which stands for the energy absorbed, in 

an infrared absorption spectrum corresponds to the frequency of a vibration of 

specific part of a sample molecule [17]. Some specific interactions (hydrogen bonding 

and chemical reactions) in PU nanocomposites can be detected by FTIR. The 

hydrogen bonding can be detected by the shifting in frequency of the absorption peak 

for the hydrogen bonded unit. The reaction kinetics between isocyanate and polyol 

can be identified via monitoring the peak of NCO group because the peak of NCO in 

the FTIR spectrum shrinks due to the reaction between NCO group and OH group.  

 

3.6.5 SEM 

SEM is a frequently used technique to characterize the surface of materials. When the 

electron beam hit the specimen, secondary electrons are produced from the release of 

valance electrons from the atom of the specimen [18]. The secondary electrons are 

detected and amplified to form image. The energy of the secondary electrons is very 

weak and, therefore, only the electrons generated from the surface can be detected 

clearly. Hence, SEM is a surface-specific technique. The accelerating voltage ranges 

from 1kV to 40kV. A low accelerating voltage is recommended to observe the surface 

structure clearly. In addition, high accelerating voltage will melt the polymer which 

results damaged surface. The sample for SEM should be conductive so that the 

electrons can pass through the sample stage without causing charging which leads to 

distorted image. A thin conductive layer (gold or platinum) is usually deposited onto 

the surface of the polymeric sample. In order to increase the contract, staining and 

etching process may be adopted. For the observation of the cross-section of the 
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sample, cutting by ultramicrotome or razor blade can be used for soft materials. In 

terms of hard materials, the cross section is prepared via fracturing and freeze fracture 

if adopted for the materials soft at room temperature but hard at low temperature 

Compared to TEM, the resolution is lower but the detail of the surface is clearer. With 

the aid of SEM, the surface finish and the surface morphology of the coatings can be 

evaluated with ease.  

 

3.6.6 TEM 

TEM is one of the major techniques to characterize nanofillers. Electron beam is 

employed and high resolution down to 0.2 nm can be achieved. Smaller 

morphological detaisl can be obtained compared to SEM and optical microscopy. For 

polymer blends and nanocomposites, the sample for TEM must be very thin (1-100nm) 

to allow electron penetration. The sample is usually prepared by ultramicroscopy and 

diamond or glass blade cutting in cryogenic temperature. In terms of nanofillers 

characterization, the particle suspension must be dilute. Water and acetone is the most 

widely used suspension medium because of their very low level of reward. Copper 

grid is used to dip in the suspension and capture the nanofillers for imaging [19]. High 

degree of vacuum is required for TEM because the quality of image will be distort 

with the presence of air [20]. When electron beam pass through the sample, the 

electrons are either scattered or un-scattered by the nuclei or the electrons of the atom. 

The intensity distribution of the electrons is shown on the fluorescent screen [20,21]. 

Low atomic number atoms have limited scattering ability which lead to poor phase 

contract TEM image. Owing to the resolution of TEM, graphene sheets can be seen 

clearly with the aid of TEM. Numerous research papers adopted TEM as the major 

characterization technique to identify the existence and the layers of graphene [22–

26].  
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3.6.7 Particle size measurement 

Particle size measurement can be performed via different methods including: 

chemisorption, X-ray diffraction, electron microscopy, sieving, sedimentation, light 

scattering and acoustic methods [27]. In this project, the particle sizes of the graphite, 

graphene and MWCNT will be characterized by Malvern Instruments Mastersizer. 

The measurement of the machine is based on the laser scattering pattern of the particle. 

The samples are dispersed in deionised water. The dispersed sample is poured into the 

sample holding chamber which has a stirrer to keep the particles suspending. During 

the measurement, the optical bench in the mastersizer captures the actual scattering 

pattern from the laser scattered by the particle suspension. The optical bench is made 

up of many detectors which responsible for capturing the scattering light from a 

particular range of angles. After the scattering pattern, the sizes of the particles can be 

calculated according to Mie theory. Mie theory is the widely accepted theory that can 

be used to predict light scattering behaviour of all materials under all conditions. The 

particle with a defined size  have its characteristic scattering pattern [28].  

 

3.6.8 XRD 

X-rays are generated whenever a beam of high-speed electrons hit a metal target and 

this usually happens in a vacuum tube [29,30]. In addition, the metal target is always 

water cooled to prevent melting because most of the dynamic energy generated by the 

electrons is converted into heat. Nickel-filtered CuKα radiation (1.54718 Å ) is 

generally used in polymer studies [31].  X-ray diffraction is a very effective method 

to investigate the orderly arrangement of atoms. The information of the arrangement 

is obtained via the interaction of electromagnetic radiation to interference with 

structures whilst the sizes of structures compares to the wavelength of the radiation. If 

the structure is in order, the interferences can be sharpen, and, hence, the radiation can 

be scattered or diffracted under some specific conditions [29]. The reason why 

diffraction happens is that there are some certain phase relations between two or more 
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waves. The definition of a diffracted beam may be a beam which is formed by a large 

number of scattered rays that can reinforce each another. Therefore, diffraction is a 

scattering phenomenon which is caused by the cooperation of a large number of atoms 

without any new interaction between x-rays and atoms appears [30]. Phases 

identification, orientation of phases, habit plane of interfaces, crystallography of 

defects, order/disorder information are usually obtained via electron diffraction [32]. 

There are some essential conditions must be met to let diffraction happens, and 

Bragg’s law describes these conditions. The equation of Bragg’s law is: nλ = 2d sin θ , 

where n is the order of diffraction, λ is the wavelength of the radiation, d is the 

perpendicular distance between the planes that diffraction occur, and θ is the angle 

between the incident beam and the plane [30,32]. In this project, XRD was used to 

evaluate the efficiency of graphene exfoliation. Graphite is the stacking version of 

graphene sheets. With higher degree of exfoliation, the signature XRD peaks of 

graphite will become lower.  

 

3.6.9 XPS 

XPS is highly sensitive equipment for surface analysis of materials. The chemical 

structure, surface composition, chemical state and electronic state can be obtained 

from the XPS spectrum. The principle of XPS is shown in Figure 3.2. The x-ray 

spectrum can be the intensities of photoelectron versus binding energy or kinetic 

energy.  When the sample is bombarded by x-ray, the electrons in the core levels of 

the atoms will be ejected to form photoelectron. The ejected photoelectrons will be 

captured and analysed by the electron spectrometer after which the plots of 

photoelectron intensities versus binding energy can be obtained [33]. According to the 

equation binding energy (Ebinding) = hν (energy of x-ray photon) – kinetic energy 

(Ekinectic) – ϕ(work function), the binding energy can be obtained and it is the 

characteristic feature of electrons ejected from a certain energy level. The XPS 

spectrum can be used to reproduce the electronic structure of an atom accurately. The 
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electrons ejected without energy loss contribute to the featuring peaks while those 

with inelastic scattering and energy loss contribute to the back ground of the spectrum 

[34]. The elements on the surface can be identified easily according to the featuring 

peaks’ position and area in the XPS spectrum.    

Figure 3.2 Principle of XPS [35] 
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Chapter 4 Graphene Fabrication 

4.1. Introduction 

Since the discovery of graphene by Geim and Novoselov, it was considered as the 

miracle materials in this decade which can be applied in every industry. It is 

considered as the basic element of other carbon allotropes (carbon nanotube, graphite 

and fullerene etc.) [1]. Defect-free graphene sheet is an ideal 2D single crystal 

structure which possesses the form of a honeycomb lattice with sp
2
 hybridised carbon 

atoms packed together. The carbon atoms are joined tightly by σ covalent bonds. Each 

carbon atom in graphene sheet can contribute one unbounded electron to form π bonds 

above the honeycomb sheet. This unique structure grants graphene with many 

extraordinary properties especially electrical and thermal conductivity [2]. The 

properties were summarised in Chapter 2.  Graphene based materials are expected to 

play a key role in several fields such as electronic applications include touch screens, 

flexible devices, sensor, photonic devices etc. In terms of energy area, batteries and 

supercapacitors are the major applications. During the research of graphene, it was 

found that the photonic properties were also fascinating which enabled the application 

in light emitting diodes, ultrafast laser, photodetector and so on [3].  The 

extraordinary properties only appear in single layer graphene and few layers (<10) 

graphene. The main obstacle of graphene commercialisation is the advance method to 

produce cheap graphene based materials.  

 

Numerous methods had been proposed by researchers to prepare graphene which were 

summarised in Chapter 2. These methods can be classified into two categories: the 

top-down methods and the bottom-up methods.  The top-down methods adopt 

pristine graphite or other graphite related materials to start with and graphene is 

produced by trying to reduce the number of layers via different exfoliation methods. 

In terms of bottom-up methods, the graphene is generally synthesized from various 
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sources. The dilemma now is how to maintain the properties and performance of 

graphene upon scaling up as well as reducing the cost of graphene preparation. The 

quality of graphene is also very important for the future applications. However, the 

quality of graphene cannot be defined in an absolute term because the requirements of 

graphene are different according to various applications. For example, the graphene 

sheets with defects, voids and cavities are more favourable in batteries and 

supercapacitors applications while the high performance electronic applications 

require defect free, large area and flat graphene sheets. The development of graphene 

preparation method is application based [4]. A general route can be proposed: 1. Find 

out the key properties of the application; 2. Search the suitable methods to prepare 

graphene; 3. Minimise cost of producing perfect graphene; 4. Scale up. In terms of 

electrical conductive and anti-corrosion composite coating, graphene sheets act as 

electrical conductance and the barrier against corrosive substances. Therefore, the 

graphene sheets used should be defect free and has large lateral size which allows the 

current pass through the composite coatings. The graphene sheets do not necessary to 

be large area flat sheet and, hence, exfoliation route is adopted to prepare the graphene 

for the project.  

 

Simple start-up materials and equipments are the key to minimise the cost. A 

chemical-mechanical approach was suggested as a suitable method to produce 

graphene for composite applications. This chemical-mechanical method is also a 

top-down method. Graphite was used as starting material. Graphene was exfoliated 

with the aid of melamine. The graphite layers are held together by Van der Waals 

forces. In order to exfoliate the layers, some chemicals are used to penetrate the gap 

and expand the layers. Melamine is one of the effective chemical that can assist the 

exfoliation of graphene [5]. Owing to the high affinity of graphite layers in 

aminotriazines, melamine can  penetrate the gap between graphite layers and expand 

them [6]. In this method, melamine powder was first mixed with graphite powder in a 
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certain ratios. Afterward, the mixed powder was poured into a dry ball-milling 

machine. The strong shear forces created during ball-milling allowed the graphite to 

be exfoliated initially. Final exfoliation of graphene was achieved by either 

ultrasonication or mechanical stirring. The melamine in the system was removed by 

repeated washing of hot water to make sure the prepared graphene was pure. U this 

method, high quality graphene for composite coating can be produced. 

 

In this chapter, the graphenes produced by modifying the conditions of the 

chemical-mechanical method was examined. The efficiency of exfoliation and the size 

and the purity of graphene were evaluated.  

 

4.2. The investigation of the efficiency of the exfoliation method 

The experimental procedures are summarised in Chapter 3. Table 4.1 shows the 

specimens from different exfoliation procedure. The code names used in the 

discussion below can be referred from Table 4.1. 

Code name 

Graphite to 

Melamine Volume 

Ratio 

Ball-milling 

Revolutions 

Exfoliation 

Method 

Exfoliation 

Time (hours) 

A 1:1 1000 Ultrasonic 1 

B 1:1 1000 Mechanical 4 

C 1:3 1000 Mechanical 4 

D 1:3 1000 Ultrasonic 1 

E 1:3 1000 Mechanical 1 

F 1:3 500 Mechanical 4 

Table 4.1 Description of the specimens 
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4.2.1 XRD analysis 

XRD is an effective technique to identify the Figure 4.1 shows the XRD pattern of 

pristine graphite flakes and the graphene specimens. In can be seen from figure 5.1 (a) 

that there are two signature peaks of graphite at approximately 2θ=3° and 26°. The 

strongest signature peak is the one at around 26° and it represents the [002] 

crystallographic direction of graphite with a theoretical d spacing of 3.354 Å [7]. [002] 

is the direction of the graphite layers stacking. Although the peak at 26° appears in the 

XRD patterns of all the specimens, it can still indicate that the graphite have been 

exfoliated successfully, due to the reduction of intensity. The specimens were 

prepared without any centrifugation. Therefore, nano-graphite and graphene were 

co-existed in the specimens. In addition, the exfoliated graphene sheets would be 

re-stacked together in to [002] direction due to Van der Waals force and the 

re-stacking resulted in layered structure. The XRD patterns of all the specimens can 

confirm that the graphite layers were exfoliated. 

 

From Figure 4.1(b), the XRD patterns of specimens A and D have the weakest 

intensity which means that ultrasonication is the most effective method to exfoliate 

graphene. The graphite to melamine ratio did not have an obvious effect on the 

exfoliation efficiency of ultrasonication. Hence, the volume ratio of 1:1 would be 

sufficient for effective exfoliation in ultrasonication. Excessive melamine may 

increase the difficulty in the purified stage and cost control. From the figure, specimen 

C has the highest intensity which means the process is insufficient for graphene 

exfoliation. It is expected that the prolonged stirring time leads to a more effective 

exfoliation of graphene. Longer stirring time allows the graphene to be exfoliated 

completely. However, the obtained results suggest a contrary result when comparing 

the XRD peaks of specimens C and E. The exfoliation efficiency decreased with 

higher ball milling revolution as indicated from the results of specimens C and F.  
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          (a) 

         (b) 

 

Therefore, a conclusion can be drawn that longer exfoliation times do not promote the 

exfoliation of graphene. The experiments were repeated several times and the same 

conclusion was drawn. As a result, the effect of experimental errors could be 

minimised. Comparing the results of specimens B and C, excessive melamine had an 

advese effect on the efficiency of graphene exfoliation. The possible reason is that the 

shear force generated from the exfoliation method cannot be transferred to graphite to 

exfoliate graphene effectively. The excessive melamine may act as lubricant which 

Figure 4.1 XRD spectrum of the specimens and pristine graphite (a) whole scan range (b) 2θ from 20° to 30° 



Chapter 4 Graphene Fabrication 

 99 
 

weakens the effect of shear force on graphite. The XRD peak intensities of specimens 

E and F are quite close. A possible reason is that the graphite was underwent a similar 

extent of exfoliation in these two procedures. Therefore, the number of ball milling 

revolution has a more profound effect than the time of mechanical stirring as they 

represent the extent of the graphite is subjected to shear force. Based on the results 

comparison, an assumption can be made that there is a maximised degree of 

exfoliation for this mechanical-chemical method.  

 

4.2.2 TEM analysis 

                (a)                              (b)                                                          

               (c) 

Figure 4.2 TEM images of Specimen A with different scale (a) 0.5 µm (b) 0.5µm (c) 200nm (red arrow 

indicates the folded edges in the figures) 
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               (a)                                  (b)   

               (c) 

 

Figure 4.2 and Figure 4.3 are the TEM images of the selected graphene specimens (A 

and F). These two specimens were selected because they had the lowest and second 

lowest intensities. Figure 4.2 and figure 4.3 are the low magnification images of 

specimens A and F showing the overall quality of graphene sheets. It can be seen that 

the obtained graphene sheets range from one layer to approximately eight layers. The 

size of the graphene sheets is various ranging from one micron to ten microns. 

Generally, this method can produce good quality of graphene sheets with large size 

that suitable for coating applications. It should be noted that while single layer 

graphene sheets were presented, there were a number of graphene sheets were stacked 

or overlapped together. The overlapping and re-stacking can partially account for the 

Figure 4.3 TEM images of Specimen F with different scales (a) 2 µm (b) 0.5µm (red arrow 

indicates the wrinkles of graphene sheets) (c) 200 nm (red arrow indicates the impurities)  
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peak appears in the XRD patterns of the specimens. Re-stacking or overlapping is not 

evitable after the drying of specimens. The structure of single-layer graphene ranges 

from nanometres to microns with the thickness of a single atom and considerably 

large specific area. Coupling with the strong Van der Waals interactions between the 

single layers with proximity, the graphene sheets own the tendency of aggregation and 

re-stacking [8]. The irreversible aggregation or re-stacking generally takes place in 

dry state. Hence, the re-stacking and aggregation can be regarded as the reverse of the 

exfoliation process that results in the regaining of the graphitic multi-layer structure, 

causing the loss in performance [9].In order to produce graphene based coatings with 

excellent performance, re-staking and aggregation should be prevented. Considering 

the compatibility with the current graphene preparation method, the addition of 

certain spacers would be the most practical method to prevent the aggregation and 

re-stacking [10]. Platinum nanoparticles can be deposited on the graphene sheets via 

the reduction of chloroplatinic acid to prevent the aggregation of graphene sheets 

without compromising the electrical properties. This method suggested by Si et al. 

can be compatible with the graphene preparation method readily but the extra cost is a 

limitation [11]. Carbon nanotubes are another option because they are of a similar 

nature to graphene and can provide excellent electrical conductivity while preventing 

aggregation and re-stacking. Cheng and his co-workers adopted ultrasonication in 

ethanol and vacuum filtration to produce graphene/carbon nanotube film [12]. The 

carbon nanotubes were positioned between the graphene layers in a direction parallel 

to the layers. However, this approach increases the complexity and the cost of the 

current mechanical-chemical approach. Apart from the above two methods, the 

prepared graphene sheets can be stored in a liquid medium with constant magnetic 

stirring to keep the suspension uniform. From the discussion above, the 

mechanical-chemical approach still can be modified to fit in the commercial coating 

production line.  
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From Figure 4.2 and Figure 4.3, there are some very small graphene sheets which 

appear as well.  Apart from the original small size graphene sheets, excessive 

ultrasonication would lead to the size reduction of graphene sheets as pointed out in a 

previous research [13]. The conclusion that the size of graphene sheets would be 

broken down by ultrasonication or mechanical stirring is speculated. The solid evident 

will be provided in the particle sizer analysis. The size of graphene is vital or its 

physical properties. There is a paper pointed out that the reduction of size led to lower 

thermal conductivity [14]. The folding of graphene sheets is indicated by red arrows 

in Figure 4.2 (b) and 4.2 (c). The edge of the graphene sheets had folded back onto the 

sheet and the folded structure remained. The Van der Waals force helps to stabilize the 

folded layers against the elastic energies introduced by folding [15]. The folded edges 

have interesting properties as their structures are similar to carbon nanotube. As 

indicated by Zhang and his co-workers, the graphene sheets prepared via 

ultrasonication had the tendency to formed folded structure and they produced folded 

10 layers structure via ultrasonication [16]. Their conclusion can explain why so many 

folded graphene sheets appear in Figure 4.2 (b) and (c).  

