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Abstract 

ABSTRACT 

Among all the 3D textile reinforcements, Multiaxial Warp Knit (MWK) fabrics have 

brought together the advantages of textile technology: high deposition rates, 

unlimited shelf-life, lower cost and finally an improvement in the damage 

tolerance by the use of stitching. However, the stitching in MWKs is slightly 

different from that traditionally used, i.e. overstitching. The effect of this type of 

stitching has been investigated and is reported in this work. 

Three different variants of stitch architectures of carbon MWK, used in an epoxy 

matrix, were considered. Interlaminar shear strength, low energy impact, through 

penetration impact and compression strength testing were carried out on dry . 

samples, while interlaminar shear strength, compression strength, DMTA, FTIR, 

Raman Spectroscopic analysis were carried out on aged samples. 

In low energy impact high stitch density offered more damage resistance, being 

directly influenced by the complex fibre structure, which has been shown to stop 

or deviate crack propagation. Similar results were also found during through 

penetration impacts. Compression After Impact (CAI) properties were found to 

vary directly with the damage area. Whilst higher stitch density showed better 

residual strength properties after ageing, the percentage retention of the 

compression after impact strength was higher for low stitch density MWK. 

Environmental durability testing showed higher water uptake by fabric with low 

stitch density. Chemical and thermal analysis showed that thermohumidity aided 

degradation of epoxy resin and formation of hydrogen bond with water molecules. 

Interlaminar shear strength and glass transition temperature were also found to 

decrease with the thermohumid ageing duration. Laminates with high stitch 

density reinforcement were found to have a higher compression strength and 

compression after impact strength reduction. 

Key Words: Multiaxial Warp Knit Fabric; Stitch Density; Carbon Fibre Reinforced 

Plastics; Impact; Compression after Impact; Environmental Durability. 
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Chapter 1 Introduction and Aim 

CHAPTER 1 

INTRODUCTION AND AIM 

1.1 INTRODUCTION 

Composite materials, fibre reinforced systems in particular, play significant roles 

in many scientific and engineering endeavours. They have gained their 

importance primarily because of their unique physical and mechanical 

characteristics. Today, it is difficult to find any industry that does not utilise the 

benefits of composite materials. The largest user of composite materials is the 

transportation industry. The USA alone shipped approximately half a billion 

kilogram in the year 2000 [1]. Other major users are construction, marine, 

electrical and the consumer goods industry. 

The aerospace industry was one of the first industries to realize the benefits of 

composite materials. Glass, carbon and aramid fibres are commonly used in 

various composite aerospace parts. However, carbon fibre composites have 

overtaken the others because of its performance characteristics. 

A primary barrier (which is not always true in the case of the aerospace industry) 

to the use of composite materials is their high cost. The expensive reinforcing 

fibres and lack of automation of the fabrication process are the main areas where 

the cost accrues. However, in the last 30 years because of advancement in fibre 

production technology and increased use of composites, the price has come 

down significantly (as low as £6/Kg [2]) and should continue to do so. 

Economic development of advanced composite components can, therefore, be 

characterised as a trade-off between cost and performance. In this trade-off, 

advanced composites usually provide a significant performance advantage, such 

as stiffness to weight, or strength to weight and corrosion resistance, when 

compared to other competitive materials. However, cost is still an issue. As a 

result of this, advanced composites make their most important successes in the 
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'High-End' market such as aerospace and sporting goods, where customers are 

willing to pay for enhanced performance [3]. 

A second obstacle to new researches in composites with novel reinforcements is 

the unwillingness of the designers to try them out. Unidirectional prepreg tapes 

(UDPT) have long been the industrial benchmark, because of the knowledge 

(physical and mechanical properties) that had already been developed. However, 

UDPT has several disadvantages - absence of through-the-thickness 

reinforcement, short shelf life, and the thickness issue (in terms of cost, not 

suitable for thick primary structures). 

In terms of materials properties, Baker et al [4] identified delaminations as the 

most important type of defect because they can cause large reductions in 

residual compressive strength and can go undetected. Delaminations can 

develop during the service life of a product due to: (a) Through thickness stresses 

developed at free edges, holes, ply terminations or ply drops, bonded or co-cured 

joint and bolted joints. (b) Effects of moisture and temperature, for example 

residual thermal stresses from processing and moisture gradients through the 

thickness of the laminate. (c) Low energy impact damage caused by runway 

debris, dropped tools etc. Among these low energy impact has been identified as 

the most dangerous [5] because, the probability of occurrence is high which leads 

to large reductions in residual compressive strengths and the damage is likely to 

remain undetected as NDT is costly and time consuming. 

The problem of these large reductions in residual strength has led to researches 

into various types of reinforcements aimed at improving relevant properties. The 

compression after impact test had been widely adopted to assess the toughness 

and damage tolerance of a material. 

Through the development of 3D textile reinforcements in recent years [6-7], it has 

been possible to overcome these drawbacks of UDPT. Among all the 3D textile 

reinforcements, Non-Crimp Fabrics (NCF) have brought together the advantages 

of textile technology (high deposition rates, unlimited shelf-life, lower cost) and 

the improvement of through-thickness properties (stitching). Moreover, thick NCF 
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can be tailor-made for composite parts required to withstand certain magnitudes 

and directions of load. 

Experimental results and economic considerations have shown that NCFs are 

more than adequate alternatives to traditional prepreg materials for structural 

applications. NCFs offer obvious processing advantages derived from the 

elimination or reduction of labour costs associated with lay-up and draping, and 

the elimination of refrigerated storage. In terms of in-plane mechanical properties, 

although NCF laminates show lower level of tensile and compressive strength 

compared to UDPT [8-9], the properties that determine the design allowable ,e.g., 

compression after impact (CAI), open-hole compression (OHC), are comparable 

or even improved for NCF-based structures [8-9]. 

Despite these facts, NCFs are relatively new in the composite industry. Some 

aspects of NCF technology that affect the final material performance, that have 

received little or no attention [10] are the processability issues (permeation, 

compaction, drape behaviour etc.), the NCF manufacturing parameters (stitch 

type and tension, type of stitching material, areal density, number of layers, inter

tow gap etc.), the composite fabrication variables (manufacturing route, volume 

fraction, vacuum pressure, resin viscosity etc.) and the effect of exposure to 

thermo-humid conditions on the overall composite properties. 

Based on the lack of a clear understanding of NCF technology as stated above, 

this particular research project was undertaken to assess the influence of stitch 

architecture on the low velocity impact performance and subsequent damage 

tolerance of composites made from such materials. The environmental durability, 

of the particular carbon-epoxy system used, and the relevance of the above 

variables has also been evaluated. 
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1.2 AIM AND OBJECTIVES 

The main aim of this project was to assess the influence of stitch density of 

Multiaxial Warp Knit (MWK) fabric on the damage resistance, damage tolerance 

and environmental durability of carbon fibre reinforced plastics (CFRP). 

To achieve this aim the following objectives were set: 

• To assess the influence of stitch density on the production of CFRP through 

physical property testing. 

• To assess the influence of stitch density on the interlaminar shear properties 

ofCFRP. 

• To assess the influence of stitch density on the damage resistance due to low 

energy impact and through penetration impact. 

• To assess the influence of stitch density on the residual compressive strength 

(damage tolerance) of low energy impacted samples. 

• To assess the effect of temperature and humidity on the chemical (through 

FTIR and Raman spectroscopy) and thermal properties (Tg) of CFRP with 

different stitch density. 

• To assess the influence of thermohumid conditions on the residual 

compressive strength of CFRP with different stitch density. 

Having completed each of these objectives further characterisation studies were 

undertaken to explain the dependencies observed. Finally conclusions were 

drawn. 
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CHAPTER 2 

BACKGROUND AND MANUFACTURING VARIABLES 

2.0 NON CRIMP FABRIC 

According to general textile terminology non-crimp fabrics are those which 

consist of layers of fibres that are without crimp (waviness), although, close 

examination shows a small degree of crimp. Their manufacturing methods 

incorporate aspects of both weaving and knitting [11). Various manufacturing 

methods are used to produce non-crimp fabric, for example, Multi-Axial Warp 

Knitting (MWK), Stitch-bonding etc. The NCF used in this particular project were 

manufactured using MWK and therefore this term is used henceforth to describe 

these materials. 

From the structural geometry point of view a MWK system consists of warp (00), 

weft (900
) and bias (±8°) fibres held together by a chain or tricot stitch through the 

thickness of the fabric (Fig . 1). Therefore, in a single stage, desired fibre 

orientations with specific layer weights can be produced to replicate a laminate 

ply lay-up. MWK fabrics are mainly used for structural integrity and strength in 

different directions [12). However, when out of plane force is applied, MWK due 

to lack of interlacement, tend to delaminate. 
Needle bar combines 
layers with 
polyester yarn. 

O· (LongltudlnallWarp) 

+45· (Bias Ply) 

/ 90· (WeftfTransverse) 
<I 

-45. (Bias Ply) 

~ 
Fig. 1: Schematic of Quadriaxial Multi-axial Warp Knitted Fabric 

(Courtesy: TechTextiles International) 
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Two main machine types used to produce MWK are currently available in the 

market: UBA [13) and MAUMO [14) (from Karl Mayer) . Recently Hexcel has 

introduced a new non-crimp multiaxial fabric (NC2) which utilizes lower-cost, high 

tow-count carbon fibres (24K+) [15) . The company claims their quality to be 

superior compared to existing NCF technology. 

The most publicised application of Multi-axial NCF has been in the NASA ACT 

Program [16) in USA in collaboration with Boeing (McDonnell Douglas). In the 

UK, the Aerospace Composites Centre at Cranfield University, in a major 

collaboration with Airbus, QinetiQ and several others, led an AMCAPS project 

[17). Both of these projects were based on UBA multiaxial fabrics to develop 

aircraft wing structures. 

MWK fabrics, among all other Non-crimp fabrics are attracting interest because of 

their low production cost (compared to their woven equivalents) [1 S) , high 

production rate, structural integrity, design flexibility , high tear resistance and 

overall improved through-the-thickness strength [19). In the following section the 

manufacturing technology of Multiaxial Warp Knitted fabrics is discussed in detail. 

Also Investigated are the various manufacturing parameters. 

2.1 MULTI-AXIAL WARP KNITTED FABRIC MANUFACTURING 

TECHNOLOGY 

UBA Machines are most commonly used for the industrial production of MWK 

fabrics. A schematic of this process is shown in Fig . 2 [13). As illustrated , yarns 

are fed from a creel system (1) and are laid onto a long table according to the 

desired orientations , through the placement heads (2). The placement heads 

travel across the table to lay the yarns and finally secure them (yarns) on a chain 

of needles, the 'transport chain', (3) , which travels along the table. The fibres are 

then cut and the placement heads continue the same cycle. Lay-up 

arrangements are controlled by the motor-driven placement heads and are 

programmable. Along with the lay-up of weft and the bias yarns, a chopped 

strand mat can also be incorporated into the fabric through the use of a chopper 
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system (4). The chopper cuts glass fibres to produce an individually adjustable 

fibre mat on the surface of the fabric. Fleeces or mats can also be inserted 

through the use of two roll carriers (5). The 00 fibres are the last to be inserted 

and are fed from a warper's beam (6) or a creel system (also in Karl Mayer). All 

the assembled layers are then stitched together by a warp knitting machine (7). 

This machine is specially designed with sharp needles that are positioned in such 

a way that the knitting process does not damage any yarns while forming the 

knitting loops. However, there are some restriction on the size of yarns used and 

'areal weights' for this purpose. The Malimo machine from Mayer utilizes similar 

lay-up methods; however this type of machine can only produce fabrics up to 4 

layers. 

Fig. 2: USA 'Copcentra MAX 3 CNC' Showing the Orientation of the Ply [13) 

Notations: I = Creel System, 2 = Placement Heads, 3 = Transport Chain, 4 = Chopper 
System, S = Two Roll Carriers, 6 = O· Yarns from Warper's Beam, 7 = Warp Knitting 

Machine 
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2.1.1 Manufacturing Variables 

According to Ko [20], and different manufacturers' manufacturing parameters, 

MWK fabrics can be classified according to five basic parameters which are listed 

in Table 1. 

Variables Levels 

Linearity of the bias yarn Linear, Non-linear 

Orientation of the bias yarn (8°) -20° to + 20° 

Possible No. of Layers 1,2, 3 ..... up to 7 

Stitching geometry Chain , Tricot, Double Loop 

Stitching Mechanism Impalement, Non-impalement 

Table 1: Manufacturing Parameters of Multi-axial Fabrics 

In the following sections each of the variables are described in detail. Also 

described are the capabilities and limitations (in terms of the variables) of the 

manufacturing techniques that are currently available. 

ra} Linearity of Weft and Biased Yams 

Linearity of the fabric is determined by the method of introduction of the bias and 

the weft yarn. Linear or parallel weft/bias fabrics are produced both by UBA and 

Karl Mayer [13-14]. Apart from these parallel weft insertion systems, there is also 

a slightly crossed weft possible which is produced by the earlier Malimo 

machines [21] and is conveniently called non-linear. The later principle is carried 

out in a slightly crossed form , with an angle of deviation with the fed weftlbias 

yarns, of up to approx. 4° from the normal direction of production , where the 

angle depends on the number of wefts in the weft inserter [14]. 

Fig. 3: Linear and Non-Linear Weft (90· ) Layers 
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Fig. 3 shows the visual difference between linear and non-linear weft insertion 

systems. It can be suggested that the modulus along the direction of the wefUbias 

yarn will be higher in the case of the linear fabrics compared to the non-linear 

fabrics . However, in a composite this difference may not be prominent, as load 

transfer would occur between the adjacent yarns. 

(b) Orientation of the Bias Yam 

SS EN 13473-1 :2001 [22] specifies the orientation of the yarn directions for MWK 

fabrics. The orientation of the single thread plies is related to the production 

direction i.e . the direction of the 0° plies. The ±angle orientation , designated 'a' 

(Fig . 4) in the range between 0° and 90°, is derived from ISOIDIS 1268-1:1997 

[22] and is described as either "+" or "- " in relation to 0° (3 in Fig . 4). The 

orientation is defined as "+", if the threads are oriented in the "+" quadrant and "-" 

if the threads are laid in the "- " quadrant (Fig . 4). 

2 

1 3 

Fig.4: Definition of the Orientation of the Yarn Direction 

In the LlSA's new system any layer can be programmed to be laid at the 

minimum range of +20° and -20°, while MALI MO's Multiaxial system is only 

capable of inserting wefUbias yarns at +45° and -45°. In order to avoid confusion, 

it must be noted that the range described here indicates the value of o.. Laying is, 

therefore , possible between 90° and o.. 0° yarns come directly from the warper's 

beam as shown in Fig . 2. 

9 



Chapter 2 Background and Manufactw:ing Variables 

(c) Number of Lavers 

The number of axes used is determined by the end use and the requirement for 

reinforcement in a particular direction . The UBA machines [1 3] can assemble up 

to 7 layers, although in practice this is usually limited to a maximum of 4 

(quadriaxials) for most of the common applications. While, for the MAUMO 

multiaxials the standard is -45°/90°/45° [14] . Depending on the orientation and 

order multiaxials are divided into Left Handed (A) and Right Handed (B) types. 

These two types of fabrics are complementary to each other and are used to 

produce a symmetric lay-up which prevents warping . An example of handed 

quadraxial fabric is shown in Fig . 5. 

A 0° B 0° 
-45° +45° 
90° 90° 

+45° -45° 
Fig. 5: Left Handed (A) and Right Handed (8) Quadraxial Fabric 

(d) Stitching Geometry 

MWK is produced mainly through two different stitching systems [23]. The first 

one is a true wa rp knitting structu re, where the number of layers laid is knitted to 

form a net like structure with 'tricot' stitch . The second one is the 'chain' stitch 

where the stitching yarns are not interlinked as the previous type. Fig . 6 shows 

the planar and the cross-sectional views of both types of stitching geometries. 

<)", ---V 
Angles adju stable 

<) ' -:V 
Ang les adjustable 

(a) Chain Stitch (b) Tricot Stitch 

Fig. 6: Typical Structure of a MWK Fabric . (a) Chain Stitch ; (b) Tricot Stitch 
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Fig. 7: Typical Double Loop Stitch Structure of a MWK Fabric 

In a recent work Rongxing et al [24] investigated the use of double loop pillar 

stitches (Fig . 7) and compared with the traditional tricot or chain stitches. They 

found that the energy absorption capabi lity of MWK reinforced composites with 

these stitches was much better than that of the MWK reinforced composite with 

the tricot stitch. They concluded that the uniform distribution and the increased 

number of binding spots of the double loop pi llar stitch yarns compared to that of 

tricoU chain stitches, considerably improved the through-thickness reinforcement 

and the energy absorption capability of the MWK reinforced composites. 

These types of stitching are often confused by many with 'overstitching' - which 

is actually a use of sewing technology to stitch through the entire thickness, 

usually by lock stitching as shown in Fig . 8. 

\ ) ) 

t"'\ ,.. r"\ , 

-

) 

-
. 

N eedl{! 
Th,.ad 

Bobbin 
Thread 

Needle 
Thre-ild 

aobbin 
Thra.d 

Ca) Lock Stitch 

Cb) Modified Lock 
Stitch 

Fig . 8: Schematic Diagram of (a) Lock Stitch and (b) Modified Lock Stitch 
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There have been a number of papers published by Mouritz and co-workers [25-

27] on overstitched fabrics and the mechanical behaviour of the composites 

made from them. In these papers, the damage resistance was shown to improve 

as stitching increases the fracture toughness [25] . However, most of them 

showed a marked decrease in the in-plane mechanical properties . In one 

particular paper Mouritz et al. [26] indicated that it is not uncommon that 

overstitching reduces the in-plane properties (compression , tension and shear) 

by up to 20%. It is still not well understood which mechanisms are responsible for 

the reductions in the in-plane properties; however, it might be attributed to both 

the clusters of broken fibres and the fibre distortions due to stitching. 

In the case of MWK production with the advanced UBA machines, layer system 

works with very low yam tension [13]. This enables safe processing (least 

damage to fibres) of sensitive materials like carbon at a high production rate . 

(e) Stitching Mechanism 

Non-impaled MWK were developed by the Mayer Textile Corporation [20] , where 

formation of the stitches is done without piercing through the stacked layers. This 

stitching mechanism is carried out by a multiaxial magazine weft insertion 

mechanism. 

Impaled MWK are produced by the UBA system [13] , where linear layers are first 

laid and then stitched together by knitting needles piercing through the yarn 

layers. This mechanism unavoidably damages reinforcing fibres (but permits the 

incorporation of nonwoven mats as in the case of PARAMAXTM fabrics) and 

degrades the composite tensile properties . However, as mentioned in the earlier 

section, low stitching yarn tension reduces the magnitude of the damage. 
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2.1.2 Disadvantages of MWK 

The initial cost of production of MWK is high because of the expensive machinery 

used and a slow rate of production. These reasons, together with the fact that 

more expensive low-tex fibres are required to get good surface coverage for the 

low weight fabrics, means that the cost of good quality MWK fabrics can be 

relatively high. 

Extremely heavy weight fabrics can be difficult to impregnate with resin without 

some automated process and in addition polyester stitching yarns do not bond 

well to some resin systems [28]. The stitching, therefore, can be a starting point 

for failure initiation. Moreover, control of the stitching process is difficult for some 

fabric styles , which can result in bunching of tows, particularly in the 00 direction, 

subsequently creating resin-rich areas in the laminate. Bibo and Hogg [8] 

suggested that gaps will have detrimental effects on the mechanical 

performance, as they cause crimp in adjacent fibre layers which can cause poor 

compressive properties. 

2.1.3 Mechanical Properties of MWK Reinforced Composites 

MWK fabrics contain a substantial proportion of relatively straight 'in-plane' yarns. 

The weight fraction and orientation of the yarns of these fabrics dictate the 

mechanical performance of the composite. MWK fabric reinforced composites 

perform considerably better mechanically than the traditional knitted composites. 

However, this is achieved through the sacrifice of the excellent formability of the 

knitted composites [29]. Nevertheless, the formability of MWK can be controlled 

to some extent through the manipulation of the stitch density. 

A number of researchers have published their measurements, detailed later in 

this section , of the tensile , compression , flexural , interlaminar shear, impact and 

post-impact compression (CAI) properties of MWK reinforced composites . In 

most cases these composite properties were compared with traditional prepreg 

laminates or woven composites. However, in most cases the later types did not 
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have an equivalent amount of in-plane fibres as MWK, and for this reason it is 

difficult to assess the relative performance of the MWK composites. 

Interest in MWK as a preform for structural composites can be dated back to 

1988, when Ko and Kutz [30] assessed the tensile and flexural properties of 

MWK glass-vinyl ester composites and compared them to woven composites. 

Wang et al. [31] studied tension , compression , three-point bending and short 

beam shear of glass-epoxy MWK reinforced composites. They compared 

experimental results of tension and flexural moduli with Classical Laminate 

Theory (CL T) predictions , and found good agreements. They, therefore, 

concluded that MWK composite laminates behave like their prepreg laminate 

counterparts . Truong et al. [32] echoed Wang et al. [31] views. They found that 

the experimental stiffness of MWK composites is quite close to the computed 

results based on CL T and concluded that the effects of stitching on stiffness are 

limited , and that the stiffness of the fibres and stiffness of unidirectional plies in 

MWK almost completely translates into laminate stiffness. 

Dexter and Hasko [33] showed that MWK fabric , which was still in its infancy, 

could be considered as an alternative to biaxial woven and unidirectional 

prepregs. They presented experimental results of composite materials reinforced 

with four different MWK carbon fabrics and compared them with conventional 

prepreg tape and woven fabric composites. They produced aerospace quality 

laminates through res in transfer moulding and found that the tension and 

compression strength was either comparable or reduced by up to 30% compared 

to prepreg tape laminates, depending on the type of MWK fabric used. 

Interestingly they found that the MWK fabric composites exhibited compression 

after impact strengths up to 80% higher than comparable prepreg tape laminates. 

Bibo et al [34] also found a reduction in MWK composites compared to 

unidirectional prepregs. Their results are shown in the Fig . 9. 
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Fig. 9: Comparison of Mechanical Properties of MWK and UD Prepreg Composites [34] 

In general, it does appear from Fig. 9 that MWK composites have inferior or at 

best similar tensi le and compressive properties compared with prepreg tape 

laminates of similar lay-up. Bibo et al [34] suggested that the tensile properties of 

the laminate are degraded by crimp and fracture of the in-plane fibres during 

stitching. However, they did not fully investigate the adverse effects of this 

damage. The crimping of the tows was also suggested to be responsible for 

MWK composites having lower compressive strengths than prepreg tape 

laminates with an equivalent amount of in-plane fibres [34]. It is worth noting that 

the 0° UD prepregs show significantly higher tensi le and compressive values 

compared to MWK in the same direction. These comparisons can not be valid as 

the laminates did not have the same VI (60 for UD prepreg against 54 for MWK). 

Flexural strength values they found also should be treated with caution as ply 

thickness along different directions were not similar. 

Fractographic analysis carried out, by the same authors , of a unidirectional 

prepreg tape and a MWK laminate subjected to tensile loading are shown in Fig . 

10. They claimed that MWK and unidirectional prepreg tape laminates have very 

similar failure mechanisms. However, they observed that the knit structure in the 

MWK composite constrains delamination and longitudinal splitting , which was not 
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observed in the unidirectional prepreg laminates. The same reason can also be 

attributed to the improved resistance to interply failure (i.e. ILSS) of MWK (Fig . 9) . 

However, the level of improvement in ILSS was claimed to be linked to the 

mechanical properties of the through-the-thickness yarn ; for example, Bibo et al 

[35] showed that Kevlar knitting yarns produced more impact resistant laminates 

than polyester yarns. 

I.) 

Fig. 10: Fractographs of Tensile Specimens 

of (a) Unidirectional Prepreg Tape and (b) Non-Crimp Fabric Composites 124J 

Some more recent published results on MWK are presented by Kang and Kim 

[36] who evaluated the tensile, flexural , short beam shear and impact properties 

of Kevlar MWK fabric reinforced composite laminates and compared them with 

those of woven laminated composites. They found that MWK possessed up to 

52% increased interlaminar shear strength compared with plain woven laminates, 

in the process retarding delamination growth. They also indicated that MWK 

composites reduced vertical deformations compared with woven laminates, as 

the stitch density increased. They showed in a more recent paper [37] that due to 

the through-the-thickness stitching, the total absorbed impact energy reduces 

along with the delaminated area. They also showed that the onset of 

delamination is delayed in MWK composites because of higher impact fracture 

toughness compared to that for unidirectional or woven composites. Shyr and 

Pan [38] also found that the threshold load for major damage (perforation) is 

more for MWK, which they attributed to the fabric structure. Conversely, they 

showed that during impact, delamination damage in MWK composites is more 

than for woven and nonwoven composites. They assigned this to the interlaced 
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structure of the woven fabrics, and the random structure of the nonwoven fabrics, 

which they claimed restricted the crack propagation. MWK composites, therefore, 

resist perforation by absorbing more energy through delamination. 

Schrauwen and Peijs [39] investigated the effect of matrix ductility and 

reinforcement architecture on the polyester and vinyl ester infused glass MWK 

and compared the results with woven composites. They concluded that the 

penetration energy of the specimens with MWK reinforcement was higher than 

that of specimens with woven fabrics. However, they did not find any significant 

difference due to matrix ductility and inferred that impact energy absorption is 

mainly fibre controlled. 

Joffe and Varna [40] while investigating vinyl ester infused MWK composites 

found that MWK generally showed lower compressive strength compared to 

similar prepreg materials. Interestingly, they found that MWK composites exhibit 

almost complete notch insensitivity. They proposed that this is due to the 

waviness of the fibre bundles in the internal structure. They indicated that this 

complex internal geometry of MWK composites leads to failures close to internal 

defects, prior to the failure in the vicinity of the notch, where stress concentration 

takes place. 

Edgren et aJ. [41] while modelling biaxial carbon MWK reinforced composites 

loaded in tension indicated that stress concentrations points are caused by 00 

fibre bundle waviness. They found that longitudinal cracks form at stress 

concentrations, caused by the forced straightening of the 00 fibre bundles in 

tension. Their analysis suggests that the effect of the fibre waviness is strongest 

where the upper and lower 00 fibre bundles extend out-of-phase. Lomov et al. 

[42] through experimental investigation of the internal structure of the MWK 

composites showed a complex pattern of porosities inside the fibrous plies of the 

preform. They indicated that cracks and channels in the plies occupy a significant 

volume inside the fabric, subsequently creating resin-rich zones in the composite 

which plays an important role in damage initiation and propagation. Crimp in the 

00 fibre and the resin-rich areas, therefore, plays an important role in dictating the 

mechanical properties of MWK. 
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2.2 LIQUID COMPOSITE MOULDING (LCM) 

In recent years various LCM methods have established their position due to the 

popularity of the 2D and 3D dry textile preforms. This particular composite 

fabrication technique overcame the difficulties that standard manufacturing 

methods (e.g. prepreg) had as a medium to high volume, cost effective 

processing route. Rudd et al [43] compared process cosU volume of various 

manufacturing methods, and has results reiterating this fact (Fig. 11). 

---+------------

Cost effective range 
for Ilquld·mouldlng 

Production Volume 

Fig. 11: Process Cost! Volume Comparison [43] 

LCM techniques, sometimes in combination with compression moulding and 

autoclave vacuum bagging, were developed to achieve high fibre volume fraction 

(VI <: 45%) for medium and large area structures [44]. Moreover, LCM requires 

light weight, low cost moulds, which cut the initial investment cost. The closed 

nature of these techniques adds a further advantage in terms of health and 

safety. LCM also makes it possible to produce complex shapes which are not 

easy to produce with other moulding methods, 

There are a number of LCM processes that are available to the composite 

industry. They include Structural Reaction Injection Moulding (SRI M), Resin 

Transfer Moulding (RTM), Vacuum Assisted Resin Transfer Moulding (VARTM), 

18 



Chapter 2 Background and Manufacturing Variables 

Seemann Composite Resin Infusion Moulding Process (SCRIMPTM) [45], Resin 

Infusion under Flexible Tooling (RIFT) [44] and RFI [46]. 

A key issue of all the LCM methods is the achievement of complete impregnation 

(i.e. free of voids) of the dry preforms, while avoiding fibre distortion due to 

excessive pressure. These aspects are characterized by resin infusion through a 

pressure gradient. In many cases the pressure gradient is created by applying a 

vacuum. However, one main problem with the Vacuum Infusion technology is that 

it does not have total control over the pressure distribution and therefore the 

process parameters [47]. A high rate of resin flux can lead to high hydrostatic 

pressure in the resin which in tum can lead to damage in the reinforcement which 

in turn can create voids. 

2.2.1 Resin Film Infusion (RFI) 

In this process a pre-catalysed resin film is used instead of liquid resins (Fig. 12). 

Once the preform and the films are stacked together, the assembly is enclosed, 

as in traditional vacuum bagging,and suitable heat and pressure cycles are 

applied. As a result the resin viscosity first decreases to impregnate the preform 

and then finally initiates gel and cure. Compared to other processes, RFI has a 

shorter resin flow path. 

SealantTape 
Oven or autoclave used to ap'ply 

heat to :nelt and cure the fll:n ToVacuu:n 
Pump 

~c...., 
Vacuum Bag 

Dry Reinforce:nent 
Stack 

Mould Tool 

Pre-Catalysed Resin In Sheet For:n 

Fig. 12: Schematic of Resin Film Infusion Method [281 
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Traditionally, there are two different forms of resin film infusion. Interleaved and 

thick film forms of this process have both been used in the aircraft and marine 

industries. 

Many variations of the RFI process are available with various trade names -

Semipreg, SPRINT, Zpreg, VMS. Their main advantages include the ability to 

produce high VI with low void contents, comparable with prepreg, at a lower cost. 

The resin formulations (due to the solid state of the initial matrix material and 

elevated temperature cure) are of high quality which results in better mechanical 

properties. It also helps meet health and safety conditions and contributes to a 

clean lay-up. While the main disadvantages are that an oven and vacuum 

bagging system are required to cure the component (though an autoclave system 

is not always required) the tooling and core materials need to withstand an 

elevated cure temperature (",180°C). Therefore, this method is not widely used 

outside the aerospace industry. 

2.3 RFI PROCESS VARIABLES AND EFFECTS 

The governing theories for resin flow into a dry preform need to be understood in 

order to understand the process parameters which control RFI. The process 

variables include fabric variables like permeability and compaction behaviour, 

and resin parameters like viscosity. The mechanism of void growth is also very 

important. 

2.3.1 Newtonian Flow through a Porous Medium 

Laminar flow of fluid through a porous media was first investigated by Darcy in 

1856 [48]. He performed experiments in which the pressure above and below a 

filter (a bed of sand) was monitored, as fluid (water) percolated through it. From 

this work he defined a constant which related the fluid flow to applied pressure. 

According to Darcy's Law, one dimensional Newtonian flow through a porous 

medium can be described as: 
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(a) 

Where flow rate, Q, is dependent on the pressure gradient (IlP/llL is the pressure 

drop per unit length), permeability (K) and viscosity (1]) at a certain time 't'. 

Ahn et al [49] suggested that the superficial velocity Q may describe the rate of 

rise of a fluid meniscus, dy/dt, filling a cylinder of cross-sectional area A, thereby 

introduced the porosity term in the equation (a). 

(b) 

During vacuum bag curing, assuming linear pressure distribution, llP/llL can be 

equated with Pt/y (where, Pt is the total pressure at a time 't' and at a distance 

'y'). Integrating equation (b) gives, 

2 r2KAx~ d 
y = 1 t 

17 
(c) 

Further, 

Pt = Pmeeh + Pvae + Pgrav + Peap (d) 

Where, 

Pmeeh = Mechanical pressure or autoclave pressure 

Pvae = Vacuum pressure 

P gray = Gravitational pressure 

Peap = Capillary pressure 

When an autoclave is not used, Pmeeh becomes zero. Pgrav can also be 

considered zero, as it does not have a significant effect. Peap varies inversely with 

the processing pressure and is considered small at high processing pressure. 

Therefore, for vacuum bag curing the transverse impregnation equation can be 

written as, 
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(e) 

Methods to obtain values for the various parameters in equation (e), either 

theoretical or experimental, are therefore required to solve the equation. 

2.3.2 Permeability of Fibrous Preforms 

Generally permeability is much higher in the direction along the fibres than in the 

transverse or through-the-thickness direction. A number of studies [50-52] have 

been carried out to determine the permeability of fibrous preforms. In general, 

permeability is a function of the fibre volume fraction, V" fibre radius, r" and fibre 

architecture, which is explained by the Kozeny-Carman equation (f) [53]: 

(f) 

ko is the Kozeny constant which varies with the fibre architecture and direction of 

flow. For flow parallel to the fibres, Gutowski et al [53J suggested ko = 0.7 (for 4 

micron fibre radius), while for the transverse flow they suggested a value of 17.9. 

However, they suggested a modified expression for the transverse permeability, 

taking into account the stop-flow phenomenon (as the VI approaches its 

theoretical limit, through thickness flow shuts off as the fibres are forced into 

contact with one another along their entire length): 

(g) 

Where V; is the fibre volume fraction at which transverse flow is not permitted 

[i.e. ultimate fibre volume fraction] and k' is the modified Kozeny constant. This 

equation agrees very closely with the standard Kozeny-Carman equation (f) when 
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V.'=1, but gives much lower permeability when V.'<1. From experimentation 

Gutowski et al. [53] estimated values of V.' to be in the range of 0.76-0.82. 

2.3.3 Resin Viscosity during Cure 

As explained earlier resin flow rate is also dependent on the resin viscosity, 1]. In 

equation (a) all of the parameters except viscosity, 1], can be treated as constant 

[54-55]. During curing the resin viscosity varies greatly. In the RFI process, the 

resins used are partly reacted; therefore their initial viscosity is relatively high. As 

a film is heated, the viscosity drops dramatically and reaches a minimum at a 

temperature that is generally designated as the 'Hold' Temperature (e.g. 130°C in 

MTM44) [51]. 

