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SUWJARY. 

The mechanical properties of die cO'lpn.cted sintered 

nickel compacts prepared from closely sized sieve fraction of 

annealed Sherritt Gordon wore determinetl. 

The properties, especially fatigue properties, were . 

.found to be dominated by the presence of film like porosity in 

the grain boundaries. The occurrence of this porosity was at 

the original particle boundaries and its form Vias attributed to 
• 

botryoidal sha~e of the original powder particles. 

A mechanism for the propagation of the fatigue crack 

is suggested. 

Several iron powders were carefully characterised. 

Thin steel strip was prepared from these samples using a slurry 

technique. Binder was used in the slurry to give coherent 

strip before rolling.· 

Tue properties of the green strip were found to be 

affected by the particle size and particle size distribution 

of the origina.l powder. The presence of binder in the strip 

contributed towards the green strength especially at high roll 

loads. 

strength was observed to develop quickly during 

sintering,for sintering tim~s of the order of sixty seconds 

duration although little or no densifioation occlITred. 

Specimens of near theoretice.l. density were prepared by 

re-rolling and resintering •. Despite the high density of these 

specimens the mechanical properties were poor. 
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1.00. DymODUCTIOll. 

Sintered materials are manufactured from metallic, 

'cerar.Jic or plastic powders. The ponders are [l'cn8rally corxpacted, 

to a coherent form and then ointered at an elevated tempo-:ature 

so that diffusion occurs between the ,powd.er particles, 

strengthenine the particle/particle bonds. Densificat:toll may 

occur during sintering. JJetal powders are usually sintered in 

an inert or reducing atmosphere'to prevent oxidation., 

Although this work is primarily concerned Vii th the 

processing and behaviour of metal powders, many of the techniques 

and theories associated with the compaction and sinterinG' of 

metals are equ.:l.lly applicable to both ceraoics .f'~'ld plastics. 

1.10. 'rUE l,lAIWFACTDRE OF SIll'l'E'tED l,IET11&. 

Most stable metals may be processed,easily by the 
. 

powder route. Metal p071ders,oay pe prepared by a number of 

techniques involving either coominution, atomization or the 

direct reduction of metal salts in the solid form or in 

solution. Therefore particles of metal powders,may have a 

variety of shapes depending upon the manufa.cturing technique 

employed. Consequently pO',7ders are classified as acicular, 

spongy, e..n8U1a.r. or spht;roidal" 

Al though particle size '::'..ay vary from pO':lder to 

po,/der most comnercial !:letal powders are finer than 30 Eosh 

and'the smallest particles .are of the order of a r:licron in 

bet7lecn 150 !:la 8h a,.'1d 250 l~e eh. 

1 



- -~--------------~-----:-------------------

Compncticn of the metal pOTIderis u8u(l1ly. oarried 

out in dies but recently other for,":! of conpaction by e:drusion 

or rOllinz have become of intere et. 'Jhen the r:lGtal porider is 

die compacted it is frequGntly blendecl vii th a 1ubr:l-cant. e.g. 

a metal stearate. The lubricallt enables thepowdcr'partioles 

to slide nore easily' over each other an,d ,so pack mora closely 

together, also die ,wear is improved. Occasions,lly. the lubricant 

is applied to -the die wall only. Lubricants are generally not 

used when the metal powder is rolled • 
• 

Powder metallurgy dies may be single acting where 

only the top plunger moves relative to the die ,or double aoting, 

where both plungers move. Double ac'ting dies (!;ive a more uniform 

stress distribution in the pcwder bed, moreover' the use of two 

plungers enables the pressed compact to be ejected easily.. 

In practice conpaction preSGures are usually in the ra.'lge 

230 - 475 H/rPJ:l2 (15 -, 30t.s~i.) but pressures either greater 

or,less than this may occasionally be used. 

In certain applications the metal pO":lder r!w,y be heated 

during conpaction. This technique elininates subS0quent sintering 

and parte nay be produced of very high: densi ty. Ho'clever the 

tooling cost is considerably !Jore e:cpensive than the oost of 

cold pressing tools and the die life is reduced. 

'After compaction, the lubrioa:1.t must be removed from 

the compact before sinteri!1[; as the rapid heating rates iuyolved 

in sintering cause rapid volatil:ization of the lubricant and 

the pres sure of lubricant Vapour r::t2 .. y b~ 8ufficio~yt to rtlpturG 

the conpact. In practice the compact is heated slowly to a 

2 



low, temperature so that the lubricant volatilizes slol1ly and 

escapes from the compact. This procedure i3 frequently termed 

"de waxine" •. Thereafter the cO:1ponent is sintel"od. in 11 reducing

or inert atmosphere at a temp8rature c.bove th9. w.inimum 

recrystallization temperature but beneath the· melting POiI,t of 

the component. 

Alloys may be processed by the powder route. The 

alloying elements may be introduced either by admixing powder 

of the alloying element with that of the base metal or by 

prealloying the material during powder manufacture.· 

Occasionally 1 - 2 per cent of a constituent of lower 

melting point than the basis powder is introduced, e.g. 

1 - 2 per cent bronze in iron, and sintering is' carried out 

above its melting point. This techni'l.ue is known as li'l.uid 

phase si~tering and generally faster densification is achieved 

as well as supeI'ior mechanical properties by this method. 

Sintered materials invariably contain some pOl'osi ty 

which reduces the realisation of opti::lum mechanical properties. 

Conse'l.uen.tly f.or oertain applioations high density parts are 

re'l.uired. In order to achieve this, the sintered material may 

be recompacted and resintered. The recompaction of sintere.d 

parts in a die is known as "ooining" and in practice pressures 

siw.ilar to or greater than the orieinal cO::Jpaction pressure 

must be used if significant'densification is to be realised. 

"COining" at 107ler pressures without resintering is frequently 

used to size sbtered parts. 

3 



1.20. THE ADVANTAGES OF A POWDER ROUTE. 

A powder route enables material to be processed with 

very few operations to the finished shape and size. Consequently 

die compaction can produce parts of complex design and close 

size tolerance without the expensive and lengthy machining 

o.perations that would be required to manufacture such parts 

conventionally. However because of expensive tool costs the 

powder route is more suitable for the manufacture of parts 

for which large numbe~are required, e.g. gears, rocker arm . 
• 

brackets eto. 

On the other hand tooling ccsts are reduced in powder 

rolling because. the nUlllber of production stages cOIlpared to 

conventional strip production are Ilarkedly reduced. 
·1 

Fig.l. 

compares a powder route and a conventional route for steel strip 

production. Conventional rolling processes dictate that 

progressively more passes are required to reduce strip thickness 

as "the st~ip becomes thinner.· Consequently the cost of very 

thin gauge strip is very high (Fig. 22). l.!ost pm1der routes 

roll strip of finished gauge using tl"/o or three rolling ·sta.ges, 

. the· first rolling operation being done verY,near to the finished 

strip thickness. Therefore the cost of thin strip produced 

by a powder route may be less than strip produced by a· 

conventional route especially when highly alloyed. strip is 

considered, e.g. stainless steel which is difficult to roll 

conventionally. 

A conpaction and sintering process enables highly 

alloyed or high Ilelting materials to be manufactured more 

4 
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easily because machining cr grinding operations are minimised 

and.becaus!"sintering is carried out·bencath the melting point 

of the material. Thus a powder metallu.cgy route is very sui table 

for manufacturing metal carbides or tungsten. The compaction 

of highly alloyed materials is facilitated by using elemental 

powders which are considerably softer than the equivalent 

prealloyed powders. Material transport by diffusion during 

sintering develops the full mechanical properties of the alloy. 

A powder route has enabled materials to be developed 
• 

which cannot be manufactured conventionally. The control of 

porosity such that large amounts of interconnecting porosity 

are present in the finished material has allowed the development 

of self lubricating bearings. Porous nickel strip of high 

surface area which is used in electric cells is produced by 

A roll cpmpaction process.3 

Hydrometallurgical processes for the extraction of 

metal from ores are becoming of increasing importance, especially 

as leaner metal ores have to be worked. These processes directly 

manufacture metal powders, th.erefore a production route which 

uses metal powders as a raw material is econooica,lly more sound 

than a production route which would re~uire the metal powder 

to be cast into a billet before processing. 

Very ~any alloys have been developed because of the 

large number of applications for which metals are re~uired. 

However the eJloying elements which are added to the basis 

element are usually very fel'! and properties are altered by 

varying the proporticns of each 'element. If a powder production. 

5 
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route is used for the components then the manufactUl'er only 

has .to stock a few eleme~tal powders in order to be able to 

·produce a wide range of alloys. 

l.!.2.'J. CURRENT APPLICATIONS OF SINTERETI HET HS. 

·Although it has been appreciated that metal powders 

can be used to manufacture parts and engineering materials for 

some time, the commercial growth of the industry began in the 

1930's. 

Most metal-powder processes today die compact metal 

powder ~~d die compacted metal parts have established themselves 

in the fields of bearings, bushes, gears, clutch and brake 

linings, hard metals, etc •. 

However despite the importance of the die compaction 

industry the powder metallurgy industry does not process a large 

tonnage of metal. ccmpared to the tonnage that is consumed by 

industries using more traditional techniques. 

Consequently because metal powders are manufactured in 

small batches, the cost of metal powder compared to the cost of 

metal of similar composition supplied in the billet form is high, 

and it is only because of the production advantages of sintered 

materials that the technique is economic. Ho\vever powder rolling 

is a process that would consume large amounts of metal powder 

and its adoption may substantially reduce powder costs. 

The roll compaction of powders is not yet in general 

use although a number of investigators have advocated its adoption 

and pilot plants have been devolqped for many ferrous and non

ferrous alloys which have shown that the teohnique is practicable.· 

6 



As early as 18574 Bessemer showed that coherent 

strip could' be made from particulate r.aterials by passing brass 

turnings through a rolling mill. A patent was filed in 1902 by 

Sienens and Halske 5 which claimed advantages for the roll 

oonpaction'of high melting point materials compared with die 

compaction for the manufacture of wire bars. 

6 More. recently (1942)Mannesmann (Germany) developed 

a pilot plant for rolling steel strip. Sundwiger and l;[essingwerke 

A.G. in 1951 and late-r Chemetals manufac'.;ured oopper alld copper 

alloy strip from chemically reduced powders. However due to 

economic reasons, chiefly because of the high cost of metal 

powder, the work was terminated. Aluminium and stainless strip 

have been manufactured for atomic energy applications by 

H. Hausner and the Sylvania Electrical Products Ltd. 

In the United Kingdom work has been carried out by 

C~bridge university7, the International Nickel corporationS, 

the British non Ferrous l;!eta.ls Research ASsociation9 and the 

British Iron and Steel Research Association2 which is now y,a:rt 

of the British Steel Corporation. It has been conclusively shovm 

from these investigations that strip similar in properties to 

conventionally rolled strip may be manufactured. However the 

large difference. in price between molten metal in the ladle 

and metal powder has generally precluded oommeroio.l .development, 

despite possible production savings thereafter. 

Therefore it appears tha.t powder rolling iiJ most 

likely to be used in the neur fu~ure for high melting point 

7 
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materials, materials that possess speoial properties, e.g. 

very porous nickel for e:eotrio oells and very thin gauge 

,material, partioularly if it is highly alloyed. 

Commercially Sherritt Gordon llines Ltd. manufactures· 

niokel strip from powder whioh is used by the Royal Canadian 

1UntlO also Reynolds Metal Companyll have processed aluminium 

and aluminium alloy powder to strip. Nickel strip is also 

made on a smail scale by General Telephones and Inectroniosl~ 

1.40. THE PROPERTIES OF SINTERED MATERIALS. 
I 

Sintered materials usually contain some residual 

porosity and so their properties are not equivalent to the 

properties of wrought materials of similar composition. 

However it has been shounl3 that when the denSity ~f sintered 

materials approaches the theoretical density their properties 

are very' similar .to the properties of ccnventionallY produced 

materials. This is confirmed by the result:J of investigatoJ:'s 

whc have examined the properties of sintered strip where it 

is, easier to attain the higher cOr.lpaction forces that are 

required ·to give very high density material. 

However it is usually not feasible to die compaot . 
metal powders to such high densities ~~d in practice porosity 

oontents of the order o~ 10 per cent are common. Consequently 

piu, parts have been, in the past, used in'lo\7 stress ,oonditions 

but reoently there has been a trend to use them in more rigorous 

conditions in >7hich cycling stresses me.y be present, e'G' Gears" 

valve rocker brackets, sewing J:laChine components etc. 

8 



-----------------------------------------~---------------------------------

The apprec5.ation that a difference exists between the 

life of traditionally manufactured parts under a cy~ling load and 

.life under a static load soon developed as the use of engineering 

maohinery increased in the 19th century. ·Such a difference was 

explained by the metal "tiring" or becoming "fatigued". It '7MI 

later reali~ed that fatigue fractures were the most COffi;;JOn type 

of metal failure and a knowledge of fatigue behaviour soon beQame '/ 
t,' _ 

an aspeottdesign. , 

Because sintered components have been used in low stress 
• 

si tuation'l it has not been necessary to have detailed knowledge 
. . 

of their fatigue behaviour but as sintered parts are rapidly 

gaining acceptance and are being used in more highlY stressed 

situations a greater knowledge of their fatigue behaviour is 

required. 

Porosity is the distinguishine feature of most sintered 

parts. Many authors have shown that it has the major effect 

en the mechanical properties of sintered metals. It has also 

been found that other factors such as pore size and shape ma.y 

have a significant effect upon mechanical properties although 

this effect is much smaller than that of porOSity content. 

A little information ha.s been published concerning the 

influence of such factors as powder ty:pe, compaction·pressure, 

sintering- time and sintering temperature upon the fatigue 

properties of sintered metals. Rowever the influence of these 

factors prinarily a.ffects density, pore type and erain size 

~lhich in turn affects the fatigue properties. 

9 
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1.50. FATIGUE TESTIHG AWJ TERMIHOl&Q.!. 

Fatigue testing may be oarried out on fintshed 

'article3 or on small laboratory samples which have bcen carefully 

machined from the bulk material. Generally it is not possible 

to predict service life from laboratory tests, however in more 

fundamental 'studies of fatigue,. the added complications of 

.service testing must be avoided • 
• 

Laboratory fatigue tests may be conducted in rotating 

bending, push/pull, plane bending or torsional fatigue. In 

order to examine the properti.es of a material, identically 

machined test pieces·are usually tested at different levels of 

stress (S) and the nuober of cycles to failure (N) determined • 

. Frequently S is plotted as the ordinate and n as the abscissa, . ~ 

the graph is known as an sin diagram. 

Two forms of sin curves are observed in practice (Fig.3). 

Curve A is typical of ferrous materials and the curve may be 

divided into two parts, the first in which the curve falls 

steeply at higher stresses and the second in which it becomes 

horizontal. The well defined stress at which the horizontal section 

occurs is known as the fatigue limit. Curve B is typical of 

most non ferrous materials; there is no well defined fatigue 

limit but the. curve becomes less steep as the level of stress 

falls. 

For samples that show a well defined fatigue limit, 

failure uill not occur at any finite number 6f cycles below 

this :limit. Samples that do not show a. fatigue limit are 
'. . 

.10 



characterised by an endurance limit which is the stress required 

to give failure after a s!'ecified numb~r of reversals, usually 

i07 or 108 reversals. 

The ratio of fatigue or endurance limit to tensile 

strength is defined as the fatigue ratio and for most metals this 

ratio is reasonably constant and characteristic of the material. 

Fatigue behaviour.is markedly influenced by the surface 

condition and environment of the specimen. Notches substantially 

reduce the number of~ycles to failure at a given stress level. 

In order to assess their ef'fects notches of specific dimensions, 

i.e. with well known elastio stress concentrating. ability, are 

machined into the samples and the fatigue properties are evaluated. 

The effects of notches arecharadterised by the following ;, 

factorsl-

(1) The stress concentration faotor, Kt, which is the 

r~tio of the actual stress at the base of the notch, calculated 

frcm elastic theo.ry, to the nominal applied stress. 

(2) The fatigue stress reduction factor, Kf, which is 

the ratio of the fatigue strength of the unnotched to the notched 

fatig';le samples. 

(3) The notch sensitivity factor, q, which is def'ined 

from Kt and Kf. . 

q = 

Thus in principle when q = 0 surface notches have no 

ef'fect and when q = 1, notches have their theoretical effect. 

An alternative means of characterising the notch effeot 

is to plot Kf/Kt versus Kt, together with curves representing 

Kf ~ Kt and Kf = 1. 

11 
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1.60. THE FATIGUE PROCESS. 

During the fa:".igue process several stages are observed. 

Fatigue hardening and the development of extrenely fine slip 

lir,ss on the sample occur at first. Gradually the slip lines become 

deeper and longer and fatigue cracks nucleate. Intrusions 'and 

extrusions of the metal occur at this stage. The fatigue crack 

once initiated propogates parallel to the slip planes on whioh the 

critioally resolved shear stress is highest. In the later stages 

the fatigue orack prDpogates at right angles to the principle stress~ 

Eventually the crack attains such a size that it opens and oloses 

during each reversal, allowing the orack tip to move aoross grains 

and grain boundaries. The cracks progress until the weakened 

material fractures by tensile tearing. 

Two distinot areas can frequently be observed in a 

fatigue fracture, an area, often conchoidal in appearance where 

~he fatigue crack has advanced in a stepwise manner and an area 

typical of a duotile fracture. Such f~actures are conooonly 

ob'served in wrought materials but generally not in the fatigue 

fracture of sintered materials. 

• 

I 
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2.00. LITERATURE SURVEY. 

2.10. THE ROLL CO~!PACTION OF METAL P07I1>ERS. 

2.11. CO'.IPACTIOH SYSTEUS. 

a) Saturated Feed S~ste~. 

Most of the proposed systems are of this typel (Fig.4) 

The rolls ~e arranged horizontallY and the stock passes through 

vertically. 

Three zones may be identified with the process:-

1) The fre~ zone where the powder is loosely packed 

and falls under its own weight. 

2) The fee~ zone where the powder, although still non-

coherent is being pulled into the compact ion zone by roll action. 

3) The.compaction zone where the powder becomes ooherent 

and is densified.· 

The angle that the feed zone dubtends at the centre of 

the rolls is defined as 9f, the feed angle, and the angle that the 

compaction zone subtends is defined as (;ic, the compa,ction angle. 

If R is the roll radius, Vi the initial density, nf the 

final density and h is the strip thickness, then assuming that the 

strip does not spread either longitudinally, or transversally it 

may be shown that:-

Thus the final density and hence mechanical strength 

of the green strip, since the two are inter-related, depends on 

the "roll radius and angle of compact ion. BeCauoe the angle 

of conpo.ction, factor is squared 'a small change in the angle of 

13 
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compaction has a large effect on the final density. The angle 

of compaction depends upon roll radius, roll gap,rl'lll surface 

finish, roll speed and powder type, 

1) powder Variables. 

As in conventional compact ion irregular, easily 

compressable., porous powders of a specifio partiolesize 

distribution containing a large amount of fines produce stron$er 

and denser green strip. However ,the flow properties of such 

powders is poor, consequently the rate at which material is 

conveyed to the roll gap is restricted. Therefore although 

such powders give satisfactory strip at low rolling speeds, 

strip quality is impaired at higher rolling speeds because 

insufficient material is fed to the compact ion zone. 1. 8. 14. 

It has been shown that the rate at which air ca; 

escape f1:'om the strip is important becallse air excluded from 

the oompaction and feed zones travels upwards and impedes the 

flew of ~etal powder flowing into the compac'tion zone. The 

thickness of strip rolled from carbonyl nickel may be increased 

by 50 per cent if a hydrogen atmosphere instead of air is used 

around the rolling mill, due to the viscosity- of hycl.rogen being 

much less than the viscosity of air. B• 

, 

Figure 5. 14 . shows the variation in flow rate with 

increasing roll speed for 1.!.H.40, M.H.IOO and l;!.H.300 iron powders. 

It is apparent that up to a-critical roll speed the plot is linear 

but beyond this there is a departure from linearity. The oritioal 

speed at I1hich this oocurs is oalled the flow transition speed 
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and it may be seen that coarse powders which flow more easily 

have a higher flow transition speed than finer powders. 

Variation in roll gap has little effect upon this speed but at 

wider roll gaps the departure from' linearity in greater becau~e 

of the larger volume of pow del.' being rolled and. the greater amount 

of air that must be expelled from the powder • . 
Strip density is reduced as soon as the flow transition: 

speed is exceeded. (Fig.G) Thus althcugh M.H.300 produces a denser , 
strip when rolled at slow speeds any commercially viable rolling 

speeds favours the O'etter flowing LI.H.IOO. It is also apparent 

that increasing the roll gap-reduces the.green strip density. 

Pa,rticle shape affects the com'~action angle. Irregular 

particles tend to interlock thereby increa.sing the compact ion and 

. feed angles. Thus at rolling speeds below the flow transttion 

speeds ~rregular pa.rticles produce denser and stronger strip. 

Evans and Smith 1 showed that irregular eleo'trolytic copper powder 

can be rolled with a cOr.Jpaci.ion angle of 6°,l7hich :is reduced. to 

ItO for spherical gas atomised powders. Also it has not been 

found. po~sible to roll spherical stainless steel powder particles 

successfullY using a saturated feed system.15 • However some 

workers 6,16. indicate that powder characte'ristics have little 

effect upon the compaction and feed angle which is a.llprcximataly 

10 for most materials. With increasing roll speed., roll load. 

tends to decrease 14 which may be due to a reduction in the feed 

angle and compaction angle. 