 

There are some parallel patterns exist in some of the graphene sheets as shown in 

Figure 4.3 (b).These parallel patterns may be created by the crumpling of graphene 

sheets in the direction perpendicular to the surface of the sheets. The wrinkles existed 

on graphene sheets were widely reported. The formation of wrinkles relates to the 

natural instability of graphene where thermal fluctuations cause the 2D structure to 

crumple in 3D structure [17]. This phenomenon is normally seen in the graphene 

sheets prepared by CVD where the graphene sheets are transferred to another 

substrate. The thermal stress and the thermal expansion coefficient difference between 

graphene and metal substrates lead to the formation of wrinkles on the entire film [18]. 

In terms of mechanical stirring and ultrasonication, wrinkles only exist in some 

graphene sheets because graphene sheet is very soft and it has the tendency to form 
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wrinkles due to edge instability and strain induced formation [19]. The presence of 

wrinkles can affect the electrical, optical, mechanical and chemical properties of 

graphene [19,20]. How to control wrinkles effectively is still needed to study 

extensively but some level of control is possible. Reducing the temperature is a way to 

stabilise the graphene sheets and reduce the wrinkles [20]. In addition, increasing the 

layer number can restrain the graphene sheets to hinder the formation of wrinkles. 

However, this approach is detrimental to the properties of graphene and the final 

composite coatings. Reducing the temperature during graphene preparation is more 

compatible to the current mechanical-chemical approach. The graphene sheets 

produced can be dried via other drying methods such as freeze drying to reduce the 

temperature during drying. Ice bath or water bath can be applied during 

ultrasonication to reduce the heat generated. 

 

There some unknown particles in the specimen as indicated by a red arrow in Figure 

4.3 (c). Despite of the contamination induced during preparation, the presence of 

residue melamine added during the ball milling is also possible.  Although hot water 

was used to wash the graphene, there is a very small amount of melamine still remains 

in the specimen. The purity of the specimen would be investigated by FTIR and XPS. 

4.2.3 Particle size analysis 

The particle size of the original graphite ranges from 400 to 700 microns as indicated 

by the description of the product. Table 4.2, Figure 4.4 and Figure 4.5 show the results 

of the specimens from particle sizer. Both figures suggest that the specimens 

exfoliated by ultrasonication had smaller particle sizes. This means ultrasonication 

can break down the particles effectively. Comparing the results of specimens A and D, 

the specimen with higher graphite to melamine ratio had smaller particle size and 

narrower particle size distribution. Hence, the addition of melamine helps to break 

down the particle as well. This assumption can be further confirmed by the results of 

specimens B and C. However, the reduction of particle size is not good for the 
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improvement of electrical conductivity. Therefore, 1:1 graphite to melamine ratio is 

more favourable. Comparing the results of the specimens produced by mechanical 

stirring, the mechanical stirring step does not have much effect on breaking down the 

particles and larger particle size (aggregate or agglomerate) is even resulted in longer 

mechanical stirring time. Therefore, mechanical stirring is not effective to break down 

the particle and might be a good way to disperse the graphene sheets in coatings.  In 

terms of uniformity, the specimens produced by mechanical stirring have better 

uniformity as the shear force generated by ultrasonication is fiercer. 
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Figure 4.4 Plot of volume base particle size distribution of different 

specimens 

Figure 4.5 Plot of accumulated volume versus particle diameter of different specimens 



Chapter 4 Graphene Fabrication 

 105 
 

  

Table 4.2 Summary of the particle size distribution of the specimens 

 
D(v,0.1)

a
 

(µm) 

D(v,0.5)
 

a
 (µm) 

D(v,0.9)
 a

 

(µm) 

D[4,3]
 b

 

(µm) 

D[3,2]
c 

(µm) 
Uniformity 

Specimen A 17.17 42.63 100.49 55.11 33.85 0.668 

Specimen B 27.03 90.29 261.32 119.99 57.94 0.786 

Specimen C 33.05 99.59 233.95 119.95 66.48 0.638 

Specimen D 16.56 40.13 87.40 46.90 31.58 0.545 

Specimen E 24.62 78.03 202.64 97.63 50.92 0.695 

Specimen F 25.07 74.53 188.46 92.50 50.78 0.669 

 

a: D (v, 0.1/0.5/0.9) is the size of particle at which 10%/50%/90% of the sample 

is smaller than this size; 

b: D [4, 3] is the volume mean diameter; 

c: D [3, 2] is the surface area mean diameter. 

 

 

4.2.4 XPS analysis 

Figure 4.6 shows an example survey XPS spectrum of the specimens and the relative 

amount of elements from the survey scan was summarised in Table 4.3. The elements 

existed on the surface of the specimens were examined. Apart from the carbon 

elements, there are a lot of other elements presented in the specimens. The other 

element may be resulted from residue melamine and contamination.  

 

Small amounts of silicon were found in every specimen and the presence of silicon 

might relate to the ball milling process. The ball mill jars or balls for ball milling are 

usually ceramic components that contain silicon. Although they have excellent 

hardness and abrasion resistance, wearing of the components is inevitable. Therefore, 
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there may be contamination from the equipment that contains silicon. There are 

considerable amount of oxygen exist in every specimens. There are several sources of 

the oxygen impurity: 1. the vapour absorbed by the specimens; 2. the contamination 

from ball milling process (e.g. SiO2); 3. the oxygen in the atmosphere; 4. the potential 

oxidation of the graphene specimens. Graphite can be oxidized by strong oxidative 

chemicals such as the production of graphite oxide via Hummer’s method. The 

produced graphite oxide can be exfoliated and reduced to form graphene [21]. 

However, the oxidation of graphite is not likely in the mechanical-chemical approach 

because the chemicals used were not aggressive.  It has been reported that the 

graphene sheets less than 3-layers would be oxidized heavily at the temperature 

higher than 200°C [22]. The highest temperature involved with the approach was 

lower than 100°C. There was no oxidation took place theoretically. However, a high 

resolution scan of carbon elements was performed on the specimens to find out 

whether any oxidation occurred during preparation.  

 

 

 

 

Figure 4.6 Survey scan XPS spectrum of specimen A 
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Table 4.3 The summary of relative elements atomic ratio of different specimens 

Elements 
Atomic ratio (%) for each specimen 

A B C D E F 

C 84.33 77.32 81.34 73.55 80.08 83.14 

O 8.77 12.11 9.55 12.21 9.62 10.72 

N 4.5 6.95 5.93 8.97 6.39 2.59 

Si 1.77 2.65 1.3 1.59 1.44 1.4 

Na 0.28 0.46 0.18 0.3 0.23 - 

Cl 0.35 0.51 0.37 0.5 0.52 0.73 

Ca - - 0.53 1.15 0.76 0.65 

Mg - - 0.55 1.34 0.96 0.54 

S - - - 0.38 - - 

P - - 0.24 - - - 

Zn - - - - - 0.24 

 

The amount of nitrogen in the specimens ranges from 2.59% to 8.97%. Some 

researchers pointed out that graphene could absorb nitrogen into the graphitic lattice 

and the only 2 wt% nitrogen could be absorbed in maximum [23]. The amounts of 

nitrogen presented in specimens were higher than the maximum absorbed value. 

Taking the nitrogen in the atmosphere into consideration, it is still impossible for the 

nitrogen element occupies such a high portion of atomic ratio in the specimens. 

According the TEM results, there were some small particles present in the specimens. 

As a result, it was highly likely that residual melamine could account for the nitrogen 

element in the specimens. FTIR was used to further confirm this assumption. Small 

amounts of metallic elements such as calcium and magnesium were identified in some 

specimens.  These elements are likely to be in the form of chloride salt as chlorine 

present in every specimen. Calcium chloride and magnesium chloride are commonly 

found in water. The water used to prepare graphene was tap water because it was 
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more cost effective. Therefore, the chloride compounds may come from the water 

itself, the equipment to boil the water and the water containers. Calcium and 

magnesium ions only appeared in the specimens with higher graphite to melamine 

ratio because the specimens were washed more times by the boiling water. The source 

of phosphorous, zinc and sulfur may be environmental contamination.  

(a) 

(b) 

The specimens prepared from ultrasonication and mechanical stirring were selected 

for carbon element high resolution scan (Figure 4.7). From Figure 4.7 (b), there is 

only one peak presented in the spectrum and no splitting peaks were detected during 

Figure 4.7 C1s XPS spectrum of (a) specimen A and (b) specimen B from high resolution scan 
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the scan. From Figure 4.7 (a), the peak can be split into four peaks with the binding 

energy of 284eV, 285eV, 287eV, and 291eV. Although there are four peaks presented 

in the spectrum of specimen A, the shape of the XPS spectra of specimens A and B are 

quite similar. This indicates that the specimens were identical in the aspect of 

electronic state. Apart from the peak at 284eV, the other three peaks in the spectrum of 

specimen A has very low intensity which mean their contribution to the spectrum is 

limited. Therefore, the presence of the correspondence bonds is limited as well. The 

binding energy of the peak around 284.6eV represents the carbon atoms in 

non-oxidised state which are the carbon atoms in the lattice of graphene [24,25]. The 

peak at 285eV reveals the presence of C-N bonds which indicates that melamine 

remains in the specimen. The peak with a binding energy of 287eV stands for the C-O 

bonds which is an indication of oxidation. The forth peak at 291eV is the sp
2
 

hybridised carbons in the π to π* configuration.  

 

As the contribution of the peaks from 285eV, 287eV and 291eV is very small, they 

even could not be detected in other specimens because their signals were very weak. 

Therefore, the graphene specimens were generally pure. However, the existence of 

oxidation would make the carbon atoms in the graphene sheet to change from sp
2
 

hybridised to sp
3
 hybridised. There sp

3
 hybridised carbon atoms would cause 

disturbance of the carrier transport, forcing carriers to hop over the sp
3
 sites instead of 

near ballistic transport [26]. As a result, the conductivity would be weakened. During 

the preparation, no oxidising reagents were added. The oxidation might possibly take 

place during the drying process as the specimens were dried for a long time under 

80°C to remove the moisture completely. The temperature was quite high which might 

lead to limited level of oxidation. Considering the oxidation and the reduction of 

wrinkles, freeze drying maybe a suitable method to dry the graphene.  
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4.2.5 FTIR analysis 

The example FTIR spectra of the specimens are shown in Figure 4.8. The main peaks 

appeared in the spectra are similar in the spectrum of every specimen. Therefore, the 

spectrums of specimens A and B were selected as the examples for discussion. 

Although the peaks’ positions of the specimens are the same generally, the intensities 

of the peaks vary despite the curves were generalised. This might be caused by the 

operator errors during FTIR sample preparation. The dark powder has a relatively low 

transmittance for visible light and intra-red which induce the difficulties of sample 

preparation. Minimum amount of graphene powder was mixed with KBr powder to 

produce a sample disk. Owing to the nature of graphene powder, it was difficult to 

fully ground the graphene and create complete homogeneous mixtures with KBr. 

Therefore, the inhomogeneous nature of all the specimens caused the intensity 

variation and the noise in the spectrums.  

 

The peaks of the FTIR spectra were analysed and identified via a FTIR database 

[27,28]. A broad peak around 3420.1 cm
-1

 appeared both in Figure 4.8(a) and (b) and 

it was identified as the characteristic peak of –OH stretching which came from the 

moisture in the atmosphere or the absorbed water in the sample. The peak in 1641cm
-1

 

also indicated the presence of water as seen in Figure 4.8 (a). The three peaks around 

669 cm
-1

, 2314 cm
-1

 and 2374 cm
-1

 were represented the carbon dioxide fluctuation in 

the air. The C-C skeleton vibrations of the graphene carbon rings could be identified 

via the peak around 1580 cm
-1

. The evident of possible oxidation was found in the 

peaks around 1020 cm
-1

 and 1060 cm
-1

 as they represented C-O vibrations. The twin 

peaks identified at 2852 cm
-1

  and 2924 cm
-1

  stood for the stretching of –CH. The 

trace of residue melamine was spotted in the sample with the peaks around 1385 cm
-1

 

and 777 cm
-1

. The FTIR results well correspond to the XPS results and TEM results 

regarding the presence of oxidation and residual melamine. Melamine was not 

completely removed from the specimens. The residue melamine is most likely to be 
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absorbed by the graphene sheets. The presence of impurities may affect the 

performance in electrical properties.  

(a) 

(b)  

 

 

Figure 4.8 FTIR spectra of (a) specimen A and (b) specimen B 
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The graphene was a honeycomb structure made up of sp
2
 hybridised carbon atoms 

with one free electron to form π bonds above and below the graphene plane. Therefore, 

the existence of –CH peaks in the FTIR results was unusual. There was no 

contamination and chemical used during the preparation had C-H bond. Considering 

the structure of graphene, the C-H bonds may come from the edge of graphene. There 

are two kinds of edge configuration with different electronic and magnetic properties, 

the armchair and zigzag (Figure 4.9) [29]. At the edge of the graphene sheet, the 

carbon atoms of both configurations only have two C-C bonds. Therefore, there are 

two free electrons in the carbon atoms. One of the free electrons contributes to the π 

bonds above or below the graphene layer while the other forms C-H bond. The carrier 

mobility and the electrical properties of graphene will be deteriorated potentially with 

the presence of defects [30,31]. Hence, the amount of the carbon atoms at the edge 

should be kept in a minimum level. A very straightforward approach is to increase the 

sheet size of the graphene to reduce the relative amount of the carbon atoms at the 

Figure 4.9 The armchair and zigzag configurations of graphene edges [32] 
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edge. In terms of the mechanical-chemical preparation method, an alternative 

exfoliated method to produce large size graphene sheets is desired.  

 

4.3 Conclusions 

The proposed mechanical-chemical approach to prepare graphene is successful and it 

is both cost effective and suitable for large scale production. The equipments required 

are not sophisticated and the procedure does not involve complicated steps. In 

addition, the raw materials used are not expensive. The most effective exfoliation 

conditions are: 1:1 graphite to melamine ratios, 1000R ball milling revolutions and 1 

hour ultrasonication time. The prepared graphene sheets have 1 to 10 layers, sizing 

approximately from a few microns to nearly 50 microns. Limited level of oxidation 

and small amount of residue melamine were identified. Generally, this approach is 

suitable to produce the graphene sheets for coating applications where the purity is not 

the priority issue. In addition, the exfoliated graphene in the liquid can be readily 

mixed with matrix to form composite coatings.  
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Chapter 5 Carbon based coatings on steel with improved 

electrical conductivity 

5.1 Introduction 

Steel, an alloy of iron and other elements, is a very important and widely applied material in 

industry. Various in composition and forms, steel have been applied in many different 

applications such as automotive shell, supporting column and tableware [1]. It is also an 

important material that is widely utilized in energy storage applications such as interconnect 

for solid-oxide fuel cells (SOFC) [2] and bipolar plate for proton exchange membrane fuel 

cells [3]. For energy storage applications, the electrical conductivity and corrosion resistance 

of the working environment of the major components are the essential properties. Although 

some types of steel have good electrical conductivity, their electrical conductivities are still 

not high enough and they do not possess excellent anti-corrosion properties for the long-term 

durability of the energy storage device. Hence, different coating systems have been adopted 

to improve the performance of the steel based components in energy storage applications. For 

example, polymer based coatings [4–7], multilayer coatings [8,9] and ceramic based coatings 

[2,10,11] were used as electrical conductivity and corrosion resistant enhancers on steel 

surface for energy storage applications. However, although the improvement was promising, 

there is still a long way to go from small scale lab production to large scale 

commercialisation. Therefore, seeking of new materials and new technologies are still crucial 

for the future development.

 

Graphene, a new era material, has many extraordinary properties such as high tensile strength 

[12], high electrical conductivity [12–14] and barrier properties [15]. It is a very promising 

material to be utilized as coating to improve a wide range of properties no matter applied as 

composite or pristine form [16]. Electrophoresis deposition (EPD) has been received 

increasing interest due to its simplicity and cost effectiveness. The graphene EPD based 

materials on steel have been adopted by researchers for various applications such as 

biocompatible materials [17] and transparent conductive materials [18]. Although all the 

reported results in the electrical conductivity were promising, only few papers mentioned the 

adhesion between graphene based materials and the substrates in the literature [19].  Pristine 

graphene is a pure carbon material and it does not form interactions with steel. Hence, the 

adhesion between steel and graphene is poor and the coated pristine graphene sheets on steel 
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can be easily starched off after EPD. Without improved adhesion between pristine graphene 

and steel substrates, the graphene coating layer will not able to satisfy the requirements for 

long-term durable coating in energy storage applications.  

 

In this chapter, graphene and graphite were applied on to steel as conductive coating by 

means of electrophoresis deposition (EPD). A simple method, thermal treatment was initially 

used to improve the adhesion between pristine graphene or graphite and steel substrates. The 

effects of EPD conditions and thermal treatment on the electrical conductivity were 

investigated. The composition and the morphology of the coating surface and the 

coating-steel interface were also assessed. 

 

5.2 Theories about the oxidation of steel 

When steel is exposed to oxidation conditions above 570°C, a multilayer scale forms 

consisting of FeO (wustite), Fe3O4 (magnetite) and Fe2O3 (hematite) with the wustite layer 

next to the steel surface and hematite at the gas-scale interface [20]. The mechanism of high 

temperature oxidation of steel is shown in Figure 5.1. The oxidation mechanism depends on 

(1) the transport of oxidant gas from the bulk gas phase; (2) phase boundary reaction(s) at the 

gas - scale interface; or (3) the diffusion of Fe cations to the scale-gas phase interface. If steel 

oxidation takes place in a reheat furnace, the gas composition temperature, steel surface 

characteristics and steel composition can be the major factors that affect this process [21–23]. 

