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ABSTRACT 

Polystyrene (PS) is a non-polar polymer that has limited surface properties since it 

lacks polar functional groups. In this project, different polar functional groups were 

incorporated onto PS by various methods such as surface treatments (flame 

treated and chromic acid treated), non-reactive and reactive compounding (at 

different loadings of copolymers) and grafting of copolymer chains induced by UV 

irradiation. These functional groups, namely carboxylic acid, hydroxyl, styrene 

maleic anhydride (compounded and grafted) and poly(vinyl methyl ether) (PVME), 

introduced during treatment and modification of PS, may diffuse away from the 

surface into the bulk and vice versa. 

The treated and modified surfaces were investigated and compared using a range 

of surface analysis techniques, which include X-ray photoelectron spectroscopy 

(XPS), attenuated total reflection infrared spectroscopy (ATR-IR), atomic force 

microscopy (AFM) and contact angle measurement in conjunction with chemical 

derivatisation. In addition, adhesion lap shear tests were performed to evaluate 

joint strengths of the various functional surfaces with a standard epoxy adhesive. 

The temperature dependence of the work of adhesion (W..,) was measured and the 

enthalpy (Hod) and entropy (S..,) estimated. 

Contact angle hysteresis had been observed on the various PS systems and can 

be attributed to the surface reorganisation and/or incorporation of water. Carboxylic 

acid groups were found to be largely accounted for on the strong adhesion joint 

strength with epoxy adhesive on the surface treated samples. Acid anhydride 

copolymers and PVME were found to be adhesion promoters when incorporated 

onto PS, by both non-reactive and reactive processes. Adhesion strength was 

further improved after extraction in methanol, which was attributed to the removal 
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of weak boundary layer. In addition, a low level of copolymer was found to be 

sufficient in achieving about the same adhesion strength as a high loading. Acid 

anhydride groups present at concentration below the detection limit of XPS were 

still effective in enhancing adhesion. Styrene maleic anhydride copolymers chains 

grafted onto untreated PS had proven to be excellent in enhancing adhesion 

strength when compared to the compounded samples. In comparison, surface 

treatment has been more effective in promoting high adhesive joint strength than 

the other modifications. 

Entropies and enthalpies of adhesion between water and the treated surfaces were 

measured and there seems to be some correlation with adhesive joint strength. 

Changes in enthalpy of adhesion as a result of surface treatment can be readily 

understand to be due to the polar-polar interactions at the interface. The changes 

in entropy of adhesion are more compficated but it is suggested that they may be 

due impart to changes in mobility of water molecules at the interface. 
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Introduction 

CHAPTER 1 INTRODUCTION 

Polymers have excellent bulk properties for a relatively wide range of technological 

applications. However, adhesion problems often limit their suitability, especially in 

areas such as printing in the packaging industry, paint adhesion, etc .. This is 

mainly due to their inherent low surface energy, associated with a relatively low 

chemical reactivity. For good adhesion, therefore, some fonn of surface treatment 

for a polymer is required, e.g. flame, corona, plasma, chemical treatments, etc .. 

PS, like polyolefins, has limited adhesion capability without the addition of 

functional groups. It is thought that the presence of the aromatic ring as a side 

group bonded to every other carbon atom along the PS chain; a linear hydrocarbon 

polymer, as the polyolefins, would provide some significant differences to surface 

treatment and adhesion compared to the polyolefins. This type of repeat group 

functionality is expected to have an influence on the type of modification produced 

by surface treatment. Oxidative surface treatment of PS is known to introduce polar 

functional groups onto its surface, thereby increasing its free surface energy [1 - 3]. 

The incorporation of functional groups onto PS to increase its adhesion to various 

substances has enabled poiyfunctionalised PS being used for a variety of 

applications [4, 5]. 

The start of this research involved constructing a temperature dependent contact 

angle equipment and a rigorous way of interpreting contact angle results in tenns 

of thennodynamic parameters has been used. This approach has not been 

extensively used in the past, as one needs to measure a contact angle (Le. 

subtended between test liquid droplet on a solid surface), to within 10 for accurate 

results, since the temperature coefficient of angle is small. With improved 

illumination, optics, recently introduced methods of digital photography, and 

software written for digital analysis of images (run by a high speed personal 
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Introduction 

computer), accurate droplet profiles and angles can be measured reliably and 

repeatedly. With careful work on well defined surfaces, it is anticipated that the 

relative enthalpic and entropic contributions due to different functional groups on a 

polymer's surface could be identified. The results of this work are given in Section 

4.8.4 

In the rest of the research programme, a number of surface treatments and 

modifications for PS and analysis techniques were used. PS samples have been 

subjected to flame and chromic acid treatments and the work of adhesion 

measured by the temperature dependence contact angle equipment was analysed. 

Having understood the relationship of the thermodynamic properties of normal PS 

and surface treated functionalised PS by quantitative means, the technique was 

further utilised to examine the action of other functional groups introduced by other 

methods onto PS. These involved the incorporation of low molecular weight 

copolymer, styrene maleic anhydride (SMA) and poly(vinyl methyl ether) (PVME) 

into and onto PS, by non-reactive and reactive compounding in vary 

concentrations. It has been thought that the low molecular weight functional groups 

would have the mobility to migrate or segregate to the PS's surface. Grafting of 

copolymer chains onto PS was also carried out in the vapour phase. 

In addition, adhesion tests using a standard epoxy resin, (anticipated to be able to 

react across the interface with the acid groups [6)), was performed using the single 

lap shear test method and the strengths recorded. Chemical derivatisation blocks 

the acid functional groups at the surface, so making them inactive, preventing 

certain chemical reactions at the interface and the resulting reduction of adhesion 

strengths were measured thereafter. In this way, the contributions of specifIC 

functional groups to adhesion can be identified. 

The aims of this research were to examine and compare the surface, adhesion 

effects and work of adhesion of functionalised PS produced by surface treatrTlents, 

non-reactive compounding, reactive compounding and grafting. 
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Literature Survey 

CHAPTER 2 LITERATURE SURVEY 

In this chapter, the literature survey, will cover the issues of polymer surface free 

energy, in terms of thermodynamic theory, and provide a background to 

compounding, surface modification and characterisation. 

2.1 ADHESION THEORIES (MECHANISMS) 

Adhesion may be defined as the state in which interfacial forces, which may 

consist of valence forces or interlocking action or both, hold two surfaces together. 

An adhesive is defined as a material, which when applied to the surface of another 

material, will join them together so that they resist separation. Many authors have 

reviewed adhesion mechanisms [7 - 9]. Usually more than one theory is employed 

to explain all observed interactions between an adhesive and substrate (i.e. also 

known as an adherend). The theories commonly employed to explain adhesion 

could be divided into fIVe mechanisms, namely: 

• electrical theory; 

• mechanical theory; 

• diffusion theory; 

• adsorption theory; 

• acid-base theory; 

• weak boundary layer theory. 
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2.1.1 General Adhesion 

a) Electrical Theory 

Oeryaguin et. al. [10 - 12] have suggested that if an adhesive and substrate have 

different electronic band structures then there will be some electron transfer on 

contact, in order to balance the Fermi levels. This will result in the formation of a 

double layer of electrical charge at the interface. It has been demonstrated in a 

peel test experiment, that some of the joints were found to be charged upon 

separation [11]. 

It has been suggested that the electrostatic forces between the charged surfaces 

might contribute significantly to adhesion. This statement has led to a debate and 

criticisms from many authors [13 - 16]. Wake [17] has reviewed the electrical 

double layer theory and concluded that, when films of adhesive substances adhere 

to substrates, the electrical phenomena observed when they are peeled or 

otherwise separated, does not contribute appreciably to the force required to 

complete the separation. 

b) Mechanical Theory 

This theory proposes that an adhesive fills the irregularities or interstices (e.g. 

pores, cracks, holes, etc.) in an adherend's surface, hence providing mechanical 

interlocking once the adhesive is solidified. This effect can be enhanced by some 

surface pretreatments, such as mechanical abrasion or chemical etching, which 

increase the roughness of a substrate's surface, enabling the adhesive to come 

into close contact with a greater surface area. It should be noted that due to the 

high viscosity of the adhesive or low surface free energy of the adherend, an 

adhesive might not be able to penetrate completely into the irregularities. This is 

likely to lead to the formation of voids and weaken the joint. 
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There has been a suggestion that increasing the surface roughness will improve 

the bond strength in certain systems. Jennings [18] has reported that Packham et. 

al. have shown that improved adhesion between PE and metal is achieved if the 

metal surface is roughened. On the other hand, Tabor [19, 20] has demonstrated 

that good adhesion can be achieved between two smooth mica surfaces. The 

mechanical factors cannot therefore be the only ones contributing to adhesion. 

c) Diffusion Theory 

This theory proposed by Voyutskii [15, 21, 22], states that the adhesion between 

two polymers is due to mutual migration or interdiffusion across the developed 

interface. This happens only when the molecules have sufficient mobility to migrate 

i.e. above their glass transition temperature, Tg and in a plasticised state and the 

polymers must be mutually soluble, i.e. their solubility parameters must be similar. 

The solubility parameter is an index of compatibility of two components. The basis 

of using solubility parameters is that substances with similar values are compatible . 
• 

These requirements are mostly found in the auto-adhesion of elastomers, and in 

the solvent or thermal welding of similar plastics. 

Voyutskii has supported these views with evidence based upon contact time, 

temperature and pressure. Vasenin has developed a mathematical model for the 

diffusion theory of adhesion based upon Fick's laws [23 - 25]. He predicted that 

with a diffusion coefficient of 10.18 m2 s-1, it takes approximately 100 hours for 

polymer chain segments of polybutylene sheets to penetrate each other to the 

depth of 10 Ilm. This happened in cases where the same materials are studied. On 

the other hand, where the solubility parameters differ, no interdiffusion has been 

detected. This theory has been extend to polymer/metal systems but has not been 

successful [17], hence is thought to be an unlikely phenomenon. 
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d) Adsorption Theory 

According to this theory many types of forces may act across the interface. This 

theory proposed that, when there is intimate molecular contact across the 

interface, adhesion would occur due to intermolecular forces. These forces include 

Van der Waals' forces and hydrogen bonding. Van der Waals' forces include 

London (dispersion), Keesom (dipole-dipole) and Debye (dipole-induced dipole) 

forces. These forces differ in strength and give rise to energies of interaction in the 

range from about 2 to 50 kJ mor1 [26]. It is from this theory that the surface and 

interfacial thermodynamic models have developed, permitting calculation of 

surface free energy. In some cases, a substrate may react chemically with an 

adhesive. The chemical bond is stronger than Van der Waals' interactions having 

typical values of 200 to 500 kJ mor1. Chemical bonding at an interface can lead to 

high adhesive bond strength [27]. 

e) Acid-Base Theory 

The adhesion mechanisms also involve the formation of acid-base interactions 

across the interface [28]. The acid-base term arises as a result of interactions 

between Lewis-acids (electrophiles) and Lewis bases (nucleophiles). This theory 

will be further explained in Section 2.3.8. 

f) Weak Boundary Layer (WBL) Theory 

Bikerman [29] was the first to propose the WBL theory. He suggested that if a 

region of low cohesive strength occurred between an adhesive and an adherend, 

then low bond strength would result. This region is the 'weak boundary layer' and 

could arise from the adhesive, adherend or from the surrounding environment. 

These environmentally induced WBL may include the presence of contaminants, 
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e.g. dust, silicones, grease, etc. . These also include low molecular weight 

materials, e.g. stabilisers, plasticisers, etc., which may migrate from the bulk of a 

material (especially polymers) to the surface of the substrate. Published work on 

polyolefins and fluoropolymers in this area has been reviewed by Brewis [30). 

g) Combination of Theories 

There has been a suggestion that the overall measured adhesion can be due to a 

combination of all the theories [31). That is, 

{2.1} 

where Ip is the overall adhesion. Subscripts E, M, D and A represent electrical, 

mechanical, diffusion and adsorption contribution to the adhesion, respectively. 

Coefficients a, b, c and d are their respective constants. Other theories also 

include the effect of substrate [32) and the plastic deformation where there is 

viscoelastic energy loss resulting in more bulk energy dissipation, thus leading to 

higher overall measured adhesion [33, 34). 

2.1.2 Adhesion Test Methods 

During the process of adhesion, an adhesive is usually applied in the form of a 

fluid, which is then allowed to solidify to form a strong coherent material. The 

adhesives used are commonly thermosetting polymers, e.g. epoxides, 

polyurethanes, acrylics, etc. [35). A joint is cured at room or elevated temperature 

and pressure may often be applied to the joint to maximise bonding, e.g. aiding 

spreading. Other adhesives also include pressure sensitive systems and hot melts, 

which harden by cooling [35). The strength of the joint will, in general, depend on 

the testing rate, temperature and joint geometry. 
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Different types of test are employed to evaluate the adhesion levels, depending on 

the nature of the sample [36). Figure 2.1 shows some of the commonly used test 

methods. 

t 
a) 

b) 

.-L---I ----r-----J;] 

L-E ____ --'I-

"J-

c) 
d) 

c:::J = Adhesives _ = Sample 

Figure 2.1 Some commonly used adhesion test methods. a) tensile, b) single 

lap shear, c) 90° peel and d) T -peel. 
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2.2 SURFACE FREE ENERGY 

2.2.1 Introduction 

A review [37] of molecular interactions occurring at interfaces, shows that wetting 

can be described in terms of thermodynamic parameters, such as surface and 

interfacial free energies, which characterise the interacting materials. Surfaces 

which have a surface free energy >100 mJ m-2 , are classified as high energy 

surfaces and include inorganic solids, glasses and metals. Low energy surfaces 

will have surface free energy <100 rnJ m-2 and include all organic liquids, waxes 

and organic polymeric solids. 

When a drop of liquid is placed on a solid surface, it will make a contact angle, e. 
with the surface, see Figure 2.2. Contact angles may be used to study surface 

energy, wettability and adhesion on low surface energy materials like polymers. 

This measurement has been used extensively to indirectly monitor changes in the 

surface composition, because it is sensitive to the chemical composition of the 

surface monolayers. Contact angles are often measured in conjunction with 

spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS). This 

will be discussed in more detail in Section 2.10.2. Figure 2.2 shows the contact 

angle (8) made by a liquid drop on a substrate. 

() Liquid 

Substrate 

Figure 2.2 A liquid drop on a substrate. 
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2.2.2 Surface Free Energy and Surface Tension 

Atoms and molecules at the surface of an adherend or adhesive are in an 

environment markedly different from the environment of their bulk counterparts [38, 

39). In the bulk phase of a material, molecules are attracted in all directions, by 

their neighbouring molecules and atoms and thus, in a symmetrical force field. In 

contrast, molecules at the very surface are surrounded by fewer like neighbours 

and so subjected to less intermolecular attraction from their neighbours, as there 

are no like atoms or molecules above them. This anisotropic distribution of these 

neighbours is a characteristic only of a surface [39]. The surface molecules are 

thus in a state of higher free energy than those in the bulk phase. 

There is, then, a free energy change associated with the isothermal, reversible 

formation of a liquid surface and which is termed the surface free energy or excess 

surface free energy (G\ The terms are often used to mean specific (i.e. per unit 

area) surface free energy, the unit of which is mJ m-2
. It is noted that this surface 

free energy is not the total free energy of the surface molecules, but rather the 

excess free energy, which the molecules possess by the virtue of their being in the 

surface. The atoms and molecules tend to leave the surface region due to a 

Boltzman distribution between two states of different energy. At equilibrium the 

lower density at the surface means that the intermolecular distance is greater and 

hence puts the surface under tension. This is equivalent to saying that the surface 

itself is in a state of lateral tension and leads to the concept of surface tension (n, 

which is a direct result of the intermolecular forces at the surface. The unit of 

surface tension is mN m-l
. 

Therefore, the specific surface excess free energy (Gs), is defined as the reversible 

work done in creating unit area of fresh, flat, free surface (A) by a process of 

division [40] and surface tension (n is the tangential stress in the surface layer. 
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Though these two are often used interchangeable, they are not necessarily the 

same. The relationship between rand GS is shown below [37, 41 - 43], 

r = et + A (iXi) 
BA T.l' 

{2.2} 

The difference between the two terms can be explained by considering the 

production of a new surface of a solid or liquid. In the first step, the solid or liquid is 

divided to produce two surfaces but the atoms and molecules are kept in exactly 

the same positions that they occupied when they were in the bulk phase. In the 

second step, the atoms and molecules in the newly formed surfaces are allowed to 

rearrange to achieve their most stable equilibrium configuration. 

The liquid surface is always at equilibrium, therefore the last tenm in Equation {2.2} 

must, by definition, be zero. This means the surface tension is equal to the specific 

surface free energy, that is r = GS
• On the other hand, in a solid system, the 

second step of molecule rearrangement will occur much more slowly, due to the 

immobility of the surface molecules 44]. Therefore, the solid surface may be 

stretched or compressed with no change in the number of atoms or molecules, and 

in this case, the last term in Equation {2.2} is not equal to zero, hence r,t GS and 

the relationship between rand GS is governed by Equation {2.2}. Solid surfaces 

are rarely at thenmodynamic equilibrium. 
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2.3 SURFACE FREE ENERGY BASED ON DIFFERENT 

APPROACHES 

2.3.1 Introduction 

When a liquid is brought into contact with a solid, a solid/liquid (SL) interface is 

created, the energy of which depends on the natures of the two dissimilar 

materials. The degree of wettability is indicated by the value of the contact angle 

(0). If () = 0°, then the liquid is said to have maximum interfacial contact with the 

solid, which is hence said to be completely wetted. 

Several methods have been devised that allow the measurement of contact angles 

on a solid, which are included in the list below [45], 

• equilibrium sessile drop method 

• advancing & receding drop method (used in this research) 

• advancing and receding bubble 

• drop on a tilted plate 

2.3.2 Young's Equation 

A drop of pure liquid resting on a smooth, homogeneous, rigid and isotropic solid 

surface, gives the following relationship when the drop is at equilibrium, 

- ~ - VSL + cosB {2.3} 

where (]Ssv is the surface free energy of the soFld in equilibrium with vapour of the 

contact angle liquid, (]SSL is the surface free energy of the solidlliquid interface, (]SLV 
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is the surface free energy of the liquid in equilibrium with its vapour and (} is the 

contact angle of the liquid drop on the surface. This equation is known as Young's 

equation [46). 

As the wetting ability of a liquid on the solid surface is important in practical 

problems of adhesion or lubrication, much work has been carried out to detennine 

the interfacial energies. In Figure 2.3, two states are presented for an interface, 

before and after separation. The thennodynamic work of adhesion (Wad) is the 

reversible work done in separation of unit area of solidlliquid interface. This is given 

by, 

G';" + G~v - G~ {2.4} 

Equation {2.4} is known as Dupre's equation. 

By combining Equations {2.3} and {2.4}, an expression for contact angle is 

obtained; this is the Young-Dupre equation, 

W"" G~v (I + cosB) {2.5} 

This implies that if a liquid of known surface free energy, asLV is used, and the 

contact angle (fJ) measured, then the value of Wad can be obtained. The equation is 

true for all low energy surfaces that exhibit a single unique contact angle. 
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Gas 

State 1 State 2 

Figure 2.3 The work of separation defined by two states. 

a) Equilibrium Spreading Pressure 

When a liquid makes contact with a solid surface, the surface is said to be wetted. 

If the solid adsorbs the liquid's vapour, then the solid surface free energy, CSs is 

reduced to (;Ssv. The adsorption of vapour on a solid surface will change the 

surface free energy of the solid. The change will be greatest when there is high 

affinity for the solid. The lowering of surface free energy is known as the 

equilibrium spreading pressure, K., and is given by, 

roS ' Jr, = LTs - Gsv {2.6} 
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where G's is the surface free energy of the solid in a vacuum and G'sv is the 

surface free energy when in equilibrium with the saturated vapour. Spreading 

pressure can be measured from vapour adsorption using Equation {2.7}, 

F. P. 

7r. = fr. df.l = RT fr. d (In p) 
{2.7} 

where p is the vapour pressure, po is the saturated vapour pressure, r is the 

number of moles adsorbed per unit area and J.l is the chemical potential of the 

adsorbate (i.e. the adherend). 

There is a general belief that, 7r. is usually neglig ible when () > 100
, such that G's = 

G'sv [48]. Values of 7r. have been found and reported to be negligible for liquids that 

have a non-zero contact angle on low surface energy substrates such as polymers 

[43]. Likewise, Good [49] has shown that there is reason to believe that 7r. is 

probably negligible on homogeneous, low energy solids for pure liquids that form 

non-zero contact angles. In his paper [49], he has reported data wnh values of 7r. 

calculated for n-alkanes tested on polytetrafluoroethylene (PTFE), see Table 2.1. 

Table 2.1 Calculated spreading pressure of n-alkanes on PTFE. 

l}f 0 7r,1 mJ m·2 

Hexadecane 72 1.5 x 10"" 

Octane 56 2.3 x 10.2 

Pentane 0 0.23 

Butane 0 0.48 

He concluded that the calculated 7r. is negligible for alkanes C7 or higher on PTFE, 

i.e. when 0> o. 
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2.3.3 Good and Girifalco's Approach 

Girifalco and Good [50] introduced an interaction parameter, cp, by which work of 

adhesion between two phases could be evaluated, i.e., 

Wod = 2 cp (ds GiT' {2.8} 

This interaction parameter may be estimated from the molecular properties of both 

phases. Therefore, if cp and (]SL are known, then (]Ss may be determined from 

Equations {2.5} and {2.8}. For common systems, the cp lies between 0.5 and 1.2. 

However, this method of calculating Wad is seldom used since it requires a precise 

knowledge of the exact compositions of the interacting surfaces. The reader is 

referred to other papers for further details [50 - 54]. 

2.3.4 Fowkes' Approach 

Fowkes was the first to propose the theory of fractional polarity [55 - 59]. He 

suggested that the surface free energy of a solid could be given by the sum of 

several independent contributions arising from dispersion interactions, polar 

interactions and hydrogen bonding interaction, i.e., 

Gs-Gs+Gs+ds {2.9} 

where G'., is the surface free energy of the solid, G's is the dispersion component of 

the surface free energy, (JPs is the polar component of the surface energy and G"s 

is the hydrogen bonding component of surface free energy. Often the hydrogen 

bonding and polar components are encompassed in the single term (JPs. 
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Fowkes suggested that a non-polar solid could not interact with a polar liquid 

through a permanent dipole. He proposed that the thermodynamic work of 

adhesion might be given by the following relationship using the geometric mean 

approximation for dispersion force interactions, 

w.., = 2 (G~ G~r {2.10} 

The above equation allows the calculation of dispersion component of free energy 

of solid when the dispersion component offree energy of liquid and w"d are known. 

2.3.5 Owens and Wendt's Approach 

Owens and Wendt [60, 61] extended Fowkes' equation by employing a theory of 

fractional polarity to approximate the surface free energy of solids. This was done 

by resolving the surface energy into contributions from dispersion and polar forces 

and considering the hydrogen bonding forces and the polar contribution as a single 

component. This then leads to a more comprehensive relationship of the interfacial 

free energy and its components, 

W<XI = 2 (0; <it + 2 (ds d)" {2.11} 

Hence, by measuring the contact angles of two or more liquids of known 0'1. and 

(7L, it is possible to evaluate the (7s and O's of solids, using Equation {2.12}, 

obtained by combining Equations {2.5} and {2.11}, 

2 (0; dt + 2 (d d)"' {2.12} 
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Owens and Wendt [60) demonstrated that, with their method, they were able to 

achieve reasonable agreement with data generated by Zisman's (Ye) and Fowkes' 

(f) methods. They suggested that their method is also useful for semi-quantitative 

measure of surface composition, since G's and G's are both sensitive to surface 

composition. 

There is some debate as to whether this geometric mean approach is the best way 

of approximating the polar interactions at an interface. It has been suggested that 

the geometric mean could be replaced by the arithmetic, anharmonic or harmonic 

mean approaches in certain circumstances [62 - 64). 

Nevertheless, the geometric mean approximation has remained popular and widely 

used, as the measurements involved are simple and require no prior knowledge of 

the surface concemed. Table 2.2 gives surface energies for some polymers (see 

List of Abbreviations and Acronyms) determined by this method. 

Table 2.2 Surface energy parameters of solid surfaces at - 20°C [35). 

Polymers 

PTFE 
pp 
PMMA 
PA66 
PVC 
PS 

2.3.6 Wu's Approach 

18.6 
30.2 
35.9 
35.9 
40.0 
41.4 

0.5 
0.0 
4.3 
4.3 
1.5 
0.6 

19.1 
30.2 
40.2 
40.2 
41.5 
42.0 

Wu [62) has used a harmonic mean method to calculate the forces acting across 

the interface, and proposed the following equation, 
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GSl• G G 
4G'sG:. 

= s+ /.-rf' rf' 

Us + lIJ. 

{2.13} 

He claimed that this equation give more consistent results for the interfacial free 

energy between low energy systems, such as liquids on polymers and adhesives 

on polymers, while geometric means are more appropriate for high energy 

systems, such as adhesives on metals [42). Good [49) has shown that part of the 

equation is invalid. It had been found that this method gave higher GdS values and 

significantly higher GPsfor untreated pp [6). 

2.3.7 Equation of State Approach 

Ward and Neumann [65] have suggested an approach by considering an equation 

of state and thermodynamic theory, 

{2.14} 

which means that the interfacial free energy is only a function of the total solid and 

liquid surface free energies. Spelt et. al. [66] reported the contact angles of two 

liquids with different polarities on the same solid were identical, if their total surface 

tensions were equal. Their finding is consistent with the equation of state 

approach. 

2.3.8 Acid-Base Interactions 

As stated earlier, all polar interactions are often combined into a single term, GP. 

However, it has been suggested that the primary polar interactions across an 

interface are due to electron donor-acceptor interactions (i.e. maybe interpreted by 
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a Lewis acid-base approach). These interactions are principally hydrogen bonding 

and therefore may be considered separately [67, 68]. As a consequence, the work 

of adhesion, Wad is written in terms of the work of adhesion due to London

dispersion interactions, Wd and the work of adhesion due to acid-base interactions, 

WAS: 

W .. = W' + WAS {2.15} 

A solid surface can be probed using a variety of liquids having different acid/base 

characteristics. These acid/base characteristics are obtained by measurement of 

the interaction energies of the various molecules concerned, in a neutral solvent. 

A theory was developed centring on the enthalpy of neutralisation the acid and 

basic sites, 

W,B - - f n..B NiAS {2.16} 

where n is the number of acidlbase pairs per unit area, f is a factor that converts 

the enthalpy per unit area to surface free energy and is assumed to have a value 

equal or near unity and L1HAB is the enthalpy of neutralisation [69, 70]. 

Orago and colleagues [69, 70] suggested that summing dispersion and acidlbase 

interactions could approximate intermolecular interactions in solution. That is, the 

characterisation of different Lewis acids, A and bases, B, by two constants C and E 

was possible by measurement of the enthalpy of neutralisation for those acids and 

bases in a neutral solvent, L1HAB, 

-WAS = C CB + EA EB {2.17} 
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However, the usefulness of this method for the practical evaluation of surface free 

energies/acid-base characteristics is somewhat limited through the lack of Drago 

coefficient C and E, which can be difficult to find. 