In the cure cycle, this temperature is important as complete wet out can be 

achieved only at this temperature and any excess resin is squeezed out into the 

bleeder material. It should also be noted that at this particular temperature resin 

is most susceptible to void formation. Thus pressure developed at this time in the 

resin is also critical [43]. Continued heating then leads to the initiation of cure 

('Gelation' - It is required that the time for the resin to reach the gel point must be 

longer than the duration to completely wet the preform) and the resin viscosity 

increases progressively until the resin solidifies. 

2.3.4 Wettability of the Fibres 

Surface Tension plays a key role in determining the wettability of reinforcing 

fibres by a resin matrix during processing [50]. Good wetting is essential for the 

manufacture of quality composites which also improves mechanical properties. 

The contact angle between the solid fibre and impregnating liquid resin is the 

common measure of wettability. A high contact angle is associated with poor 

weUability. 
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Fibre 

Fig. 13: Resin Fibre Interface Showing Contact Angle e 

The contact angle, e, depends on the surface chemistry of the fibres as well as 

the resin. As a ground rule, low energy liquids wet high-energy solids [56). Table 

2 shows surface the energies of some materials. 

Materials Surface Energies 
(Dyne/cm) 

Metal - 400-2000 
Glass (Clean) - 500 
Carbon Fibres - 50 
Kevlar© 44 
Polymers 30-45 

Table 2: Surface Energies of Various Materials [56] 

From the above table it can be inferred that glass will wet out more easily than 

carbon and Kevlar. Ahn et al [50] suggested that surface tension is very important 

in void formation and its transport during impregnation and consolidation. For 

resin matrices with high surface tension, it is difficult to eliminate voids. 

Surface tension is also responsible for the capillary pressure (dependent on 

porosity), which improves impregnation and processability, equation (e). At low 

processing pressure, capillary pressure due to matrix surface tension becomes 

even more important [57]. One important aspect when using capillary pressure 

only is that it does not produce a good quality void-free laminate. In order to avoid 

voids during consolidation, application of a vacuum is very important when 

capillary pressure is present [50]. 
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2.3.5 Compaction Behaviour of the Reinforcements 

While the preforming techniques - e.g., weaving, knitting, braiding and stitching -

orient the fibres into a skeleton of the actual part, the final microstructure of a 

laminate depends to a great extent on the compaction of the preform. In a review 

on this particular behaviour, Robitaille and Gauvin [58] presented results from 

compaction experiments for a wide range of reinforcements. They then fitted the 

data to the well known power law model, equation (h), which relates fibre volume 

fraction 0/f ) to compaction pressure (P): 

(h) 

Where, A and B are empirically determined constants for each reinforcement 

material. 

As a RFI process variable, compaction of the reinforcement depends on its 

geometry [59] (i.e. fabric form and fibre orientations) which subsequently 

determines its permeability during the processing [60-61]. Visconti et al [62] 

showed through experimental results that permeability values decrease as the 

pressure increases - because compaction of the layers increases. 

It has also been suggested that compaction pressure is responsible for collapsing 

and transportation of the bubbles formed during curing, thus reducing voids [63]. 
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CHAPTER 3 

CHARACTERISATION OF COMPOSITE MATERIALS 

3.1 INTRODUCTION 

In order to ascertain how a composite will perform in a structure it is necessary to 

characterise its behaviour using standard tests. The anisotropy of composites 

and the use of adhesive bonding lead composites to fracture in different and 

multiple failure modes, which makes their analysis complex. However, in most 

cases statistical interpretation of sets of 'coupon' (test laminate) tests is used to 

generate design data that is either extrapolated or interpolated to the component 

and loading to which it will be applied. Substructure tests are then needed on 

parts of the final component with in-service loading and damage scenario. 

However, coupon test results will only represent the final material behaviour 

when the features of the final component, for example lay-up, holes, contours 

etc., are included at the coupon level. It should also be noted that a"owable 

stresses of damaged structures are more important than ultimate undamaged 

strength in determining the efficiency of a composite structural material. 

In this chapter properties measured to characterise the in-plane performance, 

damage resistance and tolerance and the micro-structural characteristics of 

composite materials are presented and the literature reviewed. In a" cases work 

particularly relevant to the characterisation of MWK fabrics is emphasised. The 

characterisation of stitched composites is also included as the disruption and 

fibre damage caused by stitching is to some extent analogous to MWK fabrics. 
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3.2 IN-PLANE PROPERTY CHARACTERISATION 

In-plane properties refer to those measured in the plane of the fibres; either along 

them or at an angle to them. Generally five basic properties are measured -

tensile strength and modulus, compression strength and modulus, and apparent 

interlaminar shear strength. In-plane shear strength is also often characterised, 

so are properties in the presence of holes. The tests can be carried out at room 

temperature, dry, or at elevated temperatures with different levels of relative 

humidity, or in the presence of other substances, which may be detrimental to the 

performance of the composite during its use. 

It is important that the tests are carried out in a standardised way which is 

suitable for the material and that the type of test is relevant to the application of 

the material in structural use. Various standard test methods are available, for 

example, ASTM, SS, CRAG, SACMA etc. However, applicability of a test method 

depends on the dimensions of the repeating unit-cell of the material [64] which 

become more prominent when considering small sample widths, thickness or 

gauge lengths. The reason behind this argument is that if the dimensions of the 

test sample do not extend over several unit-cell lengths the readings obtained will 

not be averaged out. 

In the following sections the compression and interlaminar shear properties are 

discussed in more details, which are measured in the current study. 

3.2.1 Compression Strength and Modulus 

The compressive strength of a material in a given situation is determined by the 

failure process which operates at the lowest stress. Kyriakides et al. [65] 

recognised that failure is initiated by imperfections (geometric imperfections, such 

as waviness, voids and cracks) coupled with plastic deformation of the matrix 

[66]. In composites with good interfacial bonding the matrix fails predominantly by 

shear. Soutis [67] showed that the multidirectional specimens fail by 

microbuckling of the 0° fibres similar to the unidirectional specimens. They also 

found matrix-splitting and delamination occurring with the microbuckling, but they 
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indicated these to be secondary modes of damage. In a more recent paper 

Soutis et al. [68] observed that the failure strength of multidirectional laminates 

containing 00 outer layer was less than that of laminates with ±45° outer plies; 

indicating that the ±45° plies provide lateral support to the 00 plies and delay the 

initiation of fibre microbuckling. 

Furthermore, in low V, unidirectional laminates the fibres buckle in an out-of

phase fashion while in high V, laminates it happens in an in-phase mode [66). In 

the case of multiaxial fabrics the effects of waviness are further enhanced if the 

adjacent fibre layers have waviness which is in-phase. This particular situation 

reduces the stability that might otherwise be offered by the adjacent layers. 
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Fig. 14: Effect of Tow Crimp on Compression Strength and Modulus [69] 

When comparing the effect of tow crimp on compression strength Miller [69] 

observed a linear relationship between standard deviation of tow orientation and 

compression strength for prepreg tape and non-crimp fabric composites (Fig. 14). 

However, his work did not show the same trend for compression modulus, 

although there was some indication of decreasing modulus with increasing tow 

crimp when considering just the tri-axial non-axial data. 

Drapier and Wisnom [70) characterised MWK composites and found a very 

strong correlation between the compressive strength and the tow crimp level and 
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the size of resin-rich pockets in the composite. They showed that stiffness of 

MWK depends on the fibres, whereas MWK strength is mainly dependent on 

parameters controlling the 00 tow buckling. They suggested that the MWK 

compressive strength will be improved when the crimp level is limited (through 

increasing the 00 tow tension during lay-up), the resin has high mechanical 

characteristics (especially a high modulus), tows are spread (Iow stitching 

tension) and the overall fibre content is increased. 

It is crucial when measuring compressive property that the samples be stabilised 

from global buckling [71]. Use of either an anti-buckling fixture to constrain the 

sample, a gauge length which is too short to buckle, or a self supporting shape 

(sides of which are sufficiently constrained and too short to buckle) are all 

methods of solution. A specimen geometry optimization study by Joffe and Varna 

[40] led to research concerning notch sensitivity of MWK. They performed 

compression testing on specimens with circular centre holes and symmetric 

sharp edge notches and found MWK composite to be notch insensitive. They 

proposed that this behaviour of MWK composite is due to its irregular and uneven 

internal structure which leads to failures close to an internal defect, prior to the 

failure in vicinity of the notch, where stress concentration takes place. 

3.2.2 Interlaminar Shear Strength (ILSS) 

For a given resin the interlaminar shear behaviour depends on the stress 

concentration effects associated with the presence of fibres and voids and on the 

strength of the interfacial bond [72]. Although increasing the fibre/matrix bond 

strength increases interlaminar shear strength this only applies up to the point at 

which failure occurs in the resin rather than at the interface. The fibre surface 

treatment also favours interfacial failures - reducing the notch sensitivity of the 

composite. 

Fibre volume fraction, Vf, also affects the ILSS. As the Vf reduces, the additional 

resin tends to accumulate in the interlaminar region [73]. Miller [69] showed that 

apparent interlaminar shear strength decreases with an increase in free resin 

volume fraction and also with the thickness of the resin layers. An increase in Vf 
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increases the ILSS up to a point from where the strength was observed to drop 

suddenly [72]. This sudden load drop can be attributed to the stress 

concentration of the fibres as the resin layer thickness reduces. For laminates 

with brittle resin, the stress concentration effect leads to interlaminar shear 

strength in the composite which is lower than that of the neat resin. For tougher 

systems the shear strength of the composite and neat resin is approximately the 

same as local stress concentrations are relaxed by local deformation [72]. 

Drapier and Wisnom [74] used a bi-dimensional FE model of a bi-axial MWK and 

verified that, under pure shear loading, the overall response is largely controlled 

by the resin response and the highest strains develop in the resin-rich areas. 

They concluded that in order to improve the shear behaviour of the MWK fabrics 

it is necessary to limit the development of high shear strains by reducing the resin 

pockets in the intralaminar and interlaminar regions. Other suggestions made 

were the use of resin with a high yield stress and a high modulus, and by limiting 

overall stitch tension to avoid shear strain localisation. The latter suggestion was 

made because under low tension the tows can spread and form homogeneous 

fibre structures. 

The effect of fibre waviness on ILSS can also be considered, as there is a 

possibility that wavy fibres will bridge the interlaminar region and will have to be 

broken or pulled out to cause failure [75]. 

3.3 FRACTURE CHARACTERISATION 

3.3.1 Introduction 

Carbon/epoxy composite structures are highly sensitive to damage from low 

velocity impact loads which may occur in-service, e.g. dropped tools, runway 

debris. Different failure mechanisms have been observed under this type of 

loading, such as broken fibres, micro-cracking of the resin matrix, debonding and 

delamination. Among these forms the most critical is often delamination. 

Imperfections created during manufacture, such as air entrapment or dry patches 

(resin-devoid areas) may give rise to delaminations which can spread to 
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undamaged areas of a structure under compressive in-plane load. Delaminations 

also initiates in areas of stress concentration. 

Understanding the mechanisms of delamination initiation and growth are typically 

addressed in two types of tests: firstly, interlaminar fracture tests, which are 

aimed at measuring the strain energy release rate in a number of loading modes 

or a combination of modes. Secondly, impact tests in which the response of a 

material to impact is observed in terms of how load is transferred to the material 

and the resulting delamination extents. The latter test is typically followed by 

measuring the residual strength of the material under compressive loading. 

3.3.2 Mechanism of Interlaminar Fracture 

The failure processes occurring in fracturing composites are complex. The critical 

strain energy release rate is representative of the matrix toughness and is 

influenced by the fibres, interface and microstructure. It is also dependent on the 

mode of the interlaminar stress. There are three basic interlaminar failure modes 

[76], opening or peel (mode I), shear (mode 11), tearing (mode Ill) or a 

combination of modes (Fig. 15). During impact the failure process includes mode 

I and mode 11 delamination initiation and growth, matrix cracking, fibre debonding 

and laminate flexure [77]. 

The generation of delamination is associated both with the interlaminar stresses, 

determined by the geometry of the sample and the magnitude of the load, and by 

the interlaminar strength - dictated by material properties. Thus to improve the 

resistance to delamination, interlaminar stresses must be reduced or interlaminar 

strength increased. The MWK fabric, by virtue of the through-thickness stitching, 

may enhance the interlaminar toughness (through fibre bridging [78] etc.) of the 

composite and correspondingly minimise the composites susceptibility to 

delamination damage development and subsequent propagation under load. The 

MWK's lower fundamental mechanical properties (tension, compression etc.) 

may therefore be compensated for by reduced damage sensitivity. 
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(a) Mode I (b) Mode It 

(c) Mode III 

Fig. 15: Three Basic Fracture Modes 

The generation of mode I strain energy release rate data is performed on a 

double cantilever beam (DCB) test sample [ESIS][79]. This consists of a narrow 

beam with a starter crack running a known length into the sample at the laminate 

mid-plane. Load is introduced, as shown in Fig.16a, through hinges or hinge 

blocks bonded to the cracked end. The crack is then propagated by pulling apart 

the hinges at a constant rate during the test. The resulting force/cross head 

displacement curve, together with information on the location of the crack tip at 

intervals during the test allows the strain energy release rate for crack growth to 

be calculated for that material system and between that interfaces. 

The mode 11 [79] test measures the strain energy release rate for crack growth in 

shear loading as illustrated in Fig. 16b. The test configuration is called End 

Notched Flexure (ENF) and uses the same specimen as the mode I DCB test but 

is loaded in three-point bending with the crack tip half way between the mid-span 

and one knife edge. In this case the crack propagation tends to be unstable and 

the point of non-linearity on the load displacement curve, the 5% offset point 

and/or the maximum load achieved, tend to be used to characterise the mode 11 

strain energy release rate for the material system. 
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_ graduated scale 

(a) Mode I (crack opening) 

(b) Mode I1 (crack shear) 

Fig. 16: Interlaminar Shear Testing Modes 

raj Effect of Constituent Properties 

As well as propagating in neat resin interlaminar cracks interact with the fibre 

surface via an interface. The strength of this interface is often controlled by sizing 

[SO] on the fibre surface. As long as the interfacial bond strength is stronger than 

the resin itself, the crack will tend to propagate only in the matrix. 

The role of the fibre properties on composite fracture is related primarily to its 

effect on the compliance of the composite [34]. An applied load will result in a 

given opening or shear displacement depending on its stiffness and hence stress 

level at the crack tip. 

The effect of resin toughness [34] in relation to the toughness obtained for the 

composite is related primarily to the constraint, by fibres, of the zone of plastic 

deformation which surrounds the crack tip. For tough matrices the neat resin 

plastic zone is larger than the resin layer between the plies [S1]. This reduces the 

degree of load redistribution away from the crack tip, and thus allows the critical 

strain or stress condition for local failure at the crack tip to be achieved earlier. 
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For resins where the plastic zone ahead of the crack tip is less than or equal to 

the height of the resin layer between plies, neat resin and composite toughness 

will be similar. 

For brittle resins crack growth is more difficult when the crack tip is loaded in 

shear. The reason for this is related to the shape of the plastic zone which 

surrounds the crack tip [81]. 

Cb) Effect of Fibre Architecture 

The architecture of the textile preform, or the fibre orientation, and the level of 

structural integrity determine the fibre volume fraction (which depends on the 

fibre packing density) and subsequently the translation of the fibre properties to 

the composite structure. MWK fabric with its near zero crimp and through 

thickness stitching has a failure mechanism which is quite different from the 

traditional unidirectional prepreg materials [66]. MWK fabrics fail through a 

combination of matrix micro-cracking, fibre matrix debonding, fibre breakage, 

stress redistribution and delamination [77]. Because of the stitching, the failure 

process proceeds gradually compared to the sudden catastrophic mode exhibited 

by the unidirectional prepreg composites. Occasional damage to the tows by the 

stitching process of MWK may reduce the in-plane properties of the composite; 

however, the interlaminar shear strength is expected to be high because of the 

stitching. The failure mechanism may change significantly with the fibre type and 

matrix toughness as well as arrangement of the fibres [76]. 
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3.4 IMPACT AND DAMAGE TOLERANCE CHARACTERISTICS 

3.4.1 Theoretical Aspect 

The instrumented falling weight impact machine is generally used to characterise 

the impact properties of composite materials. In these machines, the level of 

impact energy is varied by varying the drop height of the impactor, which 

changes the impact velocity simultaneously. Alternatively, the mass of the 

impactor may be varied, while keeping the velocity constant. The following 

equations [82) of motions are utilised to define the relationships between force, F, 

velocity, v, displacement, x, and energy, E at a time, t. 

dv 
F=Mg-i=M

dt 

1 ' 
v = Vo + gt-- Jidt 

Mo 

lit t 
x=vo +_gt2 

--J fidtdt 
2 Moo 

E=vofidt+g Jftdt --
1
- Jidt 

, , [,]2 
o 0 2M 0 

Where, Vo = Velocity at the point of impact, 

M = Mass of the impactor 

g = Acceleration due to gravity (9.81 m/s2) 

f = Force 

(a) 

(b) 

(c) 

(d) 

The force value is recorded directly through a force transducer [83], attached to 

the impactor, during the impact. It is possible to calculate the energy absorption 

and displacement using the equations (a) - (d). 
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3.4.2 Impact Characteristics 

The damage created during an impact event is dependent both on the magnitude 

of the blow and the constraint of the target. A thin skin with a large span between 

supports will be relatively free to deflect and the damage introduced is primarily 

due to flexure - large tensile forces on the back face of the material and some 

localised shear buckling close to the front face adjacent to the impact site [66]. 

The deflection of the laminate, if sufficiently large, causes transverse cracks 

between fibres close to the tensile back face of the skin and with increasing 

deflection these grow and nucleate delaminations where the cracks meet a ply 

boundary. These delaminations extend in the direction of the lower ply to an 

extent dependent on the deflection and interlaminar fracture properties of the ply 

interface [76]. The mode of the delamination growth is a mixture of mode I and 11. 

Further deflection may cause tensile fibre fracture starting at or close to the back 

face followed by perforation of the laminate. In cross section the damage is 

conical with the largest delaminations close to the back face [34]. 

For rigid targets, contact damage dominates the failure process with fibre fracture 

and delaminations generated by shearing of material away from the striker as it 

indents the surface plies. These delaminations may be conical or may exhibit the 

largest delamination on the impacted surface [66]. 

3.4.3 Effect of Material Properties and Fibre Architecture 

Delamination and matrix cracking are sensitive to matrix toughness and relative 

resin layer thickness, whereas fibre breakage is sensitive to the properties of the 

fibres [84]. Experimental results indicate that matrix properties govem the 

threshold for damage initiation. Damage area however is governed by a 

combination of matrix properties and fibre strain to failure. Penetration resistance 

at large impact energies is dominated by fibre properties [34]. 

While comparing laminates manufactured with high strain and standard carbon 

fibres of the same modulus, manufactured with the same matrix system, Cantwell 

et al. [85] showed that fibres with a higher strain to failure exhibit smaller damage 
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areas for the same incident impact energy. The scenario was explained by 

greater transfer of strain from the matrix to the fibre and the fibre's property to 

withstand it. Similarly tougher matrices should behave in a similar way [39]. Neat 

resin with better tensile properties should also exhibit improved damage 

tolerance. Williams et al. [86] suggested that there must be sufficient resin 

between the fibres in the laminate to permit plastic deformation of the resin to 

ensure better damage tolerance. 

Fibre architecture plays an equally important role as the constituent properties. It 

has been well established [87] in unidirectional prepreg tape that both the onset 

and extent of damage is determined by the difference in angle between the 

adjacent plies (due to fibre bridging). Hitchen et al [88] studied the effect of 

stacking sequence, of a carbon/toughened epoxy system, on impact damage and 

concluded that panels containing 45° surface plies gave higher peak energies (in 

falling wt. Impact test) than panel containing 0° surface plies. They also 

concluded that stacking sequence influenced both the shape and size of the 

delamination area and that increasing the number of dissimilar interfaces reduces 

the energy available for delamination propagation. Strait et al. [89] in their work 

showed that stacking sequence and reinforcement form can have significant 

effects on impact resistance particularly at higher impact energies. Their results 

demonstrated that energy at maximum load is highly dependent on stacking 

sequence. However, they found no major effects of stacking sequence or 

reinforcement form on the energy required for the onset of damage in the 

laminates. 

Enhanced suppression of delamination damage in MWK laminates may be 

expected on the basis that all the most likely planes of fracture, between layers of 

differing fibre orientation, are bridged by the through thickness stitching yarn, 

providing some crack tip shielding or crack face closure [8]. 
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3.4.4 Post Impact Mechanical Characteristics 

In order to quantify the effect that impact damage has on the laminate, 

mechanical testing is required. As stated earlier the damage from an impact may 

consist of various amounts of fibre failure, matrix cracks and delaminations. 

Damage dominated by fibre failures results in load redistribution that can affect 

both the tensile and compressive residual strength. Damage causing matrix 

failure results in load redistribution and primarily affects compressive residual 

strength [90]. 

The stacking sequence is also important while considering post impact 

characteristics. Cantwell and Morton [91] in their review quoted a number of 

references showing that composites having +/-45° surface plies offer improved 

residual strengths. The reason they stated was that +/-45° plies placed on the 

outer surface protected the load bearing 0° plies against damage caused by 

impact. The effect of stitching on post-impact tension and compression strengths 

was presented by Poe et al. [6], which showed that stitching improved the post 

impact tensile and compressive properties. However, compression strength ratio 

improved far more than the tension strength ratio (Le. Ratio of post-impact 

strength to undamaged strength). Dickinson et al. [92] in their review of trans

laminar-reinforced composite (defined as a composite laminate with up to 5% 

volume of fibrous reinforcement oriented in a translaminar or through-thickness 

direction) pointed out substantial improvement in compression-after-impact 

response along with considerable increase in fracture toughness in Mode I 

(double cantilever beam) and Mode 11 (end notch flexure). Through-thickness 

reinforcement is also shown to restrict size and growth of impact damage and 

edge delamination. 

In the case of the MWK, as it is a stitched preform, one should expect similar 

results. Experimental results of Bibo et al. [34] tend to support this expectation. 

Dexter and Hasko [33] also found MWK fabric composites, made from Liba and 

Mayer multiaxial warp-knitting machines, exhibiting compression after impact 

strengths up to 80% higher than the strength of comparable prepreg tape 

laminates. 
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3.5 ENVIRONMENTAL EFFECTS 

Since carbon fibres are inert to moisture and temperature, the matrix and 

fibre/matrix interface components of the carbon fibre composite are of the 

greatest concern when considering the effects of moisture and temperature on 

these materials. The potential effects of each condition are very similar in nature: 

interfacial degradation, matrix property degradation, the building up of residual 

intralaminar stresses due to expansion and swelling, and changes in fracture 

toughness and ductility. The presence of moisture may also result in a decrease 

in glass transition temperature. Under load, visco-elastic effects (e.g. creep, 

relaxation) may also become important. The extent to which any of these effects 

are realized may vary significantly between composite material systems, even 

those of the same general type (e.g. carbon/epoxy). However, the literature 

available [e.g. 93-96] provides some insight as to what one may expect to find 

and the various ways in which the effects of temperature and moisture manifest 

themselves. Such literature limited to carbon fibre composites is investigated in 

more detail below. 

3.5.1. Influence of Moisture Absorption 

Moisture absorption characteristics comprise an important aspect of 

moisture/durability studies. Such information can generally be used to obtain 

some insight into how and why the material is influenced by moisture. For 

instance, in Fig. 17, Curves A to D represents four typical, reversible, moisture 

absorption behaviour. Curve C is indicative of significant interfacial degradation, 

Curve D is indicative of material leaching, and curve LF is classical Fickian 

moisture absorption [95]. 
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Fig. 17: Potential Moisture Absorption Curves [93] 

Such characteristic features of moisture absorption are dependent on the 

composite system. fluid. exposure condition and time. Fluid absorption that 

follows along curve A or curve B is typically thought to occur as a result of the 

competing rate processes of water diffusion and polymer relaxation [96]. Such 

absorption behaviour may also be a result of the combination of two distinct 

absorption mechanisms which result in two physical states - bound water and 

free water [97-98]. 

External factors Can also influence composite moisture absorption. Wong and 

Broutman [99] showed applied tensile stress increases equilibrium water content 

while the diffusion mechanism remains unaltered. Damage due to applied stress 

and/or moisture diffusion and temperature also plays a major role in composite 

absorption behaviour. Some studies have reported increased diffusion rate but 

unchanged saturation concentration [100]. while others reported unchanged 

diffusion rate but increased saturation concentration [101]. Roy et al. [102] 

developed a damage mechanics based model to predict moisture absorption 

behaviour as a function of transverse and longitudinal cracking. 
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Other factors that influence diffusion and/or saturation concentration are 

temperature, fluid acidity, and exposure duration [95]. Rao et al. [103] suggested 

that angle of fibre orientation to the diffusion direction also has significant effect 

on the diffusion coefficient. They found that diffusion gets impeded as the fibre 

orientation to the diffusion path increased. 

All these factors become important in considering a composite's durability in 

immersed conditions. The general theory of diffusion is described in the following 

section. 

3.5.2 Theory of Diffusion 

Fluid diffusion into solid materials involves the displacement of the fluid 

molecules from regions of high concentration to regions of lower concentration 

[104]. For steady-state one-dimensional diffusion, Fick's law applies [105]: 

oc 
q =-Dx , Ox (i) 

Where, qx is the flux of the material in question in direction x, Dx the diffusion 

coefficient and 8c/ax the rate of change of the concentration of the diffusing 

material. 

If the flux of the diffusing material varies with diffusion length, the liquid 

accumUlates in the material and the concentration at each point varies with time. 

For transient three-dimensional diffusion, Fick's second law applies [106]: 

oc =~(D OC)+~(D OC)+~(D oc) ot Ox 'Ox ay Yay OZ zoz (ii) 

Where, the coefficient of diffusion Ox is related to the temperature by the 

Arrhenius equation (in the same way as the kinetic reaction constant): 

Ea 

D=Ae RT 
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Where Ea is the activation energy required before diffusion could occur, A is the 

frequency factor, R is the gas constant and T is the absolute temperature. 

The maximum moisture content Mm is practically a constant when the material is 

immersed in a liquid, and is a maximum when the liquid is immersed in distilled 

water. In humid air, Mm depends on the relative humidity <I> as follows (107): 

(iv) 

Where, a and b are experimental constants which vary with the material. 

The moisture distribution within a laminate can be calculated by analytical or 

numerical methods, assuming that diffusion depends only on concentration, and 

that the coefficient of mass diffusion depends only on temperature (and not on 

moisture content or stress level) (108). If these assumptions hold the diffusion 

coefficient can be expressed as a function of temperature by the Arrhenius 

equation: 

(v) 

Where, Do and A are constants of the material. 

The diffusion coefficient will also vary with direction if the material is orthotropic, 

and the coefficients parallel and perpendicular to the fibres can be expressed as 

a function of the matrix and fibre coefficients (107): 

(vi) 

and 

_( rv;] [ 4 ('JI-B']]Dm D.l - 1 - ij-;- D", + 7r - .JI _ B' arc tan I + .Ji1" 13 (vii) 

Where, 
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4(~m _1)2 V
f 

B' = f (viii) 

VI is the fraction of the volume occupied by the fibres and the subscripts 'f and 'm' 

refer to the fibres and the matrix, respectively. In general, the coefficient of 

diffusion of the fibres is negligible compared to that of matrix and the above 

formulae can be simplified. 

Experimental Determination: 

The diffusion coefficient D and the maximum moisture content Mm can be 

determined experimentally [107]. For experimental determination of one

dimensional diffusion, the specimen must first be oven dried, till there is no more 

weight loss. Weighing the dry sample will give the unconditioned weight Wdry. 

This is followed by wet-conditioning. During this process the weight is determined 

periodically and the moisture content reported as a function of the square root of 

the time. The curve will tend to the value Mm asymptotically if Fick's law is being 

obeyed. The initial part of the curve has a constant slope: 

(ix) 

Implying: 

(x) 

Thus, once the moisture content at times t1, h and saturation have been 

determined the diffusion coefficient can be calculated. 
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3.5.3 Influence of Moisture on Static Strength/Stiffness 

The mechanical response of CFRP laminates subjected to moisture absorption is 

largely determined by the matrix and the interfacial properties since carbon fibres 

are insensitive to moisture (as opposed to glass fibres which are known to 

degrade in the presence of moisture [95]). The known possible effects of 

moisture include the formation of residual stresses due to sorption (generally 

compressive) [109-110], polymer and interfacial degradation, and polymer 

plasticization. Combined, these effects can act to enhance or degrade the 

fracture toughness of the material. Moreover, the plasticization can result in a 

decreased glass transition temperature [111] which may affect how the 

composite behaves in elevated temperature environments after ageing. 

Interlaminar shear strength degradation has been reported for carbon/epoxy 

systems by Zhang and Mason [112]. Bradley and Grant [113] found that for a 

graphite/epoxy system, the reduction in transverse strength due to water 

saturation is similar to the observed change in interfacial shear strength. The 

interfacial strength was measured using a micro-indentation technique. The 

authors consequently hypothesized that for their graphite/epoxy material system, 

the degradation of the composite system was primarily interfacial in nature rather 

than due to changes in the matrix. 

Zhuang and Wightman [114] studied the effect of moisture on interfacial shear 

strength using single fibre fragmentation testing. Samples were stored in a 100% 

relative humidity environment at either 23°C or 75°C prior to testing. Their results 

indicate that exposure to humidity does cause interfacial shear strength 

reduction, which they attributed to moisture induced matrix plasticization and 

subsequent decrease in matrix Tg • The reduction, however, was shown 

insensitive to aging temperature, which is debatable. They conducted a parallel 

study, to distinguish between the effect of temperature and humidity, by aging the 

specimens at the same temperature in dry condition and found no reduction in 

interfacial strength. 
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3.5.4 The Influence of Temperature 

The potential effects of temperature are very similar to the effects of moisture. 

Carbon fibres tend to be unaffected up to temperatures of 600°C. Therefore, in 

CFRP, the effects of temperature are dependent on changes in the matrix and 

interfacial regions. 

Takeda and Ogihara [115] studied the microscopic failure processes of two 

graphite/epoxy crossply composite laminates at room temperature and at aooc. 
One of the systems consisted of a toughened epoxy while the other consisted of 

a conventional epoxy. Experimentally, they found that in the toughened epoxy 

composite system the crack density decreased with temperature, while the first 

delamination onset strain increased with temperature. However, the amount of 

delamination decreased with temperature. The amount and rate of delamination 

also increased with thicker 90° layers. From SEM images of failure surfaces they 

found that little or no additional interfacial debonding took place at elevated 

temperature compared to the room temperature. They found completely opposite 

behaviour shown by the conventional epoxy composite system. 

Detassis et al. [116] used fragmentation testing on single-fibre model composites 

to study the interfacial shear strength of carbon/epoxy composites as a function 

of temperature. The study considered both sized and de-sized fibres (Besfight 

HTA-7-3000), and the epoxy had a low Tg specification (Tg = 39°C). While 

interfacial shear strength values were found to decrease with temperature in 

single fibre composites, sized and de-sized, the values of the sized single-fibre 

composites were generally much higher than that of the de-sized single fibre. 

Moreover, in the desized single fibre composite interfacial shear strength values 

were very similar to matrix shear strength values. The higher interfacial strength 

values for the sized single fibre composites were hypothesized to be as a result 

of superior interphase (region where properties of fibre, interface, and matrix 

combine) properties as compared to the bulk matrix. A similar study by 

Wimolkiatisak and Bell [117] showed similar results. 

Zhuang and Wightman [114] also studied the effect of temperature on interfacial 

shear strength in carbon epoxy composites using single fibre fragmentation 
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testing. In considering the effect of temperatures below Tg (144°C in this case), 

the interfacial shear strengths of three different types of fibres in epoxy were 

found to decrease with temperature. It was suggested that an explanation for this 

was the interphase region exhibits a lower Tg and modulus than the bulk matrix, 

and that a sharp decrease in interfacial shear strength, seen around 80°C, 

coincided with the degradation of this interphase region. This hypothesis is 

somewhat in contrast to that put forth by Detassis et al. [116]. 

Im et al. [118] used Carbon-Epoxy orthotropic laminated plates with two

interfaces [0s/90s]. and [OJ904]. for their experiments in the temperature range of 

-30° to 120°C. They found that as the temperature of a CFRP laminate increased, 

the delamination area due to high velocity impact-induced damage decreased 

linearly. Furthermore, they found that the critical delamination energy increased 

as the temperature increased. They concluded that delamination is generated 

easily as the energy required to cause damage reduces as the temperature 

decreases. Another observation they made was that the thicker laminates were 

less susceptible to impact damage in the temperature range they used. 

3.5.5 Moisture and Temperature Interaction 

The work done to date in examining the effect of the combination of moisture and 

temperature on the durability and damage of carbon fibre polymer matrix 

composites has been limited. Potter and Purslow [119] and Purslow [120] 

investigated compression strength behaviour of notched [±45% 0]n. Carbon fibre

epoxy composites under various environmental conditions. They found that under 

hot-wet conditions the samples failed by out-of-plane micro-buckling of the 0° ply. 

This was said to be because the elevated temperature and increased moisture 

content reduced the fibre-matrix bond strength. Any weakening in the fibre-matrix 

interface resulted in less lateral support for the fibres and a premature failure of 

the laminates due to out-of-plane buckling. 

Karasek et al. [121-122] performed a study on the influence of moisture and 

temperature on the impact resistance of graphite/epoxy composites. They found 

that damage initiation energy decreased with temperature due to reduced matrix 
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properties with temperature. They also found that moisture individually had no 

effect on damage initiation energy or subsequent energy absorption at ambient 

temperatures. However, the influence of moisture at elevated temperatures was 

significant and was thought to depend on the matrix behaviour and wet glass 

transition temperature of the matrix. Their results also showed that the damage 

initiation energy of a composite made from unmodified epoxy increased with 

moisture at elevated temperature, while toughened epoxy showed inverse 

characteristics. 