However, according to Poirier et al., the only factor affecting scale habit and intactness is the 

steel grade, and the stack oxygen and oxygen enrichment levels did not significantly affect 

these properties [20]. The steel grade was also the most important factor affecting the 

Figure 5.1 the mechanism of high temperature oxidation of steel [20] 
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adhesion between scale and the steel. The steel grades which contain more Ni, Cu, Cr and/or 

Mo had a more adherent scale. The microstructure images shown in the literature also 

indicate that the more adherent samples had a porous scale and/or rough steel-scale interface. 

The scale also appears to be removed easier with increasing stack oxygen concentrations and 

the effort for scale removal appears to decrease slightly with increasing oxygen enrichment 

and sample exposure times. These results indicate that oxygen enrichment has far less effect 

on the scale properties than the steel grade. 

 

The oxidation behaviour of iron at 570°C to 700°C is more complex. The 

isothermal-oxidation kinetics follows the parabolic law in this temperature range. A detailed 

study on the effects of sample preparation on oxidation kinetics and scale structure was 

developed and found that no effect was exhibited at 650°C, but the effects at 580 and 600°C 

were significant. At 580°C, the scaling rate on the cold-worked sample was much faster than 

that on the annealed sample [24]. Cold working was introduced by surface polishing. The 

scale structure developed on the cold-worked sample was uniform in thickness, consisting of 

a thin surface layer of hematite (about 1/8 of the total thickness), a thick intermediate 

magnetite layer, and a non-continuous wustite layer at the scale–iron interface. The scale 

structure developed on the annealed sample at 580°C was different. Firstly, the thickness 

varied at different locations. Secondly, the scale was much thinner. Thirdly, the hematite layer 

was the major component of the scale. At some locations, the hematite layer occupied nearly 

the entire thickness of the scale. Finally, wustite was not detectable even after oxidation for 

20 hours. Increased plastic flow at 650°C, which took place in the wustite layer primarily, 

was thought to continually collapse the pores formed during oxidation. Thus, the scale–iron 

adherence was maintained. In addition, the rapid recrystallization process taking place in the 

iron substrate at 650°C would significantly reduce the cold-work effects introduced by 

mechanical polishing [25]. As in the case of oxidation at 580°C and 600°C, the large 

population of dislocations on the sample surfaces introduced by cold working provided an 

effective mechanism for vacancy annihilation, thus reducing the tendency of scale–iron 

separation during oxidation at these temperatures. The magnetite layer developed on 

cold-worked samples consists of a fine-grain layer forming at the inner region and a coarser 

columnar-grain layer at the outer region. The fine-grain layer was believed to form via an 

oxide-dissociation mechanism, associated with void formation at the scale–iron interface and 

subsequent void migration along grain boundaries through the magnetite layer. The impurity 

carbon in iron was thought to have assisted in the formation of the fine-grain layer, and 
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maintaining the adherence between the scale and the iron substrate [26,27].  

 

During steel oxidation, carbon from the steel substrate can be oxidized, causing 

decarburization of the steel when the rate of carbon oxidation exceeds that of iron. 

Decarburization is normally observed above 700°C, particularly for steels containing 

relatively high levels of carbon [28,29]. Simultaneous scaling and decarburization has been 

studied, and the general consideration is that during steel oxidation, carbon reacts with the 

scale via the following reaction [30]: 

[𝐶] + 𝐹𝑒𝑂 = 𝐹𝑒 + 𝐶𝑂 

Where [C] stands for the carbon in solution in steel, further reaction between CO and scale 

may happen: 

𝐶𝑂 + 𝐹𝑒𝑂 = 𝐶𝑂2 + 𝐹𝑒 

These reactions can proceed only when the generated gas can escape through the scale 

through microchannels such as pores or microcracks [29,31]. If not, the pressure of CO gas 

would build up and blistering and rupture of scale will be resulted when the pressure exceed a 

critical value [29].  The carbon-bearing gases generated during steel oxidation can also be 

transported via the outward movement of voids originated at the scale–steel interface [32]. 

For the temperature lower than 700°C, the rate of carbon oxidation may be lower than that of 

iron oxidation. The expelled carbon (still in the steel) due to the more rapid iron oxidation 

must then either remain at the scale–steel interface or diffuse into the steel, causing 

enrichment of carbon in the surface layer of the steel substrate. If the enrichment exceeds the 

solubility of carbon, solid carbon (graphite) may precipitate at the scale–steel interface [33]. 

 For Fe–C alloys containing more than 0.1% of carbon, the effect of carbon on steel 

oxidation varies at different temperature ranges. Below 570°C, increased carbon content in 

steel results in increased oxidation rate, because the scale formed over pearlite (FeC3+Fe) is 

finer and the scale is generally more adherent, allowing more rapid iron diffusion through the 

scale. At 700°C, higher carbon contents resulted in less adherent scale, lower oxidation rate, 

and less regular scale structures with more high oxides (hematite and magnetite). 
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5.3 Carbon based coatings on steel 

5.3.1 The surface characteristic and electrical conductivity of the initial 

heat treated samples 

(a)                                   (b) 

              (c)                                   (d) 

              (e)                                    (f)                       

 

Figure 5.2: (a) TEM image of PP10; (b) X-ray diffraction pattern of the sheet in (a); (c) TEM image of G; 

(d) X-ray diffraction pattern of the graphene sheet in (c); (e) TEM image of G graphene with smaller 

magnification; (f) X-ray diffraction of the stacking graphene sheets in (e) 
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TEM images and diffraction pattern of PP10 graphite and the graphene fabricated from 

expandable graphite (G) are shown in Figure 5.2. The sampling area of the x-ray diffraction 

of this TEM is in nano scale. Comparing Figure 5.2 (a) and (c), PP10 has smaller amount of 

graphene sheets than G and the size of the graphene sheets are smaller as well. Figure 5.2 (e) 

can further confirm that G has larger amount of graphene sheets with various layers and 

folding and their size are bigger. In addition, graphite nanoflakes also present in the figure. In 

the literature, only electron diffraction patterns of graphene sheets with different layers were 

discussed [34,35]. However, x-ray diffraction pattern and electron diffraction pattern of a 

substance is similar. The schemes of the electron diffraction pattern of single layer and two 

layer graphene in literature were redrawn and shown in Figure 5.3. In a diffraction pattern, a 

triangle is formed around the centre bright spot. For the diffraction pattern of single layer 

graphene, the two spots in the middle of one side of the triangle have higher intensity than 

other two spots as indicated by the arrows in Figure 5.3(a). For two layer graphene, the spots 

in the vertices of the triangle have higher intensity (Figure 2 (b)).The x-ray patterns shown in 

Figure 5.2 for single layer graphene are similar to the electron diffraction pattern in the 

literature. As a result, the existence of single layer graphene sheets in PP10 and G can be 

confirmed. Although G has more graphene sheets, the phenomenon of bigger graphene sheets 

cover smaller graphene sheets is more serious and this will lead to a ring x-ray diffraction 

pattern at the stacking site [34,35]. Figure 5.2 (f) indicates that a couple of graphene sheets 

are stacking at the site. The x-ray pattern will start to grow to be a ring shape if more 

graphene sheets are stacking in an area.  

                (a)                                 (b) 

Figure 5.3: Schemes of nanoscale electron diffraction patterns of (a) a single-layer graphene membrane 

and (b) a two-layer membrane  
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                (a)                                    (b)                               

                (c)                                    (d)                                   

Figure 5.4:  SEM images of the carbon based particles coated sample by EPD; (a) The PP10 coated 

sample with initial EDP conditions (b) The PP10 coated sample with lower voltage; (c) The PP 10 coated 

sample with longer deposition time; (d) G coated sample with longer deposition time 

 

The SEM images of some samples after EPD are shown in Figure 5.4. From Figure 5.4 (a) 

and (b), there are pores exist in the coating layer, which are labelled by red circles, between 

the graphite particles and the pores are resulted from the escape of hydrogen gas. The particle 

movement carriers, hydrogen ions, are generated from the reaction between acetone and 

iodine. After moving the particles and let them deposited on to the substrate, the hydrogen 

ions recombined to form hydrogen gas and escaped from the system into the air. With lower 

voltage used, the particles in suspension moved slower and the EPD deposited layer was 

more porous because fewer particles deposited on to the steel surface in the same amount of 

time (Figure 5.4 (b)). When longer deposition time was adopted, a thick EPD deposited layer 

was produced and the whole steel surface was covered by the graphite particles. Comparing 

G coated (Figure 5.4 (d)) and PP10 coated samples, their surface morphologies are distinctive 

and this is resulted from the morphologies of the two different particles used. The electrical 

conductivity of the EPD coated samples was difficult to measure because the coating layers 
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were scratched off easily by the probe. Therefore, thermal treatment was carried out after 

EPD to improve the adhesion between the EPD coated layer and the steel substrate for 

electrical conductivity measurement.  

 

All the treated samples exhibit acceptable adhesion that the coating layer cannot be scratched 

off by tissue papers. The SEM images of some coated samples are shown in Figure 5.5 where 

black spots or areas represent the carbon based particles and the grey spots or areas represent 

the oxide scale layer. From Figure 5.5, the carbon based particles do not cover the whole 

surface of the steel substrate. There are two possible reasons for that. The first possible reason 

is, as mentioned before, resulted from the diffusion of hydrogen gas out from the substrate 

surface to the air. Secondly, the oxide scale grew during thermal treatment process were 

around the carbon based particles and even fully buried the particles with small size (such as 

graphene and few layer graphene whose thicknesses are nanoscale). Therefore, only large and 

thick particles can be seen in the SEM images. Comparing G coated and PP10 coated samples, 

their surface morphologies were quite similar. From Figure 5.5 (a)-(f), only a few carbon 

based particles could be bound if the thermal treatment temperature was low and most of the 

carbon based particles were buried by the thick oxide scale when high treatment temperature 

was used. The adhesion between carbon based particles and steel is improved after the 

thermal treatment because the iron oxides scale produced can lock the particles on the surface 

and the adhesion of the coating layer and the Steel/coating adhesion mainly depends on the 

adhesion between the oxide scale and the steel substrate. Figure 5.5 (g) is the evidence for 

particles locked by iron oxides. In addition, from Figure 5.5 (g), the thickness of the oxide 

scale is not uniform and this may result from the thermal treatment process of the steel or the 

short treatment time did not allow the oxide scale layer to grow completely. The thickness of 

the oxide scale layer will be discussed later. 
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               (a)                                   (b)                                   

               (c)                                     (d)                                 

               (e)                                    (f)                                    

               (g) 

Figure 5.5: SEM image of the post heat treated samples (a) Graphene coated 540℃ treated for 5 minutes 

(b) PP10 coated 540℃ treated for 5 minutes (c) Graphene coated 580℃ treated for 5 minutes (d) PP10 

coated 580℃ treated for 5 minutes (e) Graphene coated 600℃ treated for 5 minutes (f) PP10 coated 

600℃ treated for 5 minutes (g) An iron oxide scale bound particle 
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Figure 5.6 EDX analysis of the coating drop-off site of a graphene coated sample 

 

Thermal treatment helps to produce good graphite or graphene coating layer. However, 

coating layer drop-off was observed in some of the coated samples and this phenomenon is 

more serious when the thermal treatment temperature is higher. Figure 5.6 shows the 

elemental profile of the coating drop-off site of graphene coated steel substrate. The bright 

spots and areas in the elemental profile images indicate the existence of a certain element. 

The contaminations that have not been fully cleaned in the graphene may be the possible 

reason for the drop-off of the coating layer because they may decompose at high temperature 

which leads to coating layer blow off and unbalanced localized heat. In addition, the oxide 

scale did not grow uniformly and the scale layer could not adhere onto the steel substrate. 

From Figure 5.6, iron is the only element exists in the drop-off site as shown in the Fe L 

series image. This also indicates that coating layer was completely removed during thermal 

treatment because only iron element was detected in the drop-off site. In the coating layer, 

carbon element and oxygen element are distributed uniformly. Iron element may also exist in 

the coating layer but its signal is not strong. The signal of oxide element is brighter than the 

signal of carbon element. This may indicate the amount of oxygen element is greater than 

carbon element. However, the EDX image offers only qualitative analysis of the elements 

presented in the surface. The composition of the coating layer cannot be examined accurately.  

 

XPS results of graphite coated sample are shown in Figure 5.7 and Table 5.1. After 
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comparing with the database, all existing compounds in the coating layer are identified. 

Comparing the binding energy values in Table 5.1 and database, iron peak binding energy 

711.99eV and 713.97eV represent the existence of hematite (Fe2O3) and iron peak binding 

energy 710.26 eV suggest that the existence of magnetite (Fe3O4).  For oxygen peak binding 

energy, 529.63 eV can represent the existence of both hematite and magnetite and 531.63 eV 

represent the existence of hematite. As a result, the iron oxides existed in the coating layer are 

identified as hematite and magnetite where hematite has much larger quantity. In terms of 

carbon peak binding energy, 284.7eV represents the carbon without reacting with other 

substances and 288.45eV may represent the existence of carbon compounds such as carbon 

dioxide or carbon monoxide. The existence of carbon compounds may result from 

environmental contamination and do not indicates that graphite was involved in any reactions 

during thermal treatment. The analysis depth of XPS is limited. The coating layer may consist 

of several layers that contain different iron oxides and XPS can only analyse the outermost 

surface. In Figure 5.7, the surface structure of the oxide scale is similar to the hematite 

structure shown in literature [36]. This can also be the evident of the existence of hematite in 

the surface of graphite coated samples and hematite is also the major component of the 

outermost oxide scale. In addition, the oxide scale layer is likely to be a thin hematite layer in 

the outermost surface with a magnetite layer underneath [25].  
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Figure 5.7:  XPS spectrum of graphite coated sample treated at 580⁰ C for 5 minutes (a) survey scan (b) 

Iron element high resolution scan (c) Carbon element high resolution scan (d) Oxygen element high 

resolution scan 

 

Table 5.1: XPS data of graphite coated sample treated at 580⁰ C for 5 minutes 

Name 
Fe2p3 

Scan A 

Fe2p3 

Scan B 

Fe2p3 

Scan C 

O1s 

Scan A 

O1s 

Scan B 

C1s 

Scan A 

C1s 

Scan B 

C1s 

Scan C 

Peak 

Binding 

Energy 

710.26 711.99 713.97 529.83 531.63 285.27 288.45 284.7 

Atomic % 4.52 2.72 1.3 20.83 9.59 28.97 3.34 28.73 

 

The porosity formed in the oxides scale layer is mainly resulted from the growth stresses and 

resultant deformation and grain growth. The micro-voids are also formed within the oxide 

scale layer as a result of the inward diffusion of oxygen and outward diffusion of metal take 

place during oxidation [31]. In addition, with the contribution of hematite formation, a porous 

coating layer is highly possible to appear (Figure 5.8). When hematite interacted with each 

other, it was easy to form porous coating layer. With the oxygen and metal took place, pores 

and micro-voids were formed in the oxide scale layer. The formation of micro-voids mainly 

took place in underneath magnetite layer.  Magnetite layer consists of a fine-grain layer at 

the inner region and a coarser columnar-grain layer at the outer region. Voids are formed at 

the scale-iron interface and subsequent void migration takes place along grain boundaries. 

Therefore, voids appear in the coating layer and the porous structure is resulted [26,27].  
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Figure 5.8: SEM image of graphite coated sample to review its surface structure  

 

 

 

                   (a)                                           (b) 

Figure 5.9:  SEM image of the steel-coating interface of (a) graphite coated sample treated at 630 for 

5minutes (b) graphene coated sample treated at 630 for 5minutes 

 

 

The structure of the interfaces of high temperature treated sample is clearer because the scale 

layer is thicker and more fully developed. The steel-coating interface was observed clearest in 

the graphite coated sample heat treated at 630 ℃ for 5 minutes (Figure 5.9). From Figure 5.9 

(a), the scale layer has two layers and the top layer is porous, which is hematite layer. The 

two layers are separated by a red line. This is the same as the theory mentioned above that the 

scale layer has a hematite top layer followed by a continuous magnetite layer [25]. But the 

wustite layer could not be observed clearly. Additionally, large columnar grains can be 

observed in the scale interphase. Grain boundaries are also visualized in Figure 5.9 (a). 

Micro-voids were formed during the thermal treatment in the areas labelled by red circles in 
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the figure. The actual carbon based particles binding layer is hematite layer because the 

generated magnetite layer is dense and is not able to bind any carbon based particles [29,37]. 

As a result, no matter how thick the EPD deposited layer is, only the innermost layer of EPD 

deposited carbon based particles can be bound during thermal treatment process. Figure 5.8 

(b) shows the steel-coating interphase of the graphene coated sample which was treated at 

same condition as the graphite coated sample. Their steel-coating interfaces are similar and 

this indicates that the presence of different carbon based particles do not have a fundamental 

effect on the oxidation process of steel.  
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Figure 5.10:  Plot of relative conductivity versus thermal treatment temperatures of the oxide layers on 

BP steel 
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Figure 5.11: Plot of relative conductivity versus thermal treatment temperatures of graphite coated 

samples 

 



Chapter 5 Carbon based coatings on steel with improved electrical conductivity 

 131 
 

After taking out the samples from the furnace for thermal treatment, all the samples were 

cleaned by tissue papers to wipe out any particles that not adhere onto the steel substrates. 