A study undertook by Huttinger and co-wor!<ers [711 showed that different values of 

Wad could be obtained, when the pH value of a test liquid is varied from 1 to 14. 

Their wor!< shows the importance of analysing the type of acid or base used, as the 

nature of the counter ion will strongly influence the interactions with the surface of 

the solids and thus the wor!< of adhesion. 

2.3.9 Thermodynamic Work of Adhesion 

As mentioned earlier, the thermodynamic wor!< of adhesion, Wod, is defined as the 

reversible wor!< done in separation of unit area of solid/liquid interface. The 

thermodynamic work of adhesion will have entropic (S",) and enthalpic (H",) 

contributions. The wor!< of adhesion is [72 ~ 751, 

W", - Hod - TS", {2.18} 

Wod is measured by contact angle at a range of temperatures and Sod is given by 

{2.19} 

Combining Equation {2.5} and Equation {2.18} gives 

Wod = G~ (1 + cosO) = Hod - TSod {2.20} 
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where 

Hod - Hs + HL - HSL {2.21} 

and 

Sod Ss + {2.22} 

Ss is the entropy of the solid (e.g. a polymer), SL is the entropy of liquid (e.g. water) 

and SSL is the entropy of interfacial between polymer and water. From the 

temperature dependence of Wad, it is possible to evaluate the behaviour of Sod and 

Hod. Surface treatment of a non-polar polymer to introduce polar groups onto its 

surface, would be expected to affect both enthalpy and entropy of adhesion. 

2.4 HYDROPHOBICITY 

Hydrophobic surfaces are characterised by a high contact angle of a water droplet. 

Theories of interaction across the interface indicate that water and a hydrophobic 

substance interact only through dispersion forces. Water is a liquid with unusual 

properties, which have been reviewed extensively in literature [76 - 78]. Relative to 

other liquids, water has certain anomalous thermodynamic properties, that is, a 

temperature of maximum density in the liquid phase over a wide range of 

pressures, an unusually high surface free energy, a minimum in the isothermal 

compressibility as a function of temperature and a large heat capacity throughout 

its liquid range. These properties are thought to arise from the ability of water to 

form tetrahedrally coordinated hydrogen bonds. The hydrogen bond is a strong 

dipole-dipole interaction. The hydrogen atom is positively polarised and as a result 

of its small size, the hydrogen atom can interact strongly with nearby 
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electronegative atoms. Water molecules form H-bonds with each other, and this 

influences their interactions with non-polar molecules that are incapable of forming 

the H-bonds. When non-polar molecules are introduced into water, they disrupt the 

hydrogen bonding network. 

There are ways to salvaging lost H-bonds. If the non-polar solute molecule is not 

too large, it is possible for water molecules to pack around it without giving up any 

of their hydrogen bonding sites. Example of such arrangements is known as 

clathrate 'cages', which are formed by water molecules around a dissolved non

polar solute molecule. Such structures are not rigid but labile and their H-bonds are 

not stronger than in pure water, but the water molecules forming these cages are 

more ordered than in the bulk liquid [79]. Formation of the cage is associated with 

an increase in order and therefore a decrease in entropy. The entropy change 

dominates the free energy of mixing between water and non-polar molecules. 

Ordering of water has also been observed at non-polar surfaces [79] 

2.5 TEMPERATURE DEPENDENCE OF SURFACE FREE 

ENERGY 

The specific surface excess free energy (maximum available energy per unit area), 

(;s, is defined by Equation {2.23}, 

GS_HS-TSS {2.23} 

where JIS is the specific surface enthalpy, i.e., the heat absorbed by the system per 

unit surface area created, T is the temperature and Ss is the speCific surface 

entropy, SS is given by 
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{2.24} 

where P is the pressure. The specific surface entropy can be obtained from 

temperature dependence of the surface free energy [39]. Surface free energy of 

polymers varies approximately linearly with temperature [64]. 

Figure 2.4 presents a typical plot of surface free energy of water decreasing with 

increasing temperature [80]. Figure 2.4 shows that the surface entropy of water 

must be positive. This is true for all liquids and it has been suggested that it is due 

to the greater mobility of surface molecules compared to those in the bulk [72]. 

Therefore determination of surface free energy as a function of temperature is 

believed to be a means of providing information about surface structure and 

entropy. 

The specific surface entropy of liquids can be easily measure accurately in this way 

but measurement of the specific surface entropy values of solid polymers, is more 

difficult. For a polymer, the values are obtained from extrapolation from melt data 

or by calculation using the cell model. Van Ness et. al. [81, 82] described a cell 

model for the calculation of specific surface excess free energy and entropy of 

polymer liquids. Three contributions are identified as contributing to the surface 

entropy. They are combinational terms due to the mixing of molecules and vacant 

cells or holes in the surface monolayer, tennns due to the potential energy when all 

molecules are at their cell centres and tennns containing the average energy of 

interaction between segments as they move about the cell. 
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Figure 2.4 Surface free energy of liquid water as a function of temperature. 

2.6 TEMPERATURE DEPENDENCE OF CONTACT ANGLE 

Budziak et. al. [83] have measured contact angles for three liquids, namely 

glycerol, ethylene glycol and diethylene glycol, on butyl rubber over the 

temperature range 23°C to 120°C. Their results showed that contact angle values 

did not change dramatically with temperature, as seen in Table 2.3. 

Table 2.3 Temperature dependence of advancing contact angle of the tested 

liqu ids on butyl rubber [83]. 

Temperature I °C Contact angle (Q) I ° 

Glycerol Ethylene glycol Diethylene glycol 

23 
30 
40 
60 
80 
100 

99.7 
99.2 
99.2 
101.9 
100.9 
105.5 

84.4 
83.2 
85.4 
86.3 
88.8 
86.9 

81.7 
81.8 
80.7 
81.0 
81.8 
82.3 
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Padday [84) examined the temperature dependence contact angle of pure water 

wetting on a paraffin wax surface, over the temperature range 200C to 45°C. His 

results showed that the worK of adhesion increased with increasing temperature for 

advancing conditions, but in contrast, decreased with receding conditions (details 

of advancing and receding contact angle technique are given in Section 2.7.1). For 

advancing conditions, he suggested that the structure of water at the liqu id-air 

interface is different from that at the solid-liquid interface. For the receding 

conditions, he postulated that it is possible that the surface inhomogeneities 

become important because of hydration effects. 

The effect of temperature on the contact angle between a liquid and a solid has 

also been measured by Johnson and Dettre [85], who reported that the advancing 

contact angle for their system, hexadecane on a fluoropolymer, did not change 

SignifICantly with temperature variation. In contrast, research by Phillips and 

Riddiford [86] showed diminishing contact angle when the temperature is raised, in 

their different systems of water, sodium chloride solution and n-butyric acid on a 

siliconed glass surface. 

In another experiment [87] of temperature dependence of the contact angles of 

water and diiodomethane (DIM) on a side-chain liquid, crystalline polyacrylate, 

showed that the value of contact angle changed significantly at a temperature 

slightly below the polymer's Tg (-47°C) when the polymer was tested between 

24°C and 73°C. In general, changes in contact angle with temperature are very 

small and accurate measurement is needed to determine the entropy of adhesion. 
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2.7 CONTACT ANGLE HYSTERESIS 

2.7.1 Introduction 

For an ideal, flat and homogeneous solid surface, there is only one contact angle 

for a given liquid and this is known as the Young or equilibrium contact angle. The 

Young equation is only valid if the system exhibits a single equilibrium contact 

angle. However, in most situations, real surfaces normally give a range of contact 

angles, with a strong dependence on how the measurement is made [41). 

A test liquid droplet is placed on a solid surface and then advanced across the 

surface by addition of further liquid (e.g. from a hypodermic syringe), and allowed 

to reach equilibrium before an advancing contact angle (61adv) is measured. The 

receding contact angle (61rec) is measured after some liquid has been withdrawn 

from a drop. If the three phase point of contact is moving while the contact angle is 

measured then the angle is said to be dynamic. On the other hand, if the three 

phase point of contact is not moving then the angle is said to be static. 

The advancing contact angle is the maximum angle made by the liquid drop, 

whereas the receding contact angle is the minimum angle. The difference between 

the advancing angle and receding angle is known as contact angle hysteresis. 

Zisman [88) proposed that both advancing and receding contact angles have to be 

measured carefully for thermodynamic purposes, to ensure the experimental 

conditions remain as close as possible to equilibrium. He went on to report that no 

contact angle hysteresis could be found if the surface contained no pores or 

valleys into which the liquid could penetrate. Hysteresis is observed in almost all 

practical contact angle experiments. It is common to find hysteresis, on practical 

surfaces, in range of 100 or more and as much as 500
, in some cases [48). There 

are a number of causes of hysteresis, which may occur under certain conditions: 

surface roughness, surface heterogeneity, diffusion, swelling, and reorientation. 
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The first two causes, surface roughness [89] and surface heterogeneity [90, 91] are 

the most common and have been studied in great detail. Contact angle 

measurement may be used to give an indication of these properties. 

2.7.2 Surface Roughness 

Contact angle hysteresis on rough surfaces can be quantitatively explained by 

assuming that the advancing and receding contact angle is determined by a 

balance between the macroscopic vibrational energy of drop and the heights of the 

energy barriers. The energy barriers which are caused by the ridges and troughs 

on the surface must be overcome for a liquid to spread across the surface [45]. 

Roughness needs to be in excess of 0.1 Ilm to begin to affect hysteresis [92). 

2.7.3 Surface Chemical Heterogeneity 

Sometimes, even on smooth surfaces, contact angle hysteresis may still be 

present. This is sometimes attributed to the chemical heterogeneity. This will occur 

when different regions of the surface have different values of surface free energy, 

which is especially true for block copolymers [37], where chemical/molecular 

compositions vary. The surface of a block copolymer may consist of domains, 

which have a surface free energy characteristic of the polymers comprising the 

different blocks. This is also true with migratory polymer additives, moving and 

concentrating on a surface to different levels, as well as the selective contaminant 

of a solid surface by an external agent. 
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2.8 COMPOUNDING 

2.8.1 Introduction 

One significant development in the use of polymers is the rapid developments in 

the use of polymer blends or compounds. Polymer blends can be used to fill gaps 

in performance of existing polymers. Their properties can be tailored by a 

combination of composition and processing. Under favourable experimental 

conditions, it is possible to achieve a significant improvement in a property or a 

group of properties without the need for the development of new polymers [93]. 

The action of polymer compounding covers many areas of science, from the 

surface chemistry, thermodynamics and interface science to rheology and 

processing. The following briefly introduce the main polymer used in this research, 

PS, and the SMA copolymer, together with discussion on non-reactive 

compounding and reactive compounding. 

2.8.2 Polystyrene (PS) 

The name "polystyrene" designates a family of plastics derived from styrene 

monomer. Styrene is a colourless mobile liquid at - 20°C with a "fruity" smell when 

in pure state but exhibit an unpleasant odour due to trace of aldehydes and 

ketones if allowed to oxidise by exposure to air. The commercial preparation of 

styrene involves three stages. The first stage involves the reaction of benzene and 

ethylene to produce ethylbenzene, in the presence of a Friedel-Crafts catalyst such 

as aluminium chloride at -95°C, see Figure 2.5a. In the second stage, the styrene 

is produced, in a crude form, from ethylbenzene by a process of dehydrogenation, 

an endothermic reaction, at -630°C, see Figure 2.5b. The final stage is the styrene 

purification where the 'crude styrene' goes through distillation to remove any by 

products and impurities [94]. 
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a) 

b) 

Figure 2.5 Mechanism of styrene monomer production. 

PS was said to be first made by E. Simon in 1839, which he believed to be an 

oxidation produce and called it styrol oxide [94]. Since then, the polymerisation of 

styrene has been extensively studied. There are four polymerisation methods, 

namely, mass, suspension, solution and emulsion, with the first two being the most 

important. Mass polymerisation produces polymer of high clarity and very good 

electrical insulation, however, due to exothermic reaction, these posses severe 

practical problems and the product has a broad molecular weight distribution. 

Solution polymerisation reduces the exotherm but may lead to problems of solvent 

recovery and solvent hazards. While suspension polymerisation avoids most of 

these problems, there is some contamination of the polymer by water and the 

suspension agent, as the polymer must be dried and aggregated before being sold 

as pellets suitable for injection moulding and extrusion. Emulsion polymerisation, 

which affects clarity and electrical insulation characteristics, is used only for the 

production of PS latex [95]. 

PS is amorphous and has a Tg of 100°C [96] and is widely used as an injection 

moulding and vacuum forming materials due to its several excellent properties 
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such as its low cost, good mouldability, good dimensional stability, reasonable 

chemical resistance, low moisture adsorption, etc .. The primary lim~ations of PS 

are its brittleness, inability to withstand boiling water temperatures and its poor oil 

resistance. There is a wide range of grades of PS to meet the needs of a large 

variety of applications of PS. These include PS modified with rubber copolymers, 

e.g. styrene butadiene rubber (SSR), high impact polystyrene (HIPS), acrylonitrile 

butadiene styrene (ASS), etc. [95]. Applications include refrigerators, batterieS, 

lighting, food containers, toys, etc. [97]. Figure 2.6 showed the chemical structure 

of PS. 

• 

where n = repeating unit 

Figure 2.6 PS chemical structure. 

Good adhesion is needed in this number of applications such as surface painting, 

printing, adhesive bonding, etc. However, with their non-polar surface properties, 

they are not easily wetted by most liquids. Therefore, in order to achieve good 

adhesion, some other kind of modifICations, other than surface treatment, is 

necessary. These include compounding/blending with reactive compatilisers e.g. 

styrene maleic anhydride, to increase its polarity [98). 

2.8.3 Styrene Maleic Anhydride (SMA) Copolymers 

These are random copolymers of styrene with a small amount of maleic anhydride 

(see Figure 2.7), which can be manufactured with a range of molecular weights. 

31 



Literature Survey 

Low molecular weight copolymers with 25 to 50% maleic anhydride content have 

been made available by Elf Atochem with emphasis on the reactivity of such 

materials [97]. 

.~. 

o 0)::=( 
y 

Figure 2.7 SMA chemical structure. 

These unmodified and transparent copolymers have a Tg and deflection 

temperature under load in excess of 125°C. The copolymers can be toughened by 

incorporating a graftable rubber during polymerisation or reinforcement with glass 

fibre, which can be obtained by melt blending of polymers. The SMA copolymers 

flow easily though they have higher setting temperature than PS [95]. 

SMA copolymers exhibit good properties such as low shrinkage, good heat 

resistance, good rigidity, good dimensional stability, etc .. They have been used in 

many applications, e.g. as a car roof lining, car heating, ventilating systems and 

transparent microwave packing materials. These copolymers are mostly 

incorporated/blended with non-polar polymers to improve the base polymer's 

functionality [95). 
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2.8.4 Non-Reactive Compounding 

a) Study of Miscibility 

Polymer pairs are usually immiscible due to their low entropy of mixing, LIS, in 

comparison to small molecules. Any small, unfavourable heat of mixing, positive 

jjJ{, would prevent miscibility. Blends that are homogeneous at the molecular level 

are known as miscible. A miscible (i.e. compatible) polymer blend has to be a 

mechanically processable blend that resists phase segregation. Most blends are 

immiscible, (i.e. non-compatible), to a certain degree, with complex phase 

morphologies that depend on the chemical character of the components and their 

individual rheological properties. 

Polymer blends can be investigated for miscibility in several ways [99 - 101]. One 

such method is the analysis of Tg, by far the most popular and convenient way to 

study the miscibility. When the blend is immiscible, the Tg values of both 

constituent polymers will be observed, whereas if the blend is miscible, then only 

one Tg is observed. However, this method may have its limitations if the Tg values 

of both polymers are close or if there is a small quantity of one polymer in the 

blend, then the resolution of the Tg values may be difficult. The crystalline melting 

point of a polymer, Tm, can also be used to indicate miscibility by measuring the 

depression in the melting points of crystalline polymers in blends. This can be used 

to calculate the interaction parameter. Optical clarity is usually an indication that 

two polymers are miscible. This, however, can be deceptive if the refractive indices 

of both components of the blend are similar. The miscibility of polymer blends can 

also be followed by the analysis of AFM [102] and IR spectroscopy [103]. All these 

analyses give different indications of the extent of miscibility because they examine 

different physical properties. 
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b) Non-Compatible Blends 

Block and random copolymers, as reactive compatibilisers, have successfully 

turned several otherwise incompatible blends into useful polymer blends. The 

choice of a copolymer is based on the miscibility of its segments with the blend 

components. Cho et. al. [1041 have investigated the effects of SMA random 

copolymer, a reactive compatibiliser, on the morphology and rheological behaviour 

of immiscible amorphous polyamide/styrene acrylonitrile (PAlSAN) blends. Their 

results showed that finer dispersions of SAN domains with a rather narrow 

distribution, were obtained when SMA was added to the blend. Similarly, the effect 

of SMA copolymers on interfacial adhesion between amorphous polyamide and 

PS, was reported by Lee and co-workers [1051. They have reported that when 

SMA layer was formed between the amorphous polyamide and polystyrene, it 

significantly improved the interfacial fracture toughness in comparison with the low 

fracture toughness of a polyamide/PS interface. 

c) Compatible (or Partially Compatible) Blends 

Among polymers that are chemically dissimilar, there are only a few pairs in which 

compatibility has been demonstrated over the whole range of compositions. Once 

such example is the blend of PS with poly(vinyl methyl ether) (PVME). It was 

reported that both compatible and partially compatible PS-PVME could be obtained 

by choosing suitable solvents for a film casting process [106]. Mixtures cast from 

solvents such as trichloroethylene or chloroform at 25°C, form two phase systems, 

which retain properties characteristic of the homopolymer components and 

remained two phase systems when heated. In contrast, mixtures cast at 25°C from 

solvents, such as toluene or xylene, form visually homogeneous or compatible 

systems, but upon heating above 125°C, visual phase separation occurs. 
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There is a question as to whether the compatible or the incompatible mixture 

represents the thermodynamically preferred state. Kwei et. al. [107) investigated 

this thermally induced phase separation process in order to determine the 

interaction parameter of these two polymers, PS and PVME. There have been 

other studies on the molecular weight effects [108), entanglement effects [109) and 

shear induced effects [110, 111) on this phase separation mixture and the reader is 

referred to the references listed for more details. 

2.8.5 Reactive Compounding 

Reactive compounding typically involves the used of free radical grafting in the 

mixing process. The initiation mechanism involves the production of a free radical 

via the initiator peroxide, allowing a site for grafting of functional groups onto the 

polymers [112], see Figure 2.8. There are several options for functionalising 

common non-polar polymers, such as PP [112,113) using maleic anhydride and 

acrylic acid in the presence of dicumyl peroxide as free radical initiator, and PE 

[114], using styrene and maleic anhydride in the presence of 2,5-dimethyI-2,5-<li-(t

butyl peroxy), an organic peroxide, as the initiator. 
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Figure 2.8 Basic steps in free radical initiation mechanism. 

PS homopolymer has limited capability without the incorporation functional groups. 

Desirable physical and mechanical properties of PS, such as thermal stability and 
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mechanical strength, have been obtained by anchoring specific functional groups 

[115 - 117]. The free radical reactivity of PS is less than that of polyolefins, which 

may suggest why chemical modification of PS homopolymer, such as cross-linking, 

through reactive processing using a free radical initiator, is not a very common 

practice. Despite that, PS does have a certain degree of free radical reactivity 

which was confirmed in the work of Hajian et. al. [118]. 

Functionalised PS having groups such as epichlorohydrin, epoxy, acetyl, C=C 

double bond and carboxyl, located on the aromatic ring, where grafting took place 

in the presence of various Lewis acid catalysts have been attempted and where 

adhesion and corrosion resistance capabilities have been studied [119]. The 

researchers observed that the polymer's adhesion strength and corrosion 

resistance increased with the quantity of bonded functional groups to polystyrene. 

It was also observed that the quantity of the functional group bonded to the 

aromatic ring of polystyrene depends on both the nature of the functional groups 

used and the activity of the cationic catalysts. 

2.9 SURFACE MODIFICATION METHODS 

2.9.1 Introduction 

Surface modification of polymers has become an important research area in the 

plastics industry and subsequently used in mass manufacture. Commercial 

commodity polymers usually have good bulk properties and are inexpensive. Many 

industrial applications such as adhesives, biomaterials, protective coatings, etc., 

require these polymers to have special surface properties. However, many 

polymers are relatively inert and have low surface energy values, see Table 2.2, 

which means their surfaces are diffICult to wet and bond. In addition, other 

problems, such as the presence of contaminants and other weak boundary layer 
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materials, may also interfere and weaken the bonding strength of the polymer and 

adhesives. 

Surface treatments of polymers may be used to change surface chemical 

composition, increase the surface energy, modify the crystalline morphology, 

change surface topography or remove contaminants and other weak boundary 

layers. Such treatments have been designed to alter chemical and physical 

properties of polymer surfaces without affecting bulk properties. Frequently 

employed surface modification treatments include plasma treatment, corona 

treatment or electrical discharge treatment, flame treatment, abrasion treatment, 

chemical treatment, compounding, surface grafting, etc. some of which will be 

discussed in the following sections. 

2.9.2 Plasma Treatment 

Plasma treatment is a technique where a plasma is produced by ionising a gas 

with a high electric field, see Figure 2.9. Plasmas can be generally described as 

gases that contain charged and neutral species, including electrons, positive and 

negative ions, radicals, atoms and molecules [120, 121]. 
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Figure 2_9 Schematic of plasma treatment unit_ 

The ions and radicals are formed by collisions of electrons and ions. Therefore the 

charges in plasma will gain energy in the presence of an appropriate electric field, 

see Figure 2.10 for the mechanism of plasma treatment [6]. 

---... 02-

-----. 0+0-

activated oxygen 

Free radicals produced during plasma treatment of polyolefins. 

Further reactions of alkyl radical R may be written as, 
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R" + O2 ---.. ~ ROO" 

ROO· + H" ~ROOH 

A variety of functional groups may be generated from hydroperoxides 

Figure 2.10 Mechanism of oxygen-plasma treatment. 

Advantages of plasma treatment include: 

• Modifications are confined to the surface layer without modifying the bulk 

properties. 

• Excited species in gas plasma can modify the surface of all polymers. 

• Choice of gas used can allow introduction of particular functionality to a 

treated surface. 

• There is no residual solvent on the surface, or swelling of the substance, 

otherwise associated with wet techniques. 

• Treatment is fairly unifonn and can be used for three-<iimensional objects. 

However, disadvantages include: 

• Treatment must be carried out in vacuum and this increase the cost and 

duration of the operation. 

• The optimal parameters developed for one system usually cannot be 

adopted for another system. 

• It is difficult to control the precise number of functional groups fonned on a 

surface. 

Various plasma gases include air, oxygen, nitrogen, methane, argon and 

halogenated vapours like CF 4 [122 - 126) have been employed to increase the 

hydrophilicity of surfaces usually through free radical surface oxidation. Marchant 

et. al. [123) have reported that oxygen incorporation after nitrogen or argon plasma 

treatment could occur through the post-treatment with atmospheric oxygen or 
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water. Lhoest et. al. [127] had developed a plasma-based method to promote cell 

adhesion via a microelectronic photosensitive resin that was spin coated onto PS 

substrates. Characterisation by surface analysis techniques indicated that 

hydrophilic paths were created on the otherwise more hydrophobic PS substrate. 

The characterisation of plasma treated surfaces usually requires the use of 

surface-specific techniques, such as XPS, SSIMS and contact angle measurement 

[128]. Vuen and Marchant [129] studied the plasma polymerisation on a plasma 

polymer-modified PE surface, which was analysed showing a significant water 

contact angle hysteresis and a much lower advancing contact angle than that of 

unmodified polyethylene. Foerch and co-workers [130] have studied the effect of 

remote nitrogen plasma on PS and PE, in addition to other treatments of corona 

and ozone post plasma processing. They observed that when the plasma reached 

a steady state composition of oxygen and nitrogen, the functional groups continued 

to change, as monitored by XPS. Dupont-Gillain et. al. [131] were able to 

detennine the presence of various oxygen-containing groups, including carboxyl 

functionals on the surface of oxygen plasma treated PS using surface analysis 

methods. 

2.9.3 Corona-discharge Treatment 

Corona discharge is a relatively simple and inexpensive process, and as a result, a 

popular industrial technique especially for the high speed surface treatment of 

continuous polyolefin films. In a corona discharge system, plasma is produced 

when air is ionised by a high electric field. This treatment causes various chemical 

and physical changes on a polymer surface, so by improving bondability and 

printability. The general set-up involves an electrode connected to high voltage and 

a roller that carries a film, as shown in Figure 2.11. 
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Figure 2.11 Schematic of corona-discharge treatment. 

An electrical discharge is struck to the sample from an electrode at high voltage 

several millimetres above the surface. The reactions between the polymer film and 

corona discharge then involve the generation of free radicals, fonned by the high 

energy particles such as electrons, ions excited neutrals and photons [89]. These 

radicals react rapidly with atmospheric oxygen to fonn hydroperoxides from which 

different functionalities are produced, including -OH, >C=O, -COOH, etc .. The 

likely mechanism is shown below, 
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RH --.. , R'+ H' 
R'+ 02' __ , ROO' 

ROO'+H'--_, ROOH 

Figure 2.12 Mechanism of corona-discharge treatment in an oxygen 

containing gas. 

The most important process parameters that control the surface properties of a 

treated film include the power consumption, air-gap thickness, film speed, chemical 

nature of the gas and treatment temperature. The nature of the polymer also plays 

an important part in determining the optimal setting for each parameter. For 

example, corona treatment has been found to become less effective in enhancing 

self-adhesion of PE films when the density of the polymer is increased [132]. 

Additives, such as slip agents and antioxidants, can adversely affect corona 

treatment over a period oftime [133]. As treatment is on the exposed surface only, 

if additives migrate to the polymer's surface before treatment is carried out, then 

inferior adhesion may result. This is because there will be a tendency to chemically 

modify the additives rather than the underlying polymer chains. 

Corona treatment has also been used to modify the surface of PS film to improve 

its molecular interaction with lacquers, paints and adhesives [134]. Bousmina et. al. 

have investigated the effect of corona treatment and block copolymer addition on 

the rheological properties of PS/PE blends [135]. The reader is referred to these 

papers for more details. 
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2.9.4 Flame Treatment 

Another commonly used surface modification method is flame treatment, which is 

more economical, in comparison with plasma and corona discharge treatments. 

Flame treatment is usually used for thicker sectioned articles, particularly, blow 

moulded plastics bottles and car bumpers (i.e. use more on irregular shapes). A 

schematic representation of flame treatment is shown in Figure 2.13. 

The process uses a ribbon burner. Single or double row ribbon burners can be 

used. A mixture of compressed air and fuel gas is supplied to the burner. Natural 

gas (predominantly methane), propane, butane, coal gas or any mixture of these 

can be used as a fuel gas. The object is rotated slowly around a central axis so 

that every point of its surface is passes through the flame. For car bumpers, a 

moving burner is passed over the bumper surface. 

