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Abstract 

In this thesis, different modelling techniques, including physically based molecular 

dynamics simulations and empirical models using neural network architectures have 

been used to address particular problems in the understanding of microstructural 

development in iron-based systems. The two main areas of investigation are con

cerned with the prediction of composition and mechanical properties of steel welds 

and the effect of irradiation on the grain boundary microstructure of a-iron, both 

very important industrial issues. 

Microstructural evolution models in steel welds require weld metal composition as 

their starting point. Extensive analyses have been carried out concerned particularly 

with the prediction of weld metal chemistry, and also complex mechanical properties 

such as toughness, using neural network techniques and a database developed for 

one pass per side submerged arc welds typical of those used in the manufacture of 

linepipe. The neural network techniques used were based on a Bayesian framework, 

implemented using Markov chain Monte Carlo methods. The results showed a sig

nificant advantage in the use of neural network models for prediction of toughness 

compared with simpler regression analyses. 

In order to study the effects of irradiation on the structure of Fe-based systems, 

a molecular dynamics methodology was initially set up to study the equilibrium 

relaxed atomic configuration of symmetric tilt and twist grain boundaries in a-iron. 

These structures have been classified in terms of both the energy and width of the 

grain boundary region and the atomic arrangement has been also analysed for the tilt 

models in terms of structuraJ units. Radiation damage has then been studied near the 

relaxed structures of a symmetrical tilt and a symmetrical twist boundary in a-iron. 

Collision cascades have been initiated.inthe structure by imparting an initial energy 

of 1 keY to a single Fe atom, i.e. a primary knock-on atom (PKA). The subsequent 

interaction of the cascade with the grain boundary has been studied using molecular 

dynamics simulations. As a result of radiation, reordering is produced in the atomic 

structure of the boundaries, the damage being more pronounced in the twist model 

studied. Clusters of interstitial atoms are produced at the boundary. Changes in the 

properties of the interfaces after irradiation are discussed. 
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Chapter 1 

Introduction 

1.1 Overview 

Models are a simplification of the real phenomena that occur in nature. Science, 

and in particular materials science, has evolved by modelling nature and by necessity 

simplifying it. A general definition of a model is as follows: 

<lA model is an idealisation. ... At worst, a model is a concise description of a 

body of data. At best, it captures the essential physics of the problem, it illuminates 

the principles that underline the key observations, and it predicts behaviour under 

conditions which have not yet been studied. ... A model is a transfer function: it 

transforms the inputs into the outputs. It may take the form of algebraic, differential, 

or integral equations, and these may be embedded in a discretised computation (a 

finite element computation or an atomistic computation, for example)" [1] 

Therefore, a model is firstly, a simplified description of the system, i.e. the ideali

sation, and secondly the formalisation of these ideas in a mathematical way. Models 

can be very complex mathematically even with a very simplified description of the 

process to be modelled. Often, the resulting equation systems are analytically in

soluble requiring further simplifications of the model for their solution. However, 

computers may be able to provide an exact numerical solution in some cases. 

Computer modelling is the implementation of a model in a computer system, 

e.g. in a computer code. Once a model is implemented in the computer, the system 

can be simulated. Computer simulations are the study of the responses of a modelled 

system by a given choice of inputs which simulate real events. Computers can provide 

numerical solution of the simulations to a degree of precision which may be limited 

by the available resources. 

Nowadays, computer modelling plays a key role in the way we do science. Com

puter modelling is the link between experimental results and theory. The model can 
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be tested on the computer and improved as a consequence of its results compared 

with real data in an iterative improvement process. The requirements needed to com

pare with both theoretical predictions and experimental results can readily be made 

in computer simulations because of the ease with which inputs can be changed in the 

computer code. 

Development in materials science and industry has been clearly enhanced by the 

use of computer modelling. For example, computers provide a 'virtual laboratory' 

where the response of the material can be predicted under conditions which are not 

easy (or impossible) to produce in the laboratory. One example is the simulation 

of the materials behaviour for the design of nuclear fusion reactors. Both material 

properties in service and initial processing conditions can be simulated, allowing both 

optimisation of manufacturing and correct materials selection at a first attempt. 

Modelling of materials and industrial processes is not an easy task due to their 

complexity. A good model of a material has to capture in a code (or equations) the 

response of the material in several situations. This model has to take into account 

that the performance of a material can evolve with time and also all the various 

mechanisms that contribute simultaneously and synergistically in typical materials 

problems. 

Models can be classified in two broad categories: empirical and physical [1]. Em

pirical models use approximations to fit experimental data. Therefore, empirical 

models cannot contain more knowledge than the data used in its creation. The sim

plest way to obtain an insight into the process to be described using the data provided 

is through standard linear regression models. In linear regression, the data can be 

fitted to a linear form, obtaining as a result a linear dependence between inputs and 

outputs. 

More sophisticated methods like neural networks can be used not only to obtain 

the linear dependencies but also the non-linear relationships between inputs and 

outputs which are the most common case in materials behaviour. Neural networks 

are empirical models which have a proven ability of finding hidden relationship in sets 

of data. Neural network models have been mainly used in engineering where material 

problems are so complex that there are no adequate physical models to describe them. 

There are often large databases concerned with the processes of interest, e.g. welding, 

which can be presented to a network. Once the network has learnt from the data it 

is able to predict outputs from a given set of previously unseen inputs of interest. 

A physical model is the best we can have, because it is based on well established 

laws which gives the model sound predictive capability. A physical model is based in 
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the physical mechanisms which can be described by classical and quantum mechanics, 

thermodynamics, kinetic theory etc. 

Physical models of materials can be classified into different length and time scales. 

Four main broad ranges in length and time scale can be distinguished: electronic, 

atomistic, microstructural and continuum, see Figure 1.1. This distinction is based 

on the different physical theories and models which can be developed to describe 

material properties. 

s 

--Continuum 
ms 

-

Microstructural 

os 

Atomistic 
ps , -

--
Electronic 

fs 

pm nm mm m 

Figure 1.1: Length and time scales hierarchy 

'Ab initio' methods describe the material at the electronic level. The 'ab initio' 

calculations only need one input which is the specification of the atomic number of 

the elements present in the system. These methods can predict from first principles, 

i.e. Schr6dinger's equation, the energy, crystal structure and optical properties of 

most simple materials. Density functional methods have become the most widely 

used 'ab initio' methods for describing electrons in real materials [2]. However, even 

with some simplifications which speed up the calculations at the expense of losing 

fundamentality, 'ab initio' methods are at present limited to systems containing 100-

1000 atoms. 

Calculations at the electronic level often determine the interatomic force field that 

is the input for larger-scale molecular dynamics (MD) and Monte Carlo simulations 
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which can involve millions of atoms. Atomistic calculations can provide information 

on defect structure. Molecular dynamics is a physically-based model at the atomic 

scale. However, MD incorporates an empirical part, which is the interatomic poten

tial. The empirical interatomic potential is a function which is fitted to some physical 

properties of the materials which can be obtained by 'ab initio' calculations. 

Every scale can be thought as building on the previous one [3] and requires in

formation to be passed over. The atomistic scale considers the electrons collectively, 

the microstructural scale considers the atoms collectively, and finally the continuum 

considers the microstructure of the material (grains) as a collective. In this process 

of 'coarse graining', one moves up the length scales, so that one can simulate ever 

larger systems but at the expense of fundamentality. 

The properties and performance of materials can be ultimately explained in terms 

of the properties of atoms and their mutual interactions. However, it is impossible 

to use only atomistic theories to simulate real materials on a computer due to the 

large number of atoms involved in the continuum scale. Therefore, it is necessary 

to develop new models which are able to link between different length scales, the 

so-called multi-scale modelling methods. This is a new field of research which is 

now possible due to the increasing computer power available. Multi-scale modelling 

not only has need of the computer power but also of interdisciplinary collaborations 

which are intrinsic to the materials science field. Different disciplines are related 

with the different scales mentioned before, being broadly describable as physics in 

the electronic scale, chemistry in the atomistic, materials in the microstructural and 

engineering in the continuum. 

Radiation damage near grain boundaries is a clear example of how phenomena 

at the atomic scale can affect the behaviour of the material at bigger scales. The 

lifetime of a nuclear reactor is clearly dependent on the effects of the radiation on its 

components. Radiation can provoke imperfections in the structure of the steels used in 

nuclear reactors. In particular, this damage has a key role at grain boundaries, where 

it is known that defects can accumulate and impurities segregate due to radiation 

effects. Changes at the atomic level of grain boundaries can change drastically the 

physical properties of the steels which may provoke failures on the reactor. 

In this thesis, different modelling techniques, including empirically based models 

using neural network methods and physically based molecular dynamics simulations 

have been used to address particular problems in the understanding of microstructural 

development in iron-based systems. 

There is no physical model able to describe the complexity of all the reactions 

which take place in a weld pool. Neural network techniques are employed in this thesis 
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to analyse two important issues in arc submerged welds; the chemical composition 

and toughness of the final weld. Neural network results are based on an experimental 

database which take into account several parameters of importance in the preparation 

of the weld, as well as the properties of the final product. 

Molecular dynamics simulations have also been carried out in this thesis to study 

radiation damage near grain boundaries in a-iron. This thesis is an starting point 

for the study of the effects of radiation damage in grain boundaries of steels in the 

atom is tic scale. Steel is a very complex system to be modelled, and there is no good 

interatomic potential to describe it. A good approximation is to choose pure iron in 

its bcc structure since steel is an Fe-based alloy and the solubility of carbon in ferrite 

is very low. 

The damage produced by collision cascades in perfect crystallographic structures, 

such as a-iron, as a result of irradiation have been extensively studied by computer 

simulations [4]. However, the mechanisms that occur at the atomic level near defects 

such as grain boundaries are not well understood. One of the main questions is how 

the different atomic structure of grain boundaries can affect to the radiation damage 

process, the accumulation of defects and the segregation of impurities towards grain 

boundaries. The knowledge of these mechanisms are of extreme importance. 

1.2 Layout of thesis 

This thesis is organised as follows. Following this brief introduction, Chapter 2 de

scribes both the neural network and molecular dynamics techniques which are em

ployed through this work. After a general introduction on the main characteristics 

of neural network models, the particular model used in this work is introduced. This 

chapter also includes an introduction to the Bayesian probabilistic theory and Markov 

chain Monte Carlo methods applied to this particular neural network models. It is 

not the intention of this chapter to explain in detail these two issues, but rather 

to explain how the neural network training and generalisation processes are imple

mented. Particular deta!ls of the different stages of the application of the model are 

presented; the pre-handling of the data prior to 'feeding' the network and the code 

details for training the network, and making predictions. The second part of this 

chapter contains a description of the classical molecular dynamics method employed 

in this work. A detailed description of the Interatomic potential used to simulate the 

interaction between Fe atoms is also presented. 

The application of the neural network technique to the prediction of weld metal 

chemistry and toughness is detailed in Chapter 3. The submerged arc welding process, 
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as well as the database which has been used to train the network, is described at 

the beginning of the chapter. Whilst neural network results for the prediction of 

the final weld composition of every element have been performed, only the results 

for nickel and titanium are presented explicitly to illustrate the analysis procedure. 

Comparison with linear regression models is also presented for the prediction of weld 

metal composition. In this chapter, the neural network model is also applied to 

predict complex mechanical properties such as toughness and comparisons are made 

with the chemistry predictions. 

The second part of this thesis deals with the application of molecular dynamics 

techniques to the simulation of radiation damage near grain boundaries in a-iron. 

Chapter 4 describes the relaxed atomic structure of symmetrical tilt and twist grain 

boundaries in a-iron. The geometrical description of a symmetrical grain boundary 

based on the coincidence site lattice model is presented, as well as its implementation 

in a computational block for simulation purposes. The molecular dynamics simulation 

procedures employed to relax the boundaries are explained. In this chapter the 

analysis of the atomic structures are based on the repeated configuration of atoms, 

energy and width of the boundaries. 

Collision cascades generated near two different symmetrical grain boundaries and 

their evolution are studied in Chapter 5. Collision cascades have been initiated in the 

structure by imparting an initial energy of 1 ke V to a single Fe atom. Defects and 

atomic reordering in the grain boundary region of both models have been analysed 

and discussed. 

The final chapter of this thesis, summarises and discusses the main conclusions 

from this research and suggests areas for future investigation. 
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Chapter 2 

Modelling techniques 

2.1 Introduction 

In this thesis, different modelling techniques, including physically based molecular dy

namics simulations and 'blind' empirical models using neural network architectures 

have been used to address particular problems in the understanding of microstruc

tural development in iron-based systems. The two main areas of investigation are 

concerned with the prediction of composition and mechanical properties of steel welds 

and the effect of irradiation on the grain boundary microstructure of a-iron, both very 

important industrial issues. 

In the following sections a general description of both molecular dynamics and 

neural network techniques is made. Also, the particular details of each technique 

which are particularly used in this work are pointed out. 

2.2 Neural networks 

2.2.1 Why neural networks? 

When there is no theory to describe a phenomenon or the only possible theory deals 

with many parameters, it is difficult, if not impossible, to understand properly (from 

first principles) precisely what is happening. It is then that the scientific community 

has no option other than to obtain as much information as possible from the process 

studied and analyse it in detail looking for relationships between parameters through 

whichever statistical method is available to get ideas and to create a model. The use 

of artificial neural networks has gained much popularity in both the private sector 

and the scientific community during the last decade [5], as a powerful tool for data 

analysis. 

The advantages of using neural network techniques compared with other simple 

regression methods used to solve problems in the fields of Physics and Chemistry 
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are not completely clear [6]. In most cases the standard methods of data fitting are 

good enough if we take into account that they will provide accurate results with a 

lower number of adjustable parameters compared with a neural network technique. 

However, neural network techniques are worth using when there are data coming from 

experiments and there is no approximate theory to describe a phenomenon. 

Neural network models are becoming more common in the materials science field. 

In particular, neural networks have been applied to subjects like mechanical proper

ties, processing and welding [7]. The lack of physical models to describe these complex 

phenomena where a lot of parameters are involved has favoured the increasing use of 

neural networks for their study. In particular the use of artificial neural networks has 

lead recently to new approaches on this field. For an actual review of neural network 

models and their application in the materials science field see [8]. 

Neural networks are described in detail in the following section and their applica

tion to the prediction of weld chemistry and toughness is discussed in Chapter 3. In 
this work a database provided by British Steel, also discussed in detail in Chapter 3, 

has been used. This database contains in depth information on chemical, mechanical 

and microstructural properties of welding processes. 

In addition to the prediction of weld chemistry and toughness using neural net

work models this work attempts to compare neural network techniques with simple 

regression analyses where possible. Neural network techniques for regression are more 

attractive because they overcome some of the disadvantages of standard regression 

techniques. For example, regression analysis is limited to a few input variables and 

one output variable. By contrast, neural networks can be used to predict several 

output variables with also several input variables (if the quantity of data available is 

enough). The most important advantage of artificial neural network models is their 

capacity to represent a great variety of non-linear relationships compared with normal 

regression methods. In linear models the analysis begins with the prior linear choice 

of a relationship between the output and input variables, and this linear relationship 

is applied across the entire input space. The ability of a good generalisation in re

gions where data are not available is one of the main properties of a neural network 

model. One of the setbacks of neural network models is that they require much more 

computer processing power than traditional methods. However, with the advantage 

of more powerful computing systems, this causes increasingly fewer obstacles. Also, 

the number of parameters involved in a neural network model is usually big and of 

course with no physical meaning. A final setback of neural network models is related 

with the big number of data they need to determine all their parameters. 
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2.2.2 What is a neural network? 

A neural network as a mathematical model should properly be referred to as an 

artificial neural network, ANN, to differentiate it from biological neural networks 

which are in the human brain [5]. The design of an artificial neural network was 

inspired by the structure of the human brain [9]. In the brain, a typical neuron 

collects signals from other neurons through a host of fine structures called dendrites. 

This idea when modelled mathematically results in an artificial neural network model. 

There is no universally accepted definition of an artificial neural network and many 

definitions have been given in the literature. A general definition of an artificial neural 

network is given here: 

"A neural network is a computing system made up of a number of simple, highly 

interconnected nodes or processing elements, which process information by its dynamic 

state response to external inputs" [10] 

The goal of a neural network, when used for regression problems, is to map a set 

of input patterns to a corresponding set of output patterns. To do this the network 

must first learn from a series of past examples how sets of input and output data 

correspond to each other. The network then applies what it has learned to a new 

input pattern to predict the appropriate output. 

2.2.3 Feed forward neural networks 

Almost any mapping between spaces can be approximated to arbitrary precision by 

feed forward neural networks. A schematic representation of the architecture of a 

typical feed forward neural network is shown in Figure 2.1. In this example the 

architecture of the artificial neural network has one input layer with two input units, 

one hidden layer with four hidden units and one output layer with one output unit. 

In a feed forward network the data flow from input to output units is strictly 

forwards, no feedback, i.e. connections extending from the output units to the input 

units in the same layer or in previous layers are not present. The network in Figure 

2.1 is fully connected, every node is connected with every node in the next layer and 

with the unit in the output layer. The units in the hidden layer are responsible for 

the non-linearity of the net. 

In order to begin to explain how the net model works the ideal representation 

given by Figure 2.1 has to be mathematically implemented. The function which 

implements the mapping between inputs, T, and the output, 0, must be defined (just 

one output considered for simplicity). This function 0 = f(T, 9) can be expressed as 

follows: 
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o(i, e) = b(O) + L wiio)ik + L wiho) 11 
k I 

11 = tanh(hl ) 

h b(h) ~ (ih). 
I = I + w Wk,1 !k (2.1) 

k 

where the weights wand biases b are the parameters of the net. The parameter 

vector e of the net is made up of the weights wand biases b. The input layer merely 

distributes the inputs, i, onto the hidden layer. It is on the hidden layer where the 

input data are first changed. The input to the k node on the input layer is represented 

as an input vector i, with components i k (k = 1 to n). Every input is multiplied by 

its corresponding weight factor, wt~), and an internal bias is added, b? The transfer 

function on the hidden units is a function of the weighted total input sum plus the 

internal bias, hi' It is possible to choose any non-linear function, but in regression 

problems sigmoid functions are especially used. In this work the hyperbolic tangent, 

11(hl ) = tanh(h l ), which has been shown to give a good performance in neural 

network models [5], is selected as a transfer function for the hidden units. On the 

output unit there is no non-linear transfer function and the contributions from hidden 

It and input layer i k are only weighted WI(~o) and wtjh), and a bias is added bj. 

The increasing of units in the model, particularly hidden units, will make a more 

complex model with a considerable amount of parameters to be determined. The 

model has to be trained with the data available in order to fit this parameters. 

Previous to the training stage a pre-handling of the 'rough' data coming for the 

experiments is necessary. 

2.2.4 Normalising and scaling inputs 

The initial stage where data are prepared to feed the network is of crucial importance 

for the success of the neural network technique. The results will be more accurate 

if the amount of training and test data available is large and quite representative of 

the whole range over which the inputs and outputs vary. 

Once it has been decided which inputs and outputs (different columns in an input 

file) are to be analysed from the database and once they have been extracted, it is 

necessary to have a look for possible 'outliers' or 'wrong' values, which are obvious 

typographic errors representing physically incorrect data. In addition the amount of 

useful data are reduced because of 'missing data'. Sometimes there is no value for one 

of the inp~ts and the data pair (corresponding inputs and outputs) cannot be used, 
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Figure 2.1: Neural network architecture 
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reducing the amount of data available (the number of rows in an input file). Missing 

data are one of the main setbacks in neural network methods reducing considerably 

the quantity of data available. 

In artificial neural network training it is useful to scale and normalise the input and 

output values to a finite range. It is recommended that inputs and target variables 

should be scaled with zero mean and normalised in the range [-1,1] since within 

this range the selected transfer function varies appreciably providing a much more 

sensitive response, as is seen in Figure 2.2. In this way, the search for optimal 

parameters is easier because the weights do not run to extreme values. 

0r-----------~r-----------~ 

--tanh 

., o 

Figure 2.2: Hyperbolic tangent transfer function. 

There are several ways to normalise and scale the data and it makes no difference 

which method is used. It is quite common to scale the data with zero mean and with 

a desired standard deviation as follows: 

Xi - X 
Xi norm = d nstd , st (2.2) 

where Xi identifies each value of the input or output column, x is the mean of the 

data in this column, nstd is the new standard deviation value, usually chosen equal 

to 1 and std is the standard deviation of the raw data defined by : 

d 
L~ (Xi - X)2 st = ='--,:',:-'----'--

N-1 
(2.3) 
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where N is the number of data pairs. 

An alternative method consisting of a zero mean scaling and a normalisation in 

the range [-0.5,0.5]' is defined by: 

Xi - Xmin 
xi,norm = - 0.5 

Xmax - Xmin 
(2.4) 

where Xmin and Xmax are the minimum and maximum values, respectively, of the raw 

data. 

Once a normalised and physically correct data set is obtained, approximately half 

of the data will be used for training the net and the other half for testing the model. 

A previous step to select the data for training and testing is the randomisation of the 

data. In this way representative values in the whole range covered by the database 

are incl uded in both data sets. 

2.2.5 Training and generalization 

The training data set is a set of known input-output patterns which is repeatedly 

presented to the network in a process which minimises a particular error function, 

i.e. back propagation of errors. In this process the parameters of the net are adjusted 

until the specified input yields the desired output. The test data are used in another 

phase of the process to check how good the approach is, and to ensure that net 

generalises properly. The desired final result would be a network that is both stable 

and convergent. 

The main goal of the neural network training process is to obtain the parameters of 

the net, 0, which best accomplish the mapping between input and output values. To 

do this, the net learns from the data and in particular from the data pairs available in 

the training set (j(i), t(i»), being every data pair composed of inputs j(i) and associated 

targets t(i). The parameters of the net are determined during the training process 

starting from an initial set of random values and updated in the light of the training 

data. 

During the learning phase the input pattern is fed into the neural network and the 

output is generated following Equation 2.1, then this output is compared with the 

'true' output and an error is obtained on the prediction. The purpose of the learning 

phase is to calculate the optimal weights to minimise this error, i.e. average sum of 

squared errors, sse, which is defined by: 
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(2.5) 

where 0 is the output (predicted value) of the network, t is the true value from the 

data set and N is the number of data available. 

There are many algorithms to minimise the error function generated by the net

work, the most popular being the backpropagation of errors and many others like the 

Levenberg-Marquads, Trust-region, Quasi-Newton, Conjugate gradient and Genetical 

algorithms [5]. 

Our ultimate aim is to predict the target value for a new test case t(n+l), not 

included in the training set, given the corresponding new input values iln+1
). For good 

predictions, the neural network model has to generalise well, i.e. these predictions 

must neither 'overfit', see line (c) in Figure 2.3, nor 'underfit' the data, see line (a) 

in Figure 2.3. If the predictions overfit the data, the data used for training will be 

predicted well however this model will generalise poorly and the test data, as well as 

new data, will be poorly predicted. Obviously a model which 'underfits' the data is 

a bad model because it is incapable of representing the target values. 

(b) 

(a) 

" 

Figure 2.3: (a) the data are underfitted; (b) the model fits the data well (c) the data 
are overfitted. 
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The choice of neural network architecture is crucial to avoid overfitting. If there 

are too few hidden nodes the model might not be able to predict the test data, see 

(a) in Figure 2.4, even the training data will not be fitted well and hence the model 

will underfit the data. At the other extreme, if the number of hidden nodes, or non

linearity of the model, is too large, see line (c) in Figure 2.4, the training data will 

be very well predicted, decreasing the training error but increasing the test error. 

, , , , , , , , , , , , , , , , , 

(a) 

, , , , , , , , , , 

(b) --

1 
Number of nodes 

Test 

Training 

(c) 

! 

Figure 2.4: (a) this number of nodes in the model is not enough to represent the 
data; (b) correct choice of the number of nodes; (c) excessive number of nodes. (a), 
(b) and (c) corresponding with the fitted lines given in Figure 2.3 . 

2.2.6 Bayesian neural networks 

Bayesian ideas are based on a different view in which probability is used to represent 

uncertainty about the relationship being learned, in contrast with traditional meth

ods. A traditional learning method, i.e. backpropagation of errors, gives one value for 

each parameter of the net, whereas Bayesian learning produces a probability distribu

tion (posterior distribution) for a given parameter, see Figure 2.5. Mackay introduced 

the use of Bayesian statistics to neural networks, which successfully facilitated the 

training process, [11, 12, 13]. 
G 
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Conventional Training 

Bayesian Training 

Single set of 
parameters 

Posterior distribution 
over network weights --'~~ 
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Weight Space 

.-.. 
• • 

Weight Space 

Figure 2.5: Conventional regression techniques gives one value for each parameter of 
the net, whereas Bayesian training produces a probability distribution on the weight 
space for each parameter. 

In the same way as a learning process is started in a traditional way by giving 

random initial values for the parameters, in Bayesian learning a prior distribution, 

for the parameters might be specified, prO), where previous beliefs about their values 

can be introduced. This step is precisely one of the setbacks in Bayesian learning 

because it is not well understood how prior knowledge of the parameters affects the 

final model and usually the choice of a prior distribution is arbitrary. In addition, it 

may be useful to specify a joint prior distribution for the components of 0, using a 

common hyperparameter for weights in the same layer for example, " which is given 

its own prior, P(r). The priors are just a probability distribution on a particular 

region of the weight space, i.e. Gaussian distribution for the network parameters and 

Gamma distributions for the hyperparameters. 

In the light of new data, the probability of network weights that do fit the data 

well will increase and the prior distribution, prO), will be updated to a posterior 

distribution, P( 0, ,I (2\1), tell ) ... (2\n), t(n)), using Bayes' Rule. 

n 

P(O"I(Zl1),t(1) ... (I1n),t(n)) oc P(,)P(OI,) IT p(t(e)IZle),O,,) (2.6) 
c=l 

P(AIB) is read as the probability of B given A, where p(t(e) lI1e), 0, ,) is the con

ditional distribution or probability densities for the target and P(OI,) is the prior 

densi ty for the parameters. 

The result of Bayesian training is a posterior distribution over network weights. 

If a prediction is made based on some new inputs, the posterior distribution over 

16 



network weights will give rise to a distribution over the outputs, which is now a 

predictive distribution for the new case. The predictive distribution for a new output 

value t(n+1), given the input tin +1) and the training data (ti l ), t(1») ... (tin), t(n»), is given 

by: 

p(t(n+l) ltin +l ), (fl), t(1»), ... ,(fn), t(n»)) = 

! P( t(n+1) Ifn+1), 0, 'Y )P( 0, 'YI (ti l), t(I»), ... , (fn), t(n») )dOd'Y (2.7) 

If a single-valued prediction is needed (example, for a regression model), the 

prediction that minimises the expected squared-error loss is the mean of the predictive 

distribution, £(n+1). This optimal prediction is given by: 

£(n+l) = ! o(fn+I), O)P(O, 'Y1(fl), t(1»), ... , (fn), t(n»)dOd'Y (2.8) 

where o(tin +l ), 0), is the output of the network defined by Equation 2.1. 

2.2.7 Markov chain Monte Carlo methods 

The evaluation of the integrals in Equation 2.7 and 2.8 are very complex because of the 

complexity of the posterior distribution due to the large quantity of variables involved. 

This is a major problem in Bayesian learning. There are two typical methods based on 

different approaches which can simplify the posterior distribution to make the integral 

easier: the evidence framework developed by Mackay [11, 12] and the Markov chain 

Monte Carlo method developed by Neal [14]. The evidence framework is based on the 

optimization of hyperparameters and the approximation of the previous integral by 

a Gaussian centred on the maximum for the posterior distribution and single-valued 

estimates for the hyperparameters. A C code implementing the MacKay framework 

for artificial neural networks can be found in [15]. However, there may be situations 

where these Gaussian assumptions are inaccurate [14]. A more precise method, but 

still an approximation, is the one based on sampling from the posterior, such as the 

Markov chain Monte Carlo method developed by Neal [14]. 

In this work, the Markov chain Monte Carlo method approach has been used to 

implement the Bayesian learning in the neural network model. The idea behind the 

sampling method is to approximate the integral in Equation 2.7 over a sum as follows: 

P (t(n+I)lfn+I), (fl), t(l»), ... , (fn), t(n»)) = 

! P( t(n+l) Ifn+l), 0, 'Y)P( 0, 'YI (fl), t(1»), ... , (fn), t(n») )dOd'Y 

T 

~ ~ L P( t(n+l) Ifn+1), O(t), 'Y(t») (2.9) 
t=1 
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where each t represents samples drawn from the posterior P(I:I, 1'1 (it!), t(1»), ... , (itn), t(n»). 
Such a series of samples may be generated using a Markov Chain with the posterior 

as its stationary distribution. To estimate the predictive distribution, or a single 

valued prediction, with respect to the posterior distribution, the Markov Chain must 

have a unique equilibrium distribution, i.e. the posterior, which converges as rapidly 

as possible leaving the posterior distribution invariant [14J. 

In Neal's work, a Markov chain that explores the entire posterior distribution is 

obtained by alternating Gibbs sampling, known as the 'heatbath' method, updates 

for the hyperparameters 1', with hybrid Monte Carlo [16J updates for the network 

parameters O. This helps to explore weight space efficiently. An example of Monte 

Carlo Implementation of Bayesian Learning on neural networks is explained in detail 

by Neal and Rasmussen [14, 17, 18J. The implementation for neural networks of the 

algorithms used in this work can be found in the C code written by Neal [19J. 