Figure 5.10 shows the relative conductivity of BP steel treated in different temperatures for 

five minutes. After heat treatment, the conductivity of the steel surface was reduced 

significantly compared to bare steel substrate. Figure 5.11 and 5.12 show the trend of the 

electrical conductivity versus treatment temperature. If the value of relative conductivity 

equals to 1, this means that the conductivity of the coated samples is the same as the steel 

substrate. From Figure 5.11, the peak relative conductivity was achieved when 580 ⁰C was 

applied to treat the coating samples. The relative conductivity of the coated samples does not 

change at 520⁰C and 540⁰C and, then, it begins to rise to its peak value at 580⁰C, after which 

it begin to fall. Another smaller peak value appears at 610⁰C. However, considering the 

standard deviation, the relative conductivity at 610⁰C may be an inaccurate value. If so, there 

is only one peak relative conductivity value which appears at 580⁰C. Compared to graphite 

coated samples, the graphene coated samples have less serious change of relative 

conductivity and their relative conductivity values do not have a very high value which range 

from 1 to 2.5. The relative conductivity drops significantly when thermal treatment 

temperature is higher than 610⁰C. Again, when considering the standard deviation, the 

relative conductivity values from 520⁰C to 610⁰C may only vary a little and this can indicates 

that a more stable conductivity value is exhibited when utilizes graphene. 580⁰C seems to be 

the best treatment temperature for both graphite coated samples and graphene coated samples. 

Compared to the relative conductivity of Figure 5.11 and Figure 5.12 to Figure 5.13, the 

presence of carbon based particles can improve the conductivity of oxide layer on steel 

substrate.  
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Figure 5.12: Plot of relative conductivity versus thermal treatment temperatures of graphene coated 

samples 

 

The resistance of the coating layer is mainly contributed from the tunnelling resistance 

between particles and the contact resistance between the probe and the coating when current 

pass through. The tunnelling resistant is much greater than contact resistant [38]. With higher 

thermal treatment temperature was used, the hematite layer grew thicker and buried more thin 

and small particles. Hence, large and thick particles contributed more as the electrical 

conducted component. With the oxide scale buried more particles, the tunnelling resistant 

increased when current passed through the coating layer during four point probe test and, 

therefore, electrical conductivity of the coating layer was reduced. In the case of graphene 

coated samples, from the SEM images, the residual graphite and exfoliated graphite were the 

major electrical conducted component. Although the graphene has much more few layers 

graphene and single layer graphene than PP10, the contact resistant generated between 

carbon-carbon contact and carbon-iron oxides contact in the graphene coated sample is much 

greater that PP10 coated sample. In PP10 coated samples, the presence of few layers 

graphene can act as a bridge to fill the gap between two large particles so as to reduce the 

tunnelling resistance [39].  
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Figure 5.13: Plot of relative conductivity versus thermal treatment times of graphite coated samples at 600 

⁰C 

 

Figure 5.13 shows the trend of relative conductivity varies with prolonged treatment time. 

The relative conductivity values of the graphite coated samples drop significantly with 

prolonged thermal treatment time. As the samples were treated in the furnace longer, the 

tunnelling resistant increased significantly and led to reduced electrical conductivity. 

However, under a certain temperature, carbon based particle cannot be bound onto the steel 

substrate with inadequate time. For example, if the sample is treated at 520⁰C, the thermal 

treatment time should be longer than 5 minutes to bind the carbon based particles.  

 

A schematic for the binding mechanism is proposed in Figure 5.14. The binding mechanism 

resulted from heat treatment is mechanical binding. A layer of oxide scale is generated when 

the steel substrates contact with air under high temperature. The particles deposited by EPD 

were bound by the as-generated layer and form a dense coating layer. All the results shown 

before can be the evidence of the proposed binding mechanism. The binding layer grown 

during heat treatment is not electrically conductive. As mentioned before, it is crucial that to 

Figure 5.14 Schematic of particles binding process during heat treatment 
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control the thickness of the hematite layer to bind as many particles as it can without 

affecting the coated samples electrical conductivity. If the hematite layer is too thick, most of 

the EPD deposited particles will be buried inside the hematite layer and are not able to 

function as electrical conductor. If the hematite layer is too thin, it may be only able to bind 

very small particles and bigger size particles are not able to be bound. The area of the 

particles occupied on the coating surface is an important factor that relate to the electrical 

conductivity of the coated samples.  Low particle occupied area has low electrical 

conductivity. In addition, from the SEM images, the porosity of the compound layer is quite 

high that it will have detrimental effect on corrosion resistant.  

 

5.3.2 Optimization of EPD conditions 

                 (a)                                  (b)                                 

                 (c)                                   (d)                                    
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                 (e) 

 

Figure 5.15 shows the SEM image of the samples produced by varying iodine concentration 

in acetone. It is quite obvious that sample DP1061 has the highest particle coverage and the 

least unoccupied sites. Iodine concentration in suspension relates to the deposition speed of 

particle directly and can affect the packing behaviour of the coating layer. When the same 

voltage is applied, higher iodine concentration means high as-generated current. Higher 

current may cause turbulence in the suspension and the coating layer may be disturbed during 

its deposition. Hence, lower iodine concentration is beneficial to produce a coating layer with 

good quality. The thickness of as-deposited coating layer also increases with the increase of 

iodine concentration in suspension. However, if the iodine concentration is too low, the 

particles movement in the suspension is not able to be activated and a coating layer cannot be 

formed from the particles.  

                (a)                                     (b)                                    

Figure 5.15 SEM images of iodine concentrations variation trials (a) DP1061 (0.175mg/ml) (b) 

DP1062 (0.44mg/ml) (c) DP1063 (0.74mg/ml) (d) DP1064 (0.99mg/ml) (e) DP1065 (1.23mg/ml)  

(scale bar:200µm) 
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                  (c)                                                                         

                  (e) 

 

With prolonged deposition time, the thickness of coating layer increase. The case in carbon 

based particle may be different. Figure 5.16 shows the SEM image of the samples in time 

variation trial. Sample DP1067 and DP1068 have larger particles coverage compared to other 

samples in this trial. The Particles in the suspension need enough deposition time to cover the 

whole area of the steel substrate and the deposited mass on a substrate has a linear 

relationship with deposition time. In the trial, the reason why sample DP1069 and DP10610 

has less particles coverage is not quite clear. This may relate to the iodine concentration 

variation during the EPD process.  

 

 

 

 

 

 

Figure 5.16 SEM images of deposition times variation trials (a) DP1066 (0.5 min) (b) DP1067 (1 

min) (c) DP1068 (1.5 mins) (d) DP1069 (2 mins) (e) DP10610 (2.5 mins) (scale bar: 200µm) 
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                 (a)                                    (b)                               

                (c)                                     (d)                                    

                 (e)  

 

From Figure 5.17, the particle coverage of sample DP1866 is the best. The particle coverage 

reduces with increased voltage and it increases again after the voltage is higher than 40V. As 

mentioned before, high voltage may cause turbulence that affect the morphology of the 

coating layer. However, from the result of voltage variation, the influence of turbulence 

raised by high voltage might be overcome if the particles can deposit on to the substrate fast 

enough. Another possible reason is that, due to the turbulence caused by high voltage, the 

Figure 5.17 SEM images of SEM images of voltage variation trials (a) DP1866 (20V) (b) DP1867 

(30V) (c) DP1868 (40V) (d) DP1869 (50V) (e) DP18610 (60V) (scale bar:200µm) 
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quality of the coating is not controllable and irregular.  
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Figure 5.18: Plot of electrical conductivity ratios versus iodine concentrations 

 

Figure 5.18 shows the plots of the relative conductivity versus iodine concentration in 

acetone. The electrical conductivity of coated samples decreases with increased iodine 

concentration. Iodine concentration in suspension relates to the deposition speed of particle 

directly and can affect the packing behaviour of the coating layer. When the same voltage is 

applied, higher iodine concentration means high as-generated current. Higher current may 

cause turbulent in the suspension and the coating layer may be disturbed during its deposition. 

Hence, lower iodine concentration is beneficial to produce a coating layer with good quality. 

The thickness of as-deposited coating layer also increases with the increase of iodine 

concentration in suspension. However, if the iodine concentration is too low, the particles 

movement in the suspension cannot be activated and a coating layer is not able to be formed 

from the particles.  
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 Figure 5.19:  Plot of electrical conductivity ratios versus deposition times 

 

As shown in Figure 5.19, 1 minute deposition time seems to be the best deposition time for 

the system to achieve a coating layer with good conductivity. With prolonged deposition time, 

the thickness of EPD coating layer increases. The deposition rate will be decreased with 

prolonged deposition time because the coating layer generated may act as insulating layer, 

especially for ceramic particles. The particles in the suspension need enough deposition time 

to cover the whole area of the steel substrate and the deposited mass on a substrate has a 

linear relationship with deposition time [40]. The variation in the electrical conductivity of 

the coated samples may relate to the deposition pattern of the carbon based particle on the 

steel substrate. As the hydrogen ions escaped in the form of hydrogen gas, prolonged 

deposition time may lead to increased porosity of the EPD coating layer. Therefore, the 

tunnelling resistant of the coating layer is increased.  
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Figure 5.20:  Plot of electrical conductivity ratios versus voltages 

 

For the effect of voltage to the electrical conductivity shown in Figure 5.20, a conclusion can 

be drawn that 20V and 40 V both can produce coated samples with higher electrical 

conductivity. High voltage may cause turbulence that affects the morphology of the coating 

layer. However, from the result of voltage variation, the influence of turbulent raised by high 

voltage might be overcame if the particles can deposit onto the substrate fast enough because 

particles under high voltage also move faster than low voltage. Another possible reason is 

that, due to the turbulence caused by high voltage, the quality of the coating is irregular and 

cannot be controlled.  

 

The change of the electrical conductivity of the coating layer mainly contributes to the 

change of tunnelling resistant and contact resistance between electrical conducted 

components (carbon based particles). The tunnelling resistance will be reduced significantly 

if more graphite or graphene particles cover the surface and they are near each other. As a 

result, a fine control of oxide scale layer growth and EPD process to produce a surface fully 

covered by graphite or graphene particles is important to the electrical conductivity of the 

coated samples.  
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5.3.3 Comparison of the electrical conductivity of the coating on different 

steel substrates 

The sample images of the different substrates after EPD and heat treatment are shown in 

Figure 5.21 to Figure 5.24. From the images, it seems that graphite and graphene were only 

successfully coated on to 13KE21 substrate. The success of coating relate to the surface 

treatment of the steel substrates in TATA steel. The binding of particles after heat treatment is 

contributed from the generation of thin layer iron oxides. The oxidation in this temperature 

highly depends on the surface treatment of the steel surfaces, such as polishing, and the steel 

types. The surface roughness seems to be a critical factor. 13KE008 samples were not able to 

bind graphite or graphene particles after heat treatment. The surface roughness and the 

anti-oxidation property of 13KE008 are much better than the surface roughness of normal 

Black Plate. In the case of 13KE005, the chromium oxides on the surface can retard the 

 Figure 5.21 Images of 13KE008 (a) graphene coated (b) graphite coated 

Figure 5.22 Images of 13KE005 (a) graphite coated (b) graphene coated 
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oxidation of iron under high temperature. This is the reason why graphite and graphene 

particles were not bound on to the 13KE005 surface. For 13KE009 samples, the heat 

treatment time and temperature were not able to form a thick enough scale on nickel layer to 

bind graphite and graphene particles onto its surface. Although 13KE21 samples can bind 

some graphite or graphene particles, only small amount of particles were bounded onto the 

surfaces.  

 

SEM was used to characterize the surface of 13KE21 samples and their electrical 

conductivity was also measured. The SEM images are shown in Figure 5.25 and the electrical 

conductivity ratios toward 13KE21 substrates are shown in Table 5.2. From Figure 5.25, only 

a very small amount of graphite and graphene particles were bound onto the steel substrates. 

Some of the bound particles are optically transparent and this phenomenon indicates that few 

layer graphene particles were bound on graphite coated and graphene coated samples. The 

electrical conductivity of the coated samples are both lower than the 13KE21 substrate. 

Although few layer graphene was bound, the electrical conductivity of 13KE21 was not 

improved because the amount of bound graphite or graphene particles was small that the 

tunnelling resistant between each particle is very high. The thin scale layer contributes more 

than the bound graphite or graphene particles. From the results, graphene or graphite particle 

coverage on steel substrates is a critical factor that affects the electrical conductivity of the 

coated samples.  

 

 

 

Figure 5.23 Images of 13KE009 (a) graphene coated (b) graphite coated 
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                 (a)                                  (b)                                  

                 (c)                                 (d)                                      

Figure 5.25 SEM images of (a)(b) graphite coated 13KE21 samples and (c)(d) graphene coated 13 KE21 

samples 

Table 5.2 Electrical conductivity of coated 13KE21 samples 

Sample Code Relative conductivity 

Graphite coated 13KE21 0.854 

Graphene coated 13KE21 0.198 

 

Figure 5.24 Images of 13KE21 (a) graphene coated (b) graphite coated 
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Surface scan and depth profiling were performed onto the samples with three different 

coating materials. The XPS results of PP10 coated samples are shown in Figure 5.26 

and Table 5.3. From the results, the surface of PP10 coated sample contains NiO, 

Ni2O3, Fe2O3 and PP10 graphite. The amount of Ni2O3 is much less than NiO and this 

may result from oxidation conditions. Peak binding energy 862.1 eV stands for both 

NiO and Ni2O3, and their atomic percentage is 4.15.The précised amount of Ni2O3 

cannot be identified from the result. 13KE21 steel is a steel special treated with nickel 

coating on top. The presence of Fe2O3 is resulted from the outward metal diffusion 

and inward oxygen diffusion.  
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                 (c)                                  (d)                                    

Figure 5.26 XPS surface scan of PP10 coated sample (a) Carbon element scan (b) Oxygen element 

scan (c) Nickel element scan (d) Iron element scan 

 

 



Chapter 5 Carbon Based Coatings on Steel with Improved Electrical Conductivity 

 145 
 

Table 5.3 XPS data of the PP10 coated sample treated at 580⁰ C for 5 minutes 

Name 

C1s 

Scan 

A 

C1s 

Scan 

B 

C1s 

Scan 

C 

C1s 

Scan 

D 

O1s 

Scan 

A 

O1s 

Scan 

B 

O1s 

Scan 

C 

Ni2p 

Scan 

B 

Ni2p 

Scan 

C 

 

Ni2p 

Scan 

D 

Ni2p 

Scan 

E 

Fe2p 

Peak 

Binding 

Energy 

(eV) 

284.2 284.9 286.4 288.8 529.8 531.4 532.9 854.3 856.1 862.1 859.6 71.3 

Atomic 

% 
11.63 7.11 9.08 2.72 34.15 6.81 6.78 4.44 4.33 4.15 2.17 6.63 

 

The XPS results of PPG coated samples are shown in Figure 5.27 and Table 5.4. The 

compound appeared in the PPG coated samples after thermal treatment were NiO, 

Ni2O3 and Fe2O3. PPG particles did not react with oxygen during the thermal 

treatment. The peak binding energy 855.8 eV represents both NiO and Ni2O3. In the 

PPG coated surface, the amount of Ni2O3 is more than NiO and this indicate that the 

size of the carbon based particles could affect oxidation behaviour of 13KE21 steel 

during thermal treatment because the oxygen transportation was affected.  
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                  (c)                                 (d)                                   

Figure 5.27 XPS surface scan of the PPG coated sample (a) Nickel element scan (b) Iron element 

scan (c) Oxygen element scan (d) Carbon element scan 

 

Table 5.4 XPS data of the PPG coated sample treated at 580⁰ C for 5 minutes 

Name 

Ni2p 

Scan 

A 

Ni2p 

Scan 

B 

Ni2p 

Scan 

C 

Ni2p 

Scan 

D 

Ni2p 

Scan 

F 

Fe2p

3 

O1s 

Scan 

A 

O1s 

Scan 

B 

C1s 

Scan 

A 

C1s 

Scan 

B 

C1s 

Scan 

C 

C1s 

Scan 

D 

Peak 

Binding 

Energy 

(eV) 

855.8 861.2 864.3 852.5 854.4 711.1 529.8 531.4 284.3 284.8 289.5 286.3 

Atomic 

% 
4.54 2.58 0.7 0.1 0.89 7.98 19.32 29.34 12.79 8.67 6.91 6.18 

 

The XPS results of the graphene coated samples are shown in Figure 5.27 and Table 

5.4. The compound appeared in the coated samples after thermal treatment were the 

same. The peak binding energy 856.2 eV represents both NiO and Ni2O3. In the 

graphene coated surface, the amount of Ni2O3 is different from the other two coated 

samples. Again, this indicates the oxidation behaviour was changed by the carbon 

based particles size and dimensions.  The metal outward diffusion still took place no 

matter what the coating materials was as Fe2O3 appeared in these three types of coated 
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samples. In addition, the nickel top coating on steel could not act as the protection 

layer against oxidation. During thermal treatment, oxygen reacted with the nickel 

layer first and diffused through the layer to react with iron. At the same time, the iron 

and nickel diffused outward through the micro-tunnel to react with oxygen as well.  
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Figure 5.27 XPS surface scan of the graphene coated sample (a) nickel element scan (b) oxygen 

element scan (c) carbon element scan (d) iron element scan 
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Table 5.4 XPS data of the graphene coated sample treated at 580⁰ C for 5 minutes 

Name 

Ni2p 

Scan 

A 

Ni2p 

Scan 

B 

Ni2p 

Scan 

C 

Ni2p 

Scan 

D 

Ni2p 

Scan 

E 

Ni2p 

Scan 

F 

O1s 

Scan 

A 

O1s 

Scan 

B 

O1s 

Scan 

C 

C1s 

Scan 

A 

C1s 

Scan 

B 

C1s 

Scan 

C 

Fe2p3 

Peak Binding 

Energy (eV) 

854.7 856.2 857.8 861.5 864.4 

567.

2 

530.2 531.7 532.9 284.6 285.2 286.7 711.6 

Atomic % 4.16 3.88 1.71 5.1 1.38 0.27 34.36 6.09 4.83 13.39 8.56 5.63 6.42 

The XPS depth profiling result of PP10 coated sample is shown in Figure 5.28(a). The 

depth etching speed is about 1nm/s. The depth profiling depth is about 600nm for 

PP10 coated sample. From Figure 5.288(a), the nickel and oxygen are the major 

component of this layer. Oxygen still exist at 600nm and this means that the oxygen 

diffused inwardly deeper than 600nm after the thermal treatment. The inward 

diffusion depth can be estimated to about 1 micron. However, the layer at 600nm 

depth may consist of both pure nickel and nickel oxides because the amount of 

oxygen at 600nm is not enough to react with nickel.  The atomic percent of carbon 

reduces steadily from 15% to 5% through the coating layer. For the PPG coated 

samples (Figure 5.28 (b)), the depth profile is different from the PP10 coated sample. 