Air 
line 

Flame inner core 

Gas line 

Figure 2.13 Schematic of flame treatment. 
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Flame treatment is employed to promote surface oxidation. thereby increasing the 

polarity of the treated surfaces by the development of oxygen-rich functionals and 

so improving the wetting/adhesion characteristics. Important variables for flame 

treatment are air-to-gas ratio. the total flame rate (Le. flame intensity). the distance 

from the flame inner cone tip to the surface to be treated. contact time, i.e., the 

time required for a single point on the surface to pass through. The effect of these 

variables for flame treatment of pp was studied by Sutherland et. al. [136]. They 

found that optimum surface oxidation and water wettability was achieved at an air

to-gas ratio of -11 :1. In addition the increase in flame intensity increased the level 

of surface oxidation. however, the degree of water wettability did not continue to 

improve. 

Garbassi and co-workers [137] found that the flame treatment of pp resulted in 

large increase of adhesion of two pack urethane or acrylic paints to the polymer. A 

study of flame treatment on rubber-modified pp showed that an initial rapid 

decrease in water advancing contact angle with surface oxygen concentration, the 

water advancing contact angle was found to level off. It was attributed to the 

reorientation of functional groups, incorporated during flame treatment, away from 

the surface. 

The flame treatment introduces functional groups such as hydroxyl, carbonyl, 

carboxylic acid, etc. onto the polymer surface, in a similar manner to corona 

discharge treatment [35]. The mechanism of the flame process is quite complex 

and many species are present in a flame. It is probable that the flame treatment 

follows a free radical process and this resembles plasma and corona treatment. 

The process could involve the attack of flame radicals on surfaces. A detailed 

possible mechanism of the flame chemistry has been attempted by Popat [138]. 
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2.9.5 Chemical Etching 

Chemical treatment has been used in industry to treat large objects that would be 

difficult to treat by other commonly used industrial techniques, such as flame and 

corona discharge treatments. Chemical etchants are used to convert smooth 

hydrophobic polymer surfaces to rougher hydrophilic surfaces, by dissolution of 

amorphous regions and by surface oxidation. The choice of etchant is polymer 

dependent, as very different morphologies can be produced from using the same 

chemical. Various strong oxidising reagents have been used for surface 

pretreatments such as chromic acid, concentrated sulphuric acid fuming and nitric 

acid, of which chromic acid is of interest and will be reviewed here [139,140]. 

Chromic acid has been the most widely used etchant for polyolefins and other 

polymers. Several chromic acid formulations have been used [6], e.g., 

1) K2Cr207! H20! H2S04 (conc. specific gravity = 1.84), 5:8:100 by weight 

2) cr03 ! H20! H2S04 (conc. specific gravity = 1.84), 100:145:100 by 

weight 

of which formulation 1 is most extensively and commercially used. The treatment 

can be carried out at room temperature or at an elevated temperature. Chromic 

acid has been used to selectively attack the rubber particles in ABS polymer [141]. 

It is also found that chromic acid etches both the amorphous and crystalline 

regions of pp at similar rates [142]. The etching rate is faster with PP, intermediate 

with branched PE and slowest with linear PE [139]. The surface topography of 

etched polymers can be observed by SEM and wettability angle measurement. 

XPS analysis has been used to detect hydroxyl, carbonyl, carboxylic acid and 

sulphuriC acid groups on chromic acid etched polyolefins [143]. 
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2.9.6 Polymer Grafting 

The grafting of monomers containing functional groups, to "backbone" polymers is 

a useful procedure to modify the polymer's surface. Two main methods are used. 

The first involves using pre-irradiation to introduce functionality, e.g. ozone or 

plasma, producing 00' and OOH groups on the surface. The polymer is then 

heated in the presence of the monomer. Garnet! and co-workers [144] have 

reported grafting a trypsin enzyme onto a polymer surface using photo-grafting, to 

produce a biocompatible material. Studies were also carried out on improving 

metal-polymer adhesion, using photo-grafling of monomers, like acrylamide and 

acrylonitrile that contain functional groups that interact with metals [145]. There has 

been research on photo-grafting used to improve the electrostatic properties of PS 

and PE films, as well as fabrics with water-soluble ionic polymers to dissipate static 

charge more quickly [146]. 

The second method is by the exposure of a polymer to a radiation source such as 

high energy electrons, plasmas, UV light or y-radiation, in the presence of a 

modifying monomer usually in a solvent. The radiation initiates a polymerisation 

reaction between the polymer and the solvated monomer [147]. Benzophenone 

and its derivatives are commonly used as photo-initiators. The grafting process 

involves two stages, see Figure 2.14. In the first stage, under UV radiation, the 

photo-initiator is excited to its first singlet state and then rapidly relaxes to a more 

stable triplet state through intersystem crossing [148]. Once in its triplet state, it can 

abstract a hydrogen from a donor, which is the polymer surface, and produce a 

macro-radical. Recombination leaves a stable intermediate. In the second stage, 

the macro-radical is regenerated by UV radiation in the presence of the monomers. 

The macro-radical then initiates polymerisation. The benzylhydryl radicals 

produced are too bulky to undergo polymerisation and so instead take part in 

termination reactions [149]. Figure 2.14 illustrates the grafting polymerisation. 
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Figure 2.14 Mechanism of grafting polymerisation. 

Photo-grafting can be conducted in either the vapour phase or liquid phase. 

Vapour phase grafting is typically carried out in a heated nitrogen atmosphere with 

the monomers in the vapour phase and in the presence of a polymer [150]. Liquid 
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phase or solution grafting, is performed in solution, where the solution contains the 

monomer, polymer and initiator dissolved in a solvent or mixture of solvents [151]. 

Factors affecting grafting include polymer crystallinity, which can slow the rate of 

grafting [152]. This is because crystallinity prevents penetration of the reaction 

mixture into part of the polymer. The stability of the grafted layer is also dependent 

on the mobility of the polymer chains. An important component in this method is 

the choice of solvent. It should be inert towards initiators and should wet the 

polymer surface. 

Characterisation techniques are performed as a mean of identification and 

quantification of the functionalisation of the grafted polymer surfaces, as in the 

case of Lopez-Gejo et. al. [153]. They have used ATR-IR (see Section 2.10.6), and 

contact angle measurements to analyse the functionalisation of PS surfaces 

undergone vacuum ultra-violet-photochemically initiated oxidation. They observed 

an increase of the concentrations of OH and C=O groups on the polymer's surface, 

both reaching limiting values. In another piece of work, AFM and XPS have been 

used to investigate the surface and sub-surface properties of PS substrates, 

having undergone irradiation treatment in oxygen (UV-ozone), in nitrogen (UV

only) and in the absence of UV (ozone-only) atmospheres [154]. 

2.10 SURFACE CHARACTERISATION 

2.10.1 Introduction 

Improvements in surface modification techniques cannot be made without an in

depth understanding of the chemical and physical properties of polymer surfaces. 

Techniques commonly used for characterisation of bulk properties are not suitable 
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because only the chemical and physical properties within the first few nm of the 

surface are normally relevant for understanding surface and adhesion properties. 

In the study of adhesion science, a wide range of surface characterisation 

techniques are available, including X-ray photoelectron spectroscopy (XPS), static 

secondary ion mass spectrometry (SSIMS), scanning electron microscopy (SE M), 

atomic force microscopy (AFM), attenuated total reflection infrared spectroscopy 

(ATR-IR), contact angle measurement, etc., for determining both physical and 

chemical properties. To better understand surface treatment, a multi-technique 

approach should be used. Complementary information is provided by each 

analysis method, which can be built up to form more complete picture, than by 

using information from anyone technique alone. In this review, contact angle 

measurement, XPS, AFM and ATR-IR are briefly described. 

2.10.2 Contact Angle Measurement 

The thermodynamic principles have been reviewed in Section 2.3.9. Contact angle 

measurement has been used extensively in studying changes in polymer surface 

composition, caused by various surface treatment techniques, ageing 

characteristics of surfaces, migration of hydrophobic and hydrophilic functional 

groups in aqueous and non-aqueous environments, etc. [155, 156). 

The contact angle of a liquid on a solid surface is sensitive to the chemical 

composition of the top molecular layer of the solid. For example, time-dependent 

contact angle measurements have been employed to follow the dynamics of the 

surface modification of various polymeric surfaces of different hydrophilicities by 

Lee and Ruckenstein [157]. Similar research by Yasuda and Sharma used contact 

angle studies to monitor the effect of orientation and mobility of polymer molecules 

at su rfaces (158). 
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Flame treatment of polymers generally introduces polar functional groups to the 

surface. The increase in concentration of these polar groups tends to decrease the 

water contact angle, which it is thought to show the change in concentration of 

polar groups at the polymer surface [159,160). Wang et. al. were able to conclude 

that the results of surface contact angle of glycerol and water on PS films were 

dependent on the extent of uniaxial draw of atactic PS (161). The wettability of 

smooth surfaces of polyamide, poly(ethylene terephthalate) (PET) and PS using a 

variety of test liquids was studied by measuring the contact angle on the solids 

(162). These researchers have concluded that the wettability by polar hydrogen 

bonding liquids is increased by the presence of both the amide group and the ester 

group in the solid's surface. Their findings also showed that the wettability by 

halogenated liquids, is less affected by the amide and ester groups, due to these 

organic liquids' inabilities to fonn hydrogen bonds (162). 

2.10.3 X-ray Photoelectron Spectroscopy (XPS) 

XPS is generally considered a non-destructive and surface specific technique, 

which pennits reliable detection of surface compounds and offers accurate semi

quantitative measurements. In XPS, a sample is bombarded with a beam of soft X

rays (usually Mg Ka or AI Ka with energies of 1253.6 and 1486.6 eV, respectively), 

in ultra high vacuum (UHV) (163) and the area analysed is anything from 1 cm2 

down to 10 Ilrrf depending on the spatial resolution of the spectrometer used. X

ray absorption causes an electron to be ejected from one of the core electronic 

levels. This photoelectron escapes with a certain kinetic energy (KE), which is 

govemed by the binding energy (BE) of the core-electron in the atom and the work 

function of the spectrometer (rp) according to, 

KE = hv - BE - rp {2.25} 
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where h v is the X-ray energy [164). The photoemission process is shown 

schematically in Figure 2.15. For each and every orbital (e.g. C, N, 0), there will 

be a characteristic binding energy [164]. In addition, the intensity of each peak is 

related to the concentration of the atom within the sampled region via the 

sensitivity factors based upon predicted collision cross-sections and instrument 

dependent factors. 

The X-rays penetrate the sample and reach to a depth of j!rT1, however, the ejected 

photoelectrons will collide with other electrons and lose energy. Only 

photoelectrons that have come from atoms in the top atom layers (i.e. the first few 

nm), escape the sample with a characteristic energy. These are collected and 

energy analysed by the instrument. 

Soft 
X-rays 

L 2.3 (2p) 

L 1 (28) 

Figure 2.15 Schematic representation of the photoemission process. 

After a photoelectron has been ejected from a core state, the vacancy it leaves 

may be filled by another electron from another orbital. This process yields energy 

that can be transferred to another electron that, if suffiCient, will eject it and this is 

referred to as Auger emission. 
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With XPS, one can change the angle with respect to the surface that the electrons 

are collected, known as take-off angle, e. The vertical sampling depth, d, is given 

by: 

d 3A. sin () {2.26} 

Therefore, at low e, d is reduced. A is the attenuation length (inelastic mean free 

path), i.e. the distance that an electron will travel before they undergo collision and 

lose energy. Comparison of the relative peak intensities at high and low take-off 

angles can reveal the presence of thin surface layers [164]. 

It has been recognised that XPS is unable to resolve similar multiple functional 

groups. This is because the dynamic range of these chemical shifts is not sufficient 

to resolve similar functional groups such as C-O-O and C-O-H, which have very 

similar binding energies. 

Because of the ability of this equipment to distinguish different elements and 

different chemical configurations, XPS has been one of the main surface analysis 

techniques used to provide information on surface elemental compositions and 

functional groups, through chemical shift data for numerous polymeric systems. 

Thomas and co-workers have utilised XPS to investigate the influence of chemical 

composition and film casting solvent on the surface structure of polystyrene

poly(ethylene oxide) diblock copolymers. Their XPS results indicated that the 

compositions of the surfaces are significantly different from the overall bulk 

compositions [165]. XPS technique was used in the research work of PS's surfaces 

and has been reported elsewhere [130, 131]. 
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2.10.4 Chemical Derivatisation 

Even though XPS is an invaluable device for elucidating surface elemental 

composition, functional groups cannot always conclusively be identified from their 

chemical shift alone. In the chemical derivatisation technique, a specific 

derivatiSing reagent is made to react with a specific functional group, and in doing 

so labels it with a distinctive element, which was not previously present on the 

surface. This will increase the detection sensitivity when the elemental 'tag' has a 

higher photoelectron cross-section than C 1s, 0 1s or N 1s. Modified polymer 

surfaces contain a variety of functional groups and thus a variety of reagents have 

been employed. These include trifluoroacetic anhydride for hydroxyl groups; 

hydrazine and pentafluorophenylhydrazine for carbonyl groups; sodium hydroxide, 

triethylamine and trifluoroethanol for carboxylic groups [166). 

Subsequent XPS analysis then provides an estimate of the relative concentration 

of the functional group of interest. In principle, these reagents should react 

selectivity and analytically with only the intended functional group. In addition. the 

reagents should react full with those functional surface groups, however, this is not 

always the case. Trifluoroacetic anhydride had been used to determine the 

concentration of hydroxyl groups on chromic acid treated pp surfaces, where no 

hydroxyl groups were detected as researched by Sheng [6]. His work also showed 

that the removal of hydroxyl groups on flame treated homopropylene surfaces by 

the reaction with trifluoroacetic groups reduced the surface wettability but had little 

effect on the adhesion with epoxy adhesive. 

Vapour phase derivatisation is more frequently used than solution derivatisation as 

the latter can pose some problems. The use of solutions may increase the polymer 

chain mobility at the surface (Le. by solvation/plasticisation) and hence result in the 

movement of some functional groups into the bulk and away from the surface (e.g. 

by segmental rotation). In addition, the solvent can also dissolve low molecular 

weight materials from the surface. Reorientation of functional groups could also 
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arise if the surface is exposed to high temperatures, long reaction times and 

prolonged washing after reaction. Solution derivatisation has been studied by 

Everhart and Reilley [167], where a number of reactions were used to analyse 

various functional groups on PE surfaces modified by plasma. These researchers 

used NaOH to derivatise acid groups but found that sodium incorporation was not 

reproducible and was dependent on washing conditions. 

The vapour phase method poses fewer problems than seen with the solution 

phase method. Dickie and co-workers [168] have used trifluoroacetic anhydride in 

the vapour phase to derivatise a hydroxyl containing polymer. Their findings have 

suggested that the hydroxyl groups existed in an orientation away from the surface 

and that this had not been disturbed by the derivatisation. Gerenser [169] identified 

and quantified hydroperoxy, hydroxyl, carbonyl, epoxy and acid groups on corona 

discharged treated PE surfaces. Briggs [170] has summarised a variety of gas 

phase derivatisation reactions for different functional groups. As contamination is 

much less likely to be introduced in the gas phase, vapour is preferred over liquid 

derivatisation. Several investigations on vapour phase derivatisation and selectivity 

functional groups can be found elsewhere [147,171 -173]. 

2.10.5 Atomic Force Microscopy (AFM) 

AFM is part of the family generally known as scanning probe microscopy (SPM). 

This technique can produce three-dimensional images of solid surface at very high 

resolution, and is suitable for imaging non-conducting samples, such as polymers 

and ceramics. In recent years, AFM has shown great promise for producing 

surface polymer morphological information [174 - 176]. 

In one study, the surface structure of PS and poly(2,6-dimethyl-1,4phenylene 

oxide) films were studied with AFM before and after the application of a tensile load 

[177]. Before the application of strain, the surfaces of the films were smooth. 
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Immediately after the application of strain, the surfaces of the stretched polymer 

film remained smooth. However, topographic bumps were detected by AFM on the 

stretched polymer films as ageing time increased. The technique has also been 

applied to study the surface structure of copolymers [178]. morphology of 

electrochemically induced polymerised poly(phenyl oxide) film [179]. AFM has also 

been used to study the wettability of PS microspheres, of various radii, with water 

[180]. 

The AFM probe consists of a silicon or silicon nitride tip. that is >10 nm in diameter, 

located at the free end of a cantilever onto which a laser beam is focussed, see 

Figure 2.16. The beam is reflected from the back of the cantilever while the tip is 

scanned across a surface, to the photo-sensitive detector where the deflections are 

detected. The deflections allow a computer to generate a map based on the 

feedback infonmation. The main purpose of this instrument is to quantitatively 

measure surface roughness with a nominal 5 nm lateral and 0.01 nm vertical 

resolution on all types of samples. 
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Figure 2.16 Schematic diagram of a typical atomic force microscope. 

Several types of forces contribute to the tip deflection of the cantilever. The forces 

most commonly influencing the tip are Van der Waals. AFM is becoming the 

companion technique to XPS in polymer surface analysis, due to its high resolution 

and visual image [181). Functionalisation of the tip itself has led to interesting 

developments that enable different force and functional groups to be imaged [181). 

The interaction of the tip and the sample surface can be classified as contact mode 

(repulsive), non-contact mode (attractive) and tapping mode. A brief description of 

these various imaging modes used in analysis is given in Figure 2.17. 
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Figure 2.17 Force/distance curve of AFM tip/sample interactions. 

a) Contact Mode AFM (C-AFM) 

In this mode, the tip makes soft 'physical contact' with the sample. The tip is 

attached to a cantilever spring. As the sample is scanned, the contact force allows 

the cantilever to bend and follow the changes in topography. In this mode, the 

sample may be damaged by contact with the tip. Other forces may also be present 

during contact mode scanning. Under ambient conditions, a layer of adsorbed 

gases, consisting mainly water, covers the sample surface. When the probe 

touches this contaminant layer, there is a formation of meniscus. Operation can be 

done with the sample and cantilever immersed in aqueous solution. 

58 



Literature Survey 

b) Non-Contact Mode AFM (NC-AFM) 

In NC-AFM, the tip oscillates at resonance frequency above the surface. This 

provides a method for measuring topography with no contact from tip and is useful 

for soft samples. However, the Van der Waals forces sensed at this distance are 

much smaller than the C-AFM and consequently are much harder to monitor. 

However, these attractive forces can alter the amplitude, phase and frequency. 

This mode is usually performed in ultra high vacuum (UHV) in order to avoid the 

formation of menisus with adsorbed water. 

c) Intermittent Contact Mode AFM (IC-AFM) 

This is also known as tapping mode that allows high resolution topographic 

imaging of sample surfaces that are easily damaged or difficult to image by other 

AFM techniques. Intermittent contact imaging combines, to a certain extent, the 

advantages of contact and non-contact modes. There is a larger oscillation of 

probe so that it strikes the surface at high frequency of 50 to 500 kHz. During 

tapping mode operation, the cantilever oscillation amplitude is maintained constant 

by a feedback loop. Unlike contact and non-contact modes, when the tip contacts 

the surface, it has sufficient oscillation amplitude to overcome the tip-sample 

adhesion (lateral) forces. Contact and tapping modes were used to study the 

surface morphology of solvent cast PS film, where wavy features are observed to 

form with a predominantly perpendicular orientation with respect to the scan 

direction [182]. 

The disadvantage of AFM is that the area of analysis is small, about 0.1 by 0.1 

mm, as opposed to conventional profilometry that can analyse area much smaller 

than 0.1 mm, hence may be looking in on representative areas. Nonetheless, AFM 

is a quantitative technique, in particular, the use of Ra parameter of roughness in 
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this study. Ra is the arithmetic roughness average of the absolute values of the 

measured profile height deviations [183], given by: 

1 
~I {2.27} n 

where n is the number of height positions along the line profile, Zj is the height at 

position i and z is the average height. In addition, there are other parameters that 

are available to fully describe the surface factor such as the spacing parameter, 

Rsm , and other peak roughness values such as Rbn , Rq and Rmax [183]. It is 

important to note that the Ra value does not fully describe the surface feature but it 

does give a widely used indication of roughness. However this necessarily does 

not indicate the maximum roughness of a surface. 

2.10.SAttenuated Total Reflection Infrared Spectroscopy (ATR-IR) 

Infrared (IR) spectroscopy is one of the oldest spectroscopic techniques. It is the 

most widely used analytical technique for routine analysis of organic compounds 

and as an important research tool. There are many different forms of IR 

spectroscopy such as transmission, emission, photoacoustic and diffuse 

reflectance (DRIFT), to name but a few [184, 185]. The many fonns of IR also 

include ATR, which will be the only one discussed here. 

ATR uses the internal reflection of radiation in a medium. It requires an infrared 

transparent material with a refractive index (n) higher than 2.5. Single or multiple 

reflections can be used. Typical materials include Ge, ZnSe, Si, KRS-5 and 

sapphire all of which are used because of their transparency in the wide range of 

the mid-infrared region [186]. 
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Figure 2.18 Schematic diagram of a multiple reflection ATR system. 

As illustrated in Figure 2.18, a sample is placed in contact with the optical dense 

prism and the radiation is totally internally reflected in the prism. The reflected 

radiation continues to reflect until it exits from the prism. At the point of reflection, 

the radiation leaving the prism forms an evanescent wave, which is an interference 

wave of the incident and reflected waves. The amplitude of the evanescent wave in 

the rare medium (sample) decays exponentially with the distance from the 

boundary with the denser medium (prism). When the IR absorbing sample is in 

contact with the prism, this evanescent wave interacts with the sample and causes 

the attenuation of the propagating IR beam inside the ATR prism. In this case, an 

infrared spectrum is obtained by detecting the absorbed radiation at the exit of the 

prism. 

The penetration depth is a function of the refractive index ratio between the prism 

and the sample, angle of incidence and frequency. It is possible to change the 

penetration depth by changing these parameters and this feature is used to provide 
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a depth profile. The penetration depth, d" can be calculated using Equation 2.28 

[186], 

d, = 

2 {Sin 2 

0 - (:J}' 
{2.28} 

The angle of incidence, 0, is 

. _, {Sin (OIRA OIRE)} sm ---'=-'::::"---"-"= 

n p 

{2.29} 

where A. = wavelength 

n, = refractive index of sample 

np = refractive index of prism 

~RA = angle designated on the scale 

~RE = angle of the prism face 

IR has been used to confirm the existence of maleic anhydride at the terminated 

anhydride functionalised PS chain in the range of 1700 to 1900 cm·1 [187]. Bulk 

syndiotactic PS undergoes crystallisation, which leads to the formation of a or ~ 

form crystals or the mixed (a + fJJ form crystals, which may not be, identify clearly 

from differential scanning calorimetry (DSC) thermograms [188 - 191]. IR 

spectroscopy had been used as a simple and direct method for detecting the 

complicated bulk syndiotactic polystyrene crystallisation behaviour. Most 

importantly, using this technique, researchers were able to analyse the phase

transformation between the a and ~form crystal during the cold crystallisation 

heating treatment process [192]. 

62 



Experimental 

CHAPTER 3 EXPERIMENTAL 

The experimental chapter is divided into three sections. The first section comprises 

the description of the manufacture and grade of the materials and chemicals used 

in this work. These include the polystyrene (PS), used as the main and only 

standard polymer here. Low molecular weight copolymer, styrene maleic anhydride 

(SMA) and poly(vinyl methyl ether) (PVME) were used. Solvents and other 

chemicals, like peroxide initiator, used in the sample preparation for the analyses 

are listed as well. 

The second section gives details of the experimental work and procedures. These 

include flame and chromic acid treatments, non-reactive and reactive compounding 

and photo-induced vapour grafting. Other experimental details, like spin coating, 

chemical derivatisation and lapshear joint preparation had been described as part 

of the complete analysis. 

The final section describes the methods of analysis, i.e. the experimental 

equipment and conditions used. Many different techniques were used to analyse 

the samples. XPS was used to examine the surface elemental composition on the 

samples, before and after treatments and modifications, aided by the analysis of 

contact angle measurement. Adhesion joint strength was performed to evaluate 

adhesion between the various surface treated and modified samples. Other 

techniques, such as ATR-IR and AFM were used to try and give a complete and 

coherent picture of what was happening 

63 



Experimental 

3.1 MATERIALS AND CHEMICALS 

3.1.1 Standard Polymer 

Polystyrene (PS) homopolymer (ex Nova Chemicals) was obtained in the form of 

·crystal" pellets, although the polymer is approximately 100% amorphous. The 

polymer is high heat extrusion and injection grade 202. 

3.1.2 Styrene Maleic Anhydride (SMA) Copolymers 

Low molar mass styrene maleic anhydride copolymers (SMA) (ex Elf Atochem

Atofina) were obtained in the solid-flakes form. The copolymers were supplied with 

molar ratio of 50:50, 66:34 and 75:25 styrene to maleic anhydride. 

3.1.3 Solvents and Other Chemicals 

Heptane, 2-propanol and methanol (ex Fischer Chemicals, general laboratory 

reagent grade) were distilled and stored in chromic acid cleaned glass storage 

bottles. 

Tetrahydrofuran (THF) and toluene (ex Fisher Chemicals, general laboratory 

reagent grade) were used as purchased. Sodium hydroxide and sodium sulphate 

(ex Fisher Chemicals, specified reagent for laboratory work) were used as 

purchased. SulphuriC acid (ex Fisher Chemicals, specific gravity = 1.84, 98% 

purity) was used as purchased. 

Styrene (ex Aldrich, 99% purity), di-tert-butylcarbodiimide (Di-tBuC) (ex Aldrich, 

99% purity), pyridine (ex Aldrich, 99% purity), maleic anhydride (ex Aldrich, 
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powder, 95% purity), benzophenone (ex Aldrich, 99% purity) were used as 

purchased, unless stated otherwise. Trichloroethylene (Aid rich , 98% purity) and 

potassium dichromate (ex Aldrich, 99%) were used as purchased. 2,2,2-

trifluoroethanol (TFE) (ex Fluorochem Limited) was used as purchased. 

Epoxy adhesive used in the adhesion tests was Araldite 2011 AfB Vantico (AW106 

and HV953U) supplied by Europia Limited. Poly(ethylene terephthalate) (PET) film 

(Melinex) was used as supplied in laboratory. 

Organic peroxide, 1 ,3-bis(tert-butyl peroxy isopropyl)benzene, Tradename: Varox® 

802-40C (ex R.T. Company, Inc) in powder form, was used as purchased as an 

initiator for reactive compounding. Poly(vinyl methyl ether) (PVME), Lutonal M 40 

(ex BASF, 50% in water) was used as purchased. 

The liquid used for contact angle measurement was doubly distilled water 

produced in laboratory. 

3.2 EXPERIMENTAL WORK 

3.2.1 Sample Preparation 

A melt pressing method was found to be the most suitable for preparing a flat, 

contaminant free surface. After much experimentation the following method was 

found to be optimum. A plaque of polymer 15 mm x 15 mm x 2 mm thickness was 

made by compression press in a mild steel mould, sandwiched between sheets of 

PET films as a release aid. Prior to use, the PET was first cleaned with distilled 

heptane in an ultrasonic bath for 15 minutes and then dried, followed by cleaning 

with distilled 2-propanol, using the same procedure as for distilled heptane. The 

purpose of cleaning PET film was to remove any silicone molecules with the non-
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polar heptane, and elimination of any polar molecules and cyclic trimers on the 

surface with 2-propanol solvent. PET film has been shown to be free of 

transferable contamination after washing in an ultrasonic cleaner with fresh organic 

solvent such as methanol, acetone or n-heptane for 15 minutes (164). 