In examining the nature of the damage, the authors found that moisture exposure 

in general does result in a decrease in the number of delaminations and matrix 

cracks after impact, indicating that the energy absorption per unit area of damage 

is higher in the wet state than in the dry state. This result is consistent with the 

idea that the strain energy release rate increases with moisture. On the other 

hand, they also found that the number of delaminations and matrix cracks 

increased with temperature (when dry), which again is consistent with a reduction 

in strain energy release rate with temperature. When they considered 

thermohumid effect at elevated temperature, they found that the number of 

delaminations and matrix cracks decreased. These changes in behaviour were 

generally attributed to plasticization and increased ductility in the matrix, as well 

as degradation of properties. 

Harper and Abd Aziz [123) investigated the thermohumid effect on the 

compression after impact (CAI) properties of glass, carbon and hybrid fibre 

reinforced laminates. They exposed the impacted samples to thermohumid 

conditions of 60°C and 95% relative humidity for periods up to eighty days, but 

found very small reduction in CAI strength. They attributed this effect to short 

exposure time. 

Imielil'lska et al. [124) worked on epoxy glass-aramid hybrid composites, which 

they aged first then impacted. They found that the impact damage area was 

slightly less extensive in wet samples and suggested it to be the result of the 

propagation of interfacial damage present in wet samples prior to impact, that 

absorbed impact energy and inhibited the delamination formation. 
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A number of studies have been performed to determine how hygrothermal 

environments affect the strain energy release rates of carbon/epoxy composites. 

A review of these is given by Asp [125]. The combined results of the studies point 

to an ambiguity as to the effects of moisture and temperature on strain energy 

release rates, implying that each carbon/epoxy system must be examined 

individually. 
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CHAPTER 4 

EXPERIMENTAL 

4.1 MATERIALS 

4.1.1 Reinforcements 

Three different carbon MWK fabrics with different stitch architectures were 

produced by Formax Ltd. according to the specification given to them. All the 

preforms used were quadaxial (4 ply orientations) made from Toray's T700SC 

carbon fibres. The fibres were sized (by the manufacturer) to make them 

compatible with epoxy resin. The properties of the fibres are listed in Table 3. 

Number Tensile Tensile Elongation Mass per Density 
Designation of Strength Modulus Unit Length 

Filaments (MPa) (Gpa) (%) tex(g/1000m) (g/cm3) 

T700SC- 12000 4900 230 2.1 SOO 1.S 12K 
Table 3: Properties of T700SC·12K [126] 

Tricot stitching was used to produce the MWK. 80th the 'A' (0/-45/90/+45) and 

the '8' (0/+45/90/-45) hands were produced to ensure that no warping occurred 

during laminate manufacturing. The stitch architecture in MWK has two variables: 

stitch pitch and gauge [127], which is illustrated in Fig. 18. 'Stitch Gauge' refers to 

the number of stitches per unit length in the weft direction (across the width of the 

fabric) and the 'Stitch Pitch' is the number of stitches per unit length in the warp 

direction (along the length of the fabric). 
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Fig. 18: Schematic of Stitching in MWK 

The basic differences between the stitch architectures used are listed in Table 4, 

in the following page. 

4.1.2 Matrix Material 

The resin film selected was a modified epoxy resin film MTM 44, produced by the 

Advanced Composites Group. The interest in this particular resin film was based 

on the fact that it was used in the CASCADE project run by QinetiQ and the fact 

that the long term performance of this resin had to be investigated. 

MTM 44 is a high performance 180°C cure, 340g/m2, epoxy matrix specially 

developed for the aerospace and industrial markets. The isothermal viscosity 

profile, dynamic viscosity profile and the gelation properties as provided by the 

Advanced Composites Group are presented in Figs. 19, 20 and Table 5 

respectively [128]. The viscosity data were recorded using a Bohlin CVO-50 

rheometer, using parallel 25mm diameter plates, in the oscillation mode. The 

temperature ramp rate was 2°C/min for the dynamic viscosity profile. The 

isothermal viscosity profile provides information on the heat of reaction at a 

particular temperature, while the dynamic viscosity profile shows the extent of 

reaction, i.e., degree of cure as a function of time at a particular heating rate. 
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Fabric Appearance Fabric Designation 

S [6gg@4cpcm]* 

M [6gg@2cpcm] 

L [3gg@2cpcm] 

Table 4: Fabrics Used 

Experimental 

Fabric 
Characteristics 

Fabric with 
standard stitch 
pitch and stitch 
gauge (465 linear 
stitch metres! 
metre2

) 

Half stitch pitch 
density and 
standard stitch 
gauge (310 linear 
stitch metres! 
metre2

) 67% of 
std. 

Half stitch pitch 
and stitch gauge 
density (232 
linear stitch 
metres! metre') 
50% of std. 

Where gg = stitch gauge, cpcm = courses per cm (i.e. stitch! cm). 
* In the case of '6gg@4cpcm' the fabric has 6 stitches per inch (2.54 cm) in the 

weft and 4 stitches per cm in the warp direction. The length of the stitch is 
therefore 2.5mm. 
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Fig. 19: Isothermal Viscosity Profile of MTM 44 
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Fig. 20: Dynamic Viscosity Profile of MTM 44 
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The gelation data was measured using a pin-pricking method, where the resin 

film is put on a heated plate and a pin is pricked manually at some time interval to 

find out the gel time. The data for the gel time for the corresponding temperatures 

are listed in Table 5. 

Curing 
Gel Time (min.) 

TemperatureJoCt 

130 110 

150 50 

180 25 

Table 5: Resin Gelation Characteristics of MTM 44 

4.2 LAMINATE MANUFACTURE 

The laminates were manufactured by stacking MWK fabrics with resin films 

(interspersed) and using a Resin Film Infusion (RFI) process. There are two 

traditional lay-up methods (Fig. 21) for the dry fabrics and the resin films in RFI: 

one is the 'block method' where the dry fabrics and all the resin films are laid 

separately in blocks, while the second is the 'interspersed (interleaved or semi

preg) method' [57] where resin films are interspersed between the dry fabrics. 

(a) blocked NCF and film 

direction 
of resin 
Infusion 

(~) Interspersed NCF and film 

Fig. 21: Traditional Lay-up Methods [129] 
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It has been found [129) that for thin laminates (up to 4 mm) the block method 

could yield good quality laminates, however, for thicker laminates, for better resin 

migration, the interspersed method should be used. 

The frozen resin film, supported on a backing paper, was supplied on a roll. 

Typical thaw time for a full 25m roll of MTM44 from storage at -18°C (0° F) was 

between 4 to 6 hours [51). After the initial thawing of the roll, small pieces of resin 

film were cut into suitable length and were refrozen (not a recommended practice 

but used because of shortage of space). Before lay-up, the required number of 

pieces were removed from the freezer and allowed to thaw for ten minutes. 

Thawing is very important as the presence of moisture (as a result of 

condensation) within a curing laminate may generate voids and thereby degrade 

the quality and aesthetic appearance of the structure produced. The level of 

degradation varies depending, to a large extent, on the specific processing route 

selected [51). 

The fabrics were cut, by a sharp CSM wheel cutter, into the required size. The 

thawed resin film was then laid on the face of the fabrics. One end of the film was 

put on the fabric first, held down, and then the rest of the film was rolled on to the 

fabric as shown in the Fig. 22. This procedure reduced the possibility of air 

getting entrapped between the resin and the fabric. 

Hold Down 

r 
Resin film and 
backing paper 

.. -.. 

Fig. 22: Application of Resin Film to the Fabric [130] 

The lay-up sequence used to produce laminates for this project is shown in Fig. 

23. It consisted of 5 resin layers interleaved between 4 MWK fabrics so as to 
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yield volume fractions of approximately 55%. The right-hand column of the Fig. 

23 shows the exact orientations of the fibres. 

Left Handed 
(A) Fabric 

Left Handed 
(A) Fabric 

Right Handed 
(8) Fabric 

Right Handed 
(8) Fabric 

,. '.' 

+45° 
90° 
-45° 
0° 

+450 

-45° 

Fig. 23: Laminate Stacking Sequence 

'" :".-' 

The Advanced Composites Group Ltd. suggested an autoclave cure cycle [51], 

which consisted of a two stage curing process: an initial curing at 130°C for 3hrs 

followed by a post-curing at 180°C for 2hrs. They also suggested an alternative 

single stage curing [51] at 180°C for 2hrs. 

However, Rudd et al. [43] suggested the possible use of compression moulding. 

Initially this approach was followed, with a positive mould, to cure the resin. Trials 

were carried out with the two curing cycles mentioned above. Although 

compression moulding achieved high volume fraction of 65%, it was 

accompanied by high void fractions (up to 13%) and crimping of the 

reinforcements [appendix]. 
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Therefore, a modified envelop bagging was finally adopted (Fig . 24) , with a 

modified two stage curing process (Fig . 25) , in order to achieve the desired and 

reproducible quality. 

Brea~er nlm 

Aluminium top plate 

To vacuum pump 

I 
One-way valve 

Flash tape Perrorated release nlm 

D~ glass tows Baggingnlm 

_ ,_ ,_ ,_ ,_ ,_ ,_ , 1_ '_ '_ '- '- '- ' - ,1 

Released tool surtace Laminate Lay-up Sealant tape 

Fig_ 24: Modified Envelop Bagging Arrangement 
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Fig. 25: Modified Laminate Cure Cycle 

After the initial optimization process, a total of forty-five laminates were produced, 

i.e. fifteen laminates per stitch architecture type. All these laminates were 

subjected to quality control checking: visual checks for surface quality and c

scanning for internal defects. Thirty-nine of them passed the quality standards , of 

which twenty-four (eight! stitch type) were used exclusively for damage tolerance 

testing. The rest were used for other characterization purposes. 
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4.2.1 Examination of Cured Laminates 

All the cured laminates were routinely subjected to a non-destructive C-Scan. 

prior to any further testing . A typical C-Scan is shown in Fig. 26. Any laminate 

containing flaws or defects was rejected . Acceptable laminates were cut through 

the middle with a dry diamond tipped circular saw. Two small samples from the 

centre were then polished on 600 and 1200 grit silicon carbide paper and 

examined for voids using an optical microscope (Fig. 27). 
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Fig. 27: Polished C.S. Viewed under Optical Microscope 
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4.3 PHYSICAL PROPERTY TESTING 

4.3.1 Density Measurement 

The density measurement was carried out according to ASTM D792-00 [131] by 

the displacement method based on Archimedes' principle. The samples were first 

conditioned at room temperature then were degreased with acetone. All the 

samples were weighed in air to an accuracy of 0.1 mg. Each specimen was then 

suspended from the balance by a string, immersed completely in water and 

weighed. Care was taken, so that no bubble adhered to the string or the 

specimen. The measurement was taken quickly in order to minimize any 

absorption of water by the specimen and the string. Also the same length of 

string was used so that the depth remained constant for all the immersed 

specimens. The density of the composite was calculated as: 

Where, 

A 
Dc = --xO.9975 

A-B 

Dc = Density of Composite (g/cm3) 

A = Weight of specimen in air (g) 

B = Apparent weight of specimen completely immersed in water (g) 

Density of water = 0.9975 g/cm3. 

4.3.2 Determination of Fibre Volume Fraction 

There are several recommended methods for the determination of fibre volume 

fraction. CRAG standard test methods [132] give a range of methods without 

preference. However, thickness measurement and resin removal (acid digestion) 

are widely used. The former method gives an estimation of the fibre volume 

fraction and therefore, is not suitable for void content calculations. 

All the cured laminates were conditioned at room temperature and a quick 

estimation of the fibre volume fractions was obtained from the thickness of the 

composites using the following equation. Ten measurements were taken with a 
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micrometer from a 5 cm2 area and then an average was calculated and used as 

the thickness of the composite. 

Where, 

VI = Fibre volume Fraction 

N = Number of fabric plies in the laminate 

MI = Blanket fibre weight (g/m2) 

t = Cured laminate thickness (m) 

PI = Fibre density (1.80 x 106 g/m3) 

The acid digestion method was also carried out on a sample of each of the 

laminates. These results were subsequently used to determine the corresponding 

void content. The procedure [132] was carried out in three stages. 

Firstly, the test sample of 1 cm2 size was placed in a tall beaker containing 20ml 

of conc. sulphuric acid. The beaker was then heated on a hot plate, inside a fume 

cupboard, till the acid fumes evolved. In order to make sure that the oxidation 

process was complete, the mixture was stirred slowly with a glass rod to check 

whether all the fibres were dispersed in the acid solution. The beaker was then 

removed from the heat and 30ml (100 volume) of hydrogen peroxide was added 

dropwise down the side of the beaker. Recommended safety procedures were 

carried out while handling the chemicals. The solution was then left for 10 

minutes to allow the reaction to complete. Additional peroxide was then added to 

make the solution colourless, which indicates the completion of the 

decomposition of the resin. 

The second step involved filtering the fibres from the solution. The content of the 

beaker was filtered through a sintered glass crucible (no. 3 porosity) into a flask, 

connected to an air suction system. The beaker was rinsed with deionised water 

and the content was also filtered to collect all the fibres. More deionised water 

was then poured through the glass crucible to make sure that the filtered fibres 

were washed thoroughly. 
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Thirdly, the crucible was dried in a vacuum oven at 1200 C for 3 hours and then 

cooled in a desiccator. The dried fibre weight was then calculated using the 

following formula: 

Dried fibre weight = (Weight of fibre + glass crucible) - (weight of glass crucible) 

The fibre volume fraction was calculated using the formula: 

Where, 

WI = Weight of dry fibre (g) 

Wc = Weight of composite before acid digestion (g) 

PI = Fibre density (1.80 x 106 g/m3) 

Pc = Composite density measured by the displacement method (g/m3) 

4.3.3 Determination of Void Content 

The void contents of the specimens were determined according to ASTM 02734-

94 [133], assuming the density of the resin to be the same in the composite as it 

is in a large cast mass. This assumption overestimates the value of resin density, 

as the curing and the reorientation of the resin molecules actually reduce the 

resin density in the composite. Void content is therefore underestimated. 

The void content was calculated as: 

Where, 
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Vp = Void content % (in volume) 

Dc = Measured composite density (g/cm3
) 

Dr = Resin density (g/cm3
) 

Df = Fibre density (g/cm 3
) 

r = weight percentage of resin (%) 

f = weight percentage of fibre (%) 

4.4 STATIC MECHANICAL TESTING 

4.4.1 Interlaminar Shear Strength 

Experimental 

ILSS is not particularly suitable for comparing materials of different lay-ups, as 

the resulting strength depends on the local fibre architecture at the ply interface 

and can not reasonably be considered to be a true material property. Since in this 

research materials of the same fibre and resin type, lay-up and nominal fibre 

volume fraction are considered, the difference in shear strength will be due to 

differences in fibre architecture. Samples were tested according to the CRAG test 

protocol [132]. 

The thickness of each laminate was measured at five points along its length. The 

width of the sample was set to five times the mean thickness calculated. The 

length was set to (width + 10) mm. The span between the rollers was set to five 

times the thickness, for each of the three types of laminate, using a vernier 

calliper. The laminates were tested at room temperature (21°C) on a 50 kN 

Lloyds L 10000 hydraulic test machine with a 2.5 kN load cell. Samples were 

loaded at 5 mm/min in displacement control with the controller set to record the 

peak load for each sample. This speed was selected in accordance with the 

CRAG standard, which requires samples to fail between 15-45 seconds. The 

support and loading roller diameters were 6mm and 10mm respectively (Fig. 28). 

Five samples were tested for each reinforcement type. 
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Fig. 28: Interlaminar Shear Strength Test Arrangement 

The ILSS was calculated using: 

Where, 

ILLS = 3Pmax 

4Wt 

Pmax = Maximum Load (N) 

W = Specimen width (mm) 

t = Specimen thickness (mm) 

(MN/m2) 

4.5 DAMAGE TOLERANCE TESTING AND ASSESSMENT 

4.5.1 Instrumented Low Energy Impact 

Impact tests were performed using an Instrumented Falling Weight Impact (IFWI) 

Tester, Rosand (Model 5). The machine is capable of using variable mass and 

geometry impactors and has a second-strike prevention facility for non

penetration energy impacts. The impact carriage unit works under gravity (Fig. 

29) and falls, along guiding rods, onto the specimen. 
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Fig. 29: IFWI Testing Unit 

A Kistler piezo-electric load cell, which was logged at a 20ms sweep time, 

recorded the impact force during the event. This information was then 

automatically converted by the software to acceleration, velocity and 

displacement data, as described in the literature review. The initial impact velocity 

was recorded by an optical actuation switch, which was 'zeroed' according to the 

thickness of the sample before impact. The optical actuation switch was activated 

by a 'flag' which was attached to the impactor carriage. 'Zero' position was 

defined manually by lowering the impactor while it just touched the impact 

sample. The same system was also used to trigger the load cell data capture 

[134]. 
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The IFWI testing unit had two different impact carriage units and for this work a 

variable 10.3 kg impact carriage unit was used. This unit itself had a mass of 2.3 

kg, plus a provision of attaching eight 1 kg floating masses. The pneumatic 

second-strike prevention unit was able to catch this impactor unit. 

Pneumatic clamping and simple support units were available on the Rosand. The 

clamping unit had a smooth and an emery paper-backed face. The impact 

sample rested on a conventional anvil, while the clamping unit secured the 

sample from the top. After the impact test, the impactor unit was automatically 

lifted by an electrically powered winch. 

The layout in Fig. 30 shows the locations of the test specimens. Samples were 

cut using a dry diamond tipped circular saw and were then polished on a 

vertically mounted automatic linisher (abrasive band machine) with 600 grit 

silicon carbide paper. 

Fig. 30: Locations of the Test Specimens in the Laminate 

Details of the impact test conditions are given in Table 6. All samples were 

impacted onto the top face of the laminate. Unfiltered data using a 10kN load 

scale were set to ensure full and accurate data capture. Data acquisition was 

performed using Rosand software running on an IBM PC. The velocity-time, 
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force-time, energy-time, deflection-time and force-deflection traces were recorded 

and analysed. 

Parameter Laminate Details 
Sample size (mm) 110 by 65 
Support Conditions Clamped with emery paper backing 
Support Span (cm) 6 (diameter) 
Drop Weight (kg) 4.3 
Impact Energies, (J) 10,20 and 30 
Indentor Diameter (cm) 1 

Table 6: Impact Parameters 

4.5.2 Instrumented Through Penetration Impact 

This test procedure is different from the impacting process used for the 

compression after impact tests. SS EN ISO 6603-2:2000 [1351 was used for all 

through penetration impact tests. The procedure was the same as for the low 

velocity impact except that the specimens were impacted with a set velocity of 

4.4(±0.2) m/so A specimen size 70mm x70mm was selected so that they fitted the 

rig and were securely held by the clamp rings. The diameter of the hemispherical 

indenter used was 10 mm. The striker mass was 10.3 kg. The load scale (10kN), 

filter (1000Hz) and sweep time (20 ms) were selected to ensure full and accurate 

data capture. The test parameters used are tabulated below: 

Impact Velocity 
Impact Striker Mass Test Chamber 
Energy (m/s) (J)' (kg) Temperature (DC) 

4.4 98.736 10.3 21.5 
Table 7: IFWI Drop Parameters 

The velocity-time, force-time, energy-time, deflection-time and force-deflection 

traces were recorded and analysed. 
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4.5.3 Impact Damage Assessment 

The fracture states and degree of delamination damage were determined non

destructively and destructively. There are a number of methods available [136] 

for the assessment. The non-destructive assessments used included: visual 

inspection and Ultrasonic C-scanning, while destructive assessment methods 

used were thermal deply and optical microscopy. 

Determination of Impact Damage Mode bv Visual Inspection 

The impacted face and the tensile face of all the samples were inspected visually. 

Local shear cracks on the impacted surface were noted and the tensile crack 

lengths were measured. The permanent indentation on the impacted surface was 

measured using a displacement dial gauge accurate to O.01mm. 

Determination of Impact Damage Area by Ultrasonic C-Scan 

Ultrasonic C-Scan was used to accurately measure the global delamination zone 

of all the impact specimens. As this method is non-destructive, all the impacted 

samples were scanned. 

Fig. 31: Photograph ofthe C-scan Set-up 

Fig. 31 shows a photograph of the set-up; a glass sheet was placed at the bottom 

of the container of water to reflect the incident ultrasound. Four small rectangular 

steel blocks were placed on top of the glass and above them were placed the 
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impacted samples to be scanned. The reason for using the steel blocks was that 

some of the impacted samples had fibre failure on the tensile face, which caused 

difficulty when placing the samples horizontally. As the C-scan was very 

sensitive, care was taken to ensure that the height of the transmitter above the 

test specimen, amplifier gain etc. were kept constant. 

A Physical Acoustics® Ultra Pac window-based-software controlled scanning 

machine with a single probe, mounted perpendicular to the samples, was used 

for the scanning. The scanner plotted attenuation versus axial position of a 

specimen resulting in a two dimensional plot. A CRAG [132] standard describes 

the procedural guidelines for this method. The following C-scan settings were 

used initially for the specimens: 

Pulse Echo Digitizer Set-up 

Pulser Voltage (v) 400 Delay (\.Is) 3 

Damping (0) 251 Width (\.Is) 32 

Filter (MHz) 5 Wave Average 5 

Attenuation (dB) 0 Sampling Rate(MHz) 32 

Gain (dB) 54.5 Scale(v) 1 

Water Path velocity (inl \.Is) 0.0584 Display Mode Full 
Trigger Mode Internal(-) 

Gate Set-Up Scanner Set-up 
Synchronization First 
Synchronization Thresholds Echo 

X-Direction Speed (%) 20 
V-Direction Speed 

10.0 
Detection Peak 1.0 
Detection Thresholds (%) 15 Bidirectional Point 

Acquisition 
Gate Start (\.Is) 18.9 
Gate Width (\.Is) 6.2 

Table 8: Initial Setting of the C-Scanner 

A comparison of the unimpacted, 10J, 20J and 30J samples (Laminate M) using 

the above setting is shown in the Fig. 32. 
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Fig. 32: C-Scan of the Unimpacted and Impacted Samples 

The damage areas, shown in the C-scan images, were measured using the 

software: Image-Pro® Plus, version 4.5.0.19, running on Windows 2000. Initial 

calibration was performed to obtain the area in square centimetres. The damage 

area was then selected and the software calculated the area in cm2
. 

Thermal Oeply Analysis 

Due to limited availability, only one sample from each impact level was chosen 

for thermal deply analysis. This method uses a penetrant injected into the 

damage area of the sample, which is then heated to a high enough temperature 

to burn-off the resin . This procedure allows individual plies to be removed one by 

one. Pavier and Clarke [137] experimented with gold chloride, sodium sulphate, 

calcium oxide, potassium dichromate and magnesium sulphate as penetrants. 

Based on their findings, calcium oxide was used for this experiment as it is cheap 

but effective. 

A 2 mm hole was drilled through the centre of the impact, followed by four 0.5mm 

holes 1 cm away from the initial hole. Calcium oxide (CaO) was dissolved in 

water and injected with a hypodermic needle through the holes. The sample was 

then put in a beaker containing the CaO solution and left for 24 hrs. Occasional 

stirring was carried out. The samples were then placed in a vented Carbolite 

Furnace, at 500 0 C for two hours. CaO left a light yellow residue on the 

delaminated area which was then analysed visually. 
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Optical Microscopic Analvsis 

In this destructive analysis, the impacted samples were cut through the middle of 

the impacted samples with a diamond tipped rotary wheel. The cut pieces were 

then polished on silicon carbide paper (240, 600, 1200 progressively). A 

fluorescent green highlighter pen was then used to highlight the delamination and 

matrix cracks. Then an optical microscope was used to take a micrograph of the 

damaged area, in low magnification. From each micrograph a map was drawn by 

hand to show the delamination of the respective impact samples. 

4.6 COMPRESSION STRENGTH TESTING 

The un impacted and impacted samples were tested in compression on a Oartec 

servo-hydraulic machine with 9610 control unit. The machine had bi-directional 

wedge grips with a 100kN load cell. Workshop 96 software was used to 

communicate with the control unit. The Toolkit96 data acquisition system was 

used to manually operate the load and cross head displacement. The samples 

were supported in a QMW miniature test anti-buckling fixture (Fig. 33) and loaded 

in stroke control at a cross-head speed rate of 0.2mm/min. 

Initially it was found difficult to achieve reliable failure of the unimpacted samples 

- the samples crushed at either end, rather than failing in the gap area between 

the top support and the edge support (Fig. 33). The end-crushing problem was 

reduced to a large extent by adjusting the gap between the supporting edges of 

the anti-buckling guide according to the sample thickness. The maximum 

compression strength value was measured from the maximum load recorded in 

the load-time trace. 
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The compression strengths of the impacted and unimpacted samples were 

calculated using: 

IOOOP 
(J'max = 

wt 

Where, 

Omax = Maximum Compression Strength(MPa) 

P = Maximum Load (KN) 

w = Original Width (mm) 

t = Original Thickness (mm) 

L 

L 

Specimen width 
minus 10 mm 

I 

I 

10 
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89 

All dimensions in 
mm 
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Pan Section 
A-A 

Fig. 33: QMW Compression Anti-buckling Fixture [711 
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4.7 THERMO-HUMID EFFECT TESTING AND ASSESSMENT 

4.7.1 Accelerated Ageing in Water 

Initially all the samples were dried in an air circulated oven at 21°C [138]. 

Periodical weighing was carried out to check the weight loss due to evaporation 

of the moisture from the samples. Once the weight reached a steady state, 

samples were considered dry. 

Accelerated ageing of the dried samples was achieved by completely submersing 

them in water at a temperature of 70°C [139]. A Grant Instrument's water bath 

(max. temp. aOOC) along with a custom built rack was used for this purpose. The 

photograph in Fig. 34 shows the set up. During ageing the samples were initially 

taken out of the bath every 24 hours, wiped dry with tissue paper and weighed. 

As the rate of water absorption decreased the samples were weighed less 

frequently. 

Fig. 34: Accelerated Ageing Setup (AI Outside View (8) Inside View 

Percentage weight gain due to diffusion was calculated using the following: 

w-w 
% Weight Gain = d xlOO 

W 

Where, 

W = Moist Weight of the specimen 

Wd= Dry Weight of the specimen 
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4.7.2 Dynamic Mechanical Thermal Analysis 

A Rheometric Scientific Dynamic Mechanical Analyser MKII was used to 

determine the glass·transition temperature (Tg) of the specimens. The instrument 

consists of four main parts [140] shown in the Fig. 35: (i) the mechanical 

spectrometer head with a dismountable low-temperature furnace, (ii) the thermal 

analyzer, (iii) the temperature programmer and (iv) an IBM-compatible computer 

with a plotter. 

A cut away view of the mechanical spectrometer head [140] is shown in Fig.3S. 

The test sample was clamped rigidly at both ends of the dual cantilever and its 

central point vibrated sinusoidally through a drive shaft. The drive shaft is 

supported on light metal diaphragms which allow only longitudinal motion. The 

stress experienced by the sample via the ceramic drive shaft is proportional to 

the current supplied to the vibrator. The strain is proportional to the sample 

displacement and is monitored by non-loading eddy current transducers and the 

metal target on the drive shaft. 

(iv) 

(ii) 

(i) 

__ (iii) 

Fig. 35: Photograph of DMTA Set up 
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Fig. 36: Main Components of Bending Measurement Unit in DMTA 

The temperature programmer controls the temperature ramping. As the 

temperature is raised the DMTA senses any changes in the molecular mobility in 

the specimen. The specimens soften as it passes through the glass transition 

temperature and is recorded as the peak of the loss component of the modulus. 

The samples were mounted on the dual cantilever, in the bending mode, with a 

specified torque (10cNm). The sample was then heated inside the mechanical 

head with a temperature ramping of 4°C/min. The test parameters used are 

tabulated below: 

Frequency Strain Rate Torque Temperature Temperature 
(Hz) (cNm) Range(OC) Ramping(OC/min) 

1 64 x4 10 25-260 4 

Table 9: DMTA Set-up Parameters 

The information obtained consisted of plots of log storage modulus (E'), log loss 

modulus (E") and loss factor (tan a) against temperature. The temperature 

corresponding to the peak of the loss modulus is considered as the Tg of the 

specimen tested. The test samples were aged according to the method described 

in section 4.7.1. They were weighed regularly and were tested at 1, 3.5, 17, 30 

and 61 days interval. 
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4.7.3 Raman and Infra-red (IR) Spectroscopy 

Raman spectroscopy uses a monochromatic laser which when irradiated into a 

specimen causes light scattering. Most of the scattered light has the same 

frequency or colour as the laser, but a very tiny amount experiences a frequency 

shift, which is characteristic of the chemical bonds or molecules present in the 

material. This inelastic scattering of light is called the Raman Effect [141]. The 

analysis of the scattered frequencies gives information on the material's chemical 

composition, state, aggregation, and even factors like stress, orientation, or 

temperature to cite some. As the laser beam can be focused to a small diameter, 

Raman spectroscopy can be used to analyse materials of 11lm diameter. With the 

latest developments it is now possible to map a sample for functional groups. 

In Infra-red spectroscopy, functional groups absorb IR when dipole vibrates 

naturally at the same frequency [142]. The pattern of vibration of a molecule is 

unique which allows identification of the molecular structure. The FTIR technique 

employs a moving mirror to produce an optical transformation of the IR signal, 

and a Fourier analysis is conducted to determine the relation between the 

intensity and frequency. Concentration of the absorbing species is proportional to 

the area under the peak, according to Lambert-Beer Law [142). 

Because of their different selection rules, Raman and IR spectroscopies are 

considered complementary to each other. Raman scattering occurs when the 

electric field of light induces a dipole moment by changing the polarizability of the 

molecules. While IR spectroscopy requires an intrinsic dipole moment of charge 

to exist, along with a molecular vibration [143). 

The intensity of a band in Raman spectroscopy is linearly related to the 

concentration of the species Contrarily in IR, the concentration of the absorbing 

species is proportional to the logarithm of the ratio of the incident and transmitted 

intensities [143). 
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Instrument Details: FTIR 

The molecular structures of the samples were examined as KBr discs (13mm 

diameter and 0.5-1mm thickness) containing -3 mg of the scrubbing of the 

composite in -300 mg of KBr. The spectra were obtained on a Unicam Mattson 

3000 FTI R spectrometer in the mid-infrared range, from 600 to 4000cm-1• 64 

scans with a resolution of 4.00cm-1 per data point were collected and averaged. 

The same numbers of scans were averaged to record the background. 

Instrument Details: Raman Spectroscopv 

Raman Spectra were obtained using a 632.817 nm (red) He-Ne laser with a full 

power (i.e. 100% Filter) of -17 mW. The laser beam was focused through an 

objective on to the test sample with laser beam intensity of -10 mW at the 

sample. A highly sensitive (2000x800 pixels of 15 microns) charge coupled 

device (CCO) camera was used to collect Raman Spectra. The specimens were 

placed onto the stage of an Olympus high stability BX40 microscope (with x10, 

x50, x100 objectives) connected to a black and white camera. 

The diameter of the laser spot (i.e. sampling area) can be calculated using the 

following formula. The depth of the sampling volume, as quoted by the 

manufacture, is likely to be between 1.6-2 Ilm. 

D
. () 1.22 x Laser Wavelength 
zameter jJm 

Numerical Aperture of Objective x 1000 

A 600 gr/mm grating was used, which gave a spectral resolution of 1.3 cm-1 per 

data point. Hole aperture and Slit used were 300 and 200 Ilm respectively. Single 

spectrums were acquired using a x10 objective with acquisition time of 10 

seconds and 100% Filter. A x50 objective with acquisition time of 1second and 

50% Filter were used for mapped image acquisitions. 
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All the test samples for FTIR and Raman Spectroscopy were aged according to 

the method described in section 4.7.1. They were weighed regularly and were 

tested at 1, 30 and 61 days interval. 

4.7.4Inter-laminar Shear Strength (ILSS) Analysis 

For the elevated temperature ILSS testing, a Hounsfield Tensile testing machine 

with a heating unit was used. Tests were carried out at 70DC with a load cell of 

10kN. Samples were loaded at 4 mm/min in displacement control in accordance 

with the CRAG standard [132). Five samples of each reinforcement type were 

tested. Details of ILSS calculations are given in section 4.4.1. The test samples 

were aged according to the method described in section 4.7.1. They were 

weighed regularly and were tested at 0.5, 1, 4, 11 and 22 days interval. 
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4.7.5 Damage Tolerance Analysis 

The compressive strength of unimpacted and impacted aged samples was tested 

as detailed in section 4.6. The test samples were aged according to the method 

described in section 4.7.1. They were weighed regularly and were tested at 7, 30 

and 90 day intervals. 

4.7.6 Hardness Measurement 

Vickers micro-hardness was measured on both dry and aged samples using a 

"Mitutoyo AVK-C2" automatic digital micro-hardness tester with a 5Kgf indenting. 

load (F=49.03N) and 10 seconds dwelling time. The load was chosen in order to 

make large indentations covering both the matrix and a reasonable amount of 

fibres, so as to get an average hardness value for the composite. The 

measurements were done at room temperature at all four edges and at the centre 

of the samples. These five readings were then averaged to get the hardness 

number (HV). The hardness number (HV) is obtained by dividing F by the area, A 

(mm2
), of contact between the indenter and specimen. This area is calculated 

from the diagonal length, d (mm), of the indention when the indenter is removed. 

The test samples were aged according to the method described in section 4.7.1. 

They were weighed regularly and were tested at 1, 30 and 61 day intervals. 

78 



Chapter 5 Damage Tolerance Test Results and Discussion 

CHAPTER 5 

DAMAGE TOLERANCE TEST RESULTS AND 

DISCUSSION 

5.0 INTRODUCTION 

In this chapter the dry test results are grouped under the heading of physical 

property testing, static mechanical testing and, damage resistance and tolerance 

testing. For each type of testing and assessment carried out, a summary of the 

results is presented. Graphs are plotted to manifest the influence of non-crimp 

fabric's stitch architecture on the damage tolerance of CFRP. Discussions follow 

the results, which are compared and contrasted with the existing literatures. 