The atomic percent of nickel is very low at the surface and increases gradually along 

with the etching depth. The atomic percent of oxygen is a little higher initially and 

reduces to about 20% along with the etching depth, which is similar to the PP10 

coated sample. The trend of iron atomic percent is also similar to PP10 coated sample. 

However, the trend of carbon atomic percent is distinguished from the PP10 coated 

sample. The atomic percent of carbon is high at the initial and drops significantly to 

15% within a short etching depth. At the deepest spot, carbon atomic percent is about 

5% which is similar to PP10 coated sample. 
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                (c) 

From Figure 5.28(c), the trends of atomic percent of carbon and iron are similar to 

PPG coated sample. The trend of nickel atomic percent is similar to PP10 coated 

sample but the initial atomic percent is 10% lower. Oxygen atomic percent changes 

differently from the other two coated samples. It is also high initially but it increases 

first and then reduces to 35% instead of 20%. The layer at about 750nm deep still 

contains large quantity of oxygen element.  

 

From the XPS depth profiling results, the three coated samples have some similar 

features and this may be resulted from same substrate is used and all the coated 

particles are carbon based.  The differences between these three samples may 

Figure 5.28 XPS depth profiling of (a) PP10 coated sample (b) PPG coated sample (c) the graphene 

coated sample 
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because of the size and thickness of the coating carbon based particles used. However, 

the carbon based particles coated on 13KE21 substrate are not distributed uniformly 

and, therefore, the randomness of the selected site of the XPS depth profiling analysis 

needs to be considered. As a result, solid conclusion about the relationship between 

different types of carbon based particles and the surface composition of the coated 

samples still cannot be drawn. 

 

5.4 Conclusions 

Graphite and graphene particles were deposited on to steel substrates successfully by 

EPD and thermal treatment after EPD coating was adopted to improve the adhesion. 

Graphite and graphene particle were bound on to the steel substrates successfully. The 

electrical conductivity of the steel was improved significantly with improved EPD and 

thermal treatment conditions. The best electrical conductivity of the coated steel is 10 

times higher than that of the steel substrate. The best thermal temperature is about 

580⁰C and the best thermal treatment time is about two minute. The optimum EPD 

conditions are 0.175 mg/ml iodine concentration, 20 or 40V EPD voltage and 1 

minute deposition time. The binding mechanism of thermal treatment is a simple 

mechanical binding. 

 

The steel substrate used initially was Black Plate. Different steel susbtrates were used 

to investigate the possibility of duplicate the coating process on other steel substrates. 

Only 13KE21 steel can bind graphite and graphene particles after thermal treatment 

and other types of steel were not able bind the particles. The surface treatment of the 

steel susbtrates has a significant effect on the EPD process and steel oxidation. Any 

surface treatment that can retard steel oxidation has a detrimental effect on the binding 

of graphite and graphene particles on steel during thermal treatment. Higher 

temperature and longer treatment time can progress steel oxidation and bind the 

particles on the steel susbtrates. However, the process will require more energy and 
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become time inefficient, which is bad for future industrial scale-up. The porous 

structure of the iron oxides layer has a detrimental effect on the corrosion resistant of 

the coated steel substrates. The conditions and different solvent systems of EPD 

process need to be investigated to further identify the optimized conditions and 

system for carbon based EPD coatings. In addition, a protective coating can be 

applied onto the thermal treated samples to improve its corrosion resistant without 

compromising the electrical conductivity significantly to achieve a coating system 

with good conductivity and good corrosion resistant. In this case, PU/graphene 

anti-corrosion coating can be used as the protective layer. However, thermal treatment 

is one of the route that can improve the adhesion between carbon based particles and 

steel. Other routes can be developed to solve the adhesion problems and achieve an 

adherent and high electrical conductivity coating layer on steel 
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Chapter 6 Electrical conductivity and anti-corrosion capacity of 

PU/graphene nanocomposite coatings 

6.1. Introduction 

Electricity Energy Storage (EES) is a process that converts electrical energy from 

generating plants into other forms that can be stored and convert back to electrical 

energy when needed. The EES technologies are widely used for either potable (mobile 

phone batteries) or stationary energy resources (pump hydroelectric storage) [1,2]. 

The technologies development is very fast which urge the EES industries to revolve. 

Apart from the traditional applications in utility and consumer use, there are a lot of 

new applications arisen such as renewable energy generation, smart house and 

electrical vehicles [3]. The future market potential of EES, driven by the extended 

utilization of renewable energy and the transformation of the energy sector, expands 

rapidly and will be much larger than the existing market which requires the EES 

industries to advance their technologies and products very fast. The general properties 

of EES are energy capacity, power, discharge time, lifetime and unit sizes. The 

electrical conductivity of the components in the EES devices relates to the energy 

capacity, power, discharge time and even unit sizes while the corrosion resistance of 

the components is one of the factors that determine the lifetime of EES devices [3,4].  

 

When EESs are in service, the materials of the EES contact different environments, 

some of which are very corrosive (i.e. metal panels in fuel cell). The reactions 

between the materials and the environments will destroy or deteriorate the materials 

and this process is defined as corrosion [5].  Corrosion causes tremendous economic 

loss and it is a significant part of the gross national production every year in USA [6]. 

and the estimated annual cost is about 2000-3000 dollars per inhabitant in 1985 [7]. 

The protection against corrosion is vital to reduce the cost of the products. There are 

several methods to protect the materials against corrosion (metals substrate in EES 

devices. The use of coating is the most popular one and about 90% of all metal 
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surfaces are covered with protective coatings. The protection efficiency of the organic 

coating is magnificent due to the fact that they are very thin (thickness ranges from 5 

microns to 250 microns depend on the applications) [8]. There are three mechanisms 

of organic coating systems against corrosion: the physicochemical (barrier) 

mechanism, the electrochemical mechanism (inhibition or cathodic protection) and 

the adhesion mechanism [9]. Although organic coatings are ideal to protect metal 

substrates from corrosion, they may not suitable for the protection of EES devices as 

their electrical conductivities are very low which will affect the performance of the 

devices. The protective coatings used for EES should process good electrical 

conductivity and anti-corrosion properties [10]. Although the organic coatings have 

excellent anti-corrosion properties, they do not process acceptable electrical 

conductivity. In terms of EIS measurement, the electrical resistance of the coating is 

used as the indication of its efficiency to block the ions that damage the metal 

substrates [8]. Therefore, an organic coating with excellent anti-corrosion properties 

may not have good electrical conductivity.  

 

It is not easy to develop an organic coating with excellent electrical conductivity and 

anti-corrosion properties at the same time. The coating industry has been undergoing a 

continual change in technology in the last few decades. With the discovery of new 

materials and the change in international legislation, the formulation of coatings has 

been changed significantly. Graphene is a promising materials and its potential use in 

coating is huge. The excellent properties of graphene and graphene based composites 

used as electrical conductive and anti-corrosion materials have been discussed in 

Chapter 2. The wide utilisation and excellent properties of PU make it excellent 

candidate as anti-corrosion coatings. The combination of graphene and PU may able 

to produce a coating with good electrical conductivity and anti-corrosion properties. 

The porous surface of the EPD coated metal substrates shown in Chapter 5 can be 

covered by PU/graphene nanocomposite coatings. The multi-layers coating system 
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will be discussed in this chapter as well. The coated samples will be characterised by 

EIS and four point probe test for anti-corrosion property and electrical conductivity 

respectively. The coating resistance obtained with different technique will be 

discussed.  

 

 

6.2. Application of EIS in coating evaluation 

6.2.1 Fundamentals of EIS 

In an ideal circuit, the ability of a circuit element to resist the flow of electrical current 

can be defined according to Ohm’s law. The resistance is the ratio between voltage E 

and current I (R=E/I). The resistor defined by Ohm’s law is ideal resistor and it 

follows three simplifying properties:  (1) the resistor always follows Ohm’s Law no 

matter how current and voltage change; (2) frequency does not affect the value of 

resistance; (3) AC current and voltage signals through a resistor are in phase with each 

other [11]. However, the circuit element in reality exhibit more complex behaviour. 

Therefore, impedance is introduced to replace. Impedance is also a measure of the 

resistance against the flow of electrical current but not limited by the simplified 

properties mentioned above. The impedance of an electrochemical system is studied 

as a function of the frequency under an applied AC wave in electrochemical 

impedance spectroscopy. AC wave is the perturbation of the system. After the 

application of AC wave, a new steady-state will be reached after a certain time. The 

required time is known as the time constant, τ, and it is equal to R × C where R is the 

resistance in ohms and C is the capacitance in farads of the system. The ratio between 

the response and the perturbation is the transfer function. If the perturbation is AC 

potential, the response is current and the transfer function is impedance. In order to 

simplify the calculation, Laplace transformation is used to transfer the response and 

perturbation from a time domain into frequency domain. Therefore, fast processes can 

be studied in high frequencies region while slow processes can be investigated at low 



Chapter 6 Electrical conductivity and anti-corrosion capacity of PU/graphene nanocomposite coatings 

 159 
 

frequencies region. As a result, the data at high frequencies may reveal dipolar 

properties, intermediate frequencies for bulk properties and low frequencies for 

surface properties [8].  

 

When the perturbation is AC potential, impedance can be expressed as Z = E/I, where 

E is the potential and I is the current. There are two components contribute to 

impedance. They are resistors (resistive/real component) and AC circuit elements such 

as capacitors, inductors and so on (reactive/imaginary component). The reactive 

component affects not only the magnitude of the AC wave but also its phase (time 

dependent characteristic). For example, the resulted current waveform will not in 

phase with the applied voltage (for example, leads 90°) when alternating voltage wave 

is applied to a capacitor. Hence, it would be convenient to use complex notation by 

incorporating the complex number j where j2 = -1. Therefore, if a sinusoidal potential 

varying with time t is applied in a system as 

                         𝐸(𝑡) =  𝐸0exp (𝑗𝜔𝑡)                         (1) 

Its response would be 

                       𝐼(𝑡) =  𝐼0exp (𝑗𝜔𝑡 − 𝜃)                        (2) 

E(t) and I(t) are the instantaneous values while E
0
 and I

0
 are the maximum values of 

the potential and current wave forms, respectively. Θ is the phase angle difference and 

ω is the angular frequency in radians given by ω = 2πf. In order to keep the system 

linear, a low AC voltage of about 10 mV is usually applied [8,12].  

 

Complex notation allows the impedance relationships to be understood and presented 

as Argand diagrams (Figure 6.1 (a)) in both polar coordinates (θ and │Z│) and 

Cartesian (Z’ and Z’’). The θ and │Z│ can be used to form the Bode impedance 

spectrum where those two are plotted against frequencies (Figure 6.1 (b) and (c) [13]) 

while the Z’’ is plotted against Z’ in Nyquist plot(Figure 6.1 (d) [14]). The use of 

Bode plots is recommended by Mansfeld because: (1) the measured points are 
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displayed equally while in Nyquist the majority of are cluster at both ends of the 

spectrum; (2) it is burdensome to label the curves in Nyquist plot with frequency 

marks; (3) resistor and capacitor regions can be distinguished clearly and the 

information provided by the change of phase angle as a function of frequency is an 

excellent indicator of small changes in the spectrum [15]. The degradation stages of a 

coating can be told from Bode plot as shown in Figure 6.1 (c). Combining the 

information obtained from Bode and Nyquist plots can understand the coating 

behaviour under corrosion. 

                 (a)                                  (b)                                 

                 (c)                                   (d)                                        

 

6.2.1 Application of EIS in coatings 

EIS is a very useful tool to investigate the coating behaviours under corrosion 

environment. Prediction of the lifetime of corrosion protection [16], comparison of 

Figure 6.1 Images of (a) impedance vector (b) example Bode plot (c) example Bode plot with phase 

angle as Y axis (d) example Nyquist plot 
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coatings systems [17], measurement of water uptake [18], the detection of changes 

due to exposure [19], identification of the corrosion mechanisms that lead to failure 

[20] and the build-up of models for coating system performance [21]. The coating has 

a tendency to memorize the past exposure event where each exposure to water and 

temperature damage the coating layer. As the exposure continues, the transport 

pathways with the coating are enlarged or created and water/electrolytes start to 

accumulate at the coating/substrate interphase where small-scale corrosion begins. 

The initiation of corrosion is the start of corrosion failure of the system but this only 

takes places when the barrier properties of coating layer begin to be weakened. The 

development of EIS data interpretation, modelling and test methodologies become 

more mature nowadays. Coating scientists are working hard to assimilate the data of 

EIS from different coating systems under different situation to develop meaningful 

understanding for the molecular level changes that happen during exposure processes. 

The effort that has done can be used to rank and predict the performance of a coating 

product.  EIS is an excellent technique that offers the paths to understand the 

anti-corrosion properties, thermal properties and water solubility. Combining the 

technique with other testing protocols, the performance of the coating systems can be 

evaluated effectively [22]. In addition, EIS can provide accurate quantitative results of 

the behaviour of the coatings. However, there are some limitations in the utilisation of 

EIS: (1) the poor reproducibility of data with a variation in magnitude of up to three 

orders between repeated tests due to the heterogeneity of the coating; (2) it is difficult 

to derive a complete transfer function from the knowledge of reaction mechanisms 

due to the overlapped time constants; (3) the various coatings (topcoat, primer etc.) 

applied on the substrates cannot be distinguished by EIS  [8]. Therefore, EIS is a 

powerful tool but not the only tool to investigate the corrosion behaviour of coatings.  



Chapter 6 Electrical conductivity and anti-corrosion capacity of PU/graphene nanocomposite coatings 

 162 
 

                   (a)                               (b)                                                         

                    (c)  

 

Different models have been used to stimulate the coating in different situation. In the 

case of an undamaged coating, a simple parallel Randles Circuit (RC) (Figure 6.2 (a)) 

is good enough to interpret the data, but it is not sufficient to model complex systems. 

When the corrosive medium reaches coating/substrate interface, the EIS result 

obtained can be stimulated by the equivalent circuit shown in Figure 6.2 (b) [20].   

When the coating contains defects, it is a damaged coating and, hence, an equivalent 

circuit other than RC should be used (Figure 6.2 (c)) [19]. Comparing Figure 6.2 (b) 

and (c), coating containing defect is similar to the coating in the middle or at the end 

of degradation. The presence of defects accelerates corrosion.  In this project, EIS is 

used to predict the anti-corrosion properties of the prepared coatings and reveal the 

effect of graphene on the anti-corrosion properties. The equivalent circuits mentioned 

will be used to stimulate the results obtained.  

 

Figure 6.2 Images of equivalent circuits (a) simple Randles Circuit (b) coatings in the middle or at 

the end of degradation (c) coatings contain defects 
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6.3. The electrical conductivity of the nanocomposite coatings 

6.3.1 PU conductivity 
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Figure 6.3 shows the electrical conductivity versus stirring rate of 8 wt% PP10 filled 

PU topcoat. The stirring rates are selected according to general stirring rates used in 

TATA Steel. It seems that 750 rpm stirring rate is an ideal stirring rate to achieve 

higher conductivity.  However, the conductivity only changed from 0.0032 to 0.0046 

which indicates that stirring rate does not affect the electrical conductivity 

significantly. In addition, the electrical conductivity may actually near the same when 

the standard deviation is considered. Therefore, stirring rate did not have a profound 

effect on the electrical conductivity and the function of stirring is to disperse the 

particles uniformly in the coating.  

 

 

Figure 6.3 Plot of electrical conductivity versus stirring rate (topcoat trials) 
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Code name PPPU7500 PPPU8500 PPPU10500 PPPU12500 PPPU14500 PPPU17500 

Electrical 

conductivity 

(S/m) 

7.42E-4 ± 

1E-4 

3.2E-3 ± 

3E-4 
0.21 ± 0.01 907.75 ± 82 

2816.9 ± 

201.3 

1336.2 ± 

290.6 

 

Figure 6.4 and Table 6.1 show the electrical conductivity of the coatings in PPPU trial. 

From the results, 14 wt% PP10/PU coating has the highest conductivity and the 

percolation threshold of this system is 7 wt%. The reason why 14 wt% PP10/PU 

coating has best conductivity is that the contact resistance and tunnelling resistance 

between the PP10 particles are the lowest. The distance between the dispersed PP10 

particles in the PU matrix is the key factor that affects the electrical conductivity. A 

polymer composite can only be conductive when the distance between two conductive 

filler particles less than 2~3 nm [23]. With more PP10 particles added into the matrix, 

current can pass through the coating layer with less resistance which lead to higher 

electrical conductivity. However, if excessive amount of PP10 is added, the contact 

resistance between PP10 particles has a detrimental effect on the resulted coating’s 

Figure 6.4 Plot of electrical conductivity versus PP10 weight percent for PPPU trials 

Table 6.1 Electrical conductivity values of PPPU system 
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conductivity. This is the reason why the electrical conductivity begins to drop when 

the PP10 loading is larger than 14 wt%.  
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Code name EPPPU7500 EPPPU8500 EPPPU10500 EPPPU12500 EPPPU14500 EPPPU17500 

Electrical 

conductivity 

(S/m) 

0 0 7E-4± 1.2E-4 3.4E-3±1.9E-3 0.22 ± 0.056 0.086± 0.019 

 

Figure 6.4 and Table 6.2 show the electrical conductivity of EPPPU coating systems. 

EPPPU system is a two layers coating system where primer is underneath the top 

coating. Compared to PPPU system, similar trend of electrical conductivity versus 

PP10 weight percent is observed. In addition, the electrical conductivity of EPPPU 

coated samples are much lower than PPPU coated samples which indicate that the 

application of primer significantly reduce the electrical conductivity due to the 

insulation effect. 