2.2.8 Optimal architecture and input relevance 

There is no way to determine a good network architecture simply from the number 

of inputs and outputs. It depends critically on the number of training cases, the 

amount of noise on the data, and the complexity of the function the neural network 

is trying to learn. Trial and error seems to be the best way to get a good network 

architecture, systematically trying many networks with different numbers of hidden 

units, estimating the sum squared error for each network, and choosing the one with 

best average sum squared error performance, i.e. the minimum generalization (test) 

error. Bayesian learning is supposed to be a good learning method that generalises 

well, see Figure 2.3. 

A great variety of methods have been proposed to measure the importance of 

inputs. The main conclusion is that there is no single measure of importance that is 

appropriate for all applications [5J. In a straightforward linear model, i.e. a neural 

network without hidden units, each weight is the change in the output associated 

with a unit change in the corresponding input, assuming all other inputs are held 

fixed. However, this interpretation depends on whether one input can change inde

pendently of the other inputs. If the inputs include characteristics that one external 

operator cannot control and that are not independent, the interpretation has no base. 

Comparing weights in a neural network is more problematic than comparing weights 

in linear models, because now the simple interpretation does not exist due to the 

hidden layer. 

Neal's code implements the idea of Automatic Relevance Determination, ARD. 

This idea is based on a hierarchical choice of hyperparameters controlling different 
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groups of weights, i.e. input-hidden layer, input-output and hidden-output connec

tions. If one input is irrelevant the hyperparameter grows and forces the associated 

parameters to vanish (it is necessary to scale the inputs so that a one-unit change 

has similar significance for each of them). This idea is called automatic relevance 

determination ARD, and was introduced by Mackay and Neal [14]. Then, by com

paring the values of the hyperparameters which control the weights outwards in each 

input, it would be possible to get an idea of the important inputs. However, it is still 

not clear how good this measure is and how to interpret it in an architecture with 

input-hidden and input-output connections. 

In this work a measure of 'importance' has been taking into account by manipu

lating the values of the inputs, and then studying how much the outputs will change. 

A way to measure the input relevances based on differences is used in this thesis. 

Only one input will be varied at a time in order to study the effect on the output, 

the remaining inputs being kept constant. The effect of equal variation in the inputs 

allows us to compare between inputs in the light of the output variation because the 

data are normalised. 

2.2.9 Network training method details 

This is a typical example of a run used with Neal's code [19] for a given architecture 

net-spec e-ee1-log.net 5 1 1 / - 0.05:0.5:1 0.1:0.5 -xO.l:0.5 0.05:0.5:1 1 

model-spec e-eel-Iog.net real 0.05:0.5 

data-spec e-eel-Iog.net 5 1 / e-e.dat@1:144 . e-e.dat@145:288 . 

net-gen e-eel-Iog.net fix 0.5 

mc-spec e-eel-Iog.net repeat 10 sample-noise heatbath hybrid 100:10 0.2 

net-me e-eel-Iog.net 1 

mc-spec e-eel-Iog.net sample-sigmas heatbath hybrid 1000:10 0.4 

net-me e-eel-Iog.net 100 

The first command of the run, 'net-spec', creates a 'log' file containing the specifi

cations for the network architecture and the priors to use for the network parameters. 

Once the network has been specified, the 'model-spec' command specifies how the 

network outputs will be used to model the targets; in this case the targets are real

valued and modelled as the network output plus a Gaussian noise. The data sets 

used for training and for testing have to be specified with the 'data-spec' command. 

The next three commands, 'net-gen', 'mc-spec' and 'net-mc' start the simulation with 

a short initial phase where the hyperparameters and parameters take on moderate, 

not extreme, values. The most important and final part of the run is the sampling 
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phase which is specified by the last two commands 'mc-spec' and 'net-me'. The first 

command of the sampling phase, 'mc-spec', appends a new set of Markov chain oper

ations to the 'log' file. These operations are Gibbs samples for both hyperparameters 

and parameters. The iterations of the sampling phase started with the last command, 

'net-me' [19J. 

The architecture used is the same asthat one represented by Equation 2.1. Only 

one hidden layer has been used for simplicity. The success of networks with this 

architecture is demonstrated in Chapter 3. The above example of a run is for a given 

architecture with 5 inputs, 1 hidden unit and 1 output, used in Chapter 3 for the 

prediction of weld metal chemistry. However, in this work the behaviour associated 

with using 1 to 10 hidden units in the hidden layer has been analysed for each output 

predicted. The one with the best performance based on the average sum squared 

error consideration of the test data will be chosen. 

The parameters have been divided into 5 groups: input-hidden weights, hidden 

biases, hidden-output weights, input-output weights and output biases. It is necessary 

to specify a prior distribution for each group and for the noise expected on the data. 

After many attempts based on trial and error, it is concluded that the choice of these 

priors is not crucial to the results providing that extreme values are not selected; if 

sensible values are chosen, the training process will be able to achieve the required 

parameters by inferring them from the data. These values have been chosen based 

on experience. The noise is supposed to be drawn from a Gaussian distribution with 

variance 0 2 or precision r = 0-2 Then a 'vague' gamma probability, p(r), is given 

to the precision allowing it to vary in a wide range. The gamma probability is given 

by 

p( r) ex r'l'-I exp( -ra/2/l) (2.10) 

and the values selected are 0 = 0.05 and a = 0.5, where a is the shape parameter. 

For the input-hidden weights a three layer prior is given, that is to say, one more 

parameter than the prior which was used for the noise, which is in a higher status. 

Each weight is given a zero-mean Gaussian distribution of variance 0 2 being this 

variance controlled by a Gamma distribution as in Equation 2.10. The parameters 

used are 0 = 0.05, ao = 0.5 and al = 1. The same prior is given to the input-output 

weights. 

The hidden-output prior is given a two layer prior, with parameters a = 0.5 

and 0 = 0.1, but scaling the variance to the number of hidden units, following [14J. 
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The output-biases are given zero-mean Gaussian priors with a standard deviation of 

a = 1. The hidden-biases group is given a prior consisting of two hierarchical layers, 

given by a gamma distribution with a = 0.1 and ao = 0.5. 

The network training begins with a short initial phase where the hyperparameters 

are kept constant at 0.5, allowing the weights to grow during 100 leapfrogs (finite 

time steps). The short initial phase is followed by a long sampling phase, then the 

simulation is brought to equilibrium· and a sample of 100 networks is produced from 

the posterior for use in prediction after Monte Carlo updates of 1000 leapfrogs. 

In general it is very difficult to know when a Monte Carlo chain has reached 

equilibrium, i.e. when the algorithm reaches regions of high posterior probability. An 

approximate way to guess when the chain has reached equilibrium is by plotting the 

training and test sum average squared error. 
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Figure 2.6: Sum Squared Error evolution during the sampling phase 

In most of the simulation in this work the training and test errors show the 

behaviour presented in Figure 2.6, during the sample phase. In this example the 

initial 30 nets can be discarded and the remaining 70 networks (70 different sets of 

weights), can be used to make predictions. A single valued prediction will be the 

mean of the 70 guesses with the error as the standard deviation error. The command 

to make prediction in Neals' program is 'net-pred', where it has to be specified, the 

'log' file (with all the information), the input data for prediction and how many 

samples are going to be used need to be specified. 
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An error bar for each value predicted can be obtained from the predictions of the 

networks from the Monte Carlo chain. It is also possible to obtain from them the 

standard deviation for each value. The standard error deviation is given by 

sd= JDt -0)2 
N-l 

(2.11) 

where 0 is the mean value predicted, t is the 'real' value from the database and N 

the number of predictions, in this case 70. 

2.2.10 Summary 

The characteristics of the neural network models employed in this thesis have been 

reviewed. Feed-forward neural network models with one hidden layer are employed. 

The data used to feed the network are normalised and scaled in the range where the 

transfer function, i.e. hyperbolic tangent, varies the most. The number of inputs 

and hidden nodes depend on the particular output to be predicted. Several networks 

with increasing numbers of hidden nodes, i.e. from 1 to 10, and different choices of 

input variables are tested and the one with least error in the prediction of the test 

data is chosen. Predictions and their errors are calculated as the average of the latter 

samples of the Monte Carlo chain which are in equilibrium, i.e. typically 70 samples. 

The relative importance of the inputs in the prediction of the output is measured by 

a simple difference method. 

2.3 Molecular dynamics 

2.3.1 Introduction 

Molecular dynamics is a computer technique that solves Newton's equations for a 

system of particles. The full set of classical equations of motion are simultaneously 

solved for all the particles in the system. Molecular dynamics simulations (MD) 

also provides the whole dynamics of the process studied, allowing one to follow the 

trajectory of any particle in the real space. Molecular Dynamics is an ideal simulation 

method when the dynamical properties of a many-particle system are required [20j. 
Molecular dynamics have been widely used for the simulation of radiation damage 

in solids, where many-body interactions are of great importance for the accurate 

description of the process. 

Models based on the binary collision approximation (BCA), are also extensively 

used in radiation damage studies. In the BCA the trajectories of energetic particles 
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are represented as a series of two-body encounters in which the other particles do not 

take part. The binary crystal model (BC) and Monte Carlo models (MC) are two 

types BCA models. The BC model assigns atoms with well-defined initial positions 

and the collision parameters are calculated from them in a geometrical manner. On 

the other hand MC models commonly use aleatory methods to locate atoms and 

calculate the collision parameters. These methods based on the binary collision ap

proximation have been extensively used in the interaction of ions with solid surfaces. 

For a review of them see [21]. 

In this thesis classical MD simulations have been chosen to analyse the structure 

of grain boundaries and the effect of collision cascades near them. The intrinsic 

many-body interaction nature of a collision process in a system with many particles 

is completely described by MD simulations. 

2.3.2 Equations of motion 

Classical molecular dynamics assumes that the particles of the system move according 

to the classical Newton's equations of motion. Given a system of N particles the 

equations of motion can be written as follows: 

(2.12) 

where ri, Vi, ai, mi and F; are the position, velocity, acceleration, mass and force 

respectively, associated to each particle i. It is usually assumed that the forces be

tween particles can be derived from a potential only dependent on the positions of 

the particles. In this case the force on a particle i, F;, is given by the differential 

of the potential energy function, V, with respect to the position of the considered 

particle as follows: 

(2.13) 

Once the potential energy function of the system is known, the equations of motion 

can be simultaneously solved for all the particles on the system. 
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2.3.3 The Verlet algorithm 

Solving the equations of motion is a means to obtain, given the particle positions, 

velocities and forces at time t, the positions velocities and accelerations at a later 

time t + tlt. The standard numerical solution of the equations of motion is obtained 

by a finite difference approach where the time is discretised. A numerical algorithm is 

needed to solve the equations of motion. There are several integration methods which 

can provide different levels of accuracy on the calculation. In molecular dynamics 

simulations the accuracy of the integration algorithm is always in compromise with 

the speed of the calculation. 

One of the most popular integration algorithms is the Verlet algorithm [22]. The 

Verlet algorithm is derivable from a Taylor series expansion and it is of second or

der accuracy for positions and velocities. The Verlet algorithm can be expressed as 

follows: 

i;.+1 = i;. + vntltn + ~itntlt~ + O(tltn)3 

Vn+1 = vn + ~(itn+1 + itn)tltn + O(tltn)3 (2.14) 

where T, v and it are the position, velocity and acceleration of a given particle. Sub

scripts indicate the time step number at which the values are calculated. tlt is the 

time step length. 

As it can be seen from the previous equation positions of the particles at time 

step n + 1 are obtained using the positions, velocities and accelerations associated to 

the particle in the previous step. After obtaining the new positions of the particles 

the accelerations and forces at the new time step can be also calculated, because 

the potential only depends on the positions of the particles. Accelerations at the 

new time step are required to calculate the velocities as is indicated by Equations 

2.14. This algorithm has been proved to be of great accuracy, however, because 

this algorithm is of order 2 only small time steps can be used, i.e. the order of 

femtoseconds. The Verlet algorithm is also symplectic, which means that it preserves 

all the Hamiltonian invariants, i.e. energy, to the numerical accuracy employed. As 

such the method preserves energy better than many higher order methods. 

Higher order integration methods can be derived by truncating the Taylor expan

sion to greater powers of the time step. One example of this higher order methods 

is the third-order, two-step method of Smith and Harrison [23]. This higher order 

method calculates higher derivatives of the forces and increases the storage require

ments. It might appear that this could be compensated by the fact that the time 

step can be increased without losing accuracy however, often empirical potentials 
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have discontinuities in the higher derivatives and in such cases higher order methods 

which attempt to approximate these derivatives numerically can be inaccurate. Thus 

low order methods are preferred. 

Better accuracy of the trajectories is needed when the particles suffer big changes 

in their position during small times. This is the typical situation of a collision cascade 

simulation where collisions involve close interaction with big repulsion forces. A 

good algorithm is needed to keep accuracy in these cases but also, a good choice 

of the time step. This time step can be automatically adjusted in the simulation 

in order to optimise accuracy and speed of the simulation [23, 24, 25]. Accuracy of 

the simulations can be estimated by monitoring the total energy conservation of the 

system. 

This thesis uses the Verlet algorithm for the integration of the equation of motion. 

Accuracy is optimised in this thesis by setting up different time steps depending on the 

stage of the simulation. In the first instants of the simulation, when close interactions 

i.e. collisions, are more frequent and strong repulsive forces appear, the time step is 

reduced typically to the tenth of femtosecond to keep accuracy. During the simulation 

the time step is gradually increased until a maximum value of typically 2 fs, which 

happens when the system is close to its relaxed state and no close interactions occur. 

2.3.4 Boundary conditions 

Molecular dynamics simulations start from a predefined arrangement of particles. 

The initial positions of every particle involved in the simulations has to be specified. 

If the system has a crystal structure this arrangement can be very easily coded by 

repetition and translations of the basic unit cell until the required size of the system 

is reached. A three-dimensional rectangular box is usually the shape of the system 

which is simulated. The finite size of the system to be simulated will depend on the 

computational resources available. Systems up to 108 atoms have been simulated in 

parallel computer systems, this gives systems of the order of nm. 

Possible edge effects can be of great importance when the size of the system 

to be simulated is under consideration. Edge effects are caused by atoms at the 

boundaries of the computational cell. These atoms are not surrounded by the same 

crystallographic atomic configuration as an atom in the bulk. The behaviour of this 

atoms will be completely different compared with those in the bulk. Therefore, if the 

phenomenon which is simulated takes place in the bulk of the material the size of 

25 



the computational cell have to be big enough in order to avoid the interaction of the 

boundaries with the region of interest. 

Depending on the purpose of the simulation and how the edge effects can affect it, 

different boundary conditions can be applied. Free and periodic boundary conditions 

are commonly used in MD simulations [20]. Free boundary conditions are applied 

when there are no restrictions of mobility for the particles and they can move beyond 

the initial limits of the computational cell. Free boundary conditions as well as fixed 

boundaries can clearly provoke edge effects in small systems. On the other hand, 

periodic boundary conditions are usually applied to avoid this edge effects. Periodic 

boundary conditions basically means that if a particle reaches a boundary then au

tomatically enters the computational cell on the other side of the cell, simulating in 

this way a quasi-infinite system. For example, if a particle moves to the coordinate 

Lx+a, being Lx the dimension of the cell in the x dimension, the new coordinate of the 

particle will be a. Periodic boundary conditions make no sense if the surroundings 

which the particle finds when is reallocated are different from the ones on the other 

side of the cell. The previous fact imposes a restriction on choice of the size of the 

computational cell, being that any dimension where boundary conditions are applied 

has to be an integer number times the length of the greatest symmetry periods in 

this direction. 

Free boundary conditions are usually preferred to periodic boundary conditions 

in simulations of high-energy atomic collision events, because it is preferable that 

energetic particles leave the simulation cell than reappear on .the opposite side [25]. 

However, large enough system will be always preferable whatever type of boundary 

conditions are used in order to minimise the boundary effects. 

In this thesis, rectangular computational blocks are employed. This computational 

blocks have two different orientated bicrystals forming a symmetrical interface in the 

middle of the system. Periodic boundary conditions parallel to the interface and free 

boundary conditions on the dimension perpendicular to the boundary are applied as 
J 

it will be explained in Chapter 4. The size of the blocks considered are big enough to 

contain the collision cascades studied avoiding interactions with the boundaries. The 

number of atoms which are contained in the simulation box depends on the model of 

the boundary being use, but is typically 40,000 atoms. 
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2.3.5 Neighbour lists 

The evaluation of forces is the most computation ally expensive step in molecular dy

namics simulations. Force evaluations can take up to 90% of CPU time during a single 

simulation [24]. A good optimised code has to be well tuned in force calculations. 

Most commonly the potentials used in simulations are short ranged potentials. For 

these potentials it is inefficient to examine all the interactions because, clearly, only 

atoms between a distance smaller than the potential cut-off distance will contribute to 

the forces. Methods to avoid this situation are based on the generation of neighbour 

lists. 

A neighbour list is generated for every atom and it contains all the atoms in a 

sphere of radius ro which is slightly larger than the cut off re distance of the potential. 

In this way the code only goes over the atoms on the neighbour list calculating the 

forces for those ones within a distance less than the cut off distance. These neighbour 

lists can be updated every time step, however by choosing a radius r 0 bigger than 

the cut off radius the frequency at which the neighbour lists are updated decreases. 

The neighbour lists are usually updated when the value of an accumulator, which is 

made by adding the two largest displacements suffer by the particles at every time 

step, is bigger than the difference between the outer and the cut off radius, ro - re· 

Updating neighbour lists can be time consuming because of the distance checking 

and some methods have been proposed to optimise it. The coarse grained cell or 

linked list method [26] has been shown to be faster for system sizes usually employed 

in molecular dynamics simulations, than other methods like the Verlet method and 

the method of lights [24, 25]. The linked list method divides the simulation region 

into a set of cubic regions with sides bigger than the outer radius then a cell list 

is generated by sorting all the atoms in their cells. Therefore for each atom, all its 

possible neighbours are in its own cell or any of the 26 neighbour cells that surround it. 

The algorithm will only consider atoms in neighbour cells for updating the neighbours 

within a distance of r o. 

In this thesis, neighbour lists updated with a linked list method are used. 

2.3.6 Statistics 

Enough simulations, must be generated in molecular dynamics simulations to obtain 

reliable quantities of the physical properties studied and give meaningful comparisons 

with experiments. Different simulation of the same phenomenon, are obtained by 

changing the initial conditions of the system without changing the physical nature of 
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the process to be studied. In radiation damage simulations, for example, statistics 

can be generated by changing the velocity direction of the primary knock-on atom. 

When generating statistics, it has to be taken into account, that the same simu

lation can give different results on different computers. This is due to the different 

optimisation of the code in different architectures, rounding errors and the inherent 

chaos of many Hamiltonian systems. 

2.3.7 Interatomic potentials 

Atomistic modelling of materials are based on the knowledge of the interatomic energy 

potential function. A requirement for good model of a material, i.e. the interatomic 

potential, is that it has to be accurate enough to permit the modelling of a broad 

range of experiments [27]. The complexity of the model has to be in accordance with 

the computer resources available which permit a simulation of a experiment between 

certain limits of computing time. For a reliable model in the case of metals, it has to 

be fitted or reproduce parameters like the lattice constant in its stable configuration, 

heat of sublimation, vacancy and interstitial formation energies and for cubic metals 

reproduce the elastic constants. 

Pair potentiais 

Modelling of metallic systems was initiated with the use of the so called pair potentials 

or semiempirical potentials. This pair interatomic potentials give the total energy per 

atom, up, as a sum of independent pair interactions functions, V, as follows 

(2.15) 

where the sums extend over all neighbours j at distance Xj, V represents the (repul

sive) interaction between ions, and the 1/2 factor is because the energy of each bond 

can be thought of as being equally divided between both particles. The Lennard

Jones and Morse potentials are two typical examples of this pair potentials. 

Pair potentials have many setbacks when used to model metallic systems. Pair 

potentials cannot reproduce the Cauchy relation between the elastic constants in cubic 

crystals. They cannot accurately reproduce the cohesive energy and the vacancy 

formation energy. If one of them is fitted the other one wrongly predicted by the 

. model. Also, pair potentials result in surface relaxations which are always outward. 

This is basically due to the linear dependence of the cohesive energy per atom on the 

local coordination number, contrary to the observed non-linear dependence [28]. 
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Many-body potentiais 

To overcome some of these problems a series of interatomic potentials for metallic 

systems have been developed since the 1980s. These interatomic potentials which 

include methods like the embedded-atom method [29], Finnis-Sinclair N-body po

tentials [30, 31] and the glue model [32], are generally referred as a many-body po

tentials or pair-functional methods. In these potentials a density-dependent term, 

the so-called embedding function is added as a functional associated with the local 

environment of a particular atom. 

The energy per atom in a crystal (the cohesive energy), Ut, is given by the many

body potentials as the sum of pairwise, up, and many-body terms, Un, thus: 

where up is given by equation 2.15 and Un is as follows 

Un = F(p) 

p = L <I> (Xj) 
j 

(2.16) 

(2.17) 

(2.18) 

where the sums extend over all neighbours j at distance Xj' This many-body part of 

the potential has different interpretations in the embedded atom method developed 

by Daw and Baskes and the Finnis-Sinclair N-body potential. In the embedded atom 

method, based in the density functional theory, the function p gives a measure of the 

local electron density at a site due to the linear superposition of electronic densities 

of neighbouring atoms, <I>(Xj). The embedding function F is the energy associated 

with placing an atom in that electronic density. The Finnis-Sinclair interpretation 

is based on second momentum approximations of tight-binding theory. As a result, 

Finnis and Sinclair take F (p) as proportional to the square root of p 

1 
Un = -A(p)2 (2.19) 

being A a proportionality constant which depends on the material. 

The many-body potentials have also serious limitations when modelling metallic 

systems [33]. The main setback is that these potentials are more suitable for metals 

with completely empty or filled bands. Partial filling of the d bands, i.e. transition 

metals, implies an angular character of the interactions between atoms in the material 

which this form of the many-body potentiais cannot represent. Some efforts have 
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been done to incorporate the angular nature of the bonding to metallic intaratomic 

potentials by including higher-order moments of the density of states of the tight 

binding theory [34, 35]. 

In particular, two main approximations are involved in the use of a many-body 

potential when dealing with interfaces: Firstly, no directional bonding between atoms 

on the crystal is assumed, because of the isotropic nature of the many-body potential, 

which is a clear approximation for a transition metal. Secondly, the validity of the 

many-body potential is assumed on the interface. Atoms interacting across the in

terface experience an electron density different from atoms interacting in the perfect 

crystal structure of the bulk. The isotropic nature of the many-body potentials does 

not take into account the previous fact, however their use can be justified by consid

ering that the change of the electronic density near the interface is small compared 

with the crystal bulk [36]. 

2.3.8 Calder and Bacon potential 

In order to represent the interaction between iron atoms, a many-body potential for 

a-iron has been used [37] in this work. This potential has the Finnis-Sinclair form [30] 

with modifications on the ion-ion repulsive part in order to give a good description 

of the collision event at high energies [37], which will be of importance in Chapter 5 

of this thesis. 

The many-body part of the potentials given by the cohesive part of the Finnis

Sinclair potential [30, 31] and is defined as: 

<l>(x) = 0.582674 A2, if x::; 2.2476 A 

<l>(x) = (x - d)2 + f3(x ~ d)3, if 2.2476A < x ::; d 

<l>(x) =0, ifx>d (2.20) 

The parameters involved in the previous equation are given in Table 2.1 

d(A) A(eV A" I) f3 c(A) eo (eV) cI(eVA" I) c2(eV A"-") 
3.569745 1.828905 1.8 3.4 1.2371147 -0.3592185 -0.0385607 

Table 2.1: Parameters for a-iron in the Finnis-Sinclair potential. 

There exist different choices of this parameters which can reproduce all the prop

erties fitted in the Finnis-Sinclair potential [38]. 
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According to the distance between ions, x, the repulsive part of the many-body 

potential, V(x), is described in four different parts as follows: 

1) The repulsive part of the Finnis-Sinclair potential for x ~ 2.4507 A , given by: 

ifx::;c 

V(x) = 0, if x> c (2.21) 

where the parameters are given in Table 2.l. 

2) A Born-Mayer type potential for 0.62 A::; x -< 2.4507 A, given by: 

V(x) = 7069.7203exp(-4.3991821x) (2.22) 

3) An exponential type potential for 0.305 A::; x < 0.62 A, given by: 

V(x) = exp(9.7262382 + 1.8058868x - 26.7488847x2 + 23.3815021x3
) (2.23) 

4) The Ziegler, Biersack and Litmark's universal potential (ZBL), [39], for x ::; 

0.305 A, given by: 

(2.24) 

with 

8(X) = 0.18175 exp( -3.1998X) + 0.50986 exp( -0.94229X) + 
+0.28022 exp( -0.40290X) + 0.028171 exp( -0.20162X) (2.25) 

where 

X=:: 
a 

0.88534aB . 0.44267aB 
a = (Z?23 + Zg.23) (If ZI =Z2 then a = ZO.23 ) 

aB = 0.530A 

e2 2.3070796 x 10-28 
. A d 

47rco - 10-10 x 1.60217733 X 10-19 (Ill an eV) (2.26) 

being e the electronic charge and co the permittivity of free space. 
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It was noticed that this parameterisation of the potential was slightly discontinu

ous between the Born-Mayer and the Finnis-Sinclair part of the potential. The joint 

point between these two potential parts was moved to 2.4507 A, from the original 

2.35053 A. At this distance the potential derivative is continuous between both parts. 

In addition an almost negligible term, -0.03416 eV, was added to the ZBL, exponen

tial and Born-Mayer parts of the potential to make the potential continuous. This 

potential give us a minimum of the potential energy per atom (cohesive energy) for 

a lattice constant equals 2.8665 A, being t.he energy -4.28 eV, see Figure 2.7. 

ao= 2.8665 A 
-:::--------- u,= -4.28 eV 

Lattice Constant. "n. (A) 

Figure 2.7: Cohesive energy of the Finnis-Sinclair potential as a function of the lattice 
constant in a iron bcc lattice. 

2.3.9 Summary 

The main characteristics of the molecular dynamics technique used in this thesis have 

been reviewed. The technique is applied to rectangular computational blocks which 

contain a symmetrical planar interface, i.e. grain boundary, between two bicrystals of 

a-iron. Periodic boundary conditions are applied to the plane parallel to the interface, 

with free boundaries used in the direction perpendicular to the interface. A many

body interatomic potential of the Finnis-Sinclair form has been used to represent 

the interaction between iron atoms. Molecular dynamics is used to calculate relaxed 

structures of the interfaces and to simulate collision cascades near the boundaries. 
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2.4 Computing 

The implementation for neural networks of the Markov chain Monte Carlo methods 

used in this work can be found in the C code written by Radford Neal [19]. The 

molecular dynamics code used in this thesis has been developed at Loughborough 

University and is written in FORTRAN code. This code has been optimised for 

its use with many-body, short-ranged potentials and system sizes of around 100,000 

atoms [24]. The code implements in Fortran code all the previous considerations for 

a optimised molecular dynamics simulation. This code has been adapted to the simu

lation purposes of this thesis with some additions and minor changes have been done. 

The main addition is a new subroutine which generates the initial computational 

block including a symmetrical tilt or twist boundaries between two bcc bicrystals 

with the desired misorientation, as it will be explained in Chapter 4. 

All the simulations have been mainly performed at the SUN UNIX workstations 

of Loughborough University. The configurations of this workstations are typically 

between 128-512 MS of RAM, 143-333 MHz, and they are running the 'Solaris 2.x' 

operating system. Also the Silicon Graphics Origin 2000 processors placed in the 

computing facilities of Manchester University have been used. 

The images showing different instants of the simulation have been obtained by 

using the UNIX based package 'Rayshade' [40]. Also movies from the molecular 

dynamics simulations have been done in MPEG format. The analysis and graphs of 

data have been made in its major part using the PC based package 'Microcal Origin' 

version 5 [41]. 
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Chapter 3 

The prediction of weld metal 
chemistry and mechanical 
properties 

3.1 Introduction 

Weld metal chemistry and toughness are focus of this work. Attempts to calculate 

from first principles the final weld chemistry from the various reactions occurring in 

a weld pool and the final physical and mechanical properties of the weld in the case 

of submerged arc welding have not been very successful to date. It is very difficult to 

determine what is happening in the pool due to the great variety of complex processes 

which may occur. 

Extensive analyses have been carried out concerned in this work with the pre

diction of weld metal chemistry and toughness using neural network techniques. A 

large, valuable, database, compiled over a number of years, provided by British Steel 

was used for the predictions. Neural network techniques based on a Bayesian frame

work which allows the net to learn from data in order to generalise properly for the 

prediction of outputs for previously unseen data were used. The implementation of 

the Bayesian learning in these neural network techniques is based on Markov chain 

Monte Carlo methods as explained in Chapter 2. 

Weld metal chemistry prediction~ have been made for 17 elements. It wa~ found 

that the non-linear regression models generated by the neural network gave a slight , 
improvement compared to simple linear regression for most of the elements consid

ered. The importance of each input in the prediction of the weld metal composition 

has also been studied - it is found that the plate and wire chemistries dominate in 

the prediction of the weld metal chemistry in line with known metallurgical experi

ence. Neural network models have also been generated to enable prediction of weld 
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metal toughness, a complex mechanical property. Neural networks present a clear 

improvement, with respect to linear models for the prediction of weld metal tough

ness, showing the intrinsic non-linearity of the relation between toughness, weld metal 

chemistry, temperature and microstructure. 