Incre8.sine roll speed when rolling H.H.IOO iron .powder 

causes a reduction in tensile stTengthl4 for samples of similar 
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density. (Fig. 7) This behaviour is also typical of J.J .M. 300, 

1.1.H.30 and' M.H.40 powde:~s. However for electrolytic powder of 

,lOO mesh, tensile strength and density 3how the sane values 

irrespective of roll speed changes. Tundermann and singerl4 

suegest t~at this behaviour may be due to the smoothness and 

acicularity of' electrolytio powder so that partiole movement 

and subsequent oxide film ~pture may ocour readily over a 

wider range of rolling speeds. However particle movement may 

not occur so readil~ with irregular particles and so as rolling 

speed increases fewer oxide films ~d-broken and strength 

dimini she s • 

'J."J.) R 11 ' t 10.6. o ilJ.ame er. 

Increasing the roll diameter increases the radius of 

curvature at the roll gap, consequently increasing the compaction 

angle. Ther~fore either denser or thicker strip may be rolled.Fig.a. 

iii) Roll Roughness!' 

The compaction angle may be !ncreased up to 100 per 

cent by using rough rolls but during rolling the rolls attain" 

a smoother satin finish becau'se of abrasion. Therefore in 

production it would be difficult to maintain a standard roughness 

and this parameter would be of little use as a means of improving 

strip properties. 

iV) Powder Head. a • 

Increasing the powder head forces more powder into the 

roll gap. Figure 9 shows how density may be increased by 

extending the pay/del' head when rolling nickel powder, but too 

large a powder head may cause the strip to split. 

16 
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v) Temperature. 11• 

Increasing rolling temperatllre by approximately 3000 C 

·has been shown to increase the thickness of copper strip by 

25 ~er cent. This may be due to a reduction in the viscosity 

of air escaping from the compact ion zone. However final mechanical 

properties may be affected by oxidation of the powder. 

vi) Control of Thickness. l • 

Thickness control may be carried out by the fitting 

of shoes to the rol~ surface. (Fig.lO) Selection of the correct 

type of shoe effeotively alters the feed €.ngle and so reduces the 

amount of powder flowing into the roll gap. Moreover the fitting 

of shoes may give more precise control of. density and thickness 

than altering the roll gap. 

vii) Density and Thickness Variation. l • 

Density and thickness variation may occur across the 

ridth of strip which has been rolled by a simple saturated feed 

system. At low rolling speeds density at the strip edge may be 

le·ss than the density at the strip centre due to the tendency of 

the powder to flow sideways. At higher rolling speeds esoape of 

air from the centre· of the compaotion zone ,to the oentre of -the 

feed zone causes a restriction of powder flow at the oentre and 

a corresponding reduction.in density. Figure 11 shows how 

density variations may be controlled by either the use of "shaded 

shoes" or a metering device. 

viii) Work Hardening of Powder Pa.rticles. 

Little work hardening has been found to occur. 

Matsulllura 18. estimated the increase in hardness to be less than 
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15 per cent., Evans a,nd Smith7 snowed that a significant hardness 

increase only occurs with large rolling loads. Tundermann and 

Singer14, using iron powder, concluded that althou(;n work harder,ing 

'of powder asperites occurs there is little work.hardening within 

the powder particle itself. Thus they were able to reroll the 

green strip'to a density of 7.1 g/c.c. without significant edge 

oracking • 

. b) Unsaturated Feed Systems. 
,. 

An unsaturated feed system is a system whioh operates 

using a controlled f20w of powder which is less than the maximum 

flow that occurs by powder flcwing into the roll ~ap under free 

flow conditions. Such systems may be arranged horizontally or 

vertically and may incorporate devices to force or meter powder 

into the roll gap or to bind the pcwder particles togethe~ so 

that the first densification is of coherent strip. An example 

of the latter is the B.r.S.R.A. thin strip system. 

i) The B.I.S.R.A. Thin Strip Process. 2 (Flg.12) 

This process uses rollers, in a vertical plane with the 

stock passing through horizontally. The process differs from 

other roll cO::lpaction systet:1s in that the powder is mixed with 

a binder and coherent strip is produced before rolling. 

Consequently the quality variations associated with rolling speed 

and the floV/properties of powders s~e largely avoided and extremely 

high line speeds may be attained. Moreover as strip may be cast 

very near the finished Size the process is very suitable for 

rolling thin strip. 
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Seven operations ~e. required:-

1) 1!ixing iron powder to form slurry. 

2) Coating a continuous belt ~ith slurry, subsequent 

drying and removal from the belt. 

3) Roll compacting the bonded powder to strip. 

4) Sintering in a reduoin(j atmosphere. 
• 

5) Rerolling the ~int'ered strip. 

6) Resintering. , 

7) Finish planish or temper rolling. 

• The process oan handle most kinds of iron po\vder and 

is very versatile. Because ~he aim is to manufacture thin strip 

finer powder grades are more suitable as such powders allow an 

optimum number of particles in the thickness direction of the strip. 

'Uoreover as the process manufactures strip of gauge sizes where 

there is, a disproportionate increase in conventional strip cost, 

the teChnique may be economically competitive with oonventional 

strip, particularly for more expensive mater.ials. such as stainless 

steel. 

. Generally, relatively porous fine pure soft powders 

have been found to give green strip of optimum properties because. 

of their ease of compactability. Mild steel strip from powder 

shows simila.r properties to convention",lly rolled, temper 3 tinplate. 

However specifiC iron pO'1ders, e.g. 1!akin 300 PI. may give lower 

tensile strengths and poorer. elongation values. (Fig.13) Sta.inless 

strip shows slightly higher tensile strength but poorer elongation 

values. (25 per cent cOJ:l]?D.I'ed to 40 per cent on 0. ~" go.ugc. length). 

(Fig. 14). • 
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2.12. SINTERTIfG AND REROLLING. 

In order to com~te with conventional rolling systems 

a powder rolling plant must have a similar output. uonsequently 

strip finishing speeds must be within the ranee of several hundred feet 

per ·.ninute to more than 1000 fel.lt a minute for small gauge strip. 

Eecause the process must be continuous sintering times must be 

short if a .s1ntering furnace of praotical length is to be used. 

Little work ha~ been done tc assess the feasibility of looping 

the strip around rollers in the sintering furnace but B.I.S.R.A. 

has indicated that tnis practice mars strip finish and also 

complicates the initial "th=eading up" procedure. I? 

Therefore sintering times must be confined to a maxinl1.l1ll 

of five minutes and because the time is so short, meohanical 

properties are not e<iual to those of conventionally rolled -strip. 

strip rolled by the B.I.S.R.A. slurry process shows a tensile 

strength of the order of I55N/mm2 
(10 t.s.i.) and an elongation 

of 1 per cent after the first sinter. J. Oak:).ey of i1anganese 

Bronze showed that sintering copper strip for two minutes in 

. cracked ammonia developed a tensile strength of approximately 

one third of that of cast copper. 

Because sintering times are so sho~t a high sintering 

te~perature rrhich promotes fast sintering rates and rapid 

attainment of the temperature at which sintering commences, 

must be used. Conse<iuently sintering temperatures of the order 

00· of 1200 C for steel and 1000 C for copper are re<iuired. The 

presence of sulphur severely impairs the Dechanical properties 

of nicke1. 10
• A reduction in the. sulphur content of nickel froD 
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O~p038 per cent to O.00a2per cent improves the tensile strength. 

from appxo~imately 250N/mm2 (16 t.s.i.) to 365N/mm2 (23.6 t.s.i.) 

and the elongation from 10 per cent to 45 per cent. In order to 

reduce the sulphur content of nickel strip to acceptable levels 

a sintering time of twenty minutes is needed. 

Many workell:! have shown that hydroGen atmospheres 

promote faster sint.ering rates compared to inert or hydrogen/ 

nitrogen atmospheres. Consequently pure atmospheres promote 

faster sintering rates of strip. Moreover in the event of ~ydrogen 

• becoming trapped in any sealed porosity during the first sintering 

operatio~no blistering will oocur during subsequent rerolling 

and sintering because of the ease with which hydrogen may diffuse 

from the strip. 

To manufaoture strip of near theoretical denSity and 

hence of.mechanical properties similar to conventional strip, 

a second rolling and sinteririg operation is required. 

Rerolling mild steel and copper strip followed by 

resintering realised mechallical properties that were very similar 

to those of conventional strip.2.7. The severity of reduction 

of stainless steel strip originally rolled by the B.I.S.R.A. 

saturated feed system was de·pel,dent upon sintering temperature. 

Stainless steel strip sintered to 84 per cent theoretioal density 
0·' at 1~00 C-'required 70 per cent further cold deformation followed 

by annealing at 10000Cto realise optimum properties but only 

40 per cent reduction was required after sintering at 14000 C. 

Also higher elonGation fi;;Ures were obtained by using the higher 

sinterinc temperature. (Fig.15). 
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,,: Li ttle information is available concerning the effect 

of the final sintering temperature. Information for stainless 

1 'steel indicates that the final sintering temperature is not 

critical. Sintering at temperatures betwee'n 11500 0 and 13500 0 

caused a hardness reduction of 20 V.P.IT. from 180 v.p.~r. in 

one to one and a half minutes. Longer sintering tiDes of up to 

eight minutes at the higher temperatures cited mayc'cause a 

hardness increase up to 165 V.P.N. due to the appearance of 

ferrite in the austepite matrix. 

2.13. HOT COMPlCTION PROCESSES. 

Hot compaction processes enable strip to be rolled 

to almost 100 per cent the oretical density. More Qver the 

difficulties of attaining satisfactory mechanical properties 

after a short sinter are avoided. 
, 11 

The Reynolds Process (Fig.16) manufactures aluninium 

and aluminium alloy. strip from atomized powder. The powder 

is 'atomized from the melt and is transferred to a hopper above 

the rolls of a saturated feed sY'3tem. The powder is preheated 

as it falls towards the rolls where it is fully densified to 

coherent strip. 

The.optimum powder part icle size VIas found to be between 

-8 and -I- 60 mesh, the particle 'shapes being fat cigar shaped 

particles of apparent densi"!;y of the order of 1 g/c.c. partioles 

ei ther coarsel' or finer than this produced thinner strip. Large 

compaotion angles of· the order of 150 were found, possibly because 

of interparticle welding at the bottom of the hopper and the large 
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powder head; strip of theoretical density could be manufactured 

over a range of rolling speeds from 15 metres per minute 

(50 f.p.m.) to 60 metres(200 f.p.m). 

The Reynolds Process has been used to manufacture 

most commercial ,Geries of aluminium alloys. Themechenical 

properties of such strip were as least as good as those of 

conventionally rolled strip. Provided that the amount of 

further cold deformation exceeded 5 per cent the properties of 
• 

the compacted sheet were superior to those of conventional sheet. 

This may be due to a dispersion hardening effect caused by 

finely dispersed alumina particles. 

Hot rolling green copper strip has, been carried out 

by Shaw and Knoppe 20 in the United States. Copper pO'7der was 

compacted 'at 1.2 metres per minute (4 feet/minute) to 1.52 mms. 
o ' ' , 

(0.060"), heated to 1040/50 C for two to ,two and a half minutes 

and then hot rolled to 1.38 mms. (0.035"). Further cold rolling 

to 1.18 mms. (0.030 11) and annealing in Itexogas ll for one hour at 

550°C resulted In strip of tensile strength 234Njinrr? (15,,2 t.s.i.) 

and 46.8% elongation. This compares' with 204N/mm2 (13 t.s.i.) 

for conventionally rolled material. Further cold rolling and 

annealing to 0.14 mms. (0.000 54") increased the tensile strength 

to 242N/mm2 (15.7 t.s.i.) and reduced the elongation to 23.3%, 

The reduction in elongation is typical of copper strip when it 

is rolle,d to such a small gauge. 
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Rolling the same copper povlder by a number of cold 

rolling and sintering steps to 0.1; mms. (0.0005") gave a tensile 
. 2 

·3trength of 260!T/mm (17 t.s.i.) and 26~~ elon::;ation •. The 

electrical conductivity of the hot rolled strip was 84.8% 

of the conductivity of oxygen free high conductivity copper. 

Subse~uent hot rolling of the cold rolled and sintered strip 

increased the conductivity to 98% due to spherodisation of 

grain boundary, oxide films. 

Such a prccedure is unlikely to be , 
w .. H,'c'" 0 f\..

adoptecxbecause 

of the greater tendency of iron powder to oxidise and the 

diffioul ty of spherodising iron oxide. 

2.14. AUISOTROPY OF STRIP FROli! PO':IDER. 

Little work has been done in this field, hOTIeyer 

is would. appear that the properties of compact.ed strip in the 

transverse direction are better or e~ual to. the properties 

in the longitudinal direction. 7 •ll• 



2.20 THE FATIGUE OF SINTERED PARTS. 

The fatigue testing and representation of the results 

of sintered materials are carried out in the srune manner as 

conventional materials. 

Although there are minor differences, 8int~red samples 

give a similar form of SIN curve when compared to conventional 

materials of the same chemical composition.2l-23 ·Consequently 

sintered iron still shows a fatigue limit and materials such as 

sintered copper do nqt. (Fig.l1)2l. 

Sintered materials generaliy fail earlier than 

oonventional materials of similar composition during fatigue 

testing. This feature is mainly due to the presence of porosity 

which reduces the cross-sectional area upon which the cycling 

stress actS. Frequently the observed reduction in specimen life 

is greater than may be calculated by only considering the. reduction 

in. cross-sectional area because of the stress raising effect of 

pores. 

The fatigue limits of some materials however, e.g.iron~2 

appears to be negligently affected by the pore stress raising 

'effect, because when the results are corrected far the reduction 

in cross-sectional area they are very similar to wrought iron. 

At stresses above the fatigue or endurance limits the 

pore's of sintered materials exert a stress raising effect which 

increases as the amount of porosity present in the material 

inoreases. Consequently the slope of the SIN curve for sintered 

materials at these stress levels is less than the' slope determined 

25 

\ 



I-

- - ---------------~----------

21-24. 
fo~ comparable wrought materials. The strElss raising effe~t 

of pores ls small because for small amounts of porosity there 

,is little difference between the SiN curves for conventional and 

sintered materials~2,24. 

The number of cycles at which the SiN curve becomes or 

tends to become horizontal is greater forsintered materials. 23 ,25. 

Consequently sintered plain carbon steels show a fatigue limit 
6 ,a 

after 10 - 10 reversals but for wrought plain carbon steels it 

is shown after 105 - 107 reversals • 
• 

The fatigue ratio of sintered materials is generally 

between 0.3 and 0.5. 26 • Kravic27 and Radomysel l sky2a have reported 

that the fatigue ratio for sintered steel increases as the tensile 

strength increases (Fig. la) but other investigators including 

Goetzel and Seelig21 report that the fatigue ratio decreases as 

the porosity increases.(Fig.l?) The reduction in the fatigue ratio 

with increasing porosity is greater for iron than copper. 

Interpretation of the tensile and fatigue data presented graphic'ally 

by Dunmore and Smith24 for hydrogen sintered copper compacts 

prepared "from"atomized copper powder indicated that the ,fatigue 

- ratio increased from 0.42 to 0.45 finally f~lling to approximately 

0.36 as the tensile strength increased. The reasons for -the 

contradictory statements concerning the behaviour of the fatigue 

ratio is not clear but the scatter inherent in fatigue testing 

results may be a contributory factor. 
, ,23,25,29. 

A number of investigators have reported that the scatter 

in the fatigue results for sintered specimens is 'less than that 
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normally found in conventional materials. It is probable that 

fatigue nUbleation will begin at the surfaoe of sintered samples. 

Therefore the presence of peresity at thE: surface of .the material 

will possibly act as a stress l'aiser for fatigue nucleation. 

Consequently the. samples of a specific fatigue series should 

have very similr:x surface discontinuities frem which fatigue 

cracking will begin •. 

It is likely that the everriding effect upen fatigue 
21 . 

properties is tetal poresity, hewever pere size and to a much 

lesser extent pore shape exert seme influence. Other structural 

facters, e.g. grain Bize24may also affect the fatigue properties. 

Therefore parts made from fine powders which yield fine well 
_ 2.1 

dispersed porosity tend to have better fatigue properties. 

~:Z.l. COl;!P~CTION PRESSURE. 

-Increasing compactien pressure leads to a reduction in 

total poroSity and censequently an improvement in mechanical 

properties. Lloreover \7heatley and Smith22have reported that 

inoreasing the compactien pressure gives finer, more uniferm 

poresity •. Thifj is also consistent with the work 'of Bockstiege130 . 

who states that aB the compaction pressure is increased the 

largest pores are reduced in' size first. 

The powder type also affects densificatien during 

cempaction and Be atemised copper powders compact to higher 

densities than electrolytic copper powders at ti,e same compaction 

pressure. 24 

2.22. SINTr,;l{IH~lf!PERA'rURB.. 

High sintering temperatu.res promote densification and 

pore spherodisation, hO'levor excessive sj.ntering temperatures 
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may lead to grain growth and a corresponding deterioration in 

fatigue properties. 24 

Dunmore and Srni th24have sho,vn that the tensile streneth 
2· .. 

of copper compaots pressed at 465 N/mm (30 t.s.i.) and sintered 

for four hours in nitrogen remains relatively unchanged until 

a sintering,temperature of 300°0 is exceeded. Between 300°0 and 

600°0 there was a large improvement in the tensile strength f~0m 

approximate1y·13.8N/mm2 (0.9 t.s;i.) to 224lT/mm2 (14.5 t.s.i.). 

Sintering temperatures greater than 600°C led to a reduotion in • 
tensile strength because of grain growth. Despite these changes 

in tensile strength the endurance limit remained fairly constant 

for sintering temperatures from 45000 to slightly in excess of 

··0 ° Therefore from 450 0 to 600 C there was a marked 

reduotion in the value of the fatigue ratio but a gradual increase 

with an 'increase in sintering temperatu::"e from 600°0 to 1000°0. 

Hardness and elongation values followed similar trends to that 

of tensile strength. There was little change in the porosity 

for sintering temperatures of 450°0 and above but at the higher 

temperatures the pores became more spherodised. 

2.23. SINTE1~JNG TIl@.. 

Generally there is little change in mechanical properties 

for sintering times from a few minutes' to several hoUrs. Oopper 

oompaots24 shOlved a small increase in tensile strength from 

approximately 190N/mm2 (12.3t.s.i.) to 220N/mm2 (14.3 t.s.i.) 

for an increased sintering time from a few minutes to several hours. 

The enduranoe limit remained reasonably constant and there was a 

slight decrease in hardness during this time, however elongation 

28 



I . 

values increased from approxtmately 11 per cent to 23 per cent. 

This was probably due to individual pores becoming more rounded. 

2.24. OTHER FLCTORS AFFECTIlIG FATIGUE PROPERTIES. 

Although compaction pressure, sintering time and 

sintering temperature are the most important variables which 

affect fatigue properties, mainly because of their effect upon 

total porosity, other factors have a small but s5.gnificant efitOct. 

a) Powder Type. 

Specimens prepared from atomized copper powder show 

slightly higher end~rance limits than samples from electrolytic 

copper powaer of similar density.24 

Goetzel and Seelig24demonstrated that both iron and 

copper spacimensprepared from -325 mesh powders gave better -
fatigue properties than samples prepared from +200 mesh powders" 

29 . 
However Kothari reported that a particle size of -250 +325 mesh 

iron powder gave optimum fatigue properties for iron/lq70 bronze 

specimens. 

b) Sintering Atmosphere. 

Specimens sintered in a hydrogen atmosphere densify 

more quickly than specj.mens sintered in other atmospheres. 24 ,31. 

Moreover hydrogen sintered oopper compacts have better fatigue 

properties than nitrogen sintered compacts. 24 

Wiest32 noted that the tensile and elongation values 

of sintered iron were enhanced by sintering in hydrogen especially 

for sample of high density although the effect on more porous 
.' 

samples was minimal. Ho\vever the fatigue properttes were 

29 

, 



relatively unaffected. Some workers, e.g. F.N.Rhines31 have 

shown that sintering in a vacuum develops similar st~ucture and 

properties to sintering in nitrogen. 

The more rapid densification of samples sintered in 

.hydrogen may be due to the reduction of metal oxide. at the 

surfaces of metal particles thus enabling clean metal to mctal 

contact to occur. Moreover, especially at low porosities, 

hydrogen may diffuse quickly from 'sealed porosity allowing 

further pore shrinkage to occur. , 

2.25. COINING. 

Because of work hardening, cOining without a further 

sintering or annealing stage increases the endurance or fatigue 

limit but lowers the fatigue ratio.33 When cOining ia fOllowed 

by a sintering or annealing step the mechanical properties are 

similar to the properties of samples of equivalent density 

processed by a single pressing and sintering operation. 

2.26. NUCLEA'.HON OF THE FATIGUE CRACK IN SlNTEREJJ PARTS. 

It is well established that fatigue cracks nucleate 

at the surface of solid materials. Nucleation frequently occurs 

at snaIl surface discontinuities which act as stress raisers. 

Wheatley and Smith22 found no evidence of internal crack 

nucleation from the surface. of pores but because of the large 

area 'Of internal porosity the possibility of internal crack 

nucleation cannot be ignored. 

In order to determine the location of fatigue nucleation 

Wheatley and Smith tested three samples of sintered iron, 
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density 6.67 g/c.c. These samples would have been expected to 

fail after 100,000 cycles. However the testing of specimens 

,was interupted every 50,000 reversals and 0.05 mms.(0.002 inches) 

of surface was removed. 