 

 

Figure 6.5 Plot of electrical conductivity versus PP10 weight percent for EPPPU trials 

Table 6.2 Table 2 Electrical conductivity values of EPPPU system 
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Coating system PU top coat EPD + PU top coat 

Electrical conductivity 

(S/m) 
0.0032 ± 0.0003 0.31 ± 0.02 

 

From Table 6.3, the application of EPD coating layer prior to PU topcoat can 

significantly enhance the electrical conductivity of the coating system. PU topcoat 

acts as barrier layer in this system. As a result of the deposited graphite layer has very 

high electrical conductivity, the electrical conductivity of the topcoat is improved 

because more electrical conductance is presented in the system. In addition, the 

distance between the EPD layer and the PU topcoat is very close and, therefore, the 

tunnelling resistance is very low.  

 

6.3.2 Primer conductivity 
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Table 6.3 Electrical conductivity of PPPU topcoat  

Figure 6.6 Plot of electrical conductivity versus PP10 weight percent for EPP primer trials 
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Code name EPP6500 EPP8500 EPP10500 

Electrical conductivity 

(S/m) 
0 4.21E-5 ± 7.4E-6 6.13E-4±2.16E-4 

 

Figure 6.6 and Table 6.4 show the electrical conductivity of the coatings in EPP trial. 

From the results, the percolation threshold of this system is 8wt%. Compared to the 

electrical conductivity of conductive top coat, the electrical conductivity values of 

primer/PP10 composite coating are generally lower. The reason is that the primer has 

higher viscosity than PU top coat.  Agglomerates of PP10 particles were formed 

during stirring and the particles could not be dispersed effectively. As discussed 

before, the distance between the dispersed PP10 particles in the coating is the key 

factor that affects the electrical conductivity. With agglomerates of PP10 particles 

formed, the distance between each particle will be larger and the tunnelling resistance 

will be increased. Higher viscosity of primer system leads to poorer electrical 

conductivity performance than PU top coat system. 

6.3.3 Hybrid filler system and multi-layer coating 

Code name HIPU81000 HIIPU81000 HIIIPU81000 

Electrical conductivity (S/m) 0.14 ± 0.01 2567.4 ±235 2E-3 ± 2.8E-4 

 

In hybrid filler system, the addition of CNTs can improve the electrical conductivity 

of the system significantly as shown in Table 6.5. The tube shape CNT can act as a 

bridge between PP10 particles to form a conductive network. Therefore, the 

tunnelling resistant of this coating system is reduced significantly and the resistance 

of this system is mainly the contact resistance between filler particles. The addition of 

graphene does not show obvious enhancing effect. The addition of CNT can improve 

Table 6.4 Electrical conductivity EPP system  

Table 6.5 Electrical conductivity of hybrid filler PU topcoat system  
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the electrical conductivity of the coating significantly. The role of PP10 particles act 

as the island of the conductive network. Therefore, the combination of these bridges 

and islands allow the current to flow without high resistance. 

 

Coating system HIIEPP4500 HIIEPP8500 

Electrical conductivity (S/m) 4.2E-3 ± 5E-4 0.4 ± 0.12 

 

From Table 6.6, the addition of MWCNTs into the system can significantly improve 

the electrical conductivity of primer system. However, the electrical conductivity 

hybrid filler epoxy primer is poorer than hybrid filler PU top coat with the same 

weight percent of hybrid filler incorporated. The results are as expected. With the 

addition of MWCNTs, the percolation threshold of epoxy primer system was much 

lower than the system where only PP10 was added. The high aspect ratios and tube 

shape of MECNTs can facilitate the formation of conductive network in the coating 

system. As a result of MWCNTs’ structure, the tunnelling resistance in the coating 

system is reduced significantly.    

 

Code name MI(1) MI(2) MII(1) MII(2) 

Electrical conductivity (S/m) 4.92 ± 0.78 1.71 ±0.28 2.54 ± 0.29 1.14 ±0.18 

 

After the trials of hybrid filler system, the produced coatings were used to investigate 

the performance of multi-layers coating. The electrical conductivity of the multi-layer 

coating systems are shown in Table 6.6. From both trials, the systems (MI(1) and 

MII(2)) containing EPP8500 primer have higher conductivity. Comparing the three 

layers and two layers coatings (MII), the three layers coating systems (MI) have 

Table 6.6 Electrical conductivity of hybrid filler primer system 

Table 6.6 Electrical conductivity of hybrid filler primer system  
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higher conductivity due to the EPD coating layer. However, multi-layers coating 

systems have much lower electrical conductivity than single layer coating system. 

With the application of second coating layer, the tunnelling resistant and contact 

resistance of the whole system will be increased because the addition of extra 

insulation polymeric component in the system. In addition, the interface between two 

coatings may act as insulated layer because they polymers near the interface act as 

barrier to separate the conductive particles between the two coatings. The tunnelling 

resistance of the whole system will be increase significantly as the conductive 

particles are not close enough to each other to let the current pass through without 

much resistance. The application of EPD layer can only improve the electrical 

conductivity of the whole coating system a little because the insulation effect resulted 

from the polymeric component is too significant.  

 

Code name HIVE 21000 HVE21000 HVIE21000 

Electrical conductivity 

(S/m) 
1.96E-3±3.6E-4 4.8E-4 ±7.2E-4 2.26E-3 ± 5.34E-4 

 

In order to improve the electrical conductivity of the coating further, a new filler TEG 

was utilized. Table 6.7 shows the electrical conductivity of coating contained different 

ratios of hybrid fillers. From the results, the sample with the TEG to MWCNTs ratios 

of 2:1 (HIVE21000) has the lowest electrical conductivity while the electrical 

conductivity of HIVE21000 and HVIE21000 is the nearly same. MWCNTs could act 

as bridge between TEG particles so the current can pass through the sample with less 

resistance and, therefore, the electrical conductivity of the samples increases with 

more MWCNTs in the hybrid filler. However, the bridging effect of MWCNTs 

becomes less profound when MWCNTs to TEG ratio is bigger than 1. Hence, the 

effect of weight percent on electrical conductivity was investigated by fabricating 

Table 6.7 Electrical conductivity of second set of hybrid filler primer 

system  
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HIVE samples with different weight percent of hybrid fillers.  
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Code name HIVE21000 HIVE41000 HIVE51000 HIVE61000 HIVE7000 HIVE81000 

Electrical 

conductivity 

(S/m) 

1.96E-3 ± 

3.6E-4 

0.073 

±0.013 
0.77 ± 0.22 0.54 ±0.32 3.37±0.93 12.37±2.1 

Resistance 

(Ω) 

1.16E6 ± 

2E5 
30849 ±581 3116 ± 465 5167 ±577 701±188 183±30 

Conductivity 

ratios Cc/Cs 

6.67E-7 ± 

1.2E-7 

2.51E-5 

±4.4E-6 

2.62E-4 ± 

7.6E-5 

1.87E-4 

±1.1E-5 

1.2E-3 

±3.15E-4 

4.21E-3 

±7.04E-4 

 

Figure 6.7 shows the electrical conductivity of HIVE samples contained different 

weight percent of hybrid fillers. The values of electrical conductivity resistance and 

conductivity ratios of HIVE samples are shown in Table 6.8. With the addition of 

hybrid filler, the electrical conductivity of primer increase significantly. The resistance 

of HIVE samples was lower than 1000 Ω when the hybrid filler weight percent was 

higher than 7 wt%.  The percolation threshold of HIVE system was significantly 

Figure 6.7 Plot of electrical conductivity versus hybrid filler weight percent of HIVE 

samples primer system  
Table 6.8 Electrical conductivity, resistance, conductivity ratios of hybrid filler filled primer 

samples primer system  
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lower than the systems in the reports before. The addition of TEG provided superior 

electrical conductivity than the materials used before. 

Code name 
Electrical 

conductivity (S/m) 
Resistance (Ω) 

Conductivity ratios 

Cc/Cs 

HVIE61000 0.2±0.04 11314 ±1047 6.85E-5±1.3E-5 

HVIE61000 + 

salt 
0.29±0.05 7905 ±1072 9.83E-5±2.03E-5 

 

Salt (NaCl) addition can improve the electrical conductivity of the conductive primer 

systems as shown in Table 6.9. The sample with intermediate electrical conductivity 

of the hybrid filler primer was selected. Ions will be formed when salt dissolve in the 

epoxy primer system to act as electrical conductive island to reduce the tunnelling 

resistance further of the system. The concentration selected was according to the study 

of Song et al [23]. Excessive slat will reduce the electrical conductivity and might 

weaken the performance of the coating. In terms of anti-corrosion properties, the 

addition of salt might accelerate the corrosion process. The ions in the environment 

(electrolyte such as NaCl) need to migrate into the coating and react with the metal 

substrate. In the coating containing salt, the migration of ions from the environment to 

substrate might be easier and the failure of coating might be initiated earlier.  

 

Table 6.9   Electrical conductivity comparison of the samples with and without slat 

addition 
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6.3.4 The Mechanisms of electrical conductivity 
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Figure 6.8   Plots of (a) particle size distribution of three different fillers (b) Accumulated volume 

versus particle diameter of three different fillers 
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               (a)                                 (b) 

              (c) 

The key of achieving high electrical conductivity in composite is to reduce the 

distance between the conductive particles. Increasing the weight percent of the 

conductive fillers is one of the effective methods. However, the cost of the filler and 

the reduction in coating properties are the major drawbacks. Hence, increasing the 

diameter of the filler particles is an alternative way to increase the electrical 

conductivity without increasing the cost and weakening the coating performance. 

Figure 6.8 show the particle size distribution and particle diameter of PP10, TEG and 

MWCNT. According to the previous result, the hybrid filler system using TEG and 

MWCNT had higher electrical conductivity. Hence, the bigger size particle can 

facilitate the formation of conductive network. Owing to the reduced distance 

between the conductive fillers in the system (as shown in Figure 6.9), the tunnelling 

resistance of the system is reduced significantly. As a result, the percolation threshold 

is reduced significantly and the electrical conductivity of the system is improved 

Figure 6.9   Scheme of the filler reinforced coating (a) PP10 (b) PP10 + MWCNT (c) TEG + 

MWCNT 
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remarkably. The selection of the filer is vital for the electrical conductivity 

enhancement.  

6.4 The anti-corrosion property of the nanocomposite coatings 
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Figure 6.10 show the impedance versus frequency for some EPD samples after heat 

treatment. The maximum impedance in Bode plot is a good indication of the coating 

protection against corrosion [24]. In terms of steel substrate, a good protective organic 

coating should have the maximum impedance value above 10
6
 Ω [25]. The results 

shown in Figure 6.10 are much lower than the standard. Owing to the porous nature of 

the EPD coating, it cannot act as an effective coating against corrosion.  
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Figure 6.10   Bode plot of the samples with EPD coating (after heat treatment) 
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The EIS results of PPPU trial are shown in Figure 6.11. The maximum impedance in 

this frequency range decreases with filler weight percent first and then increases with 

filler weight percent but the impedance of the sample with 17 wt% PP10 is lower than 

Figure 6.11   EIS results of PPPU trial (a) Bode plot (b) Bode phase angle  plot 

(c) Nyquist plot 
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that with 7 wt% PP10. PU/7 wt% PP10 topcoat has the highest maximum impedance 

while PU/8 wt% has the lowest maximum impedance. Although, most of the samples 

display characteristic of effective barrier film in Nyquist plot, the maximum 

impedances of all the samples are below 10
6 

Ω which indicate that they cannot serve 

as a good protective coating while maintaining high electrical conductivity. With the 

increase of PP10 loading, the coating structure was damaged but the diffusion 

pathways for the corrosive medium was prolonged. That is the reason why the 

maximum impedance decreases with filler loading first and then increase.  The 

appearance of second semi-circle in Nyquist plot (Figure 6.11 (c)) suggests that the 

barrier effect of the film is partially lost and the metal substrate can contact the 

corrosive medium. All the coatings are tested without any long time exposure to 

corrosive environment. Therefore, the heterogeneity and the defects induced during 

preparation are accounted for this phenomenon. The Bode phase angle plot can be 

used to evaluate the degradation stages of a coating.  From Figure 6.11 (b), PPPU 

12500, 14500 and 17500 are approaching to the phase 2 of degradation where the 

corrosion starts. PPPU 7500 and 10500 are in the phase 1 of degradation where water 

start to penetrate the coating layer. PPPU 8500 is in the phase 3 of degradation where 

severe corrosion occurs [19]. Although PPPU 10500 has lower impedance, the 

lifetime may be longer than PPPU 12500, 14500 and 17500.  
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Compared to PU topcoat, the primer with same weight percent of PP10 has higher 

maximum impedance and, thus, the anti-corrosion property of primer is better than 

topcoat. All the coatings in EPP series can act as good protective coating for steel. The 

maximum impedance of the composite coating decreases with increasing PP10 weight 

percent. Hence, excessive filler is detrimental to the anti-corrosion property. From 

Figure 6.12 (b), all the coatings are in the phase 1 of degradation and EPP6500 has the 

best anti-corrosion property and lifetime. One time constant is identified in each curve 

of different samples in the Nyquist plot. The curve of EPP 6500 is unusual and the 

reason is still unknown.  

Figure 6.12   EIS results of EPP trials (a) Bode plot (b) Bode phase angle plot (c) Nyquist 

plot 
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EPPPU series is a two-layers coating series where primer was applied on the substrate 

before topcoat. The results show that the maximum impedance of EPPPU is similar to 

PPPU. In theory, two-layer coating should have better anti-corrosion property than 

one-layer coating. Therefore, the quality of the two-layer coating is not good enough 

due to facility limitation. The produced coatings may be heterogeneous and contain 

defects. From the Nyquist, only EPP7500 has two semi-circles which indicate the loss 

of barrier property. The quality of EPP7500 is the worst. From the phase angle plot, 

EPP the quality of EPP12500, 14500 and 17500 seem to be worse than the other as 

they seem to be in the phase 2 of degradation. Their curves are quite similar to the 

curves of coatings exposed to corrosive environment for a period of time [13]. The 

results of the two-layer system are not reliable as the facility to prepare the coating is 

not ideal. 

 

 

Figure 6.13   EIS results of EPPU trials (a) Bode plot (b) Bode phase angle plot (c) Nyquist 

plot 
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Hybrid filler system 
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The EIS results of the hybrid filler primer trial are shown in Figure 6.14. The 

anti-corrosion property is better than PPPU series and worse than EPP series. The 

incorporation of hybrid filler actually weakens the anti-corrosion properties due to the 

high electrical conductivity. The maximum impedance increase with filler loading and 

then decrease after the loading is greater than 5 wt%. In this frequency range, only the 

coatings with 4 wt% and 5wt% filler meet the standard of good protective coating. 

From Figure 6.12 (b), all the coatings exhibit good protective effect except the 2 wt% 

and 7 wt%. The area selected for characterisation may be very heterogeneous where 

corrosive substance can penetrate through the coating easier. The results from Nyquist 

plot suggest that all the coatings have good barrier effect.  

Filler weight 

percent (%) 
Rs(Ω) 

Rs 

Error(%) 
Cc(F) 

Cc Error 

(%) 
Rc(Ω) 

Rc Error 

(%) 

2 2875 26.314 3.89E-07 21.331 2.70E+05 38.81 

Figure 6.14   EIS results of HIVE hybrid filler trials (a) Bode plot (b) Bode phase angle plot 

(c) Nyquist plot 

Table 6.10   Fit results of hybrid filler series from Randel 

cell 



Chapter 6 Electrical conductivity and anti-corrosion capacity of PU/graphene nanocomposite coatings 

 183 
 

4 64.29 48.354 3.84E-08 2.7903 1.47E+07 27.323 

5 72.31 57.096 4.67E-08 4.4497 1.07E+07 38.949 

6 75.82 168.93 2.53E-08 7.6864 5.16E+06 25.54 

7 143.2 25.074 1.74E-07 8.8187 3.42E+05 19.476 

8 105.4 13.839 1.81E-07 4.1225 2.47E+06 30.837 

 

The fit results from equivalent circuit are shown in Table 6.10. The results are used to 

compare the results of electrical conductivity to distinguish the concept of coating 

resistance in electrical conductivity and EIS. The equivalent circuits shown in Figure 

6.2 are used for fitting. Randel cell has lower error percentage so the results from that 

are adopted. However, the two circuits used are not perfect for the system. 

Development of a more suitable circuit is necessary. In the table, Rs stands for the 

resistance of the substrate, Cc is the capacitance of the coating and Rc represent the 

resistance of the coating. Comparing the values of resistance in the electrical 

conductivity and EIS, the values are very different. Therefore, the coating resistance 

in EIS is an indication of coating resistance against ions but not the current resistance 

in the electrical conductivity. The coating resistance from EIS cannot be used to 

represent the electrical conductivity of a coating. 
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The EIS results of multi-layer coating are shown in Figure 6.12.  The maximum 

impedance value obtained is similar to the two-layer coating system. However, the 

phase of degradation is different. Owing to the existence of porous EPD coating, the 

Figure 6.15   EIS results of HIVE hybrid filler trials (a) Bode plot (b) Bode phase angle plot 

(c) Nyquist plot 
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anti-corrosion property is weakened compared to the system without EPD coating. All 

the coatings are in the phase 2 of degradation and the lifetime is shorter than usual 

coating. In addition, the defects and heterogeneity induced during preparation account 

for the weakened anti-corrosion properties as well.  

6.5 The surface characterisation of the coated surfaces 

               (a)                                    (b)                                                          

               (c)  

 

FEGSEM is used to characterize the surface of the coating. From the images, coatings 

with higher weight percent of filler have less polymer coverage on the surface. 

Therefore, the porous nature of the coating surface leads to poor anti-corrosion 

capacity. Although polymer may present between the gaps of the fillers, the corrosive 

medium can still penetrate through the coating easier than the coating with proper 

Figure 6.16 Example FEGSEM images of (a) PPPU 6500 (b) PPPU 10500 (c) PPU14500 
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polymer coverage. The presence of high percentage of filler may affect the cure of the 

coating to hinder the polymer chains to react with each other for the formation of 

polymer network. Hence, the cure kinetic of reinforced PU coating needs to be 

investigated to reveal the effect of filler on the cure of coating. 