Glass microscope slides were also used to sandwich PET film (see Figure 3.1), in 

order to provide an evenly flat surface for the plaque, which is very important for 

contact angle measurement. The pressing was done at 145°C, a temperature 

above the PS Tg of which is 100°C and below the meHing point of PET, - 220°C. 

This was to decrease the chance of transfer of low molecular weight materials from 

the PET to PS surfaces, hence avoiding changes in surface chemistry. The 

polymer pellets were left to pre-heat for 30 minutes, after which the moHen PS was 

pressed at 2.5 MPa for a further 30 minutes, thereby ensuring the elimination of air 

voids or bubbles. 

In cases where an extraction process was canried out, the samples were refluxed 

by soxhlet extraction in methanol solvent for at least 6 hours. 

Hot press 

Metal plate 

1111111111111111111111111111111111111111111111111111111111111111111111111111111 Glass slide 

w///I/#////$//'//m'/P/hW"w////.J PET film 

~:%8~:~ Mild steel mould incorporating PS samples 

W-$.#.@WtW##!?'IY/#'tWM PET film 

1111111111111111111111111111111111111111111111111111111111111111111111111111111 Glass slide 

Metal plate 

Hot press 

Figure 3.1 Assemblies of the moulding of PS plaques. 
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3.2.2 Surface Cleaning of Samples 

Each of the resulting PS plaques with smooth surfaces was then cleaned with 

distilled heptane in an ultrasonic bath for 15 minutes and dried. The sample was 

then washed with distilled 2-propanol in an ultrasonic bath again for 15 minutes, 

dried and stored in chromic acid cleaned sample tubes. All glassware used for 

cleaning the PS plaque was chromic acid washed and dried thoroughly. PS 

samples were handled with solvent-cleaned tools and the use of a glove was 

avoided, to prevent contamination. 

3.2.3 Sample Pretreatments 

a) Flame Treatment 

PS samples were flame treated as shown in Figure 3.2. The treatment employs a 

double row ribbon burner (ex WSA Components), a conveyor chain system and an 

air/methane mixture supplying system. In order to produce an evenly treated 

surface, the burner which consists of two rows of closely spaced jets, was inclined 

at an angle of -12°. 

The burner is fixed to a base with a toothed pinion, which engages with a non

movable rack. The base with the burner can be moved forward or backward to 

facilitate the variation of the distance from burner to the polymer film surface. 

Flame contact time, i.e. the time required for a single point on the polymer surface 

to pass through the flame, can be varied by changing the speed of the conveyor 

chain via a control box. 
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Figure 3.2 Schematic diagram of flame treatment rig (used in laboratory). 

A mixture of air (supplied at -0.3 MPa) and methane gas (supplied at -2x10-2 

MPa) was fed into the burner. Flow rates of air and methane were monitored by 

two flow meters that were calibrated for air at standard temperature and pressure 

(S.T.P) by the manufacturers. Further calibration of the flow meters was carried out 

[6]. The air to methane ratio or flame intensity can be varied by altering the flow 

rates of air and methane. 

In this research, the flame treatment conditions employed were based on the total 

flow rate of 40 I min-1
, following from Sheng's earlier work in flame treatment [6], to 

generate relative high oxygen concentration. The air:methane ratio was set at 11:1 
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and hence the air and methane flow rates (after flow meter calibration (6)) are 22.4 

I min-1 and 2.6 I min-1
. 

The distance between the inner cone tip of the flame and the sample's surface was 

set at 0.01m and the flame contact time was controlled at 0.04 seconds, which was 

employed as a safe maximum to avoid overheating the polymer, and causing 

distortion and even melting (6). A PS plaque was mounted onto aluminium plate by 

double-sided adhesive tape. The plaque sample was passed through the flame. 

The plaque was flame treated in 8 rotation positions in order to achieve a uniformly 

treated surface. The treated sample was then removed using cleaned metal 

tweezers and kept in a sealed sample tube. 

b) Chromic Acid Etching 

Chromic acid solution was prepared as follows. It consisted of 5 parts (w/v) of 

potassium dichromate in 8 parts (w/v) of distilled water. While stirring, 100 parts of 

concentrated sulphuric acid (w/v) was slowly added to the mixture. The clear, 

purple red solution was then cooled down to room temperature and stored in a 

clean glass bottle. 

Each PS plaque was dipped in a solution of chromic acid in a sample tube for 15 

minutes at room temperature. The etching time was determined, based on earlier 

research (6) which had shown that an etching time of 15 minutes is adequate for 

PP. Thereafter, the treated plaque was removed and washed once with doubly 

distilled water before rinsing thoroughly in doubly distilled water in a beaker in an 

ultrasonic bath for 15 minutes. Fresh chromic acid solution was used for each 

sample etching. The treated plaque was then transferred to sample tube and left to 

dry in fumehood ovemight, before storing in sealed sample tube. 
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3.2.4 Compounding 

The compounding was carried out on a Haake Rheocord 90, a mini mixer that is a 

computer controlled torque rheometer. Using the rheometer it is possible to set and 

control the temperature and rotor speed. PS extracted pellets and SMA 

copolymers were individually ground into powder form, using a clean coffee 

grinder. The purpose was to encourage even mixing and distribution of the 

copolymers in the PS during compounding. 'Prior to PS-SMA mixing, the 

rheometer's chamber was flushed with powder form PS at 150oC, in order to 

remove any contaminate left behind in the mixing chamber due to previous mixing. 

The rheometer was set at 2000C for non-reactive compounding. SMA copolymers 

of 0.1%, 1% and 10% of the total weight (50 g) were each measured out and pre

mixed with PS before adding into the pre-heated chamber. The mixing was carried 

out for 5 minutes at 50 rpm rotation speed. The mixture was removed and allowed 

to cool, then re-ground into powder and pressed into plaques for analysis. 

For reactive compounding, the peroxide initiator concentration used was 0.1 % by 

weight, that was thought to be an adequate amount needed for the process [113]. 

The initiator was pre-mixed together with the required copolymer and PS before 

adding to the mixing chamber. The temperature was set at 1BOoC (initiator 

peroxide may degrade above 2000 C) and the mixing was carried out for the same 

duration and rotation speed. 

PVME of 1 % and 10% of the total weight (50 g) were prepared and dissolved in 

toluene in the ratio of 1 :2. The mixture was mixed and stirred with the powder form 

PS, to ensure as even distribution as possible. The final mixture was held in 

vacuum for an hour at BODC, i.e. below the Tg of PS, in order to remove the solvent. 

The resulting dried lumpy mixture was then left exposed overnight in a fumehood, 

before grinding into powder. The PS-PVME mixing was then carried out at under 

the same conditions as the PS-8MA non-reactive and reactive compounding. 
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Figure 3.3 Flow chart illustrating the compounding procedures. 

3.2.5 Photo-induced Vapour Grafting 

Stabiliser was removed from the styrene monomer by washing with sodium 

hydroxide, and the styrene was dried with sodium sulphate. These processes were 

all carried out in the fumehood. The de-stabilised styrene monomer was then 

stored in a sealed container and kept in a refrigerator at - _20°C until further use. A 

solution of benzophenone in methanol (0.2 M) was prepared [148, 193]. Each PS 

plaque was immersed in the solution for 2 hrs, so as to allow the benzophenone 
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photo-initiators to diffuse into. The samples were then dried overnight exposed in a 

fumehood. The UV-induced apparatus and the grafting experiment were carried 

out inside a wooden box, which is sealed with black paper and aluminium foil to 

prevent direct eye contact with the UV light and with the operator wearing an anti

UV safety goggles. 

Big glass 
petri dish 

Small glass 
petri dish 

UVfilament 

H,Oin 

-~ .1 1 
/~. jP=J

r
, H,Oout 

Sample Styrene maleic 
anhydride monomers 

-- N2 in 

- N2 0ut 

Figure 3.4 Schematic diagram of UV-induced apparatus set up. 

The sample was irradiated for 15 minutes on both sides under nitrogen to produce 

the intermediate (see Figure 2.14). A maleic anhydride, styrene and toluene (2:1:2 

ratio) monomer solution was prepared. The solution was heated to about 50°C and 

immediately transferred to a big glass petri dish. The sample to be treated was 

placed on a small glass petri dish, which has been placed upside down in the big 

glass petri dish, as shown in Figure 3.4. The UV reactor was purged with nitrogen 

for 5 minutes and water was circulated to cool the UV filament during irradiation. 

The sample was irradiated with UV radiation for 15 minutes on one side. It was 

then turned over and irradiated for another 15 minutes on the other side. The 
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irradiation was carried out in the box, inside the fumehood. The sample was then 

cooled down for 30 minutes before washing with methanol, dried and exposing 

overnight in fumehood and then kept sealed in tube ready for characterisation. 

As stated in Section 2.9.6, the benzophenone initiates chain growth of a styrene 

maleic anhydride copolymers from the vapour phase monomers [147 - 150]. This 

copolymer chain is attached to the PS backbone and as such is a grafted 

copolymer, see Figure 2.14. 

3.2.6 Chemical Derivatisation 

A mixture of TFE, pyridine and di-terl-butylcarbodiimide, in the ratio of 9:4:3 by 

volume [194], was prepared and used to derivatise carboxylic acid groups [6, 166, 

173]. The derivatising reagent was kept in a clean, air-free flask (purged with 

nitrogen), wrapped in aluminium foil to minimise exposure to light when not in use. 

Prior to exposing the samples to the derivatising agent, a freezelthaw regime using 

liquid nitrogen was implemented to expel the impurities in the derivatising reagent 

flask. Vapour phase derivatisation was carried out under a vacuum of about 10.5 

Torr on a vacuum frame, see Figure 3.5. The sub-frames, under the main frame, 

provided a contamination free system. The samples in the tube were pumped 

down before exposing to the derivatising reagent. The derivatisation reaction was 

then allowed to start and was left overnight (~ 16 hours). After that, the vacuum 

frame was pumped down again overnight, before removing the samples. The 

samples produced were kept in sealed tubes, but analysed on the same day. 
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3.2.7 Spin-coating 

A 2% SMA copolymer solution in THF was prepared and spun onto a clean 

microscopic glass slide, held by vacuum in the spin coater (Spincoater Model 

P6700 series), at a speed of 4000 rpm spinning speed for 60 seconds under a 

nitrogen atmosphere. The samples were then dried, exposing in a fumehood 

overnight. 

3.2.8 Lap Shear Joint Preparation 

Metal strips (15 mm x 70 mm x 3 mm thickness) were sandblasted and degreased 

in trichloroethylene in ultrasonic bath for 30 seconds and air dried before use in 

bonding. A two-part epoxy (see Section 3.1.3) was mixed in equal quantities by 

weight as per the manufacturer's instruction. 1 % of Ballotini by weight (maximum 

sphere diameter approx 250 J.lm) were added to the adhesive mixture to give a 

consistent bondline thickness. The lap shear joints were made by sandwiching the 

PS plaque between two metal strips as shown in Figure 2.1 b. The joint was held by 

paperclips and was allowed to cure at room temperature for at least 24 hours 

before testing. 

3.3 METHODS OF ANAL VS IS 

3.3.1 X-ray Photoelectron Spectroscopy 

XPS experiments were performed on a VG ESCALAB MKI spectrometer using an 

AI-Ka X-ray source (1486.6 eV), at a take-off angle of 90°, with respect to the 

surface. Low resolution spectra were obtained at a pass energy of 100 eV with 5 

scans. For low resolution scans, 5 mm diameter inlet and 10 by 4 mm exit slits 
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were used. Binding energy was measured relative to adventitious carbon at 285.0 

eV. Quantification was made using relative sensitivity factors that take into account 

photoelectron cross-section angular asymmetry parameters and attenuation length 

[136]. 

3.3.2 Attenuated Total Reflection Infrared Spectroscopy 

A Shimadzu Fourier Transform Infrared Spectrophotometer (FTIR) 8300 was used 

in conjunction with an ATR attachment to acquire ATR-IR spectra. The apparatus 

had a diamond crystal. The system is MKII Golden Gate Single Reflection ATR 

system. 150 scans were collected over the range of 625 to 4000 wavenumbers. 

Two measurements were carried out and averaged. The spectrum of water vapour 

was subtracted from the spectra. 

3.3.3 Atomic Force Microscopy 

AFM was employed to measure the topographical features of a sample's surface. 

Two measurements were carried out across the specimen's surface using a TM 

Microscopes Explorer AFM, operated in intermittent contact (TappingTM) mode. 

The probe used is TM Microsopes Non-Contact Low Resonant Frequency (LRF) 

Silicon Probe (PIN 1660-00). 

3.3.4 Contact Angle 

a) Surface Tension of Test Liquid 

The surface tension of doubly distilled water was measured by the Du Noiiy ring 

method in detachment mode on a Kriiss K10T Tensiometer. The measuring vessel 
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was cleaned with chromic acid solution and dried thoroughly. Before each 

measurement, the platinum ring was flamed, by holding in a hot Bunsen bumer 

flame until the metal was bright glowing red, in order to remove any contaminant 

organic species. The torsion balance had been calibrated with weights range from 

0.2 to 19. Measured surface tensions (scale readings), were subject to correction 

by the Harkins and Jordan method [195]. The correction factor was required in 

order to account for the inner and outer ring radii not being equal and for the weight 

of liquid that remains on the ring after the rupture of the meniscus [138]; this has 

been justified theoretically by Freud and Freud [196]. An average of 3 

measurements was carried out, at three temperatures and fresh test liquid was 

used every time. Table 3.1 shows the results before and after correction. The 

results were in good agreement with literature values. A detailed calculation of the 

correction factor can be found in Appendix A. 

Table 3.1 Measured surface tension of water testing liquid. 

Temperature Experimental Correction Corrected Literature 

1°C rst. 1 mN m·l Factor r<L1 mN m·l r ... /mN m·l 

[75] 

19.9 77.4 0.9390 72.7 72.8 

30.1 75.8 0.9380 71.1 71.2 

40.0 74.2 0.9365 69.5 69.6 

b) Contact Angle Measurement 

The syringe barrel and plunger were cleaned with chromic acid, followed by 

thorough washing with doubly distilled water and they were then dried overnight. 

The syringe needle was washed with doubly distilled water and dried overnight. 

The syringe was rinsed and purged several times with the water test liquid before 

measurement was carried out. Table 3.2 shows the literature values of surface free 
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energy for the contact angle liquid. In this work, the corrected value of the water 

test liquid was used in the calculation of work of adhesion, see Table 3.1. 

Table 3.2 Literature values of surface free energy of contact angle liquid [45]. 

Liquid (7L G"L G'L 

(mJ m·2) (mJ m·2) (mJ m·2) 

Water 72.8 51.0 21.8 

The sample was placed on a microscope glass slide, which was then placed on the 

sample platform (see Section 4.1.2). A droplet of liquid diameter between 2 to 4 

mm was placed onto the PS surface via the syringe. 

The droplet was allowed to equilibrate for about 2 seconds, before measurements 

were taken. The advancing angle was measured after further liquid was introduced 

into the water droplet on the sample surface, with the needle being maintained in 

the droplet throughout measurement, in order not to perturb it. The receding angle 

was measured by the same procedure, except that the liquid was slowly withdrawn 

into the syringe. At least 8 drops were placed across the specimen and their 

contact angle values averaged from. All contact angle measurements were initially 

carried out at room temperature between 20°C to 25°C. 

For the temperature dependence measurement, measurements were carried out 

over the temperature range 10°C to 45°C. The temperature was adjusted via the 

water bath. A small beaker containing doubly distilled water was placed in the 

metal box (see Section 4.1.2) to create a saturated atmosphere of water vapour. 

The purpose was to keep the spreading pressure the same for all measurements. 

The water in the beaker was cooled down to 10°C and placed in the metal box. 

This allowed the temperature of water to gradually build up with the test 

temperature, increasing from 10°C to 45°C during measurement. When cooling 

down the system, the water was removed to avoid condensation. 
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3.3.5 Adhesion Lap shear Joint Test 

Lap shear joint testing was carried out at room temperature, on a Lloyd 

tensiometer with a 10 kN load cell, at a crosshead speed of 12.7 mm min-1
. The 

initial jaw separation was 40 mm. Six readings were taken for each sample type 

and the average taken. Two extra pieces of metal (30 mm x 15 mm x 5 mm 

thickness) were gripped at the jig jaw's end in order to distribute evenly the stress 

around the joint during pulling, see Figure 3.6. 
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Figure 3.6 Schematic diagram of lapshear assembled test piece. 
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CHAPTER 4 RESULTS AND DISCUSSION 

This chapter consists of eight sections. Section 4.1 gives a brief description of the 

built contact angle instrument, its optic features and software used. Sections 4.2 

and 4.3 describe the results from the characterisation of the base polymer, PS and 

the SMA copolymers. Sections 4.4 to 4.7 outline the results of surface treatment, 

non-reactive, reactive compounding and photo-induced grafting, respectively. The 

discussion aimed to provide an explanation as well as a comparison between the 

different treatments and modifications. Lastly, Section 4.8 focuses on the 

temperature dependence contact angle measurement and thermodynamic work of 

adhesion, in terms of enthalpy and entropy, of the various PS systems. 

4.1 DESIGN OF THE CONTACT ANGLE INSTRUMENT 

4.1.1 Introduction 

As reported by several authors [83 - 87, 197], contact angles may either decrease 

or increase with temperature. However, the change in the contact angle 

measurement is quite small. The contact angle apparatus used in this study has 

been built in-house (see Figure 4.1). The optics and software have been designed 

to give the accurate measurement of angle needed to study small changes in 

contact angle with temperature. 
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Figure 4.1 In house contact angle apparatus. 

4.1.2 Description and Features 

Figure 4.2 presents a schematic diagram of the optics of the contact angle 

apparatus. This comprises a light source that is aligned to pass through an 

aperture; the size of the aperture can be varied. This is important in terms of 

reducing systematic error in contact angle measurement. The size of the variable 

aperture is smaller than the fIXed aperture size and adjusted to produce a sharp 

silhouette of the liquid drop. The first /ens produces an enlarged virtual image and 
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the second lens produces a real inverted image, which is captured by the digital 

camera. 
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source --
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Metal box 
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V- 0 / -
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Variable Ground Sample Lenses act as 
aperture glass stage lTIlcroscope 

screen 

Figure 4.2 Schematic diagram of optical setup. 

Digital 
camera 

Figure 4.3 shows an enlarged diagram where the size of variable aperture is 

adjusted according to the size of the drop. a is the size of the liquid drop, b is the 

distance from the first lens to the liquid drop and c is the total distance from the first 

lens to the ground glass screen. x is calculated, according to Equation {4.1} and 

represents the diameter of the variable aperture, which is then adjusted, 
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a x 

b c 
{4.1} 

The aperture size must be equal to or less than x. If greater than x, then the front 

side of the drop is illuminated and this results in an inaccurate drop profile [198]. 
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Figure 4.3 An enlarged diagram in plan view. 

Second 
lens 

A micrometer syringe is securely fastened above the metal box, which has been 

layered with black-painted foil inside. The purpose here is to eliminate reflected 

light from all directions. This means the only source of light is from the illuminated 

ground glass screen. The box houses a sample stage where the sample under 
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study is placed. The sample stage could be adjusted in height and tilt (both along 

the direction of the optics and perpendicular to them). 

A copper heating coil painted black was fIXed inside the box and connected with 

tubing at both ends, to a water bath . The temperature was set and adjusted via the 

water bath and water pumped and run through the tubing and coil. A fan is installed 

next to the coil to circulate air in the box and ensure a uniform temperature. The 

box is heavily insulated with polystyrene foam. The apparatus is able to measure 

contact angles over a range of OOC to 40°C. The temperature is monitored by a 

device. 

4.1.3 Software for Contact Angle Measurement 

The image is processed using software specially written for the equipment. The 

accurate position of the liquid/air interface is measured by scanning across the 

digital image and monitoring the change in brightness. Differentiation using 

Savitsky-Golay [199] convolutional techniques followed by interpolation between 

pixels gives a precise position of the interface. The interface is assumed to be at 

the point where the maximum rate of change of brightness is detected between the 

light background and the dark silhouette of the drop. 

The accurate profile of the drop obtained was then iteratively fitted to a quadratic in 

the region of the polymer surface, using a non-linear least squares method and 

Mac Lauren's expansion [200]. This provides a superior method of evaluating 

contact angle at the polymer surface compared to frtting a straight line to a limited 

number of data points very close to the surface, see Figure 4.4 . 

Figure 4.4 presents a left-hand contact angle drop profile. The last fifty points of the 

contact angle picture were used to fit to a quadratic curve rather than a straight 

line. The dots represent the data points as interpreted by the software. It can be 
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seen that the quadratic fit is a much better representation of the contact angle drop 

than represented by the linear fit. Angles obtained by the quadratic fit are typically 

2 to 3° greater than the linear fit and from Figure 4.4 they are seen to be more 

accurate . The straight line clearly underestimates the true angle. The quadratic fit 

will, if anything, lead to a small but reasonably consistent overestimation. 

• Raw data 

_ Linear fit 
- Quadratic fit 

-400 -300 -200 

Distance (Pixels) 

550 

250 

-100 -50 

Figure 4.4 A left-hand side of the contact angle liquid drop. 

Magnification by the apparatus was measured using a calibrated scale. 

Magnification is typically x28 and will vary slightly depending on the precise 

position of the drop. This means that pixels (Figure 4.4) are equivalent to about 7 

microns. It has been found that the apparatus can measure the contact angle of 
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water on PS with a reproducibility of ± 1.4°. The main source of random error is 

probably the positioning of the baseline. 

4.1.4 Summary 

The contact angle apparatus and developed software can be used to obtain a clear 

profile of the contact angle and with a quadratic fit will give accurate contact angle 

measurements. This is important as the change in contact angle with temperature 

is very small. The apparatus was used in all the contact angle measurements for 

all the experiments discussed in the following sections. 
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4.2 CHARACTERISATION OF POLYSTYRENE POLYMERS 

4.2.1 Introduction 

This section reports the initial characterisation of the base polystyrene (PS) 

material used. The surface of untreated PS was characterised by XPS, ATR-IR, 

AFM and contact angle measurement. The results have been compared to 

literature values. 

4.2.2 X-ray Photoelectron Spectroscopy 

XPS was used to determine the surface elemental composition of the untreated 

PS. An analysis was carried out on the untreated PS before solvent extraction (see 

Section 3.2.1). The analysis revealed 2.4 atom % of oxygen on the untreated PS 

before extraction, which suggested the presence of additives in the PS as 

received. The initial contact angle before extraction was 700
• 

After the removal of additives by solvent extraction, the XPS broad scan in Figure 

4.5 showed the presence of carbon, referenced to 285.0 eV (99.0 atom %) on the 

untreated PS surface. The amount of oxygen had been greatly reduced, but was 

still detectable at a low level (1.0 atom %). The contact angle was also higher at 

900
• This is consistent with the removal of polar molecules from the surface. It was 

not thought that these oxygen groups could have come from the cross

contamination from PET film used to press the sample, given that the PET film was 

cleaned and washed with suitable solvent to remove species including cyclic 

trimers (see Section 3.2.1) [164]. 

One explanation could be that some surface oxidation may have occurred on the 

untreated PS during pressing. Another possible source of oxygen could be end 

groups of the PS chains. 
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Figure 4.5 XPS broad scan of untreated PS. 

4.2.3 Attenuated Total Reflection Infrared Spectroscopy 

An infrared analysis for untreated PS was carried out and the spectrum is 

displayed in Figure 4.6. The peak assignments were compared to the literature 

values and are tabulated in Table 4.1. As can be seen. the measured peak values 

were close to the literature values. The out-of-plane C-H bending vibrations 

produced a group of bands below 900 cm-1
• The frequency of this C-H out-of-plane 

vibration was determined by the number of adjacent hydrogen atoms on the ring. 

hence the frequency is a means of determining the substitution pattern [201]. The 

two strong absorptions occurred between 770 to 730 cm-1 and 720 to 680 cm-1 

indicated a mono-substituted benzene ring [202]. 
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Figure 4.6 ATR-IR spectrum of untreated PS. 

The bands in the 1600 to 1450 cm-1 regions have been shown to be mostly due to 

six-membered C=C aromatic ring systems and are also due to stretching vibration 

modes. The backbone CH/CH2 portions of PS will give rise to two characteristic 

saturated stretching vibrations at 2850 cm-1 and 2930 cm-1 . No peaks other than 

those attributable to PS were detected. 
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Table 4.1 IR wavenumber peak assignments of untreated PS [201 - 203]. 

Peak I cm-' Peak Icm-' Assignments 

(Measured) (Literature) 

696 695 Aromatic C-H out-of-plane vibrations 

751 750 

841 840 Alkyl C-H deformations 

915 915 

1018 1020 Aromatic =C-H in-plane deformation 

vibrations 

1449 1450 Aromatic -C=C- stretching vibrations 

1491 1490 Alkyl CH2 scissor vibrations 

1599 1600 Aromatic -C-C- stretching vibrations 

2852 2850 Aromatic and alkyl C-H stretching vibrations 

2920 2920 

3021 3020 Aromatic =C-H stretching vibrations 

3055 3055 

4.2.4 Atomic Force Microscopy 

The surface roughness of pressed, untreated PS was determined by AFM, see 

Figure 4.7. The data was collected from two different regions on the sample's 

surface. The surface roughness, Ra, was measured at 61 nm with estimated error 

of between 1 to 2 nm. The compression pressing of PS produced a reasonably 

smooth surface, which was thought suitable for contact angle measurements. 
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'''''' 

Figure 4.7 AFM scan of untreated PS. 

4.2.5 Contact Angle Measurement 

Advancing (8odY) and receding (8,..,) water contact angles were measured and data 

are presented in Table 4.2. 

Table 4.2 Contact angles of untreated PS at - 25°C. 

Polystyrene 80J1v I ° 8n , I ° 1l.8 I ° 

Untreated 90.9 (1 .4) 80.3 (1.2) 10.6 

Note: Standard deviations are gIVen In brackets 
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The advancing angle was 90.9°, which is in good agreement with the literature 

values of 91.3° [204, 205] and 91 0 [162]. A measurable water contact angle 

hysteresis value, (L'l.O = Oadv - Orec), is shown in Table 4.2. As discussed in Section 

2.7, there are several causes of hysteresis. The analysis by AFM showed a surface 

roughness of 61 nm. Kwok et. al. [204] have concluded that roughness smaller 

than approximately 0.1 Ilm will have no influence on contact angles, as reported by 

Sedev and co-workers [206] and this was also in agreement with other workers 

[92, 162, 207]. Therefore the hystereSiS value 10.60 seen here is not attributed to 

the surface roughness of the PS. 

It is possible that some surface reorganisation may have occurred. That is, there 

might be a different orientation of phenyl rings in the PS surface in contact with 

water, compared to that when in contact with air. This has been postulated by 

Good [208], where he reported an average reading of 260 for contact angle 

hystereSiS on PS. Incorporation of some water molecules in the surface leaving the 

receding surface different from the advancing one, would also be a possibility. 

4.2.6 Summary 

It is observed that surface oxidation or chain end groups may contribute to the 

small amount of oxygen detected on the PS surface. IR spectroscopy has identified 

the bands similar to those indicated in literature. Accurate water contact angles 

were measured and found to be in good agreement with literature values. AFM 

analysis has shown that pressing of the sample does not produce a rough surface. 