Fatigue lives of 120,000, 195,000 and 225,000 cycles 

were obtained. Although each sample survived for a greater time 

than 100,000 cycles the results are not conclusive because of 

the scatter inherent in fatigue l'esults. ,However the results 

indicate that surface nucleation of fatigue is likely • 
• 

Peterson25 evaluated the stress concen,tration factor 

for a spherical cavity to be 'of the order of 2. However for a 

hole in a flat strip he calculated from elastic theory that the 

stress concentration factor was 3. If it is assumed that a pore 
~ 

connected to the surface of a sample is more analogous to a 

hole in a flat bar than a completely enclosed spherical cavity, 

then fatigue crack nucleation would be more likely to start at 

the surface of a sample. 

Poh136 related the internal notch effect of pores in 

sintered 'ferrous materials by the following equation:-

1 
E - Eo m .. 

I - -1L 
.1)0 

where E = Young's modulus of sintered material 

Eo .. Young1s modulus of solid iron 

.Ll '" density of sintered inaterial 

lJ = density of solid iron 
0 
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This equatj.on given an aVel"age value for the .internal 

notch effect (m) of 2.5 which is similar to that ddrivedby 

Peterson35 • Values for the fatiguestrongth reduotion factor (KL") 

were determined empirically by comparing the fatigue strength of 

sintered steels with that of oonventional steels of the same 

structure. The internal notch effect (m) is equal to the theoretioal 

stress concentration faotor in 'spheroidal graphite cast iron.39 

However .it has not been shown empirically to be equal to the stress 

oonoentration faotor for pores in a aintered material. Therefore 
• 

by assuming that the internal notch effect is equivalent to the 

theoretioal concentration faclor then values for the notch 

sensitivity faotor q for ferritic, pearlitio and heat treated 

sintered steels may be oalculated. These are 0.3, 0.45 and 0.8 

respectively. 

. Once a fatigue crack has nuoleated it is generally agreed 

that the stress ooncentration factor for a fatigue crack is greater 

than a pore, thus the cracks propogate until· failure occurs. 

2.27. THE NOTCH SENSITIVITY OF SINTERED MATERIAL~ • 

. The presc:lce of external notches reduces the fatigue 

strength of sintered specimens. 27 ,37,38• 

pasquine34 has reported fati~!e data. for steels 

containing 0.48% carbon and varying am9unts of nickel. The 

notch sensitivity factor q was shown to be between 0.36 and 0.57 

for a stress concentration factor of 2.2 and for specimens in the 

density range of 6.6 to 1.2 g/o~c. An isolated value of 0.76 

v;as obtained for a quenched and tempered steel containing 7'1~ 
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niokel of density 6.6 g/c.o.No relationship appeared to exist 

between porosity and notoh sensitivity. 

Similar data has been reported by Kravic, 21 l,lori ta 

et al.35 and Crooks et al. 36 

2.28. THE EFFECT OF AUOYI1TG ELEl!ENTS AND HEAT TREAT1@B!. 

A4ditions of copper or bronze (1 - 25%) are frequently 

made to iron powders. Subsequent sintering above the meltin~-
. 

point of the second phase enables densification and a satisfactory 

pore structure to be obtained more rapidly • 
• 

Kothari29 has shown that additions of up to 11% bronze 

to iron powder improved the fatigue limit from l52U/mm2 (9.8 t.s.i.) 

to 200n/=2 (13 t.s.i.) but further additions of bronze up to 20% 

reduced the fatigue limit to 13lN/mm2 (8.5 t.s.i.). 

. Graphite additions of 1%, reduce the fatigue limit for 

samples of 10% porosity but when large amounts of porosity are 

present (20 - 30"/0), similar graphite additions have .little sffect,28 

Additions of carbon from 0 to 0.8% increased the fatigue 

limit of 'a steel containing 2% nickel from 83lT/mm2 (5.4 t.a.i.) 

to 150 N/mm2 (9.1 t.s.i.) Figure 19)8 

Alloying additions ·are also made to sintered iron to 

promote hardenabili ty. Kravic and pasquine34 studied the heat 

treatment ofa 0.48% carbon lfith a tensile strength of l015N/mm2 

(65.1 t.s.i.) were reported for samples of 1.2 g/o.c. density. 

The properties of quenched and tempered, sintered steels 

are similar to wrought steels of the same composition. However 

sintered steels may become brittle with high carbon contents. 

Therefore nickel must be added and the level of carbon controlled 



in order to give 

It has 

acceptable properties. 

26 been inferred from the data of Ra~'mond33 that 

the hardenability of sintered steels. is not as good as conventional 

steels. This may possibly be dl'.a to the finer grain size of 

sintered steels, the much greater free surface areaa~d. the 

poorer thermal conductivity. 

2.29. A COMPARISOn BETWEEN SIJTTERED Ai'Vl) OTHER MATERIALS. 

Fatigue tests conducted under laboratory conditions 

show that the properties of sintered materials are not as good 

as those of wrought materials of similar chemical oomposition. . . 

In order to approach the properties of conventional materials 

the porosity of sintered materials must be less than 5%;3 

Such high densities are rarely attained commercially. Cons!:quently 

the properties of commercially sintered material appear to be not 

competitive with oonventional wrought materials. 

However in specific instances sintered materials may 

show superior properties to cast materials, e.g. copper~4 

. Moreover the additions of small percentages of copper or bronze 

to iron powders, so that sintering occurs in the presence of 

a liquid phase significantly improves fatigue properties. 

Therefore the properties of sirttered copper carbon steels are 

·26 comparable with many nodular cast irons. Figure 20 shows a 

comparison between the endurance limits of sintered materialS 
. 26 

with those of other materials. 

The fatigue ratios of sintered steels are between 

0.3 and 0.5. clustering about 0.4, whilst wrought steels are . . 
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of the order of 0.5. Sintered parts are less notch sensitive 

than wrought parts. Wrought steels show a value fer:: the notch 

,sensitivity factor q of 0.5 whereas sintered steels and nodular 

cast irons39 shOW a value of 0.35. Although pI'ecise values for 

the notch sensitivity factor are not espeCially significant they 

are an indication that sintered materials are less notch sensitive, , 

than comparable wrought materials. lliis ispossibly due to poro..91.ty 

at the surface of the sample which acts as a mild stress raiser. 

Consequently the stress concentration at an external notch is 

less than the stress concentration at a notch in a more uniform 

wrough·t material. 

Raymond33 has suggested that superior fatigue data is 

obtained on sintered unmachined specimens. While there is no 

doubt that fatigue results obtained on sintered parts give a 

much bet~er indication of the service life of a component, the 

study of machined fatigue samples avoids the added complication 

of service testing. ROr;r9yer it hs.s been obs'erved that sinte:red 

compacts show more porosity in the corners and peripheral areas. 

If this porosity acts as a mild stress raiser then the fatigue 

properties ofunmachined samples may be sl~ghtly worse than 

machined samples of the same shape. 

Although the fatigue properties of silltered specimens 

are' generally not as good aB conventional materials of the same 

chemical composition, alloying additions to the sintered material 

improve the fatigue properties. Therefore sintered cobponents 

are increasingly replacing conventional components in situations 

Ylhere cycling' stresses are present, e.g. rocker arm brackets. 
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. 3.10. THE ROLL COEPACTIOl! m' IRon POI'mER. 

The present work concerns the B.I.S.R.A.slurry 

process for the manufa.cture of thin strip. The aim of the 

work is to obtain a more thorough understanding of the factors 

which affect the rolling a!ld sintering of iron powder by the 

B.I.S.R.A. slUrry process. Thus such information may be useful 

in order to improve-the quality of the strip or to reduce the 
, 

rigorousness of the oonditions whioh are currently required to 

manufactuxe sound strip. In order to fulfil this aim the work 

\1aS divided into several stages. 

2.10. Stage 1. 

In the first stage a number of iron powders were 

carefull~ characterised and prepared. The particle paraneters 

which .were investigated are:-

1) Particle size. 

2) Particle size distribution. 

3) Surface area. 

4) Particle porosity. 

5) Particle deformability. 

6) Particle shape. 

7) Surface purity of the powder particles, . 

3,20. Stoc;e 2. 

In the second stage, the effect of the above parameters 

upon the properties of green strip prepared by the B.I.S.R.A. 
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slurry process was assessed. The following variables were 

thought to influence strip quality:-

i) Slurry composition. 

ii) Roll speed. 

iii) Roll load. 

i) Slurry Oomnosition. 

No attempt was made to investigate the rol~ of slurry 
, 

composition upon the quality of the green strip because the 

optimum slurry compo$ition had alreadY been established by 

40 B.I.S.R.A. staff. This slurry was adopted for the present work. 

ii) Roll Speed. 

A standard roll speed was used throurrhout the 

.investigation because it had been reported that there was_little 

change· in quality for variations in roll speed from 0.3 metres . 

to 150metres/minutes (1 to 500 f.p.m.) and because it was difficult 

to roll short samples over a wide range of rolling speed. 

iii) Roll Load. 

The effect of roll load on samples of "flexistrip", 

i.e. strip composed of iron powder &~d binder that had been cast 

on to a forDer, dried a.nd removed, was determined over a wide 

range of roll loads. 

In the third stage sintering conditions and further 

processing of strip rolled in stage 2 were investigated. The 

variables believed to affect properties were:-

i) Sintering temperature • 
• 

ii) Sintering time. 



Variables a~feoting further processing 'would be:-

i) Load during second rolling operation. 

ii) Sintering temperatureo~ the second sinter. 

iii) Sintering time of the second sinter. 

i) Sintering Temperatt~e. 

Although it is well known that ohanzes in sintering 

temperature markedly affect densi~ication, a standard sintering 

temperature was used throughout the work. The sintering 

temperature was the highest that is easily attained co=ercially 

beoause densification is faster the higher the temperature and 

the shorter is the time taken by samples to attain the temperature 

at which sintering commences. 

ii) Sintering Time. 

Although samples were sintered for a number o~ sintering 

times for the first sinter a standard time was chosen for the 

seoond sinter owing to the shortage of time and the difficulty 

of preparing a sufficient number of samples. 
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3.40 THE FATIGUE OF SINTEREll NIC~~ 

The effect of total porosity, pore size and pore shape upon 

'the properties of sintered nickel prepared from Sherritt Gordon, 

Grade S nickel powder was studied. 

The work included a brief examination of the compaation 

and sintering characteristics of nickel powder. 

Specific fractions of the powder were prepared by three 

different techni~ues in an attempt to give three series of different 

total porosity of v~ing pore size. 
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4.00. MATERIALS & EXPERIMENTAL PROCEDURE. 

4.10. ),1ATEltIALS 

The iron powders used were as follows:-

1) Makin powder, J.J.M. 300. (-300 mesh) 

2) Sintrex electrolytic pOTIdcr (-300 mesh) 

3) Woodall Duckam powder (-100 mesh) 

4) B.S.A. water atomized powder (-100 mesh) 

5) B.S.A. water atomized powder (-300 mesh) 
• 

From the J.J.M. 300 powder two air elutriated fractions 

were prepared:-

6) A powder which, was o£ a particle size distribution predominantly 

greater than 30 microns in size. 

7} A powder which was of a particle size distribution predominantly 

less than 30 microns in size. \. 
~) Wood,,,, Dud .. ",,,,, f'"""de.. (_ Co= "",,~ .. h) 
4.11. PREPARATION 01" THE ELUTRIATED FRACTIOlT. 

,An elutriation column shown schemat.ically in fig. 21 was con-, 

struc ted. The iron powder was fe d through a short length of 6.5. I:llJl .•• 

(t inch) glass' tubing by an Archimedia."1 screw into a ver,tical glass 

,tube l500nms.(5 feet) long and 25 O~6. (1 inch) in di~~eter. 

Compressed air was inhoduce'd tangentially into a conical. flask 

at the bottom of the glass tube. Air pressure was controlled by 

blee.ding air from the system through one arm of a ITI piece on the 

inlet side of the appa.ratus. A short length of rubber tubing was 

fitted to this arm which wa.s claLlped by a Mohr clip. Variation 

in the setting of the i.!ohr clip altered. the amount of air bled 

from the system. The coarse fraction vias collected in the 

conical flasl{ while the fine' fraction was collected by allowing 

the air and iron powder coming from the top of the column to 
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expand into a large conical flask and thereafter into another 

flask in which two permanent llIagnetswere situated. 

Each ooarse fraction and each fine fraction were 

elutriated twice. Jowder was fed into the apparatus at an 

approximate rate of l5g per minute but beoause of the difficulty 

of operating the electric motor which was driving the ~crew at 

a constant speed, this rate was frequently either greater or 

less than this'. Air pressure was adjusted until approximately 

half of the powder w'as swept up the column and the remainder 

dropped down the column. 

Because of the difficulties of operating the elutriation 

apparatus Ullder consistent conditions all of the powder that was 

used for strip preparation was prepared as .a single batch before-

hand. Each of the sub-batches that were collected from the 

column were blended and mixed in a laboratory ball mill using 

light ceramic balls for one hour. 

A -300 mesh fraction cf Woodall Duckam powder was 

obtained by sieving the -100 mesh fraction for one hour using 

an Endecott Sieve Shaker. 
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4.2Q. PO'TTDER C!rARACTERISATI ON. 

1:.2l. SA;JPLIllG. 

A single batch of each powder was used throuGhout the 

investigation. Each powder was sampled by a "quartering and 

coning" technique until a sample size of approximately 4 Kgs. 

wan attained. This was further broken down using a "Knight 

Splitter". This apparatus fed the powder down a rotating 

shute into a nUmber of containers arranged in a circle around 

the shute. The desired sample was obtained by blending adjacent 
• 

containers. Samples of approximately 100g. were obtained by 

the "Knight Spli tter". Smaller samples if needed were obtained 

by further "quartering and. coning". 

4,22. PARTICLE APPEARAli9!. 

The powder particles were examir.ed at low magnification 

with a btnocular microscope and also at considerably higher 

magnifications using a Stereoscan Electron LUcroscope. 

~~ P.ARTICLE rrlq,B..CSTRUCTURE. 

A small amount of each powder was mounted in acrylic 

plastic arid ground using silicon carbide papers, final polishing 

was oarried out using diamond paste in the ~onventional manner. 

The specimens were etched in nital. 

4.24. PARTICLE SIZE DETERIHIIATION. 

(a) geve Ana.lyses. 

Sieve analyses for the powders concerned were cbt,ained 

by sieving 100g of powder using an Endecott Sieve Shaker. The 

sieves that were used were 200 mesh, 240 mesh, 300 mesh and 350 
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mesh. The amount of powder remaining upon eaoh sieve after 

sieving f.or one hour was carefully weighed. 

(b) Sedim(,ntation Teohnioues, 

Particle Size analyses were attempted using a. Goering 

Kerr Photosedimentometer for t?~e J.J .M. 300 powder. Various 

concentrations of glycerol and water uere used to attain a 

satisfactory settling time and to give freedom from agglomeration. 

A concentraticln of 60% glycerol and 40% water was found to give 

an optimum settling time but some agglomeration and air bubble 

formation st:!ll oocurred. 

The Goering Kerr Photosedimentometer used a large 

settling container made of carefully ground glass. Beoause of 

the cost of such a container the use of ultrasol).ic frequency 

vibration to attain satisfactory dispersement of the iron powder 

was thought to be unwise, 

Better results were obtained on J.J.M. 300 powder 

using a muoh smaller settling vessel whioh oould be used with 

ultrasonio frequency vibration and anccbjliid: denSitometer. 

A medium of liquid paraffin was found to be most. suitable. 

(c) l.!icrosievin") Techniaues. 

An ultrasonio microsieving apparatus was constructed 

for use with Mullard eleotroformed sieves which is schematic ally 

shown in fig. 22. The apparatus was immerse.d in alcohol so 

that· the alcchol filled the ,.top chamber to the level of the 

ultrasonic transducer. Vuring sieving a frequency of approxmately 

20 KHz. was used and the liquid was stirred by a stirrer driven 

by an electric motor. Sieving was continued for periods of up 
• 

to 8 hours. After sleving the powder was carefully dried and 

weighed. 
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To investigate the reproducability of the technique 

J.lakin J.J .ill. 300 powder \'His sieved for 3, 5 and 8 hour periods 

using a 37. micron sieve. The -300 mesh fraotion of Woodall 

Duckam powder and Sintrex powder were s1-eved for 8 hours. 

Sieving with a 20 mi-::ron sieve was not successf'll. 

Sieve blinding occurred despite considera.ble stirrinG" and the 

ultrasonic' vibration. Moreover. ,the quantity of powder which 

passed through. the 20 micron sieve was small and could not be 

accurately measured. However it was estimated that approximately 

1% by weight of the Bintrex and Makin powders passed through the 

20 micron sieve. 

(d) 1!icroscop", )Jeasurements. 

Q.uantita.tive microscopical data for the "as received" 

powders and the elutriated powders was obtained using a 

quantitative television microscope (Q..T.M.). ,The Q..T.M. was ., 
programmed to count particlea in a number of fields and to group 

the nUmber of particles counted into specific size rang,s. 

Generally apprOXimately 30 fields were examined and twos~ples 

of each powder were prepared. The particles wer·e grouped into 

size ranges of 10 microm beginning from 50 micro!13 and progre ssing 

to less than 10 microns. 

Difficulty was experienced in dispersing the iron 

powder for microsopical examination:-

(i) A viscous solution of polystyrene in zylene and 

a small amount of iron powder was introduced on to a microscope 

slide. Using a needlo the iron powder VIas stroked into the 

solution. Continued stroking broke up powder agglomerates. 

'The solution and iron powder were then covered with a cover glass. 
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(ii) The powder was added to approximately 25 mls. of 

a 5~~ aqueou~ glycerine solution containing dispersants. The 

mixture was vibrated ultrasonically an~ stirred mechanically 

for approximately one minute. One drop of this solution waS 

then transferred to a microscope slide and covered with a cover 

slip. 

4.25. THE llETER1.ITNATIOU OF SURFACE AREA. 

The methods used to measure total surfaoe area measure 

both the area of the ,external surface of the partioles and the 

• area of any porosity connected to the surfaoe. 

(a) Gas adsorption ~eohniques. 
. . 41 

These techniques are based upon B.E.T. tfieory. If a 

mcnomolecular layer of a gas oan be adsorbed on to a powder then 

provided that the mass of the powder used is known and also the 

molecular, size of the adsorbing gas, then the surface area of 

the particles can be oalculated. As gas molecules are small 

they can penetrate the network of interconnected pores easily 

so that a value for total surface area is obtained • 

. Surface area measurements were made by nitrogen 

adsorption using an apparatus similar to that desoribed by 

Emmett ~l However it was found that the sens'i tivity of the 

apparatus was insufficient to obtain accurate values for the 

rang~ of iron powders considered because the samples had small 

surf ace are as • This necessitated using large vessels of non 

ideal shape to contain a large powder sample. Despite large 

samples being used (of the order. of 50g) the amount of nitrogen· 

udsorbcd was still small co·that'errors occurring due to the 

Idead space' in the apparatus were exaggerated. 
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(b) Fatty !:.cid adsorption ·techniques. 

The adsorption of fatty acid molescules o~ to a surface 

may be used as a basis for surface area 
42. 

workers including Harkins and Gans, and 

measurements. tIany 

43 
Orr and Dalaville 

have used this method to determine total·surface areas. The 

method used !las based upon that desoribed by 01'1'. 

A solution containing a known weight of stearic acid. 

dissolved in methyl alcohcl was shaken with a known weight of 

iron powder for one hour • The amount of stearic acid adsorbed 
• 

by the iron powder we"s calculated from the difference between 
. . 

the titres of an aliquot of the original solution and an aliquot 

of the solution after adsorption. Bromo thymol blue was used 

as an indicator and the methyl alcohol/stearic acid solution 

was titrated against st~~dard caustic soda. 

(c) Surface area measurement by other techniques. 

~'he specific surface of a powder may also be determined 

by permesTIetry or by quantitative microsoopical techniques. 

The values recorded by these methods are an indication of the 

area of the surface of the particles and do not include the 

surface area of interconnected pores. The specific surface of , 

a powder is an indication of particle shape because irregular 

particles show a larger specific surface than rounded particles. If 

. the xesults'are compared to total surface area results then an 

estimation of the area of internal voids can be obtained. 

Also a value for mean particle size Day be made. if then=ber 

of particles which constitute the specific surface determination 
• 

is known. This factor is easily obtained using microscopical 

techniques. 
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(i) Permeability methods. 
44 

An apparatus similar to the Lea and Nurse permeability 

apparatus was constructed. This is shown schematic!>l1y in fig.2~ 

Iron powder was poured into a glass, tube 150 mms.(6inches) long 

and 25 mms. (1 inch) in di~eter. The powder '1(1.S supported by 

an a.luminium mesh over which a filter paper was placed. Compressed 

air was passed through the powder bed and the pressure drop across. 

the bed WaS de~ermined by a manometer. ' The air subsequently 

passed through a venturi and the pressure drop across the venturi 

was determined by a manometer. This pressure drop was related 

to the rate of airflow by e.llowing the air to displace known 

amounts of water from inverted measuring cylinders. 

The calculation of surface area from permeametry 

measurements is complex and a number of assumptions which may 

not be completely valid must be made. These 

assumptions may be in error for powders which have a large 

particle size ranee. Thus ~ith the iron powders investigated 

absolute values of specific surface cannot be calculated with 

certa~.n ty. However as the particle size range for most 01' 

the powders is similar the results are considered to be 

comparable. 

(ii) ],letallographic 'methods. 