3.2 Submerged arc welding processes 

In general, an arc welding process occurs when two pieces of metal are joined in the 

presence of an electric arc. The general configuration of a typical arc welding system 

can be: a power source, which generates the arc between the electrode (wire) and the 

workpiece (plate) and a shielding system which is used to protect the molten weld 

from the air [42]. Submerged arc welding processes are usually operated with a single 

wire, although a common variant is the use of multiple wires. A shielding gas is not 

required for submerged arc welding processes, instead, prior to welding, a thin layer 

of flux powder is placed on the workpiece surface. These fluxes are formulated to be 

compatible with a given electrode wire so that the combination of flux and wire yields 

the desired mechanical properties through the optimization of weld metal composi

tion. Submerged arc welding processes are suited for longitudinal and circumferential 

butt and fillet welds. Depending on material thickness, either single-pass, two-pass 

or multipass weld procedures can be carried out. - the experimental database used 

in this work used three wires. A schematic diagram of the submerged arc welding 

process is given in Figure 3.1. 

The electric arc formed between the workpiece and the electrode creates a plasma 

consisting of ionized atoms and free electrons. The heat generated is carried from the 

plasma to the workpiece and melting occurs. A weld pool is thus created composed 

of the material from the workpiece and drops of liquid (consumable or filler material) 

which are prod uced by the effect of the heat on the electrode. 

The complex dynamics of the submerged arc welding process that uses a filler wire 

and flux shield are shown schematically in Figure 3.2. Several complex reactions are 

produced and various reaction zones may be considered: around the droplet at the 

electrode tip, around the droplet during flight, under the arc root at the weld pool 

surface (hot zone), and the weld pool surface away from the arc root (cold zone) and 

in the weld pool itself. 
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Figure 3.1: General configuration of a typical welding system . 
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Figure 3.2: Submerged arc welding process dynamics in the weld pool. 
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3.3 Predicting weld metal chemistry 

3.3.1 Introduction 

In seam welding of linepipe the choice of base plate and consumable chemistry, to

gether with welding parameters, to meet the required mechanical property specifi

cations is often based on previous experience. The ability to predict weld metal 

chemistry is extremely important because the properties of a weld are determined 

primarily by its chemical composition and cooling rate. Microstructure prediction 

models, and ultimately mechanical property prediction models, both require weld 

metal chemistry as their starting point. 

There have been a number of experimental investigations of the various interac

tions between wire, plate and flux during submerged arc welding processes, see for 

example [43, 44, 45, 46, 47, 48]. However, attempts to calculate from first princi

ples the final weld chemistry from the various reactions occurring in the weld pool, 

and hence the final physical and mechanical properties of the weld, in the case of 

submerged arc welding [49, 50, 51] have met with limited success to date. It is very 

difficult to determine what is happening in the pool due to the very rapid temperature 

cycles to very high temperatures during the welding process. In addition, reactions 

are unlikely to reach equilibrium given the short times available during the welding 

process and the effect of process variables on the extent of reaction is complex. 

Thier and Killing [50] eloquently simplify the problem by assuming that the chem

ical composition of the welding electrode can be changed in three specific zones during 

the welding process. 

(1) The 'droplet' reaction: in which all metallurgical reactions are included from 

the welding electrode just prior to the droplet entering the liquid metal pool, expressed 

as: 

(3.1) 

where x D is the concentration of the element x in the droplet at the point of entry int.o 

the weld pool, XE is the concentration of t.he element x in the electrode and t::.XDR is 

the change in concentration of element x as a result of any chemical reaction. 

(2) Dilution: in the second zone the droplet is mixed with the molten base met.al, 

the degree of dilution, D, being given by: 

D = Area of plate melted 
Area of weld bead 
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with the chemical composition of the liquid pool, Xp, being given by: 

Xp = (1 - D)(xE + ~XDR) + DXB (3.3) 

where x B is the composition of the base plate. 

(3) Reaction of the liquid metal with the molten slag, giving the final composition 

of the solidifying weld, xw, as: 

Xw = (1 - D)(xE + ~XDR) + DXB + ~XBR (3.4) 

where ~XBR is the change in concentration of the element x on reaction with the 

molten slag. 

These expressions require extension for the case of a multi pass weld, in which the 

degree of dilution will vary as a function of position of an individual bead within the 

weld, with some beads being a simple function of only the wire chemistry. 

In order to be able to predict the final composition of the weld, a detailed knowl

edge of the extent of chemical reaction in the various zones would be required. Thier 

and Killing [50] demonstrate that this is possible with reference to data available in 

the literature for specific fluxes, however ~x values are not generally available for all 

elements of interest. 

More recent work [51] has proposed that chemical interaction between the slag 

and metal occurs in three stages: (i) droplet reactions, (ii) dilution and weld pool 

reactions and (iii) the zone of cooling and the solidifying weld pool. These authors 

propose that oxygen transfer primarily occurs in the droplet zone. A kinetic model 

is proposed to explain the transfer of elements between the slag and the weld metal. 

Hence, it is possible to predict weld metal chemistry for some elements for single 

pass welds, however, the model requires extension to multipass welds and systems 

containing alloy fluxes. 

In view of the complications presented above, an alternative, simpler, approach 

was adopted by Thewlis and Dainty [52] which was to essentially treat weld metal 

chemistry as a mass balance between wire and plate chemistry. In order to use 

equations 3.3 and 3.4 to make predictions of final weld metal chemistry, taking into 

account dilution and element transfer, it was necessary to reduce the number of vari

ables. Given the complexities introduced in multi pass welding, a sensible starting 

point was a much simpler geometry consisting of only one pass per side. Observation 

of such welds showed that dilution was invariant with heat input, and that to a first 
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approximation, it could be considered as having a constant mean value of approxi

mately 56%. This was not unexpected because the plate and wire melting efficiencies 

were likely to remain invariant with heat input [53, 54]. 

Therefore, using a simplified form of equation 3.4, i.e. 

Xw = (1- D)XE+DxB +~x (3.5) 

where ~x now represents a more global element transfer function, values for ~x 

were calculated using values of dilution calculated from bead area measurements for 

a number of the welds. It was found that ~x values were reasonably small for the 

elements of interest for the particular ranges of plate, wire and flux chemistries being 

considered. 

For the purposes of linear regression dilution and element transfer were eliminated 

as regression variables[52], and an equation of the form 

Xw = AXE +BXB+C (3.6) 

was used, in which A, Band C are constants unique for each element, X, which 

embody information about dilution, element transfer and the presence of a tack weld. 

A tack weld causes some dilution of the parent plate, and is itself diluted into the 

weld beads. Therefore, if XE and XB are zero for a particular element then a positive 

value of C would indicate the presence of that element in the tack weld. 

Linear regression analysis produced r2 values which were in most cases signif

icantly greater than 0.8, with multiple correlation coefficients above 0.9. For the 

particular database welds of interest, it therefore seems that it is possible to make 

predictions of weld metal chemistry using primarily plate and wire chemistry as in

puts, largely justifying the assumptions that dilution is invariant with heat input and 

that element transfer is small. 

The next logical step is to investigate the prediction of weld chemistry through 

non linear relationships, i.e. neural networks. 
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3.3.2 Database description 

A database was used in this work which contained information for welds manufactured 

in the laboratory using 3-wire submerged arc welding with one pass on each side. The 

welding parameters and plate and wire chemistries used were typical of those used in 

linepipe seam welding. This database was compiled over a number of years at British 

Steel Technical, Swinden Laboratories, Rotherham, United Kingdom, (now Corus). 

Complete data, consisting of approximately 200 different fields (some related) were 

available for approximately 250 different welds, with partial information for a further 

50. According to the characteristics they describe, these fields can be separated 

into different groups including welding parameters, chemical analysis, mechanical 

properties and metallography. This work is primarily concerned with prediction of 

weld metal chemistry and also, with prediction of the mechanical properties, such as 

toughness, based on metallography, chemical analysis and welding parameters. 

The plates used varied in thickness from 15.9 mm to 25.4 mm and were either 

accelerated cooled or thermomechanically controlled rolled. Different values for the 

preparation angle of the plate (30-60°) and the electrode stickout (35-45 mm) were 

used. The database also included both balanced and unbalanced welds, and data 

for both the inner and outer diameter weld beads. The heat input range is 2.4-

7.4 kJ mm-I. The majority of the welds were manufactured using 4 mm diameter 

wires alloyed with Ti-B or Ni-Mo using Oerlikon OP122 basic agglomerated flux. 

Where possible, the chemical composition of the exact batch of welding electrode 

was entered, however, in some cases a mean composition was used. 

It is important to note that most of the plates were welded with a tack weld using 

an Fe-Mn-C wire. The tack weld was mainly continuous along the length of the weld, 

although some of the welds contained in the database were formed using intermittent 

tack welds. The location of the tack weld is illustrated in Figure 3.3. 

3.3.3 Models used 

The first step in applying a regression or neural network technique to a large database 

is to determine which variables are necessary as inputs. Two different choices of inputs 

have been used to predict weld chemistry, based on previous knowledge of important 

parameters and exhaustive trials of possible candidates which may influence the fi

nal composition. These two choices represent the best possible performance in the 

prediction of the composition of each element in the final weld. 

The first choice includes 6 variables extracted from the database. The model 

consists of 5 input units and 1 output. For a given element the output will be the 
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Figure 3.3: Location of tack weld bead geometry, after [53]. 

concentration of that element in the weld metal. The chosen in puts for this model 

are: plate thickness, heat input, stickout and the initial composition of the element 

considered in both the plate and wire. 

The second model considered is basically the same as the previous one but adding 

two more new inputs. The first of the two new inputs takes into account whether the 

given data belong to inner or outer diameter weld beads. The second one takes into 

account possible differences if the weld had been made with continuous or intermittent 

tack welds. These two new inputs are different in that they do not have a particular 

numerical value, but rather can only be 'yes' or 'no'. It is therefore possible to assign 

for one of the two choices the number -1 and for the other 1, for example. In the 

following analysis which involves this 7 input model it must not be forgotten that the 

data for these two additional inputs are not continuous. 

Before feeding the network with the data, each variable (input and output columns) 

has been scaled with zero mean and normalised with standard deviation 1, as defined 

in Chapter 2. New data using a neural network model have to be normalised and 

scaled with the same values as for the training data. 

The total number of data pairs used for training and testing the 5 input units to 

the network for each model predicted is presented in Figure 3.4. Half of the data pairs 

from the total data available were used for training and the other half for testing the 

network. After putting the data all together, deleting data with typographic errors 

and eliminating data from the welds which do not have an entry of every necessary 

input variable, the number of data decreased from the original database. Missing 

data is one of the most important problems when neural networks use real data. The 
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lack of data limits the ability of the neural network to accurately predict the weld 

composition of these, as can be seen particularly for the case of calcium and oxygen. 

Magnesium has not been studied because there are not enough data available. The 

number of total data pairs used for the model with 7 inputs has just one or two data 

pairs, depending on the element, less than the model with 5 input units. 
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~ Weld Chemistry Predicition 
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Figure 3.4: Total number of data pairs used for training and testing the neural 
network models with 5 inputs for every element. 

In Figure 3.5 the average chemical composition for each element in the plate, 

wire and weld for each element is illustrated. An important point to consider is the 

distribution of the data. For the major elements within the welds, Mn, Si, Ni, Mo, 

Cu and to some extent C, there was a good spread of chemical compositions present. 

However, for elements present in only minor quantities, such as Ca, Mg, and to some 

extent 0, all welds contained similar amounts of each, giving a much reduced range 

over which predictions can be made. 

The architecture used, consisted of one input layer with 5 or 7 inputs, as described 

above, an output layer with one output, the weld composition of the element. Ar

chitectures with one hidden layer containing from 1 to 10 hidden units have been 

evaluated for each element and each choice of inputs. The optimal number of hidden 

units for each number of inputs and element for the predictions has been selected 

as the one showing the least test error, and preference has always been given to the 

sim plest model. 
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Figure 3.5: Plate, wire and weld average composition for each element available in 
the database. 

3.3.4 Network results and comparison 

Throughout the remaining sections of this chapter the main features of the results 

for the weld metal chemistry prediction will be explained by consideration of two 

elements: titanium and nickel. 

Firstly, the results for the model with 5 input units which predicts weld titanium 

composition are presented. In Figure 3.6 the average sum squared error for the total, 

training and test data sets, is plotted as a function of the number of hidden units in 

the neural network. As the number of hidden units increases the complexity of the 

model grows, that is to say, that the number of parameters in the model increases 

and therefore the non-linearity of the relationship between the inputs and the output 

is more acute. If there are no hidden units the model is simply a linear model with 

direct proportionality between the input and outputs. As has been discussed, it is the 

test data set which gives more information about the capabilities of generalisation 

of the net. Plotting the results in this way makes it is possible to choose a correct 

model within the ones considered, i.e. one which is able to generalise appropriately. 

The titanium error plot, Figure 3.6, shows a typical behaviour. The errors are 

decreasing from a hypothetical linear model until an optimum non-linearity which in 

this case happens at 4 hidden units. From 4 hidden units onwards the test error is 

quite similar. Therefore a reasonable choice to predict titanium weld chemistry is a 

model with 4 hidden units. 
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Figure 3,6: Average sum squared error as a function of the hidden units predicting 
titanium weld composition, Up triangle, circle and square symbols represent test, 
training and total data sets respectively, with the lines drawn for convenience, The 
model used has 5 input units. 

The results for the model with 4 hidden units are presented in Figure 3.7 for the 

training and test data. The data predicted by the network are plotted as a function 

of the target data from the original database. It should be noted that the numerical 

values on the axis represent the normalised data rather than the absolute values. If 

the network prediction was perfect all the points would lie on the line 'y = x', also 

illustrated. It can be seen from Figure 3.7 that the distribution of data points for 

both the training and the test set are similar and close to the 'y = x' line. The error 

in the results for the training set always are expected to be better than for the test 

set because of the network has learnt from the training set. 

A slightly different behaviour is presented in the case of nickel with a 5 inputs 

network model, i.e. plate thickness, heat input, stickout and the initial composition 

of nickel in both plate and wire, In Figure 3.8 the average sum squared error for the 

different data sets as a function of the number of hidden units is presented. In this 

case the trend is quite different from titanium and there is no clear difference between 

a simple model and a more complex one; a good choice, therefore, may be a simple 

model with two hidden units. 

In Figure 3.9, training and test results are presented, There is a very good match 

between target for this relatively simple model with only a few 'outliers' poorly pre

dicted. 
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In Figure 3.10 the results for titanium and nickel are now presented together 

with the error as a one standard deviation. If the nickel test data set is considered, 

the points poorly predicted have an associated large error given by the net. This 

error, however, usually incorporates the 'correct' value which means that some of 

the samples from the Monte Carlo chain have predicted correct values, but not the 

majority of them. This is different from the situation where a predicted point is very 

far away from the correct value and in addition the error bars are very small which 

would mean that all the samples gave wrong values for this data pair, indicating that 

the network model is not flexible enough. 

The results using the second model with 7 inputs are now presented. This new 

model incorporates the same 5 inputs as the previous model plus a new one taking 

into account whether the given data belong to inner or outer diameter weld beads and 

a second one taking into account whether the weld has been made with continuous 

or intermittent tack welds. 

In Figure 3.11 the error for the different data sets predicting titanium with 7 

inputs are presented. The errors for the data sets for titanium when the number of 

hidden units is increased have a similar behaviour to the model with 5 inputs. A 

'good' choice again for the number of hidden units would be 4. In this 7 input case 

adding the two new inputs to the model makes. no significant improvement in the 

results. Figure 3.12 shows the predicted data for training and test data, together 
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and 2 hidden units in nickel case. Predicted training and test data versus target data 
are plotted with error bars. The error bars represent one standard deviation. 

with one standard deviation as the error bar, for the model with 7 inputs and 4 

hidden units. 

In the case of nickel using the 7 inputs model, the behaviour of the results is 

again quite similar to the model with 5 inputs, Figure 3.13. Increasing the number of 

hidden units makes no appreciable change in the error, and therefore it is adequate 

to choose 1 hidden unit and even it is sufficient to chose a linear model without any 

hidden units. In Figure 3.13 there is a big test error found for the case of 3 hidden 

units. This is because this particular network run has not reached equilibrium and 

some of the samples considered are 'wrong' because, due to the short initial phase, 

the parameters of the net have taken on extreme values. With these kind of graphs 
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it is very easy to say when a net is not working properly, because such large changes 

in the errors are unlikely when the number of hidden units is only increased by one. 

In Figure 3.14 the training and test data predicted are shown for the model with 7 

inputs and 1 hidden unit for nickel. Now the model is not as flexible as the one with 

5 inputs. In Figure 3.10, for the test data, the points which were poorly predicted at 

least had a big error which contained the real value, however, for 7 inputs the error 

bars for such values are smaller, indicating that the samples cannot predict properly, 

even including the error bar, the correct values for these data pairs. In general, it 

was found for all the elements that the choice with 5 inputs was better than the one 

with 7 input units. 
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Figure 3.13: Average sum squared error as a function of the hidden units predicting 
nickel weld composition. Up triangle, circle and square symbols represent test, train
ing and total data sets respectively, with the lines drawn for convenience. The model 
used has 7 input units. 

It is important to note that no allowance for flux chemistry has been made in the 

neural network models developed above. The majority of the welds in this example 

were made with very similar fluxes, and indeed ones that are expected to be essentially 

neutral. One interesting example has been found in the case of the nickel predictions. 

Inspecting the points which are not predicted well by the network and tracing them 

back to the database, it was found that most of them belong to welds made with a 

different flux which contains Ni-Mo powder. It is possible to introduce an additional 

input into the network taking this into account. In this case the extra input was 

chosen to have the form of a binary input, with a discrete value for welds without 
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Figure 3,14: Training and test data versus target data for the prediction of nickel 
weld composition using a model with 7 input units and 1 hidden units, The numerical 
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Ni-Mo powder and a different discrete value for welds made with Ni-Mo powder. 

The new model will therefore have 6 inputs: plate thickness, heat input, stickout, 

initial composition of the element considered in both plate and wire and this new 

binary input, If such a neural network was required to be extended to fluxes of many 

different chemical compositions then the type of input variable needed to enter the 

flux composition would have to be considered very carefully, In order to produce 

a completely general model for a variety of different fluxes, e,g, some fluxes are 

known to be manganese and silicon donating, some just manganese donating etc" an 

additional input variable would be necessary for the flux composition with respect to 

each element, 

The new predictions incorporating the extra input variable representing flux com

position are shown in Figure 3,15 for models with 6 input units, It can be seen that 

the results with the new model taking into account the additional input are signifi

cantly better, the test error being lower than that for the model with only 5 inputs, 

However, investigation of the sum squared error of the network as a function of the 

number of hidden units actually shows that with the extra input concerned with the 

flux composition, a more complex neural network model with 4 hidden units is even 

more accurate, indicative of possible interactions between the wire, plate and flux, 

This is illustrated in Figure 3,16, 
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Thus, the importance of prior metallurgical knowledge in the selection of the 

input variables needed to create the neural network models has been demonstrated. 

If relevant inputs are not included the network cannot hope to predict accurately. 
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Figure 3.15: Average sum squared error as a function of the hidden units for the 
prediction nickel weld composition. Up triangle, circle and square symbols represent 
test, training and total data sets respectively, with the lines drawn for convenience. 
The model used has 6 input units. 

A summary of all the results can be obtained from Figure 3.17. In this figure the 

average squared error for 4 different models have been plotted. These four models 

are: the neural network models with 5 and 7 inputs and two linear regression methods 

with 2 input units (plate and wire composition) and 5 input units (same inputs as 

the neural network model with 5 inputs). Basically, the linear regression models have 

been fitted following: 

(3.7) 

where b's are parameters, Y is the output and X's are the inputs considered. Given 

the training data pairs,( (i(i), t(i»), ... , (i(n), t(n»)) , a residual having Gaussian distri

bution with mean 0 and variance a2 can be defined as follows: 

(3.8) 
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Figure 3.16: Training and test data versus target data for the prediction of nickel 
weld composition using a model with 6 input units and 4 hidden units. The numerical 
values on the axes correspond to the normalised values of the target data such the 
mean is zero and the standard deviation 1. The error bars represent one standard 
deviation. 

The best parameters, b, can be obtained by minimising the chi-squared (or sum 

squared error SSE) 

N 

X2 = L:resf (3.9) 
i=l 

One method to simulate a linear relationship would be to use the same algorithms 

as in the Monte Carlo approach with 0 hidden units, in order to minimise the residuals. 

However, in this case linear regression has been performed using the facilities given by 

the commercial package Microcal Origin [41J. Similar, if not identical, results would 

be obtained for the linear relationship when calculated with different packages and 

methods. In order to compare with the neural network models, the same random 

training and test data have been used in each case. 

Many of the conclusions from this work can be obtained from Figure 3.17. In 

general, for almost all elements, the linear approach with 2 inputs is not a bad option 

to predict properly the weld composition. This means that for many of the elements 

a simple relationship must exist between plate, wire and weld chemistry. The best 

improvement can be achieved using a neural network with 5 inputs. In general, a 

model with 7 inputs does not give an appreciably large improvement. On the other 

hand, there are a few elements poorly predicted for all of the methods - oxygen, 

52 



niobium, ulphur and calcium. One of the main reasons for this could be that there 

are not enough data available, or simply that the choice of inputs is not appropriate 

for these elements. It should be noted that the concentrations of these elements, which 

are poorly predicted, are very small. Also, it should be noted that the comparison 

between neural networks and linear regression is made here only on the basis of the 

experimental dataset used, which was restricted largely to similar one pass per side 

welds, with a very limited range of flux chemistries. 
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Figure 3.17: Average sum squared error on test data for the prediction of weld com
position of each element in the database using different regres ion models: multiple 
regression with 2 inputs and 5 inputs and neural networks analysis with 5 and 7 input 
units. Only the best models for each neural network with the optimum number of 
hidden units are showed. 

3.3.5 Input relevance 

An attempt to measure the importance of the inputs on the final weld composition 

has been made. After trying with many different ways to determine which input is 

the most important [5, 55, 19, 13] a simple method based on differences, i.e. the effect 

of a change in an input on the output, has been used. 

A simple method can illustrate how each input affects the output. To explain 

the method, it should be noted that all the inputs and outputs are normalised with 

standard deviation 1 and scaled with zero mean. In a previous stage, the net is fed 
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with all the inputs set to their mean value, zero, and a value for the output is obtained. 

The objective is to see how the output is modified when each input is changed in a 

systematic manner. As the inputs are normalised, it is possible to compare equal 

relative changes. For example, feeding the net with two data pairs created as: all the 

inputs are set to zero and one of them set to the value 0.25, and similarly with all 

set to zero and one to -0.25. This method cannot be used to measure the importance 

of each input in models with binary inputs like the one that has been used with 7 

inputs, or the special one used with 6 inputs for nickel. In order to use this method, 

all the inputs must be continuous. Also it is important to note that this combination 

of values selected by hand does not represent a real experiment, rather a thought 

experiment which throws light on the relevance of each of the inputs. 

In Figure 3.18 the results of this method are presented for the titanium model 

with 5 inputs and 4 hidden units. The absolute differences between the maximum 

and minimum value are plotted for each input, also an arrow showing the tendency 

of the output by an increasing of the correspondent input is shown. It is found that 

it is the wire variation which provokes a major change on the output, followed by 

the plate composition. As expected, it is possible to see that increasing the values of 

plate and wire concentrations keeping the rest of the variables constant, increases the 

weld composition. The same study has been done for the nickel model with 5 input 

units and 2 hidden units, and the results are shown in Figure 3.19. The behaviour of 

nickel is quite similar to that of titanium. 

The same input relevance study has been performed for the other elements in 

the database. From all of the calculations performed it is clear that for certain 

elements, for example nickel, titanium, molybdenum, chromium, and sulphur it is 

the wire composition which dominates the final weld composition. However, for 

other elements, for example vanadium, aluminium, copper, phosphorus and nitrogen 

it is the plate composition which dominates the final weld composition. For the other 

elements it is not clear which of the two is the dominant input. However, a general 

conclusion is that the plate and wire composition dominates the final composition of 

the weld above factors such as heat input. 

3.4 Predicting mechanical properties: toughness 

3.4.1 Introduction 

The ability to predict weld metal chemistry is of great importance in the determi

nation of microstructure, and ultimately the mechanical properties of a weld metal. 
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One of most important mechanical properties for engineering purposes is toughness. 

Toughness of a material is defined as the energy needed to break it (energy absorbed 

in fracture). There are several ways to measure toughness, the most common is by 

impact testing in which the material is struck with a hammer and the energy ab

sorbed by the material in fracture is obtained. Impact toughness testing is mainly a 

ranking technique [42]. A brittle material is defined as one absorbing little energy, 

whereas a tough material would absorb large amounts of energy in the fracture pro

cess. Metals generally have high toughness, whereas glasses and ceramics have low 

toughness values. One of the most important requirements from welded joints is that 

they should not fail in a brittle manner, i.e. that they should be tough and absorb a 

large amount of energy during fracture. 

Typical approaches used to predict toughness are based on linear regression anal

ysis of many variables. These linear regression methods used traditionally [56] are not 

capable of simulating the toughness behaviour properly because the real behaviour 

of the toughness with respect to the variables in weld process is clearly non-linear. 

A neural network technique has been used to predict Charpy impact toughness of 

C-Mn Steel arc welds following Mackay's ideas by Bhadeshia et al. [57]. The database 

used in Bhadeshia's work and the parameters for the network can be obtained from 

the MAP Website [58]. The same technique has been used by Cool [59] to predict 

the yield and ultimate tensile strength of steel welds. 

3.4.2 Models used 

For the prediction of toughness, the results of three different models chosen will be 

shown in this chapter. Different combinations of variables and models have also been 

tested but the results are not remarkable. The first two models take into account 

only weld composition. The inputs chosen for the first model with 9 input units are: 

the weld composition of carbon, manganese, silicon, nickel, aluminium, phosphorus, 

sulphur, nitrogen and oxygen, and also test temperature. A second model has been 

tested with the same input units as above plus two new input variables: the weld 

composition of molybdenum and nickel. A third model contains also microstructural 

information. This third model contains 13 input units including the input variables 

for the model of 11 inputs plus acicular ferrite percentage (AF%) and primary ferrite 

(PF%). In Table 3.1, the range of all variables used in the 13 input model are 

presented. 

In Table 3.2, the total data available and the quantity of data used for both 

training and test data are shown. It can be seen from Table 3.2, that the quantity 
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Variable Range 
Weld C (wt%) 0.042-0.096 
Weld Mn (wt%) 0.91-1.56 
Weld Mo (wt%) 0.005-0.46 
Weld Si (wt%) 0.19-0.53 
Weld Ni (wt%) 0.02-0.96 
Weld Al (wt%) 0.008-0.04 
Weld P (wt%) 0.009-0.023 
Weld S (wt%) 0.002-0.011 
Weld N (wt%) 0.004-0.013 
Weld 0 (wt%) 0.021-0.043 
Temperature (K) 143-333 
Acicular Ferrite (%) 60.5-98.2 
Primary Ferrite (%) 1.6-25.1 
Charpy toughness (J) 7-211 

Table 3.1: Variable descriptions for the 13 input units model predicting toughness 

Toughness (9 i) Toughness (11 i) Toughness (13 i) 
Total Data 1270 1270 842 
Training Data 635 635 421 
Test Data 635 635 421 
Input Units 9 11 13 

Table 3.2: Number of data pairs for models predicting toughness 

of data available to predict toughness is larger than for the models used to predict 

weld chemistry, because the database included the values of toughness at various 

temperatures, in particular: -1300°C, -1100°C, -900°C, -700°C, -500°C, -300°C, 

-200°C, -100°C, 200°C, 400°C and 600°C. 

The data have been scaled to zero mean and normalised between the range 

[-0.5,0.5]. Note that earlier work with the same data has previously been carried out 

with a different normalisation method, i.e. zero mean scaling and normalised with 

one standard deviation, although this is of no consequence for the final predictions. 

3.4.3 Network results and comparison 

The results of the three models used to predict toughness are shown in Figures 3.20, 

3.21 and 3.22. The average sum squared error for the models with 9, 11 and 13 input 

units respectively, are presented. It can be seen that the behaviour follows the same 

trends for each of the three models. The errors decrease with the number of hidden 

units until an optimal configuration is reached. This optimal configuration is reached 

for each model at 7 hidden units, see test error on the figures. These figures reveal 
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also the non-linearity of the toughness with respect to the input variables, because of 

the sharp decrease in the error if it is compared with a model with one hidden unit 

or extrapolating with zero hidden units, which represents a linear model. 
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Figure 3.20: Average sum squared error as a function of the number of hidden units 
for prediction of toughness. Up triangle, circle and square symbols represent test, 
training and total data sets respectively, the lines drawn for convenience. The model 
used has 9 input units. 

The second model, in which molybdenum and nickel were added as inputs, does 

not make significant improvement if it is compared with the 9 inputs model. However, 

the third model which includes microstructure information does give a significant 

improvement, i.e. smaller test errors. It is this third model with 13 input units 

and 7 hidden un its which appears to be the best of those considered. This model is 

therefore selected to make predictions, and the results for training and test data are 

presented in Figures 3.23. In Figure 3.23, the error bar for each point is not plotted 

due to clarity. 