The contact angle hysteresis may have been caused by the surface reorganisation 

and/or incorporation of water. 
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4.3 CHARACTERISATION OF STYRENE MALEIC ANHYDRIDE 
COPOLYMERS 

4.3.1 Introduction 

In this section, the copolymers having various compositions were characterised by 

XPS, ATR-IR, AFM and contact angle measurement. The purpose is to provide an 

understanding of the characteristics of the copolymers. The results were compared 

with the literature values wherever possible. Derivatisation with 2,2,2-

trifluoroethanol (TFE) was used to identify the oxygen containing groups on the 

copolymers. The derivatised samples were also surface characterised by the 

various analysis techniques. 

4.3.2 X-ray Photoelectron Spectroscopy 

XPS analyses were carried out on the copolymers before and after derivatisation. 

Low take-off angle can show the presence of a thin surface layer, here two 

different take-off angles were used on 50:50 and 75:25 copolymers. The purpose 

was to quantify the number of available maleic anhydride groups on the surface 

compared to the subsurface. The results are presented in Table 4.3. 

Table 4.3 Elemental compositions of SMA copolymers at different take-off angles. 

S:MA Angle of photoelectron Elemental Compositions f Atom % 

collection I 0 [CJ [OJ 

50:50 30 83.7 16.3 

90 83.6 16.4 

75:25 30 90.3 9.7 

90 90.2 9.8 
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At both take-off angles, the 50:50 copolymer showed no significant difference in 

the amount of maleic anhydride groups in the surface and subsurface. In the same 

manner, the 75:25 copolymer also showed no Significant difference in the amount 

of maleic anhydride groups. Therefore this indicated that the surface and 

subsurface have similar compositions over the range of about 10 nm. The 

concentrations of carbon and oxygen at the bulk were calculated for all copolymers 

and compared to the measured compositions at the surfaces, as summarised in 

Table 4.4. 

Table 4.4 Calculated bulk and measured surface ratio of elemental compositions of 

SMA copolymers. 

S:MA Elemental Compositions I Atom % 

Calculated bulk composition Measured surface composition 

[C] [0] [C] [0] 

50:50 80.0 20.0 83.6 16.4 

66:34 87.0 13.0 85.4 14.6 

75:25 90.3 9.7 90.2 9.8 

The measured surface composition of oxygen observed in the 50:50 copolymer 

was slightly lower than the amount determined in the bulk, given that the 

percentage error in XPS measurement is between 5 to 10%. On the other hand, 

the 66:34 copolymer exhibited similar amounts of oxygen at the surface in 

comparison to the bulk, as did the 75:25 copOlymer. To conclude, the measured 

concentration of oxygen observed at the surface of the copolymers, in all cases, is 

in approximate agreement with the amount expected from the bulk composition. 

There are no large scale differences in surface as compared to bulk composition. 

The copolymers underwent derivatisation with TFE derivatising reagent. Figure 4.8 

shows its reaction with full conversion, that is assuming two CF3 group per 

anhydride molecule. Table 4.5 shows the carbon, oxygen and fluorine 
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concentrations calculated, assuming full conversion. These values are compared 

to those obtained by XPS. 
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Figure 4.8 Reaction of SMA copolymers with derivatising 

agent TFE in full conversion. 

Table 4.5 Calculated and measured ratio of elemental compositions of SMA 

copolymers after derivatisation. 

S:MA Elemental Compositions I Atom % 

Composition calculated Composition measured 

assuming full conversion byXPS 

[CJ [OJ [F] [CJ [OJ [FJ 

50:50 61.5 15.4 23.1 66.6 25 8.4 

66:34 70.8 11.5 17.7 79.4 13 7.7 

75:25 76.2 9.5 14.3 77.8 15.6 6.6 

The resuHs in the table revealed that fewer CF3 groups than expected were 

detected. The bulk composition was calculated assuming full conversion, that is, 

two CF3 group per anhydride molecule. It is likely that there was only partial 
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conversion of the maleic anhydride group into CF3 during derivatisation, with 

possibly only one CF3 group per anhydride molecule. Figure 4.9 shows the partial 

conversion reaction structure. Assuming partial conversion in the reaction, then the 

new expected fluorine concentration will be 14.3 atom %, 10.4 atom % and 8.1 

atom % for SMA copolymers of 50:50, 66:34 and 75:25, respectively. These are 

closer to the observed values. Despite that, the measured fluorine concentration 

was still slightly lower than that predicted. 
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Figure 4.9 Reaction of SMA copolymers with derivatising 

agent TFE in partial conversion. 

4.3.3 Attenuated Total Reflection Infrared Spectroscopy 

Infrared spectra were recorded for SMA 50:50, 66:34 and 75:25 copolymers and 

are shown in Figures 4.10 to 4.12. The peak assignments are presented in Table 

4.6. 
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Figure 4.10 ATR-IR spectrum of SMA 50:50 copolymer. 
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Figure 4.11 ATR-IR spectrum of SMA 66:34 copolymer. 
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Figure 4.12 ATR-IR spectrum of SMA 75:25 copolymer. 
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Table 4.6 IR peak assignments of SMA copolymers [201 - 203]. 

Peak f cm-' Peak fcm- Assignments 

(Measured) (Literature) 

697 695 Aromatic C-H out-of-plane vibrations 

752 750 

921 920 C-H out-of-plane deformation 

1062 1060 C-O stretching 

1211 1210 

1449 1450 Aromatic -C-C- stretching vibration 

1490 1490 Alkyl CH2 scissor vibration 

1599 1600 Aromatic -C=C- stretching vibration 

1771 1770 Acid anhydrides 

1846 1845 

2935 2850-3055 Aromatic and alkyl C-H stretching vibrations 

The band at 920 cm-1 arises due to C-H out-of-plane deformation. When the 

double bond is conjugated with, for example, a C=O group, this band is shifted 

towards 990 cm-1 [201). Two strong bands due to C-O stretching, occur between 

1300 to 1060 cm-1
. These absorptions were not observed with PS (see Table 4.1). 

Acid anhydride groups were identified by two bands between 1850 to 1800 cm-1 

and 1790 to 1740 cm-1 [206)- In comparison, these bands were not present for PS 

(see table 4_1)_ The two bands are usually separated by about 60 cm-1 [201)_ The 

higher frequency band is more intense in the acyclic anhydride and the lower 

frequency band is more intense in cyclic anhydrides_ 

As expected it was observed that the aromatic absorption bands at 1600 to 1450 

cm-1 become more intense as the styrene to maleic anhydride ratio increased_ This 

same trend was also seen in the 3055 to 2850 cm-1 region [206)_ The areas under 

the aromatic and anhydride peaks were measured (Appendix B), see Table 4_7_ 
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The estimated error of the peak ratio was between 0.2 to 0.4. The frequencies of 

the peaks representative of ring and anhydride were 1449 and 1779 cm-1, 

respectively. The results in the table showed that the peak ratio decreased as the 

styrene to maleic anhydride compositions increased. 

Table 4.7 Measured peak ratio of SMA copolymers by ATR-IR. 

S:MA Peak ratio (MA:S) 

50:50 11.5 

66:34 7.6 

75:25 5.4 

When the data was plotted graphically, it was observed that the relationship was 

not quite linear, see Figure 4.13. A possible interpretation is that the transition 

moment for the vibration changes. That is, the transition probability increases as 

more functional groups like C=O are present. 
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Figure 4.13 Correlation of peak ratio and molar ratio of SMA copolymers. 

4.3.4 Atomic Force Microscopy 

Surface roughness of the spin-coated SMA copolymers was measured by AFM. 

The results showed that the SMA 50:50 composition had a degree roughness of 10 

nm, which is about the same as SMA 66:34 and SMA 75:25 with a degree 

roughness of 7 and 8 nm, respectively. The estimated error of surface roughness 

was between 1 to 2 nm. 

4.3.5 Contact Angle Measurement 

Contact angle measurements were performed on the spin-coated SMA copolymers 

and presented in Table 4.8. 
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Table 4.8 Contact angles of SMA copolymers at -25°C. 

S:MA fJf1Ilv / o fJ,.c / ° AfJ/ ° 
50:50 81.5 (2.4) 51.9 (1.4) 29.6 

66:34 84.4 (3.1) 66.6 (2.9) 17.8 

75:25 90.3 (1.7) 75.0 (3.3) 15.3 

Note: Standard deviations are given in brackets 

It can be seen that the advancing contact angles increased as the maleic 

anhydride content decreased. The receding contact angles also increased as the 

maleic anhydride content decreased. It can also be seen that the receding angles 

were more affected than the advancing angles. 

The 50:50 SMA compositions showed the higher contact angle hysteresis of all the 

copolymers. Hysteresis may be due to many factors such as roughness, 

reorientation, heterogeneity, etc. (see Section 2.7). The surface roughness 

reported in Section 4.3.4 was not high enough to give rise to appreciable 

hysteresis (205, 162). Also it does not seem likely that the copolymers, being a 

single component system, would be able to give rise to surface heterogeneity on 

the scale needed to affect hysteresis. It seems that the most probably explanation 

would be surface reorientation and/or incorporation of water into the surface. The 

surface left as the drop recedes is probably different from that before wetting. 

The contact angle hysteresis of SMA copolymers is substantially greater than that 

for the untreated PS (see Section 4.2.5) despite the copolymers having a much 

smaller surface roughness. This also suggests surface reorientation and/or 

incorporation of water. 

103 



J 
U) 
0 
0 

~ 
~ 
U) 
0 
0 

Results and Discussion 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 10 20 30 40 50 

Number of maleic anhydride groups 

Figure 4.14 Correlation of contact angle hysteresis and number 

of maleic anhydride groups. 

60 

Figure 4.14 shows graphically that the contact angle hysteresis increases as the 

maleic anhydride content increases. This is consistent with the explanation for 

hysteresis given earlier, which was due to reorganisation and/or incorporation of 

water. Both of these factors would vary with the amount of maleic anhydride 

groups present. 

4.3.6 Summary 

IR spectroscopy had identified approximately the same absorptions as those 

tabulated in the literature. Unlike PS spectra, bands were identified for carbonyl 

stretching and acid anhydride groups. As expected the anhydride to aromatic peak 

ratio value was found to decrease as the styrene to maleic anhydride ratio 

increased. The increases however, were not linear. This could be due to the 
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change in the transition moment. There was no significant surface roughness 

observed on the SMA copolymers. Both advancing and receding contact angles 

increased as the maleic anhydride content decreased. The 50:50 copolymers have 

greater contact angle hysteresis than the rest and it is not believed to be caused by 

surface roughness. It is more likely that there is surface reorganisation and/or 

incorporation of water. The derivatisation process showed only partial conversion. 

There is lower level of fluorine for all copolymers than expected. 
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4.4 SURFACE TREATMENT 

4.4.1 Introduction 

Having characterised the untreated PS as detailed in the previous section, in this 

part of the work, untreated PS samples are surface treated to increase their 

surface free energy and wettability. Polar functional groups such as carboxylic acid 

(eOOH) and hydroxyl (OH) groups, were introduced onto the untreated PS surface 

by two treatments, namely flame treatment and chromic acid treatment; see 

Sections 3.2.3.a and 3.2.3.b. The treated surfaces were then characterised by 

XPS, ATR-IR, AFM and contact angle measurement. Lapshear tests were also 

carried out to measure the adhesive jOint strengths. The purpose was to evaluate 

the effect of functional groups on the joint strength for the two types of treatments. 

Derivatisation was performed on the treated surfaces to identify the functional 

groups and the derivatised samples were also surface characterised. The adhesive 

joint strength for the derivatised sample was also measured in order to determine 

the contribution of carboxylic acid groups to the joint strength. 

4.4.2 X-ray Photoelectron Spectroscopy 

The broad scan spectrum of the flame treated and chromic acid treated PS 

samples revealed the presence of oxygen as shown in Figures 4.15 and 4.16. 

Table 4.9 shows the elemental compositions of the surface treated PS samples. 

A small amount of sulphur was detected on the chromic acid treated PS and this 

was attributed to the sulphuric acid used to make the chromic acid solution. In 

addition, a trace of nitrogen was detected at 0.3 atom %. Both flame treatment and 

chromic acid treatment have been shown to introduce oxygen containing 

functionalities onto the PS surface, as demonstrated by the XPS analysis. 
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Table 4.9 Elemental compositions of surface treated PS. 

Sample systems Elemental Composition I Atom % 

[C) [0] [S] [N] 

Flame treated 90.0 10.0 - -
Chromic acid 83.1 14.6 2.0 0.3 

treated 

The amount of oxygen detected on both the surface treated PS samples, was 

similar to those seen for PE after the same treatments [209, 210]. Though there 

was more oxygen on the chromic acid treated surfaces, most of it come from 

sulphate and perhaps some from nitrate as well. If these amounts are taken into 

consideration, then there are generally fewer oxygen containing functional groups 

on the chromic acid treated surfaces than the flame treated surfaces. 

The surface treated samples underwent chemical derivatisation to react with the 

carboxylic acid functional groups. The results are tabulated in Table 4.10. The 

chromic acid treated surfaces showed more fluorine than the flame treated 

surfaces. Since there are fewer oxygen containing functional groups present on the 

chromic acid treated samples, it must be true that a much higher proportion of 

them are carboxylic acid groups. Chromic acid is a strong oxidising agent and this 

is to be expected. The resuHs are consistent with studies on other polymers using 

chromic acid [139, 140]. 

Table 4.10 Elemental compositions of surface treated PS after chemical 

derivatisation. 

Sample systems Elemental Composition I Atom % 

[C) [0] [F] [S] 

Flame treated 89.4 8.2 2.4 -
Chromic acid 84.6 11.9 3.1 0.4 

treated 
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4.4.3 Atomic Force Microscopy 

The AFM images, see Figures 4.17 and 4.18, did not show much topographical 

variation on the surface treated PS, compared to untreated PS. The surface 

roughness, Ra, is shown in Table 4.11. The error in Ra is estimated at about 1 to 2 

nm. 

Table 4.11 Surface roughness of untreated and surface treated PS. 

Sample systems Area Ra (nm) Area RMS (nm) 

Untreated 61 79 

Flame treated 55 72 

Chromic acid 61 78 

treated 

From these results, flame treated PS possibly shows a slightly smoother surface 

than the untreated and chromic acid treated PS. This may be due to the heat 

deposited in the surface during flame treatment. The surface treatments oxidise the 

surface but do not cause any substantial roughening to the surface. The roughness 

is too low to influence the contact angle hysteresis. This is because the effect of 

roughness below 0.1 Ilm level is negligible (211), as already discussed in Section 

4.2.5. 
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Figure 4.17 AFM scan of flame treated PS. 

Figure 4.18 AFM scan of chromic acid treated PS. 
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4.4.4 Contact Angle Measurement 

After surface treatment, lower water advancing angles were obtained, compared to 

untreated PS (see Table 4.12). This was attributed to the polar functional groups 

introduced onto the PS surfaces, hence increasing the surface free energy and 

making the surface more wettable. 

Table 4.12 Contact angles of untreated and surface treated PS at - 25°C. 

Sample systems 8at/v' 0 8,.,,0 1l.8'o 

Untreated 90.9 (1.4) 80.3 (1.2) 10.6 

Flame treated 71.6 (3.2) 30.7 (2.7) 40.9 

Chromic acid 64.1 (2.5) 24.3 (3.5) 39.8 

treated 

Note: Standard deviations are In brackets 

Contact angle hysteresis for both surface treated PS samples, was higher than that 

obtained for untreated PS. The large hysteresis cannot be attributed to any surface 

roughness, since AFM (see Section 4.4.3) showed no increase in roughness as a 

result of surface treatment. The reason may be surface reorganisation and/or 

incorporation of water. 

The potential for reorganisation and/or incorporation of water is clearly much 

greater for surface treated surfaces than for untreated PS and explains the greater 

hysteresis in the contact angle. Heterogeneous surfaces also give rise to contact 

angle hysteresis and some contribution due to heterogeneity cannot be discounted. 

However, it is not clear how the temperature dependence of contact angle 

hysteresis (discussed in Section 4.8) can be accounted solely by heterogeneity. 

After chemical derivatisation, both the advancing and receding contact angles 

increased slightly for both surface treated samples, see Table 4.13. This was 
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expected because the absence of carboxylic acid groups has made the surface 

less wettable. It was noted that the contact angle hysteresis, however, remained 

approximately the same, compared to before derivatisation. 

Table 4.13 Contact angles of untreated and surface treated PS afterderivatisation 

at - 25°C. 

Sample systems OIJl/./o Onc I ° 110 1° 

Untreated 89.7 (2.0) 81.7 (1.8) 8.0 

Flame treated 77.1 (2.8) 35.2 (3.2) 41.9 

Chromic acid 73.5 (1.9) 35.0 (2.1) 38.5 

treated 

Note: Standard deviations are given In brackets 

Results in Table 4.13 are consistent with the slightly lower level of fluorine detected 

by XPS for derivatised flame treated materials. The contact angle on flamed 

treated material does not change very much as a result of derivatisation. The 

contact angle results seem to be in accordance with the proposition that there are 

fewer carboxylic acid groups introduced onto the flame treated surface. 

In this work it was proposed to study the temperature dependence of contact angle 

measurement. Before starting this work (which is described in Section 4.1.2), it was 

necessary to show that the surfaces were stable over the temperature range to be 

used. PS has a Tg of 100°C [96] and functional groups would be expected to be 

relatively immobile below this temperature, e.g. not capable of segmental rotation, 

lacking the necessary free volume. However, surface functional groups are known 

to be more mobile than those in the bulk and the treated surfaces may also contain 

some stresses and strains that may be relieved at temperature below the Tg. 

In order to identify the temperature at wh ich those molecules at the polymer's 

surface will undergoes molecular orientation or segmental rotation, samples of 
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surface treated PS were heated in an oven at 40, 60, 80 and 100°C. The samples 

were removed from the oven after 2 hours and allowed to cool down to room 

temperature (-20°C). Contact angles were measured and the estimated error was 

approximately ± 3°. Contact angles of the samples did not change Significantly until 

the temperatures exceeded 50°C, see Figure 4.19. After this point, the advancing 

contact angles rose steadily reaching about 80° after heating to a temperature of 

95°C. This represents a substantial increase on the advancing contact angles at 

room temperature of 60 to 65°. It is assumed that this must be due to reorientation 

of functional groups away from the surface with consequent reduction in surface 

energy. The variable temperature contact angle measurements described in 

Section 4.1.2 were therefore carried out up to a maximum temperature of 40°C. 

The reversion of PS in bulk phase is at Tg or slightly above Tg, therefore the 

surface molecules of PS had showed greater freedom than those in the bulk. 
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Figure 4.19 Effect of contact angles of surface treated PS subjected 
to thermal treatment. 
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4.4.5 Adhesion 

Adhesive joint strengths were detennined for the surface treated samples and 

compared to those of the untreated samples, reported in Table 4.14. After surface 

treatment, it can be seen that the lap shear adhesive joint strength showed a large 

increase compared to that of the untreated PS. This is attributed to the strong 

interaction between the epoxide groups of the adhesives and the polar functional 

groups, i.e. hydroxyl and carboxylic acid, that had been introduced onto the 

polymer surface. There is no difference in adhesive jOint strength, (allowing for 

errors), between the flame treated and chromic acid treated samples. 

Table 4.14 Adhesive joint strength of untreated and surface treated PS. 

Sample systems Joint Strength (N) Standard Deviation (N) 

Untreated 260 5 

Flame treated 1710 69 

Chromic acid 1990 268 

treated 

It has been suggested that derivatisation could ·shut down" or block the acid 

functional groups at the surface, making them inactive [147, 171 - 173]. The 

derivatised samples were tested for lap shear strength and the results are 

presented in Table 4.15. 

Table 4.15 Adhesive joint strength of untreated and surface treated PS after 

chemical derivatisation. 

Sample systems Joint Strength (N) Standard Deviation (N) 

Untreated 268 25 

Flame treated 1139 176 

Chromic acid 1253 44 

treated 
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There is no difference in the adhesive joint strength of untreated PS before and 

after derivatisation, which was to be expected. Both surface treated samples 

showed about the same adhesive joint strength, (allowing for errors), after 

derivatisation. It can be seen that the adhesive joint strength of the surface treated 

samples reduced substantially by about one-third of that before derivatisation. It is 

concluded that a maximum of one-third of the joint strength can be attributed to 

carboxylic acid groups. Selective derivatisation may be a useful technique for 

assessing the importance of other functional groups in adhesion. Here it is 

probable that there have been chemical bonds formed between the acid groups 

and the epoxy resin [26, 27, 35, 212]. 

4.4.6 Summary 

Chromic acid treated surfaces revealed a higher oxygen concentration than flame 

treated PS. AFM analyses demonstrated that both types of surface treatment do 

not cause significant surface roughness and that the flame treated samples 

showed the smoother surfaces. The large contact angle hysteresis may be 

explained by reorientation and/or incorporation of water. Chromic acid treated 

surfaces have fewer oxygen-containing functional group than the flame treated 

surfaces but a higher proportion ofthem were carboxylic acid groups. This leads to 

both surface treated samples having similar joint strengths. A high laps hear joint 

strength was seen on both flame treated and chromic acid treated samples. The 

adhesive joint strength on the surface treated samples was reduced due to 

chemical modifICation by derivatisation. This shows the importance of carboxylic 

acid groups for the adhesive between polymers and epoxy resins. There was no 

evidence of substantial reorientation of functional groups up to 50°C in both the 

surface treated samples as a result of heat treatment. 
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4.5 NON-REACTIVE COMPOUNDING 

4.5.1 Introduction 

As reported in previous section, the PS was surface treated by two different 

treatments, to incorporate oxygen functionalities and the resulting effect on the 

adhesion strength were evaluated. Compounding is another common way of 

introducing functional groups. In this section, PS was compounded with three 

compositions of SMA copolymers (50:50, 66:34 and 75:25). The aim of the work 

was to determine whether the copolymers would migrate to the surface and act as 

adhesion promoters. The compounding was done in different loadings of 0.1%,1% 

and 10% by weight, in order to quantify the amount needed to improve adhesion to 

PS. PVME was also compounded into PS, as a comparison to the SMA 

copolymers, using loadings of 1% and 10%. There is some evidence [106, 107] 

that PVME is miscible with PS. The surfaces of the non-reactively compounded 

samples were characterised by XPS, ATR-IR, AFM and contact angle 

measurement. Lapshear tests were made on the non-reactively compounded 

samples and after derivatisation. Extraction of the non-reactively compounded 

samples was carried out (see Section 3.2.1). The effect of extraction and of 

derivatisation, were analysed by the surface characterisation techniques and 

lapshear tests. In addition, an untreated PS sample was processed using the same 

compounding conditions, but without SMA or PVME, to act as a control. 

4.5.2 X-ray Photoelectron Spectroscopy 

All PS-SMA copolymers were analysed. All spectra showed the presence of carbon 

and oxygen, irrespective of loading level. The results from samples compounded 

with 66:34 SMA are presented in Figures 4.20 to 4.22 and the elemental 

compositions discussed in Table 4.17. 
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Figure 4.20 XPS broad scan of PS-SMA 66:34 of 0.1 % loading. 
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Figure 4.21 XPS broad scan of PS-SMA 66:34 of 1 % loading. 
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Figure 4.22 XPS broad scan of PS-SMA 66:34 of 10% loading. 

Table 4.16 shows that there was a small amount of oxygen in the PS control , and 

possible sources for this were discussed in Section 4.2.2. Taking into account the 

initial oxygen concentration in the PS control, the oxygen concentration detected at 

the surface of the 0.1% loading was below the detection limit of XPS, (i.e. 0.2 atom 

%). The oxygen concentration of 0.2 atom % in the 1% loaded sample was at the 

limit of detection for XPS. The 10% loading showed 3.6 atom % of oxygen and was 

about that expected from the bulk composition, considering the XPS errors of 

about 5 to 10%. Therefore given that there was oxygen initially present on the PS 

surface, it seems that the amount of SMA in the surface was broadly the same as 

that in the bulk, after allowing for surface oxidation . 

118 



Results and Discussion 

Table 4.16 Elemental compositions of non-reactively compounded PS-SMA 66:34 

at different loadings. 

Sample Elemental Composition I Atom % 

systems Calculated bulk composition Measured surface composition 

[C) [0] [C) [0] 

PS control 100 0 98.8 1.2 

0.1% 99.96 0.04 98.8 1.2 (0) 

1% 99.6 0.4 98.6 1.4 (0.2) 

10% 96.0 4.0 95.2 4.8 (3.6) 

Note: The number reported In brackets IS the actual oxygen atom % concentration 

after subtraction of the amount detected in the control. 

The samples were subjected to extraction in methanol and the results are 

presented in Table 4.17. However. as can be seen extraction with methanol had no 

significant effect. that is. there was no difference in oxygen concentration in PS 

control. 0.1% and 1% loading levels before and after extraction. The 10% loading 

may have shown a slightly increase in oxygen concentration due to extraction but 

the effect (if any) was small. 

Table 4.17 Elemental compositions of non-reactively compounded PS-5MA 66:34 

at different loadings after extraction in methanol. 

Sample systems Elemental composition I Atom % 

[C) [0] 

PS control 98.8 1.2 

0.1 % 98.0 1.2 (0) 

1% 98.2 1.5 (0.3) 

10% 91.4 5.5 (4.3) 

Note. The number reported In brackets IS the actual oxygen atom % concentration 

after subtraction of the amount detected in the control. 
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PS-SMA of 66:34 compositions in 1% and 10% loadings were chemically 

derivatised and the results were tabulated in Table 4.18. The number of fluorine 

tagged groups detected was very low for both loadings. This is again suggests that 

there is a low number of functional groups available for reaction at the surface of all 

the compounded samples. 

Table 4.18 Effect of derivatisation on non-reactively compounded PS-SMA 66:34 

after extraction in methanol. 

Sample systems Elemental Composition / Atom % 

[Cl [0] [F] 

PS control 98.8 1.2 0 

1% 98.6 1.3 0.1 

10% 94.7 4.5 0.8 

In comparison with the surface treated PS samples, non-reactively compounded 

samples greatly showed lower oxygen concentration for all loadings, both before 

and after derivatisation. 

4.5.3 Attenuated Total Reflection Infrared Spectroscopy 

In order to know whether there was an adequate number of an oxygen group at the 

surface, ATR-IR analyses of the surface were performed. The XPS can be used to 

sample several nanometres into a polymer surface whereas the ATR probes more 

deeply to a depth of several Ilm. Non-reactively compounded samples of 1 % and 

10% loadings of all copolymer compositions were analysed and the peak areas 

measured from the spectra. The analysis was done on extracted samples. The 

molar ratio (anhydride/PS), was calculated from the peak area for the surface 

(measured) and compared to that for the bulk (calculated), see Appendix B, as 
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shown in Table 4.19. The estimated error was 0.0003 for the 1 % loaded samples 

and 0.001 for the 10% loaded samples, respectively. 

Table 4.19 Molar ratio at bulk and surface of non-reactively compounded PS-SMA. 