 

6.6. Conclusions 

Hybrid filler system has the best electrical conductivity and acceptable anti-corrosion 

capacity. The best filler ratios is TEG:MWCNT=1:1. Multi-layer coating system 

consist of EPD coating, conductive primer and conductive topcoat has superior 

electrical conductivity than single layer primer or topcoat. However, the 

anti-corrosion capacity is worse than single layer system due to the limited facility of 

coating preparation. The key to improve electrical conductivity is to reduce the 

distance between the conductive particles. The strategy of using particles with larger 

diameter and high aspect ratios to form conductive network is recommend. The cure 

of the coating may be affected significantly by the fillers. The study of cure kinetic of 

the composite is necessary.  
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Chapter 7 Cure dynamics of PU/graphene nanocomposites 

7.1 Introduction 

Thermoset materials are the materials that formed by pre-polymer via curing. In the 

industry, thermoset materials occupy a large portion of the market of the polymer 

products in the industry. The typical forming techniques for thermoset materials are 

reactive injection moulding, compression moulding and extrusion. The properties of 

the thermoset materials are highly dependent on the crosslinked-density, the extent of 

cure, polymer types and processing methods. The cure of thermoset materials usually 

triggered by heat and there are different stages of cure which allow the extent of cure 

can be controlled via adapting the cure temperature etc. [1]. It is important to study 

the factors that affect the cure and cure density of thermoset materials to maintain 

good control of the final products. Cure dynamics offers a microscopic view about the 

curing process of a thermoset material which can provide the information of cure time, 

cure temperatures, activation energy and so on [2]. In industry, the objective of 

manufacturing thermoset products is to produce a product with good green strength to 

resist deformation of damage during the process in a minimized time. Therefore, the 

information obtained from cure dynamics can help to gain better understanding of 

structure-property relations and to optimise the process conditions to achieve good 

results. In addition, the understanding of cure dynamic is significant to evaluate the 

feasibility and design of commercial polyurethane processing.  

 

A number of characterization techniques can be used to study the cure dynamics and 

the cure reactions of thermoset materials including refractive index [3], electrical 

resistivity [4], density [5], FTIR [6]  and DSC [7]. The polyurethane system consist 

of one part system (pre-polymer contains –OH and –NCO groups) and two-parts 

(each pre-polymer contains one reactive group). DSC and FTIR will be more suitable 

to monitor the chemical reaction of polyurethane. The trace of cure can be monitored 
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via the changes in concentration of reactive functional groups or the production of 

new chemical bonds during reaction. It has been widely adopted to monitor the cure 

dynamic and the development of polymer structure during the thermoset materials 

formation [8–10]. The specific absorption peak of the NCO groups (around 2280 cm
-1

) 

is used as the variable during the process and C-H peak is used as a reference peak to 

compensate the effect of sample thickness and the background. The heat generated 

from the chemical reaction can be detected by DSC. In addition, the reaction heat 

release rate (reaction rate) can be monitored as well. Due to the simplicity and the 

ability to obtain thermal transition information, it is an effective characterisation 

technique to study the cure dynamic of polyurethane reaction. The reaction 

parameters can be calculated according to mathematic models fitting which will be 

discussed afterward.  

 

Theoretically, the reaction rate of polyurethane reaction relates to the active hydrogen 

groups, the concentration of isocyanate groups and the catalyst. According to some 

researchers, the reaction mechanism of PU reaction is second order mechanism where 

the concentrations of hydrogen group and isocyanate group control the rate of reaction. 

The situation would be more complicated in reality and with the presence of filler. In 

addition, autocatalytic and diffusion effects exist during the polymerisation and phase 

separation of two reactants may takes place during reaction [16]. The incorporation of 

fillers can affect the degree of cure, reaction rate and the properties of the final 

composites. The effect of the graphene based materials on polyurethane was limitedly 

investigated while the effect of graphene based materials on epoxy resin was widely 

reported. Graphene had UV-shielding effect when low irradiation intensity was used 

to cure epoxy resin and the final product had a slightly decreased conversion. The 

shielding effect on high irradiation intensity was not identified [11]. The cure 

behaviour and thermal stability of graphene oxide (GO) reinforced on the two-parts 

epoxy resin (tetrafunctional tetraglycidyl-4, 4’-diaminodiphenylmethane with 
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4,4’-diaminodiphenylsulfone) was investigated by Qiu et al [12]. The enthalpies of 

the cure reaction of the composites were increased and the activation energies were 

lower than pure epoxy resin. Therefore, the presence of GO had catalyst effect and the 

effect was more profound with the increase of GO loading. The activation energies 

increased with GO loading in the initial stage while they decrease with GO loading in 

the latter stage. This phenomenon suggested that the addition of GO hindered the 

vitrification of the nanocomposites. Their results also suggested that the addition of 

GO decreased the thermal stability of the epoxy resin. Galpaya and his co-workers 

summarized the effects of graphene based materials in the epoxy resins [13]. The 

addition of GO might have catalytic effect and retardation effect on the cure of epoxy 

resin while graphene had retardation effect, catalytic effect and steric hindrance. Wang 

and his co-workers reported that GO had catalytic effect on the initial cyclomerization 

stage to PT30 ester polyurethane resin which reduced the cure temperature 

dramatically. In addition, GO had the steric hindrance effect which led to the elevated 

activation energy with the increase of GO content. 1 wt% GO was the most effective 

GO loading [14]. 

 

The reports of the cure dynamics of Graphene based materials/PU nanocomposites are 

limited. From the previous chapter, the network formation of PU coating was hindered 

with increasing graphene loadings. The addition of graphene or graphite had a 

significant effect on the cure of PU coatings. In this chapter, the effect of graphite, 

graphene and graphene oxide on the cure dynamic of two-part PU coating by 

Modulated Temperature DSC and FTIR. 

 

7.2 Theories of the cure dynamic monitored by MDSC and FTIR 

7.2.1 MDSC 

Modulated temperature differential scanning calorimetry (MTDSC) is an extension 

version DSC where a modulated temperature input signal is used. This technique is 
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proved to be very useful for characterising many materials especially polymers 

[15,16]. The simultaneous measurement of the amplitude (modulus) of the complex 

heat capacity, the heat flow and the phase angle between heat flow and heating rate 

( heat flow phase) enables a more detailed study of complicated materials systems, 

both in quasi-isothermal and non-isothermal conditions. The thermal change and the 

transition took place during reaction can be detected by MTDSC. During the 

transition of a polymerisation, the heat flow increases first and then decrease after 

reaching a maximum value. In terms of heat capacity, it decrease slightly and then a 

step change will be observed. This step change is corresponded to the transformation 

from liquid to solid [17]. The time at half of the change in heat capacity t1/2 can be 

used to determine the time of vitrification where half of the materials has transformed 

to the solid state. Isothermal DSC is preferred for the fundamental dynamic studies 

because parallel reactions with different activation energy take place with temperature 

change during non-isothermal DSC. The relative reaction rates change with 

temperature variation. Although non-isothermal DSC can provide all the dynamic 

information that several isothermal DSC contain, the reaction parameters derived 

from the analysis of non-isothermal DSC are often inaccurate in practice. The 

activation energy and the pre-exponential factor are usually overestimated. In terms of 

the temperature selection for isothermal DSC, non-isothermal DSC is necessary to 

provide the heat flow profile during cure. If the cure temperature is too low, the 

reaction time is too long and the corresponded heat flow is too low to exceed the 

baseline noise. If the cure temperature is too high, the reaction time is too short to 

allow the whole conversion process to be recorded. Therefore, the combination of 

isothermal and non-isothermal DSC to study cure dynamic is preferred. 

 

In the characterisation of cure dynamic with DSC, the basic assumption is that the 

heat generated during cure reaction is proportional to the rate of conversion and the 

relationship is shown below [18]: 
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                    ∆𝐻 =
𝑑𝑎

𝑑𝑡
× ∆𝐻𝑡𝑜𝑙                        Equation 7.1 

Where ΔH is the heat generated at time t, da/dt is the reaction rate and ΔH is the total 

heat generated. The basic cure dynamic equation to calculate reaction rate of MTDSC 

is shown below [18]: 

                     
𝑑𝑎

𝑑𝑡
= 𝐴𝑒−𝑥𝑓(𝑎)                         Equation 7.2 

Where da/dt is the rate of conversion, A is the pre-exponential factor, x=Ea/RT (Ea is 

the activation energy, R is the gas constant and T is the cure temperature), and f(a) is 

the cure dynamic model function. The general cure dynamic model applied is the 

reaction order model which is also called n
th

 order model [18]: 

                    𝑓(𝑎) = (1 − 𝑎)𝑛                         Equation 7.3 

For this general model, it is difficult to explain the detailed mechanism in all cure 

conditions and thermoset systems. Therefore, an empirical approach model is 

preferred to model the cure process of a thermoset system under certain conditions. 

An auto-catalysed model was proposed to analyse the caure dynamic of two-part 

polyurethane network formation [19]. The model is expressed as the equation below: 

                    
𝑑𝑎

𝑑𝑡
= 𝑘𝑎𝑚(1 − 𝑎)𝑛                       Equation 7.4 

Where m + n is the order of the reaction, a is the conversion and k is the reaction rate. 

The rate constant k mainly depends on cure temperature and it can be determined via 

Arrhenius equation: 

                      𝑘 = 𝐴 × 𝑒
𝐸𝑎
𝑅𝑇                          Equation 7.5 

The parameters in this equation are the same as those in equation 7.2. The 

pre-exponential factor A relates the number of reaction sites required to trigger a 

reaction. The reaction rate increase with increasing cure temperature. According to the 

classical collision theory, the number of reaction sites with high kinetic energy 

increases with increasing cure temperature which can accelerate the reaction [20]. 

With the aid of this dynamic model, the reaction rate, the order of the reaction, 

conversion and the activation energy can be obtained to fully investigate the cure 
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dynamic of graphene based materials/PU nanocomposites. This model is more 

accurate than n
th 

order model.  

 

7.2.2 FTIR 

The basic principle of utilising FTIR to monitor the cure of polyurethane is widely 

reported in literature [21]. FTIR method is simple and fast to characterise the cure 

process of PU. Calibration is necessary for each sample and it can be done via using a 

reference peak whose concentration remains constant through the whole reaction. The 

conversion of the cure reaction can be determined via the equations as followed. ANCO 

is the absorbance of the isocyanate and Aref is the absorbance of the reference bond in 

FTIR experiment. In this project, C-H bond was selected as the reference bond (3124 

cm
-1

 to 2524 cm
-1

). The calibrated area under each peak can be calculated according 

to equation 7.5. 

                          𝐴 =
𝐴𝑁𝐶𝑂

𝐴𝑟𝑒𝑓
                         Equation 7.6 

Therefore, the conversion (a) of the reaction can be calculated from equation 7.6 

                         𝑎 = 1 −
𝐴(𝑡)

𝐴0
                       Equation 7.7 

Where A(t) is the calibrated area of NCO peak at time t and A0 is the initial calibrated 

area of NCO peak.  

 

The 2280 cm
-1

 peak of NCO group was selected to monitor the cure process and the 

absorbance area of the NCO peak was integrated from 2171 cm
-1

 to 2389 cm
-1

. With 

the reaction proceeds, the concentration of NCO group was reduced and the 

conversion of the reaction can be monitored via the depletion of NCO group. 
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7.3 Results of cure dynamic from FTIR and MDSC 

7.3.1 MDSC characterisation 
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The non-isothermal DSC curves of pure PU and PU nanocomposites are shown in 

Figure 7.1. The effect of modulation amplitude was compared in Figure 7.1 (a). From 

the figure, the initiation temperature of cure is around 77 °C and the peak temperature 

is around 122 °C. The peak temperature of the curve with ±0.2°C amplitude is lower 

than the other two amplitudes. The selection of amplitude must be big enough to 

allow all the information can be recorded and small enough to prevent cooling from 

happening. The typical amplitudes range is 0.1 to 1 °C [17]. The curve using 0.2 °C 

amplitude may not sufficient to identify the cure temperature. In order to prevent 

cooling, 0.4 °C modulation amplitude was selected. From Figure 7.1 (b), the addition 

Figure 7.1 Non-isothermal DSC curves of (a) pure PU resin with different modulation amplitude 

and PU nanocomposites with different filler loadings (b) G (c) GO (d) TEG 
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of graphene reduces the initiation temperature and peak temperature slightly indicates 

that graphene has catalytic effect on the cure of two-part PU resin.  In terms of GO, 

the initiation temperature and the peak temperature increased slightly at low GO 

loading and increased significantly at 4 wt% GO loading. From the results, the 

addition of GO seems to have retarding effect on the cure of PU resin. TEG is also 

graphene but it has bigger particle size and better degree of exfoliation than G. From 

Figure 7.1 (d), the initiation temperature and peak temperature are reduced by the 

addition of TEG but the catalytic effect is not obvious when the TEG loading is 4 wt%. 

Therefore, the catalytic effect of TEG is only effective at low TEG loading. The 

non-isothermal results provide an initial insight of the cure dynamic of PU 

nanocomposites. Isothermal results will reveal more details. The temperatures 

selected for isothermal studies are between the initiation temperature and peak 

temperature of the PU nanocomposites. 
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Figure 7.2 Isothermal DSC curves of PU/G nanocomposites with different G loadings (a) 0 wt% (b) 

0.5wt% (c) 1 wt% (d) 4 wt%  
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Figure 7.3 Isothermal DSC curves of PU/GO nanocomposites with different GO loadings (a) 0 wt% (b) 

0.5wt% (c) 1 wt% (d) 4 wt%  
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The isothermal DSC curves off all the PU nanocomposites are shown in Figure 7.2 to 

Figure 7.4. From the results, the nanocomposites cured at higher temperature 

generally reach its maximum conversion faster which indicated that higher 

temperature led to higher reaction rate. Comparing the results in Figure 7.2, the 

addition of 0.5 wt% G reduces the initiation temperature and cure temperature of PU 

slightly which prove the existence of  catalytic effect but the catalytic effect was not 

obvious in 1 wt% and 4 wt% G. In terms of PU/GO nanocomposites, the addition of 

GO increase the initiation temperature and peak temperature of PU significantly at 

high GO loading. The initiation of reaction was retarded significantly. The existence 

of –COOH and –OH functional group on GO sheets may have a profound effect on 

the reaction mechanisms and the initiation of the reaction. Graphene and graphene 

oxide have ability to absorb organic molecules [22]. Excessive amount of graphene 

oxide may absorb the reactants and catalyst, and reduces the contact between the 

isocyanates and polyols. At the same time, the trapped isocyanate and polyol may 

only react with the functional groups on the GO sheets. In the case of graphene, 

excessive amount may retard the reaction a bit because some reactants and catalyst are 

trapped. The mobility of the reactants and catalyst is restricted. Hence, the reaction is 

retarded. The isothermal DSC curves of TEG reinforced PU nanocomposites are 

Figure 7.4 Isothermal DSC curves of PU/TEG nanocomposites with different TEG loadings (a) 0 wt% 

(b) 0.5wt% (c) 1 wt% (d) 4 wt%  
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similar to those of G reinforced PU nanocomposites. They had similar catalytic effect 

at low filler loading. However, the initiation temperature and peak temperature of 4 wt% 

TEG/PU nanocomposite was higher than 4 wt% G/PU nanocomposite because the 

larger size TEG exhibit steric hindrance effect at lower filler loading than G.  
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Figure 7.5 Plots of conversion (a) against reaction time of PU/G nanocomposites with different G 

loadings (a) 0 wt% (b) 0.5wt% (c) 1 wt% (d) 4 wt%  
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The plots of conversion versus reaction time of the nanocomposites are shown in 

Figure 7.5 to Figure 7.7. From Figure 7.5 (b) to (a), (c) and (d), the nanocomposite 

Figure 7.6 Plots of conversion (a) against reaction time of PU/GO nanocomposites with different GO 

loadings (a) 0 wt% (b) 0.5wt% (c) 1 wt% (d) 4 wt%  

Figure 7.7 Plots of conversion (a) against reaction time of PU/TEG nanocomposites with different 

TEG loadings (a) 0 wt% (b) 0.5wt% (c) 1 wt% (d) 4 wt%  
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cured at 90 °C had the fasted reaction rate which indicate 0.5 wt% G had catalytic 

effect while the nanocomposites with higher filler loading did not. From Figure 7.6, 

the addition of GO in the system had retarded effect on the cure reaction and the 

reaction mechanism seemed to be altered by the addition of GO. The reaction rates at 

higher cure temperature were slower with high filler loading. The reaction of two-part 

PU resin and GO seem to be very different from others. Compared the 

nanocomposites reacted at the same temperature in Figure 7.7, similar conclusions to 

the isothermal DSC results can be drawn. So far, the addition of graphene has 

catalytic effect on the cure reaction but the steric hindrance effect became more 

profound in high filler loading. In terms of GO, the cure of PU was altered 

significantly. All the conversion versus time curves are slow initially and then become 

more rapid. Afterwards, they slow down again before it reach the maximum 

conversion. The curves look like an ‘S’ shape which is the characteristic feature of 

autocatalytic behaviour [23]. This behaviour is more notable in the curves with lower 

cure temperature. The behaviour of 4 wt% PU/GO nanocomposite exhibited near 

autocatalytic model but the initial stage was much rapid than others. The phenomenon 

can be a valid evident of the theory mentioned in literature. The behaviour of PU/TEG 

nanocomposites is similar to PU/G nanocomposites.  
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Figure 7.8 shows the plots of conversion rate against conversion of PU/G 

nanocomposites. The conversion rates of all the PU/G composites reached their 

maximum at intermediate conversion and this indicated that all the reactions followed 

auto-catalytic model. The conversion rate of the reactions follow n
th

 order model is 

the highest at the beginning of the reaction. The conversion rate increased faster with 

higher cure temperature. Comparing the results of the nanocomposites cured at 90 °C, 

0.5 wt% G had the best catalytic effect where the maximum conversion rate reached 

about 0.08. Although the conversion rate of 4 wt% PU/G cured at 110 °C, it did not 

mean the catalytic effect of 4 wt% graphene is the best because the conversion rate at 

lower cure temperatures are lower than other PU/G nanocomposites. The reason why 

is that the steric hindrance of graphene trap the reactants in a small area and the 

reactants are facilitated to react with each other at early stage. In addition, the high 

cure temperature leads to high mobility of the reactants which accelerate the reaction 

further.   