5.1 PHYSICAL PROPERTY TESTING 

After moulding, the physical properties of the laminates were examined. The 

testing included density measurement, determination of fibre volume fraction from 

thickness, and determination of void content. The results are presented in the 

Table 10. The main physical property that determines many of the subsequent 

mechanical properties tested is the percentage void content. The average void 

contents found for laminates S, M and L were 2.15%, 2.5% and 2.8% 

respectively. These results correspond well with the microscopic evaluation, 

where laminate L showed largest void size and distribution compared to 

laminates Sand M. It is generally accepted that the void content of more than 2% 

can cause a reduction in structural performance ,i.e. lower transverse and 

through-thickness tensile, flexural, shear and compression strengths, particularly 

when exposed to hot! wet service environment conditions for long periods. Large 

voids of sufficient size may also act as delamination initiation points and result in 

premature failure of the component. 
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The propensity of L to form larger void content could be explained by the void 

formation mechanism proposed by Rudd et al. [43]. Their proposed mechanism 

for resin flow and void formation is presented in the Fig. 38 (a). They suggested 

that in a liquid composite moulding, the resin impregnation is achieved through a 

macro-flow (Le. a transverse flow around the fibre bundles, shown with blue 

arrow) and a micro-flow (Le. the fibre bundle wetting). Though no permeability 

measurements were carried out, the architectures of the reinforcements show 

clearly (Table 4) that L has the largest gap between the fibre bundles. It could 

therefore be assumed that, given the same moulding conditions, the macro-flow 

during moulding of laminate L would be higher than the micro-flow, compared to 

that in Sand M. This particular condition would lead to more void formation in L, 

as shown in Fig. 38(b). 

Resin first flows 
around the fibre 
bundle, then flows 
inside the bundle. 
A faster macro
flow compared to 
a micro-flow leads 
+ ... " .... in f"'r ..... .,+i ..... nco 

Fig. 38 (a): Resin Flow through Preform and the Void Formation Mechanism 
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~ 0.55 mm 
Fig. 38 (bl: Distinct Voids Observed in Laminate L 

5.1.1 Microstructural Analysis 

The microsections of all three laminates are shown in Fig. 39. The images are 

obtained by cutting the laminates perpendicular to the 00 fibre tows. The figure 

shows two important features of the laminates, tow waviness and resin-rich 

areas, varying due to the difference in the stitch architecture. 

Although quantitative measurements were not carried out, the qualitative analysis 

clearly shows larger degree of tow waviness in laminate L, indicating that low 

stitch density leads to large degree of tow waviness. The Fig. 39 also showed 

that resin-rich areas around the stitching yarn are of similar size in all the 

laminates. Laminate S, therefore, contains greater resin-rich area per unit area 

along the thickness, because of its higher stitch density. On the other hand, due 

to the large gap in the 00 tow of fabric L, compared to M and S, laminate L 

contains more resin-rich area in that ply. The resultant overall distributions of 

resin-rich areas in the laminates are, therefore, different in laminates S, M and L. 

As resin-rich areas are potential locations for the initiation of failure, distribution of 

resin rich area plays an important role in deciding the mechanical properties, 

especially when composite parts are exposed to hot! wet service environment 

conditions for long periods. 
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It is shown, while discussing the mechanical test results later in this chapter 

(section 5.2 and 5.5), that resin-rich areas and tow waviness decide the crack 

propagation behaviour and compete against each other. 

Laminate S 

Laminate M 

I----l 1.28 mm 
Laminate L 

Fig. 39: Polished C.S. of Laminate S, M and L 

Showing the Extent of90' Tow Waviness (Left) and Resin-Rich Area around Stitching Yarn 
(Right) 
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Electrical Analog 
Analog Fibre wt. Balance Balance Fibre Resin Sample Reading Reading Balance after Acid 

Wt. Wt. Density Void % in Thickness 
FVF from 

Code 
in in Reading in Digestion 

Fraction Fraction (gm/cc) composite Thickness 

Air(gm) Air(gm) Water(gm) (gm) 

S1 2.5392 2.5335 0.9080 1.8903 74.4447 25.5553 1.555 2.0302 3.26 0.556 
S2 2.4136 . 2.4074 0.8248 1.6683 69.1208 30.8792 1.517 2.0249 3.34 0.539 
S3 2.6159 2.6116 0.9144 1.8993 72.6060 27.3940 1.535 2.4527 3.34 0.529 
S4 2.4234 2.4195 0.8413 1.7235 71.1191 28.8809 1.529 2.1499 3.26 0.545 
S5 2.4325 2.4260 0.8500 1.7345 71.3065 28.6935 1.535 1.8341 3.26 0.549 
S6 2.6345 2.6293 0.9750 2.0905 79.3509 20.6491 1.585 2.3662 3.28 0.539 
S7 2.5673 2.5610 0.9358 1.9820 77.2017 22.7983 1.572 2.2135 3.34 0.556 
S8 2.7535 2.7501 0.9256 1.8546 67.3543 32.6457 1.504 2.1417 3.32 0.539 
M1 2.5423 2.5365 0.9363 2.0140 79.2196 20.7804 1.581 2.5672 3.24 0.549 
M2 2.3430 2.3387 0.8362 1.7628 75.2369 24.7631 1.553 2.5186 3.3 0.539 
M3 2.6432 2.6381 0.9138 1.9003 71.8939 28.1061 1.526 2.6943 3.24 0.549 
M4 2.5844 2.5790 0.9198 1.9432 75.1896 24.8104 1.550 2.6335 3.2 0.556 
M5 2.2633 2.2572 0.8140 1.7432 77.0203 22.9797 1.560 2.8620 3.26 0.545 
M6 2.3436 2.3399 0.8407 1.7532 74.8080 25.1920 1.557 2.0590 3.34 0.532 
M7 2.3780 2.3738 0.8414 1.7645 74.2010 25.7990 1.545 2.5190 3.4 0.523 
M8 2.2647 2.2602 0.7815 1.5964 70.4906 29.5094 1.525 2.1619 3.38 0.526 
L1 2.3460 2.3400 0.7906 1.6226 69.1645 30.8355 1.506 2.7465 3.2 0.545 
L2 2.5330 2.5282 0.9454 2.0714 81.7765 18.2235 1.593 3.0077 3.3 0.532 
L3 2.7342 2.7303 0.9452 1.9820 72.4892 27.5108 1.526 2.9887 3.36 0.532 
L4 2.3582 2.3539 0.8127 1.7069 72.3815 27.6185 1.523 3.0789 3.26 0.545 
L5 2.4264 2.4228 0.8975 1.9334 79.6818 20.3182 1.584 2.5785 3.24 0.545 
L6 2.4972 2.4920 0.9300 2.0230 81.0107 18.9893 1.591 2.7676 3.3 0.542 
L7 2.5124 2.5059 0.8432 1.7094 68.0385 31.9615 1.503 2.4543 3.2 0.532 
L8 2.4524 2.4481 0.9009 1.9443 79.2815 20.7185 1.578 2.7701 3.3 0.535 

Table 10: Summary of Basic Physical Properties 
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5.2 INTERLAMINAR SHEAR STRENGTH (ILSS) TEST 

During low energy impact, the energy absorbed can create a damage zone which 

consists of matrix cracking, fibre breakage, fibre debonding and delamination 

[145]. Transverse impact loading, therefore, can cause cracks and delaminations 

in composites when the interlaminar strength is low. It is possible to modify the 

delamination failure mode by through-thickness reinforcement (stitching) or 

through the use of toughened matrix [146]. In the current study the former 

parameter has been varied, therefore, the effect of stitch density on ILSS was 

examined. 

Delamination growth has been characterised extensively by using the strain-· 

energy release rate (G) in Mode I and 11 loading conditions [147] to measure the 

interlaminar fracture toughness of composite materials. The short-beam-shear 

test has also been used extensively for evaluating the apparent interlaminar 

shear strength of composite laminates because of its simplicity. The latter method 

has been used in this study. ILSS behaviour was of interest for two major 

reasons: 

- To check the fabrication quality as several authors have already shown that this 

method is very sensitive to the fibre/matrix interface quality [148], 

- To investigate the degradation of the laminate properties after thermo-humid 

ageing [149]. 

In Table 11 a summary of the ILSS results of the dry laminates for the three 

reinforcement types is presented. The load values were read directly from the 

maximum load value on the load-extension curve. Thickness and widths were 

measured using a digital vernier calliper. For each of the laminates five samples 

were tested and the average of those results is included in the table in the 

Appendix. Finally the results of the five laminates are averaged and standard 

deviation calculated. The results showed similar average ILSS value and scatter 

for all three reinforcement types. Hence, it was concluded that the laminates were 

of acceptable quality and there is no variation in ILSS due to stitch density. 
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Laminate ILSS (MPa) 
S M L 

1 40.31 41.58 37.86 
2 40.34 37.40 40.15 
3 37.19 37.12 39.87 
4 38.34 37.20 38.01 
5 38.43 39.77 36.70 

Average 38.92 38.61 38.52 
Std. Dev. 1.37 1.99 1.46 
Table 11: ILSS Test Results at Room Temperature (21°C) 

Backhouse [150], in his study of various stitch architecture of NCF, found that 

increasing the stitch pitch (lengthwise) and using medium stitch tension favoured 

ILSS. However, he also conceded that the apparent effect was small in relation to 

the experimental scatter. His latter view has been reinforced by the results 

presented in this study. Here results showed that a reduction of stitch density, by 

50% in both length and width direction, did not produce any significant variation 

of ILSS. 

A finite element investigation of the ILSS behaviour of a much simpler 

bidirectional NCF carried out by Drapier and Wisnom [74], suggested that, ILSS 

is controlled mainly by resin behaviour and partly by strain developed in the resin 

pockets. They concluded that to improve the NCF shear behaviour the fabric has 

to be manufactured in a way to limit the development of high shear strains. Their 

suggestion included the use of toughened resin, reducing the thickness of the 

resin layers and limiting stitching tension. Stitching tension is very important 

because it causes bunching of tows which increases the likelihood of resin 

pocket. In this study none of the factors mentioned earlier were varied, which 

accounts for the fact that there was little difference in ILSS between the laminates 

S, M and L. 

Fracture mechanics based interlaminar testing, mode I, was carried out in 

QinetiQ, by Foreman [151] on S, M and L laminates made from a different epoxy 

resin system. His results showed similar crack initiation energy, G1c and Mode I 

strain energy release rate for all the laminates. He, however, found that the initial 

slope of r-curve for the high stitch density, laminate S, is higher. In the SEM 

image of the corresponding fracture surface he found a rougher appearance, 
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suggesting resistance to crack propagation. Sackhouse [150] carried out an 

investigation on nine different triaxial NCFs and reported that crack initiation 

energy for all the stitch architectures were similar. He also found that strain 

energy release rate for crack propagation tended to increase with stitch density. 

As delaminations do not always progress between plies, carbon fibre tows and 

polyester stitching yarns bridge delamination cracks and creates more crack 

fronts, resulting in increased strain energy release rate for crack propagation. The 

results found in the current study, therefore could be confirmed by both the above 

studies. 

5.2.1 Variation of ILSS with Temperature 

SS EN ISO 14130:1998 [152] suggests conducting the ILSS test in the same 

atmosphere as that used for conditioning. Dry testing at 70°C (accelerated ageing 

temperature) was therefore carried out to set the baseline ILSS values for the 

. aged samples of the laminates S, M and L. A summary of the test results is 

shown in Table 12. Detailed results are included in the Appendix, where VI was 

calculated using the equation mentioned in the CRAG standard [132]. Average 

and standard deviations of load, thickness, width and ILSS were then calculated 

for each of the laminate type. The standard deviation of VI for all the samples of 

laminates S, M and L is ±0.0094, which is within tolerance limit. It is, therefore, 

possible to compare the results achieved from different laminates. 

Laminate ILSS MPa) 
Average Std. Dev. 

S 35.73 2.83 
M 35.02 3.14 
L 35.11 2.44 

Table 12: Summary of ILSS Test Results at 70°C 

Comparison between the ILSS results at room temperature (21 ° C) and at 70° C 

for the laminates are shown in the Fig. 40. The average values of ILSS at 70° C 

show very little difference between the laminates S, M and L, despite the 

differences in stitch densities. The results also showed similar scatter. 
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The ILSS at 70°C showed 8.2%, 9.3% and 8.8% reductions for laminates S, M 

and L respectively. The reduction seems quite large considering that the Tg of the 

dry composites are above 200° C and that the samples were tested at 70° C 

inside an oven for a duration of only 10 minutes. The results could be attributed 

to the mismatch of thermal expansion coefficients between the carbon fibres and 

epoxy matrix governing the interphasial stress transfer characteristics. 
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5.2.2 Microscopic Examination 

The fractography shown in Fig. 41 presents damage distributions through the 

laminate thickness. The most predominant type of interlaminar failure observed 

was a network of interconnecting delamination through transverse matrix cracks. 

The delamination occurred at the interface between matrix and reinforcement 

fibres while matrix cracks were prevalent in the resin-rich areas surrounding the 

stitching yarns. The whole damage area had a characteristic 'top-hat' shape [153] 

as in the case of impact damage. 

Tow crimp 

~ Indicates top loading position l-I 1 mm 
Fig. 41: Optical Micrographs of the ILSS Samples Tested at 70·C (From Top: S, M, L) 

Fig. 42 illustrates that the stitch material contributes to the behaviour of the 

interlaminar crack propagation. The micrograph shows how a crack stops at the 

stitching yarn at (a) or deviates after encountering the stitching yarn at (b). It 

could therefore be suggested that the polyester knitting yarns, and subsequently 

the stitch density, do play a role in deciding the extent of fracture. 
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1------11 1 mm 

Fig. 42: Effect of Stitching Yarn on Crack Propagation 

A second factor that can be considered while interpreting the ILSS value is the 

tow crimp. Pearce et al. [154] suggested that in woven fabric reinforced 

composites, the crimped fibres bridge the shear failure surface, thereby 

increasing the shear strength. This particular situation also provides a degree of 

mechanical 'keying' between the layers of fibres and would thus be expected to 

increase the ILSS value. It has been shown in section 5.1 that tow crimp varies 

inversely with the stitch density, which indicates that laminate L should have 

better ILSS properties. A third factor contributing to the ILSS value is the void 

content. Laminate L consistently showed higher void content, as discussed 

earlier, which should lead to a decrease in ILSS Yoshida et al. [155]. These latter 

two factors may have negated the useful properties rendered by the stitching 

yarns on the ILSS, which may have resulted in no improvement in ILSS due to 

increasing stitch density. 
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One disadvantage of MWK observed during the ILSS testing is that the ply 

interfaces have the lowest resistance to crack propagation, which is evident from 

Fig. 43. As stitching is present only in the plies, rather than through the thickness 

of the laminate, the laminate's resistance to delamination is also dependent on 

the strength of the interface between the fibre and the matrix. 

r-I 1 mm 
Fig. 43: Multiple Shear Failure between the Plies 
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5.3 INTRUMENTED IMPACT TESTING 

In this section the results of impact tests and subsequent assessment of damage 

will be presented and discussed. All the impacted samples were subsequently 

tested in compression, except of those which were sectioned for microscopy. 

Initial work was carried out to determine the effect of lay-up on damage 

resistance. This was followed by impacting laminate S, M and L with 5, 10, 20 

and 30 Joules of incident impact energy. Ultrasonic C-scanning was carried out 

on all the samples to measure the damage area, while delamination mapping and 

thermal deplying were carried out on three samples because of the destructive 

nature of the testing. Through penetration impact testing was carried out on a 

different set of laminates S, M and L. 

5.3.1 Effect of Lay-up 

Initially the effect of lay-up on the damage resistance was examined. Due to the 

quasi-isotropic nature of the reinforcements, it was only possible to have two lay

up conditions: either 0° or 45°, on the outer face of the laminates. This aspect of 

the impact resistance was not investigated in detail; therefore, only laminates of S 

were moulded and tested for impact properties. Through penetration impact 

testing was carried out with a 26.2kg weight, which was dropped at 3 m/s speed. 

Fig. 44 shows the effect of lay-up on the impact properties. The force

displacement traces were filtered at 1 kHz. The problem faced with a filtered 

result is that, it is not possible to determine the damage initiation energy. 

However, damage initiation is matrix and interface dependent and therefore, has 

little or no dependence on the stacking sequence [5]. 

Peak force, reached during impact and the energy at peak force are strongly 

dependent on the stacking sequence. The results in Fig. 44 show that the lay-up 

sequence has a definite effect on the impact resistance. Peak force reached 

during impact, for the laminate with 45° orientation on the outer faces was found 

to be higher than that with 0° orientation. Better impact resistance of laminate 

with outer 45° orientation may be contributed by two factors. Firstly, the zigzag 
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stitching pattern (refer to fabric photo in Table 4) which is on the 0° face provides 

crack bridging and thus inhibits the propagation of fractures. Secondly, because 

of the stitching , the 0° face is more crimped , which offers further crack bridging 

[69]. Both these contribution becomes ineffective for laminate with outer 0° 

orientation . 

8~--------------~======~ 
--S I@ 4So 

7 --S I@ Oo 
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2 

O~----.------r-----'----~-----.----~ 
0.0 2.5 5.0 7.5 10.0 12.5 15.0 

Displacement (mm) 

Fig. 44: Effect of Lay-Up on the Impact Properties 

Based on these results, all the laminates were produced with the 45° orientation 

on the outer face of the laminates. 

5.3.2 Low Energy Impact Damage 

In this work, the main consideration when choosing the impact test conditions 

was the following CAI (QMW) test. For a CAI test delamination damage should 

be the major failure mode. The use of miniaturised CAI test geometry and the 

smaller clamping unit (60mm diameter) of the Rosand Impact Tester with a 10mm 

diameter hemispherical indenter ensured that delamination damage is initiated at 

low incident impact energies. This testing geometry was therefore adopted, which 

is mentioned in section 4.5.1. 
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The laminates S, M and L were impacted with incident kinetic energies of 5, 10, 

20 and 30 Joules. The 5J impact showed very little indentation, while the 10J and 

20J impacts showed slight indentation on the impacted face and protrusion on 

the back face. However, the 30 Joules impact caused visible fibre breakage on 

the back face at the impact point. 

The results of the impact on S, M and L at the damage initiation point and at peak 

are included in the Appendix. The tables contain the average values of force, 

energy and displacement experienced by the samples for each impact energy 

level. Respective standard deviation values are also included. 

The following presentation of results is based on two approaches: force based 

and energy based. The 'force based approach' is suitable for onset of damage, 

whereas the 'energy based approach' gives more information about the extent of 

damage. 

5.3.3 Impact Response: Dent Depth 

Dent depth is used to classify barely visible impact damage (BVID) energy levels. 

BVID is defined as the energy which causes an impact dent which is just on the 

verge of being detected [156]. It is often used for design and certification 

purposes. Some authors [157] have shown that this approach has significant 

problems because of large variations. Wardle and Lagace [158] found that thin 

laminates of less than 2.4mm thickness did not show any trend correlating the 

internal damage. Despite these problems this approach is still widely used and 

useful for comparing material performances. Furthermore, Caprino and Lopresto 

[159] proposed a general indentation law, correlating indentation depth and 

impact energy. They suggested that for a given fibre/resin system, the indentation 

depth is substantially independent of fibre architecture and orientations, laminate 

thickness and resin content, and uniquely varies as a function of the ratio of the 

impact energy to the penetration energy. The results they presented suggest that 

even the resin and fibre type has a secondary effect on the relationship between 

indentation depth and non-dimensional energy (Le. impact energy/penetration 

energy). 
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Fig . 45 shows the plots of dent depth against impact energy for laminates S, M 

and L. From the figure, it is evident that indentation increases with increasing 

impact energy. The rate of increase is asymptotic, as shown by the solid lines 

drawn to illustrate the general trends.The result found in the current study is 

contrary to Foreman and Meeks's findings [156] of the same reinforcements. He 

suggests that stitch density is directly proportional to the ability of the laminates to 

resist the formation of impact dent. However, the current results are supported by 

the delamination maps and photographs of the damaged samples (section 5.3.7). 

5J and 10J dent depths of the laminates show very little difference, which is not 

significant. 20J and 30J impacted samples of the laminates show extensive fibre 

damage on the compression face , which tend to recover after the impact event. 

The recovery of these damaged areas indicates that laminate L, with the low 

stitch density, recovers more than the laminates M and S which is reflected in the 

dent depth trend . 
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Fig. 45: Effect on Impact Energy on Dent Depth 
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5.3.4 Impact Response: Force Based Approach 

Fig. 46(a)·(d) show typical force-time traces of laminates S, M and L for incident 

impact energies of 5, 10, 20 and 30 Joules. The force drop at F; is associated 

with the initiation of delamination damage. This delamination damage is thought 

to have been initiated by bending induced shear stresses which are at a 

maximum at the neutral axis [5). The presence of isolated delamination close to 

the neutral axis in all the 5J impacted laminates, shown in the delamination 

mapping in Fig . 54(a)-(c) also supports this hypothesis. 
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Fig. 46(a): Force-Time Plot for the Laminates at 5Joules Impact 
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Fig. 46(b): Force-Time Plot for the Laminates at 10Joules Impact 
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Fig. 46(c) : Force-Time Plot for the Laminates at 20Joules Impact 
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Fig. 46(d) : Force-Time Plot for the Laminates at 30Joules Impact 

Cantwell and Morton [160] suggested that delamination damage follows after the 

initiation of tensile cracks on the impacted surface (pine tree shape), due to 

contact stress , or on the back face (reverse pine tree shape), due to bending 

induced tensile stress. These tensile cracks were not observed during the 

delamination mapping of 5J impacted samples . However, in the delamination 

map of 10J impacted samples, the tensile cracks appear in the pine tree shape. 

Fractographic evidence found in the current study, suggests that damage 

initiation may have been caused by bending induced shear stress rather than 

bending induced tensile stresses. 

Having established the damage initiation mode, the effect of the stitch density on 

the damage initiation was evaluated. The value of Fi, of laminate S, M and L, 

shows (Fig . 47) very little difference, suggesting that stitch density may not have 

played any role in the damage initiation. 
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Fig. 47: Impact Force (Damage Initiation) vs. Impact Energy Level 

In order to compare the impact events with other static or dynamic events, the 

time scale was eliminated and the force was plotted as a function of indenter 

displacement in Fig . 48(a)-(d) . Comparison of the force-displacement response 

exhibited by laminates S, M and L showed that the force necessary to create a 

specific initial displacement was similar for each of the laminate types. However, 

it appeared that laminate S was slightly stiffer, with a higher maximum force and 

lower maximum displacement (in the case of 10, 20 and 30 Joules Impact) . It was 

also noted for all three laminates that both elastic and permanent displacements 

predictably increased with impact energy. 
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Fig. 48(a) : Average Force-Displacement Results for 5 Joules Impact 
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Fig. 48(b): Average Force-Displacement Results for 10Joules Impact 
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10.---------------------------------------~ 

Displacement (mm) 

Fig. 48(c): Average Force-Displacement Results for 20Joules Impact 

Displacement (mm) 

Fig. 48(d): Average Force-Displacement Results for 30Joules Impact 
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Fig . 49 shows force at peak plotted against incident impact energy. The peak 

force initially increases with increasing impact energy and then appears to 

become relatively constant. The difference in peak force for 20 and 30J impact 

energy for S, M and L shows no significant difference. The reason may be that 

the incident energy was high enough for damage initiation. However, maximum 

force is of secondary importance to onset of damage. 
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Fig. 49: Impact Force (Peak) versus Impact Energy Level 
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5.3.5 Impact Response: Energy Based Approach 

The energy-displacement curves, Fig . 50(a)-(d) reveal additional information. 

These curves are created by integrating the Force-Displacement results 

presented in Fig . 48(a)-(d). 
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Fig. 50(a): Average Energy-Displacement Results for 5 Joules Impact 

It is worth noting that not all of the incident kinetic energy was used during the 

impact event. A fraction of the energy was lost probably due to friction between 

the guide rods and the weight or may have been dissipated acoustically and 

thermally during the impact [161] . 

Analyzing the shape of the energy-displacement curve for the 5J impact shows 

very little difference between S, M and L. Here, large parts of the impacting 

energy were stored elastically, E el . Approximately 1.25J of the impact energy was 

absorbed , Eabs, which caused the delamination seen in the delamination map. 

As the incident impact energy was increased to 10, 20 and 30 joules, a definite 

trend for S was observed. The loading part of the curves in Fig . 50(b)-(d) 

indicates that laminate S is stiffer than laminate M and L at displacements from 

1.25 mm up to the maximum displacement. Interestingly, there was very little 
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difference between M and L in that respect. At the maximum displacement, all the 

impacting energy is transferred from the impactor to the target sample, which is 

stored elastically by bending or absorbed by the creation of damage as 

mentioned earlier. Upon unloading, the stored elastic energy is used to 

accelerate the rebounding impactor [162]. 

For S the maximum displacement for both the 10J and 20J impact show a similar 

trend . It bends less than M and L (very little difference between M and L), 

showing its better stiffness characteristics . At the same time, S absorbs more 

energy and the resultant effect is evident in the delamination map (Figs. 55-56), 

where S was seen to withstand more damage. The energy-displacement trend for 

the 30J impact shows a higher elastic energy for S compared with M and L. This 

result could be explained though the delamination map where S shows more 

recovery, due to fibre breakage, compared to M and L. 

This result links directly with the higher stitch density of S. More through

thickness stitching yarns in S arrest crack propagations, which in turn , increases 

the crack density. From the delamination mappings (Figs . 56 and 59) of 20J and 

30J it can be inferred that stitch density directly influences the damage extent. 
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The curves for absorbed energy, Eabs, against incident impact energy (Fig . 51) for 

S, M and L shows very little difference. Dorey's [163] proposed equation , which 

states that the absorbed energy is proportional to the thickness of the specimen, 

may be valid in this case. In the current study the thickness variations, shown in 

Table 10, between the laminates were within the standard deviation . 

The curves for elastic energy, Eel, against incident impact energy for S, M and L 

are plotted in Fig . 52 . Laminate S retains more elastic energy compared to 

laminate M and L at 30J incident impact energy level. The result could be 

attributed to the higher stiffness of laminate S. 
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5.3.6 Impact Response: Strain-Rate Dependency 

The strain-rate dependency is a characteristic of composite and polymeric 

materials. The strain-rate dependence of the tested composites is important 

because the strain energy accumulated in the material is related to it. The 

viscoelasticity describes the strain-rate dependency of polymeric material. 

Composite materials have several failure modes and the strain rate sensitivity 

can result in a change from one failure mode to the other. Fig . 53(a)-(c) show the 

results of force-time and energy-time plots for laminate S at 1 DJ , 2DJ and 3DJ 

respectively. The data were filtered at 1 kHz and the mean was plotted. The 

results show a lag of the energy-time plot (shown by green dotted lines) with 

respect to the force-time trace. These results emphasize the importance of 

including material viscoelasticity, along with other parameters , in the analysis 

concerning the prediction of the mechanical response of laminated composites 

under impact loading . 
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5.3.7 Final Damage State 

Final damage state after impact IS important as it determines the residual 

strength of the damaged structure. In the literature review section , it was stated 

that both the lateral extent and through thickness distribution of damage can 

effect the residual strength (Chapter 3) . For CFRP, both destructive (including 

photographs and schematic diagrams recording the damage state) and non

destructive methods (C-scan) are used to assess the damage extent. In the 

following subsections results from both these methods are discussed . 

5.3.7.1 Delamination Mapping 

Delamination mapping was carried out by sectioning the impact point into two 

halves across the 0° fibres. The Figs. 54-56 and 59 show the maps for 5 and 10 

Joules, and actual micrographs of laminates S, M and L after 20 and 30Joules 

impact respectively. 

The mappings for 5J show delaminations within the fabric at dissimilar faces and 

between the fabric plies on the tensile side. 10J delamination mappings show a 

similar trend . While the extent of damage increases, a cone-shape pattern 

becomes evident and damage also occurs on the compressive side. 
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Fig. 56(a): Delamination Map of a 20J Impact on Laminate S 

Fig. 56(b): Delamination Map of a 20J Impact on Laminate M 

Fig. 56(c): Delamination Map of a 20J Impact on Laminate L 

In the photographs, Fig . 56(a)-(c), of the 20J impact samples, more extensive 

damage was evident. The density of the transverse cracks was found to be more 

in S and M compared to L. Stitching yarns were shown to reduce or stop the 

propagation of the delamination, however, the crack density increased in the 

process. Transverse cracks, shown in Fig. 57, were also influenced by the local 

fibre architecture: cracks seem to have deflected around the periphery of the tow 

bundles rather than passing through them. 
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Fig. 57: Crack Propagation around the Tow 

The origin of the delamination in a particular ply seen in Fig 56(a)-(c) only gives 

an indication of the likely position. The Fig . 58(a)-(b) showing the delamination 

mapping along and across 0° fibres , for a 20J impact sample of laminate S, show 

a rather peanut shape, recorded by number of other researchers [123, 160]. 

201 

j' 
90' 

Aj . ....................................... ~; 
90' 

<4Y 
0' 

90' 
~y =~~~~iiii~~:llillii~;;;;;; .. ~~ o· 
.. j' _1IIIiIII 
90' 
~,' 
.J!' o· 
.." 
90' 
~. 

o· •••••••• .. j' 

90' 

~" 

201 

<4j' 
0' 
-a" 

90' 
<4j' 

0' 

90' 
<4j' (a) E-p 

j' 
0' 
~ 
90 ' "'j'~~~ o· 

~,. 

90' ... ,. 
0' .·w 

' 0' 
90 ... ,' 

o· 

~'·._iiiiiiii_i 90' ... ,. 
o· 

.... " 
(b ) W 

Fig. 58: Delamination Map of (a) Across 0 0 and (b) Along 00 Tows 

113 



Cbapter 5 Damage T olerance Test Results and Discussion 

A further observation of interest is that the delaminations were never observed at 

the neutral axis, even though at this position the interlaminar shear stress is 

higher than layers further from the centre. The reason for this is that the 

laminates were made symmetric; the 0° fibres from both the fabric plies in the 

middle got fused together during the compaction , and act as a single ply. 

Fig. 59(a): Delamination Map of a 30J Impact on Laminate S 

Fig. 59(b): Delamination Map of a 30J Impact on Laminate M 

Fig. 59(c): Delamination Map of a 30J Impact on Laminate L 
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In the photographs of the 30J impact samples, extensive damage is displayed . 

The C-Scan results shown in Fig. 32 did not show any major increase in the 

delamination area (which in a way was restricted by a limited clamping area). 

However, the absorbed energy data presented in Fig . 51 shows a doubling of 

energy absorption. This extra energy was evidently used in breaking the fibre 

tows. Laminate S showed the largest amount of fibre breakage along with 

displacement, while M and L showed reduced levels of each, with L showing the 

lowest amount. Laminates L and M shows more matrix damage, larger cracks , 

which thus reduce energy available for fibre breakage. 

5.3.7.2 Thermal Oeply Analysis 

Due to limited material availability, only one sample each (of laminate S) after 

1 ~J , 20J and 30J impact were chosen for thermal deply analysis. The results for 

10J and 20J were not successful as the light yellow residue , left after the resin 

burn-off, was very little and was difficult to quantify. The reason for this problem 

was thought to be related to the lower extent of damage in the samples, leading 

to restricted pathways for calcium oxide to percolate and settle in the damaged 

area. 

Fig. 60 (a) : Top View of the De-plied O· Layer 
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Fig. 60 (b): Side View of the Oeplied 0° Layer 

A better result was obtained for the 30J impacted sample. After partial resin burn

out, a sharp blade was used to separate the plies out from the tensile face of the 

impacted sample. Figs. (a)-(b) show the top and side views of the stained surface 

showing the first 0° layer from the tensile face. A golden marker was used to 

mark out the light yellow stain initially present. The overall damage area found 

through this process was still significantly lower than that found in the C-scan 

image. 

It, therefore , was concluded that calcium oxide was not very effective as a 

staining agent for the laminate used in the current study. Calcium oxide did not 

impregnate the damaged areas well , which may be due to its large particle size. 

However, this method still was found to be suitable for the measurement of length 

of fibre breakages in the current study but was not investigated further. 

5.3.7.3 Ultrasonic C-Scan Analysis 

The damage area for all impacted samples was assessed using non-destructive 

ultrasonic C-Scanning. After the initial calibration of the instrument it was possible 

to acquire an image of the in-plane extent of the damage. The resolution of the C

scanner used was low and therefore, it was not possible to find the exact 

location, in the lay-up, of the damage as is believed to be the case for newer 

models of ultrasonic C-scanners . Despite the disadvantage of this damage 

detection technique, the images produced were used to complement the results . 
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The damage area of all the samples were subsequently quantified using image 

analysis software - Image-Pro® Plus. After the initial length calibration and 

manual selection of the damaged area , the software calculated the damage area 

in cm 2
. The damage areas of each laminate, for 1 ~J , 20J and 30J incident impact 

energy levels, were averaged and standard deviations were calculated for further 

analysis of the results . The 5J impacted samples were excluded from damage 

area analysis, as the extent of damage was very small in these samples. 
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Fig . 61 shows a plot of damage area as a function of incident impact energy. It is 

evident from the figure that damage area does not increase significantly with 

incident impact energy, beyond the 20J impact energy. The primary reason for 

this is that the small clamping area acts as limiting factor. However, Fig . 51 in 

section 5.3.5, clearly showed increase in absorbed energy after 20J , indicating 

that damage in the material is still increasing in the through-thickness direction, 

mainly through fibre breakage. The 2D nature of the C-scan image, therefore, 

gives a fallacious picture of the true state of damage in the case of the 30J 

incident impact. 
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The overall trend in Fig . 61 therefore, shows the effect of stitch density on the in

plane damage. Higher stitch density, Laminate S, was shown to limit the in-plane 

damage area during lower energy impacts. However, at higher impact energy 

levels this effect was not significant. 
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Fig. 62: Effect of Absorbed Energy on Damage Area (Avg. Values) 

Fig . 62 gives more insight into the effect of stitch density. Data points at the left of 

the Fig . 62 show that for similar total absorbed energy (absorbed and elastic) , 

laminate S limits the damage area to a minimum compared with laminate M and 

L. Data points in the far right of the same figure show that for similar damage 

areas laminate S was able to absorb higher energy. These results show that 

higher stitch density leads to higher damage resistance. This outcome was 

supported by the delamination mapping where it was observed that the stitching 

yarns were reducing or stopping the propagation of the delamination. 