When comparing between models with different number of inputs, we have to 

be aware that different training and test data set are used with normally a different 

number of data pairs. The training and test data have been extracted randomly and 

therefore are representative of the whole range of the data, so the differences arising 

from the use of different training and test sets are not important. It should be noted 

that if we want to use the same dataset used in one model, i.e. 13 inputs, with another 

model , i.e. 9 inputs, we have to be aware that different values for normalisation arc 
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Figure 3.21: Average sum squared error as a function of the hidden units for the 
prediction of toughness weld composition. Up triangle, circle and square symbols 
represent test, training and total data sets respectively, the lines drawn for conve
nience. The model used has 11 input units. 
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Figure 3.22: Average sum squared error as a function of the hidden units for the pre
diction of toughness. Up triangle, circle and square symbols represent test. training 
and total data sets respectively, the lines drawn for convenience. The model used has 
13 input units. 
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Figure 3.23: Training and test data versus target data for the prediction of toughness 
using a model with 13 input units and 7 hidden units. The numerical values on the 
axes correspond to the normalised values of the target data such the mean is zero 
and the scaling is in the range [-0.5, 0.5J 

required. The data set used for 13 inputs has been normalised to use on the 9 input 

units model with 7 hidden units; the sum squared error obtained was 0.16 higher 

than the 0.12 obtained with the model with 7 hidden units and 13 inputs. 

Hence, it can be seen that the models needed for the prediction of weld metal 

toughness are much more complex than those for the prediction of weld metal chem

istry, and indeed provide a significant advantage over predictions which could be 

made using simpler linear regression techniques. 

It should be noted that the neural network model gives the same predictions if 

an additional input which effectively contains no additional information is fed into 

the net. For example, if in the last model we added the ferrite sideplate as an input 

variable, the main results and behaviour are the same as in the model without this 

additional input. This is because acicular ferrite, primary ferrite and ferrite sideplate 

are not independent; they have to sum to 100%. 

3.4.4 Input relevance 

The importance of each input variable has been studied for the best model, the one 

with 13 input units and 7 hidden units. To measure the input relevance of each input 

the same simple method employed on weld chemistry prediction, based on differences 
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has been used 1. As has been explained, this method measures the importance of 

inputs feeding the network with artificial values (not real ones). An input variable 

is changed in an interval, for example [-0.5,0.5] keeping the rest of the input units 

constant at their average value. Extreme values in this interval are calculated by the 

net for different inputs and the variation on the output response is compared. I 
The results are shown in Figure 3.24. Figure 3.24 shows clearly that temperature 

is the most important input of all the 13 variables considered, as expected. Increasing 

the temperature increases the toughness, alternatively if the temperature decreases 

the material become brittle. After temperature, it is the quantity of acicular ferrite in 

the weld which influences the toughness the most. It is well known that the acicular 

ferrite content of weld metals is one of the most important properties which determine 

changes in toughness, a tougher weld having a higher acicular ferrite content [42]. It 

is also found that in terms of the weld metal chemistry, silicon has an important 

influence on toughness. Also an increase in levels of nitrogen, sulphur or aluminium 

decrease toughness, making the material brittle, as can be inferred from Figure 3.24, 

see the arrows. It is necessary to remember that these changes in toughness and 

associated input relevances are studied in a hypothetical weld. Another thing to take 

into account is the fact that some of the input variables may not be predicted to be 

relevant for measurements of toughness, but instead their effect is noticed through 

other input variables, such as microstructure (acicular ferrite and primary ferrite). 

A similar study for the prediction of toughness has been done by Bhadeshia and 

co-workers [57]. They used a different database from the one used in this work, 

which included both submerged and manual arc welds. Their model used basically 

the same inputs as this work as inputs but additionally included yield strength and 

the type of welding process. Also a different approach of the neural network technique 

based on the evidence framework was used in their work. They found that the welding 

process and the acicular ferrite content were deemed to be the most important inputs. 

Test temperature was also included as an input but was not, however, predicted to 

be the most important factor. This might be due to the different choice of inputs 

and the different ranges of temperature contained in the database, being smaller 

in Bhadeshia's work, i.e. temperature range being 213-293°C in their work and 

143-333°C in our database. Also, the possible interdependence of inputs has to be 

considered when comparing results of input relevances, i.e. acicular ferrite contents 

would greatly affect yield strength. 

1 Other methods, i.e. comparison of weights associated to every input, have also been used 
to predict input relevances. In all cases the methods agree on the most important input, test 
temperature, but different predictions are made for the second most important input, revealing the 
complexity of calculating input relevances, see comments on input relevances in Chapter 2. 
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Figure 3.24: Relevance of every input on the prediction of toughness. Arrows repre
sent increasing or decreasing of the input on the final weld with an increasing of every 
input. Predictions based on a simple model in which one input is changed keeping 
the others constant. 

3.5 Summary 

An extensive and complete study of the prediction possibilities of neural network 

models has been made using a submerged arc weld database. An attempt to predict 

both weld composition and toughness has been made. 

The first part of this chapter was devoted to predicting final weld composition 

from welding parameters. Each final element concentration in the weld has been 

studied separately from the others, creating different models. The main inputs taken 

into account in this part of the work are: plate thickness, heat input, stickout, initial 

composition of a given element in plate and in the wire. Two additional inputs 

taken in consideration are whether the welds have been made using continuous or 

intermittent tack welds, and whether it is the inner or outer diameter bead which is 

being considered. 

Basically, simple models with few (~ 2) hidden units and 5 input units are suitable 

to predict weld composition. The small number of hidden units required indicates 

that relationships between welding parameters and final composition do not require 

complex models to obtain reasonable predictions, i.e. there is not a high non-linearity 

62 



so there is not clear improvement compared with multiple linear regression methods. 

In support of this, a relevance study shows that the composition of plate and wire 

dominate the final composition in the weld. Elements like nickel, vanadium, titanium 

and boron are accurately predicted whereas oxygen, niobium, sulphur and calcium 

are poorly predicted. 

The second part of the chapter deals with toughness predictions taking into ac

count weld composition, temperature as well as microstructural characteristics. The 

best model for predicting toughness contains 13 inputs and 7 hidden units. This 

model shows a big improvement compared with a linear model, i.e. without hidden 

units, and it reveals that neural networks are more suitable to predict mechanical 

properties due to the intrinsic non-linear relationship involved than linear models. 

The relevance study shows that test temperature is the most relevant input for 

predicting toughness, followed by the percentage of acicular ferrite in the weld, as 

expected intuitively. A higher temperature or percentage of acicular ferrite makes 

the material tougher, as expected. The model is able to predict that increasing the 

concentration of N, S or AI, makes the material more brittle. 

This work has clearly demonstrated that neural networks are useful in the predic

tion of complex phenomena for which it is difficult to derive a fundamental model. 

Similarly, it has been shown that where an intrinsically simple physical relationship 

exists between input variables (weld metal chemistry) the neural network does not 

provide a significant advantage over linear regression techniques. For special cases, 

for example, the welds made with a NiMo flux, the neural network is able to provide 

fine tuning. In the case of a complex relationship between input and output variables 

(weld metal toughness) the neural network does provide a significant advantage. It is 

therefore imperative to carefully consider the structure of the data and the properties 

which are desired to be predicted before time is expended in creating neural network 

models. Meaningful predictions cannot be made unless a significant quantity of data 

is available. 

In summary, the application of neural networks to welding problems has been 

investigated and a number of recommendations have been made as to their future 

use. 
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Chapter 4 

The atomic structure of 
symmetrical grain boundaries 

4.1 Introduction 

Metals are usually present in nature in the form of polycrystalline materials com

posed of random oriented crystals. The junction of these crystals are bulk interfaces 

where the perfect crystal structure of both sides is broken by a disordered region. 

Interfaces are regions of a material composed of just a few atomic layers where the 

atomic structure and physical properties, i.e. thermal expansion, electrical resistiv

ity, elastic response etc., can differ substantially from those of the bulk and be highly 

anisotropic. These variations in properties, at the atomic level, affect the behaviour 

over bigger scales of the material [3], determining some of the most important prop

erties in polycrystalline materials, i.e. embrittlement and toughness. Therefore, a 

good understanding of the microstructure of such interfaces and their relationships 

with the physical properties of the bulk material is necessary [60]. Unfortunately, 

our basic understanding of the atomic structure and properties, even for the simplest 

interfaces such as grain boundaries, is still very limited mainly because of limitations 

of experimental techniques. 

Bulk interfaces can be classified according to the phases of the crystals at the 

junction. If these two crystals, which form a bicrystal, are not of the same composition 

or they are different phases of the same material, the interface is usually referred 

to as an interphase or heterophase boundary; the interface is usually termed as a 

grain boundary when both crystals are of the same composition and phase. Grain 

boundaries are therefore the most common interfaces in polycrystalline materials. 

Earlier definitions of grain boundaries were also extended to heterophase boundaries 

and defined as follows: 
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A grain boundary in a piece of metal is the boundary separating two crystals (or 

'grains ') that differ either in crystallographic orientation, composition, or dimensions 

of the crystal lattice, or in two or all of these properties [61]. 

The complete characterisation of the structure of a grain boundary in a polycrys

tal requires its study on different length scales [62]. The structure of an interface may 

be studied at three different levels: large length scales, mesoscopic scale and atomic 

scale [36]. At large length scales the interface is viewed as flat or curved, separating 

two crystals with different orientations. In Figure 4.1 an optical micrograph of poly

crystalline bcc iron is shown where each individual shape is a unique crystal and the 

boundary of the shape is the grain boundary. The shape and size of the grains are 

determined by nucleation and growth events during processing. At such large length 

scales the characterization of the interface is described in terms of the geometrical 

(macroscopical) degrees of freedom which determine the orientation of the crystals 

forming the interface. On the mesoscopic scale, arrays of dislocations can be observed 

at the interface. To characterize the structure at the mesoscopic scale the dislocation 

model of interfaces has been used widely [63]. Finally, the atomic scale is described 

by the various atomic arrangement of atoms at the interface. 

At large length scales a grain boundary is defined by its geometrical parameters 

or degrees of freedom. The grain boundary geometry is related to the orientation of 

the two crystals forming the interface. Depending on the relative orientation between 

crystals grain boundaries have been traditionally classified in small and high-angle 

boundaries. Grain boundaries are normally classified as small-angle when the mis

orientation between the same crystallographic planes of the two crystals forming the 

interface is less than approximately 15° ; and high-aengle boundary when is bigger. 

High-angle grain boundaries can also be distinguished as singular (or special), and 

general [36, 65, 66]. This definition is based on the relationship between any property 

of the grain boundary and any of the macroscopic degrees of freedom (geometrical 

parameters). A singular interface is that the property of which has a cusp with re

spect to at least one macroscopic degree of freedom, being general boundaries the 

ones which do not exhibit any cusp on diagrams of a boundary property versus a 

geometrical parameter. This definition has been usually based on plots between the 

grain boundary energy and the misorientation angle of the boundary. In these plots, 

some boundaries present minima of energy compared with the vicinal boundaries 

with misorientation angles close to these special ones. The special character of a 

grain boundary compared with others has to be related to its atomic structure [66]. 

In principle, there are infinite types of grain boundaries depending on which way 

the two crystals meet. The frequency with which some types of grain boundaries 
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Figure 4.1: Optical microgaph of polycrystalline a-iron, 250x. After [64J. 

appear in polycrystalline materials is strongly dependent on the processing history 

of the material [67J. The orientation of crystallographic planes at the boundary can 

be obtained using the scanning electron microscope (SEM), the transmission electron 

microscope (TEM) or with X-ray diffraction techniques. On the other hand, to form 

images in real space of the atomic structure of grain boundaries needs a more power

ful technique such as high-resolution electron microscopy (HREM). High resolution 

electron microscopy can be used to analyse the atomic structure of the boundary 

region, although there are a number of limitations. Firstly, it is not an easy task to 

produce oriented bicrystals for the study of a specific boundary required. Secondly, 

the HREM technique is typically limited to low index tilt axis grain boundaries, i.e. 

such as <100> and <110>, where the atomic planes parallel to the interface in each 

crystal have an interlayer distance big enough for the resolution of the microscope 

[68, 69J. Thirdly, the grain boundary observations are limited to a view along the tilt 

axis, i.e. parallel to the interface. Also, some magnetic materials interfere with the 

electron beam of the microscope. Despite all these limitations, images of more com

plicated grain boundary configurations are becoming available after recent HREM 

studies [70J. 
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It has been shown above that due to experimental limitations, few grain boundary 

structures can be experimentally studied and it is in such situations that computer 

modelling can play an important role. We can use atomistic simulations to gain an 

insight into the atomic structure of grain boundaries. A study of all the possible 

types of boundaries can be made in the computer because of the ease with which 

the macroscopic degrees of freedom can be varied and controlled. Different atomistic 

simulation techniques have been applied to the study of microstructure and proper

ties of interfaces including: molecular dynamics, Monte Carlo methods, which are 

reviewed in [71, 36, 65J, and more recently ab-initio methods [72, 73, 74J and genetic 

algorithms [75J. However, comparison of computer modelling with HREM structures, 

where available, are necessary to validate the models employed [65J. Several studies 

deal with the comparisons of atomic grain boundary structures obtained by computer 

modelling and the experimental using the HREM [76, 77, 78, 79, 80, 81, 82J. 

The main results from experimental techniques and simulations regarding the 

atomistic structure of interfaces reveal many interesting features: 

• the boundary region is composed of a few atomic layers in which the 

arrangement of atoms is different from those of the bulk; 

• there exists a volume expansion close to the interface due to its pres

ence, i.e. the interlayer distance between distinguishable atomic layers 

parallel to the boundary is larger than in the bulk; 

• the 'new' arrangement of atoms is periodic along the interface; 

• some typical groupages of atoms, basic units, are identified at different 

boundaries; 

• more than one typical arrangement of atoms can exist for a determined 

grain boundary, i.e. met astable structures may appear. 

In spite of these main results more work is required because there are few system

atic studies which can lead us to a quantitative descriptions of the grain boundaries. 

Few theories, most of them related, have appeared to predict the structure of grain 

boundaries and quantify the relationship between them and some of their physical 

properties, e.g. grain boundary energy. The dislocation theory due to Read and 

Shockley [63J was one of the first models describing the structure of grain bound

aries, in terms of a dense array of dislocations or disclinations. The dislocation model, 

which is based on elasticity theory, has succeeded on the description of small-angle 
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grain boundaries failing when describing high-angle ones. In high-angle grain bound

aries where the overlap between atoms at the core of the grain boundary become 

important, elasticity theory is no longer applicable and it is necessary to consider the 

interatomic interactions at the boundary. 

All the models that appear after the dislocation theory, are essentially based on 

Bollman's coincident site lattice model (CSL)[83] which is itself based on geometrical 

considerations. These models have succeeded in describing the properties of some 

singular grain boundaries but they have failed to provide their detailed atomic struc

ture, which has been usually inferred from computer simulations. More recently, 

the so-called generalized coincidence site network has been introduced [84], which 

generalizes the coincidence site model. 

In addition, there are models based on repeated 'units' of atoms at the interface, 

like the polyhedral and the structural unit model. In the polyhedral unit model the 

atomic structure of interfaces, the boundary core, is described in terms of the stack

ing of polyhedra along the interface, which consist of closely packed clusters of atoms 

[85]. However, this model can only be applied to describe configurations of already 

known structures obtained by experiment or simulations. In contrast, the structural 

unit model [86] has been shown to be a very successful method to predict the mi

crostructure of symmetrical grain boundaries. Supported by computer simulations, 

the structural unit model indicates that any boundary consists of structural units of 

two other favoured boundaries. Favoured boundaries are composed of only one type 

of structural unit and normally, they are special boundaries with minimum energy 

configuration and short periodicity. These favoured boundaries determine a misori

entation range describing all the boundaries inside this range by combination of their 

short periodicity structural units. This description is approximate for the fact that 

units in intervening boundaries are distorted and also, several metastable structures 

may appear in the favoured boundaries and therefore at the intervening boundaries 

[87]. 

Atomistic simulations of the atomic structure of grain boundaries are based in a 

good description of the atomic interaction. Different ways of modelling, i.e. different 

interatomic potentials, have been used in atomistic simulations of grain boundaries, 

in metals in particularly. The use of pair potentials was widespread in the early 

atomistic simulations of the atomic structure and energies of grain boundaries in fcc 

metals [88, 89, 90, 91, 92, 93, 94, 86, 87, 95, 96]. With the development of many-body 

potentials, these have been common in simulations of defects in fcc metals [97, 80, 98, 

99, 100] and bcc metals [78, 82, 81]. However, it has been shown that different choices 

of interatomic potentials, i.e. pair or many-body potentials, have more influence on 
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values of grain boundary energies than on the calculation of grain boundary structures 

[101, 102]. Differences in the atomic structure of grain boundaries can appear when 

using non-central interatomic potentials. Many-body potentials tend to maintain 

the interatomic separations and coordinations as close as possible to the bulk, while 

interatomic potentials including angular dependence prefer to maintain bond angles 

close to those in the bulk [35]. 

Simulation studies on grain boundaries in a-iron also started with the use of pair 

potentials [103, 104, 105, 106, 107]' basically using Johnson's pair potential [108]. 

More recently, several semi-empirical many-body potentials have been developed for 

a-iron [30, 31, 109, 110, Ill], all of them trying to describe the delocalized nature 

of the metallic bonding and overcoming the problems of the pair potentials. The use 

of these many-body potentials in the study of grain boundaries in a-iron has been 

limited to a few grain boundaries [112]. Full ab initio energy calculations have been 

applied to the study of iron, however these have been limited to the study of small 

clusters of atoms forming simple grain boundaries [113]. 

The object of this chapter is to gain an insight into the structural aspects of grain 

boundaries in a-iron from an atomistic point of view. The first aim is to study the 

structure of symmetrical grain boundaries in ferritic steels using molecular dynamics 

simulations. Ferritic steels at typical service temperatures have the bcc-iron structure, 

a-iron, and therefore simulations have focused on bicrystals of a-iron. This chapter is 

also a necessary step for the study of radiation damage near grain boundaries, which 

is the subject of the following chapter in this thesis. 

When two crystal grains are adjacent the atoms near the boundary will arrange 

themselves into some kind of minimum energy configuration. The are many possi

bilities for local minima, however such possibilities must be consistent with the fact 

that the particles "should not move too much". It is not really possible to decide 

in advance how to carry out this minimisation process since the energy depends in 

a complex way on the positions of the atoms. To determine the minimum energy 

configurations we cleave two perfect crystals and place them adjacent to each other, 

following a CSL geometrical description of the bicrystal, but move the positions par

allel to the interface to the minimum energy position and allow the crystal to relax. 

This chapter explains the computer modelling procedure to obtain final relaxed 

structures at the atomic level of symmetrical tilt and twist boundaries in a-iron. The 

chapter starts with a geometrical description of symmetrical interfaces and how they 

have been implemented as computational atomic blocks. Second is a description of 

the molecular dynamics procedure employed to relax the simulated bicrystal. Finally, 

the relaxed structures of symmetrical tilt and twist boundaries are presented and 
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discussed. Grain boundaries are classified in terms of energy, width and volume 

expansIOn. 

4.2 Modelling grain boundaries in bee iron 

4.2.1 Bicrystal 

Real grains in polycrystalline materials are three-dimensional with curved or flat 

boundaries. Considering a grain as a perfect sphere, a typical grain in iron has a radius 

of ~ 10 J1.m. The computer simulation of a real curved interface of a grain in iron with 

a full molecular dynamics description would involve large computational resources. 

Modelling of grain boundaries in' this work is therefore based on flat interfaces. These 

flat interfaces were set up at the centre of rectangular three-dimensional bicrystals. 

The size of the crystals were of the order of 3.105 A3 and, contained approximately 

40,000 atoms depending on the grain orientation. 

The minimum number of geometric variables required to specify a complete geo

metrical characterization of the interface is called the number of geometrical degrees 

of freedom of an interface. We distinguish between macroscopic and microscopic de

grees of freedom of an interface [36J. The geometrical parameters at the macroscopic 

level can be thought of as the information required to manufacture a bicrystal from 

given crystals, with a particular orientation relation between the crystals and a par

ticular interfacial plane. The macroscopic definition of a general grain boundary can 

be made with five geometrical degrees of freedom which will take into account all the 

different possible orientations of the two crystals when they meet. Also, three addi

tional microscopic degrees of freedom, (Tx, Ty, Tz), regarding rigid-body translations 

between both crystals are needed. 

There are different ways to define the geometry of a bicrystaJ. Two common 

schemes are the interface-plane scheme and the CSL-misorientation scheme [114]; 

each of them use a different but related set of geometrical parameters. 

For the study of grain boundaries, the choice of geometrical parameters based 

on the misorientation of both crystals, the so-called CSL-misorientation scheme, has 

been a common practice and this is used here .. Following the coincident site lattice 

misorientation scheme the five macroscopic degrees of freedom are a rotation axis in 

the direction of the unit vector, n, the misorientation angle, rP, and the grain boundary 

plane normal, nI, in either of the two halves of the bicrystal [114], {n, rP, nd. These 

vectors are defined in the unrotated coordinate system of one of the halves. With 

these parameters all the lattices sites of a perfect bicrystal can be generated. Knowing 
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the plane normal to the boundary, ni, the lattice sites of the first crystal are also 

known by just continuing a bcc structure on the direction perpendicular to the plane. 

The lattice sites of the second crystal are completely determined by ro~ation of the 

lattice site vectors of the first crystal, f = (ri, r2, ra) in a clockwise sense about an 

axis n through an angle 1> to a new position';:; = (r~, r~, r;) (lattice site v~ctors of the 

second crystal), following 

a 
r; = LR.;jrj ( 4.1) 

j=1 

a 

R.;j = ,sij cos 1> + nin j(l - cos 1» - L eijknk sin 1> (4.2) 
k=1 

were ,sij is the Kronecker delta and eijk the permutation tensor. Also, the plane 

normal of the other crystal is easily determined by n2 = R( n, 1> )nj, where R is the 

rotation matrix from the previous equation. 

Following the CSL scheme, a pure tilt boundary is defined by the condition that 

the rotation axis, n, lies in the boundary plane, whereas a pure twist boundary has 

the rotation axis perpendicular to the boundary plane. Tilt or twist boundaries are 

symmetric in cubic crystals, if the plane of the boundary has the same Miller index 

form in both crystals, i.e. if the Miller index in both crystals are the same by any 

permutation including their signs, e.g. (320) in one crystal and (230) in the other, 

being asymmetric if the Miller index form is different I. 

Symmetric tilt boundaries are also called twin boundaries, or simply twins. The 

symmetrical tilt grain boundary (STGB) or twin boundary is the simplest of all 

grain boundaries made up of two crystals with specular symmetry structure. Given 

the plane of one half of the bicrystal the other is defined as a specular inversion of 

the first one with the rotation axis perpendicular to the normal plane, so only two 

degrees of freedom are necessary to define geometrically a symmetrical tilt boundary. 

In Figure 4.2 the arrangement of atoms close to the interface based on a CSL de

scription is plotted for a (210) symmetrical tilt boundary. A solid line separates both 

crystals forming the interface clearly showing the mirror symmetry of the structure. 

1 Planes with Miller indexes h, k and I are denoted by (hkl). To specify all planes of a given 
crystallograpic type, curly brackets are used, i.e. the class of all cube faces is denoted by {lOO}, and 
includes (100), (100), (010), (010), (001) and (001) planes. Crystallographic directions are denoted 
with square brackets, i.e. label is a vector with 'coordinates' x = a, y = b and z = e. To specify 
all directions of the same cyrstallographic type arrow brackets are used, i.e. the class of all cube 
edges is denoted by < 100 >, and includes the [100], [100], [010], [010], [001] and [001] directions. 
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Solid and open symbols represent atomic sites in adjacent atomic layers along the 

rotation axis, which in this case is the [001] direction of the bcc structure. The struc

ture is repeated every two atomic layers, P = 2, along the rotation axis , being the 

interlayer distance, d, in the [001] direction of the bcc structure equal to ao / 2, where 

ao is the lattice constant. In Figure 4.2 the periodicity of the structure on directions 

paraliel and perpendicular to the interface is shown by repeated squares. The peri

odicity length of the structure in directions parallel, x coordinate, and perpendicular, 

y coordinate, to a symmetrical tilt boundary is the same because of symmetry of the 

bcc structure. (210) and (120) are the planes parallel to the boundary for each crystal 

of the symmetrical tilt boundary presented in Figure 4.2. The periodicity along this 

planes is equal to 10 and the interlayer distance equal to 0.64A i.e. the periodicity 

length is equal to Pd. The misorientation angle between crystals is also drawn and 

is equal to <p = 36.87 0
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Figure 4.2 : Projection along the rotation axis, e.g. [001] coming out of the page, 
of a (210) symmetrical tilt grain boundary. Solid and open circles represent atomic 
sites in adjacent planes along the rotation axis. Values of the misorientation angle, 
interlayer distance and period are <p = 36.87 0

, d = 0.64 A and P = 10 respectively. 

In Figure 4.3 a schematic representation of the crystaliographic planes and mis

orientation angle involved in a (210) symmetrical tilt boundary is presented. Planes 

(120) and (210) represent the same crystaliographic planes in a bcc lattice, i.e. 

<120>. The misorientation angle is defined with respect to the [110] direction of 
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the ideal crystal, i.e. the normal vector of the grain boundary plane in one of the 

crystal and its symmetric across the [110] direction, therefore, in this case, IjJ = 36.87 0
. 

Alternatively, it is equivalent to define the misorientation angle as the complement 

of the previous one IjJ = 90 - 1jJ'. Therefore knowing the boundary plane, (hkO), the 

misorientation angle, 1jJ' , is easily obtained by tan(IjJ'/2) = k/h. 
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Figure 4.3: Crystallographic planes and angles involved in the construction of a (210) 
symmetrical ti lt boundary in a bcc lattice. Circles and squares represent atomic sites 
in adjacent planes in the [001] direction. 

On the CSL-misorientation scheme the inverse volume density of CSL sites is 

usually added as a redundant sixth parameter, r;, a schematic representation of which 

is shown in Figure 4.4. The val ue of r; is a function of the relative orientation of the 

two grains. By superposing the two cells of length the periodicity of the structure 

from both halves the number of coincident sites is obtained and the r; parameter 

easily calculated as is shown in Figure 4.4. 

On the other hand, symmetrical twist boundaries occur when one of the crystals 

is rotated about a rotation axis which is perpendicular to the boundary plane and 

both normal planes have the same Miller index form. In Figure 4.5, a schematic 

representation of a (210) symmetrical twist boundary based on the a CSL model is 

presented. The rotation axis is chosen along the [001] direction. Top and side views 

of the boundary are presented in Figure 4.5. The top view is the projection of atomic 

sites to a plane parallel to the boundary being the side view a projection to a plane 
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Figure 4.4: Schematic representation of the coincidence site lattice parameter, ~. 
Squares and circles represent atomic sites in adjacent planes perpendiclar to the [001] 
direction. 

perpendicular. In the side view of Figure 4.5 a dotted line separates the upper and 

bottom crystals forming the interface. Only four atomic layers, i.e. the two closest 

atomic layers of each crystal, are plotted with different symbols. The projection of 

atomic sites onto the grain boundary plane leads to periodic structures similar to 

moire patterns [83]. Periodic structure and misorientation angle are also drawn in 

Figure 4.5. 

It should be noticed that the separation between crystals, in tilts or twist models 

based in a coincident site lattice model are initially chosen to be the same as the in

terlayer distance of planes parallel to the boundary. This is done in order to maintain 

the atomic density of the perfect crystal. 

Asymmetric twist boundaries are the most general boundaries and the whole set 

of macroscopic degrees of freedom are needed for their description. An asymmetric 

twist boundary is an asymmetric tilt boundary that has been subjected to a further 

twist about the boundary normal. 

It is also useful to specify the five macroscopic degrees of freedom in a way which 

focuses attention more on the interface plane normal in both crystals rather than the 

relationship between the crystals [36] . This is the so-called interface-plane scheme 
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Figure 4.5: Projection along the rotation axis, i.e. top view, [OOlJ coming out of 
the page, of a (210) symmetrical twist grain boundary. Values of the misorientation 
angle, interlayer distance and period are q; = 36.87°, d = 0.64 A and P = 10. The 
top right hand figure shows a projection perpendicular to the boundary, i.e. side 
view, of the two closest atomic planes to the boundary in each crystal. Different 
colours represent atoms at different crystals and different symbols represent atoms at 
different atomic layers. 

[114J. The interface-plane scheme chooses the two boundary normals of both bicrys

tals and a twist angle as the five geometrical parameters which define the orientation 

of the two halves. The creation of an interface can be viewed as the sum of two 

operations: first bring together two crystal free surfaces with normals nl and n2, into 

contact and secondly a rotation, O,wis" about their common normal, n, referred to the 

same principal coordinate system, see Figure 4.6 . So the five macroscopic degrees 

of freedom in the misorientation scheme {nl,n2, O,wiS'}, are defined by the unitary 

normal vectors nl and n2, and the twist rotation, O,wis" Following the interface-plane 

scheme symmetric grain boundaries are defined by the condition that nl = ± n2. 

For practical reasons the CSL scheme is suited for the description of dislocation 

grain boundaries, i.e. low angle, whilst the interface-plane scheme is best suited for 

the description of high-angle grain boundaries [115J, however both are complementary 

and related. The relationship between the CSL and misorientation geometrical sets 

of parameters can be found elsewhere [114J. 

4.2.2 Computational blocks 

The procedure used to build an initial computational block containing a symmetrical 

grain boundary was based on the CSL definition. The implementation of the co m-
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Figure 4.6: Geometrical parameters involved in the interface-plane scheme. 

putational block, i.e. FORTRAN code, was mainly reduced to four steps because of 

the symmetry of the interfaces studied, i.e. symmetrical tilt and twist boundaries. 