Many techniques of quantitative metallography have 

been reported in the literature over the past forty years, 

e.g. Quantitative stereology by C.C. Underwood, Addison Warley, 

1970. Quantitative roetallographic technique's rely upon 

counting the sizes of a large n~ber of particles· or colonies 

of phases. This may be done by chord size distributions or 

point counts. Integraticn of these values gives the projected 
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surface area of the particles or phase( considered. If the 

particles or phases are z''llldomly oriented then this value 

may be directly related to either total surface area or volume, 

if a sufficiently large number of counts is made. The Q,.T .M. 

can give integrations of chord distributions quickly and so a 

large number of particles may be eValuated, thus reducing errors 

due to sampling error and segregation which may occur due to 

slide preparation. 

4.26. PARTICLE POROSI~Y. 

Particle porosity may consist of either closed or open 

porosity. As most of the powders considered have ,been prepared 

by hydrogen reduction the major portion of porosity in the 

powders is open. 

Closed porosity of a powder may be easily found by 

apparent solid density measurements and by a comparison of· these 

rosults to the theoretical density of iron. 

Open porosity is more diffic.llt to evaluate. Common 

tec'hniques may be based upon B.E.T. desorbtion data or results 

obtained by mercury porosimeter methods. Unfortunately neither 

a B.E.T. apparatus of sufficient sensitivity nor a mercury 

porosiemeter were av a:il ab le • 

The apparent solid density and hence close porosity 

of the iron powders considered was found by using a specific 

gravity bottle technique with xylene. Both the xylene and 

iron powder were degassed before use. Ultrasonic and vacuum 

techniques were used to disperse any vapour bubbles before the 
• 
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specific gravity bottle and contents were weighed. 

A,technique occasionally used in the coal industry 

for determining the open porosity of coal 'is to impregnate the 

coal with water, :By roll owing the weight changes with respect, 

to time of the coal/water mixture, an inf'lexion point may be 

noted on the curve which corresponds to the time vlhen "aater has 

evaporated from the surface of the iron powder but not from the 

open pores. Thus by comparing the weight of dry coal with this 

weight of coal plus water an estimate of the amount of open 

porosity present can be made. This technique was employed with 

a number of 'iron powders using chloroform as an impregnating 

liquid. Weight changes with time were followed by the use of 

an accurate single pan balance. unfortuna~ely no reproduceable 

or meaningful results were obtained. 

, It should be possible to obtain an idea of the open 

pore surface area by comparing surface area measurements obtained 

by either microscopy or the Lea and lrurse method wHh surface area 

measurements obtained by adsorption techniques. However only 

relative results have been obtained by the Lea and Nurse method 

and the results obtained by quantitative metallography are 

slightly in error due to unavoidable particle agglomeration upon 

the microscope slide. 
45 Yarnton has commented upon a method of determining 

the microporosity of tungsten powders by the use of various 

liquids in standard denSity determinations. By selecting a 

range of liquids of vnrying molecular size; a microporo size 

distribution may be obtained. 'This method was attemllted, bu". 

no meaningful results were obtained because the variations 

obtained by using different liquids were of the sc.me order of ""'tf",'j-"J ~ 

"s the experimental error. Some liquids reacted with the iron 
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po~der ccncerned • 
. '; 

. Although meaningful results for open porosity could not 

be obtain€<1 iot is believed tha t this is not too cerious an omission 

as large amounts of open porosity are indicated by measurements 

of total surface area and meta.:1.logTaphic exaraina tion. 

4.27 PARTICLE ])F.FORUAEILITY. 

The ability of a particle to deform under pressure is 

oR function of .both the amount of particle porosity present and 

the ability of the metal lattice to deform plasticallY. This 

latter factor depends upon the internal strain in the lattice 

and also upon the chemical composition of the metal. Particle 

deformability has been assessed by microhardness techniques and 

static compaction data. However it is appreciated that other 

particle parameters e.g. particle size affect compact ion data 

and that °microporosity may influence microhardness results. 

(i) Compaction data. 

The powders studied were compa.cted in a doublG acting 

die with six drops of carbon tetrachloride as lubricant to ease 

ejection.. No .die wall lubricant was used. The 'pressed compacts 0 

measured 31.5 mms. (It inches) x 6.4 mms. (t inch) x 6.4 mms. 

Density measurements were made upon the pressed 

samples by the mercury displacement method and calculated as 

is sho\'l!l in appendix 

(ii) Uicrohardness data. 

Microhardness results were obtained using the Vickers' 

lIlicrohardness Tester. Indentations were made upon etched samples 

to reduce n.ny error caused by prepara,tion of the sample and to 

avoid 8~eas of porosity. 

50 

--------~----

I 

I I 



I 

--------------------------------------------- -- -

~.28. PARTICLE SHAPE. 

) Powder.particles may be rounded, acioular, regular 

or irregular and many investigators have shown that the shape 

.of a particle may influence compactability. 

Shape fa.ctors may be calculated in a number of ways 

combining results obtained by permeametry, microscopical de.ta 

and total surface area measurements. However it is believed 

that s1lch data is little better than a qualitative appraisal 

of shape combined with values of specific surface for ,this 

investigation. Ther~fore a quali tative appraisa.l of shape waS 

adopted. 

4.29. SURFACE PURITY. 

ne spite the possible importance of surfa.ce purity 

no satisfactory method was developed to measure this parameter. 

In an attempt to determine surface p~rity; several of 

the pOVlderc were examined by reflectance spectrophotometry 

using w5.velengths of light from the far ultraviolet to the near 

infrared. ~nfortunately no distinct peaks were present in a 

plot of the intensity of the reflect.ed wavelength aga.inst 

frequency of the incident illumination. Thus the method was 

'found to be unsuitable for detecting or measuring surface purity. 
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.1..30. STRIP PHEPlillATION. 

All samples of strip were prepared using the slurry 

process developed by the ~ritish Iron & Steel Research Association 

(B.I.S.R.A.). Small quantities of slurry were prepared from iron 

powc.er mixed wi th 47; 8.ClUeOusoethyl cellulose, additional ';later 

and glycerol. 11 Supronic" , a conunercial wetting agent was used 

to suppress air bubble formation and "Geigy", a commercial 

inhibitor was ~sed to limit particle rusting before drying. The 

iron powder was added very gradually to the mixture of methyl 

cellulose, water and 'glycerol continuously stirring with a stirrer 

driven by an eleotric motor. Slow stirring for approximately 

three hours was continued to ensure homogenisation. before the 

mixture was used. 

Two methods of producing 'flexistrip' were used. Strip 

from Makin powder, the derived Makin powders and Woodall lluckam 

powder were prepared by spreading the slurry on to stainless 

s:-eel troughs 38 ~s. (It. inches) by either 0.625 mms. or 1.25 mms. 

(25 'thou' or 50 ·thou') deep. The wet slurry was dried for five 

minutes at 1500 C in an oven before being removed from the trough. 

Strip removal was facilitated by the application of 1% alcoholic 

oleic acid to the trough before spreading the strip. 

Strip from the B.S.A. -100 mesh and B.S.A. -;00 mesh 

powders was ma.de using the pilot plant built by B.I.S.R.A. (fig. 24) 

The thickness of the 'flexistrip' was controlled by altering the 

height of the gate. Again strip removal was fa.cilitated by coating 

the continuouse stainless steel band with a 1% alcoholic oleic 

acid solu·tion. 
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Because of the difficulty of measuring stress during 

rolling, measurements of :roll force were used. Consequently all 

'flexistrip' made on the trough was cut into standard strip 

28.6 =s. (l.g inches) wide while all the strip made on the pilot, 

plant was prepared in 102 ~~s. (4 inches) widths. Preparing 

samples to standard widths obViated the need for edge triJll!ling. 

Rolling was carried out us:i.ng a two high mill with 
, <l ,o.'fY\~ r... ... 

300 mm. (12 inch)~rolls at a roll speed of 3.65 metres (12 feet) 

per minute. Roll load was measured by two load cells connected 
• 

to the top roll. 

The samples of strip were fed by hand into the roll 
, , 

gap. Roll loads frOll 40 kU. (4 tons) to 220 kN. (22 tons) per 

25 mm. (1 inch) width were used. The upper,limit of this range 

was determined by the onset of edge cracking. The B.S.A. powders 

were roll~d at a Single roll load of 160 kN. (16 tons) per 25 mm. 

(1 inch) width beCause of the difficulty of obtaining coherent 

strip at low roll loads and the restricted range of roll loads, 

especially when rolling 100 mm. (4 inohes) strip. 

'The green strip wassintered in a stream of pt~ified, 
c« t)' eo O 

(.. 

dried hydrogen." The gas dI'ied by passing through a col=n of 

molecular sieve. Oxygen was then removed by a "De Oxo" catalytic 

purifier. The resultant. water vapour was removed by another 

colunn of molecular sieve. A series of sintering times from 

10 seconds to 300 seconds were used. Samples approximately 

lOO QmS. (4 inches) long by either 10 mms. (0.4 'inches) cr 25 mIDS. 

(1 inch) were placed cna skeletal s·tainless steel '.:loat and pushed 

ill to the hot zone of the furnace· whe re it VIas he Id f or the 
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presoribed time. Measurement of the sintering time was started 

after the sample had be~n pushed into the hot zone. A time of 

.five seoonds was allowed for the introduotion to and extraotion 

from the hot zone of the furnace. Cooling was aohieved by pulling 

the sample into a water cooled part of the refractory furnaoe tube. 

The sample was allowed to cool for one millute before the furnace 

was purged with an iner.t atmosphere and the sample extraoted. 

Rerolling of the sintered strip was carried out using 

the same two high rolling mill. Standard width strips of 28.6 mms • 
• 

(It inohes) were used upon whioh a 25 mm. gauge length waS soribed 

to establish elongation durihg rolling. A roll ~oad of 150 kN. 

(15 tons) per 25 mm. (1 inch) width was used for the second 

compaotion of eaoh sample. This load was the highest roll load 

that oould be used without edge oracking of the strip oocurring. 

Resintering was oarried out in the same apparatus as 

the first sinter. A standard sintering time of thirty seconds 

was used fer each sample. 
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!: 40. DENSITY DETgRI.!Il!ATION. 

Although it was appreciated that the pre"~mce of methyl 

. cellulose would reduce the accuracy of the density oeasurements, 

. no attempt was made to remove it with the exception of samples 

prepared for the xylene impregnation method. The estinated weight 

contributed'by the methyl cellulose was calculated to be much less 

than 1%. The error arising from this is considered to be less 

than the error arising in the density measurements. 

4.41. DETER!.!Il!ATION OF GREEN STRIP DEnSITY. 

A number of methods for the detercination of density 

were evaluatedl-

(i) lJensuro.tion. 

Samples of strip approximately 20 mms~ x 20 mms~ 

(0.78 inches' x 0~78inches) were prepared by ca;I'efully scoring 

the strip with a sharp scalpel, breaking and abrading the edges 

with silicon carbide paper. The sa~ple was clamped between two 

glass slides for the latter operati.on in order to ensure a straight , 

edge and to prevent damage to areaS in the vicinity of the edges. 

Thickness deteroinations were made by measuring the 

sample using a sensitive comparator and slip gauges. Unfortunately the 

spring lOaded ball of the comparator indented the strip so that low 

readings l1ere. obtained. On the other ha.nd sandwiching the strip 

between two slip gauges and measuring gave high rea.dings because 

the slip ga.uges positioned themselves on 'high spots' of the 

material. The length of the edges of the st:dp \Vas determined 

by projecting the sample image op to the ground glass screen of 

. El Vickers I Projection !1iorosoope. The dimensionS of the image' 
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WC~f measured by calipers. The magnification of the microscope 

was determined by measuring the projected image of a slip gauge. 

}'inally by determining the weight of the sZlnple to two 

deoimal plZlccs the density could be calculated. 

(ii) Immersion in mercury. 

Sa.>nples similar to the sZlmples prepo.rcd for mcn!::uration 

were used for this technique. Each sample was ueighed in air and 

the force required to iwaerse it in mercury was measured. The 

density was caloulated as shown in appendix 1. 
, 

The method proved insufficiently acourate due to the 

experimental error inherent with the mercury balanoe technique 

and the small upthrust given by the small samples of strip. 

(iii) Impregnation with xylene. 

If the internal voids of a sample are filled with a 

known vo1.ume of xylene and the density of the sample is eVZlluated 

by immersion in ~Ylene, the bulk density of the sample can be 

calculated. 

Samples for this technique were prepared by heating the 

mZlterial to 4000 C in hydrogen to eliminate methY.l cellUlose from 

the material. 

Subsequently each 'sample was weighed and placed ,in a 

vacuum dessicator. Air was evacuated from the dessicator and 

xylene introduced until the samples were immersed. Subsequent 

admission of air into the dessicator forced the xylene into the 

pores of the material. 

The samples "ere removed from the dessicator and their 

weight whon inmersed in xylene deter-nined. Finally the xylene 
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impregnated samples were weighed in air. Excess drops of xylene 

were removed by a filter paper and weighing was carried out as 

quickly as· possible to ~inimise errors caused by the evaporation 

of xylene. The results were calculated as shown in appendix 2. 

This technique also proved to be insufficiently accurate 

because of the small amount of xylene absorbed by the strip and 

to the rapid volatiliz:ation of xylene during weighing. 

(iv) Immersion in other fluids. 

The densities of conventional materials are frequently 

determined by weighing samples in air and subsequently immersing 
• 

the sample in water or other convenient liquid and reweighing. 

This technique must be altered when applied to p~rous materials 

because the internal voids of the material are quickly filled 

with the liquid media. l!any previous investigators have coated 

the sample with an impervious coating to prevent this. 

Generally the most suitable coating agents are organic 

based and tend to dissolve in organic liquids. Consequently a 

number of organio coating materials which would be inert during 

subsequent iIllI:lersion in water were examined. Silicone fluids, 

grease arid a 5% soluticn of polystyrene in xylene were tried as 

coating materials and the latter agent was fcund to be the most 

sui table. 

Samples were prepared in the same way as the mensuration 

samples. They were weighed &,d dipped into the polystyrene 

solution and allowed to dry. After drying the samples were 

re dipped and put into a warm place to promote the evaporation of 

xylene. Surplus drops of xylene were removed by a filter paper • 
• 

The weight of the polystyrene coated samples when immersed in 

water was subsequently determined. 
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Although it was found that there was still a tendency 

for either the coating or the samples to absorb water, if the 

weighings were made withi~ 30 seconds ~onsistent results were 

obtained. 

This technique was found to be the most satisfactory i ., 

of those investigated and was used to determine the density of 
; I 

all the samples prepared. Corrections for the weight and the 

volume of the polystyrene were made in oalculating the density 

values. I 
I , 

~ , 

4.42. _SnTTEREll DENSITY. 

The density of material from the first and second 

sinters was determined using the same procedure as'for green 

strip. 
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4.50. RESISTIVITY DETER1.!INATION. 

standard samples of green strip 10 mms. wide (0.4 inches 

approximately) were prepared by clamping the strip in a jig and 

milling on a "Tensilcut" oachine. 'The diocnsicns of the sample 

weI'e measured and the resistance of the sample vias found using 

a "Kelvin Bridge" • . 
Apparatus shown' schematically in fig. 25was used to 

determine resistivity. The apparatus was made of "Tufnol" and , 

showed an infinite resistance when a determination was made in 

• the absence of a sample. Current was passed through the strip 

by screwing the two roughened brass faces of the olamps firmly 

on to the strip. Potential measurements were made by screwing 

the two pointed screws into the strip so that indentations were 

'made on the strip. 

The resistance of sintered specimens was determined on 

the same jig. It was found that the samples of green strip 

prepared abov<;l after sintering could be used. for suoh deteroina,tions. 

Sintering was carried out in the manner previously described. 
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,!..60. TEnSILE TESTIHG. 

4.61. GREEN" STRIP. 

It was thought that a standard test piece shape would 

not be suitable for tensile testing because of the tendency of 

the strip to fracture outside the gauge length. ConsequentlY 

samples of the type shown in fig. 26 were prepe,red. The width of 

the minimum 'cross-section was approximately 20 =s, (0.78 inches)" 

and the radius of the gauge length was approximately 120 mms. 

(4.7 inches). 

Samples we~e prepared by cutting blanks slightly oversize 

with a scalpel. The blank was then placed between two stainless 

steel templates of the required size. The templates were tightened 

and the surplus material was removed by silicon carbide papers, 

finishing with grade 600. 

Since a tensile testing machine with a sufficiently low 

range was not available a testing arrane;ement using an "Instron" 

mechanical testing machine fitted with a compression load cell 

was devised. Testing was carried out at a "<i;-osS. hea:d :speeJ ot 

apprcximately 1 !lUll. per minute. 

Because of the "lever effect" of the beam (fig.27)' 

recordings made by the "Instron" were not direct readings of force. 

Consequently the apparatus was calibrated by weights throughout 

the entire range of force used during testing. 

Difficulty was experienced in gripping the sample 

satisfactorily but the procedure finally adopted was to attach 

the green tensile sample to flat steel plates with self adhesive 

tape. Using this arrangement slip of the sample within the self 
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adhesive tape seldom occurred but because of extension of the tape 

during testing, elongation as shown by the "Instron" recorder was 

not representative of the specimen. 

i.6Z. SDlTERED STRIP. 

Samples were prepared by milline strip clamped between 

stainless steel templates on a "Tensilcut" maohine. A parallel 

gauge length of 25 mm;.with radii of curvature of 50 mms. at the 

extremities was used. . After cutting on the "Tensilcutu maohine 

the edges of the samp)e were oarefully abraded with silicon carbide 

paper grades 400 and 600. 

Subsequently the samples were tested using a "Hounsfield 

Tensometer". 
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5 .do. RESULTS. 

5.10. PO'}JJBR APpBARANCE. 

All powders had a dull grey appearance with the exception 

of the B.S.A. water atomized powders which showed a reddish/brown 

colour due to appreciable rusting during nanufacturc. 

At low magnification the J.J .M:. }OO a!ld \foodall JJuckam 

powders were similar in appearance although some of the partio1es 

of the Woodall Duckham powder were much larger than the J.J.M. 

300 particles. Both powders were composed of rough irregular 

particles. The Sintrex powder particles were acicular ~~d appeared 

to be smoother than either theJ.J.M. 300 or Woodall Duckham powders. 

The water atomized powders were spheroidal and showed 

a greater portion of fine particles compared to the other powders. 

"Stereoscan" photographs (£ig.28) showed clearly the 

rough nature of the eurface of the Makin and Woodall lJuckam powders. 

Moreover "craters" at the surface of SOffie of the powder particles 

indicated the presence of internal porosity. The acicular nature 

of the Sintrex- powder particles was readily a.pparent (fig.29). 

,However the surface was not as smooth as was indicated by observation 

at lower magnification. Instead the surface appeared to show many 

surface folds. 

5.20. PARTICLE HICROSTRUCTURE. 

The microstructures of the powder dseshovm in fig .. ;O 

The internal porosity of the Makin and Woodall .iJuckam powder 

particles ViaS confirmeJ.. JJoreover the microstructure indicated 

that the porosity was mainly intorconnecting. The Sintrex powder 



particles on the other hand showed very little :internal porosity. 

The structures of all the powders investigated showed very fine 

inclusions with the exception of llakin particles where slate. grey 

coloured inclusions were evident. These inclusions were believed 

to be iron oxide. Subsequent miorohardness results strengthened 

this belief. The structure of the nater atouized powdcl.·s was 

martensitio. 

5.30. PARTICLE lUCROHARDNESS. 

The microhardness of the Makin and Woodall powder 
• 

partioles was very similar (133 RV) but the Sin"!;rex powder was 

signifioantly softer (91.5 Rv). Miorohardness results on the 

slate grey phase observed in the J.J.H. 300 powder partioles were 

336 Rv whioh was consistent with the belief that the oonstituent 

was iron oxide. The water atomized powders were muoh harder 

(B.S.A. ~100 mesh 517 Rv., B.S.A. -300 mesh 525 Rv.) due to the 

formation of nartensi"!;e during quenohing. 

5.40. PA-,~E SIZE AHALYSIS. 

Results of sieve analyses inoluding miorosieve analyses 

are shown· in table 1. Sedimentation data for J.J .H. 300 is given 

in table 2 and the Q,.T.r,[. results in table 3. Attention should 

be drawn to the fact that the sieve analysis results and. 

sedimentation results are presented as a peroentage weight 

distribution whereaS Q,.T .1,1. data is expressed as a percentage 

distribution by number. 

B.S.A. -300 mesh and J.J .1,1. 300 powders are seel1'·~o be 

substantially below 350 Desh, however Sintrex and Iloodf'll lluckau 

powders have a significlJ.."lt fraction betVleen 300 and 350 In3sh. 



(B, S, sieves), On the other hand Woodall ])uckam powder shows a 

smaller fTaction by weight batween 31 microns and 35'0 mesh 

(of the erder of 45 miorons)', 

The effectiveness ef air elutriatien is shewn by the 

fines ef J,J,M, 300 pewder having a fraction greater than 30 

miorons ef appreximately six per cent by number I'Ihoreao 

"as received" J,J,M, 300 shews between approxin:ately twentytwe 

to twentyfive'per cent to. be of particle size greater than 30 

micren, The particle size distributiens of the J.J ,1[, 300 
• 

and Weedall Duckam -300 mesh pewders were very similar. Hewever 

the -300 mesh fraction ef B,S.A. pewder showed a fraction seventy-

five per cent by n~ber finer than 20 micrens, Because of the 

acicular nature ef the Sintrex Electrolytic powder a particle 

size distributien by sieve analysis dees net necessarily give 

an indiCation of real particle size. However the indicated 

particle size distributien is similar to. that of the "as received" 

-3"", "",~kWoodall Duckam and J.J ./;l. 300 pewders. 