Analysing all the results of damage analysis it seems that there is more damage 

when width-wise stitch density is reduced , that is, between laminate M and L, 

rather than between laminates Sand M. The reason is due either to the 

reinforcement architecture, mentioned earlier in Table 4, or the geometry of the 
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test samples . This latter reason could be supported by the results found in a 

OinetiO based study [151] on the same reinforcements, using a 100mm diameter 

clamping . They carried out impact testing with the Boeing standard (for CAll and 

found contrary results to those presented here. 

5.3.8 Concluding Remarks 

The fracture mechanisms in the MWK appear to be a combination of 

shear/transverse and delamination fracture, which is the same as that of 

traditional prepregs. However, a closer inspection, through delamination 

mapping , reveals that the intricate nature of the cracking pattem in the MWK 

laminates was directly influenced by the complex fibre structure . The fractures 

that occurred inside a ply were subjected to obstacles caused by the stitching 

yarns , which caused the fractures to divert or stop. The ripple appearance of the 

fracture surface can also be attributed to the tow nesting and the gap between 

the' tows (evident from the photographs of the fabrics shown in the Table 4). 

Furthermore, one might expect delamination between the plies as there are no 

stitches. However, according to previous studies [8] the most likely plane of 

fracture would occur between plies of dissimilar fibre orientation . This hypothesis 

seems to be effective in MKW, as there were no delaminations found in the 0%° 

interface, despite being in the highest shear stress zone , while delaminations 

were found in 0°/45° interfaces. 

The results found are in agreement with the reported results on damage 

characterisation by Zhou and Greaves [164]. The dominant failure modes during 

low velocity impact are the initiation and propagation of delamination. Generally, 

the first fracture event during an impact is the formation of matrix cracks within 

the plies, caused by through-thickness shear stresses generated by the out-of

plane impact forces. Delaminations are usually initiated by opening forces at 

matrix cracks . Delamination growth is mainly driven by interlaminar shear 

stresses (mode 11 ) induced by the bending of the laminate during the impact 

event. Finally, fibre fracture can be a significant energy absorbing mechanism at 

higher impact energy level and is generated by the high through-thickness forces 
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generated during impact (in the case of 30J impact) . Fibres can either fail in 

tension generated during impact, or by shear-out during penetration of the 

impactor. 

However, the relative proportions of the different damage modes are contro lled 

by a variety of material parameters such as impactor conditions (shape, energy, 

mass and velocity) [165], material properties (matrix toughness , fibre surface 

treatment, moisture content, fibre stiffness and strength), stacking sequence and 

laminate geometry. 

The effects of the stitching density found in this study were that less delamination 

occurred at high stitch density at lower impact level, and less fibre fracture 

occurred for low stitch density at higher impact level. 
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5.4 THROUGH PENETRATION IMPACT 

This section deals with the through penetration properties of laminates S, M and 

L subjected to low-velocity, high-energy impact. Caprino and Lopresto [166] have 

shown that, for a given fibre type, the penetration energy is substantially 

influenced by the total fibre volume and impactor diameter, whereas other 

factors, such as resin type and content, fibre architecture, stacking sequence and 

orientations , play secondary roles. Bibo et al. [84] also suggested that through 

penetration energy depends on fibre volume fractions. Their c laim was based on 

the results of three MWK glass fabric reinforced composites along with other 

prepreg materials. They plotted their results on a master curve (consisting of a 

range of materials and produced by Babic et al. [167]) with absorbed energy 

against thickness x VI and found that the energy absorbed by the MWK was 

with in the experimental error. Subsequently they concluded that stitch density 

along with other related fabric architecture of MWK did not have any effect on 

energy absorption during through penetration . 

5.4.1 Results and Discussion 

Through penetration impact was carried out on nine samples of each of the three 

laminates . They were impacted with a velocity of 4.4 (±0.2) m/s - according to BS 

EN ISO 6603-2 :2000 [1 35]. The striker mass was 10.2 kg . Emery paper was 

used on the top clamp for better grip . All the laminates were tested both at the 

front and the back faces (according to lay-up) in order to eliminate any effect of 

surface irregularity. A photograph of the damaged surface of laminate L is shown 

in Fig . 63 . The force-displacement and energy-displacement of all nine samples 

for laminates S, M and L were averaged and plotted in the Fig . 64 (a)-(c) . 
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Fig. 63: Photograph of the Damaged Surface (Tensile) of Laminate L 

Using Belingardi and Vadori [168] suggestion the experimental definition of the 

perforation energy (Ep) was read at the penetrated point, where the force-time 

curve is nearly constant and the energy increases with a constant slop. They also 

suggested that two perforation failure zones for a specimen can be observed 

through-the-thickness: region I, fibre shear-out and fibre breakage; and region 11 , 

tensile fibre failure and delamination . 

The force-displacement traces in Fig . 64 (a)-(c) show three significant drops in 

force at F1, F2 and Fm contrary to two suggested by Belingardi and Vadori [168] . 

However, their conclusion was based on prepreg and woven fabrics and the 

impact conditions they had used were also different. In the current study, it is 

evident from Fig . 64 (a)-(c) that after the drops of force at Fl and F2 the 

corresponding energy absorption rates increase, clearly indicating some form of 

damage in the impacted samples. From the traces it would not be possible to 

identify the exact mode of failure , however, it could be speculated that the force 

drop at Fl is associated with fibre shear out and matrix cracking , followed by 

delaminations and fibre tensile failure in two stages at F2 and Fm. 
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The experimental perforation energy (Ep) was measured according to the 

definition given by Belingardi and Vadori. It is apparent from the values that 

laminate S performs the best under through penetration impact. The Ep value for 

S was 13.2% and 9.6% more than that of M and L. These results show that S 

performed better than laminates M and L. The standard deviation had a 

maximum value of 2.03J indicating no statistical difference between M and L. 

Therefore, it could be suggested that stitch density does have some effect, of 

secondary order, on the through penetration impact properties, as suggested by 

Caprino and Lopresto [166]. 
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Fig. 65: Energy versus Displacement trace for Through Penetration Impact (Avg. Values) 

Fig . 65 shows the comparison of the energy-displacement traces of all the 

laminates. It is interesting to observe that the absorbed energy values for all three 

laminates remain constant up to a displacement of 4 mm. The final absorbed 

energy values show that laminate S absorbed the highest energy, followed by 

laminates Land M. The high stitch density of S, therefore, comes into play as the 

damage grows during the impact event. 

One other observation that needs explanation is that, as the indenter did not 

rebound during through penetration impact, the energy-time curve continued 

going up (Fig . 65) unlike the low energy impacts. This was due to friction on the 

edges of the perforation hole against the lateral surface of the indenter as shown 

by Shyr and Pan [38]. The total absorbed energy , Et, for S, again shows a value 

approximately 12% more than for M and L, suggesting that high stitch density has 

an effect in resisting perforation. However, the relationship between perforated 

energy and thickness was not easily found in the penetration cases. 

Finally the absorbed energy for laminate S, M and L are plotted on the master 

curve produce by Babic et al. [167] and shown in Fig. 66. The values of the 
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absorbed energy of the current study seem to be less than those reported by 

Babic et al. This is due to the fact that the geometry and test condition used in 

their case is different from the current study. However, the assumptions taken 

into consideration by the authors still hold (that the number of fibres within a 

given cross-sectional area of the material governs both impact strength and 

toughness) and in that respect it can be concluded that higher stitch density does 

have an effect in through penetration impact. 
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5.4.2 Concluding Remarks 

The ability of a MWK carbon fibre composite to absorb energy in a through

penetration impact can be increased by increasing the stitch density. This 

behaviour is contrary to the case of absorbed energy during non-penetrating low 

velocity impact as shown earlier (Fig . 51 ). It, therefore , can be concluded that 

high stitch density in MWK would probably give better performance during high 

energy incident impact conditions . 
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5.5 COMPRESSION TESTING 

In this section the results of the compression tests on dry undamaged and 

impacted samples wil l be presented and discussed. The compression tests were 

carried out using the QMW miniature anti-buckling guide described in section 

4.4.4. Four samples of laminates S, M and L were tested unimpacted and 

samples impacted with 10, 20 and 30 joules incident impact energy. Two 5 joules 

impacted samples were also tested in compression . 

5.5.1 Compression Testing of Unimpacted Samples 

A measure of the unimpacted compression strength provides the base-line 

strength for the compression after impact samples . The compression testing was 

carried out in the miniature anti-buckling guide, as pure compression testing 

would yield different results . However, miniature testing had its own drawbacks. 

Two types of failure were noticed for un impacted samples. Firstly, some of the 

samples failed through end-crushing i.e. they tended to crush at either ends. One 

such end-crushed sample is shown in Fig. 67. Some trials with the samples 

revealed that it was due to the weakness of the anti-buckling guide - after every 

compression test the gap to hold the sample widened . Consequently the gaps in 

the anti-buckling guide were set every time before an experiment according to the 

sample thickness. Occasionally end crushing still occurred and in such cases the 

result was ignored . The likely reason for this event was probably stress 

concentration, due to un parallel ends. The force, instead of being distributed 

even ly across the full width of the sample, became concentrated at a raised 

portion of the sample causing the end crushing. 
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r-I 1 mm 
Fig. 67: End Crushing of the Unimpacted Sample 

The second type of failure noticed was in the free end region of the test samples, 

i.e . between the top loading block and the top of the side supports of the anti

buckling guide (Fig . 33). Photographs of such failed samples of laminates S, M 

and L are shown in Fig. 68. This type of compression failure was characterized 

by local buckling; fibre kinking was also evident. Most of the sample failures were 

accompanied by a loud cracking sound. However, in few a cases progressive 

failure was also noticed . All these types of failures were considered acceptable 

and were averaged to calculate the compression strength of the unimpacted 

samples for each laminate. 

Both end crushing and buckling failure of the unimpacted samples have been 

reported by Prichard and Hogg [170] and Harper et al. [123]. For the latter type of 

failure they suggested that this was due to a concentration of local deformations. 

They also suggested that failures occurred at the onset of buckling. Both the 

claims appear reasonable, however, in the current study it could not be confirmed 

as the strain in the unsupported region was not monitored . 

128 



Chapter 5 Damage Tolerance Tes t Results and Discussion 

H lmm 

Fig. 68: Compression ofthe Un impacted Samples (S, M and L from the top) 

The average compression strength of the dry unimpacted laminates of S, M and 

L were found to be 280, 265 and 233 MPa respective ly (Table 13), while the 

standard deviation varied from ±4% up to ±22% for all the laminates. The detailed 

strength result for each of the samples can be found in the Appendix. Foreman 

(151), using BS14126-inplane compression testing method on the laminates S, M 

and L, found that there was a slight reduction in the compressive modulus and 

strength with the reduction of stitch density. However, the compression strength 

values he found were higher compared to the compression resu lts fou nd in the 

current study using the QMW fixtures . Furthermore, the results he found for all 

three fabrics were all with in one standard deviation . 

In this work, the QMW miniature compression test yielded a decrease in 

compressive strength with reduction in stitch density, similar to the trend 

presented in Foreman's work. Nevertheless , it should be noted that the standard 
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deviation in the current work was very high and the trend shown by the 

compression strength could not be confirmed. Larsson [171] claimed better 

compressive properties with stitch density while Suh et al. [172], Mattheij et al. 

[1 73], and Mouritz [26] showed degradations of compressive properties with 

stitch density. All these references deal with overstitching but could be applicable 

to the present study. 

5.5.2 Compression after Impact (CAI) Test 

Compression after impact gives the measure of 'damage tolerance' of a 

composite material. This established concept is primarily based on the behaviour 

of unidirectional prepreg laminates. This damage mechanism is predominantly 

delamination, which is also the case for MWK laminates. CAI test results , 

therefore, should indicate any difference in the damage tolerance property of 

laminates S, M and L, consequently the effect of stitch density. 

CAI testing was carried out on mainly 10, 20 and 30 joules impacted samples and 

two 5 joules impacted samples. Contrary to the problems faced during the 

compression testing of unimpacted samples, the impacted samples failed within 

the anti-buckling guide. Some photographs of CAI specimens after failure are 

shown in Fig . 70 in order to compare the extent and mode of damage. 

The impacted samples failed in compression due to sideways propagation of 

delaminations, which was always perpendicular to the compression loading 

direction. Ultrasonic C-scans shown in Fig . 69 of a 10 joules sample of laminate 

S indicates that after CAI test shows clearly that delamination damage grew 

perpendicular to the compression loading direction. Very little extension of 

damage was observed in the loading direction , which is similar to the finding 

reported by Prichard and Hogg [170] for prepregs. 

130 



Chapter 5 

100 

" 

50 

o 

Damage Tolerance Test Results and Discussio n 

Fig. 69: Ultrasonic C-Scans of 10J CAI Sample of L (left) and S (right) 

Closer examination revealed that the CAI samples failed in two modes under 

axial compression . The failures observed through the thickness of the samples 

were either a V-notched type (Fig . 70), where delamination buckling occurred on 

both sides of the sample, or a shear type , where the samples failed at around 45° 

to the axial loading direction. Samples of laminate S failed predominantly through 

V-notched type failure , with 75% of the 10 joules impacted samples and 100% of 

the 20 and 30 joules impacted samples failing in this way. Samples of laminates 

M and L showed similar trends to each other but unlike S failed primarily in shear. 

50% of 10 joules impacted samples of both M and L failed in shear, while all the 

samples of 20 and 30 joules failed in shear. 

10J 20J 

Hlmm Hlmm H lmm 

Fig. 70: Optical micrographs of CAI samples 10J, 20J , 30J 
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A summary of the results for the dry unimpacted and CAI samples are presented 

in the Table 13. The results of 5 joules impacted samples are not included as 

only two samples were tested. Detailed results of the other CAI samples are 

included in the Appendix. 

Impact level 
Compression Strength. (MPa) 

Laminate S Laminate M Laminate L 

Unimpacted 280 (±10) 265 (±18) 233 (±15) 

10 Joules 167 (±4) 169 (±7) 168 (±22) 

20 Joules 157 (±10) 144 (±10) 148 (±11) 

30 Joules 140 (±13) 120 (±7) 125 (±6) 

Table 13: Summary of the Compression Test Results 

A graphical representation of the compression strength results of unimpacted and 

impacted samples is shown in Fig . 71 . The CAI results of laminates S, M and L 

show a downward trend with the impact energy: CAI strength dropped 

dramatically as the impact energy increased to 10 Joules, then gradually with 

increase of impact energy. The laminate S showed the best compressive strength 

when unimpacted and after being impacted at higher energy levels (20 and 30 

joules) . 
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Fig. 71: Compression Strength versus Impact Energy 
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The behaviour of laminate L appears interesting. Despite having lower stitch 

density than laminate M, laminate L consistently showed a marginally better 

compression after impact strength value following 20 and 30 joules impact. These 

results are consistent with the damage area measurement found for laminates M 

and L after 20 and 30 joules impact, presented in section 5.3.7.3, where the 

overall damage area of L was lower than M at these impact levels. 

This result, however, gets complicated when %retention in compression strength 

is plotted against impact energy level (Fig . 72). In this case the percentage 

retention of compression strength of laminate S is lowest compared to M and L at 

10Joules impact energy level. As the impact energy level increases the strength 

retention percentages of the laminates continue to fall , but less so for laminate S 

compared to laminates M and L. 
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Fig. 72: Effeet of Impact Energy on % Retention of Compression Strength 

In section 5.3.7.3 it was reported that there were variations in the size of damage 

area for the same impact energy level. These variations led to high standard 

deviations in CAI strength results. In order to gain a better understanding of the 
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CAI results , all the CAI strength values were plotted against corresponding 

damage area as shown in Fig . 73. Linear fit lines of the results for each laminate 

were plotted , which indicate that there is a clear correlation between CAI and 

damage area. Though the data points are clustered they show a decrease in the 

CAI value with increase in damage area. However, there is no apparent 

correlation with the stitch density. 
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Fig. 74 shows the compressive strength data excluding the undamaged 

laminates. The variations between CAI and damage area are shown by plotting 

all the CAI data and fitting them linearly for S, M and L. The trends show that 

stitch density has some effect on the residual compressive strength . Laminate S 

appear to have higher compressive strength, particularly after large impact. The 

compressive strengths of laminates M and L, though lower than S, show little 

difference after large impact. These trends correspond to the overall stitching 

density of the laminates. 
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5.5.3 Evaluation of the Compression Test Results 

Compressive properties are mainly controlled by fibre micro-buckling, which is 

influenced by a number of factors: fibre/matrix interface strength , matrix stiffness, 

fibre stiffness, matrix toughness and fibre waviness are often quoted. Among all 

these factors only fibre waviness was different in laminates S, M and L (Fig . 39) 

However, another factor that may have had an effect on the compression and 

CAI is the stitch density. Stitching yarn provides a bridging effect which stabilizes 

a composite structure through the inhibition of the local sub-laminate buckling 

tendency. Propagation of delamination is suppressed by stitching yarn through 

crack closure. Stitch density also dictates the waviness of the fibre layers. 

During the compression of unimpacted samples the above two factors were 

relevant. The highest unimpacted compression strength was displayed by 

laminate S, which had the highest stitch density in both warp and weft direction. 

As the failure of the samples was perpendicular to the direction of the applied 

135 



Chapter 5 Damage Tolerance Test Results and Discussion 

load , the weft-wise stitch density was more responsible for the crack closure 

before a sample subsequently failed . Mode I results reported by Foreman [151] 

for these three types of fabric also showed laminate S to have better resistance. 

The intermediate and lowest compression strength values, displayed by 

laminates M and L respectively, also relates directly with the stitch density where 

L has half the stitch density of M in the weft-wise direction. 

During low energy impact (up to 10 Joules) delamination occurred between the 

fabric layers (where there was no stitch) and between the plies (where stitching 

was present) . Because of this , there are two completing mechanisms occurring 

simultaneously during CAI [174] 

Firstly, crack closure by stitching which relates to Mode I fracture toughness. As 

stated earlier, stitches ran parallel to the direction of load application and the 

delamination propagation was perpendicular to them, therefore, crack closure if 

any through Mode I should be related more to weft-direction stitch density. 

Secondly, crack propagation between the crimped plies which relates more with 

Mode 11 fracture toughness. In this case the presence of an increased crimp in 

the 0° fibre tows caused by stitching may hinder the delamination propagation. 

Exhaustive research by Backhouse [150] showed that, with the increase in warp 

stitch density the crimp on the 0° fibre tows decreases. This finding suggests that 

overall crimp of the laminates used in the current study will be of the order 

L>M>S, which is also shown in the current study. Laminate S should , therefore , 

have the least resistance to delamination propagation between the fabric plies . 

The largest initial reduction in compression strength, of the 1 DJ impact samples , 

shown by laminate S (Fig . 72) therefore indicates that the second type of crack 

propagation was dominant initially. However, similar CAI value for S, M and L 

(Fig . 71 ) indicates that both types of crack propagation are competing in laminate 

S, and could be supported by the delamination mapping presented in section 

5.3.7.1. Similar reason could be attributed to the behaviour of laminate M and L 

for this impact level (i.e. 1 ~J ) . 

It is, therefore, not possible in th is study to predict accurately the local effect of 

stitching densi ty. If the stitches do not fail , delamination may continue to grow by 
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mode 11 , however if they do fail , the resulting mode I failure may also contribute to 

the growth of the delamination. 

During impact at energy levels higher than 10 Joules, the samples were 

damaged to a great extent. A mixed mode of crack propagation is therefore 

expected. The evidence of Mode I type fracture is reflected by the lower gradient 

for laminate S (Fig . 74) compared to laminates M and L. The slightly better CAI 

strength of L compared to M in Fig . 71 could be attributed to mode 11 type of 

fracture because of the higher crimp in L compared to M (because of lower stitch 

density in L). 

The overall effect of stitch density is evident from the photographs of the failed 

samples (Fig . 70) . As stated earlier, laminate S tended to fail in a jagged 'V

shape' way, while laminates M and L failed predominantly in shear. The latter 

type of failure can be attributed to higher curvature (crimp) in the laminates due to 

lower stitch density. Similar findings were also reported by Zhou and Greaves 

[164] for CAI testing of laminated containing woven fabrics. The higher stitch 

density in S led to multiple delaminations, which led to sub-laminate failure. The 

adjacent shear bands, therefore , formed a jagged pattern . 
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CHAPTER 6 

Environmental Durability Test Results and Discussion 

6.0 INTRODUCTION 

This chapter deals with the results and discussion of environmental durability 

testing . Same test laminates, as mentioned in the earlier chapter are used. The 

physical properties are therefore not repeated in this chapter. The effect of 

thermohumid ageing is explained through ILSS, Dynamic Mechanical Thermal 

Analys is (DMTA) and damage tolerance testing . Further characterization was 

carried out using Infrared Spectroscopy and laser Raman Spectroscopy to 

explain the matrix behaviour and its relationship with the mechanical behaviour of 

respective laminates of varying stitch density. 

6.1 PERCENTAGE WATER UPTAKE 

Exposure to aqueous environments can cause irreversib le changes in the 

chemical and physical properties of fibre-reinforced polymer composites . The 

level of degradation increases as the moisture content increases, leading to a 

reduction on the load carrying capacity of the structure . Reductions in stiffness 

and strength, and changes in thermo-mechanica l behaviour can often be linked 

directly to the amount of moisture absorbed . The extent and rate of moisture 

absorbed by the composite material depends on a number of factors including 

temperature , relative humidity and moisture equ ilibrium levels, area of exposed 

surface, diffusivity, fibre content and fibre treatment [107). The two main types of 

basic moisture conditioning according to BS EN ISO 62: 1999 are [1 75): 

Non-equilibrium conditioninq: where a test specimen is exposed to a cond itioning 

environment for a specified time ; and 
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Equilibrium conditioning: where a specimen is exposed, until it reaches 

equilibrium with the conditioning environment. 

Literatures presented in earlier chapter, involves both exposure to hot and humid 

environment; and water immersion at elevated temperature. CRAG test method 

901 [132] suggested a temperature of 70°C for a 180°C cure system, which had 

been used for the water immersion. The requirement of SS EN ISO 62 could not 

be strictly followed as the same samples were tested for compression after 

impact testing which required a smaller rectangular sample (instead of larger 

square samples). 

Fig . 75 shows the experimental results for percentage water uptake for a period 

of 96 days plotted against time in days 112. The results for all S, M and L are 

plotted in the same graph. Initially ageing started with 12 samples for each 

reinforcement types , 4 of them were taken out from the ageing environment after 

7 days and tested for compression strength . Similarly 4 more were taken out at 

the end of 30 days for testing . The average of the 4 samples that were aged for 

96 days has been included in the graph, so that actual trend is noted. 
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The rate of water uptake, shown in Fig . 75 , is fairly rapid in the early stages of 

conditioning and decreases with time . The absorption mechanism shows non

Fickian diffusion, as suggested by Springer [107]. The deviation from the Fickian 

behaviour is least for S, followed by M and L with the most pronounced non

Fickian behaviour. 

The water uptake percentage for S, M and L are 0.918%, 0.992% and 1.511% 

respectively after 96 days. Laminates with high stitch density (S) showed the 

lowest water uptake, followed by M which was 8% higher and finally L with 64.6% 

more water uptake. The samples from laminate L still showing an upward trend of 

water uptake, while that of M showing a less pronounced trend . Interestingly, the 

water uptake of S was nearing equilibrium by the same time duration . The 

diffusion coefficient for S calculated, using the Formula (x) stated in Chapter 3, is 

4.02 X 10-6 mm2/sec. 

The water absorption curves for laminates L and M, Fig. 75 , could be the result of 

combined effect of water diffusion and polymer relaxation due to elevated 

temperature. This assumption could be supported by the conclusion drawn by 

Suh et al. [96]. Zhou and Lucas [176] suggested that such absorption behaviour 

may also be a result of the combination of two distinct absorption mechanisms 

which result in two physical states - bound water and free water. 

A look into the microstructure Fig . 39 of S, M and L clearly suggests that L 

contains voids of larger size and more overall void content than S and M, which 

may have led to more free water in L. Slightly more water uptake of M, could be 

attributed to diffusion of water through the surface defects, which was more in M 

compared to S. 

Moisture absorption characteristics of the 10J, 20J and 30J impacted samples of 

S, M and L are presented in the Fig . 76(a)-(c) . The curves follow the same trend 

as that of unimpacted samples. However, the difference in percentage water 

uptake values between S, M and L decreases as the impact energy increases. 

This is due to the fact that, with the increase in impact energy there is more fibre 

breakage on the tensile face of the impacted samples, creating more open area 

for water to ingress into the samples. 
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6.2 INTERACTION OF WATER WITH MTM 44 RESIN 

The formulations of most of the modified aerospace epoxy resins are highly 

complex and companies manufacturing them are highly secretive about them . 

The composition of the MTM 44 [128] resin film used in this particular study 

includes tetra-functional epoxy resin and two types of aromatic polyamines. Due 

to this high epoxy functionality, the cured resin is highly crossed-linked. 

The intrinsic moisture sensitivity of cured epoxy resins is traceable directly to the 

molecular structure. The presence of polar and hydrogen bonding groups, 

hydroxyls and tertiary nitrogen, as in this case, provides the chemical basis for 

moisture sensitivity, while the available free volume and network structure 

represent the physical basis. FTIR and Raman spectroscopy was therefore 

carried out, on the 'wet' laminates (DMTA sample size) to recognize the 

significance of the molecular structure on water uptake. 
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6.3 FTIR SPECTROSCOPY 

FTIR spectroscopy studies in the 4000-400 cm-l have been used by a number of 

researchers to reveal the occurrence of reversible hydrogen bonding interactions 

between the absorbed water and the polymer network [142 , 177-178]. Although 

FTIR produces quality spectra of the epoxy resin , it is necessary to assign the 

structural origin of the numerous infrared bands in order to use them effectively. 

In the following section major IR bands are assigned . 

6.3.1 Assignment of IR bands 

Initially a FTIR spectral measurement was carried out on a cured epoxy ground 

sample and a composite ground sample using a non-absorbing KBr palette. The 

corresponding spectra are shown in Fig . 77 and 78. In order to interpret the 

spectra , it is necessary to have some insight into the structural origin of the 

numerous infrared bands in order to use them effectively. Unfortunately, the 

complexity of the molecules involved made complete band assignments 

impossible and only major bands are assigned and presented in Table 14. 

Fig. 77 and 78 show a broad band between 3100 cm-land 3700 cm-l . This broad 

band can be assigned to a combination of bands, as a band due to only one kind 

of vibration would have a very sharp peak. There are several possibilities of 

assignment of this group. One such possibility is the assignment to the O-H 

stretch in hydrogen-bonded O-H groups, while another possibility is the 

assignment to the O-H stretch in non-hydrogen bonded O-H group. The 

characteristics of these two kinds of bands are different: for the hydrogen bonded 

O-H stretch , the hydrogen bond is relatively weaker than the covalent bond and 

the band appears at a lower frequency. As the amount of water is very small in 

the dried samples , these hydrogen bonds are largely established by C-OH 

groups of alcohols. 
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Fig. 77: FTIR Spectrum of Cured Epoxy 

Furthermore, primary and secondary amines also have the characteristic N-H 

stretching absorptions in the 3300-3500 cm-1 range of the IR spectrum. These 

amine absorption bands are generally sharper and less intense than hydroxyl 

bands. Primary amines show a pair of bands at about 3350 and 3450 cm·1
, and 

secondary amines show a single band at 3350 cm·1 [179] . Tertiary amines show 

no absorption in th is region because they have no N-H bonds. All these functional 

groups are a possibility; as during cure , amino groups form chemical bonds by 

opening the epoxy ring to produce hydroxyl groups and secondary/tertiary amine 

groups. 
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Fig. 78: FTIR Spectrum of Composite Laminate 

The region between 2750 -3100 cm-1 shows a well-identified group of bands 

which are due to C-H stretch (VC.H) in the alkyl groups. 

The last group consists of the set of more compact bands that appear below 

1650 cm-l Most of the important components of this group are assigned in Table 

14, following standard assignments [142-143] . The intense band around 1250 

cm-1 is assigned to v(C-O-C) mode that appears in aromatic ethers. 
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Wave Number 
Characteristics Assignment (cm-1 ) 

3434 strong u(OH) 
2954 weak 
2923 strong u(CH) , u(CH2) 
2854 weak 
1612 strong 

u(C=C) Phenyl 1579 weak 
1516 strong 

Ring 

1461 strong 
u(C=C) Phenyl 

RinQ + oas(CH3) 
1298 weak u(C-O), u(C-C) , 
1242 strong u(Ar-O-Ar) 
1152 strong us(802) 
1106 strong u(Ar-8) 
800 strong u(8i-C) 
718 strong 0 (802) 
557 strong 0 (802) 
Table 14: Ass ignment of FTIR Ba nd [1 42-143] 

Effect of Hydration 

One spectrum after hydration is shown in Fig _ 79 _ This laminate (L) was aged for 

60 days at 70° C in water. The bands found consist of full bands due to H20 and 

differential bands due to the modification of absorption bands induced by the 

addition of water molecules_ In the spectra , the bands due to water molecules are 

identified [143] as the broad band at 3400 cm-\ stretch band (u) O-H (as) , and 

the sharp band at 3645 cm-1, u(OH) (sym) _ The broad band may be due to 

hydrogen bonding formed either between water molecules and hydroxyl groups 

or between water molecules and nitrogen atoms on the amine groups or to both 

of them _ The band at 3645 cm-1 is the O-H stretch band due to OH groups of H20 

molecules that do not establish hydrogen bonds_ 
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Fig . 79: Laminate L after 60 Days of Ageing (% w.e.= 0.959) 

The bending band (0) of H20 , which is known to be much less sensitive to 

hydrogen bonds than the O-H stretch band (\J) , is composed of a peak (or 

shoulder) at 1610cm-' which can be assigned to H20 molecules that establish no 

hydrogen bonds. The band at 1640 cm-' can be assigned to bending vibrations in 

H20 molecules with hydrogen bonds. In liquid water, th is band falls close to this 

value [143] . Assuming that the integrated intensity of this bending mode does not 

necessarily indicate whether the H20 molecules establish hydrogen bonds or not, 

Ngono et al. [180] concluded that only some of the free alcohol groups establish 

a hydrogen bond with a H20 molecule embedded in the resin . 

147 



Chapter 6 E nvironmental Durabili ty Test Results and Discussion 

6.3.2 Degradation Processes in Epoxy Resin 

An understand ing of the reversible and irreversible effects of water is critica l to 

the design of reliable composites. FTIR is useful as spectra can be obtained on 

the same or sim ilar samples as a function of exposure time. The hydrolytic attack 

on a composite laminate brings about breaks in a polymer chain and creates new 

end groups. The small spectral differences observed give an indication of the 

extent of hydrogen bonding and unbounded water in the micro-voids. 

Sample 
% Water u(OH)- 8(OH)-
Content Band Band 

Dry 3446 1640(weak) 

S-15 1.369% 3430 1662 
Days 
S-30 

1.090% 3435 1659 
Days 
S-60 

1.118% 3431 1660 Days 
M-15 

1.201 % 3434 1662 
Days 
M-30 

0.969% 3434 1660 
Days 
M-60 

1.046% 3429 1662 
Days 
L-15 

0.971 % 3433 1655 
Days 
L-30 0.913% 3436 1658 
Days 
L-60 

0.959% 3400 1662 
Days 

Table 15: Vibration of the Sorbed Water from FT-IR Study 

(See Appendix for spectra) 

In general , the formation of hydrogen bonds (increase in bond length) affects the 

vibrational spectra of the groups involved by decreas ing the frequency of 

stretching modes and increasing the frequency of bending modes [142). These 

interactions increase the IR intensities as we ll. 

The vibration of the sorbed water found from the FTIR studies of the laminate 

samples S, M and L aged for 15, 30 and 60 days in 70°C water, compared with 

dry resu lts, are presented in Table 15. As expected , compared with the dry u(OH) 

and 8(OH) bands, the 'wet' frequency of the stretching mode decreases while 
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'wet' frequency of bending mode increases, indicative of the formation of 

hydrogen bonds. However, no correlation (between S, M and L) is evident from 

the frequency shift pattern of I.l(OH) and 8(OH) that hydrogen bonding increases 

with increase in % water uptake, possibly because the % water uptake value is of 

a laminate sample (including free water in the voids) , while the frequency bands 

are from ground samples from parts of that laminate. 

Overall , FTIR results reveal that polar groups in the cross-linked network are one 

of the major factors that control the sorption and diffusion of water in epoxy 

resins . Two possible hydrogen bond configurations are identified from the 

literature: N-HO and O-HO interactions. Evidence of O-HO bonds exists in the 

FTIR spectra. However, presence of N-HO can not be confirmed , leading to the 

assumption of the presence of tertiary amines in the resin film . The diffusion of 

water molecules into epoxy resins can be attributed to two factors . Firstly, the 

availability of micro-voids (evident from Raman analysis in the next section) and 

second ly, the attractive forces between the water molecules and the epoxy resin 

matrix. The second factor concerns the chemical nature of the water towards the 

polymer and the FTIR results verify this argument. It, therefore, can be proposed 

that sorption and transport of water in the epoxy in its glassy state is controlled 

predominantly by features like cross-link density and by the concentration of 

possible sorption sites. 

6.4 LASER RAMAN SPECTROSCOPY 

Although both IR and Raman spectroscopy provide information on vibrational 

frequencies of various functional groups, with the latest Raman spectroscopy it is 

possible to obtain spectra of a very small area of a sample and subsequently, a 

spectral mapping of a particular area of the sample . 