In Figure 4.7 the procedure to build both symmetrical tilt and twist bOllndarips 

is scbematically presented. Firstly, a block of atomic sites (three-dimensional coor

dinates of lattice sites) was generated following a perfect bcc structure, Figure 4.7 

(a). Secondly, two other bcc structures were created by a rotation of the initial one. 

The first new block was created by a rotation of the bcc lattice sites of half the 

misorientation angle required, 1/J/2, about a rotation axis, n, which goes through the 

middle of the block on the [001] direction following equations 4.1 and 4.2. The second 

block was made by a rotation of the initial bcc structure of half the misorientation 

angle but in an anticlockwise sense, -1/J/2, about the same rotation axis. The final 

result of the second step was two interpenetrating lattices which were centred but 

with different orientations, Figure 4.7 (b). The third step, was to extract from this 

double pattern a rectangular block with the desired dimensions for the simulation 

block, Figure 4.7 (c). Related to this step is the size of the initial bcc block, because 

the initial block has to be big enough to create, after rotation, a double structure 

from which the desired computational block can be extracted . 

Finally, from the rectangular double patterned block, either a symmetrical tilt or 

twist boundary can be made. To create a symmetrical tilt boundary, the rectangular 

computational block was first divided by an auxiliary plane parallel to the rotation 

axis and then, only atoms coming from one of the rotated structures, were removed 
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(a) 

(b) 

/ (e) 

Figure 4.7: Building a computational block containing a symmetrical grain boundary. 
(a) Initial bcc structure. (b) Two rotated bcc structures. Grey box indicates which 
region is extracted. (c) Double patterned block. Vertical grey plane indicates the 
separation for a symmetrical tilt, and the horizontal plane, the symmetrical twist. (d) 
Symmetrical tilt boundary. (e) Symmetrical twist boundary. Red and blue spheres 
belong to the initial bcc structures rotated tjJ/2 and -tjJ/2 respectively. 
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on one side of the plane, whereas atoms coming from the other block, were removed 

on the other side, Figure 4.7 (d). In order to create a symmetrical twist boundary, 

the auxiliary plane was chosen at the middle of the rectangular computational block 

and perpendicular to the rotation axis, and following the same procedure as for the 

tilt boundary, i.e. atoms were removed in each side of the bicrystal, see Figure 4.7 

(e). The final result was a rectangular computational block with two bicrystals either 

on a symmetrical tilt or twist configuration with the interface in the middle of the 

computational cell. For convenience, the interface was chosen parallel to the x and z 

directions. 

Periodic boundary conditions just on planes parallel to the boundary were applied 

during the relaxation procedure, because of the two-dimensional nature of the grain 

boundaries. In this way, an 'infinite' grain boundary, e.g. extended defect in two 

dimensions, is modelled. Care was taken in choosing the sizes of the corn pu tational 

blocks to include a number of layers proportional to the periodicity of the planes 

on the x and z direction, i.e. parallel to the boundary, in order to apply periodic 

boundary conditions. Free boundary conditions were applied on the perpendicular 

direction of the boundary plane allowing expansion of atomic layers in this direction. 

The computational cell was chosen big enough in order to avoid possible surface 

effects on the bulk interface. 

4.2.3 Relaxation procedure 

The initial structure is assumed to be at 0 K, but contains an excess of potential 

energy. The initial but unrelaxed structure is allowed to evolve until the block reaches 

a minimum energy configuration at a given temperature using classical molecular 

dynamics (MD). In order to represent the interaction between iron atoms, a many

body potential for a-iron of the Finnis-Sinclair form has been used [37] (see Chapter 

2). During the relaxation procedure the atoms will rearrange, seeking an optimal 

configurational structure of the system with minimum potential energy. The atoms 

close to the interface will be the ones that will change position the most, see Figure 

4.8. 

The relaxation procedure was to run the MD simulation for approximately 3-5 ps 

depending on the speed of the rearrangement process. Figure 4.9 shows the typical 

evolution of the kinetic, potential and total energy of the system as a function of 

the time. As can be seen from Figure 4.9, at the beginning of the simulation the 

kinetic energy of the system increases suddenly, with the potential energy decreasing. 

Atoms are moving increasing the kinetic energy and rearranging in a more optimal 
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Figure 4.8: Vector plot showing a typical atomic rearrangement during the relaxation 
procedure from a initial CSL description of a symmetrical tilt grain boundary. The 
arrows point from the unrelaxed to the relaxed configuration. View along the rotation 
axis of an initially unrelaxed (210) symmetrical tilt boundary. 

distribution in such a way that they reduce the potential energy of the system. After 

a few femtoseconds, the system reaches a much more stable situation where there 

are small fluctuations of kinetic energy and potential energy. After, typically 3 ps, 

the system is considered structurally stable enough to 'freeze' the atoms, and extract 

excess kinetic energy. For the 'freezing' process, a damping term proportional to 

the velocity is applied to the system, reducing the kinetic energy of the system as 

implemented in References [116, 117J; also the potential energy and the total energy 

decrease during this process. The simulation was run for another typically 10 ps for 

a crystal containing 40,000 atoms until the temperature dropped to approximately 

10 K and the equilibrium configuration at this temperature was reached. The final 

temperature of the system, calculated from the mean kinetic energy of the atoms, 

was chosen for practical (computational) reasons. The kinetic energy of the system 

decreases following an exponential decay due to the damping imposed on the velocity 

of the atoms, therefore decreasing of temperatures when the system has low kinetic 

energy requires longer computational times. 

Different choices of time step have been considered during the relaxation procedure 

according to the stage of the simulation as follows: 6.t = 0.5 fs for t < 0.1 ps, 6.t = 1 fs 
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Figure 4.9: Typical potential, kinetic and total energy evolution during the relaxation 
procedure. The values plotted correspond to a (530) symmetrical tilt grain boundary 
in a computational block of dimensions 100 x 100 x 42A containing 36900 atoms. 
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for 0.1 < t < Ips and 6.t = 2 fs for times greater than 1 ps. The total energy is 

conserved previous to the damping process, with this choice of the time-step, with 

fluctuations in the total energy, 6.E / E, not bigger than 0.001 %. 

We have to take into account that in the final relaxed structure a residual kinetic 

energy is always present, e.g. the final temperature equals 10 K. Therefore the final 

block has a residual kinetic energy equal to Et = ~NkT , where k is the Boltzman's 

constant. This low residual kinetic energy will not affect the structure of the grain 

boundaries but it will play a role in the calculation of the grain boundary energy 

in terms of size effects. The configuration at 0 K of the grain boundary can be 

considered as the same than at 10 K, because a temperature of 10 K only represents 

the kinetic energy of the vibrational states of the atoms. 

4.2.4 Rigid body translation 

The structure generated following the coincident site parametrisation can be used as 

a starting point of a relaxation procedure. However, the coincidence model, due to 

its only geometrical basis, will produce structures with overlaps of crowding atoms 

in the boundary plane giving an unphysical high energy to the system. Generally, 

for symmetrical boundaries, a more stable initial configuration, less configurational 

energy, can be obtained by a rigid body translation of one of the crystal respect to 

the other from the coincident site description. In this way the periodicity of the 

boundary will be maintained but, generally, there will not be more coincident sites 

of the bicrystal. Rigid body translations of one grain relative to the other have 

been experimentally found by HREM studies [69]. Rigid body translations have been 

applied in this thesis to the initial CSL model of grain boundaries. Several new 

starting unrelaxed configurations can been obtained in this way. This new starting 

configurations can be closer to a low-energy configuration state. 

In Figure 4.10, a view along the rotation axis, n, of an [001] 36.87° (210) symmet

rical tilt boundary is shown. In Figure 4.10, solid and open circles represent atoms 

on adjacent planes perpendicular to the rotation axis. The directions of the rotation 

axis, n, chosen parallel to the z-axis, is out of the page. The atoms close to the mirror 

atomic plane, indicated by arrows on Figure 4.10 (a), will make this configuration 

unstable, this instability being more noticeable in symmetrical models with small 

interlayer distance between planes perpendicular to the boundary plane. The strong 

repulsion that these atoms close to the boundary may suffer, can be avoided by a 

displacement of the upper crystal along the x axis, Tx, parallel to the boundary. A 

more stable configuration is reached after the displacement, i.e. atoms close to the 
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boundary plane have a greater separation, see atoms marked with arrows in Figure 

4.10 (b). If a displacement, Tz , is equal to the periodicity length of the plane in the 

x axis, P.d, the same configuration is obtained. The periodic unit of the structure in 

each bicrystal is also shown in Figure 4.10 by the green coloured squares. 

Figure 4.10: Rigid body translation on a dimension parallel to the boundary, T z , for 
a (210) symmetrical tilt boundary. 

In Figure 4.11 the total potential energy of the atoms in a unrelaxed computa

tional block with a (210) symmetrical tilt boundary as a function of the rigid body 

translation parallel to the boundary plane, Tz , is shown. In Figure .\.11, energy is 

given in units relative to the energy of the block without shift and the displacement 

is given in periodicity units of the structure on the x direction. For this symmetrical 

boundary, a local minimum of energy on the unrelaxed configuration is obtained by 

a displacement equal to Tz = 0.2. Thi tructure can be used as an initial structure 

for the relaxation proced ure. 

A more efficient way to find an initial minimum unrelaxed structure is to examine 

also rigid body translations on the z direction , T.. This direction is also parallel 

to the boundary plane in our coordinate system. For every displacement in x, al 0 

displacements in z are taken into account and the configurational energy is calculated. 

In Figure 4.12 equipotential energy lines, in arbitrary units, are shown as a function 

of both displacements, Tz and T., for a (210) symmetrical tilt boundary. An initial 
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Figure 4.11: Unrelaxed potential energy as a function of a rigid body translation on 
the x direction parallel to the boundary for a (210) symmetrical tilt boundary. 

configuration with no displacement in any of the direction parallel to the boundary 

plane, Tx = 0 and Tz = 0, corresponds to the perfect bicrystal built following the 

coincident site lattice definition. As we see in Figure 4.12, the minimum of energy 

obtained by this procedure, corresponds to a displacement of Tx = 0.2 or Tz = 0.5. 

Also we observe that a displacement of Tx = 0.2 and Tz = 0 corresponds to a local 

minimum of the unrelaxed energy. These three different choices of initial structure 

were relaxed to obtain the final configuration. The unrelaxed energy configuration of 

all the boundaries studied have been calculated as a function of both displacement x 

and z parallel to the boundary plane. The local minima of the unrelaxed structures 

of the [OOlJ symmetrical tilt boundaries usually appear for Tz = 0 and Tz = 0.5. 

In Figure 4.13 equipotential energy lines, in arbitrary units, are shown as a func

tion of rigid body displacements parallel to the boundary plane for a (210) symmet

rical twist boundary. In this case, differences between unrelaxed energies after a rigid 

body displacement are almost negligible though small differences can be found for 

certain displacements as indicated in Figure 4.13. This is due to that the interlayer 

distance on the twist boundaries studied, with the rotation axis along the [001 J di

rection, is equals to ao/2=1.43A which is more than twice the interlayer distance 

between planes in the boundary for the (210) symmetrical tilt, 0.64A. For this in

terlayer distance atoms at the interface in a CSL arrangement do not suffer strong 

repulsions as the case already explained for a (210) tilt boundary in Figure 4.10. 
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Figure 4.12: Unrelaxed potential energy as a function of a rigid body translation on 
the x and z dimension parallel to the boundary plane for a (210) symmetrical tilt 
boundary. The shaded regions corresponds to low potential energy values. 

The rigid body displacement of minimum unrelaxed configurational energy will 

lead to the final relaxed structure faster than the others. Different choices of initial 

structures can lead to a different final structures after relaxation and all of them will 

be local minima of energy. In Figure 4.14, the relaxed and unrelaxed configuration 

energy of a (530) symmetrical tilt boundary is presented as a function of different 

rigid body translations in the x direction. This brief study shows how local minima 

of unrelaxed structures will reach minima of relaxed structures. 

In this thesis we use structures with local minima in the configurational energy of 

the unrelaxed structures as a function of the translation vectors, as a starting point 

for the relaxation procedure, as explained before. 

4.3 Atomic structure of grain boundaries 

4.3.1 Symmetrical tilt grain boundaries 

In this section the atomic structures of several high angle symmetrical til t grain 

boundaries in a-iron are described. The geometrical description of the tilt bound

aries studied in this thesis is presented in Table 4.1. This table gives the Miller 

indexes of the boundary planes of each crystal at the interface, nl and n2, the misori

entation angle, q" the coincidence site lattice parameter, B, the periodicity, P , and 

the interlayer distance between parallel planes, d. The coordinate system is chosen, 

for convenience, with x and z axes parallel and y axis perpendicular to the boundary 
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plane respectively. The periodicity and the interlayer distance on the symmetrical tilt 

models are the same on the x and y directions of our coordinate system. 15 different 

symmetrical tilt boundaries have been considered, all of them with the rotation axis 

on the [001] direction, z-axis. These boundaries have been chosen in order to have 

a homogeneous representation of high angle grain boundaries. In particular, these 

boundaries have the lowest Miller index combination of the planes normal to the 

interface. 

GB Planes . <p (degrees) L Px,y dx,y (A) 
(540)d(450h 12.68 41 82 0.22384 
(430)d(340h 16.26 25 50 0.28665 
(320)d(230h 22.62 13 26 0.39751 
(530)d(350h 28.07 17 34 0.49160 
(740)d(470h 30.51 65 130 0.17777 
(210)d(120h 36.87 5 10 0.64095 
(520)d(250h 46.40 29 58 0.26615 
(830)d(380h 48.89 73 146 0.16775 
(31Oh/(130h 53.13 5 10 0.90647 
(720)d(270h 58.11 53 106 0.19687 
(41Oh/(140h 61.93 17 34 0.34761 
(920)1/(290h 64.94 85 170 0.15546 
(51O)d(150h 67.38 13 26 0.56217 
(710) 1/(170h 73.74 25 50 0.40538 
(910)d(190h 77.32 41 82 0.31655 

Table 4.1: Geometrical parameters describing the symmetrical tilt grain boundaries 
studied. The rotation axis is on the [001] direction. 

According to the parameters given in Table 4.1 rectangular computational blocks 

for each model are made. The size and the number of atoms included in each com

putational block is given in Table 4.2. All the symmetrical tilt grain boundaries 

studies have the rotation axis, z direction, on the [001] direction. As has been said in 

previous sections, the computational blocks are chosen large enough in the direction 

perpendicular to the boundary, the y direction, in order that surface effects do not 

affect the bulk interface. Sizes of the computational blocks in the x and z directions, 

i.e. parallel to the interface, are chosen by periodicity considerations. The number 

of layers in the x direction, along the boundary, is at least four times the periodicity 

in this direction. The size of the computational block in this direction is big enough 

to 'observe' the repeated structures of the boundary. The periodicity in the [001] 

direction of a bcc lattice, which is the z direction in our coordinate system, is equal 

to two and the interlayer distance is equal to ao/2, where ao is the lattice constant 
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in a-iron which is equal to ao = 2.8665 A. Therefore the size of the z dimension 

does not need to be large compared with the other dimensions, but large enough to 

build a neighbour list for each atom. The length of the computational block on the 

z dimension is 42.0 A for all the models, having in this way a reasonable number of 

atoms on each computational cell according to the computational resources available. 

The number of atoms involved in the simulations are in the range of 28000-44000 

. atoms. Additionally computational blocks with different sizes from those presented 

in Table 4.2 were also simulated for testing purposes. 

GB Planes Size (A) (XxYxZ) Atoms Tx Tz 
(540)d(450h 91.8 x 128.5 x 42.0 43125 0.0 0.5 
(430h/(340h 71.7 x 129.1 x 42.0 33825 0.19 0.0 
(320h/(230h 103.5 x 103.5 x 42.0 39150 0.06 0.5 
(530)d(350h 100.5 x 100.5 x 42.0 36900 0.21 0.0 
(740)d(470h 92.5 x 115.6 x 42.0 39060 0.76 0.5 
(21O)d(120h 103.0 x 103.0 x 42.0 38640 0.2 0.5 
(520h/(250h 77.2 x 139.0 x 42.0 39225 0.79 0.0 
(830)d(380h 98.0 x 122.5 x 42.0 43860 0.04 0.5 
(31Oh/(130h 109.0 x 109.0 x 42.0 43560 0.07 0.0 
(720h/(270h 83.5 x 104.4 x 42.0 31860 0.28 0.0 
(41Oh/(140h 94.6 x 94.6 x 42.0 32760 0.39 0.0 
(920)d(290h 105.8 x 105.8 x 42.0 40860 0.04 0.5 
(51O)d(150h 88.0 x 88.0 x 42.0 28260 0.58 0.0 
(71Oh/(170h 81.1 x 101.4 x 42.0 30120 0.57 0.0 
(91O)d(190h 103.9 x 103.9 x 42.0 39480 0.54 0.0 

Table 4.2: Dimension and number of atoms of computational blocks containing the 
symmetrical tilt grain boundary models studies. The rigid body translations, T x and 
T z> which lead to the minimum energy structure, are also presented 

For each model, different initial starting structures were considered. These struc

tures are basically the local minima obtained by the studies of the unrelaxed con

figurational energy as a function of rigid body displacement of one of the grains in 

a plane parallel to the interface, as explained in the previous section. The relative 

stability of the grain boundaries for each grain boundary is based on a comparison 

of the final relaxed configurational energy of the atoms in the system. The structure 

with lowest configurational energy for every model, will be the equilibrium config

uration whereas the others, will be considered as met astable structures. The rigid 

body translation parallel to the boundary which gives a minimum of configurational 

energy after relaxation are also given in Table 4.2 for each model. The displacements 

T x and T z> are given in units of the periodicity length, P.d, for each boundary. On 
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the other hand, in order to compare configuration energies between different grain 

boundaries, the grain boundary energy will be defined in the next section. 

Figures 4.15 and 4.16 show the equilibrium structures for the (530) and (210) 

symmetrical tilt grain boundaries respectively. Two different close views of the final 

relaxed grain boundary structure for each model are presented in each figure. Figures 

4.15 (a) and 4.16 (a) show the boundary viewed along the rotation axis, i.e. [OOlJ 

direction, solid and open circles represent atoms in two adjacent layers perpendicular 

to the rotation axis. Figures 4.15 (b) and 4.16 (b) show a view of the buundary 

parallel to the boundary plane, i.e. parallel to the x - z plane. 

The main features of the equilibrium structures for all the symmetrical tilt bound

aries studied can be inferred from the two representative models showed in Figures 

4.15 and 4.16. From this figures it can be seen that the regular structure of the crys

tal is broken in a few layers close to the boundary in a region which can define the 

width of the interface, being the basic bcc structure of each bicrystal is maintained 

after relaxation away from the boundary region. A simple definition for the width of 

a grain boundary will be given later in this chapter. The bicrystal, after relaxation, 

has generally a specular symmetry across the boundary plane, normally being the 

'mirror' plane an atomic layer. The periodicity in directions parallel to the planes at 

the boundary is maintained. In the [001 J direction, i.e. z axis, the structure of the 

relaxed configuration is repeated every two layers, mantaining the original periodicity 

of the bcc structure in this direction but with a different structure at the boundary 

region. The periodicity in the x direction, i.e. (350) and (120), is the same as the one 

in the initial structure, but with a different repeated structure which is characteristic 

of each boundary; this repeated structure is marked with a solid line in these figures. 

Also, in Figures 4.16 (b) and 4.15 (b), it can be clearly seen the expansion suffered by 

atomic layers close to the interface on direction perpendicular to the interface plane. 

This expansion will be discussed later in this chapter. 

In Figures 4.17,4.18 and 4.19 the final equilibrium structures for the symmetrical 

tilt boundaries studied, viewed in a projection along the rotation axis, are presented. 

Open and solid circles represent atoms in adjacent layers perpendicular to the rotation 

axis. The rigid body translations for the final configurations presented in Figures 4.17, 

4.18 and 4.19 which leads to the final relaxed structures with minimum configurational 

energy are specified in Table 4.2. The most noticeable characteristic of these relaxed 

structures is that there exist an atomic arrangement, typical of every interface, which 

is repeated along the boundary. This repeated 'structural units' are marked with a 

solid line in these figures for each boundary. The structural units have a periodicity 

88 



(a) • • 
0 

0 • • 0 

• 0 0 • 
• • 0 0 • 

0 • • 0 
0 • • 0 

• 0 0 • • 0 0 • 
0 • • • 0 0 • 
• • 0 0 • 0 • • 0 

0 
0 • • 0 

• 0 0 • • 0 0 • 
0 • • 0 

0 i I 0 • ., • • 0 
po) 

0 • 0 : I 0 • 
0 • i le • 0 i I 0 • 

~. 
• 0 ! I 0 • 

x=[350j i I 
i I 
j i 

I i 
z=[OO l j y=[530j I: 

i i 
i! 

I i 
; I 
: \ 

(b) I i 
1 ! 

~.~.~ .. ~.~. ~ .. ~.~:~:~:=:t ! ~: =~.:::a:[)1:':' :U:"::". 
« •• ,I ••• i' OXOODO 00 0 OCD cxmo:(i>" i •••• 

I 11-. ............... __ .. 

~
'~'~"~'~' ~"~'~<:~OC~OQD) coo 0 OeD CXID""'." i •••• .... , ..... ::7.:=:: : ::=:1.: ..... :.1, .... -- ............... __ .. 

• »., ... j'. WXOOQIX) 00 0 om OQD"' i ••• , ••••• 

:,.:.: .. :.:.: .. :-:::==: ::="':' .. 0 1

,1, 
I .1 •• ___ • ___ .... 111111 

••• ¥ ••• , i • o:roaoo 00 0 O<l:) oa::oO:CCI' •••••• 
111111111 .... __ •• • ........ ___ _ 

z=[OO l j L=---------' 
x=[350j y=[530J 

Figure 4.15: Relaxed structure of a (530) symmetrical tilt grain boundary. (a) Top 
view. Atoms projected to a plane perpendicular to the rotation a.xis. (b) Front viE'w. 
Atoms projected to a plane perpendicular to the grain boundary and paralld to the 
rotation axis. Open and solid circles represent atomic sites in two adjacent layers 
along the rotation axis. 
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Figure 4.16: Rela.xed structure of a (210) symmetrical tilt grain boundary. Top view. 
Atoms projected to a plane perpendicular to the rotation axis. (b) Front view. Atoms 
projected to a plane perpendicular to the grain boundary and parallel to tll(' rotation 
axis. Open and solid circles represent atomic sites in two adjacent layers along the 
rotation axis . 
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Figure 4.17: Symmetrical tilt relaxed structures. Open and solid circles r<'present 
atomic sites in two adjacent layers along the rotation axis . 
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(d) 

[001] 53.13° (310) [001] 58.11° (720) 
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Figure 4.18: Symmetrical t il t relaxed structures. Open and solid circles [('present 
atomic sites in two adjacent layers along the rotation axis. 
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Figure 4.19: Symmetrical tilt relaxed structures. Open and solid circles represent 
atomic sites in two adjacent layers along the rotation axis. 

length equal to the periodicity of the planes normal to the interface in the unrelaxed 

CSL model. 

In Figures 4.20 and 4.21 a magnification of the structural units that appear for 

each model i presented. The periodicity length of the structural units is also shown 

in these figures. Basically, the structural units of the symmetrical tilt boundaries 

are compo ed of a combination of three 'basic ' units. The three basic units are the 

ones that appear in 'singular' boundaries, i.e. they are composed of only one type of 

structural unit , which are the (310), (100) and (110) symmetrical tilt models. 

As can be seen from Figure 4.21(a), one period of the (310) symmetrical tilt 

boundary i composed of two capped trigonal prisms. Figure 4.21(h), shows the 
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GB Plane 1> (degrees) m (BB' units) n (CC' units) 
(310) 53.13 1 0 
(830) 48.89 5/2 1/2 
(520) 46.40 3/2 1/2 
(210) 36.87 1/2 1/2 
(740) 30.51 3/2 5/2 
(530) 28.07 1 2 
(320) 22.62 1/2 3/2 
(430) 16.26 1/2 5/2 
(540) 12.68 1/2 7/2 
(110) 0 0 1 

Table 4.3: Number of 'B' and 'c' units for [001] symmetrical tilt boundaries in the 
misorientation range 0°-53.13°. 

GB plane 1> (degrees) m (A units) n (BB' units) 
(100) 90 1 0 
(910) 77.32 6 1 
(710) 73.74 4 1 
(510) 67.38 2 1 
(920) 64.94 3 2 
(410) 61.93 1 1 
(720) 58.11 1 2 
(310) 53.13 0 1 

Table 4.4: Number of 'A' and 'B' units for [001] symmetrical tilt boundaries in the 
misorientation range 53.13°-90°. 

structural units of the (100) and (110) boundaries, which are a tetrahedron and a 

plane respectively. Following the structural unit model, these singular boundaries 

determine two misorientation ranges, which are 0°_ 53.13° and 53.13°- 90°, in a way 

that symmetrical tilt boundaries are composed of a combination of units of the de

limiting boundaries [86]. We can call the units of the (310) boundary as 'B' units, 

being 'A' and 'c' units the ones from (100) and (110) boundaries respectively. 

Therefore, following the structural unit model it is possible to classify the struc

ture of the boundaries in two misorientation ranges: 90 ° < 1> < 53.13 ° and 53.13 ° < 
1> < 0 0, and calculate, after geometrical considerations the number of structural 

units of the delimiting boundaries which compose a period of a given symmetrical 

tilt boundary. Given a (hkO) symmetrical tilt boundary with misorientation angle 

1> and 1>, < 1> < 1>2, where 1>, and 1>2 are the misorientation of the favoured bound

aries (h,k,O) and (h2k20) respectively, the period vector of boundary [khO] may be 
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decomposed as follows [118] 

(4.3) 

with 

( 4.4) 

The numbers m and n represent the number of units of each type in a given bound

ary. In Tables 4.3 and 4.4 the values of m and n from Equation 4.4 are presented. We 

have to take into account that a period in a (310) and the (110) boundary has two 

units each, therefore a value of n=~ represents just one unit in the first misorientation 

range. 

The previous description, which predicts the number of structural units present 

in a given boundary depending on its misorientation angle, corresponds to highly 

symmetric boundaries with mirror symmetry. The minimum energy configuration 

structure found for most of the tilt boundaries studied have mirror symmetry, and 

they are well predicted as it can be seen after a comparison of Tables 4.3 and 4.4 and 

Figures 4.20 and 4.21. The characteristic lengths of the three structural units are also 

presented in Figures 4.21(a), and 4.21(h), these lengths vary slightly when forming 

longer period boundaries. We should notice that in the case of the (520) STGB, a 

highly symmetrical structure is found but an 'A' unit which had not been predicted 

appeared. Also we should notice that we do not obtain these highly symmetrical 

relaxed structures, with an atomic plane as a mirror, on the (430), (720) and (920) 

STGB, but distortions of them. 

A similar molecular dynamics study has been done by Morita in molybdenum 

[81, 119]. From this work is concluded that [001] symmetric tilt boundaries in molyb

denum can be described by the concept of the structure unit model. This is also 

supported by high-resolution transmission electron microscope images. 

In searching for minimum energy configurations for each boundary some metastable 

structures were found. Metastable configurations have a higher configurational en

ergy than the global minima. These metastable structures are also shown on the right 

hand corner of some boundaries in Figures 4.20 and 4.21. It can be seen that the 

metastable configurations determined by the algorithm appear as slight distortions 

of the minimum energy configurations. 
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Figure 4.20: Relaxed structures with a minimum configurational energy and some 
metastable structures (as referred to in the main text), for the symmetrical li lt bound
aries studied in the misorientation range 0- 53.13. 
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Figure 4.21: Relaxed structures with a minimum configurational energyand some 
metastable structures (as referred to in the main text), for the symmetrical tilt bound
aries studied in the misorientation range 53.13- 90. 
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4.3.2 Symmetrical twist grain boundaries 

The relaxed structures of [001] symmetrical twist boundaries are now presented in 

this section. In Table 4.5 the misorientation angle, </>, the coincidence site lattice 

parameter, ~, the periodicity and interlayer distance, P and d, of atomic planes 

in directions parallel to the boundary, the dimensions and the number of atoms in 

each computational block is presented for the symmetrical twist boundaries studied. 

The coordinate system is chosen, for convenience, with x and z axes parallel and y 

axis perpendicular to the boundary plane respectively. The models studied have the 

rotation axis in the [001] direction and (001) interfacial planes, i.e. y axis. In the 

twist models, x and z directions have the same periodicity and the size is chosen 

following the same considerations as for the symmetrical tilt models. The number 

of atoms in each model is between 31,000 and 68,000 atoms. The models have the 

same coincidence site lattice parameter as the tilt models. It should be noticed that a 

bicrystal with a misorientation angle </> and a different one with an angle 90 0 -</>, will 

lead to the same unrelaxed symmetrical model but with a rotated pattern. Therefore 

the misorientation angle of the grain boundaries simulated are in the range of 0-450
• 

The rigid body translation vectors which give a minimum of energy configuration for 

each model, T x and T z> are also presented in Table 4.5. 