 

Figure 7.8 Plots of conversion rate (da/dt) against conversion (a) of PU/G nanocomposites with 

different G loadings (a) 0 wt% (b) 0.5wt% (c) 1 wt% (d) 4 wt%  
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Figure 7.9 shows the plots of conversion rate versus conversion of PU/GO 

nanocomposites. Comparing the results of pure PU and 0.5 wt% PU/GO 

nanocomposite, the conversion rates of the nanocomposite at 90 °C and 100 °C are 

lower while the conversion rate at 110 °C is the same as pure PU. With more GO was 

added, the conversion rates decreased with the increase of cure temperature. 

Combined the results to the isothermal DSC curve of PU/GO nanocomposites, the 

nanocomposites did not react completely at lower temperature. Therefore, the 

conversion rates at high cure temperatures are low relatively. Higher cure temperature 

could extend the degree of cure and increase the cure density of the nanocomposites. 

The excessive amount of GO trapped the reactants in a small area and the viscosity 

might increase dramatically which restrain the reaction to proceed. Higher cure 

Figure 7.9 Plots of conversion rate (da/dt) against conversion (a) of PU/GO nanocomposites with 

different GO loadings (a) 0 wt% (b) 0.5wt% (c) 1 wt% (d) 4 wt%  
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temperature can provide more energy to activate the reaction to a more completed 

state and increase the mobility of the reactants. Although the reaction rates were lower 

in 165°C and 175 °C, the extent of reactions are higher with the increase of cure 

temperature. The presence of oxidative groups on GO sheets may retard the reaction 

and increase the temperature required to activate the reaction. The cure behaviours of 

the PU/GO nanocomposites follow autocatalytic models where the maximum 

conversion rate appears at the intermediate conversion range.  
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The plots of conversion rate change with conversion of PU/TEG nanocomposites are 

shown in Figure 7.10. The conversion rates increase with elevated cure temperatures 

and the cure behaviours follow autocatalytic model. All the results of conversion rate 

against conversion are well corresponded to the results reported before. The 

Figure 7.10 Plots of conversion rate (da/dt) against conversion (a) of PU/TEG nanocomposites with 

different TEG loadings (a) 0 wt% (b) 0.5wt% (c) 1 wt% (d) 4 wt%  
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conversion rates of the nanocomposites at 90 °C are lower than pure PU while the 

conversion rates at 100 °C are higher than pure PU. The highest conversion rate could 

reach 0.12. The catalytic effect of graphene still exists although the initiation 

temperature and peak cure temperatures are increased. The presence of graphene can 

accelerate the reaction of the nanocomposites. There is competition between catalytic 

effect and steric hindrance of graphene sheets. The catalytic effect is more dominated 

when the cure temperature is higher (higher mobility of the reactants). At the same 

cure temperature, the steric hindrance effect will be more dominated when the filler 

loading increases. The increase of initiation temperature and cure temperature may be 

resulted from the increase of activation energy which is essential for a reaction to 

happen. The activation energy and other reaction parameters can be calculated from 

autocatalytic modelling. The cure behaviours can be understood extensively. 
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Figure 7.11 Plots of activation energy versus conversion of PU nanocomposites with different filler 

loadings (a) G (b) GO (c) TEG 
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The activation energy results of all the nanocomposites are shown in Figure 7.11. For 

the pure PU, the activation energy is high initially and then decrease due to the 

presence of catalyst which facilitates the propagation of the thermoset network. 

However, the activation energy increase after the conversion reaches 40% because the 

reaction proceeds towards to diffusion control as a result of the increase of viscosity.  

With the addition of G, the initial activation energy increases with filler loading first 

and then decrease. 4 wt% PU/G nanocomposite has the lowest initial activation energy. 

The catalytic effect of graphene on the initial activation energy is more profound with 

increasing graphene weight percent. However, the activation energy increased 

dramatically as the reaction proceeded. This may be resulted from the increase of 

viscosity which makes the steric hindrance effect of graphene more profound. In 

terms of the 0.5 wt% and 1 wt% PU/G nanocomposites, the activation energy 

decreased with the increase of conversion. Hence, graphene can facilitate the reaction 

to 100% complete efficiently. The addition of graphene can improve the cure 

efficiency of PU and reduce the cost of processing because less the energy is required 

to cure PU. From the results, the addition of 1 wt% G is most efficient.  The TEG/PU 

nanocomposites had similar trends of activation energy change with filler loading and 

conversion. The initial activation energy of 0.5 wt% and 1wt% PU/TEG 

nanocomposites are much higher than pure PU while the initial activation energy of 4 

wt% PU/TEG nanocomposite is much lower. With increasing the size of the graphene 

sheets and higher extent of graphene exfoliation, the steric hindrance effect is more 

significant which retard the cure and network formation of PU. The results can 

explain why the polymer coverage is low with increasing TEG loading. High TEG 

loading can significantly affect the network formation of PU which is detrimental to 

the anti-corrosion properties of the coating. The efficient loading of TEG for curing 

may be about 1 wt% to 3 wt%.  All the PU/GO nanocomposites had lower initial 

activation energy than pure PU and they reduce with filler loading first and then 

increase. Steric hindrance effect is more dominant than catalytic effect in high filler 
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loading area (above 1 wt %). Compared the initial activation energy of 0.5 wt% PU 

nanocomposites, GO has the best catalytic effect which may be owing to the presence 

of the oxidative debris on the surface of GO sheets [24]. 

0 20 40 60 80 100

-1

0

1

2

3

4

5

6

7

 

ln
 A

Conversion (%)

 Pure

 0.5wt%

 1wt%

 4wt%

0 20 40 60 80 100
0

2

 

ln
 A

Conversion (%)

 Pure

 0.5wt%

 1wt%

 4wt%

 

                 (a)                               (b)                              

0 20 40 60 80 100

0

1

2

3

4

5

6

 

 

ln
 A

Conversion (%)

 Pure

 0.5wt%

 1wt%

 4wt%

 

                  (c) 

The results of pre-exponential factor change with conversion are shown in Figure 7.12. 

The trends of pre-exponential factor change with filler loading are similar to the 

activation energy results of graphene based PU nanocomposites. In terms of PU/GO 

nanocomposites, the trends of initial pre-exponential factor are similar but the 

pre-exponential factor kept nearly constant with increasing conversion. This 

phenomenon may be ascribed to the surface functional groups of the GO sheets which 

increases the potential reaction sites and reduce the sites required from isocyanate and 

polyol. Table 7.1 show the reaction parameters from autocatalytic model. The reaction 

order of pure PU is about 2 which means that the reaction rate is controlled by the 

Figure 7.12 Plots of pre-exponential factor versus conversion of PU nanocomposites with different 

filler loadings (a) G (b) GO (c) TEG 
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concentration of isocyanate and polyol. With the addition of graphene, the reaction 

order did not change a lot and it was still about 2. However, the addition of 4 wt% GO 

made the reaction order reach nearly 3 and 0.5 wt% G and GO reduced the reaction 

order to nearly 1. The function groups on GO sheets allow the isocyanate and polyol 

can react with them. The addition of excessive amount of GO will change the reaction 

order where the reaction rate depends on the concentration of isocyanate, polyol and 

GO. In terms of 0.5 wt% G and 0.5 wt% GO, the possible reason is the strong 

catalytic effect induced. However, it is also possible that the results obtained from 

autocatalytic model are not accurate although the correlation coefficient is greater 

than 0.99 

 

Table 7.1 The reaction parameters obtained from the modelling of the MDSC results 

Filler 

Type 

Weight 

percent 

Temperature 

(°C) 

k m n 

Reaction 

order 

lnA 

Ea(kJ/

mol) 

Pure 

PU 

0 

90 0.27 0.82 1.62 2.44 

3.12 48.26 100 0.38 0.72 1.39 2.11 

110 0.60 0.86 1.44 2.30 

TEG 

0.5 

80 0.10 0.60 1.42 2.03 

5.89 79.52 90 0.19 0.62 1.53 2.14 

100 0.54 0.75 1.47 2.22 

1 

90 0.19 0.52 1.25 1.77 

5.09 71.55 100 0.59 0.83 1.75 2.58 

110 0.61 0.63 1.46 2.09 

4 

100 0.55 0.68 1.88 2.56 

0.22 9.78 110 0.59 0.87 1.91 2.78 

120 0.63 0.58 1.36 1.94 

G 0.5 

80 0.12 0.23 0.63 0.86 

3.60 53.74 

90 0.33 0.54 1.31 1.85 
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100 0.36 0.72 1.42 2.13 

1 

90   0.13   0.35   0.87 1.22 

2.19 46.20 100 0.22 0.47 1.04 1.51 

110 0.26 0.53 1.50 2.03 

4 

90 0.32 0.78 2.14 2.91 

2.37 38.05 100 0.46 0.88 1.82 2.70 

110 0.60 0.60 1.29 1.89 

GO 

0.5 

90 0.09 0.50 1.08 1.58 

0.13 28.21 100 0.10 0.41 1.31 1.72 

110 0.14 0.13 0.65 0.77 

1 

 

100 0.12 0.56 1.32 1.88 

0.64 18.38 110 0.14 0.69 1.56 2.25 

120 0.15 0.43 1.30 1.73 

4 

155 1.25 0.53 1.65 2.17 

2.09 34.44 165 1.50 0.59 2.29 2.89 

175 1.54 0.72 2.25 2.97 
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7.3.2 FTIR characterisation 
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An example FTIR spectrum of PU nanocomposites is shown in Figure 7.12. Although 

they were not calibrated, it still can be seen that the intensity of –NCO peak reduced 

with increasing reaction time and the intensity of –C=O group peak increased with 

increasing reaction time. The intensity of –CH2 and –CH3 peak is main constant 

which means the –CH2 and –CH3 peak can used as reference peak.  
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Figure 7.12 Example FTIR spectra of PU nanocomposites （PU/G）cured with different time (without 

calibration) 
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The plots conversion versus reaction time of PU/G obtained from FTIR were shown 

in Figure 7.13. The PU nanocomposite resin was put on a KBr disk and then reacted 

in isothermal condition in MDSC chamber for constant heating. Afterwards, the cured 

resin was characterized by FTIR. The extent of cure and the reaction rate increased 

with cure temperatures and decreased with increasing G content. The results exhibited 

a near autocatalytic behaviour. The highest reaction rate appears in the intermediate 

conversion. Although the shape of the curves are not similar to ‘S’ shape, the 

conversion increased rapidly with reaction time and then reached a plateau which also 

follows the autocatalytic model. The reaction took place in an open environment lead 

to a reduce reaction rate [25]. 
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Figure 7.13 Plots of conversion versus reaction time of PU/G nanocomposites with different G loadings 

obtained from FTIR characterisation (a) 0 wt% (b) 0.5wt% (c) 1 wt% (d) 4 wt%  
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The degree of cure decreased with increasing GO loading and then increased as 

shown in Figure 7.14. With more GO was added, the resin could reach higher 

conversion. However, the initiation temperature and peak cure temperature were 

increased significantly. Therefore, the increase of degree of cure and reaction rate 

might be due to the increase of cure temperature. The addition of GO significantly 

alter the reaction mechanism of two-part PU. Comparing the results from Figure 7.15 

to Figure 7.14, the degree of cure decreased with TEG loading and then increased. 

The reaction rate and the degree of cure were more sensitive to cure temperature. The 

catalytic effect of TEG was more effective at high cure temperature while the steric 

hindrance effect was more dominated at low cure temperature.  
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Figure 7.14 Plots of conversion versus reaction time of PU/GO nanocomposites with different GO 

loadings obtained from FTIR characterisation (a) 0 wt% (b) 0.5wt% (c) 1 wt% (d) 4 wt% 
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7.4 Conclusions 

FTIR and MDSC were used to investigate the cure dynamic of PU and graphene 

based PU composites. Graphene had catalytic effect and steric hindrance effect on the 

cure of PU where catalytic effect was more dominated at higher cure temperature. 

With graphene was added, the steric hindrance will be more dominated. In terms of 

GO, it also exhibited catalytic effect and steric hindrance effect but the surface 

oxidative debris on GO sheets allow GO participated in the reaction as well. The 

presence of GO can alter the reaction mechanism of two-part PU. The excessive 

amount of GO, G and TEG can significantly affect the network formation of PU. The 

cure density of PU may be weakened with excessive amount of G or TEG. This 

conclusion can supported the SEM results in last chapter. The most efficient filler 

loading was 0.5 wt% which can improve the cure efficiency and properties of the 

nanocomposites. Conductive and anti-corrosive coating can still be produced from 

high filler loading nanocomposites if the requirement of mechanical properties is not 

essential.    
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Chapter 8 Conclusions and Future Work 

8.1 Conclusions 

Since the discovery of graphene, it has been utilized in many applications. The 

application of graphene in composites is very common to reinforce the properties and 

manufacture different functional nanocomposites. Graphene based polymeric 

nanocomposites exhibited improved mechanical, thermal, electrical and barrier 

properties with very low percolation threshold. In this project, electrical conductive 

and anti-corrosion coatings were developed based on the application of graphene.  In 

addition, the fabrication of graphene was also investigated.  

 

A proposed mechanical-chemical approach was used to prepared graphene and it was 

both cost effective and suitable for large-scale production. Simple equipment was 

required and the procedure was not complicated. The most effective conditions are 1:1 

graphite to melamine ratios, 1000R ball milling revolutions and 1 hour ultrasonication 

time.  XRD results indicated that the graphite layers were exfoliated efficiently and 

TEM results confirmed the existence of graphene.  

 

EPD was used to deposit graphene and PP10 graphite on steel substrates. With fine 

control of the EPD conditions and thermal treatment, electrical conductive coatings on 

steel substrates were produced successfully. The best electrical conductivity was 10 

times higher than the electrical conductivity than steel substrate. The best thermal 

treatment temperature is about 580⁰C and the best thermal treatment time is about five 

minutes. The optimized EPD conditions so far are 0.175 mg/ml iodine concentration, 

20 or 40V EPD voltage and 1 minute deposition time. The binding mechanism of 

thermal treatment is a simple mechanical binding. The anticorrosion properties of the 

EPD coatings were not good due to their porous nature. Therefore, a polymeric 

protective coating is needed to improve the anti-corrosion properties.  

 

Electrical conductive and anti-corrosion PU/graphene nanocomposites were 

developed. Hybrid filler system was adopted and it showed the best electrical 

conductivity and acceptable anti-corrosion property. The best filler ratio is 

TEG:MWCNT = 1:1. Multi-layer coating system consists of EPD coating, conductive 
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primer and conductive topcoat has superior electrical conductivity than single layer 

primer or topcoat. However, the anti-corrosion property is worse than single layer 

system due to the limited facility of coating preparation. The key to improve electrical 

conductivity is to reduce the distance between the conductive particles. The strategy 

of using particles with larger diameter and high aspect ratios to form conductive 

network is recommend. However, the cure of the coating was affected with the 

incorporation of excessive amount of filler. The mechanical properties of the coating 

may be weakened. 

 

FTIR and MDSC were used to understand the cure dynamic of model PU and 

graphene based PU nanocomposites. Graphene had catalytic effect and steric 

hindrance effect on the cure of PU where catalytic effect was more obvious at high 

cure temperature and steric hindrance effect was more dominated with high graphene 

loading. GO also showed catalytic effect and steric hindrance effect. In addition, the 

functional groups on the GO surface can participate in the reaction with PU. 

Therefore, the reaction mechanism was altered. From the results, the addition of 

excessive amount of filler can significantly affect the cure behaviour of two-part PU 

and even reduce the crosslink density and weaken its mechanical properties. The most 

efficient filler loading was 0.5 wt% which can improve the cure efficiency and 

properties of the nanocomposites.  

 

The development of PU/graphene based conductive and anti-corrosion coating was 

successful. The addition of graphene can enhance the electrical property and 

anti-corrosion property. A procedure was developed to fabricate graphene and the 

optimized conditions to produce EPD coating and PU coating were discussed.  

 

8.2 Future work 

The time and equipment limited the further investigation of graphene fabrication. The 

amount of melamine added to penetrate the graphite galleries were found to be 

excessive. To prevent the wasting of material, more specimens with different graphite 

to melamine ratios could be tested to confirm the minimum amount of melamine 

required for effective exfoliation. The average layer number of the graphene sheets 

was not defined precisely. XRD scans do not indicate the number of layers; TEM 
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images cannot display the full nature of the whole specimen. Additional Raman 

spectroscopy could help to identify the number of layers for each specimen on 

average, providing a precise and more intuitive view on the quality of the prepared 

graphene. Additional testing with varying length of sonication could be done to find 

the optimal length of sonication which gives a good balance between layer number 

and flake size. Exfoliation could be further promoted, possibly by adding additional 

spacers during exfoliation.  

 

The conditions and different solvent systems of EPD process need to be investigated 

to further identify the optimized conditions and system for carbon based EPD coatings. 

PU/Graphene based nanocomposite coatings were developed to improve the 

anti-corrosion property of the surface with EPD coating. Hybrid filler system was 

found to exhibit best electrical conductivity and anti-corrosion property. However, the 

coating application method was still lab based and may induced non-uniform coating 

quality. In addition, the technique to produce multi-layer coating was not perfect. 

Extra more work should be done to investigate a good method to apply coating. The 

cure of the PU coating may be improved with a better technique to apply coating. The 

surfaces of the steel substrates were not modified in order to see whether a good 

coating with good adhesion could be produced. The answer was yes but future work 

about surface modification for improved properties and adhesion can be done. Model 

PU was used for cure dynamic investigation because the PU coatings supplied by 

TATA Steel were full of additives and pigments. The addition of excessive amount of 

filler can significantly affect the cure behaviour of two-part PU which may decrease 

the cure density and cure efficiency. Other model PUs can be used to investigate the 

cure dynamic further and different size of graphene sheets and graphene oxide sheets 

can be used as well.  
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