Results obtained by the Q.T.).!, also include projected 

surface area d'ata, These results are discussed later, .However 

a measure ef mean particle size was calculated from thi$ data, 

In order to simplify the calculation the assumption was made 

that all the powder particles were spherical. This assumptien 

give,S results that are a close appreximatien to. mean particle 

size fer the chemically reduced powders, which arc approximately 

spherical but is in error for the aCicular electroly'Cio pel7de:t'. 

The results are sherm in table 4. Cenparisen ef these results 

with the particle size distributl.en by Q.T.!,!. indicated that the' 



mean partiole size by surfaoe 'area was less than expected. 

This was due to the greater oontribution made towazds surface 

'area by the smaller particles. 

2iiO. SURFACE AREA RESULTS. 

,Total surfaoe area results by stearic aoio, adsorbtion 

are given in table 5. It is apparent that the Sintrex 

Eleotrolytic powder was of appreoiably lower surfaoe area than 
, 

the ohemically reduoed powders, probably due to the absenoe of 

internal open porosi~y oonneoted to the surfaoe of the samples. 

The influenoe of partiole size on surfaoe area is demonstrated 

by the water atomized powders. Despite very little internal 

porosity both the -100 mesh fraotion and the -300 mesh fraction 

showed high surface area results (0.25 -o.2/g) and these results 

were similar to the results giVen by the very pcrous Woodall 

JJuckam powder. D.E.T. surfaoe area data obtained on different 

batches of the powders eXaIained are given in table 6. The 

results were of the same ord~r of magnitude as total surface 

area ~esults obtained by steario acid adsorbtion, however 

J.J·!;!.300 

0.13 m
2
jg) 

showed a higher surface 

as also did the Sintrex 

, 2 
area (0.31 m /g oomparorl with 

2 ' 
Electrolytic powder (0.14 m /e 

B.E.T. co:apared with 0.074 m2/e stearic acid adsorbtion). This 

differenoe may be attributable to variations between batches of 

the 'powders but is more probably due to the powders oonce::ned 

ha-ling extremely fine internal porosity [l0 that the large stearic 

acid molecules co,nnoi penotrate all parts of' the interna,l porous 

net~lo;t'k but the ::;naller gas molecule can. It is also possible 

that a. double molecuL)!: layer of gas wa.s adsorbed by the powder 



particles during the D.E.T. determination because these results 

are approximately tVlice the stearic acid adsorbtion value and 

a value of 0.3 m2jg oorresponds to a very S~all ~ean particle 

size (approxinately 2~ microns). 

Specific surface reSlll t8 obtained by the Lea & Nurse 

method are shown in table 7. Because of the assumptions 
• 

which need to be made to calculate a value for the specific 

surface of the powders the results obtained were not absolute , 

values. Nevertheless the results should be comparable to each 

other. Therefore the results have also been expressed upon a 

relative basiS, defining the ·fine fraction of Iilakin powder as 

having the specific surface of 1.00. 

Table e shows surface area results obtained by the 

·Q.T.11. Again these results have been expressed upon a reiative 

basis. Comparison between these results and those obtained by 

the Lea & Nurse method showed reasonable agreement for most 
- .30<> ..... "1: j., • 

powders. However the surface area of tho/\ Woodall D'lckam powder 

as measured by the Q.T.M. was significantly higher than that 

measuxed by the Lea & Nl~se method. This feature was ascribed 

to the surface roughness of Woodall Duckam powder preventing 
, 

close packing of particles in the permeametry bed. Thus the 

resistance offered to air flow would be less than expected. 

5.60. APPAREnT SOLID DENSI'rY.RESULTS. 

The apparent solid density results are reported in 

table 9. All of the results were very close to the theoretical 

density of pure iron. Consequently because of experimental error 

the estimates.of the amount of c!Loscd porosity present in the powders 
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must be treated with reservation. However the results obtained 

for the fine fraction of J.J.M. 300 and the Sintrex Electrolytic 

powder showed densities sufficiently removed from the density ef 

pure iron to. be significant. The 10.'11 density ef Sintrex Electrolytic 

powder was thought to be due to either extremely fine interconnected 

porosity, such that the xylene molecules were unable to penetrate 

the inner regions of the powder particles, or to closed porosity. 

The former supposition was supported by the anomaly' between. the 

B.E.T. surface area measurements and the stearic acid measurements 

(0.14 m2jg and 0.07 m2jg). 

2.!1!). COUPACTION RESULTS. 

The cempactien results are given in table 10. The Weedall 

Duckam -300 mesh powder and the two "as received" powders densified 

to approximately 6.50 gjcc. Hewever the coarse elutriated fraction 

and fine "el;ltriated fractien of J.J .M. 300 pewder enly densified 

to 6.35 glee. and 6.04 glee. respectively. Beth ef the B.S.!. 

water atemized powders eould not be com~acted suocessfully. The 

Sintrex pewder compacted to a similar density at beth 386 klT/rnm2• 

(25 t.s.i;) and 463 kN/rmn2• (30 t.s.i.) compactionp:essures but 

the ether powders sho\1ed a significant densi,ty increase when the 

conpaction pressure was increased over the same range. 

5.80 CEE11ICAL ANALYS1§.. 

Although the chemical analyses of the powders investigated 

were not determined the chemical analysis fer the water atemized 

B.S.A. -100 mesh pewder is given in table l1~ this analysis was 

determined by the supplier. Typical analyses for the ether powders 
40 

exo.mined are also sho\"!ll in table 12. These results were not 



determined upon the batches. of powders examined bllt upon different 

batches manufaotured to the same specification. Eeoause the 

analysis of the B.S.A. water atomized powder was obtained for 

the -100 mesh fraction, it is not necessarily the true analysis 

for the -;00 mesh fraotion sieved from the same batch. The oxygen 

figures for the powders were obtained. by a vaouum fusion technique. 

The. carbon' content of the B.S.A. water atomized. powder 
. 

was 0.15% compared to 0.08% in the J.J.M. 300 powder, 0.015% 

in the Woodall ~uckam powder and 0.008% in the Sintrex Electrolytic , 

. powder. The sulphur and. phosphorous contents were too low to have 

an appreciable influence on mechanical properties and also were 

the silioon' contents (range 0.01 to 0.07%). The manganese oontent 

of the J.J.M. ;00, Woodall Duckam and B.S.A. powders were similar 

(0.25 - 0.;55'") however only 0.04% was present in the Sintrex powder. 

The oxygen content of the llakin powder (0.851~) and B.S.A. powder 

(0.33%) was sienificantly higher than the Sintrex powder (0.15%) 

and the Woodg,ll Ducka-l1 powder(O.le~~). 

The high oxygen content of the Makin powder. is consistent 
.. 

with the observation of slate grey inclusions, believed to be iron 

'oxide, in the micrographs. Moreover such a ,high oxygen content 

may account fO.r the 10\7 apparent density of the fine fraction of 

J.J .!.l. 300 pcwder. 

5.90', STEREOSCA:.! PHOTOGRAPHS on' FLEXISTRIP. 

S.E.M. photomicrographs of "flexistrip" obtained by 

B.I.S.R.A. of the D.S.A. -100 mesh powder compacted at approximately 

100kH/25 m.m.(lO tonS/inch) width. showed that t:1e Dlettyl cellulose 

sur:rounded th.e P01,'ltJ..er po..rticles as a .porous, fibrous network. 
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Contaot of the methyl cellulose. with the powder partioles waS not 

oontinuous but oonsisted of numerous strands or filaments. 

COf the order of 20) whioh seoured eaoh partiole to the methyl 

oellulose network. 

5.100. GREEn STRIP DENSITY. 

The inorease in density with incroase in roll load is 

shown in fig. 31. It was apparent that high densities (1 - 7.25 g/o.c.) 

were attainable at roll loads of 120 kN/25 mm. (12 tons/Ill width). 

The density/roll lOad relationship for the fine fraotion of Makin 

powder was linear ove~ the whole range of roll load investigated 

but a signifioant departure from linearity ooourred for the other 

powders. Optimum densification was shown by the Sintrex powder, 

5.110 GREEN STRENGTH. 
~ 

Fig. 32 .shows the relationships between green strength 

and roll 'load. At intermediate roll loads of 100kN - 140kN/ 25 mm. 

l1idth (10/14 tons/lit) there was a large variation in the range 

of greon strengths (of the order of $e. - lioJN/mm2.) for the 

coarse and fine fractions of J.J .M. 300 respeotively. However 

at higher "roll loads, of the order of 180kU/25 mm. (18 tons per 

111) width, the green strengths of strip from the fine fraotion 

of J.J .Il. 300, "as reoeived" J ~J .IJ. 300 and \Voodall Duckam 

-300 mesh powder were very similar (of ~he order of 160N/mm2 .) 

but the green strength of strip rolled from the coarse fraotion 

of J.J .M. 300 remained at approxipately l03N/=2. for roll loads 

above approy-j.l!lately 100kN/25 mm. (10 tons per 111) width. Values 

for green strength fo." the Sintrex powder could not be obtained 

above 140kH/25 Dl!l. (14 tons/l") width'beoause of subst=tie.l 
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edge cracking. Green strengths of' the B.S.A. -100 mesh 'and 

-300 mesh tractions were 25.2N/mm2. and 19091f/mm2. respectively. 

5.120. RESISTIVITY OF GREEN STRIP. 

The variation of resistivity with increase in roll 

load for strip rolled from the powders examined is shown in fig.33. 

Strip rolled from the fine fraction of J.J .H. 300 and "as received" 

. J.J .1<1. 300 showed little variation of resistivity for values of 

roll load up to 180kN/25 mm. (18 tons per 1") width atwhioh 

there was a slight inorease in resistivity. The increase i~ 

resistivity at. higher roll loads was very pronounced with strips 

manufactured from the coarse fraction of J.J.1!. 300 and from 

\1oodall Dtickam powder. In the latter case there was a sharp 

increase in resistivity values for roll loads exceeding 1l0kN/25 mm. 

(11 tons per V') width. .A.1 though strip from Sintrex powder waS 

examined Qver a much smaller range of roll load the 'indication 

wll,s that not. only did Sintrex powder show much higher resistivities 

but.that there was also a very large increase in resistivity with 

increase in roll load. 

'Gene'rally green compacts compacted by conventional 

.powder metallurgy techniClues may be expected to show a decrease 

in resistivity with increase' in compaction force. The only strip 

which followed this trend was strip from Woodall Duckam. pO,7der 

for which there was a distinct decrease in the value of 

resistivity fOi the load l'an~e 40kU/25 mm. to lOOkU/25 mms. . ~ 

(4 tonS/Ill to 10 tonS/Ill) V/idth. 
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Some results of sintorcd density arc given in table 13. 

r.t was apparent that little or no densification occurred during 

sintering. This was anticipatGd because sintering times were 

very short. 

All specimens of strip showed a rapid increase in 

strength during the first 60 seconds of sintering, as shown in 

table 14. Sintering for up to a further 240 seconds longer 
, 

generally showed little further imprcvement in tensile strength. 

Most samples of strip attained strengths between 160 to 210Njmm2 •. 

after sintering for .60 seconds.' Notable exceptions we:re strip 

rolled from Sintrex powder and the -100 mesh fraction of :a.S.l!.. 

powder. Strip rolled from Sintrex powder showed a continual 

increase·in strength with sintering times of up to 300 seoonds 

for samples rolled at 95kNj25 mm. and 120kU/25 mm. (9.5 tons/l ll 

and· 12 tons/lit) width. Samples rolled at 45kN/25 IlL'!!. (4.5 tons/~It) 

width attained a maximum tensile strength after two minutes 

sintering. I/!oreover only strip rolled at 120kU/25 mm. (12 tons/lit) 
, 2 

. width developed a tensile strength greater than 200 HjlYilll. St2'ip 

rolled from the -100 mesh fraction of B.S.A. po~der showed a 
. 2 

maximum strength of l50N/mm • after 300 seconds sinte:ring, 

moreover the. rate of increase in tensile strength with sintering 

time was significantly lOVler thal'l that of the -300 me sh fl.'action. 

strength 

prepared 

Some samples of strip showed a docrease in tensile 

after sintering for 120 seconds, e.g.~ll of the specimens 
,.. ~o ..... .th '. 

from Woodall Duckam povld"r and specimens prepared from. 
!\, 
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"as':recoived" Makin powder rolled at 160kN/25 mm. (16 tons/Ill) 

width. 

Sp3cimens rolled at the higher roll loads usually 

possessed higher tensile strengths than samples rolled at lower 
- 3.u-o,..,....~ r I.. 

roll loads. Exoeptions.were strip rolled from Woodall Duokam 
/'0 

powder at 130kH/25 mm. (13 tons/I") width which was signifioantly 

less strong than similar strip rolled at 90kN/25 mm. (9 tons/I") > 

width and strip from "as reoeived" J.J.M. 300 rolled at 160 kN/25 mm. 

(16 tons/Ill) width, whioh showed a slightly higher tensile strength , 

than strip rolled at lower roll loads after 60 seconds but a lower 

tencile strength after 120 and 300 seconds sintering. However 

it was apparent, particularly with strip rolled from "as received" 

Makinpowder and li!akin derived powders that the difference in 

strength petween samples rolled at low roll loads 50kU/25 mm. 

(5 tons/ill) width and s~ples rolled at higher roll loads (of the' 

order' of 200klT/25 mm.- 20 tons/Ill width) was only of the order of 
., 2 

30N/rnm • 

Strip rolled from the fine fraction of J.J .M. 300 

possessed tensile strengths whioh were very similar to the strengths 

. of strip rolled from the "as reoeived" J.J .1:1. 300 powder. However 

strip rolled from the coarse fraction possessed tensile strengths 

which were significantly lower after sintering times of 30 seconds 

and '60' seconds. 

The elongation values were very low (less th~~ twelve 

per cent) and significant elongation was only attained by samples 

sintered for long sintering times. Generally U,s elongation after 
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thirty seconds sintering was minimal. After sixty seconds. the 

elongation waS betweenGwo and six per cent a.nd after three 

·hundred seconds between six and twelve per cent. However all 
- 3.<>-0 ""'''$ "-

samples prepared from,A Woodall Duckam powder, with the exception 

of the series rolled at 90kN!25;mm. (9 tons/Ill) width showed 

very poor elongation figures (less than three per cent). Some 

samples, particularly specimens prepared frcm the coarse fraction 

of Uakin powder developed an "orange peel" effect around the 

fracture area aftersintering for three hundred seconds • 
• 

. 5.150 •. RESISTIVITIES OF SINTERED STRIP. 

The results of the resistivities of sintered strip 

are given in Figs~34: & j5. All of the specimens examined showed 

a very large reduction in resistivity during the first thirty 

seconds sintering. Only samples of strip prepared from B.S.A. 

powders .;vel's sintered for sintering times shorter than thirty 

seconds and it was apparent that even after ten secon(ls sintering, 

the resistivity was of the same order ~s resistivities developed 

after sintering for three hundred seconds. Strip from the -300 

mesh fraction of B;S.A. powde·r ha.d lower reSistivity after 

sintering for ten seconds than strip from the coarser fraction. 

However after sintering for sixty seconds the resistivities of 

strip rolled from the two powder types had become very similar. 

Results obtained for the resistivity of sintered strip 

showed appreciable scatter which made j.nterpretation more difficult. 

This was particularly .applicable to the resistivities of sintered 
-k .... ~sh. 

strip rolled from Woodall Duckaln powder, Sintrex pmvder and the 
/I. 
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Makin derived powders where results were only obtained in 

duplioa.te. Howeverdisti~et trends we-:a observed in the 

variation of resistivity with sintering time for strip prepared 

from these powders. Most speoimens developed aresistivitl" of 

between 150 x 10-7 ohm;Lcm. and 160 x 10-7 ohm';'~m. after sintering 

for thirty seconds and the resistivity remained within this 

l'ange even aft~r sintering times of three hundred seconds. 

strip made from Sintrex Eleotrolytic powder developed the lowest 

resistivities and mo~t of these results lay between 120 x 10-7 

ohm~cm. and 130 x 157/0~om. Specimens rolled at low roll .' , / 

loads (of the order of 50kN/25 m.m. - 5 tonS/Ill wittth) had 

higher resistivities than specimens rollen at other roll loads 

(160 - 180 x 10-7 ohmfcm.) however roll loads in excess of 

90kN/25 m.m. (9 tonS/Ill) width were suffioient to develop 

resistivities in the 150 - 160 x 10-7 ohm~cm. range. It is 

noteworthy that with the major exoeption of specimens prepared 

fromSintrex powder that there was very little variation in 

resistivity for sintering times of between thirty seoondsand 

sixty seoonds. 

5.160. - STEREOSCAN PHOTOGRAPHS OF SnrTERED FRACTURES. 

The Stereosoan photographs of the sintered fractures 

are illustrated in. fig. 3"6. 37. & 38. 

It was apparent that e .... en after a. short sintering time 

of ten seoonds the D.S.A. powders showed areaS possessing· 

characteristic fibrous dimpling of a duotile fracture. However 

-. 
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the partioles gradually lost their identities and a more 

coherent fraoture appearrAoe was obtained showing many more 

areaS where fracture had ocourred in a ductile manner. 

Similar tends were followed by strip prepared from 

the derived Makin powders • However even after a· sintering 

time of three hundred seoonds the particulate nature of the 

strip oaneasily be reoognised. 

2.110., PROPERTIES OF THE FINISHEJ) STRIP. 

The results of the mechanical properties of the 
• 

finished strip are shmm in table 15. 

The results were ve'ry scattered and incomplete but 
. ' 

it is apparent that they were not equivalent to similar results 

for thin gauge mild steel plate manufactured conventionally. 
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6.00 DISCUSSIOlT CONCER;UNG THE ROLL COMPACTION OF IROlT POWDERS. 

Theories concerning the nature of green strengths of 

pressed metal powders attribute the strength to particle interlocking 

and·cold welding. Increasing the compactiori pressure Causes the 

number and size of the cold welds to increase as repacking, plastic 

flow and dens:i,fication of the metal powders occurs. The relationship 

of compaction pressure to density is not linear, mainly due to-the 

work hardening of powder aaperites; 

During the roll compaction of iron powder by the slurry 
• 

process there is an increase in the resistivity of green strip 

which occurs at a value of roll load which is specific for each 

powder. At approximately this roll load the green density also 

tends to level off or fall, at a value of 7.25 to 7.4 g/c.o. 

However the density. of strip rolled from the fine fraction of 

J.J.M. ~OO'increased over the whole of the roll load range examined. 

It is noteworthy that the density of strip from the fine fraotion 

of J.J .la. ~OO is less than the other powde·rs and that a decrease onJ.y 

occurred for strip prepared from the other powders at 7.25 to 

1.5 g/c.c.· Strip rol1ed from the J.J .M. ~OO fine fraction did 

not attain this value. Therefore it is possible that a similar 

reducition in density might occur for strip rol1ed from J.J.M.~OO 

fines at roll loads greater than those ex~~ined. Because of 

I. substantial edge cracking,strip rolled from Sintrex powder could 

not be prepared for roll lOads greater than 140kN per 25 m.m. width 

(14 tons per inch width). 

Thus it would appear that when "flexistrip' is rolled 
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with progressive increments of roll load there is a stage at 

which the nUJllber of partic.le/particle welds increases followed 

by. another stage where the welds are broken. Therefcre a reduction 

in the density of particle packing would be expected, which is 

observed fran strip prepared from "as received" Makin powder and 

the coarse fraction of Makin powder. The main reason that the 
_ 3= ""' ... s t.

density attains a. constant value for. strip prepared from Woodall 
1\ 

Duckham and Sintrex powders is probably due to the work hardening 

of powder particle as~erites but it may be possible that particle 

welds formed in the early stages of compaction are broken and new 

ones, contaminated by methyl cellulose are formed. Thus the 

resistivity increases but the density remains constant.' This 

mechanism probably occurs in strip rolled fro.m J.J.M. ~OO and the 

coarse fraction of J.J .M. ~OO but the rate of forma.tion of new 

welds is less, than the rate at which old welds break, therefore 

the density decreases. 

strip rolled by the B.I.S.R.A. slurry process contains 

methyl cellulose, this is evident in. Fig. ~9 which shows a 

,stereoscan photograph of a green strip fracture of strip rolled 

from -100 mesh B.S.A. powder rolled at 100kN/25 m.m. width 

(10 tonS/inch width). It is apparent that .there is very little 

porosity present because the methyl cellulose occupies the 

inter.stitial spaces between pO\7der particles. Thus if the strip 

is rolled at hirrher roll lop-ds than 100kU/22 m.m. width (10 tons/ 

inch width), the extra pressure wou~d squeeze the methyl cellulose 

bet\7een the powder particles possibly forcing them apart. Therefore 
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this behaviour of methyl cellulose accounts for the resistivity 

variations ,and to a certain extent for the density variations. 

The methyl cellulose may be able to be accommodated 

in th" internal porous networks of the chemically reduced powders'" 

This is not l'0ssible with the relatively solid Sintrex electrolytio 

pcwder. Ccnsequently at roll lOads above l40kN/25 m.m. width 

(14 tonlJ/inch width), the methyl cellulose can only force the 

powder particles apart, causing considerable edge cracking and 

splitting. • 

Conventional die compact ion shows that the Woodall 

Duckam, Sintrex and "ae received" Makin powdersv.ere, densified 

2 
to approximately 6.5 g/c.c. by a compact ion load of 463N/m.m. 

(30 t.e.i.) but ths,t the fine fraction of J • .:r.M. 300 only densified 

to 6.04 g/c.o. and the coarse fracti~n to 6.35 g/c.o. Moreover 

the maxinum density increase from 387U/m.m. 2(25 t.s.i.) to 

463U/m.m.2 (30 t.e.i.) was of the order of 0.27 g/c.o. 