</> (degrees) L Px,z dx,z Size (A) (XxYxZ) Atoms Tx Tz 
12.68 41 82 0.22384 91.8 x 71.0 x 91.8 51250 0.1 0.5 
16.26 25 50 0.28665 71.7 x 71.0 x 71.7 31250 0.0 0.0 
22.62 13 26 0.39751 72.4 x 71.0 x 72.4 31850 0.39 0.0 
25.06 85 170 0.15546 105.8 x 71.0 x 105.8 68000 0.0 0.6 
28.07 17 34 0.49160 83.7 x 71.0 x 83.7 42500 0.22 0.75 
30.51 65 130 0.17777 92.5 x 71.0 x 92.5 52000 0.1 0.7 
31.89 53 106 0.19687 83.5 x 71.0 x 83.5 42400 0.34 0.0 
36.87 5 10 0.64095 77.0 x 71.0 x 77.0 36000 0.0 0.0 
41.11 73 146 0.16775 98.0 x 71.0 x 98.0 58400 0.0 0.0 
43.60 29 58 0.26615 77.2 x 71.0 x 77.2 36250 0.16 0.15 

Table 4.5: Dimension and number of atoms of the symmetrical twist grain boundary 
. models studies. Also, rigid body translations, T x and T z> which lead to the minimum 
energy structure are specified. The (001) is the boundary plane and the rotation axis 
the [001] direction for all the models. 

The symmetrical twist relaxed structures with the geometrical parameters given 

in Table 4.5 are shown in Figures 4.22 - 4.31. In these Figures different views of the 

atomic structure of the interface are shown for each grain boundary: (a) and (c) are 

side views of the boundary, made by the projection of atomic sites in two different 
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planes perpendicular to the boundary plane, and; (b) is a top view with projection 

of the atomic sites in a plane parallel to the boundary plane. The periodic lengths 

of the structures are also shown in the e figures. Projection in a plane parallel to 

the boundary, (b) top view, reveals that the typical moire pattern of an unrelaxed 

twist boundary is maintained but indicates some very small changes in positions of 

the atoms in directions parallel to the boundary. On the other hand, changes in a 

perpendicular direction of atoms close to the boundary are more noticeable as can be 

seen in (a) and (c) side views. 

y=[OOJ) 

Figure 4.22 : Clo e view of the relaxed atomic grain boundary structure of an ini
tially unrelaxed 12.68°(001) symmetrical twist boundary with rigid body translation 
parallel to the boundary equal to Tx = 0.1 and T z = 0.5. 

All the models show a periodic structure along the boundary. which gets more 

complex as the periodicity of planes perpendicular to the boundary increases. Re

peated three-dimensional periodic structures for twist boundaries in the case of fce 

metals have been founded experimentally [120]. 

The new structures generated are pNiodic along the boundary, but much morC' 

complex than the symmetrical tilt boundary structures. Computational simulation 

studies [95] in the case of fcc metal suggest that [001] twist boundaries can be 

interpreted in similar terms to those used for the structural unit model in symmetrical 

tilt boundaries. However this procedure has not been employed in this thesis. 
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Figure 4.23: Close view of the relaxed atomic grain boundary structure of an initially 
unrelaxcd 16.26°(001) symmetrical twist boundary. 

Figure 4.24: Close view of the relaxed atomic grain boundary structure of an ini
tially unrelaxed 22.62°(001) symmetrical twist boundary with rigid body translation 
parallel to the boundary equal to Tx = 0.39 and Tz = 0.0. 
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Figure 4.25: Close view of the relaxed atomic grain boundary structure of an ini
tially unrelaxed 25.06°(001) symmetrical twist boundary with rigid body translation 
parallel to the boundary equal to T x = 0.0 and T z = 0.6. 

~I) 

P.;350) 
",,[530) 

Figure 4.26: Close view of the relaxed atomic grain boundary structure of an ini
tially unrelaxed 28.07°(001) symmetrical twist boundary with rigid body translation 
parallel to the boundary equal to Tx = 0.22 and Tz = 0.75. 
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Figure 4.27: Close view of the relaxed atomic grain boundary structure of an ini
tially unrelaxed 30.51°(001) symmetrical twist boundary with rigid body translation 
parallel to the boundary equal to Tx = 0.1 and Tz = 0.7. 

Figure 4.28: Close view of the relaxed atomic grain boundary structure of an ini
tially unrelaxed 31.89°(001) symmetrical twist boundary with rigid body translation 
parallel to the boundary equal to Tx = 0.34 and Tz = 0.0. 
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Figure 4.29: Close view of the relaxed atomic grain boundary structure of an initially 
unrelaxed 36.87°(001) symmetrical twist boundary. 

Ca) · , jT <A:OIb , r 

Figure 4.30: Close view of the relaxed atomic grain boundary structure of an initially 
unrelaxed 41.11 ° (001) symmetrical twist boundary. 
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y=[OOI] 

Figure 4.31: Close view of the relaxed atomic grain boundary structure of an ini
tial ly unrelaxed 43.60°(001) symmetrical twist boundary with rigid body translation 
parallel to the boundary equal to Tx = 0.16 and T t = 0.5. 

Most of the models with no rigid body translation give relaxed structures which 

are highly symmetric across the boundary, although these may have higher config

urational energy than a model with displacement. Comparison between structures 

can be made with Figures 4.32 and 4.26. Figure 4.32 is the relaxed structure of a 

(001)(530)[001] symmetrical twist boundary with no rigid body translation . These 

structure shows a clear repeated structure along the boundary if compared with the 

same model but with rigid body translation shown in Figure 4.26, however the model 

presented in Figure 4.32 has a higher energy than the one obtained by the relaxation 

of the model with rigid body translation. 

4.3.3 Grain boundary energy 

In order to compare stability of the structures between grain boundaries, the concept 

of grain boundary energy is introduced. The grain boundary energy per unit area, 

"t, is defined as the difference between the potential (configurational) energy of n 

atoms of the system including the boundary, Et, and the potential energy of a 

computational cell with the same number of atoms in a perfect crystal , E~ , divided 

by the cross-sectional area of the grain boundary plane, Area. 
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Figure 4.32: Close view of the relaxed atomic grain boundary structure of an initially 
unrelaxed 28.07°(001) symmetrical twist boundary. 

Eyb _ EO 
'Y = p p 

Area 
(4.5) 

The zero energy is attributed to the perfect single crystal configuration which is the 

reference state, therefore E~ = -4.28n eV. 

This definition of the grain boundary energy is to a small degree size dependent in 

our model due to the residual kinetic energy of the system. Size dependence effects 

appear on the grain boundary energy definition by choosing regions with different 

widths, including the boundary, where the energy of the atoms is counted. This region 

is a slab which is centred in the grain boundary and contain atoms with distance to 

the boundary less than L~. In Figure 4.33, the grain boundary energy as a function 

of the size of the slab, L~ , for a (210) symmetrical tilt boundary is illustrated. For 

small slab sizes not all the atomic layers affected by the boundary are included in 

the slab. When the slab is big enough to include the whole distorted region the 

grain boundary energy reaches a 'plateau', see Figure 4.33, giving an indication of 

the width of the grain boundary studied. For bigger slab sizes,(the enlarged scale 

in Figure 4.33) a linear dependence of the grain boundary energy can be observed. 

This drift in the energy is due to the residual kinetic energy of the system which gets 

bigger as we increase the size of the slab. A rough estimation give us for a system at 
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10 K a value of approximately l.3x10-3 eV per atom of residual energy. If this value 

is divided by the area of the interface ~ 4000 A, and multiplied by ~ 40000 atoms 

a value of approximately 0.01 e v/A 2 is found as an excess of the grain boundary 

energy value if we consider all the atoms in the computational block . It can be seen 

in Figure 4.33, that the grain boundary energy will increase by approximately 0.01 

eV / A2 if the whole computational block is considered in the definition, i.e. a slab 

of ~ 50 A. Different values of grain boundary energy will be obtained for different 

choices of the slab width, because of the drift in energy of the system. To avoid that, 

the grain boundary energy can be measured from the extrapolation of a line at the 

origin, zero width, as is shown in Figure 4.33. A equivalent way to obtain the grain 

boundary energy, is to calculate the energy just considering atoms inside the width 

of the boundary enough to include the most disturbed region. A practical definition 

for the width of a grain boundary is given in the next section. 
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Figure 4.33: Grain boundary energy value as a function of the slab size considered. 
The blue region in the top figure has been magnified in the bottom figure. Values are 
presented for the (530) symmetrical tilt model. 

The values of the grain boundary energy as a function of the misorientation angle 

are presented in Figures 4.34 and 4.35, for the symmetrical tilt and symmetrical twist 

grain boundaries studied respectively. These values are also given in Tables 4.6 and 

4.7. 

The grain boundary energy values for the [OOlJ symmetrical twist boundaries 

are the order of 0.03 eV/A2 bigger than the values for the [OOlJ symmetrical tilt 
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Figure 4.34: Symmetrical tilt grain boundary energies 
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boundaries in a-iron. These values are 20-30% bigger than the values for the same 

grain boundary energies calculated by using a Johnson's pair potential in symmetrical 

tilt and twist boundaries [106, 107, 121, 104]. This fact is also noticed by Watanabe 

et al.[112], after structural calculations of a few symmetrical tilt boundaries in bcc 

iron using a many-body potential of the Finnis-Sinclair form. 

Many-body potentials of the Finnis-Sinclair form do not include the magnetic 

properties of iron therefore an approximation is made when we calculate the energy 

of the grain boundaries. The magnetic moment at the grain boundaries is differ

ent from the one in the bulk, as inferred from ab initio calculations [74]. Calcula

tions on grain boundaries in iron based on a local spin density functional description 

for ferromagnetic materials, reveal that intergranular cohesion along symmetric tilt 

boundaries in iron depends strongly upon the enhanced magnetic polarization in the 

grain boundary region [122]. The increase in magnetic moments along the boundary 

considerably reduces the energy of the boundary, i.e. enhances cohesion, playing an 

important role stabilizing the boundary [122]. The grain boundary energy of a (310) 

symmetrical tilt grain boundary including the magnetic moment of iron is equal to 

0.560 Jjm2 (0.035 eV jA2) [122]. These values differ significantly from the value of 

the grain boundary energy using a many-body potential of the Finnis-Sinclair form, 

having a value of 1.240 Jjm2 (0.077 eVjA2). 

There are no experimental values of grain boundary energies to be directly com

parable with the ones obtained from the atomistic simulations in this thesis, e.g. [001] 

symmetrical tilt and twist in a-iron. However, there exists experimental values for 

the grain boundary energy of o-iron, i.e. bcc structure as a-iron, at a tempera

tures of ~ 1200 K. This values are approximately equal to 0.770 Jjm2(0.048 eV j A2) 

[123, 124, 125], and can give us an idea of the order of magnitude in energy. 

From our calculations special boundaries can be identified as small cusps in the 

grain boundary energy-misorientation plots for the symmetrical tilt models; being the 

(530), (210), (310) and (510) models. Three [001] symmetrical tilt boundaries have 

been identified experimentally as 'special' in a-iron. The symmetrical boundaries 

founded experimentally were the (210), (310) and (510) symmetrical tilt, after a 

segregation study of P, Si and C in [001] symmetrical bicrystals in a-iron. The 

absolute values of the enthalpy of solute segregation for these special boundaries are 

lower than those of typical general boundaries [126]. When the enthalpy of segregation 

is plotted as a function of the misorientation angle, these special boundaries show 

local minima, or cusps. 
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tPtilt (degrees) ,(eV / A2) Width(A) lly(A) 
12.68 0.067 23 0.1 
16.26 0.075 19 0.2 
22.62 0.079 17 0.3 
28.07 0.079 17 0.4 
30.51 0.082 17 0.3 
36.87 0.081 12 0.3 
46.40 0.091 14 0.4 
48.89 0.086 12 0.6 
53.13 0.078 7 0.4 
58.11 0.083 11 0.5 
61.93 0.081 12 0.5 
64.94 0.079 12 0.3 
67.38 0.074 9 0.4 
73.74 0.065 11 0.2 
77.32 0.058 12 0.1 

Table 4.6: Grain boundary energy, width and expansion of planes perpendicullar to 
the boundary for each symmetrical tilt model studied. 

tPtwist (degrees) ,(eV/A2) Width(A) lly(A) 
12.68 0.097 10 0.2 
16.26 0.108 10 0.2 
22.62 0.112 10 0.2 
25.06 0.117 10 0.3 
28.07 0.117 10 0.4 
30.51 0.120 10 0.4 
31.89 0.119 10 0.4 
36.87 0.117 10 0.2 
41.11 0.115 12 0.4 
43.60 0.118 10 0.4 

Table 4.7: Grain boundary energy, width and expansion of planes perpendicullar to 
the boundary for each symmetrical twist model studied. 
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Figure 4.36: Relaxed and unrelaxed width of:(a) (530) symmetrical tilt, (b) 
28.07°(001) symmetrical twist 

4.3.4 Grain boundary width 

As has been shown in the previous sections, the regular crystal structure is broken 

by a disordered region of only a few atomic layers near the boundary. The physical 

properties, i.e. thermal expansion, electrical resistivity, elastic response, in the vicin

ity of the interface can differ substantially from those of the rest of the bulk and can 

be highly anisotropic, because of this disordered region. These differences can change 

over a few atomic layers in different ways, depending on the physical property, and 

therefore, the definition of a width for a grain boundary is not an easy task. 

A definition of the width of a grain boundary can be made, based on our atomistic 

model using the potential energy of the atoms close to the boundary. Atoms close 

to the boundary will have a potential energy which clearly differs from those atoms 

within the bulk. The cohesive energy of an iron atom in a bcc crystal is equal to -4.28 

eV. The calculations predict a potential energy per atom equal to this cohesive energy 

in the undisturbed bulk. We define the width of the grain boundary as the region near 

the diving interface which includes atomic layers with an averaged potential energy 

not in the interval -4.28±0.01 eV. Similar width definitions based on the energy of 

atomic layers as a function of their distance to the boundary can be taken [99]. 

By cutting slabs of atoms parallel to the grain boundary and plotting their av

eraged potential energy, it is quite straightforward to 'see' the width of the grain 

boundary. In Figure 4.36 the averaged potential energy of atomic layers as a function 

to the distance to the boundary for a symmetrical tilt, (a) , and twist , (b), boundary 

is presented. Potential energy averaged values have been obtained every 0.2 A. The 

values obtained for both relaxed and the unrelaxed configurations are presented in 

this figures. The unrelaxed structures configurations before relaxation present high 

no 
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Figure 4.37: Average potential energy of atomic layers parallel to the boundary as a 
function to their distance to the interface for the symmetrical tilt boundaries studied: 
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Figure 4.39: Average potential energy of atomic layers parallel to the boundary as 
a function to their distance to the interface for the symmetrical twist boundaries 
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energy values in a few layers near the interface. After relaxation a new configuration 

near the interface appear reducing the potential energy values. 

Following our width definition, the unrelaxed configurations presented as a exam

ple for the twist model in Figure 4.36(b) has a width equal to 5 A and it includes 4 

unrelaxed atomic layers. After relaxation the width of the boundary is equal to 10 A 
and it includes 8 atomic layers. The grain boundary width and the potential average 

plots for the symmetrical tilt studied are presented in Figures 4.37 and 4.38; the same 

study for the symmetrical twist models is shown in Figure 4.39. These values are also 

given in Tables 4.6 and 4.7. Symmetry across the interface of the relaxed structures 

can be inferred from these plots. 

The width of the grain boundary is different for different grain boundaries. The 

width of the tilt boundaries studied are in the range of 7-23 A. For the twist boundary 

the widths are all approximately equal to 10 A. The interlayer distance parallel to 

the interface is always the same for all the twist models and equal to ao/2; for the 

tilt models the interlayer distance varies approximately between ao/20 and ao/3, and 

therefore the planes are much closer to the discontinuity in the crystal and more 

layers will be involved in the relaxation process for the tilt boundaries. Figure 4.40 

presents the grain boundary widths of the symmetrical tilt models as a function of 

(a) the interlayer distance and (b) the misorientation angle. These graphs suggest a 

decreasing linear dependence of the grain boundary width for the [001] symmetrical 

tilt models with both interlayer distance of planes parallel to the boundary and 

misorientation angle. 
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Figure 4.40: Grain boundary width as a function of:(a) the interlayer distance and, 
(b) the misorientation angle of [001] symmetrical tilt bondaries in a-iron. 
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4.3.5 Volume expansion 

An important characteristic of grain boundaries is the outwards expansion suffered 

by atomic layers parallel to the boundary. Atomic layers expand in order to accom

modate the new atomic configuration at the boundary. This expansion introduces 

a 'free volume', compared with a perfect crystal, which can control process such as 

segregation of impurities towards grain boundaries. Local volume expansion in di

rection perpendicular to the boundary have been experimentally founded by HREM 

studies[127, 128]. 

In Figure 4.41 the averaged displacement of each atomic layer according to their 

distance to the boundary is presented for a (530) symmetrical tilt boundary. It can be 

inferred from Figure 4.41, that the layers in both sides of the interface are displaced 

away from it. This displacement is symmetrical at both sides of the boundary. 

, 

o . • 

o. 2 ~J." .... "'-
Y"~ 

" .. .!tJ\ 

~. • 

~. , 
-20 .IS ·10 -5 0 10 IS 20 

Distance (A) 

Figure 4.41: Average perpendicullar displacement of atomic layers as a function of 
their initial distance to the boundary before relaxation. Values for the (530) sym
metrical tilt boundary model are presented. 

Oscillations in the interplanar spacing close to the boundary can be inferred from 

Figure 4.41. These oscillations decay exponentially away from the boundary as it 

can be described by simple analytical models for the study of relationship between 

structure and energies in grain boundaries [36]. The total expansion is given by the 

displacement of atomic layers far away from the boundary. Therefore in the example 

shown in Figure 4.41, the expansion is approximately 0.4 A . Expansion values for 

the symmetrical tilt and twist boundaries studied are given in Tables 4.6 and 4.7. 
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In Figure 4.42 the volume expansion as a function of the grain boundary energy 

for the symmetrical tilt models is presented. These results suggest that volume 

expansion increases linearly with the grain boundary energy. Previous computer 

simulations have also suggested a certain degree of correlation between the grain 

boundary energy and the volume expansion [121J. 
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Figure 4.42: Expansion of atomic layers perpendicullar to the boundary as a function 
of the grain boundary energy for [OOlJ symmetrical tilt boundaries in a-iron. 

4.3.6 Adding atoms 

The twist boundary has a higher relaxed energy than the tilt boundary and the 

density of atoms is smaller there. There is possibly a reasons why the twist boundary 

has this higher energy. The reason could be that there are insufficient atoms at the 

interface to form the 'best' minimum energy structure. This aspect could be studied 

further by adding atoms to the interface region and relaxing until a lower energy is 

reached. This possibility has been studied by a simple test in this thesis. 

The atomic structure of symmetrical twist grain boundaries present periodic 

atomic arrangements with enough free volume to accept particles. That can be 

observed, for example, in Figures 4.32 and 4.29, where configurations with gaps ap

peared. Using the relaxed model with no translations for the 28.07°[001J symmetrical 
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twist boundary, Figure 4.32, particles were added to the interface region. This new 

configuration was further relaxed. 

The grain boundary energy of the relaxed structure without additional atoms, 

which is shown in Figure 4.32, is equal to 0.123 eV / A2 New configurations with 

12, 24 and 100 additional particles were added in a plane parallel to the centre of 

the boundary and placed at the various periodic gaps. The final grain boundary 

energy configuration for the three previous structures were equal to 0.121, 0.120 and 

0.110 e v/A 2 respectively. These grain boundary energy are smaller than the model 

without additional atoms and without rigid body translation. In addit ion, the model 

with 100 extra-atoms, gives a grain boundary energy value which is smaller than the 

minimum configuration of the 28.07° (001) obtained by a translation of the original 

CSL description. 

M1

] 

H:350] 
«=[530] 

Figure 4.43: Close view of the relaxed atomic grain boundary structure for the 28.07° 
(001) symmetrical twist with 100 additional atoms. 

In Figure 4.43 top and side views of the grain boundary structure for the model 

with 100 additional atoms is presented. The atomic arrangement which has been 

shown to be more stable for the previous models of the same twist boundaries is 

different to those presented in Figures 4.32 and 4.26. Differences are perhaps more 

clearly seen from the averaged potential energy plot of atomic layers presented in 

Figure 4.44. The width of the grain boundary has increased by 1 A after the addition 

of the additional particles. 

117 



-3.7 
lIA [00 1128.73' (100) 

-3.8 
--+JOOaloms 
-- no extra atoms 

-3.9 

;; -4.0 
~ 

.fr 
-4.1 

-4.2 

-4.3 
-20 - 15 -10 -5 0 5 10 15 20 

Distance (A) 

Figure 4.44: Comparison of the average potential energy of atomic layers parallel to 
the boundary as a function to their distance to the interface for the model with no 
translation for the 

4.4 Conclusions 

In this chapter the atomic structure of symmetrical grain boundaries in a-iron has 

been obtained by computer simulation. A total of 15 symmetrical tilt and 10 sym

metrical twist boundaries, all of them with the rotation axis along the [001] direction 

of the bcc structure, have been studied. The misorientation angle between grains 

ranges from 12.7°_77.3° and 12.7°-43.6° for the tilt and twist boundaries respectiYely, 

providing a good sampling of 'high-angle' grain boundaries. 

A computational methodology for obtaining the equilibrium relaxed atomic con

figuration at the boundary has been presented. Computational blocks of atoms con

taining the desired interface are implemented following a coincident site lattice (CSL) 

geometrical description of a bicrystal and including also rigid body translations of 

one grain respect to the other. These computational blocks were relaxed to their 

minimum energy configuration following a standard molecular dynamics procedure 

using a many-body potential of the Finnis-Sinclair form for a-iron. The size of the 

computational blocks depend on the interface to be modelled,the smaller and the 

larger systems containing 28260 and 68000 atoms respectively, which are limited by 

computational resources available. 

The minimum energy configurations found for the symmetrical tilt boundaries 

present a clear periodic atomic structure along the boundary, this structure being 

118 



different for different boundaries. The atomic structure obtained can be thought as a 

sequence of basic structural units. Most of the tilt boundary configurations found are 

well described as a combination of basically three structural units. These structural 

units are the ones which form the (100), (llO) and (310) symmetrical tilt boundaries. 

Most of the symmetrical relaxed twist boundaries show present a periodic structure, 

however they do not contain such clear configurations based on a structural unit 

model. 

The final grain boundary structures have been classified in terms of energy, width 

and expansion of the distorted region. The grain boundary energy is defined as 

the difference of the configurational energy of the system with respect to one with 

the same number of atoms in a perfect crystal, per unit area. The grain boundary 

energy values follow the same pattern as previous simulations in a-iron with pair

potentials when they are presented as a function of the misorientation angle, showing 

cusps of energy for some 'special' boundaries. In this work these boundaries are the 

(530), (210), (310) and (510) symmetrical tilt models. Values for the grain boundary 

energies are smaller in the tilt boundaries i.e. 0.058-0.091 eV/A2, compared with 

those in the twist boundaries i.e. 0.097-0.120 eV/A2. 

A definition of grain boundary width has been proposed. This definition is based 

on the averaged potential energy of atomic layers parallel to the boundary. We define 

the width of the grain boundary as the region near the diving interface which includes . 

atomic layers with an averaged potential energy not in the interval-4.28±0.01 eV. The 

width, definied in this way, is different for different boundaries, showing a dependence . 

on the interlayer distance of planes parallel to the boundary and the expansion of 

these planes away from the boundary. The width of the tilt boundaries studied are in 

the range 7-23 A, being for all the twist models approximately the same and equal to 

10 A. The width of a grain boundary shows a dependence on the interlayer distance 

of planes parallel to the boundary and also with the expansion of these planes away 

from the boundary after relaxation. The expansion values have been shown to vary, 

depending on the grain boundary, in a range 0.1-0.6 A. 

A brief study was made for the 28.07° symmetrical twist boundary in which parti

cles were added in a middle plane of the boundary in positions where gaps appeared. 

Final configurations with smaller grain boundary energy values were obtained. This 

suggested that more stable twist boundaries can be obtained by adding additional 

particles to the CSL initial structure. 

This chapter has provided a formalism for the study of the atomic structure of 

symmetrical boundaries. Next chapter utilises this for the study of the interaction of 

collision cascades with such boundaries. 
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Chapter 5 

Radiation damage at grain 
boundaries 

5.1 Introduction 

The interaction of radiation with matter is one of the most exciting parts of physics in 

addi tion to being a basic pillar of the development of new technologies. Nowadays, the 

understanding of the effects of radiation interactions with matter has made possible 

the use of particle beams for developing, for example, new semiconductor devices and 

new tools for diagnostics in medicine. In particular, the interaction of radiation with 

solids is an area which has applications, not only for the semiconductor industry but 

also for space and nuclear energy programmes. 

Fission and fusion reactor technology are, perhaps, one of the most important 

fields where studies of radiation effects play a key role [129J. In 1943, E. P. Wigner 

predicted the existence of displaced atoms in those parts of nuclear reactors which 

are irradiated by an intense neutron flux [130J. Fast neutrons from nuclear reactors 

produced as a result of a fission reaction can carry energies up to several MeV; such 

quantities of energy are more than sufficient to produce structural damage in any 

material. These neutrons, or any other particles with enough energy, will produce 

damage in a target when losing all or part of their energy. Radiation starts a cas

cade process with production of point defects which have a profound impact on the 

microstructure of the material [131J. The tremendous technological importance, in 

addition to the safety implications of radiation damage on the structural materials 

of nuclear reactors, has resulted in a vast amount of work on the subject since the 

early 1940's. In particular, because all nuclear reactors have steel components, there 

has been much research activity concerning the ageing of steel components under 

irradiation. 

The radiation effects on materials used in the nuclear industry include: the em

brittlement of the material, swelling and the erosion of wall surfaces. The structural 
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materials, e.g. steels, forming the pressure vessels that contain the fission reactor 

cores, are damaged by the fast neutron radiation coming from the fission chain. The 

most important effect of this radiation is the increasing of the ductile-brittle tran

sition temperature, i.e. the temperature below which failure would be by brittle 

fracture. Above this temperature, typically 2': 300 K above, the energy required to 

cause a crack to grow has a stable value called the 'upper shelf' value. Above this 

temperature, steels maintain their optimum strength. A pressure vessel can become 

brittle at room temperature or even at the operating temperatures of the reactor 

because of the increasing of the ductile-brittle transition temperature[129], this will 

provoke the failure of the vessel. 

Swelling has serious effects on the efficiency nuclear reactors. At high neutron 

fluxes a large amount of interstitials and vacancies are formed. At the working tem

perature of the reactors, most of these point defects recombine, however some clusters 

of interstitials can be formed and subsequently collapse to form dislocation loops and 

vacancies nucleate forming voids, as a result of void formation the metal swells, in

creasing its volume, for a review see [132]. 

Energetic particles produced in fusion reactions have an important role on the 

development and design of nuclear fusion reactors. The main effect of this radiation 

is to damage the first wall and as a consequence of erosion cause the release of atoms 

from the· wall into the plasma, contaminating the fusion process. 

5.1.1 The collision cascade theory 

The basic defects which can be produced at the atomic level in metals have been 

well known since early studies of the radiation theory. When a crystal is bombarded 

with energetic radiation, defects and imperfections appear in the initially perfect 

crystalline structure. 

Vacancies and interstitials are the basic structural defects produced in a crystal 

as a result of radiation. When an atom receives enough energy to move from its 

lattice site to another place which is not a site within the perfect crystallographic 

structure, it is said that this atom has become an interstitial, and the site which this 

atom has left behind is called a vacancy. The combination of vacancy plus interstitial 

is known as a Frenkel pair. Imperfections which remain after the energetic radiation 

has ceased are called radiation damage and any physical property change which may 

result is called a radiation effect [133]. 

The energy lost by a projectile during its track through a solid is mainly trans

ferred to the atoms within the material as elastic energy loss, and to the electrons of 
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the material as inelastic energy loss. In metals, the displacement of atoms by direct 

collisions, i.e. elastic energy loss, is the most important cause of damage. The cross

sections for the transfer of momentum to a single atom from bombarding particles, 

ions or neutrons, have been sufficiently well known for a number of years. However, 

a major concern for the study of radiation damage in metals is to understand the 

processes and the damage caused after this single 'recoil' atom has been struck by a 

projectile and has been endowed with an excess of kinetic energy. An atom of the 

lattice which is struck by radiation receiving enough energy to move is called primary 

knock-on atom, PKA. The PKA can undergo collisions with its neighbours to an 

extent which will depend on the amount of energy received. A cascade of displaced 

atoms will therefore build up. If this collision cascade intersects with a free surface 

sputtered atoms away from the surface are produced. 

The basic ideas which were developed during the first years of the study of ra

diation damage, in the 1950's, remain today. Seitz built the first blocks of a theory 

which tried to describe the imperfections produced.in solids by radiation [134, 135]. 

This theory said the effects of radiation on metals were based on Frenkel defects 

and effects resulting from thermal spikes. This theory was refined by several authors 

in subsequent years, including Brinkman who gave the most important contribution 

when he introduced the concept of a displacement spike [136, 137]. 

Fundamental to the first radiation theory was the notion of threshold energy, 

which is the energy required to move an atom from its site lattice and form a Frenkel 

pair. After some simple and very general considerations this energy was fixed by 

Seitz at a value of 25 eV for any metal [134]. Therefore, there was a step function 

which related the displacement probability of an atom with the transferred energy. 

Very soon, it was realised that this threshold energy was directionally-dependent. 

Another key term in radiation theory is the number of displaced atoms, N(E), 

resulting from a primary energy E. Kinchin and Pease [138] presented the first 

estimation for this value after a statistical treatment based on several assumptions 

[139]: 

• it was assumed, as has been said, that the displacement threshold was 

fixed, Ed ; 

• collisions were purely elastic; 

• only two-body interactions were assumed; 

• energy losses less than the threshold energy were not considered; 
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• annealing of damage, i.e. interstitial and vacancy recombination was 

assumed to be negligible; 

• it was considered that in each collision the energy was equally shared 

between the two atoms. 