S:MA 1% 10% 

Bulk Surface Bulk Surface 

(Calculated) (Measured) (Calculated) (Measured) 

50:50 0.0052 0.0062 0.0573 0.0707 

66:34 0.0034 0.0041 0.0378 0.0420 

75:25 0.0026 0.0037 0.0282 0.0300 

The measured surface compositions are consistently higher than those anticipated 

from the bulk concentration, but the difference is not large. This suggests that there 

may be some slight enrichment of the copolymer in the outer few f.1m. XPS probes 

a much smaller distance into the sample and so would not necessarily show the 

same trend. Due to the small area under anhydride peak for the 1% loaded 

samples, the percentage error in the molar ratio was higher for these samples than 

thatfor the 10% loading. 

4.5.4 Atomic Force Microscopy 

AFM was carried out to determine whether the presence of copolymers would 

roughen the surface of sample. The 66:34 SMA was analysed. The degree of 

roughness, Ra, is shown in Table 4.20. The error in Ra is estimated at about 2 to 4 

nm. These values are not large enough as to cause any significant surface 

roughness of the non-reactively compounded sample surfaces (see Section 4.2.5). 
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Table 4.20 Surface roughness of non-reactively compounded PS-SMA 66:34 

before and after extraction in methanol. 

Sample Area Ra (nm) Area RMS (nm) 

systems Non-extracted Extracted Non-extracted Extracted 

PS control 90 90 114 115 

1% 88 108 112 143 

10% 128 198 175 281 

Roughness values for both the PS control before and after extracti~n, were very 

similar, though slightly higher than untreated PS of 61 nm. The roughness of 

samples containing 1 % by weight of PS-SMA was the same as the PS control. The 

samples with 10% PS-SMA had a significantly greater roughness than the PS 

control. However, for both 1% and 10% Ioadings, the surface roughness increased 

on extraction. This could be due to removal of SMA copolymers from the surface or 

perhaps some reorganisation of groups in the surface. The 10% loading showed 

the greatest increase in surface roughness after extraction, (see Figures 4.23 and 

4.24). In comparison, the non-reactively compounded samples at two loadings, 

exhibited higher surface roughness values than the surface treated samples. The 

reason may have been due to compounding, as the PS control also showed higher 

surface roughness value than the untreated PS. 
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Figure 4.23 AFM scan of non-reactively compounded PS-SMA 66:34 10% 

loading before extraction. 

Figure 4.24 AFM scan of non-reactively compounded PS-SMA 66:34 10% 

load ing after extraction . 
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4.5.5 Contact Angle Measurement 

Contact angle measurement was carried out on samples with 1% and 10% loading 

of PS-SMA 66:34 and for the PS-PVME samples, before and after extraction in 

methanol. The results are presented in Table 4.21. 

Table 4.21 Contact angles of non-reactively compounded PS at - 25°C. 

Sample (JDJIv I 0 (J",c I 0 A(Jl o 

systems Non- Extracted Non- Extracted Non- Extracted 

extracted extracted extracted 

PS 89.8 90.2 74.1 73.3 15.7 16.9 

control (1.1 ) (2.1 ) (1.4) (1.8) 

SMA 84.7 87.4 70.2 65.7 14.5 21.7 

1% (1.9) (2.2) (2.6) (3.2) 

SMA 83.2 85.4 63.5 57.6 19.7 27.8 

10% (2.5) (2.1) (3.1 ) (2.8) 

PVME 85.1 86.9 69.6 66.1 15.5 20.8 

1% (1.3) (2.7) (2.9) (1.7) 

PVME 85.8 83.3 68.7 62.7 17.1 20.6 

10% (2.3) (2.5) (3.1 ) (1.8) 

Note: Standard deViations are gIVen In brackets 

In general, for the PS-SMA samples, the advancing angles may have increased 

slightly with extraction, approaching more closely those of untreated PS. The 

receding angles decreased, again slightly. Hysteresis therefore increased. This 

would be consistent with the reorganisation of functional groups in the surface 

creating regions of different surface energy. The increase in surface roughness 

(see Table 4.20), was generally thought to be too small to make an appreciable 

contribution to hysteresis in this case [207]. 
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For the non-reactively compounded samples containing PVME, there is no 

measurable change in advancing angle, following extraction but there may have 

been a slight decrease in receding angle, producing a larger hysteresis on the 

extracted samples. 

After chemical derivatisation, the advancing angles increased slightly for both the 

non-reactively compounded sample systems, regardless of loading levels; see 

Table 4.22. This was expected since the derivatised groups will have interacted to 

a lesser extent with the water than anhydride groups. 

Table 4.22 Effect of derivatisation on contact angles of non-reactively compounded 

PS after extraction at - 25°C in methanol. 

Sample systems (Jadv , 0 (J,.c I 0 A(Jl o 

PS Control 89.1 (2.3) 74.8 (3.1) 12.3 

SMA1% 89.3 (1.9) 71.1 (2.9) 18.6 

SMA 10% 86.9 (2.8) 63.1 (1.3) 23.8 

PVME 1% 88.1 (3.2) 70.3 (1.4) 17.8 

PVME10% 87.9 (2.5) 65.8 (1.2) 22.1 

Note: Standard deViations are gIVen In brackets 

In the same way, the receding angle values also increased for all systems, as there 

were fewer oxygen containing groups available to interact strongly with water. 

However, it seemed that the receding angle was generally slightly more affected by 

derivatisation than the advancing angle. 

The surface treated samples showed significantly lower advancing contact angles 

than the non-reactively compounded samples, both before and after derivatisation. 

This suggests the surface treated samples have more oxygen functional groups 

than the non-reactively compounded samples. The receding contact angle values 

of non-reactively compounded samples were also much higher than those for the 
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surface treated samples. Non-reactively compounded samples demonstrated 

smaller contact angle hysteresis than that of surface treated samples, however, 

non-reactively compounded samples had a greater roughness. The differences in 

hysteresis cannot be explained by surface roughness. It is possible that the surface 

treated samples retain more water when the drop is receded, leaving a surface 

substantially different to that before wetting. 

4.5.6 Adhesion 

The lap shear joint strength properties were measured for all PS-SMA 

compositions at 1% and 10% loadings and on a PS control; this is shown in Figure 

4.25. As seen, all non-reactively compounded samples showed an increase in 

adhesion when compared to the PS control. This indicates that compounding with 

copolymers has improved adhesion, with the copolymers acting as adhesion 

promoters. 

It is also noted that extraction further improved adhesion strength, across all 

systems. There are several factors that can affect adhesion. One factor is surface 

roughness. AFM has revealed an increase in surface roughness of up to about 

50% after extraction and this may have given rise to a substantial increase in area 

of contact, to enhance adhesion. Another factor is the weak boundary layer. It is 

possible that extraction has also caused the removal of the weak boundary layer, 

which also increases the adhesion strength. Since the increase in roughness is 

more pronounced for the 10% loading and this is not reflected in the adhesive joint 

strength, the weak boundary layer explanation seems the more plausible 

explanation in this case. 

In general, there was not much difference in joint strength between the various 

copolymer compositions. There was also not much difference in jOint strength 

between the 1% and 10% loaded samples. This was despite the fact that the 10% 
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loaded sample showed more oxygen at the surface as measured by XPS and ATR. 

This shows that a low loading was sufficient to achieve improved adhesion . This is 

very important if this compound is to be used as an adhesion promoter, since low 

levels of additive will have less affect on the desired bulk properties of the PS. 
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Figure 4.25 Effect of adhesive joint strength on non-reactively compounded 

PS-SMA compositions. 

The joint strength was also measured for 1% and 10% loaded PS-PVME before 

and after extraction . The adhesive joint strength before extraction for 1 % and 10% 

Ioadings were 240 Nand 270 N, respectively. After extraction, the adhesive joint 

strength increased to 320 N for 1% loading and 360 N for 10% loading. The 
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increase was probably due to the removal of a weak boundary layer. The standard 

deviations, before and after extraction, for both loadings were between 33 and 56 

N. However, as compared to the PS-SMA non-reactively compounded samples, 

the adhesive jOint strength was lower for the PS-PVME non-reactively 

compounded samples, both before and after extraction. A possible reason could be 

that acid anhydride groups interacted more strongly with epoxy adhesive than 

PVME. Nevertheless small amounts of PVME were effective as adhesion 

promoters. 

Chemical derivatisation was carried out on the 66:34 compositions, non-reactively 

compounded samples and the PS-PVME non-reactively compounded samples 

after extraction, see Table 4.23. No difference was seen for the PS control, which 

was as expected. There was perhaps only a small effect in the case of PVME. 

Large changes were not expected since the derivatising agent should not have 

reacted with PVME. Substantial differences were seen for the PS-SMA systems of 

both Ioadings. Adhesive joint strengths were reduced to the same level observed 

for the PS control and PVME samples. The presence of acid anhydride clearly 

accounts for the majority of the increased joint strength in these cases. Since 

substantial improvements in adhesion were obtained from a small number of 

functional groups, it is possible that a chemical reaction is occurring between the 

anhydride groups and the adhesive. 
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Table 4.23 Effect of derivatisation on adhesive joint strength of non-reactively 

compounded PS after extraction in methanol. 

Sample systems Adhesive Joint Strength (N) 

Before derivatisation After derivatisation 

PS control 250 (16) 252 (12) 

SMA1"1o 630 (9) 193 (21) 

SMA 10"10 610 (30) 277 (11) 

PVME 1"10 320 (28) 280 (31) 

PVME 10"10 260 (18) 199 (26) 

Standard deviations are given In brackets 

4.5.7 Summary 

The amount of oxygen detected at the surface of the non-reactively compounded 

samples was lower than that seen for surface treated materials. The adhesive joint 

strength was improved by the presence of compounded SMA copolymers but still 

less than that seen for surface treated materials. Low levels of SMA were as 

effective as higher ones in promoting adhesion. The 1"10 PS-SMA samples showed 

SignifICant improvements in adhesion despite the fact that the number of anhydride 

groups in the surface was below the detection limit of the XPS technique. 

Derivatisation confirmed that these acid anhydride groups were indeed present and 

contributed to adhesion. This may in part be due to the ability of these groups to 

chemically react with the adhesive. There may also be a smaller contribution from 

surface roughening. 

129 



Results and Discussion 

4.6 REACTIVE COMPOUNDING 

4.6.1 Introduction 

In the previous section, it was reported that SMA copolymers had been 

compounded in PS without the aid of an initiator, which may catalysed the grafting 

of SMA to the PS. It was of interest to see how the results compared when the PS 

was reactively compounded with the copolymers. In this part of wor!<, SMA 

copolymers of various compositions (50:50, 66:34, 75:25) were each compounded 

with PS at three Ioadings of 0.1%, 1% and 10% by weight. The initiator used was a 

0.1 % organic peroxide, which had been suggested as the optimum amount needed 

to graft additives onto a polymer [113]. The objective of these experiments was to 

compare the effect of reactive and non-reactive compounding in these systems. 

PVME was also compounded with PS with the same initiator. The untreated PS 

sample was compounded using the same compounding conditions with 0.1 % 

initiator, and acted as a control. As before, the reactively compounded samples 

were characterised by XPS, ATR-IR, AFM and contact angle measurement. 

Lapshear tests were also performed. The effect of extraction and of derivatisation, 

were analysed by the same surface characterisation techniques and lapshear 

tests. 

4.6.2 X-ray Photoelectron Spectroscopy 

Reactively compounded PS-SMA 66:34 samples of loadings 0.1%,1% and 10% 

were selected for analysis and the spectra are presented in Figures 4.26 to 4.28, 

respectively. The measured elemental compositions are tabulated in Table 4.24. 
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Figure 4.26 XPS broad scan of PS-SMA 66:34 of 0.1 % loading. 
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Figure 4.27 XPS broad scan of PS-SMA 66:34 of 1% loading. 
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Figure 4.28 XPS broad scan of PS-SMA 66:34 of 10% loading. 

As seen in Table 4.24, the PS control showed an oxygen concentration of 1.2 atom 

% as discussed in Section 4.2.2. Allowing for this, the 0.1 % loading sample 

showed no clear evidence of SMA groups on the surface, which was as expected. 

In the case of both 1% and 10% loaded samples, the oxygen concentrations were 

lower than those expected for bulk composition. 
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Table 4.24 Elemental compositions of reactively compounded PS-SMA 66:34 at 

different loadings. 

Sample Elemental Composition I Atom % 

systems Calculated bulk composition Measured surface composition 

[C) [0] [C) [0] 

PS control 100 0 98.8 1.2 

0.1% 99.96 0.04 98.8 1.2 (0) 

1% 99.6 0.4 98.7 1.3 (0.1) 

10% 96.0 4.0 97.6 3.3 (2.1) 

Note: The number reported In brackets IS the actual oxygen atom % concentration 

after subtraction of the amount detected in the control. 

Table 4.25 shows the results after solvent extraction. The PS control, again, 

showed an amount of 1.2 atom % oxygen, possible reasons for this have been 

discussed in Section 4.2.2. Considering the XPS errors, there was no significant 

difference in the oxygen concentration on the surface before and after extraction. 

Table 4.25 Elemental compositions of reactively compounded PS-SMA 66:34 at 

different loadings after extraction in methanol. 

Sample systems Elemental composition I Atom % 

[C) [0] 

PS control 98.8 1.2 

0.1% 98.8 1.2 (0) 

1% 98.5 1.5 (0.3) 

10% 95.0 3.7 (2.5) 

In general the concentrations of oxygen detected at the surface of the reactively 

compounded samples were not significantly affected by extraction. The amount of 

oxygen detected was perhaps slightly less than that seen for the corresponding 

non-reactively compounded samples. However, the difference is small. The oxygen 
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concentrations measured were also perhaps slightly less than those anticipated for 

the bulk composition. The near-surface was not enriched in anhydride groups. 

The extracted reactively compounded samples also underwent chemical 

derivatisation. The results are tabulated in Table 4.26. As seen. the fluorine 

conversion was very low and not much different from the non-reactively 

compounded samples. 

Table 4.26 Effect of chemical derivatisation on reactively compounded PS-SMA 

66:34 after extraction in methanol. 

Sample systems Elemental Composition I Atom "10 

[C) [0] [F) 

PS control 98.8 1.2 0 

1"10 96.5 1.4 0.1 

10"10 96.2 3.3 0.5 

In comparison. the oxygen concentrations detected for both the non-reactively 

compounded and reactively compounded samples. were much less than those 

seen for the surface treated samples. whether before or after extraction and 

derivatisation. 

4.6.3 Attenuated Total Reflection Infrared Spectroscopy 

PS-8MA samples of 1% and 10% loadings of all compositions were analysed and 

the peak area measured from the spectra. The analysis was done on extracted 

samples. The molar ratio was calculated for the surface (measured) and compared 

to the bulk (calculated). see Appendix B. as shown in Table 4.27. The estimated 

error was 0.0004 for 1 % loading samples and 0.001 for 10% loading samples. 

respectively. 
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Table 4.27 Molar ratio at bulk and surface of reactively compounded PS-SMA. 

S:MA 1% 10% 

Bulk Surface Bulk Surface 

(Calculated) (Measured) (Calculated) (Measured) 

50:50 0.0052 0.0062 0.0573 0.0551 

66:34 0.0034 0.0049 0.0378 0.0328 

75:25 0.0026 0.0023 0.0282 0.0297 

The surface and bulk compositions were similar. This is different from the non

reactively compounded samples where the measured compositions were 

consistently slightly higher than the bulk composition. In the same manner to the 

non-reactively compounded samples, the 1 % loading samples had higher 

percentage errors in the ratio. 

4.6.4 Atomic Force Microscopy 

The degree of surface roughness, Ra, was measured on the reactively 

compounded samples and shown in Table 4.28. The error in Ra was estimated at 

about 2 to 4 nm. The degree of roughness for all samples was sub-Ilm. There was 

no difference in the degree of roughness on extraction for both loadings. This was 

different from the non-reactively compounded samples. This may be that some 

copolymers were more strongly and reactively bonded to the PS chain and did not 

rearrange under extraction. The 10% loading showed higher roughness than the 

1% loading. Figures 4.29 and 4.30 show the AFM scan images of the 10% 

samples before and extraction. In comparison, reactively compounded samples 

have lower surface roughness than non-reactively compounded samples, but 

higher roughness than surface treated samples. 
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Table 4.28 Surface roughness of reactively compounded PS-SMA 66:34 before 

and after extraction in methanol. 

Sample Area Ra (nm) Area RMS (nm) 

systems Non-extracted Extracted Non-extracted Extracted 

PS Control 90 90 114 115 

1% 85 89 114 116 

10% 106 104 142 132 

Figure 4.29 AFM scan of reactively compounded PS-SMA 66:34 10% 

loading before extraction. 
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Table 4.28 Surface roughness of reactively compounded PS-SMA 66:34 before 

and after extraction in methanol. 

Sample Area Ra (nm) 

systems Non-extracted Extracted 

PS Control 90 90 

1% 85 89 

10% 106 104 

Area RMS (nm) 

Non-extracted 

114 

114 

142 

Extracted 

E "·~ .~ 

100 .. 

115 

116 

132 

Figure 4.29 AFM scan of reactively compounded PS-SMA 66:34 10% 

loading before extraction. 
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Figure 4.30 AFM scan of reactively compounded PS-SMA 66:34 10% 

loading after extraction. 

4.6.5 Contact Angle Measurement 

Contact angle measurements were performed on samples having PS-SMA 66:34 

at 1% and 10% loading, before and after extraction. Samples compounded with 

PVME were also studied. All results are presented in Table 4.29. 

The contact angles were generally lower than those observed for the non

reactively compounded samples (see Table 4.21 ). This was particularly the case 

for receding angles. Again contact angles did not seem to depend on the amount 

of copolymer or PVME added. Extraction does seem to lead to lower receding 

angles. This could not have been due to surface roughness since AFM (see Table 

4.28) showed that extraction did not affect surface roughness . 
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Table 4.29 Contact angles of reactively compounded PS at - 25°C. 

Sample fJru/v / 0 fJ,.c /0 I1fJ /0 

systems Non- Extracted Non- Extracted Non- Extracted 

extracted extracted extracted 

PS 89.8 90.2 74.1 73.3 15.7 16.9 

Control (2.4) (1.4) (1.5) (1.9) 

SMA 82.4 84.3 58.9 46.9 23.5 37.4 

1% (2.1 ) (2.4) (1.8) (1.1 ) 

SMA 84.1 80.8 61.3 58.4 22.8 22.4 

10% (2.9) (1.4) (2.3) (1.6) 

PVME 83.5 81.3 58.1 54.8 25.4 26.5 

1% (1.1 ) (2.8) (2.3) (1.4) 

PVME 80.5 78.1 54.9 51.7 25.6 26.4 

10% (1.3) (2.1 ) (2.4) (1.9) 

Note: Standard deviations are gIVen In brackets 

The samples underwent chemical derivatisation and the results are reported in 

Table 4.30. Both advancing and receding angles increased slightly as a result of 

derivatisation. 

Table 4.30 Effect of derivatisation on contact angles of reactively compounded PS 

after extraction at - 25°C in methanol. 

Sample systems fJru/v / 0 fJ,.c / 0 AfJ/ o 

PS control 89.1 (2.3) 76.8 (1.9) 12.3 

SMA1% 86.2 (1.8) 52.6 (2.1) 33.6 

SMA 10% 82.4 (1.3) 63.5 (1.8) 18.9 

PVME 1% 82.5 (2.5) 60.3 (2.1) 22.2 

PVME 10% 80.7 (2.2) 63.8 (1.7) 16.9 

Note: Standard deViations are gIVen In brackets. 
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It is noted that the 1 % loading has the largest contact angle hysteresis, quite near 

to that of surface treated samples, in particular, that of the chromic acid treated 

sample. This was not seen for the non-reactively compounded samples. This may 

be due to the surface reorientation of the functional groups upon receding 

measurement. The 10% loading has the lowest contact angle hysteresis among 

the rest. 

4.6.6 Adhesion 

Lap shear joint strength values measured for all samples at 1 % and 10% loadings, 

before and after extraction. The results are shown in Figure 4.31. The adhesive 

joint strength increased for the reactively compounded samples, compared to PS 

control. The adhesive joint strength increased after extraction for all systems and 

this could have been affected by several factors. As reported in Section 4.6.4, 

there was no difference in the degree of roughness on extraction for all systems; 

hence the increase in joint strength was not due to roughness. The increase may 

have been due to the removal of weak boundary layer during extraction. 

It was observed that, on average, there was no difference in adhesive joint strength 

between the various copolymer compositions with the same loading, before and 

after extraction. For the reactive system, there was no difference in adhesive joint 

strength between 1% and 10% loading. 

The adhesive joint strength was also performed on PS-PVME of both loadings, 

after and before extraction. Before extraction, the adhesive joint strength values 

were 240 Nand 210 N respectively for 1% and 10% loadings. The adhesive joint 

strength increased to 310 N for 1% loading and to 300 N for 10% loading upon 

extraction. The increase could be due to the removal of the weak boundary layer. 

The standard deviations, before and after extraction, for both loadings were 

between 32 and 51 N. However, as compared to the PS-8MA samples, the 
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adhesive joint strength was lower for the PS-PVM E samples, both before and after 

extraction. 

1000 

~ 

z 
- 800 
~ -Cl 
c: 
E 
en 
1: 
o ., 
<I> 
> c;; 
Cl) 

~ 
1:1 
~ 

1% 

Sample systems 

Note: Standard deviation between 19 and 45 N 

10% 

Figure 4.31 Effect of adhesive joint strength on reactively compounded 

PS-SMA compositions . 

Chemical derivatisation was carried out on the PS-SMA 66:34 copolymer samples 

and the PS-PVME samples after extraction, see Table 4.31. There was no 

difference in adhesive joint strength for the PS control, which was as expected. 

Adhesive joint strength values decreased on derivatisation for all SMA copolymer 

systems. The decreases in adhesive joint strength were as expected. This was 

thought to be due to some oxygen containing groups being 'shut down" and hence 
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there were fewer acid anhydride groups available to react with the adhesive. As 

expected, derivatisation had little or no effect on the samples containing PVME. 

Table 4.31 Effect of derivatisation on adhesive joint strength of reactively 

compounded PS after extraction in methanol. 

Sample systems Adhesive Joint Strength (N) 

Before derivatisation After derivatisation 

PS control 249 (10) 248 (12) 

SMA1% 510 (10) 213 (15) 

SMA10% 600 (30) 330 (11) 

PVME 1% 310 (25) 260 (31) 

PVME10% 300 (18) 260 (29) 
. . 

Standard deviations are given In brackets . 

It was noted that the adhesive joint strength of the non-reactively compounded 

samples, was higher than that of reactively compounded samples for all 

compositions. 

4.6.7 Summary 

The adhesive joint strength increased after reactive compounding. After extraction, 

adhesion was further improved due to the removal of weak boundary layer. There 

was no difference in adhesive joint strength between 1% and 10% loaded samples. 

After derivatisation, the adhesive joint strength decreased as expected, as there 

would have been fewer oxygen groups on the surface available for reaction. As 

compared to non-reactively compounded samples, the reactively compounded 

samples showed lower adhesive joint strength. The reason why the reactively 

compounded SMA samples have a lower joint strength was unclear. At first sight 

the evidence is contradictory. There may be slightly fewer acid anhydride groups 
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present at the surface of the reactively compounded samples, according to XPS 

and FTIR measurements, compared to non-reactive compounding. However, the 

contact angle data showed that the reactively compounded samples were slightly 

more wettable. This difference is particularly evident in the receding angle. The 

reactively compounded samples were not as rough as their non-reactively 

compounded counterparts and this may have contributed to the lower adhesion. It 

was also possible that the presence of the organic peroxide initiator leads to a 

different surface chemistry with fewer available acid anhydride groups. Reactive 

compounding is a widely used technique but for these systems it clearly has no 

advantages over non-reactive compounding in improving adhesion. 
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4.7 GRAFTING 

4.7.1 Introduction 

In this part of work, another way of increasing the functionality of untreated PS was 

attempted. SMA copolymer chains were grown in situ on the PS surface from 

vapour phase monomers. The process was initiated by UV irradiation. The 

copolymer chains grown on the surface of the polymer will be chemically attached 

to the substrate and the anhydride groups will be available to react with suitable 

adhesives. The grafted chains will be located only at the surface of the polystyrene. 

The grafted samples were characterised by selected analyses, which included 

XPS, contact angle measurement and lapshear testing, before and after extraction 

and chemical derivatisation. The results were compared to those obtained in 

previous experiments. 

4.7.2 X-ray Photoelectron Spectroscopy 

The grafted samples were analysed by XPS before and after extraction. The UV 

irradiated blank untreated PS samples were also analysed as a comparison. The 

results are tabulated in Table 4.32. There was a small amount of oxygen detected 

in the UV blank and its occurrence has been discussed in Section 4.2.2. It can be 

seen that there is no significant difference in the oxygen concentration before and 

after extraction. In comparison, the grafted samples showed higher oxygen 

concentration than the non-reactively compounded and reactively compounded 

sample, of 1% loading level. The concentrations are slightly below those of the 

10% reactively compounded samples. 
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Table 4.32 Elemental compositions of blank and grafted PS. 

Sample systems Elemental compositions / Atom % 

[Cl [0] 

Blank 98.9 1.1 

Non-extracted 97.7 2.3 

Extracted 97.3 2.7 

After chemical derivatisation, 0.8 atom % of fluorine was detected. However, this is 

still much less than that found for pure copolymers. This concentration was higher 

than all the non-reactively compounded and reactively compounded samples, 

irrespective of loading level. In comparison with the surface treated samples, the 

grafted samples showed lower fluorine concentration. 

4.7.3 Contact Angle Measurement 

Contact angle measurements were carried out on the blank and grafted samples 

before and after extraction and the results are presented in Table 4.33. As 

expected there was no difference in both advancing and receding contact angles 

for the blank sample before and after extraction. The contact angles reduced 

slightly after grafting. This indicated that there was a presence of anhydride 

groups, grafted onto the surface. There was little, if any, change in the advancing 

and receding angles for grafted samples before and after extraction. Some 

hysteresis was observed and this may have been due to reorganisation of the 

functional groups on the surface and/or incorporation of water. This behaviour was 

also observed for non-reactively compounded and reactively compounded 

samples, but the hystereSiS for grafted samples was much less than that observed 

for flame and chromic acid treated samples. 
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Table 4.33 Contact angles of blank and grafted PS at - 25°C. 

Sample (JmJv I 0 (J,., I 0 !1(J 10 

systems 
Non- Extracted Non- Extracted Non- Extracted 

extracted extracted extracted 

Blank 90.4 89.1 81.8 79.5 8.6 9.6 

(2.1 ) (1.4) (1.3) (1.9) 

Grafted 82.8 83.2 70.1 68.9 12.7 14.3 

(1.2) (1.9) (2.1 ) (2.2) 

Note: Standard deviations are given In brackets 

The grafted samples were subjected to chemical derivatisation, and then contact 

angle measurement was carried out; resuHs are reported in Table 4.34. As 

expected, no difference was observed for the blank sample. Derivatised samples 

showed increased values for both advancing and receding angle values. This 

increase was consistent with the resuH of derivatisation, where there were fewer 

polar functional groups available to enhance wetting. The increase was more 

prominent in receding angle than in advancing angles. 

Table 4.34 Effect of derivatisation on contact angles of blank and grafted PS after 

extraction at - 25°C in methanol. 