Initially Raman Spectra were obtained for cured epoxy, polyester stitching yarn , 

carbon fibres and dry composite (Fig. 80) using the 632.817 nm (red) He-Ne 

laser with a full power of -17 mW. The laser beam was focused through a x10 

objective to give an approximate spot size of 3 ~m diameter on test sample. A 
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highly sensitive (2000x800 pixels of 15 microns) charge coupled device (CCO) 

camera was used to collect Raman Spectra. The specimens were placed onto 

the stage of an Olympus high stability BX40 microscope connected to a black 

and white camera. 
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Fig. 80; Raman Spectra of the Reinforcement, Matrix and Composite 

The identification of the origin of the Raman band as a result of adsorbed H20 on 

the laminate surface and the assignment of any transition was carried out through 

the comparison of dry and wet (aged for 5 days) composite samples (Fig . 81). 

The relative intensity change, the shift and broadening of Raman band have been 

proven to be excellent indications to the extent and strength of hydrogen bonding 

[181]. 
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Fig. 81 : Raman Spectral Shift due to Hydration 

Raman band at 1604 cm- 1 was ascribed to the stretching mode of phenyl rings 

earlier (Table 14), which is evident in the dry composite. As the hydrogen 

bonding increased due to ageing in water (hydrogen bonded phenyl ring 

associated with OH-+O=C interaction) , a shoulder was clearly observed at 

1617cm-1
. The broadening of the peak for 5(OH), increase in the relative intensity 

of the hydrogen bonded (wet sample) to the non-bonded phenyl ring(dry sample) 

and the band shift to a higher wave number all indicate to an increase in the 

extent of hydrogen bonding in the wet sample. 

No peak for u(OH) at the frequency range 3100-3650 cm-1 was noticed . The 

reasons for this could be either the acquisition time was too low for a better 

detection or the laser power (-10 mW) at the sample was too high which caused 

overheating/ degradation [182]. 
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6.4.1 Raman Mapping of Aged Samples 

In this section optical micrographs of laminate S after aging durations of 15 days, 

30 days and 60 days are presented, along with corresponding 20 Raman 

spectral mapping. Optical micrographs, when compared with the dry sample 

image (Fig . 82) , show water attack on micro voids which sometimes led to micro

cracks on the surface. For longer thermohumid ageing duration, leaching of the 

resin was also observed (Fig. 85) . 

Figs . 83-85 show Raman maps after the aforementioned ageing durations for 

laminate S. The maps for laminates M and L are included in the Appendix. 

The map imaging in LabSpec [144] works in two ways . Firstly, cursor intensity 

(Fig. 83-85) - the intensity of the Red (R) , Green (G) and Blue (B) components 

relates directly to the integrated intensity (i .e., area under the spectrum) between 

the cursors . The intensity scale shown in these figures is graded colour scale 

which is created by mixing particular contributions of cursor R at different 

intensities. As it was known that the dry composite had the stretching mode of 

phenyl rings peak at -1600cm'\ the red cursor was used to plot an image of the 

intensity of this peak. The intensity is based purely on the intensity between this 

cursor. When the cursor was extended to the range 400-1700 cm'\ very little 

change in the colour distribution was observed . It was suggested [197] that it 

doesn't work well if there are overlapping bands, for example having two species , 

both with a band at 1600cm'\ using cursors it is not possible to distinguish the 

two components . Furthermore, setting the cursor over a wide region (400-1700 

cm·1
) could be misleading as it simply produces an image of "total spectral 

intensity" , and there is no real chemical distinction between different components . 

The colour intensity maps of laminate S after ageing durations of 15, 30 and 60 

days show the intensity of cursor R for the band at 1600cm·1
. It has been 

reported [181] that the relative intensity changes of the Raman band have been 

proven to be excellent indications of the extent and strength of hydrogen bonding. 

An increase in the intensity (yellow colour) shown in the mapped spectral images 

relates to increase in hydration and subsequent hydrogen bond formation in and 

around the defects that existed before ageing . However, it was felt during the 

152 



C hapter 6 Environmental Durability Test Results and Discussion 

analysis that an acquisition time of 1 second was too little for a good quality 

spectra acquisition. It is , therefore, recommended that an acquisition time of at 

least 50 second to be used for future analysis along this line. 

The other map imaging technique in LabSpec is modelling. Modelling uses a 

least squares fitting algorithm to correlate where a particular spectrum occurs 

within the map data. Through this technique it is possible to generate an image 

that is based upon an entire spectrum, rather than just intensity in a chosen 

region . Modelling therefore overcomes the problem of having lots of overlapping 

bands and distinguishes various components. Fig . 86 shows one such modelling 

carried out on the 60 day aged sample, with the dry composite Raman spectrum , 
as the reference . As mentioned earlier, with a better spectral map (using long 

acquisition time) it is possible to model the concentration of hydrogen bonding in 

a mapped area . 

• 

. . 

10 ~m 

Fig. 82: Optical Microscopic View of Dry Laminate S Showing Micro-Voids 
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Fig. 83: Raman Mapping of Laminate Surface S, after 15 Days of Ageing -

Optical M icroscope Image of the Ma pped Sample (Top) and Spa tia l Distribution Plot of the 
Intensity Values (Bottom), Map Size: IOxlO Points 
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Fig. 84: Raman Mapping of Laminate Surface S, after 30 Days of Ageing -

Optical Microscope Image of the Mapped Sample (Top) and Spatial Distribution Plot of the 
Intensity Values (Bottom), Map Size: JOx 10 Points 
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6.5 HARDNESS TESTING 

Hardness testing was carried out on a separate set of ILSS samples . One sample 

each of laminates S, M and L were aged in deionised water at 700e for durations 

of 12hrs, 96hrs , 264hrs and 528hrs respectively. Table 16 shows a summary of 

the average hardness test results for all three laminates. Average hardness 

numbers were calculated from five readings , for each sample, taken at room 

temperature at some distance from the four edges and at the centre of the 

samples. 

As reinforced plastics materials are inherently heterogeneous , a large scatter of 

the individual readings was observed . The average Vickers Hardness Number of 

the laminates after the various ageing durations did not show any significant 

degradation , indicating that the resin retains most of its hardness property after 

the thermohumid ageing duration of 528hrs . 

Time 
Hardness Number (HV) 

S M L 
Drv 44.7 +3.6 45.6 +4.1) 43.8(+4 .3) 
12 Hours 42.2 +6.6 43.3 +5.3 46.1 +7.5 
96 Hours 43.4 +8.5 44.1 +9.7 46.8 +7.0 
264 Hours 40.9 +2.9 42.5 +3.3 48.9 +3.1 
528 Hours 41 .6 +3.7 41.9+4.6 48.9 +5.0 

Table 16: Summary of Hardness Test Results 
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6.6 INTERLAMINAR SHEAR STRENGTH (ILSS) TEST 

All polymer matrix materials absorb water to some extent and with time this 

affects (and usually reduces) the interlaminar shear strength and other related 

mechanical properties [183]. It is now well established that the fibre-matrix 

interface is responsible for the shear strength of composite (Chapter 3) . Moisture 

reduces the bond strength between fibre and matrix through hydrolysis and bond 

breakage [184] . In certain cases osmotic cracking may appear at the interface 

which also degrades the ILSS properties [185]. 

The effect of water uptake on ILSS for samples of laminates S, M and L was 

tested. Accelerated ageing was carried out through immersion in deionised water 

at 70°C for a maximum of 528 hours. The maximum % water uptake was 

approximately 1.5% (Fig . 87), which corresponded to a similar water uptake in 

the larger samples (un impacted) used for percentage water uptake testing . 

1.50 

Fig. 87: Water Uptake Behaviour of ILSS test Samples 

The data points in the Fig . 87 represent % water contents of different sets of 

samples and therefore do not show the ageing trend of the laminates. Moreover, 

the samples were of small dimensions and any interpretation of the ageing trend 
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would be erroneous. The higher water content of samples S could be attributed to 

a few samples containing higher void contents and thus leading to large standard 

deviations. 

After ageing for 12, 24, 96, 264 and 528 hours, five samples from each of 

laminates S, M and L were tested for ILSS. The testing was carried out inside an 

oven running at 70oe. Detailed ILSS results are included in the Appendix. 

Fig. 88 shows the results for ILSS, before and after ageing , of all three laminates. 

Linear fits of the results show that the loss in apparent interlaminar shear strength 

varies with the specimen weight gain and there is very little difference between 

the laminates. 
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Fig. 88: Effect of Water Uptake on the ILSS 

Further investigation shows that the degradation in ILSS up to 0.6% water 

content was severe whilst further increase in % water content resulted in a 

smaller reduction in ILSS value, indicating more of an asymptotic relationship 

than a linear one. The reduction in ILSS after 528hrs of ageing for laminates S, M 
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and L are approximately 27%, 22% and 20%. These results correspond well with 

the percentage water uptake values shown in Fig . 87. The higher water uptake by 

samples of S led to higher degradation in lLSS. 

It is interesting to note that in the range of 0.75-1 % water content, for a particular 

value of % water content, the laminates L and M show better ILSS value than S. 

The inferior ILSS of S could be attributed to high stitch density causing high 

stress concentration in the resin , added to the stress concentration due to 

hydrothermal ageing. Mouritz et al. [186] also showed that under short-beam 

loading, the stitches become sites of stress concentration wh ich contributes to 

the reduction in interlaminar shear strength . 

Individual ILSS values did not always decrease with the percentage water 

uptake; rather it increased in some cases (Fig. 88) . A couple of reasons had been 

identified in order to explain the resu lts. Firstly, the increase or decrease of ILSS 

could be attributed to the scatter of the experimental resu lts rather than to any 

significant effect of moisture. The scatter of the experimental results could be due 

to the size and distribution of voids and resin-rich areas affecting the interfacial 

bond between the fibre and the matrix. Secondly, as the testing was carried out 

at 70De, some of the free water may have evaporated during the testing , which 

did not have an effect on the decrease in ILSS properties. Baley et al [149] 

mentioned other researchers ' work, where it was found that the loss in 

mechanical properties may be partly reversible if water is removed by drying. 

They indicated that degradation of the mechanical property after ageing IS 

brought about by cracking of the matrix, interface debonding or delaminations. 

The micrographs of the ILSS test samples, after 528 hrs of thermohumid ageing , 

are shown in Fig . 89 , which present damage distributions through the laminate 

thickness. The most predominant type of interlaminar failure observed was a 

network of interconnecting delamination through transverse matrix cracks, simila r 

to that observed for the dry laminates. It was concluded from the results that the 

fracture behaviour did not change significantly during the ageing period . 
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i Indicates top loading position f----I 1 mm 
Fig. 89: Optical Micrographs of the ILSS Samples Tested after 528 hrs of Ageing 

(From Top: S, M and L) 

Fig . 90 shows the comparison of force-displacement trace of dry and 528 hrs 

aged samples of laminate S during ILSS testing . The maximum values of force in 

the figure indicate degradation in the ILSS properties for the aged sample. These 

results are supported by the chemical analysis of the samples, where it was 

shown that the interfacial bonds between the fibre and matrix were replaced with 

hydrogen bonding between matrix and water molecules thus weakening the 

interfacial bonding. The force-displacement trace of the aged sample shows 

lower strength and less plastic deformation. 
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6.7 DYNAMIC MECHANICAL THERMAL ANALYSIS (DMTA) 

An important property that is being investigated by these dynamic experiments is 

viscoelasticity - which is a characteristic of polymeric materials and polymer 

based composites. The dynamic storage modulus and Tan 13 (damping) are two 

important linear viscoelastic parameters . The storage modulus corresponds to 

the stiffness of material under dynamic loading . The damping mechanisms in 

fibre composites can be considered in two categories : low-strain and high-strain 

damping [1 87]. Low-strain damping is a domain of the polymeric matrix , which 

obeys linear viscoelastic relations, while high-strains induce microcracks and 

contribute to damping by friction [188] . 

In the case of low-strain damping, DMTA instruments are highly sensitive in 

detecting changes in internal molecular mobility. Any physico-chemical property 

change in a composite, due to the degradation of bond strength at the fibre

matrix interfaces should therefore be reflected by the Tan 13 value [189] . 

6.7.1 Determination ofTg 

Dynamic mechanical data are usually determined in a temperature range 

including the glass transition temperature (Tg). Tg can be determined with 

significant levels of sensitivity through DTMA by monitoring changes in the 

storage modulus (E'), loss modulus (E") or Tan 13 , as a function of temperature 

[190]. However these three indicators give different values, T 9 can either be 

defined as the temperature where the maximum loss tangent or the maximum 

loss modulus is observed , or as the inflexion point at which a significant drop of 

the storage modulus occurs. However, the respective peaks (or points) usually 

occur at different temperatures resulting in a broad transition region . Typically, it 

has been observed that the E' inflexion point occurs at the lower temperature , 

followed by the E" peak and finally by the Tan 13 peak (Section 6.7.3). Tg also 

changes with the test and the temperature ramping . An increase in the heating 

rate is known to shift Tg to a higher temperature, whereas an increase in test 

frequency for a constant heating rate also increases Tg [191] . 
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Sometimes, apart from the glass transition secondary transitions can also be 

observed. It is well known that the glass transition temperature is associated with 

conformational crank-shaft movements of the main chain of the polymer, whereas 

the secondary transitions are associated with movements of the side groups. 

6.7 .2 Experimental Results 

Dynamic mechanical thermal analysis was performed in dual cantilever bending 

mode using a Rheometric Scientific MK II analyser. Initially the effect of 

frequency on Tg. was ana lysed , which is presented in section 6.7.3 . Second ly, dry 

samples of laminates S, M and L were analysed , at a frequency of 1 Hz over a 

temperature range of 25-260oe with a heating rate of 4°e min·1
, to measure their 

damping properties , which is included in section 6.7.4. Finally, samples of the 

three laminates were exposed in 700e water for 61 days and the effect of 

moisture absorption on the viscoelastic properties , such as the glass transition 

temperature was determined and is presented in section 6.7.5 . The results for the 

dry laminates were considered as the baseline value for the aged samples. 

6.7.3 Effect of Multi-frequency on DMTA 

Frequency affects the vibration performance of polymers and, thus, the matrix of 

polymer composites . For optimal design and analysis it becomes indispensable 

to determine the actual material properties over the range of operational 

temperatures and frequencies. 

Three samples of laminate S were tested using frequencies of 0.1, 1 and 10Hz in 

Multi-frequency Mode. As the same resin system was used for all laminates (S , M 

and L) only samples from S were tested . The effect of frequency on storage 

modu lus, loss mod ulus and Tan 0 are presented in Figs. 91-93 respective ly. As 

pointed out earlier, determination of Tg from each of these graphs yielded 

different values. The results fou nd correspond to the conclusion of Li et al. [191] 

that for higher frequency at a constant heating rate the value of Tg increases. 

165 



Cbapter 6 E nvironmental Durabili ty Test Results and Discussion 

9.5 

----A-- 0.1 Hz 
9.4 

- I Hz 

9.3 
10 Hz 

~ 
189.4 

en' 193.6 

'" 9.2 

'" 200.1 

\ " 0 
~ 9.1 

Q) 
OJ) \ .\ '" 9.0 .... 
0 -r:/l 
OJ) B.9 

\ \" 0 
....l "\ ., 

B.B :0..... • :A.-.~.4_. 

B.7 
140 160 1BO 200 220 240 

0 
Temperature ( C) 

Fig. 91: Effect of Test Frequency on Storage Modulus 

B.B ----A-- 0.1 Hz 
208.6 

20 1.6 l 
- I I-I z j 2 18.5 

B.6 1- 10 I-Iz 4_ •• J 
[..Q / j • \ "-. \. ", B.4 

Ilj '" . \ "3 
" B.2 \ \ 0 

~ /i <n \ \ <n B.O I · 0 
....l /" / 1 • 
OJ) \ 0 7.B 

....l /~ ~ 
7.6 ..... -A~ ....... .::. \ 

I ~.-.c:!lO ?"' . -. \ . - ..... 
7.4 -

140 160 180 200 220 240 
0 

Temperature ( C) 

Fig, 92: Effect of Test Frequency on Loss Modulus 

166 



Chapter 6 E nvironmental Durabili ty Test Resul ts and Discussio n 

0.35 - 206.7 
----A- 0.1 Hz l'f\ 'IO - I Hz 

0 .30 10 Hz 

0 .25 

If \ \ 0.20 -
<0 
c 
'" 0.15 - ;/ ' \ \ 
f-

0.10 / . 
. '" 0.05 - / / . 

-~ ...... -'" / -

'"'"' 0.00 
, , 

140 160 180 200 220 240 

Temperature (oC) 

Fig. 93: Effect of Test Frequency on Tan 1) 

In general, at low frequencies polymeric materials flow more, acting in a similar 

fashion to flow at elevated temperature, thus showing greater damping (Tan 0 

value in Fig . 93). As the frequency increases the material behaves more 

elastically. Absolute values of loss modulus trends, shown in Fig . 92 , show no 

difference with increase in frequency, indicating that the viscous property remains 

constant. Consequently as the storage modulus increases, with the increase in 

frequency, the Tan 0 value decreases. 

The damping of carbon fibre reinforced polymeric composites is derived mainly 

from the matrix and the fibre-matrix interface response . The decrease in Tan 0 

value of the composite material with increase in frequency is related to 

restrictions of chain motions of the polymer at higher frequencies. The same 

effect is also responsible for an increase in storage modulus with frequency. The 

results also indicate that the Tg value variation due to frequency, when calculated 

from the Tan 0 is more than that of storage modulus, suggesting that damping 

(Tan 0 value) is considerably more sensitive to changes in frequency than the 

storage modulus. 
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6.7.4 Effect of Reinforcement Architecture on Damping 

The damping properties of the polymeric matrix are significantly higher than the 

carbon fibres. Therefore, most of the composite damping is a result of the matrix 

damping and the fibre-matrix interface response. An ideal interface plays the role 

of transferring loads and does not contribute to damping. He and Liu [192] in their 

study indicated that the effective damping of the composite depends on several 

factors : fibre volume fraction , the relative shear rigidity of fibre to matrix, and a 

dimensionless parameter composed of interface viscosity, fibre radius, vibration 

frequency and shear modulus of matrix. 

It is possible to tailor damping properties in fibre-reinforced composite materials 

with respect to constituent properties , fibre volume fraction and ply orientation 

ang les [188]. A properly designed structure can provide significant damping and 

may further improve the dynamic performance and fatigue endurance. However, 

increased damping results in decrease in stiffness and strength . 

Sample 
S M L 

Tan ~ Temp(OC) Tan ~ Temp(OC) Tan ~ Temp(°C) 
1 0.323 203-211 0.344 201-211 0.355 204-215 
2 0.316 201-207 0.35 201-21 1 0.339 205-214 
3 0.333 200-208 0.335 201-210 0.344 205-214 

Avg 0.324 0.343 0.346 
Std. Dev. 0.0085 0.0075 0.0082 

Table 17: Tan 1i Values for the Laminates S, M and L 

The temperature range above which Tan 0 is higher than 0.3 , is an important 

characteristic for good damping materials [193]. The Table 17 shows the 

damping properties of the laminates S, M and L. The values quoted are the Tan 0 

values of the dry samples of the three laminates . The average Tan 0 va lues show 

that there is no significant difference between laminates M and L, wh ile the 

damping property of laminate S is significantly less than the former two. The 

smaller resin-rich areas in laminate S may be the explanation for these lower 

damping properties. Chandra et al. [188] suggested an increase in damping due 
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to slip in the unbound regions between fibre and matrix interface. This particular 

phenomenon could be attributed to the higher damping behaviour of laminates M 

and L which had more voids compared to S. 

Low damping also indicates that S has better stiffness and strength properties. 

This result supports the conclusions drawn from the impact properties of the 

laminates S, M and L, where the impact response of the laminate S showed 

higher stiffness (Sections 5.3 and 5.4). 

6.7.5 Effect of Moisture on the Viscoelastic Response 

Absorption of moisture can reduce glass transition temperatures and mechanical 

properties by matrix plasticization, swelling , cracking , and fibre/matrix interface 

damage. DMTA analysis is therefore important, as it is a sensitive indicator of the 

molecular motions in the material. As indicated earlier the Tg data can be 

reported as the Tan Q peak, loss modulus peak, or onset of the storage modulus 

decrease; though there is debate about which particular value should be used. 

As the same resin system was used for laminates S, M and L, major variations in 

the glass transition temperature were not expected . Typical dynamic mechanical 

properties, of the dry sample, 4-day aged sample and 61-day aged sample of 

laminate S are shown in Figs. 94-96 respectively. The general trend observed for 

all the laminates was that after 4 days of ageing a secondary transition started to 

appear which got more distinct as the ageing progressed. 
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Initially it was assumed that the appearance of the secondary transition was due 

to degradation of the resin. In order to verify this one sample from each laminate, 

aged 61 days, was dried in an air-circulated oven at 180°C. The dried samples 

(once there was no further weight reduction) were then run on DMTA. The result 

for the laminate S is shown in Fig . 97. The results showed the disappearance of 

the secondary transition and a higher value for the Tg. 

The increase in the Tg value may be attributed to further cross-linking of the resin 

due to the elevated temperature drying as suggested by Smith et al. [189). The 

disappearance of the secondary transition peak is interesting, as it confirms that 

the presence of the secondary peak in the aged samples was not due to the 

permanent degradation of the resin . Instead it is proposed that it is due to partial 

hydrolysis of the samples. The secondary peak in the aged samples represents 

the Tg of the hydrolysed part of the sample and the other peak represents the Tg 

of the dry core. 
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The effect of percentage water uptake on the storage modulus of laminates S, M 

and L are presented in the Figs. 98-100. The curves for the storage modulus of 

laminate S show little difference compared to laminates M and L, with L showing 

the largest variation with water uptake percentage. However, for polymer 

composites, storage modulus response is not very sensitive, which makes 

interpretation difficult. 
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The effect of percentage water uptake on the loss modulus of laminates S, M and 

L are presented in the Figs. 101-103. The measurement of Tg by loss modulus 

peak corresponds more precisely to the temperature at which stiffness (as 

expressed by storage modulus) suffers significant deterioration. Results 

presented by Akay [194] also suggest that for advanced composites , Tg by loss 

modulus peak is a more consistent and appropriate index than the one based on 

Tan 0 peak. The test results for the laminates show insignificant difference. For 

all the laminates the peak of the loss modulus broadens with water absorption 

followed by the appearance of a secondary peak. 
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The effect of percentage water uptake on the Tan 0 of laminates S, M and L are 

presented In the Figs. 104-106. Again , as expected, there is no significant 

difference in behaviour between the laminates. The Tan 0 variation for the 

laminates follows the same trend as loss modulus - the peak broadens with 

increased water absorption with the appearance of a secondary peak. The value 

of Tan 0, however, decreases significantly with water uptake percentage. As 

mentioned earlier this is due to partial hydrolysis of the samples. 
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Fig. 107 shows the Tg measured from the loss modulus peak plotted against 

percentage water uptake for all the laminates. The overall trend shows a direct 

linear relationship between Tg and percentage water uptake, with a decrease in 

Tg of approximately 25°C for each 1 % water uptake percentage. This reduction in 

Tg is because of the replacement of the strong hydrogen bonds in the epoxy 

network by the weaker water-related hydrogen bonds with increasing water 

uptake percentage. Linear fits of the results, for all three laminates, show very 

little difference as expected from a specific resin system. A similar outcome was 

reported by Maxwell and Pethrick [195]. 
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6.7.6 Concluding Remarks 

Dynamic mechanical thermal analysis was carried out on dry and water aged 

samples of laminate S, M and L. There was very little difference between the 

laminates as the properties measured rely mainly on the resin and interface. The 

test results showed that the dynamic property varied with frequency of testing . 

The decrease in the glass transition temperature with water uptake showed a 

linear relationship for all the laminates. The most interesting result found was that 

damping behaviour of laminate L was better than laminates Sand M. This result 

is consistent with the higher stiffness displayed by laminate S during the low 

energy impact and through penetration impact testing . 
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6.8 THERMO-HUMID EFFECT ON COMPRESSION STRENGTH 

In this section , resu lts of the compress ion strength of the wet un impacted and 10, 

20, 30 Joules impacted samples are presented and discussed. Four samples of 

each of the above impact conditions, of laminates S, M and L were tested in 

compression using the QMW miniature anti-buckling guide. All these samples 

were initially dried in an air-circulated oven ti ll they reached a steady weight. 

These samples were then immersed at 70° C in a water bath . The water uptake 

behaviour of the samples has previously been discussed in section 6.1. 

6.8.1 Thermo-humid Effect on Compression Strength of Unimpacted 
Samples 

A measure of the unimpacted compression strength under various thermo-humid 

conditions provides the base-line strength for the compression strength samples. 

The problem associated with this testing method has been discussed in Section 

5.5.1. The experience gained from the dry compression testing was applied here; 

which led to samples failing predominantly in the unsupported region (gap) of the 

anti-buckling guide although some still fai led by end crushing. These failure 

modes have also been discussed in Section 5.5.1. 

Compression Strength (MPa) 
Impact Laminate S Laminate M Laminate L 
Level 6 26 96 6 26 96 6 26 96 

days days days days days days days days days 
Un impacted 231 223 255 265 252 221 229 21 1 230 
Std. Dev. (±16) (±57) (±27) (±14) (±22) (±22) (±10) (±39) (±12) 
10 Joules 169 164 141 154 160 157 158 153 130 
Std . Dev. (:+-11 ) (:+-17) (:+-29) (:+-8) (:+-11 ) (:+-30) (:+-31) (:+-9) (:+-14) 
20 Joules 124 122 127 121 87 118 149 119 131 
Std . Dev. (±10) (±15) (±11 ) (±16) (±29) (±16) (±9) (±33) (±29) 
30 Joules 119 105 124 105 121 99 113 104 100 
Std. Dev. (:+-8) (:1-17) (:+-6) (:+-9) (:+-15) (:+-11) (:+-19) (:+-18) (:+-8) 

Tab le 18: Summary of the Compress ion Test Results of 'Wet' Samples 

A summary of the compression strength results is shown in Table 18. The 

detailed results can be found in the Appendix. Graphical presentations of th is 
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data are shown in Figs. 108- 110 which show plots of the compression strength 

of unimpacted samples, of laminates S, M and L, against impact energy, at 

specific durations of immersion in water. The compression strengths of the 

unimpacted samples of Sand L show no particular trend , while M shows an 

expected downward trend with the percentage water uptake. The large standard 

deviations in the compression strength of all the laminates could be attributed to 

two factors. Firstly, unparallel ends of a sample may have caused stress 

concentrations and therefore a large variation in the compression strength value. 

Secondly, the number of results was too few in some cases for a better statistical 

picture. 
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The overall effect of percentage water uptake on the compression strength of the 

unimpacted samples is shown in Fig . 111 . The linear fit for laminates S, M and L 

show a downward trend . This could be because higher water uptake by carbon

epoxy laminates weakens the fibre-matrix interface bonds. This weakening of the 

interfacial bonds reduces the support that fibres get from the matrix to prevent 

them from buckling , Rao et al. [103]. As a result the compression strength of the 

'wet' samples reduces. 

Fig . 111 appears to show a higher degree of compression strength reduction by 

the high stitch density laminate, S. As the epoxy matrix used in all three 

laminates was the same, the behaviour of laminate S could be attributed to 

possibly an increased ingression of water in the core of the laminate and a high 

stress concentration in the matrix around the stitching [25]. The former case was 

confirmed by the work of Whiteside et al. [196], where they showed that stitching 

yarns provide paths for accelerated moisture ingression into the core of th ick 

laminates. 
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In the case of high stitch density it is , therefore , expected that the 'wet' sample 

will have more interfacial degradation in the core area along with higher overall 

stress concentration due to stitching. The resultant effect could contribute to 

higher degradation in the compression strength for higher stitch density, which is 

evident from the results found in the current study. 

6.8.2 Thermo-humid Effect on Compression after Impact Strength 

The therm a-humid effect on 10, 20 and 30 joules impacted samples of laminates 

S, M and L were presented in Table 18 and Figs . 108-110. The dry CAI results , 

section 5.5.2, showed that the CAI strength dropped significantly as the impact 

energy increased. This trend was attributed to the extent of damage formed 

during the impact. During the thermo-humid aging of the impacted samples , 

further degradation of the CAI strength was observed. The damaged areas after 

impact presented a clear pathway for water to ingress deep inside the core of the 

impacted samples , which subsequently reduced the fibre-matrix interfacial bond 

strength . Any such weakening in the fibre-matrix interface resu lts in less latera l 

support for the fibres, and premature failure of the laminates due to out-of-plane 

buckling . 

The percentage reductions of compression strengths of unimpacted; 10, 20 and 

30 joules impacted samples after a specific duration in water were ca lculated 

w.r.t. the corresponding dry compression strength for laminates S, M and L. The 

calculations can be found in the Appendix. The retention in compression strength 

due to thermo-humidity after 6, 26 and 96 days are presented in Fig . 112-114 

respective ly. 
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The large scatter observed in the percentage retention in CAI cou ld be 

associated with three different factors: large variations of the compression 

strengths of all the laminates, variation in the damage area for a particular 

laminate and the trend in the water-uptake for individual laminate. These three 

factors are related to each other to some extent. 

The individual data points, in the Figs . 115-117, showing the va riation of CAI 

strength with percentage water uptake show that CAI strength did not always 

decrease as the percentage water uptake increased. On many occasions CAI 

strength showed increased va lues with water uptake. This result can be due to a 

number of factors , including non-uniform stress application during testing, due to 

misaligned specimen in the anti-buckling guide; shape of the impact damage 

area, waviness of the reinforcement, quantity of free water and bonded water etc. 

The effect of most of these factors is expla ined earlier except the case of free and 

bonded water. As fibre breakage occurred in the tensi le half of the samples , it 

would be reasonable to assume that free water could enter and occupy the 

damaged area. This would have led to an increase in the percentage water 
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uptake value which did not have any effect on the CAI strength value but resulted 

in more scatter in CAI strength. 
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Fig. 117: Compression Strength vs. Water Uptake: 30 Jou les Impacted Samples 

Despite all these variables affecting the ultimate CAI strength of a sample , a 

trend is noticed for the 10, 20 and 30 joules impacted samples similar to the 

unimpacted samples which relate to stitch density. In all the cases laminate S 

with the highest stitch density showed a greater tendency of CAI strength 

degradation. As explained in section 6.8.1 this trend could be attributed to the 

high stress concentration in the matrix around the stitching and the increased 

ingression of water in the core of the laminate with high stitch density. 
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CHAPTER 7 

CONCLUSIONS 

Stitching in MWK fabrics provide through-thickness reinforcement of CFRP 

composites and was initially considered as a promising concept for improving 

damage resistance and tolerance problems. It is shown in the current study that 

doubling the stitch density renders slight increase in stiffness and elastic energy 

retention during low energy impact. More importantly, high stitch density leads to 

less delamination at low energy impact and more in-plane fibre fracture at higher 

energy impact. High stitch density is more resistant to perforation during through 

penetration impact and absorbs more energy. Conversely, it is shown that stitch 

density does not affect the damage initiation, while recovery of the dent 

depression is better for the laminate with low stitch density. Stitch density also 

has no significant effect on the ILSS (at dry, elevated temperature and after 

thermohumid conditioning) and that the fabric ply interfaces have low resistance 

to crack propagation during ILSS testing of thin laminates. 

Compression and compression after impact properties are most influenced by the 

stitch density. Compression strength, of dry unimpacted samples , decrease with 

a decrease in stitch density, while the mode of failure changes from V-notched 

type to shear type . On the other hand , percentage retention of compression 

strength after impact for high stitch density is the lowest at all impact levels for 

both dry and aged (thermohumid) samples. This behaviour is attributed to the 

high stress concentration in the matrix around the stitching , and possibly an 

increased ingression of water in the core of the laminate leading to more 

interfacia l degradation . Both Mode I and 11 fracture toughness properties of the 

laminates are affected by the resin-rich areas and tow waviness (due to stitch 

architecture) , which act against each other, nullifying, to some extent, their 

contribution to the mechanical property. 
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Thermohumid property testing results show that the diffusion of water molecules 

into epoxy resins is largely non-Fickian and depends on two factors - availability 

of micro-voids (evident from Raman analysis) and the attractive forces between 

the water molecules and the epoxy resin matrix. Distribution of resin rich area 

and voids, which are dependent on stitch density, also play a significant part in 

water ingression in composite samples. FTIR and Raman analysis of the aged 

samples indicate an increase in the formation of hydrogen bonds after hydration 

but has no correlation with the increase in % water uptake. However, surface 

defects lead to more degradation and is evident from Raman mappings. 

DMTA results indicate better damping property of the low stitch density. High 

stitch density tends to show significantly low damping , indicating better stiffness 

and strength properties. The storage modulus, loss modulus and Tan 0 decrease 

significantly with percentage water uptake for all the laminates. The appearance 

of a secondary Tan 0 peak indicates that the diffusion process for this resin 

system is quite slow, which leaves the core not degraded . 

The evidence from this programme points out that the mechanical performance of 

MWK based composites, in contrast to prepregs, is not uniquely determined by 

the fibre volume fraction of the layers and their orientations. The extent to which 

these properties are affected by stitch architectures is dependent on their effect 

on the extent of tow waviness and axial alignment of the fibres. Fabrication 

techniques also decide the distribution of resin pockets and voids, which in turn 

influence the mechanical properties. Therefore, to maximize delamination 

resistance with minimal loss of in-plane mechanical properties, an optimal 

combination of the stitching and fabrication parameters will need to be identified. 

More importantly, the textile quality issues - which include homogeneity and 

orientation of the reinforcement fibres, gaps between the fibres etc. and the 

quality assessment problems, need to be solved . 
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CHAPTER 8 

FUTURE WORK 

The results presented in this study were based on commercia lly produced 

fabrics , which incorporated a variety of faults like broken/ twisted carbon fibres, 

broken/ missing stitching yarns etc. Furthermore, during the production of the 

laminates , the fabrics were cut into smaller pieces, thereby changing the stitching 

tension , which subsequently changed the crimp in , and gap between, the tows. It 

is recommended for future studies that these parameters are strictly controlled 

during the production stages of the fabric and of the laminates , in order to be 

confident that the results found are the actual behaviour of the reinforcements 

and are not being caused by the faults listed ea rlier. 