Taking into account all of these assumptions, the number of displaced atoms can 

be expressed as [138J: 

N(E) = 1, 

N(E) = 0, 

(5.1) 

Following these requirements and based on the work of Seitz and Koehler [140], 

Yoshida used the Monte-Carlo method to calculate the number of Frenkel pairs in ger

manium, which was one of the first computer simulations in this area [141J. Yoshida's 

work predicted a value for the number of Frenkel pairs in good agreement with the 

one predicted by Equation 5.1. Also in Yoshida's work explicit graphical results of 

the path of the primary knock-on atom and the branching 'tree-like' structure created 

by vacancies and interstitials were shown. 

However, there was experimental evidence that the number of defects predicted 

by cascade theory overestimated the number of defects at least in a factor of 10. The 

most obvious simplification of this theory was to consider collisions as isolated events. 

This fact was the first evidence that the displacement cascade was a complicated, 

many-body process. 

The Kinchin-Pease formula was later refined following a binary collision model by 

Norgett, Robinson and Torrens (NRT) [142J. The number of Frenkel pairs given by 

the NRT formula, NNRT(E), follows: 

(5.2) 

where Ed is the threshold energy averaged over all crystallographic directions and 

Edam is the energy available for elastic collisions. If the inelastic interactions are 

considered negligible Edam can be considered to be equal to the initial kinetic energy 

of the PKA. 

Another question arose related to the fate of the energy which is delivered to 

the lattice and is not followed by displacement, for example in glancing collisions. 

This provokes collective excitations in form of vibrations of atoms which can be 
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transferred to neighbours and finally damped out to the surrounding crystal. The 

energy transferred in this way was regarded as a sudden delivery of heat to a restricted 

volume of the lattice and that the primary collision event was the origin of a spherical 

thermal spike [140]. Thermal diffusion equations in a homogeneous medium were 

applied to this idea. As a result, few Frenkel pairs were expected to be formed by 

this method compared to the number produced by direct collision events. 

A new view of the radiation damage process was given by Brinkman [136] when he 

introduced the concept of a displacement spike. Brinkman studied the relationship 

between the mean free path for displacement collisions and the energy of the primary 

knock-on atom, concluding that the mean free path for displacement collisions of a 

primary knock-on atom with enough energy, can fall below an interatomic distance. 

In this situation, the primary knock-on atom will create a large number of vacancies 

in a short time, forcing atoms away from its track. These atoms can also displace 

other atoms in a chain sequence. The final picture, after the primary knock-on atom 

has lost all of its energy heating the lattice, was seen to consist of a shell of interstitial 

atoms which are separated from a core of vacancies, the so-called displacement spike. 

It was expected that few Frenkel pairs remained and most of interstitials and vacancies 

created annealed, i.e. recombined. 

A new contribution to the theory was made by Silcox and Hirsch [143] to explain 

the presence of dislocation loops on fast neutron irradiated metals. Basically, the 

region damaged for the displacement spike was visualized as containing vacancies 

at the centre which were able to nucleate dislocation loops and an outer shell of 

vacancies and interstitials which recombined. The main contribution to the previous 

displacement spike theory of Brinkman was that the excess of intersti tials diffused 

until they reached other dislocations, grain boundaries or free surfaces, i.e. sinks for 

defects. 

Later, Seeger included focusing and channelling as mechanisms to explain the 

probable existence of long range transport of matter, i.e. interstitials away from the 

vacancy core, in addition to energy losses by displacements and glancing collisions 

[144]. Focusing was first suggested by Silsbee and, is produced when an atom cannot 

penetrate the surrounding lattice and transfers the energy and momentum to one 

of its neighbours, which will subsequently do the same with its neighbour [145]. 

In particular, if there is a close packed row of atoms in the crystal, a sequence of 

collisions and a transfer of energy is expected, the so-called focuson, i.e. focused 

collision sequence. Not only transfer of energy can occur, but also a replacement 

collision sequence occurs, this being the atoms propagated as dynamic crowdion, 

leaving a vacancy at one end of the line. A crowdion is formed when an interstitial is 
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packed into a close packed line of atoms which already had enough atoms to occupy 

the available lattice sites. Replacement collision sequences appear when an atom 

comes to rest, after collision, occupying the lattice site of the other atom. On the 

other hand, there exist open directions within a crystal structure, bordered by close 

packed directions, where an atom can enter and move down this channel long distances 

because the interaction with the lattice is small and, in an ideal case, is not going to 

suffer any collision, the so-called 'chanellon'. 

The final picture of ideas collected until the early 1960's can be summarized in the 

schematic two-dimensional representation of a primary knock-on atom impinging on a 

part of a face centred cubic lattice presented by Seeger [144], Figure 5.1, quite similar 

to the one given by Brinkman. A primary knock-on atom, in its wake, leaves isolated 

vacancies and Frenkel pairs behind, before coming to rest. Energy and momentum 

are propagated down close-packed crystallographic directions leaving an interstitial 

at the end. The final result is a concentrated zone of vacancies, a depletion zone, with 

interstitials formed away from it, often in form of stable dumbells, i.e. two interstitials 

sharing a vacancy site. Immediately afterwards, most of these defects rearrange and 

recombine in a phase which will lead the material to thermal equilibrium, which 

requires longer times compared with the ballistic phase of the collision cascade. 

lattice 
vacancy 

CloSe-

energy -:::::;~~4.1 
transport .;;;;.. 
by focusing 
collisions 

ez;change 

diluta-d interstitial 
zone atoms 

Figure 5.1: Schematic two-dimensioanal picture of the radiation damage by fast neu
trons in a face centrd cubic metal, after [144]. 
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5.1.2 Early atomistic simulations 

Due to the many-body nature of collision cascades it was difficult to develop a single 

cascade theory covering the collisional events produced in time scales approximately 

less than 0.1 ps, and the longer thermal rearrangement produced after the collisional 

phase. The improvement in understanding of the processes that occurred in collision 

cascades came from the development of atomistic computer simulations. 

In 1960, Gibson, Goland, Milgram and Vineyard published the results of the first 

molecular dynamics computer atomic simulation on radiation damage [146]. Vineyard 

and co-workers faced the study of radiation damage with a new and revolutionary 

approach using computer resources available to them ('high-speed' digital computer 

as they called it) to simulate the evolution and effects of a primary knock-on atom 

in a crystal lattice. Basically, they implemented the classical equations of motion for 

a set of atoms in a computer in order to solve for the dynamics of the system. The 

crystal they simulated was copper, a fcc lattice with 500 atoms at rest, 1000 atoms 

in some cases, and with a primary knock-on atom which was endowed with energies 

between 25 and 400 e V and different velocity directions. The total time simulated was 

approximately 2 ps depending on the particular case. The Born-Mayer pair repulsive 

potential was used for these calculations. The main results of these simulations were: 

• damage at low energies consisted of vacancies and interstitials; 

• interstitials reside in dumb ell configurations; 

• focusing was observed, collision sequences occurred in both <110> and 

< 100> directions; 

• sequences evolving as a dynamic crowdion producing an interstitial near 

its end were also observed; 

• the threshold energy was lowest near to the <100> directions; 

• agitations following damage resembled thermal spikes but the transport 

of energy is far from isotropic as predicted by thermal spikes models; 

• the vibrational mode associated with interstitials retained their energy 

longer than other modes [146]. 
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These computer simulations confirmed the basic ideas of the cascade theory, how

ever the calculations did not lead to the depleted zone described by Seeger [144]. 

The possibility of the creation of an amorphous zone was postulated for larger sets 

of atoms and higher energies of the collision cascade [147]. 

These molecular dynamics simulations were extended to body centred cubic met

als in particular to a-iron [148] and in general supported the main results of the 

simulations in copper. It was found that the key mechanism of displacement at low 

energies was a dynamic replacement where the knock-on atom replaces one of its 

neighbours. This replacement by the knock-on atom causes an extended sequence 

of correlated replacements. Focusons were observed to propagate in the <111> di

rections at large velocities compared with other directions. Also stable interstitials 

with a dumb ell configuration oriented along the <110> directions were found. In the 

bcc lattice, the direction of easiest displacement is close to < 100> with an estimated 

threshold energy of 17 eV for the Born-Mayer potential used. These simulations 

[146, 148] proved the feasibility of simulating radiation damage events on computers 

which is now indispensable tool for the study of radiation damage. 

5.1.3 Modern picture of collision cascades 

The collision cascade process occurs on length scales of the order of nm and time 

scales of the order of ps, which are in the range of affordable atomistic simulations 

with the computer power available nowadays. The study of radiation damage by 

computer simulations to date has been basically based on two classes of atomistic 

numerical models: molecular dynamics and binary collision approximations. 

Computer simulations of collision cascades have contributed to the way we under

stand radiation damage in metals, for reviews see [149, 150, 151, 152, 4]. The actual 

picture is based on the fact that radiation effects are determined, at the atomic scale, 

by the number of Frenkel defects, their distribution in clusters and their mobility. 

A general description of the actual picture of collision cascades and also how the 

cascades relax, based mainly on the information generated by computer simulations 

is presented below. 

Prior to the creation of a collision cascade is the generation of PKA's, a recoil 

atom produced by the incident radiation, i.e. neutrons, ion beams, which typically 

occurs in less than 1 fs. After the creation of a PKA a collision cascade is started 

where two important stages can be identified: the collisional (or ballistic) phase and 

the thermal-spike (or cooling) phase. 
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During the collisional phase the primary knock-on atom loses most of its energy 

by elastic collisions with the atoms of the crystal during its track along its path. Only 

a small part of the PKA energy is lost in electronic excitations, which can therefore 

be ignored in collision dynamics. These collisions provoke a branching 'tree-like' 

structure of successive collisions which will last for ~ 0.1-0.2 ps. At high energies, 

distinct regions of damage with identifiable cascades can be identified [153], they are 

called subcascades. The collisional phase produces a large number of defects creating 

a hot disordered central region with liquid characteristics surrounded by point defects. 

Additionally a few interstitials are formed by focused replacement collisions. After 

approximately 0.1 ps, depending on the energy of the PKA, the number of Frenkel 

pairs reaches a maximum [154J giving a kinetic energy spectrum far from equilibrium. 

Following this collisional phase is the thermal-spike phase, where interstitials, 

mainly outside the core of the cascade, rearrange by thermal relaxation, in approx

imately less than 1 ps, returning to a lattice site. During this phase, the energy is 

partitioned amongst the atoms in the crystal until thermal equilibrium is reached and 

the spike is dissipated. The disorder on the core may last for several picoseconds, 

during which time atoms will be seeking for stable configurations by returning to 

lattice sites or clustering. The thermal spike phase may last between ~ 1 ps until to 

~ tens of ps, producing at the end, the final damaged microstructure [155J. 

The evolution of the final stable defect structure after the collision cascade will 

change the physical properties of the irradiated material. This evolution occurs over 

a larger scale of time and length, which is therefore better modelled using continuum 

and Monte Carlo models [156J because of the longer timescales. However, the starting 

point for these models is the quantitative knowledge of the number and distribution 

of the final defects produced by collision cascades provided by molecular dynamics 

simulations [4J. 

Molecular dynamics simulations have revealed that defect production is overesti

mated by analytical models based on binary collisions like the Kinchin-Pease [138J 

and NRT [142J formulas, Equations 5.1 and 5.2 respectively. The number of Frenkel 

pairs for a given cascade is 20-40 % of the number predicted by the NRT formula 

[4J. The number of Frenkel defects created just after the collisional phase, which can 

be defined as the time at which the kinetic energies of all atoms have fallen below 

5 eV, are in a good agreement with the Kinchin-Pease formula [154J. The binary 

collision models cannot predict the recombinations which are produced during the 

thermal spike phase due to their many-body interaction nature. Molecular dynamics 

simulations show that during the thermal spike phase most of the interstitials at the 
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periphery of the disordered core recombine with vacancies, therefore reducing the 

number of Frenkel pairs. 

Bacon and co-workers have obtained an empirical relationship, between the num

ber of Frenkel pairs remaining after a collision cascade, N, and the energy of the 

PKA, Epka , which generates the cascade [150, 157, 4]. This empirical relationship 

is a power law which provides a good fit to molecular dynamics simulations data in 

several metals such as Ti, Zr, Cu, Zr and Fe (also for the Ni3Al alloy), as follows: 

(5.3) 

where A and m are constants which weakly depend on the particular metal and 

material temperature. For a-iron these constants have a value of A = 5.57 and 

m = 0.83, with a range of validity which has been proven up to energies of the PKA 

of 40 keY. These values are approximately one quarter of the value predicted by the 

NRT formula, see Equation 5.2. 

Molecular dynamics simulations also reveal the production of clusters of inter

stitials during the thermal spike phase and by subsequent diffusion driven by the 

interaction between smaller interstitial clusters. Recent atomistic simulations reveal 

that the probability of clustering and the size of the clusters tend to increase with 

increasing PKA energy [4]. These clusters of interstitials can migrate away from the 

original cascade and be absorbed at sinks of defects, such as bulk interfaces. The 

mobility of such clusters has been studied in several metals, mainly considering crow

dion configurations along close packed directions [158, 159, 160]. Collision cascades 

simulations in a-iron reveals the presence of large clusters with more than ten mem

bers for energies greater than 10 keY [158, 152, 159, 160]. On the other hand, there is 

no clear evidence, until the date, for the presence of large clusters of vacancies from 

cascade simulations in a-iron [152, 156, 4]. 

5.1.4 Radiation damage and grain boundaries 

The performance of steel components in nuclear reactors is significantly influenced by 

the presence of interfaces within the material such grain boundaries. Grain bound

aries in polycrystalline materials, i.e. ferritic steels (based on bcc iron) used in nuclear 

reactors, affect a large variety of physical properties [161, 36]. The analysis of the role 

that interfaces play in respect of the damage produced by radiation is quite difficult 

experimentally. Atomistic simulations are therefore an ideal alternative to provide an 

insight into the structure, changes and damage mechanisms near to grain boundaries 

under irradiation. 
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Changes in microstructure due to radiation may result in the segregation of im

purities to grain boundaries, which may in turn degrade the structural properties. 

This segregation can affect many metallurgical processes including fracture, corro

sion, recrystallization, grain growth, creep, environmental embrittlement and grain 

boundary diffusion [162, 163, 161]. 

Most of the research to the date has studied collision cascades, using computer 

simulations, in perfect crystals, investigating the type and energy of defects and the 

way in which the defects are formed. However, it is known that bulk interfaces such 

as grain boundaries in the material play an important role in the degradation of 

structural properties. 

The natural step to improve the understanding of the role of grain boundaries in 

defect production is the study of collision cascades near these interfaces. Recently 

such simulations of radiation damage near interfaces in iron [164, 165] and silver [166] 

have been reported. 

5.1.5 Chapter description 

The object of this part of the thesis is to gain an insight into how radiation damage 

affects grain boundaries. The initial step in the modelling of radiation damage near 

these grain boundaries is to model the static microstructure for a better understand

ing of the atomic structure at the interface of two matching crystals, which has been 

discussed in the previous chapter. The second step involves the simulation of colli

sion cascades in bicrystals containing theses interfaces, which is the objective of this 

chapter. 

In this chapter atomistic simulations of collision cascades near grain boundaries 

III a-iron are presented. The dynamics and effects of the collision cascades have 

been studied via molecular dynamics. The effects of collision cascades with PKA's 

of 1ke V of initial energy, in symmetrical tilt and twist boundaries are analysed. A 

description of the molecular dynamics procedure applied to perform the calculations 

is presented, including a description of the computational blocks used and the choice 

of the primary knock-on atom. Results are presented for both, a (530) symmetrical 

tilt boundary and a [001] 28.073° (001) twist boundary. Analysis of the statistics 

generated by the calculations including the evolution of the number of defects within 

grain boundaries and changes in configurational energies are presented. 
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5.2 Modelling radiation damage near grain 
boundaries 

5.2.1 Molecular dynamics procedure 

In this research molecular dynamics simulations have been employed to study the 

evolution of a collision cascade generated by a single PKA near symmetrical grain 

boundaries. 

In order to generate a collision cascade near an interface, an excess of kinetic 

energy is imparted to an atom, i.e. a PKA, chosen from a relaxed computational block 

containing such an interface. The procedure to obtain relaxed structures containing 

symmetrical grain boundaries has been explained in the previous chapter. The energy 

of the PKA has to be chosen according to the computational resources available. For 

larger energies of the PKA, larger computational blocks are required to contain the 

whole cascade. The initial temperature of the relaxed computational block is 10 

K. Therefore, the atom chosen to be the PKA, and indeed all atoms in the lattice, 

maintain a little vibrational energy. This small vibrational energy is increased by the 

excess of kinetic energy added. In this thesis PKA's with 1keV have been considered. 

The choice of the PKA gains more importance in simulations of collision cascades 

near interfaces compared to simulations in a perfect crystal. When the crystal con

tains an interface, the effects produced by a cascade originated at different distances 

from it will be different. The initial velocity direction of the PKA plays a major role 

for cascades near interfaces as well as in perfect crystal simulations. Different choices 

of velocity directions and distances of the original PKA from the interfaces provide 

the statistics necessary to draw conclusions from the simulations. 

The interatomic potential used to describe the interactions between Fe atoms has 

been used also to obtain the relaxed structures of the computational blocks containing 

the grain boundary. This potential is the original Finnis-Sinclair potential for a-iron, 

but modified to properly describe the close interactions produced during the collision 

cascade [37], as described in Chapter 2. 

Periodic boundary conditions are applied in directions parallel to the boundary 

plane during the simulation time. Free boundary conditions are used in the direction 

perpendicular to the boundary. 

The simulation is allowed to evolve until reaching a stable state with no significant 

evolution in the number of point defects created by the collision cascade, i.e. typically 

5 ps with 1 keY imparted to the PKA. Major changes in the kinetic and configura

tional energy of the system will be produced during the first picosecond when the 

131 



maximum number of interactions occurs, i.e. the collisional phase. Then, the kinetic 

energy of the system is reduced by introducing a damping proportional to the velocity 

of the atoms until the temperature of the system drops to the initial temperature of 

the relaxed computational block which was 10 K, during approximately 2 ps more. 

A variable time-step is used to integrate the equations of movement, being smaller 

during the collisional phase where abrupt changes on kinetic energies are produced, 

and being su bsequently increased in order to increase the speed of the simulation. The 

time-step, Ilt, has been chosen according to the simulation time, t, in the following 

way: 

Ilt = 0.1 fs, 0 < t <::: 0.05 ps 
Ilt = 0.2 fs, 0.05 < t <::: 0.2 ps 
Ilt = 0.4 fs, 0.2 < t <::: 0.5 ps 
Ilt = 0.6 fs, 0.5 < t <::: 1 ps 
Ilt = 1 fs, 1 < t <::: 5 ps 
Ilt = 2 fs, t > 5 ps 

(5.4) 

Total energy is conserved during the whole event, prior to the damping process, 

with this choice of the time-step. Negligible fluctuations in the total energy, IlE / E, 

are not allowed to be bigger than 0.001 %. 

5.2.2 Interstitials and vacancies 

Point defect production is the immediate effect of a collision cascade, and therefore 

the way in which they are quantitatively defined plays a key role in data analysis. A 

vacancy is defined as a lattice site with no atoms inside a certain radius centred at 

the lattice site. An interstitial is an atom which is placed away from a lattice site by 

a distance bigger than this radius. 

An important question arises when we consider whether it makes sense to define 

a vacancy or an interstitial at the interface using the same definition that the one 

employed in a perfect crystal. The atomic arrangement at the grain boundary is 

different from that of the bulk and also different between different grain boundaries. 

The first neighbour distances are not the same as at the bulk. In a perfect crystal 

every atom has a first neighbour at the same distance however in the boundary the 

first neighbour distance is dependent on the position at the boundary. However, 

despite all the above facts it seems more plausible to have a single definition for both 

in the bulk and at interfaces, instead having one definition for the bulk and a different 

one which will be dependent on the specific interface. 
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In this thesis vacancies and interstitials are defined at the interface following the 

same criteria as that used in the bulk of bcc iron. Here, we define a vacancy as a site 

in the undisturbed relaxed lattice which has no atom within a sphere of radius of 0.3 

ao [37], where ao is the lattice constant, and interstitials being atoms placed outside 

these spheres centred in each site lattice. The lattices sites are defined as those of 

the relaxed structure before the collision cascade [164]. 

The study of clusters of interstitials is also based on the usual definition employed 

for collision cascades in perfect crystals [37]. An interstitial atom is considered to be 

in a cluster of interstitials if its distance to any of the atoms belonging to the cluster 

is less than the first neighbour distance of the crystal; i.e. the first neighbour distance 

equals 0.866 ao in a bcc lattice. 

5.3 Radiation damage near tilt grain boundaries 

In this section results of collision cascade simulations near a symmetrical tilt grain 

boundary are presented. 

5.3.1 Collision cascade details 

A rectangular computational cell has been chosen to study the radiation effects pro

duced by single collision cascades near a tilt boundary. This computational block is 

a bicrystal which forms a (530) symmetrical tilt boundary placed on the centre of the 

block. The x-z plane is chosen to be parallel to the boundary planes in both crystals, 

i.e. (530) and (350). Following the coincident site lattice model, a (530) symmetrical 

tilt boundary is characterised by a misorientation angle equal to 28.073°, and a rota

tion axis parallel to the [001] direction, i.e. y axis. Also a rigid body translation of 

one of the halves equal to Tx = 0.21 was applied, the block was relaxes as explained 

in the previous chapter. 

The dimensions of the computational block are equal to 100.5 x 100.5 x 42.0 A 
which contains 36900 atoms. This size of the computational block is big enough 

to contain collision cascade simulations produced by PKA with an excess of kinetic 

energy equal to 1 keY. 

In order to generate statistics, various velocity orientations for the PKA are chosen 

and applied to PKA's at different distances from the grain boundary. Table 5.1 shows 

the collision cascades considered near the tilt boundary. In this table the distance to 

the grain boundary plane and the velocity directions of the PKA are specified. Seven 

different PKA directions are considered, including PKA's moving perpendicular to the 

133 



intefface, i.e. [530] direction, and parallel, i.e. [001] direction. An excess of kinetic 

energy of 1 ke V is considered for the PKA's in all cases. At least four different 

collision cascade for each velocity direction were simulated by choosing PKA's at 

different distance from the boundary resulting in a total of 28 collision cascades. 

The distances from different PKA's to the boundary are between 6-40 A. At this 

energy, 1 ke V, a collision cascade initiated at distances of the boundary bigger than 

approximately 40 A will hardly affect the grain boundary. 

PKA PKA distance from PKA 
Directions the interface (A) Energy(keV) 

[530] 9.5 17.9 26.3 31.7 38.0 43.0 1 
[350] 7.6 9.5 13.5 17.9 1 
[001] 6.1 9.5 13.0 18.4 1 
[100] 7.6 10.5 13.5 20.8 1 
[210] 8.0 9.5 13.5 14.9 1 
[110] 6.5 7.6 9.5 9.5 1 
[111] 14.5 17.4 19.9 22.8 1 

Table 5.1: Collision cascades considered near the symmetrical tilt boundary 

5.3.2 Cascade evolution 

Before analysing the final damaged configuration of the grain boundary structure as 

effect of the collision cascade, this section deals with the evolution of the cascade 

through the simulation time. 

In Figure 5.2 the typical kinetic and potential energy evolution of the computa

tional block during the simulation time is showed. The collision cascade simulation 

starts when an excess of 1 ke V of kinetic energy is imparted to the primary knock-on 

atom increasing the total energy of the system by this amount. The behaviour of 

the kinetic and potential energy through the collision cascade process is similar to 

those in a perfect crystal. The biggest change of energies is produced during the 

first half picosecond, where the kinetic energy excess of the PKA is transmitted to 

the system by the collision events. The kinetic energy is reduced during this first 

stage of the collisional phase to approximately 500 e V, half of the initial available 

energy. Meanwhile, the potential energy abruptly increases to reach a more stable 

value after 1-2 ps of the simulation, see Figure 5.2 (a) and (b). After this time the 

system does not suffer large energy fluctuations. After 5 ps of simulation, a damping 

term proportional to the velocity was introduced to reduce the kinetic energy of the 
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Figure 5.2: Kinetic (a) and potential (b) energy evolution for a typical collision 
cascade near a (530) symmetrical til boundary. 

system until the system reaches 10 K of temperature; the initial temperature of the 

computational block. This damping stage last approximately 1-2 ps more. 

The number of defects created during the collision cascade has been obtained at 

different intervals of the simulation time. In Figure 5.3, the number of Frenkel pairs, 

i.e. number of interstitial-vacancy pairs, created by the collision cascades studied, as 

a function of the simulation time is presented for the (530) symmetrical tilt boundary. 

It is clearly shown that the maximum number of defects is produced during the first 

half picosecond, as in a perfect crystal. After the first picosecond most of the defects 

relaxed and we consider that we have stable defects after about 6 picoseconds of the 

simulation time. For comparison, it should be mentioned that Bacon's power law, 

see Equation 5.3, predicts approximately 6 Frenkel pairs in perfect crystal of a-iron 

as a result of a cascade energy of 1 ke V. The presence of interfaces clearly increases 

the damage of the system. 

Data visualisation is an important tool to qualitatively analyse the results pro

vided by molecular dynamics simulations and follow the evolution of the system. 

With the help of data visualization the mechanisms happening at the atomic scale 

can be more easily studied. The collision cascade simulations studied in this work 

have been tracked by mainly saving the positions of interstitials and vacancies at 

regular intervals depending on the stage of the simulations. These data have been 

typically saved every 5 fs during the first two picosecond of the simulation when 

more collisions occur and then every 10 fs and 20 fs once the system is relaxing and 

less events occur. With these data it is possible to make snapshots at the required 

simulation time by plotting vacancies and interstitials in a three dimensional like 
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Figure 5.3: Number of Frenkel pairs, generated for 1 keV collision cascades as a 
function of the simulation time in the (530) symmetrical tilt boundary model. The 
two curves represent the upper and lower limits for the number defects from the 
simulations carried out. 

representation. Also, movies of the simulation have been made by sequencing the 

snapshots at different times. 

Figures 5.4 and 5.5, show three-dimensional pictures at different stages of the 

simulation for two different collision cascades. Figures 5.4 and 5.5 are samples of col

lision cascades near the symmetrical tilt boundary considered for normal and parallel 

"incidence, respectively, of the initial velocity direction of the PKA with respect to the 

interface. In these pictures interstitials and vacancies are represented as green and 

red spheres respectively. The position of the interface in the computational block is 

drawn as a transparent gray plane. Also the limits of the rectangular computational 

block are drawn as a black lines. 

Data visualitation shows that the cascade develops typical features observed in 

perfect crystal lattices by previous studies in metals with this energy. Vacancies 

form along the way of the PKA and replacement collision sequences emanate out 

from this track. After the maximum number of defects is reached during the first 

half picosecond, recombinations take place leaving a number of stable defects such as 

dumbells at the end of the replacement collision sequences and the vacancies along 

the track of the PKA. 
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Figure 5.4: Various stages in the development of a typical 1 ke V collision cascade 
near the [001 J 28.073° (530) symmetrical tilt boundary at normal incidence to the 
boundary. The PKA was chosen to be at a distance of 18.4 A from the boundary. 
The red circles represent vacancies and the green circles interstitials. a) 0.05 ps; b) 
0.225 ps; c) 0.5 ps; d) 6 ps. 
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Figure 5.5: Various stages in the development of a typical 1 keV collision cascade 
near the [001] 28.073° (530) symmetrical tilt boundary at parallel incidence to the 
boundary. The PKA was chosen to be at a distance of 18.4 A from the boundary. 
The red circles represent vacancies and the green circles interstitials. a) 0.05 ps; b) 
0.225 ps; c) 0.5 ps; d) 6 ps. 
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The usual evolution of the collision cascade changes when the collision cascade 

spreads reaching the vicinity of the boundary. The main difference between cascades 

initiated in perfect crystals is that in this case the grain boundary acts as a partial 

barrier to the collision cascade. Few focused collisions cross the boundary at this 

PKA energy and an accumulation of defects occurs in the boundary region. This is 

easily understood considering that focused collisions follow close packed directions in 

the crystal, such as the [111] direction. Focused collision cannot continue its evolution 

across the boundary, because this direction is not a close packed direction in the other 

half of the bicrystal. 

The conclusion to be drawn from the qualitative analysis provided by data visual

isation is that the grain boundaries do act as a region where collision cascade damage 

can accumulate. Generally the boundary region acts as a region where defects build

up. These occur either as a result of rearrangement of existing interface atoms or as a 

build-up of interstitials arising from outside the boundary region. The final damaged 

accumulation of defects occurs in the boundary region changing the atomic structure 

of the boundary. A more detailed analysis of the final atomic structure is the subject 

of the next section. 

5.3.3 Preferential sites in the boundary region 

The damage produced in the grain boundary region as an effect of the collision cascade 

is much bigger than the one produced in a perfect crystal lattice. A question of great 

interest is to know whether this damage is randomly distributed along the boundary 

or by contrast, if it is accumulated in special regions at the grain boundary. 

In Figure 5.6, the position of all the defects which end up at the grain boundary 

after the radiation process is shown in a magnified region of the interface. This figure 

presents two different views ofthe initial structure of the grain boundary, open circles, 

plus the positions of all the interstitials, solid red circles, and vacancies, solid black 

circles, generated for all the simulations. Since this picture consists of position of the 

defects averaged aver all simulations we can see that there are specific sites in the 

boundary which are preferred. 