Beoause of' the smaller area. u!l0n which the rolls 

during roll compaction much higher densities are attained by this 

method than conventional die compaction. Therefore a roll load 

of only 40kN/25 m.m. width (4 tons/inch 1'!idtlt) was sufficient to 

densify Woodall Duckam powder to approximately 7.00 g/c.c. However 

the relative densification beha.viour of the powders by die compaction 

was v'ery similar to roll compaction, e.g. Sintrex electrolytic and 

Woodall Duckam powders, showed optimum densHication in both dip. 

'and roll cO!llpaction. On the other hand the coarse fraction of 

J.J .M. 300 showed better densification by roll compaction than die 
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compaction. 

l·t is generalli' agreed that' particle size distribution 

affects the denSity of die compactea metal powders. It has been 

suggested that the ideal particle size is such that the voids 

between large powder particles are filled DY finer particles 

and that even finer particles pack into the interstitial spaces 

of these. Therefore it is probable that the less efficient 

packing of the 'coarse fraction of J.J .11.300 is less of a 

disadvantage during roll compaction than die oompaction because 
• 

there are more internal voids present to accommodate the methyl 

The B.S.A. water atomized powders could not be die 

compacted succossfully. Moreover the densi~y of strip rolled 

from these powders was considerably less than the density of 

st'rip prepal'ed from the other powders (6.8 g/c.o. compared to 

,7.2 g/c.c. approximately). Because of the hardness of the 

particles (550 RV) little plastic deformation at the particle 

Vleld areas could occur, therefore the bonds formed were weak • 

. Despite the variation that occurs in density as the 

,roll load increases there j,s no corresponding reduction in green 

strength. The green strengths of the powders investigated showed 

a rapid initial increase in strength, up to roll loads of the order 

of. 100kNI22 m.m. width (10 tons/inCh width). This was followed 

by a stage where there was very little L~crease, after which 
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theFe waS a further rapid rise in green strength. However the 

ccarse.fracticn of J.J.U. 300 showed little increase in green 

strength with loads above lOOk}lj25 m.m. ~idth. 

strip rolled from Sintrex electrolytic powder showed 

higher green densities and resiativities but lower green strengths 

than strip roll<Jd from either the fine fraotion' of J.J .Ll. 300 

or "as received" J .J,.M. 300. p.roreover strip rolled from the 

fine fraction of J.J.Y.300 gave optimum green strength results, 

but the lowest green density results. The green strength of the 
• 

fine fraction of Makin, powder and J.J.M. 300 is approximately 50% 

greater than the strength of the coarse fraction of J.J.M.300. 

~espite the, large difference in green strength the density of 

strip rolled from the J.J .U.300 coarse fraotion is greater than 

the fine fraotion. Because the powders were derived from the 

same batcl1 of "as reoeived" powder it is very probable that only 

the difference in partiole size distribution and specific surface 

is ~esponsible for suoh behavicur. 

In order to acoount for the anomalies between green 

strength and green density, the methyl cellulose 'must cOntribute 

towards the green strength of the strip, a:t;-.?- ';, reduoe the amount 
, 

of stress aoting upon each partiole/particle contact area during 

tensile testing. The specific surface of the fine fraction of 

J.J .1!f.300 is approximately twice that of the specific surface of 

the larger particles. Therefore the adhesive effect of the methyl 

cellulose is developed over a much greater area resulting in higher 

green strengths. Also becs.use the suxfaoe area er the 8intrex powder 
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" 
is l~w comp~ed with the other powders, the adhesive effect is 

much less anl so strip prepared from Sintrex powder shows poor 

groen strength results. 
40 

It has been suggested that there needs to be a mfnimum 

number of particles across the strip thickness in order to realise 

optimum strength. This number is thought to be 10 particles, The 

maximum particle. size of the coarse fraction cf J.J .M. 300 is 

approximately 50 microns. Consequently in some areas less than 

ten particles may be present across the strip thickness. It may 

be possiole that when there are only a few particle/particle 

contact areas across the strip thickness, then work hardening 

of powder asperites rapidly occurs, so that partiple/particle welds 

do not increase in area as rapidly during compaction as in strip 

containing more particles across the strip thickness where the 

load is distributed over more particle/particle contact areaS so 

that the plastic deformation per contact area is less. 

The surface of the green strip contains a large number 

of notches and each notch is situs,ted at particle, boundaries. 
, . 

Strip rolled' from fine powder has many mOJ,'e particle boundaries 

than strip prepared from coarse pO'Nder, therefore during tensile 

te'sting the stress raising effect per particle boundary for coarse 

powder is much greater and tensile failure may occur earlier. 

Strip prepared from the B.S.A. atomized powders was 

of much lower green strength than the other powders examined 

(of the order of 20N/mm2 - 1.3 t.s.i.). This was thought to be 

entirely attributable to powder P?Xticle hardness. Because of 
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the sli&ht1y higher carbon content (0.15% carbon) and the very 

low thermal capac:!.ty of individual powder particles, a lIlartensitic 

structure formed on quenching so that the particles had hardness 

of the order of 550 Rv. 

In contrast to the relationship of green strength and 

particle size -distribution shown by the fine fraction of J.J.M.300 

and the coarse' f"raction of J.J .JJ.300, the green strength of strTp 
, 

prepared from the -100 mesh fraotion of B.S.A. powder was greater 

than the green strengt~ of the -300 mesh fraction. This might 

be due to the presence of small particles in the -100 mesh powder 

that have welded to the coarser particles. during atomizing. 

Consequently it would be more difficult for the particles to 

slide over each other and small welded particles would aid t3e 

adhesive effect of the methyl cellulose. Also, despite attempts 

to manufacture strip of uniform thickness from the atomized 

powders, strip rolled from the -100 mesh fraction was Significantly 

thicker than strip from the -300 mesh frac·tion. (0.29 mInS. compared 

~o 0.25 nms.) Consequently effects due to the pressure distribution 

upon particle/particle welds may be minimised for the 100 mesh 

powder. Uoreover the B.S.A. -100 mesh pO'Nder. possessed an 

exceptionally large fraction, between 0 an.d 10 microns compared 

to the chemically reduced and electrolytic iron powders. Therefore 

a number of particles greater than the minimum ideal number would 

probably be present in the thickness direction of the strip. 

Evidence of a large fine fraction in the -100 mesh and 

-300 mesh fractions of the water atomized powder is. shown in the 
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Q.T.M. data.and also total surface area results by stearic acid 

adsorbtion. The latter results are of special interest because. 

they indicated that the -100 mesh fracticn was of greater surface 

area than the -;00 mesh fraction. Mcreover the measured. to~;al 

surface aren. of both powders was greater than the other powders 

examined. Beoause of the lack of internal porosity in the 

atomized powders the results are entirely attributable to particle 

size. Q.T.M. data indicates that the bulk of the particles are 

between 0 and 10 microns. This figure is likely to be lower 

than the true fraction between 0 and 10 microns because of the 

restrictions of optical ;microscopy for detecting particles of 

between 0 and 1 micron and because of unavoidable. particle 

agglomeration which would lead to the fine particles being 

counted i~ a larger size group. 

The green strength,' resistivity and density results 

for strip from the electrolytic and chemicalJy reduced powders 

indicate that significant contribution towards green strength 

is made by. the methyl cellulose and that an incre·ase in surface 

area may substantia1l~ raise the green strength. However the 

green strength results for strip prepared from the atomized 

powders are approximately one fifth to one tenth of the values 

determined for the other powders, despite the surface erea of . . . 

the atomized powder being approximately twice that of the chemically 

redu.ced powders. Therefore it is possible that particle inter-

locking is !:lcre impori;£l.nt tha.n has been discussed previously. 

Al ternatively, because of the laree surface area of the atomized 

powders, a greater proportion' of bind.er than was added to the 
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slurry might be required to give, a coharent film around each of 

the particles. 

The density results across the width of the 100 m.m. 

(4"), prepared from the B.S.A. powders showed a variation of 

0.14 g/c.c. total scatter. The strip rolled from the -100 mesh 

powder showed a higher density in the centre, whereas strip 

prepared from the -}OO mesh powder showed a higher density at 

the edges. It would be expected that if the rolling mill rolls 

were not cambered then the density in the centre of the strip would 
• 

be less than the densi+.y at the strip edge beoause of roll bending. 

Alternatively if the camber of the rolls overcorrected for roll 

bending then the density at the strip centre would be greater 

than at the edges. Consequently because the density variations 

of the two powders indicate opposite trends they c'annot be 

attributed-to roll bending. However be"a~se of the limited number 

of samples examined the results axe not conclusive and are more likely 

to be due to experimental error. 

Most modern theories of sintering have established 

that during' sintering vacancy diffusion from particle contacts 

occw:6 which leads to an increase in the volume of metal between 

particles and an increase in the radius of curvature of the material 

at the paxticle/particle welds. Consequ~ntly the strength of the 

'material increases beoause of the inorease in bond area and a 

reduotion in the stress raising effect of the "notches" at the 

paxticle/paxticle welds. Densifioation ocours because of vacancy 

diffusion to free spao(t at the peripheral areas of the' Elample. 
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It is generally thougbtthat vacancies may diffuse through the 

metal powder particles, i.e. by volume diffusion oraoross the 

surface of powder particles, i.e. by·surface diffusion. Measured 

diff~8ion coefficients indicate that diffusion by a surface 

mechanism is faster than a volume meohanism but a.s the amount 
• 

of surface available for diffusion is restricted, then more 
'-. 

material is likely to be transported by a volume mechanism. , 
Therefore during sintering there should be a decrease 

in the resistivity of ' the material, an increase in density and an 

increase in strength. 

All of the specimens examined showed a rapid increase 

in strength arid a decrease in resistivity during the first 30 

seconds eintering. Generally there was little difference between 

the resis~ivity of strip eintered for 30 seconds and the resistivity 

after sintering for 300 seconds, indicating that little densification 

was occurring, however all samples showed a significant gain in 

strength on increasing the sintering time from thirty to sixty 

seconds •. Therefore it would appear that after the first few seconds 

sintering little or no material transport to particle/particle 

contacts occurs, but that there ie diffusion occurring within the 

bonds to reduce their notch sensitivity. 

The lowest resistivities ,vere deVeloped in strip 

prepared from Sintrex eleotrolytic powder, possibly because of its 

greater chemical purity. Sintrex powder differed from the other 

powders because with the exception of strip rolled at 
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45kN/2.5 m.m, width (4.5 tons/inch-width), all sintered specimens 

decreased in resistivity for sintering tir:les of between 60 seconds 

and 120 seconds and there was an increase in strength for sintering 

times of up to 300 seconds. Thus it would appear that strip 

prepared from Sintrex powder shows greater sintering activity than 

the other powders. This is difficult to explain because of the low 

surface area of " the powder which would indicate that less material 

would be transported by the faster surface diffusion mechanism 
• 

compared to .the other powders. 

Except for specimens sintered for ten seconds the 

resistivities of strip prepared from B.S.A •. -100 mesh powder and 

B.S.A. -300 mesh powder were very similar. Despite this the 

strength of strip prepared from the -300 mesh is much greater 

than the strength of strip from the -100 mesh fraction for 

sintering times greater than thirty seconds. This behaviour is 

almost oertainly due to the larger grain size of the ~100 mesh 

fraction because of the coarser initial particle size from which 

the strip was prepared. BeCause the grain boundaries of the strip 

are situated at the particle/particle boundaries and beCause most 

of the porosity is present at the grain boundaries, then a greatcr 

stress would be concentrated at the grain boundaries of the coarser 

powder during tensile testing. 

GenerallY roll load appeared to have little effect 

upon resistivity for loads greater than 80/90kJr/25 m.m. width 

(8/9 tons/inch width). This behaviour is compatible with the 
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green density results. However roll load had a muoh greater' 

effeot on si!ltered strength. Samples prepared from "as received" 

lIaldn powder, and both the coarse and fine fractions of l!akin 

powder showed an inorease in sin,ered strength with inoreasing 

roll load. The results obtained for the sintered atrengths'of 

Sintrex strip show oonsiderable scatter but indioate the general 

trend that the sintered strength inoreases as the roll load 

inoreases. 

This behaviour is diffioult to interpret. The results 

indioate that high roll loads affeot the sintsl'ing activity. 

Therefore the inorease in the ooncentration of vaoanoies oaused 

by the work hardening of powder partio1es must influenoe the 

sintering aotivity even though the effeots of work hardening 

should be removed very early in heat treatment.' 
. _;..."" _uj. 

Strip prepared from Vloodall Duckam powder and strip 
I' 

from J.J .M. 300 rolled at l<€Ok,t-t per 25 m.m. width showelt a 

decrease in strength after sintering for 60 seoonds. Grain 

growth was, observed to ooour in some samples whioh was evident 

by the ooourrenoe of the "orange peel" effeot on the surfaces 

of tensile speoimens. Therefore it is likely that grain growth 

aooounts for the reduction in strength of these samples. 

Little ohange in density occurred during, sintering 80S 

may be expeoted by suoh short sintering times. Therefore it is 

most unlikely to attain strip of theoretiCal density by a single 

rolling and sintering operation and that rerolling and resintering 

must be employed: re a.c.h.e,," t-h.s. 
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The tensile results of the f.inished sh'ip are 

unfortunately very scattered and all show very poor elongation 

values. J.1oreover the tensile strengths are substantially less 

than the tensile strength of temper 3 tinplate. These results 

are considerably at variance with those obtained by B.I.S.R.A. 

despite the proPerties of the green and first sintered strip 

being very similar to those obtained by B.I.S.R.A. The most 

likely explanation is that a time of several months elapsed 

between the sintering pf the green strip and the subsequent 

rerolling and resintering. During this time growth of oxide 

films maY have occurred within the strip which would severely 

curtail the attainment of optimum properties. 

Despite the poor properties of the finished strip the 

indication is that the load of the first compaction stage, ia 

relatively unimportant as further densifica.tion occurs easily 

during'the second rollcompaction. 

A!though the results are very few the indication is 

that strip prepared from the finer fractions give better strength 

and elongation values. 

This current work has been suffic,ient to give an 

insicht into the phenomena occurring during roll compaction and 

sintering, however much work requires, to be done to obtain a 

fuller picture of the mechan.ism operating. 

The study of the compaotion and sintering of strip is 

especially convenient beCause experimental te()hniques such as 
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the determination of resistivity and X-ray diffraction may be 

used to st'.ldy the phenomena occurring during the first stages 

of sintering. Specific attention should be drawn to the form 

of the porosity developed in tt.e strip during the first stage s 

of compaction and sintering and to the determination of sma,ll 

amounts of residual porosity in the finished strip which may 

contribute towards premature failure • 
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CONCLUSIO!§.. 

Chemically reduced PQwdera of fine particle size 

and large surface area may be rolled to strip possessing hiuher 

groen strength but 10\Ver density than powders of CO:lrse particle 

size. 
-, 

The presence of the binder causes a reduction in the 

green strength and green density of strip rolled from powder at 
# 

high roll loads and may contribute towards edge cracking and 

splitting. 

strength,develops within a few seconds during 

sintering but no densification occurs even after 'sintering 

times of five minutes. However material transport within the 

"neck" arQas occurs, which significantly reduces the internal 

notch effect, so that the tensile strength improves with longer 

sint.ering times. 

strip prepared by the B.I.S.R.A. slurry method may be 

susceptible to 'deterioration when stored in the intermediate 

/3tages. However on a continuous production line this should 

not be a disadvantage. 

9() 
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7.00. MATEl.\IALS AND APPARATUS. 

Sherritt Gordon nickel powder Grade S was used throughout 

the investigation. The average chemical composition of the powder 

was Co 0.068)'0, Cu 0.007%, Fe 0.01110, S,0.02o%, C O.OO~~ balance, 

nickel. 

The powder was chosen because of the near spherical 

shape of the particles. Thus it was hoped that if closely sized 

fractions of the powder were pressed and sintered a uniform pore 

size would be developed and by varying the particle size of the 
• 

powder fraction the pore size oould be varied. 

Closely sized fraotions were obtained by sieving the 

"as reoeived" materials for one hour using an "Endeoott" sieve 

shaker. The sieve sequenoe used was 100 m~sh, 150 mesh, 200 mesh, 

240 mesh, 300 mesh and 350 mesh B.S. sieves. 

Initial oompaotion experiments with the -100 + 150 mesh 

fraction were attempted using a small double acting die sO that 

a finished compa.ot size of 25 roms. x 6.25 roms. x 6.25 roms. (J," x 

0.25":x 0.25"). Sodium stearate, steario aoid and oarbon 

tetraohloride were used as admixed lubrioants. In some instances 

silioone oil was used as a die wall lubrioant. However samples 

I 

I 

'I 
I 

from which the fatigue and tensile speoimens were obtained were ! 
- I 

pressed using a double acting die to give samples 100 roms. x 10 roms. ,I 

x 10 mms. (4" X 0.4" x 0.4") wide. A taper of 0.25 mms. per 25 roms. 

(0.1" per 1") wa.s incorporated in the ejeotion part of the die to 
• 

avoid laminations. 

The sieve cuts obtained from the "as received" powder 

were annealed in a vacuum furnace at 6500 0 under an atmospherH 
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of 97% nitrogen, 3% hydrogen. In order to ensure that the air 

had been oompletely excluded from the powder mass the vacuum 

f·urnace was pumped to a vacuum of 10-4 Torr before introduction 

of the inert atmosphere and subsequent heating. The furnace 

is shown schematic ally in fig. 40. 

The same furnace was used for preliminary sintering. 

However for such sintering the oil diffusion pump was used so 

that a vacuum of the order of 10-6 Torr was maintained for the 

duration of the annealing operation. The temperature gradient 
• 

of the furnace was determined over a 150 m!ll. lene;th and was 

found to be within plus or minus 20 C. 

Some of the samples were compacted to high densities 

using an is~statio oompaotion technique. The press used oil 

as the load transferring medium and the sample was sealed from 

the oil by placing it into a. tightly fitting polypropylene 

tube plugged with rubber bUl'1gS. 

Final sintering of the pressed nickel compacts was 

achieved using a platinum resistance furnace. The temperature 

gradient of the furnace \Vas aeterr.lined to be within 4°C at 1,300°6. 

A zintering atmosphere of 75% hydrogen, 257~, nitrcgen was used. 

for all of the.specimens from which fatigue samples were to be 

prepared. However atmospheres less rich in hydrogen 'lIere used. 

for some initial sintering experiments. The sintering atr.losphere 

was dried and purified before use by passing the mixture through 

'molecular sieve" to remove water vapour and subsequently through 

a "D", Oxo" Catalytic Purifier follo17cd by another ·"molecular sieve" 

column to remove oxygen. It \Vas estimated that the cleaned gas 

had a devrpoint.bottcr than _40°C before introduotion into the 
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sl'ntering furnace. 

Tensile tests were made on a "Hounsfield Tensometer" 

. for which No. 13 were machined and fatie;ue tests were conducted 

" at 50 Hz. using a Bristol Siddeley type IB i'Tohler fatigue testing 

machine. Unnotched fatigue samples were machined to the 

specification' shown in fig.41 using the following procedure:-

1) The samples were turned to approximately 5.25 mms. 

2) A 3.5 mm. radius was turned to 0.12 mms •. oversize. 

3) Two cu~s were made 0.025 mms. deep by turni~~. 

4) One cut was made 0.0125 mms. deep by turning to 

give the finished size. 

5) The sample was polished longitudin.ally to remove 

any transverse machine markings. Final polishing 

was carried out using 600 grade silicon carbide 

paper and "Brasso" polishing. 

Pore size distributions were measured on trar.sverse 

sections of the pressed compacts. The samples were metallo-

graphioally prepared in the usual manner by grinding on 

probTessively finer grades of silicon carbide paper followed 

. by polishing with 6 micron and finally 1 micron dj.amond paste. 

Ion etching was used to develop the microstruoture and the mean 

grain size quoted is the number average Chord length. 

Grain size determinations of the specimens were made 

using a linear intercept method. 

Observations of the fatigue fractures were made using· 

optical and scanning eletron miorosoopy • 
• 
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. 8.bo. EXPERJ),IENT.AL TECHNIQUES. 

8.10. PO~nERcHARACTERISTICS. 

The tap densi ty.of the powders was measured by adding 

lob g. of powder to a measuring cylinder and measuring the volume 

.after tapping. A Hall flowmeter was used to evaluate the flow 

rate of the "as received" powder and powder fraotions used in 
I 
I 

the investigation. Metallographic s'amples were prepared in the usual way. I 
8.20'. INITIAL .TRIALS. 

8.21. COMPACTION. 

" , The init,ial oompaction trials were conducted using· 

the 2~ mms. x /i,mms. x 6 mms. 'dl.e. Sod~um stearate was initially 

used as a dj,e wall lubricant. Application was effected by 

preparing the soap as an emulsion in acetone and coating the die 

wall. After the evaporation of the acetone the die was bolted 

together and filled with powder. 

30911/mm2. (20 t.s.i • .)._38611/mm2. 

Compaction pressures of 

were used with both the "as received" powder fraction and the -150 , 

+ 200 mesh powder fraction. 

Further trials were carried out using an "admixed" 
, 

lubricant. Such a lubricant is usually introduced as a solid 

and a homogeneous mixture is obtained by ball milling for several 

hours., However it was thought that such a treatment might re suI t 

in the distortion of the metal powder particles. ConsequentlY 

stearic aci.d was chosen as the lubricant whieh was dissolved 

in petroleum ether. The solution was then introduced to the 

• nickel powder. The mixture was vigorously stirred until the 
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majority of the petroleum .ether had evaporated. The residual 

sol vent w'as allowed to volatilize by maintaining the nickel 

,powder at approximately 600 0 until the mixture appeared to be 

free running. Lubricant additions of i%, {~ and 1% were made 

and compaction trials were conducted at the compaction pressures 

mentioned previously. 