Sample systems (Jtu/v I 0 (J,., I 0 !1(J 10 

Blank 88.9 (1.9) 78.1 (1.3) 10.8 

Grafted 85.6 (2.2) 74.7 (1.5) 10.9 

Note: Standard deViations are gIVen In brackets 
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4.7.4 Adhesion 

An adhesive lap shear joint strength test was also performed on the grafted 

samples, for comparison with the other systems studied. The lap shear tests were 

carried out for blank and grafted samples before and after extraction. The results 

are found in Table 4.35. There was no significant change in adhesive jOint strength 

for the blank sample, as a result of extraction. 

Adhesive joint strength increased after the grafting process where the grafted 

sample displayed a value of 787 N, about twice that of the blank sample. This 

value is also higher than those of the non-reactively compounded and reactively 

compounded samples of all systems 

The adhesive joint strength of grafted samples was further increased by extraction 

in methanol and was also much higher than those of the non-reactively 

compounded and reactively compounded samples. It was thought that the increase 

of joint strength was probably due to the removal of small molecules by extraction, 

e.g. the weak boundary layer. 

Table 4.35 Adhesive joint strength of blank and grafted PS before and after 

extraction in methanol. 

Sample systems Joint Strength (N) 

Non-extracted Extracted 

Blank 381 (15) 401 (10) 

Grafted 787 (20) 1070 (23) 
.. 

Note: Standard deviatIOns are gIVen In brackets 

The grafted samples were also subjected to chemical derivatisation, followed by 

adhesive joint strength testing; results are tabulated in Table 4.36. Not much 
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difference in the strength of adhesion between the blank sample before and after 

derivatisation was observed. 

Grafted samples showed lower readings after derivatisation, as expected, as there 

were fewer functional groups available for bonding. Overall the grafted samples 

demonstrated higher adhesive joint strength than those of the non-reactively 

compounded and reactively compounded samples, and only slightly below that of 

surface treated samples. 

Table 4.36 Effect of derivatisation on adhesive joint strength of blank and grafted 

PS after extraction in methanol. 

Sample systems Joint Strength (N) Standard Deviation 

Blank 395 35 

Grafted 895 61 

4.7.5 Summary 

The oxygen concentration remained about the same for grafted samples before 

and after extraction. After derivatisation, there was a low concentration of fluorine 

groups present. Contact angle hysteresis was lower on the grafted samples than 

for the others studied. It was possible that grafted samples showed less 

reorganisation and/or incorporation of water than the other surfaces studied. The 

presence of covalently bonded copolymer groups on the PS surface was found to 

have increased the adhesive joint strength, compared to the blank sample. This 

increase was not caused by the oxidation due to the UV irradiation of the blank 

sample, but due to the presence of functional groups in the copolymer chain. 

Adhesive joint strength was further improved by extraction, and this could have 

been due to the removal of the weak boundary layers, perhaps due to the 

presence of non-grafted copolymer on the surface. After derivatisation, the 
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adhesive strength was found to have been reduced slightly, which was expected. 

In general, the grafted samples showed improved adhesive joint strengths that 

were comparable to the surface treated samples. Adhesive joint strength was 

significantly higher than for the compounded samples, which had similar amounts 

of surface oxygen (determined by XPS). This was expected, since the anhydride 

groups would probably have been concentrated nearer the surface for the grafted 

samples and therefore a higher proportion would be available for interaction with 

the epoxy resin adhesive used. 
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4.8 TEMPERATURE DEPENDENCE CONTACT ANGLE 

MEASUREMENT 

4.8.1 Introduction 

As demonstrated in Section 2.6, the effect of environmental temperature on the 

work of adhesion will be able to give a greater insight into the problem of wetting 

than measurement of the free energy at only one temperature. This will allow the 

enthalpy and entropy of adhesion for each system to be calculated. This approach 

requires accurate measurement of contact angle and also precise control of 

experimental conditions. 

4.8.2 Evaluation of Equilibrium Spreading Pressure 

As described in Section 2.3.2.a, the presence of adsorbed vapour will cause a 

reduction of the surface free energy of the solid. The reduction is known as the 

equilibrium spreading pressure, tr., and is often assumed to be negDgible for those 

liquids which have a non-zero contact angle on polymers. Good [49] explained that 

the presence of tr. could affect the contact angle on a solid and that the variation of 

1r. could be controlled by creating a saturated vapour atmosphere surrounding the 

test area before measuring contact angle. This will keep the spreading pressure 

constant throughout the measurement. 

An experiment, therefore, was undertaken to establish whether the contact angle 

measurements would be affected by spreading pressure, see Section 3.3.4.b. The 

temperature dependence of water contact angles on untreated PS, (see Table 

4.37) and chromic acid treated PS, (see Table 4.38), was measured with and 

without the presence of a saturated vapour of water. 
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Table 4.37 Effect of 7r. on contact angles of untreated PS. 

Temperature Contact angle measurement 

1°C Absence of saturated vapour Presence of saturated vapour 

(approx.) (} ... I o (}~ 1° (} ... I o (}~ 1° 

15.7 88.6(1.1) 80.2 (1.4) 90.3 (2.1) 81.3 (2.1) 

20.5 87.1 (1.2) 82.3 (1.4) 88.9 (1.9) 81.1 (1.9) 

25.7 84.8 (1.1) 79.6 (1.2) 85.9 (1.5) 80.0 (1.9) 

30.8 84.7(1.1) 76.5 (1.4) 83.8 (1.2) 75.4 (1.3) 

35.0 82.3 (1.5) 73.8 (2.1) 83.1 (1.3) 74.7 (1.1) 

40.9 86.5 (1.2) 81.9 (1.9) 88.6 (1.1) 82.3 (1.2) 

45.0 82.4 (1.7) 77.6 (1.8) 81.9 (1.2) 78.7 (1.8) 

Note: Standard deviations are given In brackets. 

Table 4.38 Effect of 7r. on contact angles of chromic acid treated PS. 

Temperature Contact angle measurement 

1°C Absence of saturated vapour Presence of saturated vapour 

(approx.) (} .. I o (}~ I ° (}_I ° (}~ I ° 
16.0 61.2 (1.5) 23.2 (1.4) 59.4 (1.3) 22.1 (1.3) 

20.2 61.1 (1.2) 23.9 (2.0» 62.3 (2.1) 24.8 (2.1) 

24.9 63.5 (1.9) 23.6 (1.1) 62.4 (1.9) 24.9 (1.4) 

31.3 65.4 (2.1) 25.9 (1.1) 64.4 (1.4) 24.3 (1.1) 

36.0 62.7 (2.2) 26.1 (1.5) 63.1 (1.4) 25.8(1.1) 

41.6 63.0 (1.5) 24.4 (1.8) 62.4 (1.1) 25.9 (1.2) 

45.9 64.0 (1.9) 25.7 (1.9) 63.0 (1.5) 26.6 (1.6) 

Note: Standard deviations are given In brackets. 

150 



Results and Discussion 

The results for untreated PS show that the contact angles in a non-saturated 

vapour environment were not much different from those made in the saturated 

environment. The difference was found to be only 1 or 2°, which was considered 

not to be significant. This is also true for the chromic acid treated PS. These results 

indicate that the contact angle measurement was not affected by vapour pressure. 

It is of course likely that the region in close proximity to the drop is always exposed 

to same vapour. 

4.8.3 Effect of Temperature on the Work of Adhesion 

a) Untreated Polystyrene 

The work of adhesion is calculated according to Equation {2.5} (see Section 2.3.2). 

The calculation takes into account the temperature dependence of the surface free 

energy of the water testing liquid, with reference to Figure 2.4. An example of the 

calculation of work of adhesion is presented in Appendix C. Data presented in 

Figure 4.33 indicates that the receding value of work of adhesion, decreased with 

rising temperature while that of the advancing value did not. The results are in 

good agreement with Padday [84] for both advancing and receding angles, see 

Section 2.6. The observed changes in the work of adhesion were reproducible. 
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Figure 4.32 Effect of temperature on contact angles of untreated PS. 

90 
.., 
E -.. 85 
t:" 0 

r£ 0 

0 0 

u; 80 0 
0 

Cl> 0 
.s::: 0 
-g 
cC - • 0 75 
~ • • • .... • • 0 • 3: 

70 , 

5 10 15 20 25 30 35 40 45 50 
Temperature I °C 

• Adv angles o Rec angles 

Figure 4.33 Effect of temperature on work of adhesion of untreated PS. 

152 



Results and Discussion 

b) Styrene Maleic Anhydride Copolymers 

The contact angle temperature dependence was studied on the various SMA 

copolymers. All the SMA copolymers compositions showed the same trend , that is, 

both advancing and receding angles decreased with increasing temperature. The 

results from the 66:34 copolymer are presented here. The wor!< of adhesion is 

shown in Figure 4.35. The wor!< of adhesion for both advancing and receding 

conditions decreased with temperature. The behaviour was different from that 

observed on the untreated PS. 
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Figure 4.34 Effect of temperature on contact angles of SMA 66:34 copolymer. 

120 
..., 0 
E 

110 0 - e ... 0 
~. 0 0 0 

0 

C 100 
0 
u; 
Q) 
.c 90 "C 
III -0 
...: 80 • ... • • • 0 • • • 3: • 

70 
5 10 15 20 25 30 35 40 45 50 

Temperature I °c 
• Adv angles o Rec angles 

Figure 4.35 Effect of temperature on work of adhesion of SMA 66:34 copolymer. 
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c) Surface Treated Polystyrene 

For surface treated PS samples , contact angles increased with temperature ; see 

Figures 4.36 and 4.38. Changes in contact angles of up to 30° were observed over 

the range studied. Both surface treated samples, therefore, showed a decrease in 

work of adhesion with temperature, see Figures 4.37 and 4.39. For flame treated 

samples , the receding angle was more affected by temperature than the advancing 

angle. It is not possible to explain this behaviour in terms of surface roughness or 

surface heterogeneity. Therefore it is proposed that this must have been due to the 

surface left by the receding drop being different to that before contact with water. 

For this to happen suggests some reorganisation of the polymers' surface and/or 

incorporation of water, and is consistent with the interpretation of hysteresis made 

in previous sections . The chromic acid treated surfaces showed less difference 

between advancing and receding conditions . Overall, the changes in work of 

adhesion with temperature were much greater for surface treated PS than 

untreated PS. 
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Figure 4.39 Effect of temperature on work of adhesion of chromic acid treated PS. 
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d) Non-reactively Compounded Polystyrene 

The temperature dependence of the contact angle on 1 % and 10% loadings of PS

SMA 66:34 after extraction are evaluated and presented in Figures 4.40 to 4.43. 

For 1% loaded samples, the contact angle decreased with increasing temperature 

for both advancing and receding conditions. The receding angles though 

decreasing with temperature did not vary much. The 1% of PS-PVME loaded 

samples displayed only increasing advancing angles with temperature , which was 

the same as the 10% loaded PS-SMA samples. The 10% loaded PVME samples 

both showed decreasing advancing and receding angles with temperature, the 

same as the 1% loaded PS-SMA samples . These behaviours are all different from 

the surface treated samples where both advancing and receding angles increased 

with temperature . 

It was observed that contact angle hysteresis increased with temperature for all 

samples , in contrast to the flame treated surfaces. The changes in work of 

adhesion with temperature are also generally less pronounced than for the surface 

treated samples. 
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Figure 4.40 Effect of temperature on contact angles of 

non-reactively compounded PS-SMA 66:34 1 % loading. 
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Figure 4.42 Effect of temperature on contact angles of 

non-reactively compounded PS-SMA 66:34 10% loading. 
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Figure 4.44 Effect of temperature on contact angles of 

non-reactively compounded PS-PVME 1% loading. 
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non-reactively compounded PS-PVME 1% loading. 
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Figure 4.46 Effect of temperature on contact angles of 

non-reactively compounded PS-PVME 10% loading. 
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Figure 4.47 Effect of temperature on work of adhesion of 

non-reactively compounded PS-PVME 10% loading. 
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e) Reactively Compounded Polystyrene 

The temperature dependence of water contact angles for reactively compounded 

PS-SMA 66:34 both after extraction and with 1 % and 10% loading , were measured 

and are presented in Figures 4.48 to 4.51 . It was observed that only the advancing 

angles of 1% and 10% PS-SMA loaded samples increased with temperature. This 

behaviour was also seen in the 1% loaded PS-PVME samples , see Figure 4.52. 

The 10% loaded PS-PVME samples, however, exhibited decreasing advancing 

and receding angles with increasing temperature, see Figure 4.54. 

In many respects, the results are similar to those of non-reactively compounded 

samples . Contact angle hysteresis always increased with temperature and the 

dependence of the work of adhesion on temperature was weaker than that 

observed for the surface treated samples. 
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Figure 4.50 Effect of temperature on contact angles of 

reactively compounded PS-SMA 66:34 10% loading. 
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Figure 4.51 Effect of temperature on work of adhesion of 

reactively compounded PS-SMA 66:34 10% loading. 
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f) Grafted Polystyrene 

The temperature dependence of contact angle on grafted PS has been evaluated 

and the results are presented in Figure 4.56. As can be seen, there were increases 

in both advancing and receding angles with temperature . 

The work of adhesion decreased with temperature for both advancing and receding 

conditions, see Figure 4.57, which meant less work was needed to separate the 

water from the surface. The contact angle hysteresis was much smaller than that 

obtained for surface treated samples and was constant throughout the temperature 

range. The strong dependence of work of adhesion on temperature meant that this 

sample more closely resembled the surface treated samples, than the 

compounded ones. 
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Figure 4.56 Effect of temperature on contact angles of grafted PS. 
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4.8.4 Entha/py and Entropy of Adhesion 

As discussed in the literature survey (Section 2.3.9) the work of adhesion has 

enthalpic and entropic components . In this study, the enthalpic and entropic 

contributions for various PS systems were calculated from the slopes of the graphs 

presented earlier and are tabulated in Table 4.39. Following Pad day (79), work of 

adhesion associated with both advancing and receding angles were used. 

From the results in Table 4 .39, two general comments can be made. Firstly, it was 

observed that for some of the samples studied , the work of adhesion varies 

substantially with temperature and these, therefore, have a large entropy of 

adhesion. The temperature dependence observed here is not easily accounted for 

by other theories used to describe work of adhesion. For example, when using the 

acid-base theory, it is assumed that the work for adhesion is proportional to the 

enthalpy of acid-base interaction at the interface. It is not clear how th is approach 

can account for the results presented here. 

Secondly, the three samples that gave the best adhesion, namely flame treated , 

chromic acid treated and grafted samples , had high values for the enthalpy and 

entropy of adhesion , calculated using both advancing and receding angles. High 

values for the enthalpy of adhesion may be readily interpreted in terms of the 

number and availability of functional groups on the surface of these samples which 

can interact with the water. However, the interpretation of the entropy of adhesion 

(S .. ) is less clear. The entropy of adhesion is defined by Equation {2.22}, 

S.d = S., + SL - SS! 

where Ss and SL are specific surface excess entropies of the polymer and liquid, 

respectively. SSL is the specific surface excess entropy of the interface. For the 

untreated PS, there is a literature value of Ss = 0.072 mJ m-2 K" [197 , 213]. 
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Knowing Sf. = 0.1676 mJ m-2 K-1 (Appendix C), SSL can be estimated to be 0.29 mJ 

m-2 K-1. 

When a polymer is surface treated, both Ss and SSL will change. The positive values 

of Sf. observed for all liquids [214] can be attributed to the increased mobility of the 

surface molecules [72 - 75]. If it is assumed that mobility is also an important 

contribution to SSf., then a surface treatment which introduced polar functional 

groups would probably reduce the mobility of water at the interface. This would 

then lower SSL and thus leads to a higher value for Sad' This simple argument is in 

agreement with the results in Table 4.39 and other results presented in this thesis. 

However, it must be said that it is probably a huge over-simplification. The cell 

model proposed by Van Ness [81, 82] indicates some of the complexities involved 

in estimating surface and therefore interfacial entropies. There are other factors 

that may contribute to SSL and the effect of surface treatment on Ss has been 

ignored. 

All the contact angle results derived from the contact angle measurements have to 

be treated with caution. This is because there is always the assumption that an 

equilibrium property of the surface is being measured. The assumption is implicit in 

this approach and also in those of Owens and Wendt [60] and the acid-base theory 

[67, 68]. However, the results presented here do show the value of measuring the 

temperature dependence of the work of adhesion. It would be probably worth 

pursuing the temperature dependence of the work of adhesion using some well 

characterised homo polymers where the Ss may be estimated. In this way, the 

factors affecting interfacial entropy could perhaps be better identified and the 

simple molecular level hypothesis proposed in this thesis could be tested. 

171 



ResuHs and Discussion 

Table 4.39 Work of adhesion (W..,). enthalpy (H",) and entropy (SQd) of various PS 

systems at temperature 30oe. 
Sample 01° w.. H .. S .. 
systems I mJ m·2 I mJ m-2 I mJ m-2 K-1 

ODdv 75 59 -0.05 

Untreated 
O",c 83 110 0.09 

ODdv 77 28 -0.07 

PS control 
O",c 79 119 0.13 

ODdv 78 110 0.11 

SMA 64:34 
O",c 107 166 0.19 

ODdv 90 317 0.75 

Flame treated 
O",c 123 481 1.18 

°adv 104 209 0.35 

Chromic acid treated 
O",c 136 254 0.39 

PS-SMA 66:341% ODdv 76 64 -0.04 

non-reactively 
O",c 97 27 -0.23 

compounded 

PS-SMA 66:3410% ODdv 77 181 0.34 

non-reactively 
O",c 118 161 0.14 

compounded 

PS-PVME 1% ODdv 79 175 0.32 

non-reactively 
O",c 112 132 0.07 

compounded 

PS-PVME 10% ODdv 78 60 -0.06 

non-reactively 
O",c 102 44 -0.19 

compounded 
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PS-SMA 66:341% (JDJJ. 75 180 0.34 

reactively 
(J,.c 89 111 0.07 

compounded 

PS-SMA 66:3410% (JDJJv 77 184 0.36 

reactively 
(J,.c 118 134 0.05 

compounded 

PS-PVME 1% (Jad. 87 193 0.35 

reactively 
(J,.c 118 118 -2x10-J 

compounded 

PS-PVME 10% (JDJJ. 91 153 0.17 

reactively 
(J,.c 111 97 -0.05 

compounded 

(Jad. 80 240 0.54 

Grafted 
(J,.c 95 276 0.60 

4.8.5 Summary 

It can be concluded that contact angle measurement is not affected by spreading 

pressure. The temperature dependence contact angle results demonstrated either 

increasing or decreasing of contact angle values with raising temperature and 

these varied among the different PS systems. The variation of contact angle 

hysteresis with temperature gives greater insight into the processes occurring at 

the surface. Work of adhesion varies with temperature substantially. which results 

in large entropy adhesion for some samples. This is not taken into account by the 

acid-base theory. Sad increased as a result of surface treatment. It is suggested that 

the increase in Sad is due to a decrease in the mobility of water molecules at the 

interface. 
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CHAPTER 5 CONCLUSIONS 

As stated before, the intention of this work was to physically and chemically 

examine the surface effects of the various functional groups generated by the 

surface treatments and other incorporation methods, to compare the effectiveness 

of these methods in promoting adhesion. Enthalpy and entropy of adhesion of the 

samples were measured and compared to adhesion bond strength data. The 

following conclusions were drawn. 

5.1 SURFACE TREATMENT 

Large contact angle hysteresis was seen on both flame and chromic acid treated 

samples and has been attributed to the surface reorganisation and/or incorporation 

of water. Heating surface treated samples to temperatures in excess of 50°C did 

cause a reduction in water contact angles. This was attributed to the reorientation 

of functional groups in the surface region. These surface changes occur at 

temperatures well below the Tg of the polymer, suggesting increased thermal 

mobility in the surface region. 

The chromic acid treated samples have fewer organic functional groups on the 

surface than the flame treated samples but a higher proportion of them are 

carboxylic acid groups. This situation is similar to that described in previous studies 

on polyolefins [6] where it was inferred that the carboxylic acid groups reacted with 

the epoxy resin. Derivatisation has shown that carboxylic acid groups on the 

surface of PS contribute significantly to the joint strength with the epoxy adhesive. 

Derivatisation used in conjunction with adhesion testing is a method that should be 

used more widely in adhesion research. It is generally applicable and not limited to 

carboxylic acid groups at any specific type of surface treatment. 
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5.2 NON-REACTIVE COMPOUNDING 

An increase in surface roughness was observed after extraction and was attributed 

to the removal of SMA copolymers from the surface or some reorganisation of the 

groups in the surface. Compounding with SMA copolymers and PVME have been 

shown to improve the adhesion and was further enhanced after extraction, which 

was believed to due to the removal of weak boundary layer and, perhaps, a small 

effect from the surface roughness. A low loading level has been proven to be 

effective in achieving the same adhesion as a higher loading level. In addition, 

derivatisation has shown that the presence of small number of functional groups 

could contribute the majority of the joint strength for the PS-SMA samples. The 

amounts of anhydride functional groups needed to achieve the improvement in 

adhesion were below the detection limit of the XPS spectrometer. The ability of low 

levels of copolymer to enhance adhesion is important since this means that there is 

a minimum effect on the bulk properties of the polystyrene. 

5.3 REACTIVE COMPOUNDING 

Extraction did not seem to affect the surface roughness but seems to affect more 

the receding angles, hence causing large contact angle hysteresis. This may be 

due to the surface reorganisation of functional groups. Likewise, compounding with 

initiator and the copolymers promoted adhesion which was further improved by 

extraction. Low loadings have again been shown to be sufficient to achieve 

adhesion. Derivatisation has again proven that the presence of the small number of 

functional groups can have a significant effect on adhesion. 
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5.4 GRAFTING 

The improvement in the adhesive joint on extraction was again attributed to the 

removal of weak boundary layer. In this case, the weak boundary layer probably 

consists of SMA copolymer chains that were not grafted to the substrate. 

Derivatisation has shown that the presence of the grafted copolymer chains on the 

PS surfaces do contribute to adhesion. XPS detected low oxygen concentrations at 

the surface of these samples but the adhesion joint strength was high. This is 

probably due to the availability of the functional groups in the grafted surface and 

the fact that they are chemically attached to the polystyrene substrate. 

5.5 CROSS COMPARISON OF SYSTEMS 

In comparison, surface treatment seems to be more effective in promoting 

adhesion than non-reactive and reactive compounding. Non-reactive compounding 

appeared to be superior in enhancing adhesion than reactive compounding. This 

may be due in part to difference in surface roughness and the slightly higher 

oxygen concentrations at the surface of the non-reactively compounded samples. 

The grafting of SMA copolymer chains in situ also proved to be useful in improving 

adhesion. Similar levels of adhesion to the surface treated surfaces were 

observed. Contact angle hysteresis was lower on the grafted samples suggesting 

less incorporation of water. This probably reflects the low oxygen concentration on 

the surface of these samples. 

5.6 ENTHALPY AND ENTROPY OF ADHESION 

For some PS systems, the work of adhesion changes considerably with 

temperature and resulted in large entropy of adhesion. This is not accounted for by 
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the acid-base theory. The entropy of adhesion has increased as a result of 

treatment for some PS systems and the decreased mobility of water molecules at 

the interface as a result of surface treatment is suggested as one of the factors 

responsible. The potential for measurement of the entropy of adhesion to give 

insight into the molecular properties of the interface is an important finding of this 

work. It has been shown that contact angles can now be measured with sufficient 

accuracy to allow the determination of enthalpy and entropy of adhesion. This 

approach could usefully be extended to other systems. 