The majority of interstitials produced as a effect of radiation at the grain boundary 

are in a region which is very localised in the centre of the structure, see Figure 5.6 (b). 

If we consider only defects inside the width of the boundary, defined in the previous 

chapter, i.e. 17 A, 85 % of them are in a region of 3.8 A which is defined by the 

distance cc' of the 'kite' shape in the periodic structure of the boundary, see diagram 
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Figure 5.6: Open circles are the projection of atomic sites of the (530) symmetrical 
tilt before the collision cascade process in different views: (a) top view, (b) front 
view. Black and red solid cicles are the projections of vacancies and interstitials 
respectively, plotted for all the simulations. 
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in Figure 5.6. This percentage being of 75% for interstitials inside the width defined 

by the bb' distance, which is equal to 2.5 A. 

One of the most important result from this simulations is that there are 'prefer

ential' sites in the periodic structure where interstitials stay after radiation, changing 

the local atomic structure of the interface. These 'preferential' sites are identified in 

Figure 5.6(a) as and accumulation of red solid circles near the vertexes a and b (b') 

of the 'kite' shape. Interstitials are hardly found between the 'kite' shapes along the 

grain boundary structure. 

The preferential formation of defects at grain boundaries compared with those 

produced in the bulk crystal is known since the 1960's after experimental studies 

of irradiated platinum foils [167]. Preferential damage at specific sites have been 

recently observed in selected atomic columns of tilt grain boundaries in silicon [168]. 

5.3.4 Defects at the boundary 

An important issue is the appearance of clusters of interstitials after radiation in the 

grain boundary region. The definition of clusters of interstitials is the usual one used 

in a perfect crystal. Therefore, an interstitial atom is considered to be in a cluster 

of interstitials if its distance to any of the atoms belonging to the cluster is less than 

the first neighbour distance of the bcc structure. 
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Figure 5.7: Cluster frequency of interstitials after collision cascades near a (530) 
symmetrical tilt boundary 
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Cluster 

Dumbell Formations 

Figure 5.8: Typical defects at the boundary 

In Figure 5.7 the frequency of interstitial cluster sizes in collision cascades near a 

(530) symmetrical tilt boundary is presented. The results have been averaged over the 

28 collision cascades studied. As it can be inferred from this graph, the most frequent 

clusters remaining after the collision cascades are composed of two interstitials. Single 

interstitials are also frequent and even clusters with 6 interstitials have been found 

in the bou ndary region . 

After a detailed study, the most frequent clusters of interstitials, which are com

posed of two interstitials , have been observed to form in the 'preferential' sites of 

the atomic structure described in the previous section. These, are kind of dumbells 

with two interstitials sharing a vacancy site. More specifically two types of dumb

ells have been observed: one consisting in a vacancy on the middle of the interface 

and interstitials symmetrically placed in both sides perpendicular to the boundary 

plane and straddling it, type 'a', as is shown in Figure 5.8; the other kind of dumbell 

consisting in a vacancy on the boundary plane and interstitials placed symmetrically 

placed respect to the vacancy parallel to the boundary plane, type 'b', see Figure 

5.8. Defects type 'a' and Ob' (or b') are in the preferential sites near the 'a' and ob' 

vertexes respectively of the 'kite' shape, see Figure 5.6. 
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5.3.5 Two mechanisms 

Two mechanisms which may lead to the production of the dumbells configuration 

found, have been identified to be replacement collisions along the boundary region. 

Figures 5.9 and 5.10, show schematically the last stage of two replacement collisions 

giving as a result a dumbell of type 'a' and another one of type 'b', respectively. 

In Figure 5.9 (a) a top view along the rotation axis of the (530) symmetrical 

boundary region after a collision cascade is presented. Solid black circles and open 

red circles represent adjacent layers along the rotation axis where the dumb ell type 

'a' is formed. In this figure squares represent the original configuration before the 

collision cascade forming the structural unit in the form of a kite is indicated by a 

blue dotted line. Figure 5.9 (b) is a magnification of the front view where the dumb ell 

type 'a' is formed. Circles in different colours indicate different adjacent atomic layers 

along the rotation axis. A sequence of collisions, aO ... a4, can be follow in Figure 5.9. 

This example shows a series of collisions which arrives to the grain boundary region 

following a [Ill J direction. The first parts of the sequence, aO, a1 and a2, consist of 

a replacement collision where an atom is knocked by another one coming from a top 

layer, following a [111 J direction, then the knocked atom goes to the bottom layer 

being its site replaced by the previous one. The final result is an interstitial atom, a2, 

which provokes onc atom on the atomic mirror plane to move away creating a vacancy 

and an interstitial, now forming the dumb ell type (a). Some minor reorderings are 

produced in neighbouring sites, a4. These type a dumbells are always produced with 

a vacancy in the 'a' vertex of the structural unit with 'kite' shape. 

In Figure 5.10, a collision sequence leading to a dumb ell type 'b' is shown. Fig

ures 5.10(a) and (b), represent projections of atoms in a plane perpendicular to the 

rotation axis and parallel, respectively. In this case the sequence of replacement col

lision is moving in the boundary and parallel to it. The final result is the dumb ell 

formed by two interstitials, b7 and b8, and a vacancy which are aligned parallel to 

the boundary. This formation is produced in the first adjacent layer parallel to the 

atomic mirror plane, being the vacancy in the 'b' vertex of the 'kite' shape. This 

mechanisms show how defects can be conducted easily along the boundary. 

Movies and data visualisation reveals that many of the replacement collision se

quences generated outside the boundary stop at the boundary. When the sequence 

arrives at the symmetrical tilt boundary region this is absorbed by another replace

ment collision but parallel to the boundary and inside the boundary region. The 

defects created by this collision will recombine leaving defects as the dumb ell con

figurations previously explained or in form of clusters, see Figure 5.9. The second 
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Figure 5.9: Collision sequence with a defect type 'a ' as a resul t 
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mechanism presents the grain boundary as a region where a sequence of replace

ment collision can easily travel, see Figure 5.lD. The fact that grain boundaries can 

'conduct' vacancies in a way which is highly directional, along the boundary, was 

envisaged in the 1960's after a bombarding study of alpha-particles in metals [169] . 

5.3.6 Grain boundary energy 

The new local rearrangement of atoms produced III some parts of the boundary 

changes the configurational energy. Effects prod uced by radiation damage at the 

boundary can be analysed via the study of these changes. In the previous chapter 

analysis of the configurational energy was made by computing the average potential 

energy of the atoms including in slabs parallel to the boundary. The same procedure 

is now used but with the final configuration energy after the collision cascade. 
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Figure 5.11: Average potential energy of slabs of atoms at the grain boundary region: 
the dotted line represents the relaxed (530) simmetrical tilt configuration, and the 
solid line the damaged configuration averaged over all the collision cascade studied. 

In Figure 5.11, the averaged potential energy of atomic layers in the grain bound

ary region is presented, before and after the collision cascade. The values for the 

energy profile after radiation damage have been averaged over all the simulations 

performed on the symmetrical til t model. As can be seen in Figure 5.11, the changes 
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produced at the boundary maintain an almost symmetrical shape on the energy pro

file. Bigger changes with respect to the relaxed configuration are in a central region 

of approximately 7 A with major changes produced in the positions of the atomic 

planes adjacent to the mirror atomic plane, where the preferential sites are. Changes 

outside this region are negligible. These small changes observed to the left of the 

boundary is due to that the collision cascades which were initiated from this side 

and some damage in form of vacancies and interstitials in the bulk remained. Also, 

the width of this boundary after radiation damage can be inferred from the previous 

study, showing a slightly increase with the original width equal to 17 A, in about 1 

A. 
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Figure 5.12: Grain boundary energy as a function of the final number of defects 
inside the grain boundary width for all the collision cascades simulated near a (530) 
symmetrical tilt boundary. 

The grain boundary energy of the interface after radiation damage has been also 

calculated considering the configurational energy of the atoms inside the width of the 

grain boundary a the end of the simulation, as explained in the previous chapter. 

Resul ts shows that the configurational energy is increased in the damaged boundary, 

because of the defects introduced in its structure 

In Figure 5.12 the number of final defects inside the width of the grain boundary, 

is plotted against the grain boundary energy for all the simulations performed in this 
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boundary. The grain boundary energy shows a clear increase with the number of 

defects at the boundary following an almost linear tendency. 

5.4 Radiation damage near twist grain boundaries 

In the following section results arising from collision cascades simulations near a 

symmetrical twist boundary are presented. 

5.4.1 Collision cascade details 

Collision cascades have been simulated near two different models of a (001) 28.073°; 

one of them with the relaxed structure of the boundary without rigid body translation 

and the other with a rigid body translation in a plane parallel to the boundary given 

by Tx = 0.22 and Tz = 0.75. Both relaxed structures are described in the previous 

chapter of this thesis. 

The interface between both crystals making the bicrystal is placed on the middle 

of the computational cell, with the plane parallel to the x-z plane. The dimensions of 

the computational block are equal to 83. 7x 71.0 x 83.7 A containing 42500 atoms. This 

size of the computational block is big enough to contain collision cascade simulations 

produced by PKA with an excess of kinetic energy equal to 1 keY. 

Table 5.2 shows all the collision cascades considered for the twist boundary. In this 

table the distance to the grain boundary plane and the velocity directions of the PKA 

are specified. Five different PKA directions are considered, including PKA's moving 

perpendicular to the interface, i.e. [530] direction, and parallel, i.e. [001] direction. 

An excess of kinetic energy of 1 ke V is considered for the PKA's in all cases. At 

least three different collision cascade for each velocity direction were simulated by 

choosing PKA's at different distance from the boundary resulting in a total of 15 

collision cascades. 

PKA PKA distance from PKA 
Directions the interface (A) Energy (keV) 

[010] 14.2 8.5 25.7 1 
[001] 2.0 8.4 17.1 1 
[210] 5.6 11.3 15.7 1 
[UO] 8.4 15.6 22.8 1 
[lll] 7.0 U.3 17.1 1 

Table 5.2: Collision cascades considered near the symmetrical twist boundary 
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5.4.2 Cascade evolution 

The evolution of the collision cascades near the twist boundaries has the same char

acteristics as those in the tilt boundary simulations. A similar study based on the 

evolution of the number of defects with the aid of data visualisation has been per

formed. 

In Figure 5.13 the number of final Frenkel pairs as a function of the simulation 

time is presented for both models of the twist boundary considered . This graph shows 

that the final number of defects for both models is very similar, being slightly smaller 

for the model with rigid body translation. However, a comparison of Figures 5.13 

and Figure 5.3, reveals that the number of defects at the end of the simulation time is 

always bigger for collision cascades near twist boundaries compared with those in tilt 

boundaries. The number of final point defects in the symmetrical twist boundaries 

produced by a 1 keY collision cascades is approximately four times the number of 

point defects of the same kind of collision cascades in the symmetrical tilt boundary 

considered. 
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Figure 5.13: Number of Frenkel pairs, generated for 1 keY collision cascades as a func
tion of the simulation time near the [001 J 28.073° [001 J symmetrical twist boundary 
model. Solid line and dashed are the values of the cascade near the model with and 
withouth rigid body translations respectively. The two curves for each model repre
sent the upper and lower limits for the number defects from the different simulations 
carried ou t. 
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As in the case of symmetrical tilt simulations, sequences of snapshots at differ

ent stages of the simulations are presented in a couple of examples for the twist 

boundaries. Figures 5.14 and 5.15, present three-dimensional pictures of four differ

ent stages for a collision cascade with normal incidence to the boundary and a parallel 

one, respectively. 

Again, data visualisation shows how the grain boundary acts as a barrier for the 

collision cascade, however, in some cases like the one presented in Figure 5.14, some 

focused collisions can produced stable defects such as dumbells on the other side of 

the interface. Final snapshot of the sequence, from the previous figures, show a clear 

increasing of defects placed at the boundary compared with the collision cascades 

simulations in the tilt model. 

5.4.3 Grain boundary energy and final configuration 

The initial grain boundary energy of both models before being damaged by the col

lision cascade was equal to 0.123 eV / A and 0.117 eV / A for the symmetrical models 

without and with translation respectively. This energy was expected to increase as a 

effect of radiation like it did in the case of the symmetrical tilt boundary. However, 

results arising from collision cascade simulations near the model without rigid body 

translations, revealed that the grain boundary energy decreased after radiation. In 

some cases the grain boundary energy decreases by about 2.5% of the initial value. 

Simulations applied to the second model also decrease the grain boundary energy of 

the initial configuration however, this changes are less noticeable than with the first 

model. 

The configurational energy profile is presented in Figure 5.17 for the grain bound

ary region in the [001] 28.073° (001) after radiation damage. The resultant profile 

has been averaged over the 15 cascades studied. As it can be seen no major changes 

are produced with respect to the profile of the relaxed configuration. 

This results suggest that the atomic configuration of the twist boundaries em

ployed for the simulations, might not be optimal as we would expect an increase in 

energy after radiation. This is also supported with the fact that after the collision 

cascades, the configurational energy profile has no big changes, see Figure 5.16 in 

both models studied, compared with the tilt model where big changes on energy 

appeared in the closest atomic layers to the middle of the boundary. 

In Figure 5.17 the averaged number of interstitials as a part of clusters are pre

sented, for the two twist model studied. A big amount of defect clustering occurs in 
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(a) Cb) 

Cc) (d) 

Figure 5.14: Various stages in the development of a typical 1 keY collision cascade 
near the [001] 28.073° (001) synunetrical twist boundary at normal incidence to the 
boundary. The PKA was chosen to be at a distance of 14 A from the boundary. The 
red circles represent vacancies and the green circles interstitials. a) 0.05 ps; b) 0.225 
ps; c) 0.5 ps; d) 6 ps. 
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(a) (b) 

(c) (d) 

Figure 5.15: Various stages in the development of a typical 1 keV collision cascade 
near the [001] 28.073° (001) symmetrical twist boundary at parallel incidence to the 
boundary. The PKA was chosen to be at a distance of 17 A from the boundary. The 
red circles represent vacancies and the green circles interstitials. a) 0.05 ps; b) 0.225 
ps; c) 0.5 ps; d) 6 ps. 
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Figure 5.16: Average potential energy of atomic layers parallel to the grain boundary 
plane: relaxed configuration, dotted line, and damaged configuration after collision 
cascade, solid line. (a) 28.07° twist boundary without rigid body translation; (b) 
wi th rigid body translation 

the grain boundary region. Clusters of up to 9 interstitials are found at the bound

ary after collision cascades of 1 keY. However, single interstitials are more frequently 

observed. This suggest the idea that the atomic structure is reordering as a effect of 

the radiation in a more stable configuration. 
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Figure 5.17: Cluster frequency of interstitials after collision cascades near the [001] 
28.073° (001): (a) without, and (b) with rigid body translation. 

To study in more detail what kind of reordering is taking place in the atomic 

structure of the boundary a similar study to the one employed to find 'preferential ' 

sites in the tilt boundary model after radiation was used . In Figures 5.18 and 5.19, 

the position of all the defects which end up at the grain boundary generated for all 

the simulations is shown in a magnified region of the interface. 

This pictures show that the major density of defects is well localized in the grain 

boundary region. In the case of the first model without translation, approximately 

153 



(a) 
I • 

_11: , I .... 

y=[OOIJ 

I ~"!lfi.fmtf"l, y "~~ti.:;'.'I.Oi" ... - :' , • ' : '~_ 
I -~~ 
: 16.11 A : z=[530J 

z : : 

(b) ~:!~,,~.- ··~ .. ·:·" . :.· ~.t· .. i •. (c) l\;"' lj' . , ' , "' 1 ' " .• " .. .. , ,,, t 
~.' • .. .. .1 ... " .. - ~.-~--. -... ----- -I'.\! A ." • , ; ~ , . - ' .. ( , . • 
... . .. ... . " ., ... ' M " I 

' • ~ : . ' • #- • .. . . ~ . \ .. " Ill ... ., 
• Ill .. " "'r ' " ' i .. . ~ . ... ... , .' ." ',. ' , . .. ,.... 'f" ' . 11' 

.; ' . ;1 ;..;. 9t I, .~ .~~ .~ 1.~1 .. ~ .. ' "' •. ~ . 1671 A '1"~'1' 11 - . .... .,411 ..., . ... . . - :J 
". (1) ... ... . . .. " " ... . • .1 

• III ., 111 • " Ill ' .. .~ . . .. ' • .. . J ( ' 
o ... ' , ,. " - Ill, ... ~ ';_ ~ __ '_6' ________ t.LI~1-.. (l' 
III , .. " " III "- " " , ' • ") - . oo··· .. · t .. ·f· ~··~ ·w ·" · ~ · ~\'· . ~. J' l'~ - 'I • • - '. • • Ill "'" i . . 
- • ' . • III • •• ' .. • • 

lj 
....... -. ,.' Ill · . . . ..... -:"'~. ~ ;f' x,,· ··-· .. "'· X 'j · ' .. I I ".. 1 I ' '' '1 .. " 1 1.:""1: :1 

III ". • III " • • e III 0 • 

z y 

Figure 5.18: Open circles are the projection of atomic sites of the [001] 28.07°(001) 
symmetrical twist boundary before the collision cascades in different views: (a) top 
view, (b) front view. Black and red solid cicles are the projections of vacancies and 
interstitials respectively, plotted for all the simulations. 

Figure 5. 19: Initial [001] 28.07°(001) symmetrical twist boundary with rigid body 
translation. See caption in Figure 5.18. 
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75% of the defects inside the width of the boundary are in a region of approximately 

2.5 A . The second model, present similar results, being a region of 3 A in length 

including the boundary which contains 75 % of defects in average produced by all 

the collision cascades. 

The results seems to suggest that a new structure appears with major changes 

III the middle plane of the previous structures. Collision cascade simulations on 

this structures have favoured a further rearrangement of atomic sites resulting in 

structures with smaller grain boundary energies. In the previous chapter, a brief 

study of structure of this symmetrical twist boundary with additional atoms was 

made. This study showed that the grain boundary energy of this twist boundary 

models is reduced by adding atoms at the interface. 

5.5 Conclusions 

In this chapter the interaction of collision cascades with grain boundaries have been 

studied, using molecular dynamics simulations. The study has been performed for 

two different symmetrical boundaries of a-iron: a (530) symmetrical tilt and a [001] 

28.07° (001) symmetrical twist grain boundary. Collision cascades generated by a 

PKA of 1 keY at various distances from the boundary and with different velocity 

directions were simulated. 

The first stages of the collision cascade evolution demonstrated the same features 

as in a perfect crystal. However, the main differences appeared when the collision 

cascade spreads and reaches the boundary. When that happens, the grain boundary 

region acts as a barrier allowing, at this energy, i.e. 1 keY, only a few focused collisions 

to cross it. The final number of defects produced by the collision cascades shows that 

the boundary suffers a lot of damage in its structure compared with one produced by 

a collision cascade of 1 ke V in a perfect crystal. This damage has been analysed for 

the two boundaries studied. 

The majority of the defects produced after the collision cascades in the symmet

rical tilt boundary have been shown to be very localised in a region defined by the 

closest atomic layers to the interface. In particular, this region is defined by the per

pendicular length to the boundary of the repeated structural unit of this boundary. 

Results show that there exist preferential sites in the (530) symmetrical tilt where 

defects are formed. These sites have been identified and also the atomic rearrange

ments produced in the grain boundary atomic structure have been analysed. In these 
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preferential sites, two different kind of dumbells, type 'a' and 'b', have been observed 

to be repeated in most of the simulations. In fact, a study of the clusters of intersti

tials in the final configuration shows that those composed of two interstitials are the 

most frequent. 

Two mechanisms have been found to produce the type 'a' and ob' defects. These 

two mechanisms are basically replacement collisions at the boundary region which 

end forming either of these two defects. The two mechanisms reflect how the grain 

boundary acts as a barrier and presents the grain boundary as a region where defects 

can be easily conducted along the boundary plane. 

The grain boundary energy of the (530) symmetrical tilt boundary after radiation 

increases. It has been shown that the grain boundary energy is related to the number 

of defects at the grain boundary. An increasing number of defects placed between the 

width of the boundary region therefore represents an increase in the grain boundary 

energy. 
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Chapter 6 

Conclusions and further work 

This chapter provides a general overview of this research, discussing the main con

clusions and highlighting those points where further work is required. 

In this thesis, different modelling techniques, including physically based molecular 

dynamics simulations and empirical models using neural network architectures have 

been used to address particular problems in the understanding of microstructural 

development in iron-based systems. 

The first part of the thesis was concerned with the application of neural network 

techniques to the prediction of final properties of submerged arc welds. Extensive 

analyses have been carried out concerned particularly with the prediction of weld 

metal chemistry, and also complex mechanical properties such as toughness, using 

neural network techniques and a database developed for one pass per side submerged 

arc welds typical of those used in the manufacture of linepipe. The neural network 

techniques used were based on a Bayesian framework, implemented using Markov 

chain Monte Carlo methods. 

When predicting the final weld composition from known initial parameters the 

best neural network models are quite simple (for example, weld metal chemistry 

for a limited range of fluxes and 'simple' geometries). These models are basically 

composed of 5 input units, 1 output unit, being the final composition of the element, 

and a hidden layer composed of a 2 hidden units for most of the elements to be 

predicted. This relatively small number of hidden units indicates that a complex 

model is not required in this case for the prediction of the final weld composition. 

From this study, the initial plate and wire compositions of the element to be predicted 

have been shown to be the most influential parameters on the final output. In this 

case, where an intrinsically simple physical relationship exists between input variables 

(weld metal chemistry, in the case of welds which are designed to be at process 

equilibrium) the neural network does not provide a significant advantage over linear 
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regression techniques. However, for special cases, for example, the welds made with 

a NiMo flux, the neural network is able to provide 'fine tuning'. 

However, in this thesis, the usefulness of neural network models for the predic

tion of complex mechanical properties, such as toughness, has been demonstrated. 

The optimal neural network architecture obtained to predict toughness is very com

plex, i.e. 13 input and 7 hidden units, indicating the highly non-linear nature of 

this mechanical property. Final weld composition and microstructural characteristics 

are mainly used as input parameters for the model. The model indicates that test 

temperature and the percentage of acicular ferrite are the most influent parameters 

when predicting toughness. 

An important point in the use of neural networks is not only the quantity of 

data available for meaningful predictions but also the pre-handling of this data. It is 

therefore imperative to carefully consider the structure of the data and the choice of 

parameters to be involved in the neural network model, i.e. input and output units, 

before time is expended in creating complex neural network models. 

The ability to predict the mechanical properties of a weld is of great commercial 

significance, with large potential savings if the need for experimental test weld pro

grams can be eliminated. The main aim of future work, would be to deliver a piece 

of stand-alone software which could be thought of as an 'expert system' to enable 

predictions of weld metal chemistry and weld metal properties from a knowledge of 

plate and wire type and welding parameters. 

This thesis deals with only a couple of examples where neural network techniques 

can be applied on the welding industry. They can already provide valuable infor

mation from the engineering point of view for the prediction and control of final 

products. However, the application of neural network techniques is a relatively new 

field of research in continuous evolution. Future work in the development of new 

algorithms has to focus on the way input parameters are relevant to the prediction 

of the final output when using such highly non-linear models. This is an important 

point which clearly will increase the usefulness of neural network models in industry. 

The second part of this thesis has been devoted to the study, on the atomic scale, 

of radiation damage near grain boundaries using molecular dynamics simulations. 

The study has been performed in a-iron because of its importance in the nuclear and 

power generation industries. 

A total of 15 symmetrical tilt and 10 symmetrical twist boundaries with different 

misorientation angles, all of them with the rotation axis along the [001] direction of the 

bcc structure, have been studied. The relaxed atomic structures of the symmetrical 
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tilt boundaries were found to be periodic along the boundary. Each boundary has 

a different atomic structure characterised by different combinations of three basic 

'units'. These units are three different groups of atoms which are combined in different 

numbers to form the grain boundary. These structural units are the ones which form 

the (100), (110) and (310) symmetrical tilt boundaries, which are the boundaries with 

shortest periodicity along the boundary of this [001] symmetrical tilt. 

Most of relaxed structures found for the symmetrical twist boundaries also present 

a clear periodic structure, however basic units could not be identified for these models, 

as was the case for the tilt boundaries, because they relax to less symmetric structures. 

In all cases, the final grain boundary structures have been classified in terms of 

energy, width and expansion of the distorted region. The grain boundary energy 

values have been obtained considering a perfect crystal as a reference. The grain 

boundary energy, when plotted as a function of the misorientation angle for the tilt 

models, shows small 'cusps' for certain 'special' boundaries. The grain boundary 

energy values, obtained with the many-body potential of the Finnis-Sinclair form, 

are slightly bigger for the [001] twist than for the tilt boundaries. A definition of the 

width of the grain boundary has been given and this definition has been applied to 

all the models studied. 

In the case of one particular twist boundary, i.e. [001] 28.07° (001), an addi

tional approach was also used in which particles were added to the interface region 

after rotation because gaps appeared along the interface at various periodic sites. 

Final configurations with smaller grain boundary energy values were obtained. This 

brief study suggested that more stable twist boundaries can be obtained by adding 

additional particles to the CSL initial structure. 

Following the structural study of symmetrical boundaries, the effects of radiation 

damage in two particular symmetrical boundaries have been analysed. Simulations 

of collision cascades near a (530) symmetrical tilt boundary and also near a [001] 

28.07° (001) symmetrical twist boundary have been performed. The damage has 

been analysed in terms of vacancies and interstitials using the same definition as 

those used in a perfect crystal. 

The main differences observed for collision cascade near a grain boundary with 

respect to those in a perfect crystal, appeared when the collision cascade spreads 

and reaches the boundary. When that happens, the grain boundary region acts as a 

barrier allowing, at this energy, i.e. 1 ke V, only a few focused collisions to cross it. 

Also, the final number of defects produced by the collision cascades shows that the 

boundary suffers a lot of damage in its structure compared with the one produced by 

a collision cascade of 1 ke V in a perfect crystal. 
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The results of the simulations in a bicrystal forming a (530) symmetrical tilt 

boundary show that most of the defects are very localised in a region of approximately 

2.5 A in the middle of the boundary, and which is determined by the vertices of 

the repeated structural unit forming this interface. Inside this region, results show 

that there are preferential sites where defects are easily formed. These sites have 

been identified and also the atomic rearrangements produced in the grain boundary 

structure have been analysed. 

Two different combinations of clusters composed of two interstitials, which are 

the most common cluster size founded after radiation in the (530) symmetrical tilt, 

have been found. These two types of clusters, 'a' and ob', have been observed to be 

repeated in most of the simulations and to be placed in the preferential sites of the 

boundary. Two mechanisms have been found to produce the type 'a' and ob' defects. 

These two mechanisms are basically replacement collisions at the boundary region 

which ended forming either of these two defects. These two mechanisms reflect how 

the grain boundary acts as a barrier and also presents the grain boundary as a region 

where defects can be easily conducted along the boundary plane. 

A key point in this study is how radiation damage affects the grain boundary 

energy of the interfaces. After radiation damage in the (530) boundary, the grain 

boundary energy increases. This increase in energy has been shown to be proportional 

to the number of defects which are inside the grain boundary region. 

On the other hand, the grain boundary energy after radiation damage in two 

different models containing the [001] 28.07° (001) twist boundary decreases, rather 

than increases as expected. This suggests that the initial grain boundary chosen might 

have a more stable structure than the one obtained by our relaxation method. One 

approach to determine this might be by adding extra atoms to the interface. Another 

possibility would be to find the minimum relaxed structures of the boundaries by 

allowing more random positional changes to atoms in the grain boundary region and 

relaxing these structures. However, these procedures are beyond the scope of this 

thesis, and should be the subject of future work. 

Future work is also suggested to be focused on a systematic study of collision 

cascade simulations near different symmetrical tilt boundaries. The main aim of this 

work would be the generalisation of some ofthe results found in this work for the (530) 

symmetrical tilt boundary, including: the increasing of grain boundary energy as a 

function of the number of defects for different boundaries; the relationship between 

preferential sites at the boundary and the structural units forming the boundary; 

characterisation of clusters formed at the boundary; and typical mechanisms such as 

replacement collisions which appeared along the boundary. 
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In this research a many-body potential for bcc iron was used as a simplification of 

steel. Another direction for further research would be the development of a realistic 

interatomic potential of steel, allowing for the presence of interstitial carbon atoms. 

This new potential could be based on energetics derived from ab-initio calculations. 

It might also be possible to include a good description of properties such as the 

magnetic behaviour and also phase transformations. 

The molecular dynamics code used in this research is not optimised for its use 

in parallel computing systems. During the performance of this research an attempt 

was made to adapt some of the most computational time expensive subroutines into 

a parallel code, in particular the OpenMP (shared memory approach). The use of 

parallel computational systems in molecular dynamics clearly improves the possibil

ities of simulation. This would allow the simulation of bigger systems, and therefore 

collision cascades at higher energies. The optimisation of the actual code is under 

development at Loughborough University. 

The ultimate main potential application of this work would be to convert it into 

quantitative data concerning reactor safety. The aim would be to estimate the av

erage number of defects created per grain boundary per unit time and relate it to 

the increased potential energy of the boundaries and the subsequent embrittlement 

produced as a function of the exposure time. This information could be in principle 

extracted from this more fundamental study, however it would be more reliable when 

further work concerning the motion of impurities is included. This work should be 

performed with a technique able to simulate longer time scales, such as Hyper-MD 

now in development at Loughborough University for the study of diffusion of clus

ters. This thesis has been a necessary precursor to work involving impurities and how 

their segregation towards grain boundaries is affected by radiation, and now provides 

a firm foundation for the future. 
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