The adoption of these techniques with the larger die 

giving compacts of 100 nuns. x 10 mms. x 10 mms. (4" x 0.4" x 0.4") 

was not successful. Oompacts were either not coherent or severely 

laminated. Later trials were conducted using carbon tetrachloride 

mixed with the pcwder and a die wall lubricant of silicone oil. 

Although this technique produced better compacts sone laminations 

still occurred however these were avoided by using annealed powder. 

Compaction loads of up to 542N/mm2. (35 t.s.i.) were evaluated. 

This later technique was adopted for the preparation of tensile 

and fatigue specimens. 

8.22. "DE ~Y~~IlTGIt. 

Samples prepared using either sodium stearate or stearic 

acid as a lub~icant were slowly heated to 400°0 in a stream of dried,' 

, purified hydrogen and maintained at that tepperature for thirty 

minutes to allow the lubricant to volatilize. 

8.30 SINTElU!TG. 

Saoples were sintered in vacuum and in hydrogen at 950°0 

and, 10000e for varying times. Further trials were conducted at 

temperatures of 1200°0 and 13000e in a sin'cering atmosphere of 

97% nitrogen/3% hydrogen, 507~ ni trogen/50'i~ hydrvgen or 75% hydrogen/ 

255~ nitrogen. A heating rate or' 5°0. per minute was maintained' 

95 



I· 

fo~ all of the trials and cooling from the more elevated 

temperatures of 1200 0C and 13000C was achieved in eighty five 

minutes. 

.In isola ted sample from the -240 + 300 me sh powder 

which had been pressed at 350 N/mm2• (35 t.s.i.) to 6.8 g/c.c. 

was oxidised for one hour at 550°C, before sintering in hydrogen 

at 13000 C for sixty minutes. 

8,31 FURTHER TRIALS. 

A number of samples of specimens were prepared by 
• 

pressing at 540N/mm2
• (35 t.s.i.) and sintering in vacuum at 

1000oC. These specimens were repressed at varying loads and 

resintered at 1300oC. 

In attempt to press. samples of high density an 

annealed sample of the -200 + 240 mesh powder was pressed at 

465N/mm2 .• (30 t.s.i.) in the smaller die (25 mrns. x 6 mms. 

:x: 6 mms. - 1" :x: t" :x: t,,) • The sample was sin tered in hydrogen 

for fifteen minutes at 750°C. Multiple repressing and annealing' 

of the samples at the above pressure and temperature was continued • 

.fu..49. THE PRESSING OF TENSILE AND FATIGUE S;'Jl~ 

All of the bars from which the fatigue samples were 

prepared were pressed using the larger 100 mms. :x: 10 mms.- :x: 

10 mms. die (4" x 04" x 04"). 1.5 mls. of carbon tetrachloride 

was· used as an "admixed" lubricant and silicone oil as a die 

wall lubricant. 

Three basic series were produoed:-

1) Series 1. 

• 
This series was of 10 - 13 per cent total porosity. 



Annealed fractions of the -150 + 200 mesh, -200 + 

240 mesh and -240 + 300 mesh fractions were pressed at 340N/mm2 • 

o (22 t.s.i.) sintered for one hour at 1000 C. in a vacuum of 

. -6 . 2 
pressure 10 • ',Vorr and repressed at 310N/mm • (20 t.s.i.). 

Pinal sintcring was conducted for three hours at 1300oC. in 

an o,tmospher'~ of 75'1~ hydroG"8n 255~ nitrogen. 

ii) Series 2. 

This series Vias prepared using the thr",e powder 

fractions mentioned previously and was of 3 - 4 per cent 

total porosity. • 

The armealed powders were initially pressed at 290N/mm2. 

(18.7 t.s.i.) and sintered for fifteen minutes at 850°C. They 

were subsequently repressed at 

by isostatically repressing at 

2 
3l0n/mm • 

770N/mm2 , 

(20 t •. a.i,) followed 

(50 t.s.i.). Final 

o sintering W8.S again conducted at 1300 C. for three hours. 

iii) Series 3. 

This series was prepared from annealed, "as received" 

powdor as an attempt to secure a density as close as possible 

to the theoretical density. Rov-ever the final porosity content 

Vias of the order of 4 - 5 per cent. 

Samples were initially pressed at 290lT/nm2. (18.7 

t. s. i.) 8,nd va.cuum sintel'ed for fifteen minute sat 870oC, 

isostatically pressed at tb80lT/i:lm2 • (70 t.s.i.) e_'ld finally 

sintered for three hours a~ l3000 C. 

8.50,. DENSITY lJETERl·aNA TrOll. 

The density of all the rectangular pressed compacts 

was' found by mensuration but thE( mercury balance tecimique 

was used for the machined tensile and fatiGue samples. 
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9.00 RESUIQl§.. 

9 .10 PO~TDER CHARACTERISTIC S. 

The values for apperent·density, tap density, 

. and flow rates for the "as received" powder and the sieve 

fractions investigated are given in table 16. 

The "as received" powder showed a slightly higher 

apparent density and tap density indicating the importance 

• of particle size distribution upon these properties. 

However the powder characteristics of the sieve fraction 

were very similar .• 

~'igure ! illustrates the microstructure of the 

"as received" powder. It is evident that the porosity is 

present ,as a number of fine concentric rings. 

9.20. INITIAL COl.!PACTION TRIALS. 

All the sample:) pressed using the smaller die 

were laminated. Compacting iron. ;101Ti=2. (20 t.s.i.) to 

450,rj,f;ffi2. (30 t.s.i.) gave densities of 6.0 gic.c. to 

6,; g/o.c. However such low densities were proba'bly mainly 

due to the prellence of laminations. 

Samples pressed using a smaller die and an 

"admixed" lubricant were oonsiderably more suocessful. 
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Densities of 6.6 g/o.c. to 6.7 g/o.c. were measured. on 

speoimens containing one quarter per cent and. onc half per 

cent lubricant. Several laminations were present in the 

samples oontaininG one per cent lubrioant. 

The technique of mixine a small amount of 

steario aoidwith the powder was not suooessful with the 
c 

100 mm. X 10 m. (4" x 0.4") die as compacts so' pressed 

were laminated. The use of an annealed powder helped to 

reduoe the occurrenoe of laminations but. not to prevent 

them entirely. Howe~,er substituting carbon tetrachloride 

as an "admixed" lubricant gave lamination free compacts 

of approxima.tely 6.8 g/o.c. for all the powder fractions 

inve stilJa ted. 

Sintering at 10000C either in vacuum or hydrogen 

gave no densification. However increasing the sintering 

tempera.ture to 12000/13000c inoreased the density of samples 

from the "200 + 240 mesh fraction pressed to 6.8 g/c.o. to 

7.3/7.6 g/c.c. Similar densification occurred both in 
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97 per cent nitrogen, 3 per cent hydrogen and 75 per cent hydrogen, 

25 per cent nitrogen mixtures. 

The density of the isolated sample sintered in hydrogen 

for one hcur after oxidising in air at 5500C . increased from 

6.7 g/coo. to 1.8 g/o.c. 

9.40. TRBLS, INVOLVING FURTHER TREATMElIT,. 

Repressing samples, originally pressed to 6.8/6.9 gio.o. 

and sintered .in vacuum for 60 minutes at 1000oC, at loads of 

155N/mm2•· (lOt.s.i.). to 465N/mm2. inoreased the densities to 

1.5/7.8 g/o.o. 

Mutiple·repressing followed by annealing gave final 

densities of 8.3/8.4 g/o.c. The inorease in density with suooessive 

compactions is shown in table 17. 

~50. MICROSTRUCT.!lll!.S OF SD/TERED SPECIl4!lli§. • 

. Although densities of 7.6/7.8 g/o.c. oould be attained 

by a single pressing and sintering operation, the shape of the 

pores of the specimens was more irregular and film like compared 

with specimens that had been sintered at a lower temperature ~~d 

pressed t~ a denSity of 7.6/7.8 g/c.c. followed by a three hour 

heat treatment at 1300°0. 

The porosity of the. samples used in the three fatigue 

series was in two forms. Normal rounded porosity was evident 

in a~l of the samples associated with film like porosity. The 

film like porosity was especially prevalent in the samples of 

lower density.(Fig'43) The film like· porosity was more prominent 

in samples elcctrolyt:tcally etched in 5% sulphuric acid than 
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specimens prepared by ion etching (Figs.4~44). Consequently 

pore size·distributions were measured on ion etched samples, 

Fig.45 shows a fractograph of the "as received" powder 

which was compacted andsintered to four percent residual porosity. 

It is evident that the film like porosity extends 

throughout t~e entire structure and is at the boundaries of the 

original powder particles of the specimen. Moreover it is appa~ent 

that much of the rounded porositY'is linked with the film like 

porosity. 

Pore size distribution, mean pore size and porosity 

contents for specimens from the three fatigue series are shown 

in table 18. 

The microstructures of tno of the speCimens (figs.44.46.) 

showed equiaxed, twinned grains but the grain sizes of the specimens 

from eacn of the fatigue series did no·" vary greatly. The average 

particle sizes of the powder fractions investigated were 89 microns 

(for the -150 + 200 mesh fraction), 68 microns (for the -200 + 240 

mesh fraction) and 57 microns (for the -240 + ;00 mesh fraction). 

Therefore ·the occurrence of one or two twins per particle would 

lead approximately to the values of grain Size determined • 

.9_0.60. TENSILE PROPERTIlj!S. 

Table 19 shows the tensile properties of representative 

samples from each of the series of specimens. All of the tensile 

fractures were intergranular and fracture occurred with a reduction 

of area value which was large for sintered materials but low 

compared with wrcught nickel. The elongation of each of the samples 

101 



was very similar and independent ef the eriginal particle size 

er precessing se~uence. It is evident that the eriJinal pewder 

particle size for eaoh seriea has enly 8. small effeot upon the 

final tensile strength but the data shews that samples prepared 

frem the cearser fractiens are weaker than samples p~epared frem 

the medium and finer fractiens. 

9.70. FATIGU~ PROPERTIES. 
, 

The fatigue results fer the three series are given in 

table 20. The enduranoe limit tegether with the endurance raties 

are listed in table 19. Unfertunately censiderable scatter waS 

evident fer specimens. fatigued at higher stresses but the endurance 

limits fer each ef the fatigue series was clearly defined. The 

endurance limits ef the three greups ef samples ef apprexi~ately 

feur per cent peresity were almest identical and had the same 
.. 

value as the feur per cent peresity samples prepared from the 

"as received" powder. Increasing the tetal peresity centent to 

approximately twelve per cent substantially reduced the endurance 

limit. More ever the endurance ratie decreased frem 0.45 te 

appreximately 0.36. The higher peresity greup alse shcwed seme 

evidence ef the effect of particle size upon preperties because 

samples prepared from the -150'+ 200 mesh fractien shewed a lewer 

endurance limit cempared to samples prepared frem the fine and 

mediUm fractiens. 

Fractegraphs ebtained using a scanning electron 

micrescepe showed an increasing cearseness ef'fracture fer beth 
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the four per cent porosity series and the twelve per oent porosity 

series as the partiole size inoreased. The fraoture appearanoe 

of the speoimen groups containing twelve per cent porosity was of 

three distinct types. One type showed well rounded features with 

small undulations which appeared to be derived from the original 

partiole shape (Fig. 47 ), another appeared slightly flattened as 

might have ooourred if two partioles had been pressed against eaoh 

other but not sintered together and the final faoet showed, the 

rough striated appearanoe of the fatigue fracture. In some of the 

latter areas fatigue striations were eVident, while incthers some 

'dimpling was present, however' some further areas e,Xisted where the 

type of fracture oould not be readily determined. 

Fractographs of the fatigue series containing lower 

porosity (figs. 48. 49. ) differed from the high porosity series in 

tbat.thefr'ac',::ure surface appeared more crystalline and that rounded 

porosity waS less evident. EXaminatj,on of the fracture surface 

at higher mae~'lification ::;howed smooth facet like surfaces which 

were interconneoted by rougher regions frequently showing striations. 
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10.00. DISCUS§lQ[. 

The initial compaction trials showed that a lubricant 

of carbon tetrachloride was superior to conventional lubricants, 

e.g. sodium stearate and stear5,c acid, because the incidence' of 

laminations in compacto were reduced by this lubric~~t. Eecause 

of the nature of conventional lubricants it is doubtful whether 

carbon tetrachloride would facilitate the sliding of powder 

particles over each other. It j,s possible that as carbon 

tetrachloride is an organic liquid of high vapour pressure, that 

some air would be excluded from the unccmpacted powder by carhen 
, . 
, ...... (, ..... e.().s~ ,n 

tetrachloride vapour. During compaction theApressure would cause 

the carbon tetrachloride to liquify thereby reducing the internal 

pressure within the compact enabling the powder particles to move 

closer together. 

The sintering trials on specific fractions of Sherritt 

Gordon nickel powder clearly show its poor sintering activity 

because temperatures in excess of 1,200oC were required for 

significant de~sifioation. 

The fact that a more homogeneous structure was obtained 

by a technique of pressing and sintering at 'l,OOOoe followed by 
, 0 

coining and resintering at 1,300 C is probably due to the more 

porous areas in the compact, present 'after the first compaction 

stage being reduced during t'he coining operation. 

Unfortunately the original aim of producing three distinct 

groups of pore size in a number of series of differing porosity was 
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not realised because of the distinctive form of porosity produced. 

The shape of the pores were of two types, rounded an& film like. 

The rounded porosity was thought to originate from the voids 

formed at particle corners. Howaver some of the porosity ( of the 

order of I - 2%) originated from the powder partioles themselves. 

The miorostructure of the powderpartioles shows the presence of 
-

a number of ooncentric rings of fine porosity. This is consistent 

with the processing technique used in the powder manufacture. 

This porosity would spherodise during sintering to give porosity 

wi thin the grains. The film l:i,ke porosity probablY,originated 

from the original particle ":boundaries. 

The Sherrit Gordon pcwder particles were botryoidal in 

shape. Therefore during compaction it waS unlikely that the_full 

facets of the particles came into contact. Instead welds would 

be formed at particle asperites. Subsequent sintering wculd occur 

at these asperites but as little or no densification occurred 

during sintering it is unlikely that the particles would move 

'together to give a pexticle/particle bond over the entire periphery 

of the particles. Consequently the gap between aIrY two particles 

would later be observed as film like porosity'. 

Some disagreement exists between measuremts of porosity 

as determined by the Q..T.1I.teohniq1l.9 anddensity. Such a 

I' disorepancy may be attributed to the failure of the Q..T.M. to 

distinguish between film like porosity and grain boundaries. 

Indeed the distinction waS frequently dirficul t to make when 
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eXamining the particles through an optical microsoope. Consequently 

for a given porosity cone.ent the Q.~.M. only measured the rounded 

porosity stemming from the powder particle oorners of the original 

particles and to a lesser extent from the intra partiole porosity. 

o~e film like porosity appears to have dominated the 

fatigue behaviour. This is illustrated by the intergranular 

fashion in which the fatigue oracks propagated. Therefore the 

fatigue results of eaoh density group were very similar. 

It was no~ possible to oonfirm that fatigue craoking 

was initiated at the surface of the fatigue speoimens. This type 

of nuoleation is thought to be the most probable because the 

samples were tested in rotating bending in which the surfaoe of 

the sample is most highly stressed. Moreover it is most likely 

that fatigue crack nuoleation would ocour at the points where 

the film like porosity interseots the surface because suoh surface 

disoontinuities wculd be very effective stress raisers. 

Once the fatigue crack has n<lcleated it would propagate. 

in °a step by step manner until it enoountered a film like pore. 

Thus the fatigue crack would be stopped and the fatigue prooess 

. would have to be renucleated at the pore tip. 

Thus once feotigue ora.cking has initiated, propogation 

is disoontinuous beoause °the fatigue crack would be frequently 

stopped and fresh nucleation would need to occur at the pore edge. 

Finally the weakened material would fracture by a tensile mechanism. 

lJ:any investigators have reported that sintered materials 
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show less soattered results than wrought materials. However the 

fatigue results obtained at higher stress levels show oonsiderable 

28 soatter whioh is oonsistent with the work of Radomysel'sky • 

This is thought to be due to the important role that film like 

porosity plays in fatigue crack propagation and the fact that the 

connectivity of the film like porosity may vary from sample to 

sample. 

The endurance limit of the fatigue series containin.g 

12 per cent porosity'pressed from the coarse -150 + 200 mesh , 

powder was signifioantly lower than the encl.urance limits of 

samples of the same porosity content but pressed from the medium 

and finer fractions. The partiole boundaries of the ooarser 

powders oooupy less area than the particle boundaries of the 

finer powders. Therefore the stress concentration on the particle 

boundaries of samples prepared from the coarser powder is greater 

and the speoimens fail earlier. 

The fractographs of the fatieued specimens showed 

three distinctive areas in the fatigue fracture. One of these 

areas appe'ared slightly flattened as might have occurred if two 

particles had been pressed together but not sintered. These areas may 

have originated from the coining operation. Thus when the compacts 

were repressed the powder. particles were moved closer together 

but insufficient force was available to cold weld the particles 

so that the initiation of true particle/particle bonds by sintering 

would be more difficult. 
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'.,. CONCL'JSIOlfS. ,---,-:-

The series containing four per cent porosity showed 

higher endurance limits and lower endurance ratios than the series 

containing twelve per cent porosity. The endurance limits of 

ea.ch group cf the four per oent series were very similar. 

However the group, of specimens of twelve per cent porosity 

prepared from the coarser powder showed a slightly lower 

endurance limit than specimens of the same porosj,ty oontent 

prepared from the finer powder. 

The fatigue properties were governed by the form of 

porosi ty which was of two distinot ty'pes. rounded and film ,like. 

The rounded porosity arose mainly from the corners of the 

original particles and to a lesser extent from porosity within 

the, original powder particles. The film like porosity arose 

from partioleboundaries. The fatigue fracture was granular 

and propagated along the film like porosity. 
, . 

The failure to attain varying pore size was entirely 

'due to the incidence of the film like porosity. 
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11.00. CONCr,uSIOnS. 

The rr.cch~~ical proportien of sintercd rr.aterials 

are strongly influenced by the pl'esence of porosity. Total 

may ccntribute a very important 1)art especially if it is film 

like,. 

Particle size distribution has a definite effect 

upon compaction properties. Powders containing a large fraction 

of fine particles eenerally compact to give stronger but 

necessarily denser specimens. 

In order to obtain densification during sintering, 

sintering temperatures must be high. No significe.nt densi,fi"t:ation 

occurred w?en sintering iron or copper, sintering at temperatures 

4000C from their melting points. 
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APPENJJIX 1. 

THE DETEm.!~lIA!ION OF DENSI1X.)lY THE 

MERCURY BALANCE TECHNIQUE. 

If Wa a the we~ght of the specimen in ai~ 

Wb ,. the weight to immerse the mercury balance 

without a sample. 

Wc = the weight to immerse the mercury balance 

plus sample. 

D ,. the density of mercury at room temperature. 

Then the weight required to immerse the sample 

• Wc - Wb 

The upthrust of the specimen in mercury,. Wa + (Wc - Wb) 

Therefore the volume of the specimen,. !!.!l:....±...(Wo - Wb) 
II 

and the density of the specimen .D • 'ITa = 
Wa + (wc - \lb) 
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AP FEND IX 20 

THE DETER!:!}!iATION OF THE D!)1!SIg:'Y OF SItfTEilllQ. 

SAMPLES BY THE XYLENE mPREGUATION !.lETHOD. 

If Wa a weight· of sample in air 
• 

Wx = weight of xylene impregnated sample. 

WY a weight of sample in xylene. 

D = density of xyleno. 

Then:-

Weight of xylene absorbed by the sample .. Wx - Wa 

The volume of xylene absorbed c Wx - Wa 
:u 

This is equivalent to the vOlwne of the interconnected 

porous network of the specimen. 

The upthrust when imoersed in xylene " Wa - Wy 

Therefore the app!?.rent volUI:le of the sample " '" ('!la. - wy) 
D 

The total volume of the specimen ", (Wa - wy) + J.2l:;..::-_ Wal 
.J) D 

the density of the sample .. 
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BELT. . ! . APPLICATION OF 

. \ I EL-E,.C~~CK HO:ATERS. J' n= =n \ ACID., 

_~============-~U~=-'~-~=~U .--J//> ___ 
." 

B,I.S.R.A. PILOT PLANT FOR 
. , , 

FLEXISTRIP PREPARATION. 
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FIG. N° 26. 

RADIUS 120mms. , 

, 

20mms. 

j 

SHA PE OF TE NS1LE SPECIMENS 

FOR DETERMII"JING GREEI'J STRENGTH. 



FIG. N? 27. 

" L--~_~ .. ~--.:.._LOA D CELL 

I .... _~GREEN 
TENSILE 

SPEC IMEN. 

/77777 

OF 
INSTRON. 

ARRi.>,j\JGEMENT FOR DETERMINI NG 

G REE N STRENGT H. 
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FIG . NO. 28 . 

I STEREOSCAlI' PHOTOGRAPHS OF J . J . 1.1 . 300 

~llj) WOODALL DUCKAM POI1DER S . 

HAG. 

x 2 DO 



FIG. NO. 29 

' STEREOSCAN' PHOTOGRA PH OF 

SINTRSX ELECTROLY'rIC PO'/DER . - - . 



FIG. NO . 30 . 
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.,. 50 

MICROSTRUCTURES OF SI NTREX , 

\'fOODAL!, DUC KAH ANJJ MA..lCIN 

POIVDER S. 

)t f co 
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. FIG. NO. 36. 