A further issue raised in this study about the liquid composite moulding is the flow 

behaviour of the resin during manufacturing . The permeability of the 

reinforcements with varying stitch density requires focused analysis using 

displacement controlled and stress controlled measurement techniques. Fibre 

packing behaviour with increasing or decreasing load also needs investigation . 

It would be worthwhile conducting a study into the effect of various types and 

sizes (number of filaments) of stitch ing materia ls. Such material may include 

glass, carbon , Kevlar etc. 

It is also recommended that the resin-rich area and tow crimp variation with the 

stitch density be quantified . These were found to be competing during damage 

progression. 

As impact properties were found to be affected by the stacking sequence 

significantly, it is would be interesting to check the Mode I and 11 fracture 

toughness behaviour due to the change in stacking sequence. 
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A further study of the influence of impact test variables on the CAI test results 

could be of interest. Variables such as type or size of impactor, type or size of the 

support, thickness of the sample , number of impacts , etc. could be investigated 

for further characterisation of damage resistance and tolerance due to change in 

stitch density. 

The effect of various design of anti-buckling guide on the CAI properties could 

also be undertaken. The CAI properties using miniaturised test fixture and other 

fixtures require further comparison , in order to increase the confidence in the 

validity of miniaturised testing . 

During the long term test, it is recommended that impact behaviour after ageing is 

carried out. Literature surveys showed only a few such studies have ever been 

carried out. However, this particular property of structural composites is thought 

to be important. 

Further study using Raman spectroscopy should be carried out. The initial results 

presented in this study showed that mapping of the aged sample is useful for 

chemical analysis . For better quality of results it is recommended that the 

acquisition time of the spectra be increased by at least fifty-fold . Some 

publications have presented the technique of measuring stress concentration 

using Raman Spectroscopy, which could be used to determine the stress 

concentration due to various stitching parameter in the MWK fabric reinforced 

composites . 

192 



Reference 

REFERENCE 

1. Mazumdar, S.K. , Composites Manufacturing: Materials , Products and 

Process Engineering. 2000: CRC Press. 

2. Nut!, S.R., Introduction to Constituent Materials , in ASM Handbook. 2001 : 

ASM Intemational. 

3. Mills , A , Burley, G. and Backhouse, R. , Innovative Materials and 

Manufacturing Processes for the Cost Effective Manufacture of Composite 

Airframe Structure. in International SAMPE Symposium and Exhibition. 

1999. 

4. Baker, AA. , Jones, R. and Callinan, R.J ., Oamage Tolerance of 

Graphite/Epoxy Composites. Composite Structures, 1985. 4(1) : p. 15-44. 

5. Abrate , S., Impact on Composite Structures. 1998: Cambridge University 

Press. 

6. Poe, C.C , Dexter, H.B. and Raju , IS ., Review of the NASA Textile 

Composite Research . in 38th AIAAlASME/ASCE/AHS/ASC Structures, 

Structural Dynamics, and Materials Conference and Exhibit Adaptive 

Structures Forum. 1997. 

7. Jackson , W.C. and Portanova, MA, Impact Damage Resistance of Textile 

Composites. in International SAMPE Technical Conference. 1996. 

8. Bibo , GA and Hogg , P.J., Influence of Reinforcement Architecture on 

Damage Mechanisms and Residual Strength of Glass-Fibre/Epoxy 

Composite Systems. Composites Science and Technology, 1998. 58(6) : p. 

803-813. 

9. Mills , A , INFACS (Fibre Placement and Structures). 1999, EPSRC 

Innovative Manufacturing Initiative. 

10. Avila-Dominguez, R. Composites Manufacturing Using Non-Crimp Fabrics 

(NCF). in European Society of Composite Materials . 2001 : Newsletter 4. 

193 



Reference 

11. Tong, L., Mouritz, A.P. and Bannister, M.K., 3D Fibre Reinforced Polymer 

Composites. 2002: Elsevier Science Ltd. 

12. de Araujo, M., Hu, H. and Fangueiro, R., Multiaxial Weft Knitted Technology 

for Industrial Textiles. International Textile Bulletin - Nonwovens Industrial 

Textiles, 1995.41(1): p. 44-45. 

13. Anon., Copcentra MAX3 CNC, UBA. 

14. Anon., Multiaxial High-Tech Knitting Machine Manual, Karl Mayer. 

15. Marsh, G., Affordability is the Focus for Aerospace Composites. Reinforced 

Plastics, 2001. 45(1): p. 34-36. 

16. Dow, M.B. and Dexter, H.B., Development of Stitched, Braided and Woven 

Composite Structures in the ACT Program and at Langley Research Center 

(1985 to 1997) Summary and Bibliography. 1997, NASA. p. 1-86. 

17. Marsh, G., Affordability Essential for Aerospace Materials. Reinforced 

Plastics, 2000. 44(1): p. 32-35. 

18. www.vectorply.com accessed in 2003 

19. Ko, F.K., Hu, J. and Jiang, Y., Modeling Uniaxial Tensile Properties of 

Multiaxial Warp Knitted Fabrics. Textile Research Journal, 1998. 68(11): p. 

828-834. 

20. Ko, F.K., Three Dimensional Fabrics for Composites, in Textile Structural 

Composites. 1989, Elsevier Science Publisher. p. 129-172. 

21. www.karlmayer.de accessed in 2003 

22. Anon., Reinforcement - Specifications for Multi-axial Multi-ply Fabrics, Part 

1: Designation. BS EN 13473-1: 2001, 2001. 

23. Ko, F.K., Processing of Textile Preforms, in Advanced Composites 

Manufacturing, T.G. Gutowski, Editor. 1997, John Wiley & Sons Inc. p. 157-

206. 

194 



Reference 

24. Rongxing, Z., Hong, H., Nanliang, C. and Xunwei, F., An Experimental and 

Numerical Study on the Impact Energy Absorption Characteristics of the 

Multiaxial Warp Knitted (MWK) Reinforced Composites. Journal of 

Composite Materials - Lancaster, 2005. 39(6): p. 525-543. 

25. Mouritz, AP., Leong, K.H. and Herszberg, I., A Review of the Effect of 

Stitching on the In-plane Mechanical Properties of Fibre-reinforced Polymer 

Composites. Composites Part A: Applied Science and Manufacturing, 1997. 

28(12): p. 979-991. 

26. Mouritz, AP. and Cox, B.N., A Mechanistic Approach to the Properties of 

Stitched Laminates. Composites Part A: Applied Science and 

Manufacturing, 2000. 31(1): p. 1-27. 

27. Mouritz, AP., Bannister, M. K., Falzon, P. J. and Leong, K. H., Review of 

Applications for Advanced Three-Dimensional Fibre Textile Composites. 

Composites Part A: Applied Science and Manufacturing, 1999. 30(12): p. 

1445-1461. 

28. Anon., SP Systems Guide to Composites, Technical Guide, SP Systems. 

29. Leong, K., Ramakrishna, S., Huang, Z. and Bibo, G. A, The Potential of 

Knitting for Engineering Composites - A Review. Composites Part A: 

Applied Science and Manufacturing, 2000. 31(3): p. 197-220. 

30. Ko, F.K. and Kutz, J., Multiaxial Warp Knit for Advanced Composites. in 

American Society of Mechanical Engineers, Materials Division (Publication) 

MD. 1988. 

31. Wang, Y., Li, J. and Do, P.B., Properties Of Composite Laminates 

Reinforced With E-Glass Multiaxial Non-Crimp Fabrics. Journal of 

Composite Materials, 1995.29(17): p. 2317-2333. 

32. Truong, T.C., Vettori, M., Lomov, S. and Verpoest, I., Carbon Composites 

Based on Multi-Axial Multi-Ply Stitched Preforms. Part 4. Mechanical 

Properties of Composites and Damage Observation. Composites Part A: 

Applied Science and Manufacturing, 2005. 36(9): p. 1207-1221. 

195 



Reference 

33. Dexter, H.B. and Hasko, G.H., Mechanical Properties and Damage 

Tolerance of Multiaxial Warp-Knit Composites. Composites Science and 

Technology, 1996. 56(3): p. 367-380. 

34. Bibo, GA, Hogg, P.J. and Kemp, M., Mechanical Characterisation of Glass 

and Carbon-Fibre-Reinforced Composites Made with Non-Crimp Fabrics. 

Composites Science and Technology, 1997.57(9-10): p. 1221-1241. 

35. Bibo, GA, Hogg, P. J., Backhouse, R. and Mills,· A., Carbon-Fibre Non

Crimp Fabric Laminates for Cost-Effective Damage-Tolerant Structures. 

Composites Science and Technology, 1998.58(1): p. 129-143. 

36. Kang, T.J. and Kim, C., Mechanical and Impact Properties of Composite 

Laminates Reinforced with Kevlar Multiaxial Warp Knit Fabrics. Polymers 

and Polymer Composites, 1997.5(4): p. 265-272. 

37. Kang, T.J. and Kim, C., Energy-Absorption Mechanisms in Kevlar Multiaxial 

Warp-Knit Fabric Composites under Impact Loading. Composites Science 

and Technology, 2000. 60(5): p. 773-784. 

38. Shyr, T.W. and Pan, Y.H., Impact Resistance and Damage Characteristics 

of Composite Laminates. Composite Structures, 2003. 62(2): p. 193-203. 

39. Schrauwen, B. and Peijs, T., Influence of Matrix Ductility and Fibre 

Architecture on the Repeated Impact Response of Glass-Fibre-Reinforced 

Laminated Composites. Applied Composite Materials, 2002. 9(6): p. 331-

352. 

40. Joffe, R. and Varna, J., Effect of Bundle Waviness on Compressive Strength 

and Notch Sensitivity of Non-Crimp Fabric Composites. in American Society 

of Mechanical Engineers, Applied Mechanics Division, AMD. 2002. 

41. Edgren, F., Mattsson, D, Asp, L.E. and Varna, J., Formation of Damage and 

Its Effects on Non-Crimp Fabric Reinforced Composites Loaded in Tension. 

Composites Science and Technology, 2004. 64(5): p. 675-692. 

196 



Reference 

42. Lomov, S.V., Belov, E. B., Bischoff, T., Ghosh, S. B., Truong, T.C. and 

Verpoest, I., Carbon Composites Based on Multiaxial Multiply Stitched 

Preforms. Part 1. Geometry of the Preform. Composites Part A: Applied 

Science and Manufacturing, 2002. 33(9): p. 1171-1183. 

43. Rudd, C.D., Long, A. C., Kendall, K. N., Mangin, C. G. E., Liquid Moulding 

Technologies: Resin Transfer Moulding, Structural Reaction Injection 

Moulding And Related Processing Techniques. 1997: Wood head Publishing 

Ltd. p. 1-64. 

44. Williams, C., J. Summerscales, and S. Grove, Resin Infusion under Flexible 

Tooling (RIFT): a review. Composites Part A: Applied Science and 

Manufacturing, 1996.27(7): p. 517-524. 

45. Stewart, R., SCRIMP Offers a Cleaner Alternative. Reinforced Plastics, 

2002. 46(5): p. 26-29. 

46. Marsh, G., Resin Film Infusion - Composites Cost Reducer. Reinforced 

Plastics, 2002. 46(2): p. 44-49. 

47. Sevostianov, LB., Verijenko, V. E., von Klemperer, C. J. and Chevallereau, 

B., Mathematical Model of Stress Formation During Vacuum Resin Infusion 

Process. Composites Part B: Engineering, 1999.30(5): p. 513-521. 

48. Darcy, H.P.C., Les fontaines publiques de la ville de Dijon. 1856: Dalmont, 

Paris. 

49. Ahn, K.J., J.C. Seferis, and L. Letterman, Autoclave Resin Film Infusion 

Process- Analysis and Prediction of Resin Content. Sampe Quarterly, 1990. 

21 (2): p. 3-9. 

50. Ahn, K.J., J.C. Seferis, and J.C. Berg, Simultaneous Measurements of 

Permeability and Capillary Pressure of Thermosetting Matrices in Woven 

Fabric Reinforcements. Polymer Composites, 1991.12(3): p. 146-152. 

51. Anon., Process Instructions Manual, ACG MTM44 - Dual Cure Epoxy 

Matrix, Advanced Composites Group Ltd. 

197 



Reference 

52. Park, J. and Kang, M.K., A Numerical Simulation of the Resin Film Infusion 

Process. Composite Structures, 2003. 60(4): p. 431-437. 

53. Gutowski, T.G., Cai, Z., Bauer, S., Boucher, D., Kingery, J. and Wineman, 

S., Consolidation Experiments for Laminate Composites. Journal of 

Composite Materials, 1987.21: p. 650-669. 

54. Qi, B., Raju, J., Kruckenberg, T. and Stanning, R., A Resin Film Infusion 

Process for Manufacture of Advanced Composite Structures. Composite 

Structures, 1999.47(1-4): p. 471-476. 

55. Dillon, G., P. Mallon, and M. Monaghan, The Autoclave Processing of 

Composites, in Advanced Composites Manufacturing, T.G. Gutowski, 

Editor. 1997, John Wiley & Sons Inc. p. 207-241. 

56. Gutowski, T.G., A Brief Introduction to Composite Materials and 

Manufacturing Processes, in Advanced Composites Manufacturing, T.G. 

Gutowski, Editor. 1997, John Wiley & Sons Inc. p. 5-42. 

57. Godbehere, A.P., The Manufacture of Composites by Resin Film Infusion of 

Non-Crimp Fabrics. 1995, PhD Thesis, Cranfield University. 

58. Robitaille, F. and Gauvin, R., Compaction of Textile Reinforcements for 

Composites Manufacturing. I: Review of Experimental Results. Polymer 

Composites, 1998. 19(2): p. 198-216. 

59. Robitaille, F., Long, A.C. and Rudd, C.D., Geometric Modelling of Textiles 

. for Prediction of Composite Processing and Performance Characteristics. 

Plastics, Rubber and Composites, 2002. 31(2): p. 66-76. 

60. Crookston, J.J., Long, A.C. and Jones, lA, Modelling Effects of 

Reinforcement Deformation During Manufacture on Elastic Properties of 

Textile Composites. Plastics Rubber and Composites, 2002. 31(2): p. 58-66. 

61. Chen, B. and Chou, T.W., Compaction of Woven-Fabric Preforms in Liquid 

Composite Molding Processes: Single-Layer Deformation. Composites 

Science and Technology, 1999. 59(10): p. 1519-1526. 

198 



Reference 

62. Visconti, I.C., Langelia, A. and Durante, M., Analysis of Transversal 

Permeability for Different Types of Glass Fiber Reinforcement. Applied 

Composite Materials, 2003. 10(2): p. 119-127. 

63. Harper, J.F., Miller, N.A. and Yap, S.C., Problems Associated with the 

Compression Testing of Fibre Reinforced Plastic Composites. Polymer 

Testing, 1993. 12(1): p. 15-29. 

64. Minguet, P.J., Fedro, M.J. and Gunther, C.K., Test Methods for Textile 

Composites. 1994, NASA. 

65. Kyriakides, S., Arseculeratne, R., Perry, E. J. and Liechti, K. M., On the 

Compressive Failure of Fiber Reinforced Composites. International Journal 

of Solids and Structures, Time Dependent Problems in Mechanics, 1995. 

32(6-7): p. 689-738. 

66. Srookes, C.R. and Choudhury, A., Failure Analysis of Engineering 

Materials. 2002: McGraw Hill Companies Inc. p. 304-306. 

67. Soutis, C., Measurement of the Static Compressive Strength of Carbon

FibrelEpoxy Laminates. Composites Science and Technology, 1991.42(4): 

p.373-392. 

68. Soutis, C., Curtis, P.T. and Fleck, NA, Compressive Failure of Notched 

Carbon Fibre Composites. Proc R Soc London A, 1993.440(1909): p. 241-

256. 

69. Miller, A.J., The Effect of Microstructural Parameters on the Mechanical 

Properties of Non-crimp Fabric Composites. 1996, MPhil Thesis, Cranfield 

University, UK. 

70. Drapier, S. and Wisnom, M.R., Finite-Element Investigation of the 

Compressive Strength of Non-Crimp-Fabric-Based Composites. 

Composites Science and Technology, 1999. 59(8): p. 1287-1297. 

199 



Reference 

71. Hogg, P.J., Prichard, J.C. and Stone, D.L., A Miniaturised Post-Impact 

Compression Test. Composites Testing and Standardisation, European 

Conference, ECCM-CTS, 1992: p. 357-370. 

72. Hull, D., An Introduction to Composite Materials. 1981: Cambridge 

University Press. 

73. Shu, W.Y. and Lin, K.F., The Effects of Additives on Curing Properties, 

Resin Contents and Mechanical Properties of Graphite/ Epoxy Composites. 

Polymer Composites, 1992. 13(3): p. 213-222. 

74. Drapier, S. and Wisnom, M.R., A Finite-element Investigation of the 

Interlaminar Shear Behaviour of Non-Crimp-Fabric-based Composites. 

Composites Science and Technology, 1999.59(16): p. 2351-2362. 

75. Piggott, M.R., The Effect of Fibre Waviness on the Mechanical Properties of 

Unidirectional Fibre Composites: A Review. Composites Science and 

Technology, 1995.53(2): p. 201-205. 

76. Matthews, F.L. and Rawlings, R.D., Composite Materials: Engineering and 

Science. 1994: Chapman & Hall. 

77. Sjogren, A, Asp, L. E., Greenhalgh, E. S. and Hiley, M. J., Interlaminar 

Crack Propagation in CFRP: Effects of Temperature and Loading 

Conditions on Fracture Morphology and Toughness, in Composite 

Materials: Testing, Design and Acceptance Criteria, ASTM STP 1416.2002, 

p.235-252. 

78. Kollar, L.P. and Springer, G.S., Mechanics of Composite Structures. 2003: 

Cambridge University Press. 

79. Anon., ESIS - European Structural Integrity Society - Polymer and 

Composites Task Group. 

80. Kessler, A and Bledzki, A, Correlation between Interphase-Relevant Tests 

and the Impact-Damage Resistance of Glass/Epoxy Laminates with 

200 



Reference 

Different Fibre Surface Treatments. Composites Science and Technology, 

2000.60(1): p. 125-130. 

81. Jordan, M.W. and Bradley, W.L., Micromechanism of Fracture in 

Toughened Graphite-Epoxy Laminates, in Toughened Composites: 

Symposium on Toughened Composites, N.J. Johnston, Editor. 1987, ASTM 

STP 937. 

82. Hogg, P.J. and Bibo, G.A., Impact and Damage Tolerance, in Mechanical 

Testing of Advanced Fibre Composites, Editor J.M. Hodgkinson,. 2000, 

CRC Press. p. 211-247. 

83. Chivers, R.A. and Moore, D.R., Further Developments in the Interpretation 

of Signals from Instrumented Falling Weight Impact (IFWI). Measurement 

Science and Technology, 1990.1(4): p. 313-321. 

84. Bibo, GA, Leicy, D., Hogg, P. J. and Kemp, M., High-temperature Damage 

Tolerance of Carbon Fibre-reinforced Plastics: Part 1: Impact 

Characteristics. Composites, 1994.25(6): p. 414-424. 

85. Cantwell, W.J., Curtis, P.T. and Morton, J., An Assessment of the Impact 

Performance of CFRP Reinforced with High-Strain Carbon Fibres. 

Composites Science and Technology, 1986.25(2): p. 133-148. 

86. Williams, J.G. and Rhodes, M.D., Effect of Resin on Impact Damage 

Tolerance of Graphite! Epoxy Laminates, in Composite Materials: Testing 

and Design. 1982, ASTM STP 787. p. 450-480. 

87. Greenhalgh, E.S. and S. Singh, The Effect of Moisture, Matrix and Ply 

Orientation on Delamination Resistance, Failure Criteria and Fracture 

Morphology in CFRP, in Composite materials : Testing, Design, and 

Acceptance Criteria, 2002, ASTM STP 1416. p. 221-234. 

88. Hitchen, SA and Kemp, R.M.J., The Effect of Stacking Sequence on 

Impact Damage in a Carbon Fibre!Epoxy Composite. Composites, 1995. 

26(3): p. 207-214. 

201 



Reference 

89. Strait, L.H., Karasek, M.L. and Amateau, M.F., Effects of Stacking 

Sequence on the Impact Resistance of Carbon Fiber Reinforced 

Thermoplastic Toughened Epoxy Laminates. Journal of Composite 

Materials, 1992.26(12): p. 1725-1740. 

90. Dost, E.F., Finn, S. R., Stevens, J. J., Lin, K. Y. and Fitch, C. E., 

Experimental Investigation into Composite Fuselage Impact Damage 

Resistance and Post Impact Compression Behaviour. in 37th International 

SAMPE Symposium and Exhibition. 1992. 

91. Cantwell, W.J. and Morton, J., The Impact Resistance of Composite 

Materials - A Review. Composites, 1991. 22(5): p. 347-362. 

92. Dickinson, L.C., Farley, G.L. and Hinders, M.K., Translaminar Reinforced 

Composites: A Review. Journal of Composites Technology and Research, 

1999.21(1): p. 3-15. 

93. Ellyin, F. and Rohrbacher, C., The Influence of Aqueous Environment, 

Temperature and Cyclic Loading on Glass-Fibre/Epoxy Composite 

Laminates. Journal of Reinforced Plastics and Composites, 2003. 22(7): p. 

615-636. 

94. Ellyin, F. and Rohrbacher, C., Effect of Aqueous Environment and 

Temperature on Glass-Fibre Epoxy Resin Composites. Journal of 

Reinforced Plastics and Composites, 2000. 19(17): p. 1405-1427. 

95. Weitsman, Y.J. and Elahi, M., Effects of Fluids on the Deformation, Strength 

and Durability of Polymeric Composites - An Overview. Mechanics of Time 

Dependent Materials, 2000. 4(2): p. 107-127. 

96. Suh, D.WK, Ku, M.K., Nam, J.D., Kim, B.S. and Yoon, S.C., Equilibrium 

Water Uptake of Epoxy/Carbon Fiber Composites in Hygrothermal 

Environmental Conditions. Journal of Composite Materials, 2001. 35(3): p. 

264-279. 

97. Zhou, J. and Lucas, J.P., Hygrothermal Effects of Epoxy Resin. Part I: The 

Nature of Water in Epoxy. Polymer, 1999. 40(20): p. 5505-5512. 

202 



Reference 

98. Zhou, J. and Lucas, J.P., Hygrothermal Effects of Epoxy Resin. Part 11: 

Variations of Glass Transition Temperature. Polymer, 1999.40(20): p. 5513-

5522. 

99. Wong, T.C. and Broutman, L.J., Effect of Stress on Sorption of Water in an 

Epoxy Resin. in Annual Technical Conference - Society of Plastics 

Engineers. 1985. 

100. Roy, S. and Xu, W., Modeling of Diffusion in the Presence of Damage in 

Polymer Matrix Composites. International Journal of Solids and Structures, 

2001. 38(1): p. 115-125. 

101. Patel, S.R. and Case, S.w., Durability of a Graphite/Epoxy Woven 

Composite under Combined Hygrotherrnal Conditions. International Journal 

of Fatigue, 2000. 22(9): p. 809-820. 

102. Roy, S., Xu, W., Patel, S. and Case, S., Modeling of Moisture Diffusion in 

the Presence of Bi-Axial Damage in Polymer Matrix Composite Laminates. 

International Journal of Solids and Structures, 2001. 38(42-43): p. 7627-

7641. 

103. Rao, R.M.v.G.K., Balasubramanian, N. and Chanda, M., Factors Affecting 

Moisture Absorption in Polymer Composites Part 1: Influence of Internal 

Factors, in Environmental Effects on Composite Materials, Editor G.S. 

Springer. 1988. p. 75-88. 

104. Myung, C.L. and Peppas, N.A., Models of Moisture Transport and Moisture

Induced Stresses in Epoxy Composites. Journal of Composite Materials, 

1993.27(12): p. 1146-1171. 

105. Springer, G.S., Numerical Procedures for the Solution of One Dimensional 

Fickian Diffusion Problems, in Environmental Effects on Composite 

Materials, G.S. Springer, Editor. 1981, Technomic Publishing Co. p. 166-

199. 

106. Nogueira, P., Ramirez, C., Torres, A., Abad, M.J., Cano, J., L6pez, J., 

L6pez-Bueno, I. and Barral, L., Effect of Water Sorption on the Structure 

203 



Reference 

and Mechanical Properties of an Epoxy Resin System. Journal of Applied 

Polymer Science, 2001. 80(1): p. 71-80. 

107. Springer, G.S., Environmental Effects, in Environmental Effects on 

Composite Materials, G.S. Springer, Editor. 1988, Technomic Publishing 

Company, Inc. p. 1-34. 

108. De Wilde, W.P. and Frolkovic, P., The Modelling of Moisture Absorption in 

Epoxies: Effects at the Boundaries. Composites, 1994. 25(2): p. 119-127. 

109. Blikstad, M., Sjoblom, P.O.w. and Johannesson, T.R., Long-term Moisture 

Absorption in Graphite/Epoxy Angle-ply Laminates. Journal of Composite 

Materials, 1984.18(1): p. 32-46. 

110. Hahn, H.T., HygrothermalOamage in Graphite/Epoxy Laminates. Journal of 

Engineering Materials and Technology, Transactions of the ASME, 1987. 

109(1): p. 3-11. 

111. Choi, H. S., Ahn, K. J., Nam, J. D. and Chun, H. J., Hygroscopic Aspects of 

Epoxy/Carbon Fiber Composite Laminates in Aircraft Environments. 

Composites Part A: Applied Science and Manufacturing, 2001. 32(5): p. 

709-720. 

112. Zhang, M. and Mason, S.E., Effects of Contamination on the Mechanical 

Properties of Carbon Fibre Reinforced Epoxy Composite Materials. Journal 

of Composite Materials, 1999.33(14): p. 1363-1374. 

113. Bradley, w.L. and Grant, T.S., Effect of the Moisture Absorption on the 

Interfacial Strength of Polymeric Matrix Composites. Journal of Materials 

Science, 1995.30(21): p. 5537-5542. 

114. Zhuang, H. and Wightman, J.P., The Influence of Surface Properties on 

Carbon Fiber/Epoxy Matrix Interfacial Adhesion. Journal of Adhesion, 1997. 

62(1-4): p. 213-245. 

204 



Reference 

115. Takeda, N. and Ogihara, S., In Situ Observation and Probabilistic Prediction 

of Microscopic Failure Processes in CFRP Cross-Ply Laminates. 

Composites Science and Technology, 1994. 52(2): p. 183-195. 

116. Detassis, M., Pegoretti, A. and Migliaresi, C., Effect of Temperature and 

Strain Rate on Interfacial Shear Stress Transfer in CarbonlEpoxy Model 

Composites. Composites Science and Technology, 1995.53(1): p. 39-46. 

117. Wimolkiatisak, A.S. and Bell, J.P., Interfacial Shear Strength and Failure 

Modes of Interphase-Modified Graphite-Epoxy Composites. Polymer 

Composites, 1989. 10(3): p. 162-172. 

118. Im, K.H., Cha, C.S., Kim, S.K. and Yang, I.Y., Effects of Temperature on 

Impact Damages in CFRP Composite Laminates. Composites Part B: 

Engineering, 2001. 32(8): p. 669-682. 

119. Potter, R.T. and Purslow, D., Environmental Degradation of Notched CFRP 

in Compression. Composites, 1983. 14(3): p. 206-225. 

120. Purslow, D., Effect of Environment on the Compression Strength of Notched 

CFRP - A Fractographic Investigation. Composites, 1984.15(2): p. 112-120. 

121. Karasek, M.L., Strait, L. H., Amateau, M. F., Runt, J. P., Effect of 

Temperature and Moisture on the Impact Behavior of Graphite/Epoxy 

Composites: Part I - Impact Energy Absorption. Journal of Composites 

Technology and Research, 1995. 17(1): p. 3-10. 

122. Karasek, M.L., Strait, L. H., Amateau, M. F., Runt, J. P., Effect of 

Temperature and Moisture on the Impact Behavior of Graphite/Epoxy 

Composites: Part If - Impact Damage. Journal of Composites Technology 

and Research, 1995. 17(1): p. 11-16. 

123. Harper, J.F. and Abd Aziz, R., The Influence of Thermohumidity on 

Compression After Impact Properties of Fibre Reinforced Epoxy Laminates. 

Key Engineering Materials - Experimental Techniques and Design in 

Composite Materials, 2002. 5(221-222): p. 173-184. 

205 



Reference 

124. Imieliriska, K. and Guillaumat, L., The Effect of Water Immersion Ageing on 

Low-Velocity Impact Behaviour of Woven Aramid-Glass Fibre/Epoxy 

Composites. Composites Science and Technology, 2004. 64(13-14): p. 

2271-2278. 

125. Asp, L.E., The Effects of Moisture and Temperature on the Interlaminar 

Delamination Toughness of a Carbon/Epoxy Composite. Composites 

Science and Technology, 1998.58(6): p. 967-977. 

126. Anon., TORAYCA, Toray Industries Inc. accessed from www.toray.co.jp 

127. Anon., Product Information Sheet, Formax UK. 

128. Anon., Technical Data Sheet, ACG MTM44 - Dual Cure Epoxy Matrix, 

Advanced Composites Group. 

129. Foreman, A., Personal Communication. 2003: QinetiQ, Farnborough. 

130. Mills, A., Personal Communication. 2003: Centre of Lightweight 

Composites, SIMS, Cranfield University. 

131. Anon., Standard Test Methods for Density and Specific Gravity (Relative 

Density) of Plastics by Displacement, in ASTM D792-00. 2000. 

132. Curtis, P.T., CRAG Test Methods for the Measurement of the Engineering 

Properties of Fibre Reinforced Plastics. 1988, RAE TR 88012. p. 1-51. 

133. Anon., Standard Test Methods for Void Content of Reinforced Plastics, in 

ASTM D2734-94. 1994. 

134. Anon., Operator's Manual - Rosand Type 5 Instrumented Falling Weight 

Impact Machine. 

135. Anon., Plastics: Determination of Multi-axial Impact Behaviour of Rigid 

Plastics: Instrumented Puncture Testing, in BS EN ISO 6603-2:2000. 2000. 

136. Kim, J.K., Recent Developments in Impact Damage Assessment of Fibre 

Composites, in Impact Behaviour of Fibre-reinforced Composite Materials 

206 



Reference 

and Structures, Editors S.R. Reid and G. Zhou,. 2000, Woolhead Publishing 

Ltd. p. 33-74. 

137. Pavier, M.J. and Clarke, M.P., Experimental Techniques for the 

Investigation of the Effects of Impact Damage on Carbon-Fibre Composites. 

Composites Science and Technology, 1995.55(2): p. 157-169. 

138. Anon., Plastics: Standard Atmospheres for Conditioning and Testing, in BS 

EN ISO 291 :2005. 

139. Gates, T.S., On the Use of Accelerated Test Methods for Characterization 

of Advanced Composite Materials. 2003, NASA Langley Research Centet. 

p.55. 

140. Anon., DMTA MK 11 Operator's Manual, Polymer Laboratories. 

141. Ferraro, J.R. and Nakamoto, K., Introductory Raman Spectroscopy. 1994: 

Academic Press, Inc. 

142. Mertzel, E. and Koenig, J.L., Application of FT-IR and NMR to Epoxy 

Resins, in Advances in Polymer Science, K. Dusek, Editor. 1986. p. 73-112. 

143. Baranska, H., A. Labudzinska, and J. Terpinski, Laser Raman 

Spectrometry: Analytical Applications. 1987: Ellis Horwood Limited. 

144. Anon., LabSpec Software User Guide. 1999, Dilor-Jobin Yvon-Spex. 

145. Nilsson, K.F., Asp, L.E. and Sjogren, A., On Transition of Delamination 

Growth Behaviour for Compression Loaded Composite Panels. International 

Journal of Solids and Structures, 2001. 38(46-47): p. 8407-8440. 

146. Davies, P., Blackman, B.R.K. and Brunner, A.J., Standard Test Methods for 

Delamination Resistance of Composite Materials: Current Status. Applied 

Composite Materials, 1998. 5: p. 345-364. 

147. Davies, P., Moulin, C., Kausch, H. H. and Fischer, M., Measurement of Glc 

and Gllc in Carbon/Epoxy Composites. Composites Science and 

Technology, 1990.39(3): p. 193-205. 

207 



Reference 

148. Hoecker, F., Friedrich, K., Blumberg, H. and Karger-Kocsis, J., Effects of 

Fiber/Matrix Adhesion on off-axis Mechanical Response in Carbon

fiber/Epoxy-resin Composites. Composites Science and Technology, 1995. 

54(3): p. 317-327. 

149. Baley, C., Davies, P., Grohens, Y. and Dolto, G., Application of Interlaminar 

Tests to Marine Composites: A Literature Review. 2004. 11(2): p. 99-127. 

150. Backhouse, R, Multiaxial Non-Crimp Fabrics: Characterisation of 

Manufacturing Capability for Composite Aircraft Primary Structure 

Applications, in School of Industrial and Manufacturing Science. 1998, 

Cranfield University. 

151. Foreman, A., Unpublished Work. 2004. 

152. Anon., Fibre-Reinforced Plastic Composites: Determination of Apparent 

Interlaminar Shear Strength by Short-Beam Method, in BS EN ISO 

14130:1998. 1998. 

153. Clark, G., Modelling of Impact Damage in Composite Laminates. 

Composites, 1989.20(3): p. 209-214. 

154. Pearce, N.RL., Guild, F.J. and Summerscales, J., An Investigation into the 

Effects of Fabric Architecture on the Processing and Properties of Fibre 

Reinforced Composites Produced by Resin Transfer Moulding. Composites 

Part A: Applied Science and Manufacturing, 1998. 29(1-2): p. 19-27. 

155. Yoshida, H., Ogasa, T. and Hayashi, R, Statistical Approach to the 

Relationship between ILSS and Void Content of CFRP. Composites 

Science and Technology, 1986.25(1): p. 3-18. 