177 



References 

CHAPTER 6 REFERENCES 

1. A. Augsburg, K. Grundke, K. Poschel, H. J. Jacobasch, A. W. Neumann, 

Acta. Polym., 49, p417, (1998) 

2. J. Hopken, M. Moller, Macromol., 25, p1461, (1992) 

3. R. Mason, C. A. Jalbert, P. A. V. O'Rourke Muisener, J. T. Koberstein, J. F. 

Elman, T. E. Long, B. Z. Gunesin, Adv. Colloid and Interface Sci., 94, p1, 

(2001) 

4. N. G. Gaylord, R. Mehta, V. Kumar, M. Taki, J. Appl. Polym. Sci., 38, p359, 

(1989) 

5. N. G. Gaylord, R. Mehta, D. R. Mohan, V. Kumar, J. Appl. Polym. Sci., 44, 

p1971, (1992) 

6. E. Sheng, Ph. D. Thesis, Loughborough University of Technology, (1992) 

7. K. W. Alien, 1nl. J. Adhesion and Adhesives, 23, p87, (2003) 

8. G. Gierenz, W. Karmann, 'Adhesives and Adhesion Tapes', Wiley-VCH, 

(1999) 

9. L. H. Lee, 'Fundamentals of Adhesion', Plenum Press, (1991) 

10. B. V. Deryaguin, V. P. Smilga, J. Appl. Phys., 38, p4609, (1967) 

11. B. V. Deryaguin, Research, It p70, (1955) 

178 



References 

12. B. V. Deryaguin, Research, §, p363, (1955) 

13. A. D. Roberts, 'Adhesion 1', ed. K. W. Alien, Applied Science Pub London, 

p207, (1977) 

14. J. P. Bell, W. T. McCarvill, J. Appl. Polym. Sci .• 18, p2243, (1974) 

15. S. S. Voyutskii, 'Autohesion and Adhesion of High Polymers', Wiley

Interscience, New York, p138, (1963) 

16. H. Schonhom, 'Adhesion: Fundamentals and Practice', McLaren and 

Sons London, p12, (1969) 

17. W. C. Wake, 'Adhesion and the Formulation of Adhesives', Applied 

Science Pub London, p89, (1982) 

18. C. W. Jennings. J. Adhesion,~, p25, (1972) 

19. J. N. Israelachvili, D. Tabor, Proc. Roy. Soc., A331, p19, (1972) 

20. D. Tabor, R. H. Winterto, Proc. Roy. Soc., A312, p435, (1969) 

21. S. S. Voyutskii, Adhesives Age, ~, p30, (1962) 

22. S. S. Voyutskll, Z. M. Ustinova, J. Adhesion,~, p39, (1977) 

23. R. M. Vasenin, Adhesives Age, §, p21, (1965) 

24. R. M. Vasenin, Adhesives Age,!t, p30, (1965) 

25. R. M. Vasenin, 'Adhesion: Fundamentals and Practice', McLaren and 

179 



References 

Sons London, p29, (1969) 

26. R. J. Good, 'Treatise on Adhesion and Adhesives', 1, ed. R. L. Patrick, 

Marcel Dekker, New York, p15, (1987) 

27. A. Rattana, M. L. Abel, J. F. Watts, 1nl J. Adhesion and Adhesives, 26, 

p28, (2006) 

28. D. E. Packham, 'Handbook of Adhesion', John Wiley & Sons Ltd, p5, 

(2005) 

29. J. J. Bikerman, Ind. Eng. Chem., 59, p40, (1967) 

30. D. M. Brewis, Int. J. Adhesion and Adhesives, 13, p251 , (1993) 

31. K. W. Alien, 'Aspects of Adhesion 5', ed. D. J. Alner, University of London 

Press, p11, (1969) 

32. B. W. Malpass, D. E. Packham, K. Bright, J. Appl. Polym. Sci., 18, p3249, 

(1974) 

33. D. E. Packham, 1nl J. Adhesion and Adhesives, 16, p121, (1996) 

34. D. E. Packham, 'First Intemational Congress on Adhesion Science and 

Technology', Ridderprint by, p81, (1998) 

35. J. Comyn, 'Adhesion Science', Cambridge/Royal Society of 

Chemistry, (1997) 

36. D. M. Brewis, Chapter 5, 'Industrial Adhesion Problems', ed. D. M. Brewis 

and D. Briggs, Orbital Press, (1985) 

180 



References 

37. D. G. Ranee, Chapter 6, 'Surface Analysis and Pretreatment', ed. 

D. M. Brewis, Applied Science Publishers, (1982) 

38. A. Zangwill, 'Physics at Surfaces', Cambridge University Press, (1988) 

39. S. J. Gregg, 'The Surface Chemistry of Solids', Chapman and Hall, (1961) 

40. I. Sutherland, R. J. Heath, Progress in Rubber and Plastics Tech., 14, 

p151, (1998) 

41. C. M. Chan, Chapter 2, 'Polymer Surface Modification and 

Characterisation'. Hanser Publications, (1993) 

42. J. Comyn, Int. J. Adhesion and Adhesives,.1l, p145, (1992) 

43. R. Aveyard, D. A. Hayon, 'Principles of Surface Chemistry', Cambridge 

University Press, (1973) 

44. J. Kloubek, Adv Colloid and 1nl SCi., 38, p99, (1992) 

45. D. G. Ranee, Chapter 3, 'Industrial Adhesion Problems', ed. D. M. Brewis 

and D. Briggs, Orbital Press, (1985) 

46. T. Young, Trans. Roy. Soc., 95, p65, (1805) 

47. D. H. Bangham, R. J. Razouk, Trans Faraday Soc., 33, p1459, (1937), 

Proc. Roy. Soc. London, Ser. A166, p572, (1938) 

48. R. J. Good, J. Colloid and Interface Sci., 52, p308, (1975) 

49. R. J. Good, J. Adhesion Sci. Tech., g, p1269, (1992) 

181 



References 

50. L. A. Girifalco, R. J. Good, J. Phys. Chem., 61, p904, (1957) 

51. R. J. Good, ACS Advances Chem. Ser., 43, p74, (1964) 

52. R. J. Good, Treatise on Adhesion, 1, ed. R. L. Patrick, Dekker, (1967) 

53. L. A. Girifalco, R. J. Good, J. Phys. Chem., 64, p561, (1960) 

54. R. J. Good, J. Phys. Chem., 60, p810, (1957) 

55. F. M. Fowkes, J. Phys. Chem., 64, p561, (1960) 

56. F. M. Fowkes, J. Phys. Chem., 66, p1863, (1962) 

57. F. M. Fowkes, J. Phys. Chem., 67, p2538, (1963) 

58. F. M. Fowkes, J. Adhesion,~, p155, (1972) 

59. F. M. Fowkes, Ind. Eng. Chem., 56, p40, (1964) 

60. D. K. Owens, R. C. Wendt, J. Appl. Polym. ScL, 13, p1741, (1969) 

61. D. K. Owens, J. Appl. Polym. ScL, 14, p1725, (1970) 

62. S. Wu, J. Polym. ScL Part C, 34, p19, (1971) 

63. S. Wu, J. Adhesion, 9., p39, (1973) 

64. S. Wu, J. Macromo!. Sci. Part C, jQ, p1, (1974) 

65. C. A. Ward, A. W. Neumann, J. Colloid Interface ScL, ~, p286, (1974) 

182 



References 

66. J. K. Spelt, D. R. Absolom, A. W. Neumann, Langmuir, £, p620, (1986) 

67. F. M. Fowkes, J. Adhesion ScL Tech., 1, p7, (1987) 

68. C. J. Van ass, R. J. Good, M. K. Chaudhury, Langmuir,~, p884, (1988) 

69. R. S. Drago, G. C. Vogel, T. E. Needham, J. Amer. Chem. Soc., 93, p6014, 

(1971 ) 

70. R. S. Drago, L. B. Parr, C. S. Chamberlain, J. Amer. Chem. Soc., 99, 

p3203, (1977) 

71. K. J. Huttinger, S. Hohmann-wien, G. Krekel, J. Adhesion ScL Tech., Q, 

p317, (1992) 

72. M. J. Jaycock, G. D. Parfrtt, 'Chemistry of Interfaces', Ellis Horwood Ltd, 

(1981) 

73. P. R. Couchman, W. A. Jesser, Surf. Sci., 34, p212, (1973) 

74. R. C. Tolman, J. Chem. Phys., 16, p758, (1948) 

75. R. C. Tolman, J. Chem. Phys., 17, p333, (1949) 

76. J. M. D. Rio, M. N. Jones, J. Phys. Chem., 105, p1200, (B2001) 

77. K. A. T. Silverstein, A. D. J. Haymet, K. A. Oill, J. Amer. Chem. Soc., 120, 

p3166, (1998) 

78. D. M. Huang, D. Chandler, J. Phys. Chem., 106, p2047, (82002) 

183 



References 

79. J. Israelachvili, Chapter 8, 'Intermolecular and Surface Forces', 2nd 

edition, Academic Press, (1992) 

80. 'CRC Handbook of Chemistry and Physics', 73rd edition 

81. K. E. Van Ness, Polym. Eng. Sci., 32, p122, (1992) 

82. K. E. Van Ness, P. R. Couchman, J. Colloid Interface Sci., 182, p110, 

(1996) 

83. C. J. Budziak, E. I. Vargha-Butler, A. W. Neumann, J. Appl. Polym. Sci., 

42, p1959, (1991) 

84. J. F. Padday, J. Colloid Interface Sci., 28, p557, (1968) 

85. R. E. Johnson, R. H. Dettre, J. Colloid SCi., 20, p173, (1965) 

86. M. C. Phillips, A. C. Riddiford, Nature, 205, p1005, (1965) 

87. N. T. Correia, J. J. M. Ramos, M. H. C. V. Adao, E. J. V. Saramago, Mol. 

Crysl Liq. Crysl, 300, p45, (1997) 

88. W. A. Zisman, J. Paint Tech., 44, p42, (1972) 

89. R. N. Wenzel, Ind. Eng. Chem., 28, p988, (1936) 

90. R. E. Johnson, R. H. Dettre, J. Phys. Chem., 68, p1744, (1964) 

91. A. B. D. Cassie, S. Baxter, Trans. Faraday Soc., 40, p546, (1944) 

92. R. E. Johnson, R. H. Dettre, Surf. Colloid Sci., £, p85, (1969) 

184 



References 

93. N. Oharmarajan, S. Oatta, Polym., 33, p3848, (1992) 

94. C. A. Brighton, G. Pritchard, G. A. Skinner, 'Styrene Polymers: 

Technology and Environmental Aspects', Applied Science Publishers, 

(1979) 

95. W. C. Teach, G. C. Kiessling, 'Polystyrene', Reinhold Publishing 

Corporation, (1960) 

96. 'Polystyrene Materials: A Code of Practice' (pamphlet), The British 

Plastics Federation, (1963) 

97. J. R. Wiinsch, 'Polystyrene: Synthesis, Production and Application', 

Rapra Technology Limited, (2000) 

98. F. Chang, Y. Hwu, Polym. Eng. Sci., 31, p1509, (1991) 

99. Y. Gallot, C. Nippier, Macromol. Symp.,.1Q, p41, (1988) 

100. D. J. Walsh, S. Rostami, Advances in Polym. Sci., 70, p121, (1985) 

101. O. Olabisi, 'Polymer-Polymer Miscibility', Academic Press, (1979) 

102. A. R. Kumar, Y. S. Hu, P. Ansens, S. P. Chum, A. Hiltner, E. Baer, 

Macromolecules, 39, p1496, (2006) 

103. G. N. Kumaraswamy, C. Ranganathaiah, M. V. D. Urs, H. B. Ravikumar, 

European Polym. J., 42, p2655, (2006) 

104. K. Cho, K. H. Seo, T. O. Ann, Polym. Journal, 29, p987, (1997) 

185 



References 

105. Y. Lee, K. Char, Macromol., 27, p2603, (1994) 

106. M. Bank, J. Leffingwell, C. Thies, J. Polym. Sci.: Polym. Phys. Ed., 10, 

p1097, (1972) 

107. T. K. Kwei, T. Nishi, R. F. Roberts, Macromol., I, p667, (1974) 

108. J. M. Ubrich, F. Ben Cheikh Larbi, J. L Halary, L Monnerie, Macromol.,.ll!., 

p810, (1986) 

109. S. Pavawongsak, J. S. Higgins, N. Clarke, T.C.B. McLeish, D. G. Peiffer, 

Polym., 41, p757, (2000) 

110. S. Mani, M. F. Malone, H. H. Winter, Macromol., 24, p5451 , (1991) 

111. H. Gerard, J. S. Higgins, Macromol., 32, p5411, (1999) 

112. D. Shi, J. Yang, Z. Yao, Y. Wang, H. Huang, W. Jing, J. Yin, Polym., 42, 

p5549, (2001) 

113. S. G. Flores-gallardo, S. Sanchez-valdes, L F. Ramos De Valle, J. Appl. 

Polym. Sci., 79, p1497, (2001) 

114. D. C. Clark, W. E. Baker, K. E. Russell, R. A. Whitney, J. Polym. Sci.: Part 

A: Polym. Chem., 38, p2456, (2000) 

115. W. O. Kenyon, G. P. Wough, J. Polym. Sci., 32, p83, (1958) 

116. R. T. Swiger, J. Polym. Sci., n, p1554, (1975) 

186 



References 

117. R. A. Kurbanova, R. Mirzaoglu, S. Kurbanov, I. Karatas, V. Pamuk, E. 

Ozcan, A. Okudan, E. GOler, J. Adhesion ScL Tech., 11, p105, (1997) 

118. M. Hajian, C. Sadrmohaghegh, G. Scott, Eur. Polym. J., 20, p135, (1984) 

119. R. A. Kurbanova, R. Mirzaoglu, S. Kurbanov, I. Karatas, V. Pamuk, E. 

Ozcan, A. Okudan, E. GOler, J. Adhesion Sci. Tech., 11, p947, (1998) 

120. S. L. Kapalan, P. W. Rose, Int. J. Adhesion and Adhesives, 11, p109, (1991) 

121. S. Guruvenket, G. M. Rao, M. Komath, A. M. Raichur, Appl. Surf. ScL, 236, 

p278, (2004) 

122. E. Occie 110 , M. Morra, G. Morini, F. Garbassi, P. Humphrey, J. Appl. Polym. 

Sci., 42, p551, (1991) 

123. R. E. Marchant, C. J. Chou, C. Khoo, J. Appl. Polym. Sci. : Appl. Polym. 

Symp., 42, p125, (1988) 

124. Y. Nakayama, T. Takahagi, F. Soeda, K. Hatada, S. Nagoaka, J. Suzuki, A. 

Ishitani, J. Polym. Sci. : Polym. Chem. Ed., 26, p559, (1988) 

125. M. Strobel, S. Corn, C. S. Lyons, G. A. Korba, J. Polym. Sci.: Polym. 

Chem. Ed., 23, p1125, (1985) 

126. C. P. Ho, H. Yasuda, J. Appl. Polym. Sci., 39, p1541, (1990) 

127. J. B. Lhoest, E. Detrait, J. L. Dewez, P. V. deAguilar, P. Bertrand, J. 

Biomater. Sci.: Polym. Ed., I, p1039, (1996) 

128. A. Nihlstrand, T. Hjertberg, K. Johansson, Polym., 38, p3581 , (1997) 

187 



References 

129. S. Yuen, R. E. Marchant, J. Appl. Polym. Sci.: Appl. Polym. Symp., 54, 

p77, (1994) 

130. R. Foerch, N. S. Mclntyre, R. N. S. Sodhi, D. H. Hunter, J. Appl. Polym. 

Sci., 40, p1903, (1990) 

131. Ch. C. Dupont-Gillain, Y. Adrianensen, S. Derclaye, P. G. Rouxhet, 

Langmuir, 16, p8194, (2000) 

132. M. Slradal, D. A. I. Goring, J. Adhesion,!!, p57, (1976) 

133. D. M. Brewis, I. Mathieson, Adhesion and Bonding to Polyolefins, Rapra 

Review Reports, 143, 12, 11, (2002) 

134. J. Golebiewski, Z. Zenkiewicz, Polimery, 48, p134, (2003) 

135. M. Bousmina, P. Bataille, S. Sapieha, H. P. Schreiber, J. Rheology, 39, 

p499, (1995) 

136. I. Sutherland, D. M. Brewis, R. J. Heath, E. Sheng, Surf. Interface Anal., 

17, p507, (1991) 

137. F. Garbassi, F. Occhiello, F. Polato, J. Mater. SCi., 22, p207, (1987) 

138. R. P. Popal, Ph. D. Thesis, Loughborough University of Technology, (1995) 

139. P. Blais, D. J. Carlsson, G. W. Csullog, D. M. Wiles, J. Colloid and 

Interface ScL, 47, p636, (1974) 

140. D. Briggs, V. J. I. Zichy, D. M. Brewis, J. Comyn, R. H. Dahm, M. A. Green, 

M. B. Konieczko, Surf. Interface Anal.,~, p107, (1980) 

188 



References 

141. K. Kate, Polym.,~, p419, (1968) 

142. V. J. Armond, J. R. Atkinson, J. Mater. Sci.,~, p332, (1968) 

143. D. Briggs, D. M. Brewis, M. B. Konieczo, J. Mater. Sci., 11, p1270, (1976) 

144. J. L. Garnett, S. V. Jankiesicz, M. A. Long, D. F. Sangster, Radiation. 

Phys. Chem., 27, p301, (1986) 

145. R. D. Goldblatt, J. M. Park, R. C. White, L. J. Matienzo, S. J. Huang, J. P. 

Jehnson, J. Appl. Polym. SCi., 37, p335, (1989) 

146. Y. Uyama, Y. Ikada, J. Appl. Polym. ScL, 41, p619, (1990) 

147. E. T. Kang, K. G. Neoh, X. Zhang, K. L. Tan, D. J. Liaw, Surf. Interface 

Anal., 24, p51, (1996) 

148. B. Ranby, Int. J. Adhesion and Adhesives, 19, p337, (1999) 

149. B. Ranby, W. T. Yang, O. Tretinnikov, Nucl. Instr. And Meth.ln Phys. Res. 

B, 151, (1-4), May, p301, (1999) 

150. F. Severini, M. Pegoraro, L. Yuan, G. Ricca, W. Fanti, Polym., 40, p7059, 

(1999) 

151. Y. Li, X. M. Xie, B. H. Guo, Polym., 42, p3419, (2001) 

152. K. Allmer, A. Huit, B. Ranby, J. Polym. ScL: Polym. Chem., 26, p2099, 

(1988) 

189 



References 

153. J. Lopez-Gejo, H. Gliemann, T. Schimmel, A. M. Braun, Photochemistry 

and Photobiology, 81, p777, (2005) 

154. G. V. Lubarsky, M. R. Davidson, R.H. Bradley, Surf. Sci., 558, p135, (2004) 

155. R. Mason, C. A. Jalbert, P. A. V. O'Rourke Muisener, J. T. Koberstein, J. F. 

Elman, T. E. Long, B. Z. Gunesin, Adv. Colloid and Interface Sci., 94, p1, 

(2001) 

156. J. Hopken, M. Moller, Macromol., 25, p1461, (1992) 

157. S. H. Lee, E. Ruckenstein, J. Colloid Interface SCi., 120, p529, (1987) 

158. H. Yasuda, A. K. Sharma, J. Polym. Sci., 19. p1285, (1981) 

159. I. Sutherland, E. Sheng, D. M. Brewis, R. J. Heath, J. Adhesion, 44, p17, 

(1994) 

160. D. R. Gagnon, T. J. McCarthy, J. Appl. Polym. Sci., 29, p4335, (1984) 

161. L. H. Wang, R. S. Porter, J. Appl. SCi., 28, p1439, (1983) 

162. A. H. Ellison, W. A. Zisman, J. Phys. Chem., 58, p503, (1954) 

163. G. Gillberg, J. Adhesion, 21, p129, (1987) 

164. D. Briggs, 'Surface Analysis of Polymers by XPS and static SIMS', 

Cambridge University Press, (1998) 

165. H. R. Thomas, J. J. O'Malley, Macromol., 12, p323, (1979) 

190 



References 

166. R. P. Popat, I. Sutherland, E. Sheng, J. Mater. Chem., §, p713, (1995) 

167. D. S. Everhart, C. N. Reilley, Anal. Chem., 53, p665, (1981) 

168. R. A. Dickie, J. S. Hammond, J. E. Devries, J. W. Holubka, Anal. Chem., 

54, p2045, (1982) 

169. L. J. Gerenser, J. F. Elman, M. G. Mason, J. M. Pochan, Polym., 26, p1162, 

(1985) 

170. D. Briggs, 'Encyclopaedia of Polymer Science and Engineering', 2nd 

edition, ed. J. I. Kroschwitz, .12, p406, (1989) 

171. J. M. Pochan, L. J. Gerener, J. F. Elman, Polym., 27, p1058, (1986) 

172. A. Chilkoti, B. D. Ratner, Surf. Interface. Anal., 17, p567, (1991) 

173. I. Sutherland, E. Sheng, D. M. Brewis, R. J. Heath, J. Mater. Chem.,!, 

p683, (1998) 

174. G. H. Frederickson, A. Ajdari, L. Leibler, J. P. Carton, Macromol., 25, 

p2882, (1992) 

175. H. Hansma, F. Motamedi, P. Smith, P. Hansma, J. C. Wittman, Polym., 33, 

p647, (1992) 

176. C. M. Mate, V. J. Novotny, J. Chem. Phys., 94, p8420, (1991) 

177. A. C. M. Yang, B. D. Terris, M. Kunz, Macromol., 24, p6800, (1991) 

191 



References 

178. 8. Collin, D. Chatenay, G. Coulon, D. Ausserre, Y. Gallot, Macromol., 25, 

p1621, (1992) 

179. C. A. Goss, J. C. Brumfield, E. A. Irene, R. W. Murray, Langmuir,!!, p1459, 

(1992) 

180. Z. S. Xu, Z. W. Deng, X. X. Hu, L Li, C. F. Yi, J. Polym. Sci.: Polym. 

Chem., 43, p2368, (2005) 

181. A. Noy, C. D. Frisbie, L F. Rozsnyai, M. S. Wrighton, C. M. Lieber, J. Amer. 

Chem. Soc., 117, p7943, (1995) 

182. G. J. Vancso, T. D. AlIston, I. Chun, L S. Johansson, G. B. Lin, P. F. Smith, 

International Journal of Polymer Analysis and Characterisation, ~, p89, 

(1996) 

183. D. Whitehouse, 'Surface and their Measurement', Hermes Penton 

Science, p48, (2002) 

184. G. Andrew, 'Infrared Spectroscopy of Polymer Blends, Composites and 

Surfaces', C. Hanser, (1992) 

185. H. W. Siesler, 'Infrared and Raman Spectroscopy of Polymers', M. 

Dekker, New York, (1980) 

186. H. Ishida, Rubber Chem. Tech., 60, p497, (1987) 

187. E. G. Koulouri, J. K. Kallitsis, G. Hadziioannou, Macromol., 32, p6242, 

(1999) 

188. E. J. C. Kellar, C. Galiotis, E. H. Andrews, Macromol., 29, p3515, (1996) 

192 



References 

189. Y. S. Sun, E. M. Woo, Macromol., 32, p7836, (1999) 

190. P. Musto, S. Tavone, G. Gruerra, C. De Rosa, J. Polym. Sci. Part B: 

Polym. Phys., 35, p1055, (1997) 

191. E. M. Woo, F. S. Wu, J. Polym. Sci. Part B: Polym. Phys., 36, p2725, 

(1998) 

192. S. C. Wu, F. C. Chang, Polym., 45, p733, (2004) 

193. S. Whelan, Final Year B. Sc. Project, Loughborough Universily, (2005) 

194. A. Chilkoti, B. D. Ratner, D. Briggs, Chem. Mater., ~, p51, (1991) 

195. W. D. Harkins, H. F. Jordan, J. Amer. Chem. Soc., 52, p1751, (1930) 

196. B. B. Freud, H. Z. Freud, J. Amer. Chem. Soc., 52, p1772, (1930) 

197. S. Wu, Chapter 4, 'Polymer Interface and Adhesion', Marcel Dekker Inc., 

(1982) 

198. J. F. Padday, Surf. Colloid SCi.,1, p101, (1969) 

199. P. A. Gorry, Anal. Chem., 62, p570, (1990) 

200. G. Stephenson, P. M. Radmore, 'Advanced Mathematical Methods for 

Engineering and Science Students', Cambridge University Press, (1990) 

201. G. Socrates, 'Infrared Characteristic Group Frequencies: Tables and 

Charts', Chichester: Wiley, p52 and p63, (1994) 

193 



References 

202. D. H. Williams, I. Fleming, 'Spectroscopic Methods in Organic 

Chemistry', The McGraw-HiII Companies, p28, (1995) 

203. F. Scholl, 'Atlas of Polymer and Plastics Analysis Aids: Spectra and 

Methods of Identification', Munich: Carl Hanser Verlag, (1981) 

204. D. Y. Kwok, A. W. Neumann, Colloids and Surf. A: Physicochemical and 

Eng. Aspects, 161, p49, (2000) 

205. R. N. Shimizu, N. R. Demarquette, J. Appl. Polym. ScL, 76, p1831, (2000) 

206. R. Sedev, M. Fabretto, J. Raiston, J. Adhesion, 80, p497, (2004) 

207. R. E. Johnson, R. H. Dettre, D. A. Brandreth, J. Colloid and Interface SCi., 

62, p205, (1977) 

208. R. J. Good, J. Colloid Interface SCi., 66, p360, (1978) 

209. E. Sheng, I. Sutherland, D. M. Brewis, R. J. Heath, J. Mater. Chem.,~, 

p487, (1994) 

210. H. Yasuda, H. C. Marsh, J. Polym. Sci., 15, p991 , (1977) 

211. J. D. Andrade, L. M. Smith, D. E. Gregonis, Surf. Interfacial Aspects of 

Biomedical Polym., 1, p249 , (1985) 

212. M. R. Alexander, J. D. Whittle, D. Barton, R. D. Short, J. Mater. Chem., M, 
p408, (2004) 

213. D. Y. Kwok, L. K. Cheung, C. B. Park, A. W. Neumann, Polym. Eng. ScL, 

38, p757, (1998) 

194 



References 

214. J. Lyklema, Colloids and Surf. A: Physicochemical and Eng. Aspects, 

186, p11, (2001) 

195 



Appendices 

APPENDICES 

APPENDIX A CALCULATION OF CORRECTION FACTOR 

The total surface free energy of the water test liquid was determined by the Du 

Noiiy ring method in detachment mode using a torsion balance, which had been 

calibrated with weights, see Figure A.1. From the calibration graph, the force value 

corresponding to the surface tension of water test liquid, 72.S mN m·1 measured at 

19.9°C by the tensiometer is placed in Equation {A.1} to calculate the measured 

value of surface tenSion, cr*, which has to be corrected using the method of Harkins 

and Jordan [195): 

a" = F/4trR = 9.274x10-3 /47r(9.545x10·3} = 77.4 mN m-I {A.1} 

where R is the radius of the ring from its centre to the centre of the wire. 

The correction factor, C, is a function of Rl/V. V is the volume of liquid raised 

above the free surface at the time when the surface breaks and is expressed as: 

V= (a"4trR) / (D-d)g 

= [77.4x10·3 X 4 x 7rX 9.545x10·3
) / [(99S.21-1.19S) x 9.S134) 

= 9.49x10-7 m3 

{A.2} 

where 0 is the density of the liquid at 19.9°C [SO), d is the density of air (PV=nRT) 

under experimental conditions at 19.9°C. The acceleration due to gravity, g, has 

been calculated for the latitude and altitude of Loughborough. 
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R3/V is calculated as 0.917 and the correction factor, from Harkins and Jordan 

method [195], is 0.939. Therefore, the actual surface tension (corrected) is: 

u= u* xC = 77.4 x 0.939 = 72.68 mN m,l 

1.2 

1.0 
y = 1.278E-02x - 2.446E-03 

z 0.8 --N 

b 
~ 

)( 0.6 -GI 
U ... 
0 
IL 0.4 

0.2 

0.0 
0 10 20 30 40 50 60 70 80 

Scale Reading / mN m,l 

Figure A.1 Calibration graph of surface tension (scale reading) as 

a function of force. 

{A.3} 

90 
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APPENDIX B CALCULATION OF PEAK RATIO 

AND MOLAR RATIO 

(A) Peak ratio of SMA copolymers 

Peak ratio of SMA copolymers are calculated from the infrared measurement, 

Peak A 
'"" = 

ratio A (ring) 

where A(,h) = area of anhydride peak measured at 1779 cm-1 

where A(ring) = area of aromatic ring peak measured at 1449 cm-1 

(8) Molar absorption coefficients 

Beer Law states that, 

Absorbance (A) = &cf 

therefore, 

Molar q.h, 

ratio 

{B.1} 

where &= molar absorption coefficient, C = concentration and {= length 
path. 

Using Equation {B.1}, it is possible to estimate the relative magnitudes of the molar 

absorption coefficients, &(nh) and &(nng), see Table B.1. 
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Table B.1 Dependence of molar absorption coefficients on copolymer 

compositions. 

5:MA copolymers B( .. ) I B(,,-.1 

50:50 11.46 

66:34 15.29 

75:25 16.16 

The reason why the 50:50 polymer gives such low values for the ratio in Table B.1 

is unclear. The values in Table B.1 were then used to determine the surface 

composition of PS/SMA blends. It is assumed that the molar absorption coefficients 

were not affected by compounding. 
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APPENDIX C CALCULATION OF WORK OF ADHESION 

Presented below is a plot of the temperature dependence of the surface free 

energy of liquid water. The surface entropy of water is calculated from the slope of 

this graph, Figure C.1 and is therefore 0.1676 mJ m·2 K-', 

80,--------------------------------------, 

>-e' 75 
41 
c 
'!: '"le 70 
f..., 
u.. e 
B - 65 
~ 
:::I 
U) 60 

G L = -0.1676 Tt °C + 76.06 {C.1} 

o 10 20 30 40 50 60 70 80 90 100 110 120 

Temperature I °c 

Figure C_1 Surface free energy of liquid water as a function of 

temperature [80]. 

The work of adhesion is given by, 

W"" = GL (1 + cos 0) {C.2} 

where G1• is obtained from Equation {C.1}, T is the test temperature and () is the 

value of contact angle. 
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Using contact angle values of untreated PS for sample calculation, 

Test temperature = 15.1°C 

eud> = 90.3° 

Substituting test temperature into Equation {C.1}, 

GL = -0.1676 (15.1) + 76.06 = 73.5 mJ m-2 

(i) For the advancing angle, 

Substituting GL and ea'" into Equation {C.2}, 

Wad = Gt. (1 + cos e) 

= 73.5 (1 + cos 90.3) 

= 73.1 mJ m·2 

(ii) For the receding angle, 

Substituting GL and enc into Equation {C.2}, 

Wad = GL (1 + cos e ) 
= 73.5 (1 + cos 81.3) 

= 84.6 mJ m-2 
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