B. S .A. WATER ATOMIZED PO'!IDER 

SINTERED FOR 10 SECOND S 

I . 



FIG. NO. U . 

I 

D.S.A. WATER ATOlHZED POWDER 

SINTEREJJ FOR 60 SECOIIDS 
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FIG. NO . 38. 

• 

B.S.A. 17ATER ATOMI ZED POWDER 

SINTERED FOR 300 SEC OND S 



FIG . HO. 39. 

B. S. A. WATER ATOl.lIZED POWDER 

"AS ROLLED " 

t1 A G . 

."S.,-tl 
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FIG . HO. 42 . 

!.!ICROS'l'RUCTURE OF " AS RECEIVED" . , 

SBERRITT GORDON NICKEL POWDER . 



FIG. NO . 42,. 

FUM LIKE POR OSITY HT 12% POROS I T'L SAi.1PI Ji 

MADE FROM - 2 00 + 200 J.!E SH lTIC 1~Q:l!§!i 

(5% SULPHR IC AC ID E'~C~lli. 
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FIG. HO . 44 . 

FILM LIKE POROSITY I H 12% POROSITY SM,IPLE 

MADE FROM - 200 + 240 MESH HICKEL POWDER 

( ION ETC HED) 

~ I 

I 
, 



FIG. 1'10 . 45 . 

SC ANNING ELECTRON MICROGRAPH OF THE 

FATIGUE FRACTURE OF 4% POROSITY SERIES 

MAJJE FROM " AS RECEIVED " NICKEL PO':IDER . 

N A.G 

x 11 00 



FIG. NO . 46 . 

MICROS TRUCTURE OF 4% POR OS ITY SA MPLE 

PREPARED FRO.I! -1 50 + 2 00 !.lESH NICKEL POWlER 

(ION ETC HE D) 



FIG. HO . 47. 

SC ANNING ELECTRON l! ICROGRAPH OF THE FATIGUE FRA CTURE 

OF 10% POROS ITY SA;,IPLE ,{AllE FROi,! - 150 + 200 ~ 

.!:!1.CKEL POrfJJER ~HOWI N9 UNlJULATEu Mill FACETED SURFACES . 



FI G. ]10 . 48 . 

SCANNING ELEC TRON JUC130GRAPH O~ THE 

FATIGUE FRACTURE OF A 4% POROSITY S l~LE 

MADE FRO!.! -200 + ?!O J.!ESH rlIClCEL PO~'lJJER . 
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FIG . NO. 49 . 

SCH!NI HG ELECTRON !.!ICROGRAPH OF 

THE FATIGUE OF A 4% P OROSITY SPEC I if,EN 

MA~ROJL-150 + 2 0 0 MESH NICKEL POYIJJER 



TABLE. 1. 

! % cl % % % 'v 
-200 -240 -300 .. pOWDER +200 +240 +300 +350 -350 

MESH HESH HESH MESH HESH l 
. 

J.J .r!. 300 - - - 0.20 99.80 
.. -. 

SINTREX , 
ELECTROLYTIC .43 .79 3.49 6.68 88.61 
POWDER 

• 

. 
WOOliALL 
JJUCKHA1.! 20.85 17.10 15.87 14.00 32.18 

. POWDER 

COARSE 
PARTICLES 0.02 0.08 0.04 0.20 99.6'6 

EX 
J .J..U. 300 

B.S.A. 
- 100 l.rESR 38.90 9.60 7~40 6.40 37.7° 
POWJJER 

., 

{b.·S. A . - - .- , ~.?> \'i It-, '7 

_ ~oO MIUti 

('()w"p';~ 

SIEVE ANALYSIS DATA. 



I 

I 

I 

I 

I· 

PownER' 'l'nm SIEVEn 

J.J.M. 300 3 hours 

J.J .M. 300 5 hours 

J.3.11. 300 8 hours 

J.J.M. 300 8 hours 

WOOJ)ALL 
JJUCKAU 8 hours 
POWlJER 
- 300 MESH 

Snr'l'REX 
ELECTROLYTIC 8 hours 
POWDER 

JUCROSmVI1IG DATA. -- . 

PERCENTAGE 
+ }1 MICRONS. 

40.3 

18.0 

48.0 

48.0 

58.0 

46.0 



TAllLE 2 • 

.,----------r---------"---
PARTICLE SIZI~ 

(fJicrons) . . 

P.i;;ll Ci>Nl'AGE 
DI:5THIBUTIOH 

3Y 
V;glGHll • 

~--------------~---------------------

, 
15.1 41.5 - 45 

,8 - 41.5 13.8 

35 - 38· 12.0· 

32 - 35 lJ. .6 

29.5 - ,2 10.8 

25.5 - 29.5 9.9 
23.5 - 25.5. 8.1 

20 - 23.5 1.5 
15 - 20 6.4 

<: 15 3.4 



TABLE 3. 

NO. OF NO. OF ~~ 50 ro ro 70 5''' POIlDER FIELDS PARTICl,ES -10 10 - 20 20 - 30 30 - 40 40 - 50 +50 
EXAMINED COmTTED MICRONS MICRONS MICRONS MICRON~ MICRONS !,!ICRONS 

J.J .11.300 30 869 26.8 12.7 37.2 12.5 5 5.8· 

J.J.M.300 28 756 21.9 8.9 31.3 16.0 8.7 11.0 

FINES EX 
J .J .11. 300 24 699 34.9 18.3 40.8 3.0 2.0 1.0 

FINES EX , 
J.J.M.300 25 900 39.0 11.6 36.2 5.8 1.4 -
SINTREX 
ELECTROLYTIC 31 1,177 21.8 12.8 35.8 10.4 4.8 8.4 
POWDER 

S!HTUEX 
E:::.ECTROLYTIC 7 163 22.1 8.0 34.5 11.6 9.4 14.0 
POVlDER 

COARSE EX 
I;L\KIN POWDER 46 1,955 17.8 3.2 23.6 21.8 14.0 19.6 . 
-300 J!tESH 
WOODALL 

40 1,653 44.0 llUCKIIAJ.! iO.3 24.0 10.2 5.1 4.6 
POWDER , I -

PARTICLE SIZE DISTRIBUTION BY 

Q.T.M. OF IRON POWDERS. 



JABl'8 Uo •• ...h 

. -. ! A~JI;:1J.,GE 
POWDER 

PR O'Ji';CTED DIAMETER 
AREA PER CIRCLE OF 
PARTISLE SAME AREA . (mm ) Y-t) 

J.J .111. ,00 .000295 18.4 
. 

FINES EX 
J.J.M.300 .000165 14.0 

COARSE FRACTION 
EX J.J.i.I.300 .00055 26.5 

SINTREX 
ELECTROLYTIC .000363 21.4 
POWDER 

-300 J.!ESH 
TIOODALL .00019 15.4 
DUCKHJ\:,! 
POWDER 

B.S.A. -100 .000216 16.6 MESH PO\7DER 

B. S.A. -300 .000155 14.1 MESH POWDER 

P ARTICLJ~U?!.ZE D~RIVED FRQl,! 

--l 

r' 
I 

L 
l 
I 
i 

i 
t 
• 
! 
t 
J , 
! 
t 



TABLE 5. 

POymER SURFACE AREA 

(m2/g) 

. 
J.J • .14 •• 300 0.13 , 

ELECTROLYTIC 
0.014 POWDER • 

. 

WOODALL 
0.19 DUCKAM 

WOODALL DUCKAM 0.24 - 300 MESH 
. 

B.S.A. 0.25 - 100 MESH 

B.S.A. 
0.25 - 300 MESH 

§URFACE AREA RESUI,TS 

. (STEARIC ACID ADSORPTION) 



TABLE 6. 

. ! 

POWDER SURFACE AREA 
I 

• (m2jg) 

. , 

J.J.M.300 , 0.31 

SINTREX ELECTROLYTIC 
-300 MESH 

0.14 

I 
WOODALL DUCK.A1! 

AS RECEIVED 
0.19 

WOODALL DUCKAM 0.22 . -,00 MESH 

I 

B.F..T. SURFACE A~SA DATA 

, , . 



TABLE 7. 

" 

POWDER 

. 

FINES EX 
J .J .M. 300 

• 

J.J .M. 300 

COARSE, FRACTION 
EX J.J.M. 300 

SINTREX 
ELECTROLYTIC 

POWDER 

WOODA.I.L 
DUCKAM 
POWDER 

-300 MESH 

B • S .A. POWDER ' 
-100 MESH 

B.S.A. POWDER 
-300 MESH 

Y/EIGHT SPECIFIC 
SURFACE OF POWDER 

(m 2jg) 

0.0157 

0.0102 

0.0072 

0.0092 

0.0076.4 

0.0042.0 

0.0070 

SPECIFIC SURFACE DATA 

'DETERMINED BY THE 

LEA' AND NURSE METHOD. 

RELATIVE 
SPECIFIC 
SURFACE. 

1.00 

0.65 

0.46 

0.59 

0.49 

I 

0.27 

0.45 



TABLE NO. 8. 

RELA'fIVE 
POWDER SURFACE 

AREA 
. 

J.J.f.!.' 300 .68 

FINES EX 
J.J.!!.300 1.00 

COARSE F:l,\CTIOH 
EX J.J .;.1.;00 .49 

SIirEREX 
ELECTllOLYTIC .61 
PO~·;i']=:r1.. 

-300 UESH 
r;OOIt\LL .86 
DUCKllAl,t 
po-;mER 

D.S.A. -100 
I!ESH PO·.:DI~TI .11 

. n.S.A. -300 
l1ESIT POWDER 1.00 

~ATIVE SURFACE ~RJ;;A REStJLTS BY O.T,/;!. 



TABLE 9. 

. 

A i"h\i-lENT fER CE~rrbG~ 
.PCi".D3R SOLID D~;IJl:;r c .... ('1("'-

J.lV..J~JI 

<dc.c.) POi:03ITY , - . ----"",.,.---' 
~:AKIN PO,':DER 7·15 1.5;{ 

(AS ICC" lV ~'D) t .. .:.~ u 

llAKIU POi,'DER 7.51 4·61< (FIlIE Fal,cTloN) ,. 
;'\'~KIli !JQW.DER 7.87 (COJ\RSB FHACTION) -

SIllTm~x 
ELr~CTnOLY'l'IC 7.69 2 3' • /r; 

rc;;n:;a 

'iiCODt,LL 
DUCKi,:"~ 7.79 1.1,b 
PO,'; Dr:a 

B.S.A. -100 7.76 1.4tf 
I.~~;sn I'o',m:n 

il.:J.A. -300 7.75 1. 5;:~ 
~:r;:JH PC; Di>R 

I 

I 



I 
POWDER 

VlOODALL DUCKAM 
- ,00 ME~H 

SINTREX EI2CTROLYTIC 
PO','rDER 

J.J.M.300 

. 
FINES EX J.J.M. 300 

COARSE FRACTION EX 
J.J .M. 300 

TABLE 10 • 

133 N/rr:;i 
(3.6 t.a.i.) 

4.71 glee 

5.06 

4.95 

4·48 

4.80 
. 

COMPACTION 

176 N/mri 
(11.4 t.a.i.) 

231 N/mrn2 

(15 t.a.i.) 

4.80 glee 5.43 glee 

5.10 5.67 

5.10 5.63 

4.42 5·039 

5.09 5·48 
; 

STATIC COMPACTION DATA 
I 

P RES SUR E. 

310 N/mm2 
(20 t.a.i.) 

,86 N/mri 
(25 t.9.i.) 

463 11/=2 
(30 t.a.i.) 

< 

5.90 dee 6.25 glee 6.52 g/ee 

, 
6.20 6.54 6·50 

5·90 6.21 6.48 

, 

5·51 5.87 6.04 

5·83 6.13 6.35 



! 
I 
! 

. 

I . 

TABLE 11. 

, 

• PERCENTAGE 
ELEMENT BY 

WEIGHT. 

C 0.15 

S 0.025 
. 

P 0.C02 

Si. 0.13 

I.1n 0.01 

0 0.33 

N 0.006 
, 

CHEMICAL ANALYSIS OF 

B.S.A. -100 MESH ATOMIZED POWDER. 

I 
'f 
I 

, 
i 
I , , 



TAIlLE 12. 

. , 

CHEMICAL et SINTREX I'IOODALL 
ANALYSIS 7 J.J.M.300. ELECTROLYTIC DUCKAM 

300 POWlJER POWDER 

• C 0.084 0.008 . 0.015 

S 0.015 0.018 0.008 

P 0.011 0.006 0.020 

Si 0.07 0.01 0.03 

Mn 0.37 0.04 0.25 

0 0.85 0.15 0.18 

. 

CHEMICAL ANALYSIS DATA. 



I 

POWDER 

WOODALL 

DUCKA1! 

POWDER 

SINTREX 

·POVlDER 

TAELE 13 

• 

ROLL LOAlJ 

(kN/25 nun2~ 

110 

110 

1:50 
. 1:50 

DENSI'f.IE~ OF SO,,[8· ROLLED 

.L§])TTEREllE~CI1~· 

SII/TERING 
TIlill 

(SECONDS) 

~O 

:500 

:50 

:500 

DENSITY 

(g/c.c.) 



- - -------------------:-------.------------------..., 

TABLE 14 TENSILE STRENGTHS OF COMPACTED AND SINTERED STRIP • • 
I 

NITIAL ROLL T.S.AFTER T.S.AFTER T.S.AFTER fj' • S • AFTER 
POWDER LOAl! 30 SEeDS. 60 SECDS. 120 SECDS. ;OOSECDS. 

kN/25 m.o. 
t!illh. 

11/=2. N/mm2• N/mm2 2 
N/= • 

Sintrex 45 116 I 126 162 161 
Powder 

95 I . 125 132 185 -
130 - 130 , 161 134 

lVoodall 40 110 124 138 131 
Duckam 90 153 211 234 196 Powder 

110 175 262 156 187 
130 135 189 197 148 

'-J.J .M. 300 50 143 181 184 183 
P011der 

130 183 205 203 209 

- 180 177 207 18j 192 
220 183 '~205 

. 

203 209 
240 - 178 198 -

J.J.!.!. 300 60 148 152 '173 164 

I 
COrt'!'sb FrD,oti'ori 120 132 184 188 201 PO'lider 

240 185 204 199 208 . 

J.J .M. 300 
FINE FRACTION 

60 143 175 164 201 

P01'lDER 110 143 203 217 213 
180 182 188 - 250 
240 203 214 - ---- - -..,../w .... 



TABLE 15. 

InITIAL INITIAL SECOND SECONll 
POWDER ROLL SH1TERING ROLL SHTTE.'l.InG T.S. e1 

LOAD TIME LOAD TII:IE 

• 1d1/25mm• kN/25mm. Seconds 2 %. width. Seconds width u/= . 

J.J.U.300 
COARSE 240 30 150 30 254 5 
FRACTIon 

J.J • I.!. 300 40 30 150 30 325 10 

J;J.)~.300 120 30 150 30 353 14 
FINE 
FRACTIon 

J.J.l.f.300 120 30 150 30 298 . 10 

WOOlJALL 40 30 150 ,0 197 11 DUCKAJ.1 
.. 

TENSILE STRENGTH OF FINISHEll STRIP. 



Table 16. 

l\~parQnt :Jensity. Tap :::ensitv and F1m1 ,(ate 

for the ,I\s-recei ved Pm,;der and the Seive 

Fractions Used in tlie Prepared of Specimens 

POlJDER • APPIIREf!T TAP HALL 
DENSITY DENSITY FLO:J RATE 
'g/cm3 (l/cm3 

.1 ' seconds 

As-received 4.47 5.02 22.5 

-240 + 300#, 
(61 - 53]Jm) 

4.24 4.85 22.4 

-200 + 240# 4.27 4.89 2l.4 
. (74 - 61)lm) 

-150 + 200# 4.30 4.92 21.8 
(104 - 74]Jm) 

I 

I , I 
! 
! 
i 

, ! 
f 



TABLE 17 . i, 

i 

~J)1&" REPRESSING AND AIDIEALDlG OF 



r- - -~--~ ----- ~-

I Table 18. 

I POROSITY l'\ND GRAIN SIZE CHARACTERISTICS 

3ET 
- )'1E.I\:;;* PORQSITY POROS! TV PCRE SIZE DISTRIBUTION ~~~~jjT PORE ~lEASlJRED iIEI'SUREO 

,~.GTI'\'l CF PORES UITH CflGRD W:GTHS CHORD BY BY 
LENGTH Qn, DWSITY 

. I r" ., 

>OJ.1<l1 > 511~J' >1 Cllm >1511ffi >2011Til >Z511m >30\lm \!m % % \!m --
1~r: .:.. 1 .63 J.H 0.11 0.05 0.03 0.02 6.2 8.4 11.8 25 

12;·j 1 • :-.. 5 D.20 0.09 0.04 0.02 0.01 5.2 4.7 12.2 38 , 
12C 1 o I" .. - 0.20 0.03 0.04 0.02 0.01 4.9 4.9 10.1 31 

. 

f:.F 1 'v .39 ·).10 0.03 0.01 0.00(6 ) 0.00(3) 4.0 3.1 ' 3.9 24 

(I ~ -
... l 1 o .2r:' 0.11 0.04 0.01 0.00(6) 0.00(3) 4.0 3.3 4.0 29 

4C 1 .50 <l.2l 0.08 0.03 0.01 rJ.Ol 5.0 3.2 3.5 30 

£:.J \ .'t~ 0.11 0.04 0.01 O.CO(S) 0.00(2) 4.3 3.3 4.S 22 

+i;~ean linear intercept 
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Table 19. 

Tens il e ilnd Fnti r't!~ Prcpcrti cs of SintQr~d Sh(~rri tt " . 
, 

Gor-'oOl '" .1'13 1 u • 1\ 11".,', 

-.--.-----,~---,., -.--.. ----
SET 0.5% Proof • Tensile Elongation . Reducti on Endurance* Endurance. 

Stress Stren~th % in Area Limit - RatilJ 
• N/llun2 ,N/r,1ffi , % at 1 (1l cycle; , . N/mm2 

12F 194 18 70 0.36 
• • 

12.1 90 198 16 10 73 0.37 

12C 1010 161 g- S 59 () -3"f 

4F 133 267 20 18 121 0.45 

411 142 252 20 15 118 0.43 - • 
4C 146 259 18 14 118 ·0.45 

4D 151 . 264 20 17 118 0.45 

* In all series the endurance lir.Jit at 107 cycles \"Ias -2N/mm2' higher than' 

that at 108 cycles. 



Table 20. 

Fatigue Data for Sintered Nickel Specimens 

Density Porosity* Ilaximum Cycles to 
g/cn;3 % Stress Failure 

N/mm2 

Set 12F 

7.34 ' 11. 7 103 3.6 x 10" 

7.90 11.0 93 1.4 x106 

7.90 11.0 93 1.5 x 106 . 
7.77 12.5 85 7.9 x 105 

7.84 11. '} 74 2.9 x 106 

7.75 12.7 69 >108 

7.82 11.9 62 >108 

Estimated Endurance Limit at 108 cyc1es±70 rVf'1m~ 

Set 12f'l 

7.97 10.2 108 1.4 x 105 

7.70 13.3 93 5.4 x 105 

7.79 12.2 85 5.0 x 105 

7.80 12.2 77 1.1 x 106 

7.71 ' 13.2 72 >108 

Estimated Endurance Limit at 108 cycles±~3 N/mm2 
; 

Set 12C 

8.11 8.7 103 7.1 x 10" 

7.82 11.9 93 4.0 x 10" 

8.00 10.0 93 1.8 x 105 

7.96 10.4 77 6.8 x 105 

! 
I 
! 
I 

8.05 9.3 71 • 2.0 X 105 

7.96 10.4 G2 1.1 x 106 

8.00 10.0 57 >108 

. Estimated Endurance Limit at 108 cycles±S9N/mm2 
I 



Density Parasi ty l1axi [:!Um Cycles ta 
g/cm3 % Stress Fililure 

N/mm2 

Set 4F 

8.54 4.05 139 2.6 x 106 

8.63 3.04 139 1.2 x 106 

. 8.53 4.16 124 5.5 x 107 

8.52 4.27 120 >108 

Estimated Endurance Limit at 108 cycles±l-21N/mI012 

Set 41>1 . 
8.54 ·4.05 170 2.0 x 105 

8.57 3.70 155 2.2 x 105 

8.55 3.94 139 1. 7 x 10~ 

8.51 4.48 124 6.6 x.10G 

8.55 3.94 120 2.2 x 107 

8.55 3.94 116 >108 

8.55 3.94 93 >2 x 107 

Estimated Endurance limit at 108 cycles± 1181!/mm2 . 

Set 4C 

8.62 3.14 154 6.3 x 105 

8.58 3.60 139 5.3 x 105 

8.57 3.70 135 1.8 x 106 

8.56 3.82 131 5.5 x 107 

8.58 3.60 124 3.2 x 106 

8.59 3.49 120 2.6 x 10 
l 

8.60 3.38 116 >108 

Estimated Endurance Limit at 106 cycles±1:mJ/mm2 
• 



. 

Density Porosity* ;~aximum Cycles to 
g/cm3 % Stress Failure 

1l/mm2 

Set 4D 

(,,53 4.16 154 1.5 x 10" 

3.47 4.83 147 2 .. 3 x 105 

8.40 5.63 139 1.8 x 10 , 

8.52 4.27 131 8.3 x 105 

8.41 5.50 127 1.3 x lOs 

8.61 3.26 116 >108 

Estimated Endurance LImit at 108 cyclcs± II.BN/mm2 . ._--_._-
• 

* Assuming density of pore free nickel is 8.90 g/cm3 