156. Foreman, A., Meeks, C., Enhanced Damage Management in Polymer 

Composites. 2002. QINETIQ/FST/CR025072. 

157. Nettles, A.T., Douglas, M.J. and Estes, E.E., Scaling Effects in 

Carbon/Epoxy Laminates under Transverse Quasi-Static Loading. 1999, 

NASA Langley Research Center. 

208 



Reference 

158. Wardle, B.L. and Lagace, P.A., On the Use of Dent Depth as an Impact 

Damage Metric for Thin Composite Structures. Journal of Reinforced 

Plastics and Composites, 1997. 16(12): p. 1093-1110. 

159. Caprino, G. and Lopresto, V., The Significance of Indentation in the 

Inspection of Carbon Fibre-reinforced Plastic Panels Damaged by Low

velocity Impact. Composites Science and Technology, 2000. 60(7): p. 1003-

1012. 

160. Cantwell, W.J. and Morton, J., Detection of Impact Damage in CFRP 

Laminates. Composite Structures, 1985. 3(3-4): p. 241-257. 

161. Hancox, N.L., An Overview of the Impact Behaviour of Fibre-reinforced 

Composites, in Impact Behaviour of Fibre-reinforced Composite Materials 

and Structures, S.R. Reid and G. Zhou, Editors. 2000, CRC Press. p. 1-32. 

162. Delfosse, D. and Poursartip, A., Energy-based Approach to Impact Damage 

in CFRP Laminates. Composites Part A: Applied Science and 

Manufacturing, 1997.28(7): p. 647-655. 

163. Dorey, G. Impact Damage in Composites-Development, Consequences, 

and Prevention. in Proc. 6th International Conference on Composite 

Materials and 2nd European Conference on Composite Materials. 1988. 

London: Imperial College. 

164. Zhou, G. and Greaves, L.J., Damage Resistance and Tolerance of Thick 

Laminated Woven Roving GFRP Plates Subjected to Low-velocity Impact, 

in Impact Behaviour of Fibre-reinforced Composite Materials and Structures, 

S.R. Reid and G. Zhou, Editors. 2000, Woolhead Publishing Ltd. p. 133-

185. 

165. Zhou, G., Lloyd, J.C. and McGuirk, J.J., Experimental Evaluation of 

Geometric Factors Affecting Damage Mechanisms in Carbon/Epoxy Plates. 

Composites Part A: Applied Science and Manufacturing, 2001. 32(1): p. 71-

84. 

209 



Reference 

166. Caprino, G. and Lopresto, V., On the Penetration Energy for Fibre

Reinforced Plastics under Low-velocity Impact Conditions. Composites 

Science and Technology, 2001. 61(1): p. 65-73. 

167. Babic, L., Dunn, C. and Hogg, P.J., Damage Development and Its 

Significance in GRP Subjected to Impact. Plastic, Rubber Processing and 

Application, 1989. 12(4): p. 199-207. 

168. Belingardi, G. and Vadori, R., Low Velocity Impact Tests of Laminate G/ass

Fiber-Epoxy Matrix Composite Material Plates. International Journal of 

Impact Engineering, 2002. 27(2): p. 213-229. 

169. Hogg, P.J., Personal Communication. 2005. 

170. Prichard, J.C. and Hogg, P.J., The Role of Impact Damage in Post-Impact 

Compression Testing. Composites, 1990. 21 (6): p. 503-511. 

171. Larsson, F., Damage Tolerance of a Stitched CarbonlEpoxy Laminate. 

Composites Part A: Applied Science and Manufacturing, 1997. 28(11): p. 

923-934. 

172. Suh, S.S., Han, N. L., Yang, J. M. and Hahn, H. T., Compression Behavior 

of Stitched Stiffened Panel with a Clearly Visible Stiffener Impact Damage. 

Composite Structures, 2003. 62(2): p. 213-221. 

173. Mattheij, P., Gliesche, K. and Feltin, D., 3D Reinforced Stitched 

CarbonlEpoxy Laminates Made by Tailored Fibre Placement. Composites 

Part A: Applied Science and Manufacturing, 2000. 31(6): p. 571-581. 

174. Glaessgen, E.H. and Raju, I.S., Effect of Stitching on Debonding in 

Composite Structural Elements. in ICES'01---lnternational Conference on 

Computational Engineering & Sciences. 2001. Puerto Vallarta, Mexico. 

175. Anon., Plastics: Determination of Water Absorption, in BS EN ISO 62:1999. 

1999. 

210 



Reference 

176. Zhou, J. and Lucas, J.P., The Effects of a Water Environment on 

Anomalous Absorption Behavior in Graphite/Epoxy Composites. 

Composites Science and Technology, 1995.53(1): p. 57-64. 

177. Musto, P., Ragosta, G. and Mascia, L., Vibrational Spectoscopy Evidence 

for the Dual Nature of Water Sorbed into Epoxy Resins. Chemistry of 

Materials, 2000. 12(5): p. 1331-1341. 

178. Noobut, W. and Koenig, J.L., Interfacial Behavior of Epoxy/E-Glass Fiber 

Composites under Wet-Dry Cycles by Fourier Transform Infrared 

Microspectroscopy. Polymer Composites, 1999. 20(1): p. 38-47. 

179. McMurry, J., Organic Chemistry. 2000: Pacific Grove. 

180. Ngono, Y., Marechal, Y. and Mermilliod, N., Epoxy-Amine Reticulates 

Observed by Infrared Spectrometry. I: Hydration Process and Interaction 

Configurations of Embedded H20 Molecules. Journal of Physical Chemistry 

B, 1999.103(24): p. 4979-4985. 

181. Chen, S., Tan, L., Qiu, F., Jiang, X., Wang, M. and Zhang, H., The Study of 

Poly(Styrene-Co-P-(Hexafluoro-2-Hydroxylisopropyl)-[Alpha]-Methyl

Styrene)/Poly(Propylene Carbonate) Blends by ESR Spin Probe And 

Raman. Polymer, 2004. 45(9): p. 3045-3053. 

182. Ward, Y. and Mi, Y., The Study of Miscibility and Phase Behaviour of 

Phenoxy Blends Using Raman Spectroscopy. Polymer, 1999. 40(9): p. 

2465-2468. 

183. Davies, P., Pomies, F. and Carlsson, LA, Influence of Water and 

Accelerated Aging on the Shear Fracture Properties of Glass/Epoxy 

Composite. Applied Composite Materials, 1996.3(2): p. 71-87. 

184. Wood, CA and Bradley, W.L., Determination of the Effect of Seawater on 

the Interfacial Strength of an Interlayer E-glass/graphite/epoxy Composite 

by in situ Observation of Transverse Cracking in an Environmental SEM. 

CompOSites Science and Technology, 1997.57(8): p. 1033-1043. 

211 



Reference 

185. Adams, RD. and Singh, M.M., The Effect of Immersion in Sea Water on the 

Dynamic Properties of Fibre-Reinforced Flexibilised Epoxy Composites. 

Composite Structures, 1995. 31(2): p. 119-127. 

186. Mouritz, A.P., Gallagher, J. and Goodwin, AA, Flexural Strength and 

Inter/aminar Shear Strength of Stitched GRP Laminates Following Repeated 

Impacts. Composites Science and Technology, 1997.57(5): p. 509-522. 

187. Zhang, Z., Klein, P. and Friedrich, K., Dynamic Mechanical Properties of 

PTFE Based Short Carbon Fibre Reinforced Composites: Experiment and 

Artificial Neural Network Prediction. Composites Science and Technology, 

2002.62(7-8): p. 1001-1009. 

188. Chandra, R, Singh, S.P. and Gupta, K., Damping Studies in Fiber

Reinforced Composites - A Review. Composite Structures, 1999.46(1): p. 

41-51. 

189. Smith, F.C., Winkler, H. and Hogg, P.J., Durability of Non-Crimp Fabric 

Composites in Aqueous Environments. Plastics, Rubber and Composites, 

2001. 30(5): p. 233-242. 

190. Karbhari, V.M. and Q. Wang, Multi-frequency Dynamic Mechanical Thermal 

Analysis of Moisture Uptake in E-glassNinylester Composites. Composites 

Part B: Engineering, 2004. 35(4): p. 299-304. 

191. Li, G., Lee-Sullivan, P. and Thring, RW., Determination of Activation Energy 

for Glass Transition of an Epoxy Adhesive Using Dynamic Mechanical 

Analysis. Journal of Thermal Analysis and Calorimetry, 2000. 60(2): p. 377-

390. 

192. He, L.H. and Liu, Y.L., Damping Behavior of Fibrous Composites with 

Viscous Interface under Longitudinal Shear Loads. Composites Science and 

Technology, 2005. 65(6): p. 855-860. 

193. Schafer, F.U., Polyurethane-based Simultaneous Interpenetrating Polymer 

Networks of Controlled Microphase Morphology and High Damping 

212 



Reference 

Characteristics, in IPTME. 1996, PhD Thesis, Loughborough University. p. 

88-92. 

194. Akay, M., Aspects of Dynamic Mechanical Analysis in Polymeric 

Composites. Composites Science and Technology, 1993.47(4): p. 419-423. 

195. Maxwell, 1.0. and Pethrick, RA, Low Temperature Rearrangement of 

Amine Cured Epoxy Resins. Polymer Degradation and Stability, 1983. 5(4): 

p.275-301. 

196. Whiteside, J.B., Delasi, R.J. and Schulte, R.L., Measurement of Preferential 

Moisture Ingress in Composite Wing/Spar Joints. Composites Science and 

Technology, 1985.24(2): p. 123-145. 

197. FitzGerald, S., Personal Communication, 2006, HoribaJobinYvon. 

213 



. Cure 
Lammate Consumable 

SSD2 

SSD3 

SSD4 

MSDI 

MSD2 

MSD3 

LSD 12 

LSD 13 

LSDl4 

Breather 
& Release 

Breather 
& Release 

Breather& 
Release 

Release 

Release 

None 

None 

None 

None 

2 

2 

2 

2 

2 

2 

Appendix 

APPENDIX 

Initial/cure 
Pressure* 
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Cross-sectional view(Mag. x7) 

.. ~ "" . ; 

Table 19: Optical Micro-Sections of the Compression Moulded Laminates 

Perpendicular to the O· Fibres [* = Ton Force] 
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Appendix 

Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) Vr 

S26-1 2.600 3.20 16.00 38.086 0.556 

S22-1 2.490 3.30 15.70 36.045 0.539 

S23-1 2.415 3.36 17.80 30.284 0.529 

S27-1 2.632 3.26. 15.50 39.066 0.545 

S28-1 2.590 3.24 16.68 35.943 0.549 

S10-3 2.360 3.30 16.28 32.946 0.539 

SU-3 2.540 3.20 16.28 36.567 0.556 

S2-4 2.595 3.30 16.00 36.861 0.539 

Average 2.528 3.270 16.280 35.725 

Std. Dev. 0.098 0.056 0.714 2.834 

Table 20(a): ILSS at 70· C- Laminate 5 

Sample Load(kN) Thickness(mm) Width(mm) ILSS(MPa) Vr 

M2-2 2.358 3.24 16.14 33.819 0.549 

M3-2 2.120 3.30 16.22 29.705 0.539 

M6-2 2.812 3.24 17.16 37.933 0.549 

M8-2 2.624 3.20 16.00 38.438 0.556 

M27-3 2.397 3.26 16.50 33.422 0.545 

M3-4 2.402 3.34 16.66 32.375 0.532 

M6-4 2.736 3.40 16.28 37.072 0.523 

M7-4 3.144 3.38 18.66 37.387 0.526 

Average 2.574 3.295 16.703 35.019 

Std. Dev. 0.322 0.072 0.871 3.144 

Table 20(b): ILSS at 70· C - Laminate M 

Sample Load(kN) Thickness(mm) Width(mm) ILSS(MPa) Vr 

L10-2 2.576 3.26 17.62 33.634 0.545 

L23-2 2.556 3.34 17.14 33.486 0.532 

L24-2 2.832 3.34 17.36 36.632 0.532 

L-X 2.335 3.26 17.16 31.305 0.545 

L 16-4-1 2.317 3.26 15.12 35.255 0.545 

L16-4-2 2.564 3.28 15.44 37.972 0.542 

L13-4 2.532 3.34 16.64 34.168 0.532 

L24-4 2.960 3.32 17.40 38.430 0.535 

Average 2.584 3.300 16.735 35.110 

Std. Dev. 0.220 0.039 0.945 2.441 

Table 20(c): ILSS at 70· C - Laminate L 
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Appendix 

Values at Damage Initiation 

Sample Std. Std. 
Average 

Dev. 
Average 

Dev. 
Average Std. Dev. 

Force 
Force Energy 

Energy 
Displacement Displacement 

(kN) 
(kN) (Joules) 

(Joules) 
(mm) (mm) 

S (10 Joules) 3.37 0.62 1.41 0.37 0.80 0.09 
M (10 Joules) 3.41 0.38 1.34 0.31 0.79 0.06 
L (10 Joules) 3.5 I 0.55 1.43 0.20 0.85 0.12 
S (20 Joules) 4.12 0.43 1.98 0.27 1.02 0.14 
M (20 Joules) 4.06 0.51 1.95 0.31 1.04 0.20 
L (20 Joules) 4.04 0.74 2.01 0.35 1.14 0.28 
S (30 Joules) 4.56 0.57 3.53 0.29 1.41 0.22 
M (30 Joules) 4.39 0.86 3.29 0.36 1.38 0.26 
L (30 Joules) 4.40 0.85 2.71 0.26 1.22 0.25 

Table 21 (a): Force, Energy & Displacement at Damage Initiation 

(During Low Energy Impact) 

Values at Peak 

Sample Std. Std. 
Average 

Dev. 
Average 

Dev. 
Average Std. Dev. 

Force 
Force 

Energy 
Energy 

Displacement Displacement 
(kN) 

(kN) 
(Joules) (Joules) 

(mm) (mm) 

S (10 Joules) 6.56 0.20 9.72 0.05 3.60 0.06 
M (10 Joules) 6.61 0.21 9.71 0.05 3.59 0.05 
L (10 Joules) 6.43 0.22 9.73 0.08 3.66 0.06 
S (20 Joules) 8.55 0.91 18.21 1.80 5.07 0.21 
M (20 Joules) 7.51 0.46 16.52 1.79 4.96 0.27 
L (20 Joules) 7.59 0.76 16.01 2.04 4.90 0.30 
S (30 Joules) 7.86 0.66 20.15 2.51 5.63 . 0.32 
M (30 Joules) 7.37 0.50 18.59 1.22 5.56 0.19 
L (30 Joules) 7.31 0.62 18.86 1.58 5.63 0.20 

Table 21 (b): Force, Energy & Displacement at Peak during Low Energy Impact 
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16 
16 
16 
16 
16 
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16 
16 
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16 
16 
16 
16 
16 
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16 
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Appendix 

Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

82313U 50.232 53.57 3.44 184.2808 272.58 
8221 IU 52.455 55.06 3.32 182.7992 286.95 
82318U 0 end crush 
82216U 0 end crush 

Avera2e 279.77 
STDDEV 10.16 

M228U 49.758 55.12 3.25 179.14 277.76 
M321U 45.92 54.89 3.31 181.6859 252.74 
M326U 0 end crush 
M223U 0 end crush 

Avera2e 265.25 
. 8TDDEV 17.69 

Ll42U 46.434 54.91 3.39 186.1449 249.45 
Ll44U 41.772 55.09 3.44 189.5096 220.42 
Ll43U 42.324 54.9 3.38 185.562 228.09 
L141U 55.13 3.4 187.442 end crush 

Average 232.65 
STDDEV 15.04 

Table 22(a): Compression Strength of Dry Unimpacted Samples 

Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

82315 30.658 54.91 3.27 179.5557 170.74 
82314 29.965 54.93 3.26 179.0718 167.34 
82715 29.108 54.74 3.29 180.0946 161.63 
82217 30.496 54.97 3.26 179.2022 170.18 

Average 167.47 
STDDEV 4.17 

M624 27.942 54.4 3.22 175.168 159.52 
M327 30.577 55.07 3.32 182.8324 167.24 
M827 31.895 55.1 3.29 181.279 175.94 
M224 31.364 55.01 3.28 180.4328 173.83 

Average 169.13 
STDDEV 7.40 

Ll346 31.058 55.02 3.34 183.7668 169.01 
L1641 26.435 54.9 3.38 185.562 142.46 
Ll648 30.08 54.7 3.31 181.057 166.14 
Ll741 35.049 55.09 3.24 178.4916 196.36 

Average 168.49 
8TDDEV 22.06 

Table 22(b): Compression Strength of Dry 10 Joules Impacted Samples 
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Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

S2218 28.472 54.62 3.36 183.5232 155.14 
S2311 30.953 55.26 3.32 183.4632 168.72 
S2618 25.944 55.01 3.27 179.8827 144.23 
S2716 29.54 55.09 3.33 183.4497 161.03 

Average 157.28 
STDDEV 10.32 

M226 24.688 54.89 3.28 180.0392 137.13 
M323 25.645 55.03 3.32 182.6996 140.37 
M328 25.316 54.76 3.31 181.2556 139.67 
M828 28.988 55.32 3.3 182.556 158.79 

Avera2e 143.99 
STDDEV 9.97 

L2426 29.909 54.98 3.38 185.8324 160.95 
L2328 27.002 55.22 3.35 184.987 145.97 
L1646 24.277 54.83 3.29 180.3907 134.58 
L1746 27.189 55.08 3.3 181.764 149.58 

Avera2e 147.77 
STDDEV 10.86 

Table 22(c): Compression Strength of Dry 20 Joules Impacted Samples 

Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

S2214 25.438 55.07 3.32 182.8324 139.13 
S2215 29.047 55.18 3.34 184.3012 157.61 
S2312 24.984 54.7 3.38 184.886 135.13 
S2317 23.861 54.7 3.42 187.074 127.55 

Average 139.85 
STDDEV 12.77 

M222 23.408 54.77 3.34 182.9318 127.96 
M225 21.195 54.72 3.26 178.3872 118.81 
M324 21.961 55.12 3.3 181.896 120.73 
M325 19.967 54.75 3.27 179.0325 111.53 

Avera2e 119.76 
STDDEV 6.75 

L1022 23.494 54.83 3.29 180.3907 130.24 
L1025 20.962 54.51 3.31 180.4281 116.18 
L2324 23.164 54.62 3.37 184.0694 125.84 
L2327 23.429 55.23 3.32 183.3636 127.77 

Average 125.01 
STDDEV 6.16 

Table 22(d): Compression Strength of Dry 30 Joules Impacted Samples 
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Fig. 118(b): Laminate S after 30 Days of Ageing (% W.C.= 1.09) 
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Fig . 121(a): Raman Mapping of Laminate Surface M, after 15 Days of Ageing -

Optical Microscope Image of th e Mapped Sample (Top) and Spatia l Distribution Plot of 
the Intensity Values (Bottom), Map Size: lOx lO Points 
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Fig. 121(b): Raman Mapping of Laminate Surface M, after 30 Days of Ageing -

Optical Microscope Image of the Mapped Sample (Top) and Spatial Distribution Plot of 
the Intensity Values (Bottom), Map Size: lO x\O Points 
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Fig. 121(c): Raman Mapping of laminate Surface M, after 60 Days of Ageing

Optical Microscope Image of the Mapped Sample (Top) and Spatial Distribution Plot of 
tbe Intensity Values (Bottom), Map Size: lO xlO Points 
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Fig. 122(a): Raman Mapping of Laminate Surface L. after 15 Days of Ageing

Optical Microscope Image of the Mapped Sample (Top) and Spatial Distribution Plot of 
the Intensity Values (Bottom), Map Size: IOx lO Points 
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Fig. 122(b): Raman Mapping of Laminate Surface L, after 30 Days of Ageing

Optical Microscope Image of the Mapped Sample (Top) a nd Spatial Distribution Plot of 
tbe Intensity Values (Bottom), Map Size: IO xlO Points 
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Optical Microscope Image of the Mapped Sample (Top) and Spatia l Distribution Plot of 
the Intensity Values (Bottom). Map Size: tO xlO Points 

229 



Appendix 

Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) Vr 

S26-1 2.552 3.35 15.55 36.742 0.531 

S10-3 2.255 3.40 15.10 32.942 0.523 

S22-1 1.936 3.40 15.25 28.004 0.523 

S26-11 2.170 3.30 15.30 32.234 0.539 

S28-1 2.098 3.30 15.05 31.682 0.539 

Average 2.202 3.350 15.250 32.321 

Std. Dev. 0.228 0.050 0.197 3.122 

Table 23(a): ILSS after 12hrs of Ageing in 70· C Water- Laminate S 

Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) Vr 

M2-2 2.418 3.35 15.40 35.152 0.531 

M6-4 2.138 3.45 15.60 29.794 0.515 

M8-2 2.455 3.30 15.65 35.652 0.539 

M2-21 2.280 3.40 15.30 32.872 0.523 

M6-41 2.233 3.45 15.25 31.832 0.515 

Average 2.305 3.390 15.440 33.060 

Std. Dev. 0.131 0.065 0.178 2.414 

Table 23(b): ILSS after 12hrs of Ageing in 70· C Water- Laminate M 

Sample Load(kN) Thickness(mm) Width(mm) . ILSS (MPa) Vr 

L24-2 2.183 3.35 15.20 32.153 0.531 

L23-2 1.956 3.40 15.25 28.293 0.523 

L23-21 1.964 3.40 15.30 28.316 0.523 

L24-21 2.556 3.35 15.20 37.647 0.531 

LJ3-4 2.120 3.40 15.40 30.367 0.523 

Average 2.156 3.380 15.270 31.355 

Std. Dev. 0.244 0.027 0.084 3.867 

Table 23(c): ILSS after 12hrs of Ageing in 70· C Water- Laminate L 
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Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) Vr 

S10-3 1.720 3.40 14.90 25.464 0.523 

SII-3 2.038 3.30 14.80 31.296 0.539 

S27-1 2.103 3.35 14.70 32.029 0.531 

S23-1 1.610 3.45 14.90 23.490 0.515 

Average 1.868 3.375 14.825 28.070 

Std. Dev. 0.240 0.065 0.096 4.237 

Table 24(a): ILSS after 24hrs of Ageing in 70· C Water- Laminate 5 

Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) Vr 

M6-2 2.300 3.30 15.15 34.503 0.539 

M27-3 1.872 3.30 15.25 27.899 0.539 

M3-2 2.260 3.35 15.30 
. 

33.070 0.531 

M7-4 2.540 3.45 16.30 33.876 0.515 

Average 2.243 3.350 15.500 32.337 

:std. Dev. 0.217 0.071 0.537 3.016 

Table 24(b): ILSS after 24hrs of Ageing in 70· C Water- Laminate M 

Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) Vr 

LJ3-4 1.780 3.35 14.40 27.674 0.531 

L23-2 1.654 3.30 15.35 24.489 0.539 

LJ3-42 1.722 3.35 15.10 25.531 0.531 

L23-22 1.856 3.40 15.00 27.294 0.523 

Average 1.753 3.350 14.963 26.247 

Std. Dev. 0.086 0.041 0.403 1.498 

Table 24(c): ILSS after 24hrs of Ageing in 70· C Water- Laminate L 
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Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) Vr 

S22-1 1.562 3.35 15.30 22.856 0.531 

S26-1 1.798 3.35 15.15 26.570 0.531 

S28-1 1.590 3.30 15.25 23.696 0.539 

S27-1 . 1.944 3.35 15.15 28.728 0.531 

S22-11 1.686 3.40 15.00 24.794 0.523 

Average 1.716 3.350 15.170 25.329 

Std. Dev. 0.157 0.035 0.115 2.354 

Table 25(a): ILSS after 96hrs of Ageing in 70· C Water- Laminate S 

Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) Vr 

M7-4 2.030 3.45 15.20 29.033 0.515 

MS-2 1.790 3.30 15.45 26.331 0.539 

M6-2 1.940 3.35 15.15 28.669 0.531 

M3-4 1.952 3.40 15.30 28.143 0.523 

M6-4 2.160 3.50 15.30 30.252 0.508 

Average 1.974 3.400 15.280 28.486 

Std. Dev. 0.135 0.079 0.115 1.433 

Table 25(b): ILSS after 96hrs of Ageing in 70· C Water- Laminate M 

Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) Vr 

LIO-2 1.800 3.30 14.60 28.020 0.539 

L I 0-21 1.730 3.35 15.00 25.821 0.531 

L24-4 1.864 3.50 15.15 26.365 0.508 

L16-4 1.766 3.40 15.15 25.713 0.523 

L13-4 1.892 3.40 14.90 28.010 0.523 

Average 1.810 3.390 14.960 26.786 

Std. Dev. 0.067 0.074 0.227 1.149 

Table 25(c): ILSS after 96hrs of Ageing in 70· C Water- Laminate L 
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Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) V, 

S28-1 1.682 3.30 15.20 25.150 0.539 

S23-1 1.618 3.45 15.35 22.915 0.515 

S2-4 1.722 3.40 15.05 25.239 0.523 

S27-1 1.624 3.35 15.05 24.158 0.531 

S10-3 1.722 3.45 15.05 24.874 0.515 

Average 1.674 3.390 15.140 24.467 

Std. Dev. 0.051 0.065 0.134 0.966 

Table 26(a): ILSS after 264hrs of Ageing in 70· C Water- Laminate S 

Sample Load(kN) Thickness(mm) Width(mm) ILSS(MPa) V, 

M3-2 1.872 3.35 15.15 27.664 0.531 

M8-2 1.710 3.30 15.40 25.236 0.539 

M3-4 1.882 3.45 15.15 27.005 0.515 

M27-3 1.858 3.30 15.30 27.600 0.539 

M3-21 2.060 3.35 15.65 29.469 0.531 

Average 1.876 3.350 15.330 27.395 

Std. Dev. 0.124 0.061 0.208 1.519 

Table 26(b): ILSS after 264hrs of Ageing in 70· C Water- Laminate M 

Sample Load(kN) Thickness(mm) Width(mm) ILSS(MPa) V, 
L13-4 1.976 3.40 15.65 27.852 0.523 

L23-2 2.050 3.40 15.30 29.556 0.523 

L24-2 2.020 3.40 15.50 28.748 0.523 

L13-4S 1.730 3.40 14.75 25.872 0.523 

LIO-2 1.784 3.30 15.15 26.763 0.539 

Average 1.912 3.380 15.270 27.758 

Std. Dev. 0.145 0.045 0.347 1.480 

Table 26(c): ILSS after 264hrs of Ageing in 70· C Water- Laminate L 
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Sample Load(kN) Thickness(mm) Width(mm) ILSS(MPa) VI 

S2-4 1.868 3.40 15.00 27.471 0.523 

S23-1 1.660 3.40 14.75 24.826 0.523 

SII-3 1.728 3.35 15.10 25.620 0.531 

S 11-32 1.888 3.30 15.05 28.511 0.539 

S2-41 1.690 3.40 15.30 24.366 0.523. 

Average 1.767 3.370 15.040 26.159 

Std. Dev. 0.105 0.045 0.198 1.770 

Table 27(a): ILSS after 528hrs of Ageing in 70° C Water- Laminate 5 

Sample Load(kN) Thickness(mm) Width(mm) ILSS(MPa) VI 

M27-3 1.816 3.35 15.00 27.104 0.531 

M7-4 1.918 3.50 15.30 26.863 0.508 

M3-4 1.890 3.40 15.50 26.898 0.523 

M6-2 1.918 3.30 15.65 27.854 0.539 

M2-2 1.970 3.40 15.30 28.403 0.523 

Average 1.902 3.390 15.350 27.424 

Std. Dev. 0.056 0.074 0.245 0.678 

Table 27(b): ILSS after 528hrs of Ageing in 70° C Water- Laminate M 

Sample Load(kN) Thickness(mm) Width(mm) ILSS (MPa) VI 

L13-4 1.772 3.40 14.80 26.411 0.523 

L24-4 1.996 3.40 15.20 28.967 0.523 

L24-42 2.095 3.45 14.95 30.464 0.515 

LJ6-4 1.844 3.35 15.1 0 27.340 0.531 

L23-2 1.916 3.40 15.35 27.534 0.523 

Average 1.925 3.400 15.080 28.143 

Std. Dev. 0.126 0.035 0.214 1.587 

Table 27(c): ILSS after 528hrs of Ageing in 70° C Water- Laminate L 
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Sample No. 
Force Width Thickness Area CAI 
(kN) (mm) (mm) (mm') Strength(MPa) 

S2718U 39.74 55.07 3.29 181.1803 219 
S243U 45.71 54.20 3.39 183.7380 249 

SI038U 40.90 54.76 3.34 182.8984 224 
S248U bath end crush 54.98 3.42 188.0316 ••• 

Averaee 231 
STDDev 16 

M826U 49.88 54.75 3.27 179.0325 279 
M648U 49.29 54.71 3.38 184.9198 267 
M741U 46.90 55.01 3.40 187.0340 251 
M628U test failed 54.91 3.21 176.2611 ••• 

Average 265 
STDDev 14 

L2442U 41.69 54.68 3.37 184.2716 226 
LI443U 40.47 54.80 3.36 184.1280 220 
LI028U 42.88 54.86 3.26 178.8436 240 

Averaee 229 
STDDev 10 

Table 28(a): Compression Strength after 6 Days' Ageing of Unimpacted Samples 

Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

S244 29.67 54.72 3.34 182.7648 162 
S245 30.10 55.01 3.38 185.9338 162 

SI034 30.84 55.09 3.32 182.8988 169 
S1035 33.67 54.95 3.32 182.4340 185 

Average 169 
STDDev 11 

M347 30.62 54.81 3.45 189.0945 162 
M747 28.93 54.45 3.41 185.6745 156 
M645 26.81 54.48 3.46 188.5008 142 
M644 29.46 54.82 3.44 188.5808 156 

Averaee 154 
STDDev 8 

L2427 37.35 54.98 3.38 185.8324 201 
Ll644 23.41 54.85 3.35 183.7475 127 
L2325 28.40 54.43 3.34 181.7962 156 
Ll345 26.50 54.48 3.34 181.9632 146 

Average 158 
STD Dev 31 

Table 28(b): Compression Strength after 6 Days' Ageing of 10J Impacted Samples 
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Sample No. Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

81031 21.37 54.64 3.35 183.0440 117 
81138 24.74 54.82 3.26 178.7132 138 
82818 22.37 55.10 3.28 180.7280 124 
8246 21.64 54.46 3.39 184.6194 117 

Avera!!e 124 
STDDev 10 

M641 23.43 53.96 3.41 184.0036 127 
M743 21.11 54.73 3.43 187.7239 112 
M748 25.65 55.03 3.34 183.8002 140 
M348 19.60 54.70 3.42 187.0740 105 

Avera!!e 121 
STDDev 16 

L1743 20.45 54.92 3.25 178.4900 115 
L1348 20.06 55.07 3.37 185.5859 108 
L2326. 18.54 54.96 3.31 181.9176 102 
L2428 21.90 53.55 3.36 179.9280 122 

Avera!!e 112 
STDDev 9 

Table 28(c): Compression Strength after 6 Days' Ageing of 20J Impacted Samples 

Sample No. Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

81037 22.30 54.59 3.39 185.0601 121 
81134 22.43 54.98 3.27 179.7846 125 
8247 22.90 54.77 3.38 185.1226 124 
8242 19.99 55.12 3.36 185.2032 108 

Avera!!e 119 
SIDDev 8 

M344 21.18 54.98 3.43 188.5814 112 
M744 18.62 54.82 3.39 185.8398 100 
M825 20.00 54.95 3.23 177.4885 113 
M824 16.78 55.03 3.24 178.2972 94 

Average 105 
STDDev 9 

L1645 15.42 54.48 3.27 178.1496 87 
L1121 23.11 54.72 3.24 177.2928 130 
L1441 20.38 54.85 3.30 181.0050 113 
L2425 22.50 54.15 3.43 185.7345 121 

Average 113 
STD Dev 19 I 

Table 28(d): Compression Strength after 6 Days' Ageing of 30J Impacted Samples 
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Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

S2816U 40.63 54.92 3.32 182.3344 223 
S2811U 43.94 54.98 3.28 180.3344 244 
S1033U 26.71 55.01 3.36 184.8336 145 
S1136U 49.60 55.02 3.22 177.1644 280 

Average 223 
STDDev 57 

M2738U both end crush 54.95 3.23 177.4885 ••• 
M346U 41.69 55.02 3.34 183.7668 227 
M341U 47.70 54.97 3.34 183.5998 260 

. M643U 50.83 54.96 3.43 188.5128 270 
Average 252 
STDDev 22 

LI 122U top end crush 54.94 3.23 177.4562 * •• 
LI744U 45.03· 54.98 3.20 175.9360 256 
LI024U 33.35 54.48 3.27 178.1496 187 
L2441U 34.73 55.02 3.31 182.1162 191 

Average 211 
STDDev . 39 

Table 29(a): Compression Strength after 26 Days' Ageing of Unimpacted Samples 

Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

SI137 29.78 54.83 3.25 178.1975 167 
S2817 25.23 55.02 3.29 181.0158 139 
S2617 32.02 54.95 3.27 179.6865 178 
S2714 30.60 55.01 3.28 180.4328 170 

Average 164 
STDDev 17 

M742 28.91 54.65 3.41 186.3565 155 
M2734 28.08 54.38 3.22 175.1036 160 
M342 32.40 54.98 3.36 184.7328 175 
M822 26.60 54.85 3.24 177.7140 150 

Average 160 
STDDev 11 

L1027 27.45 54.82 3.27 179.2614 153 
. L2424 25.97 55.04 3.28 180.5312 144 

L1647 29.88 54.96 3.30 181.3680 165 
L1442 27.24 54.98 3.29 180.8842 151 

Average 153 
STDDev 9 

Table 29(b): Compression Strength after 26 Days' Ageing of 10J Impacted Samples 
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Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm2

) (MPa) 

81036 23.64 54.35 3.38 183.7030 129 
8241 22.64 54.91 3.37 185.0467 122 

82316 25.54 55.07 3.40 187.2380 136 
82711 18.61 55.09 3.34 184.0006 101 

Average 122 
STDDev 15 

M221 22.37 55.12 3.19 175.8328 127 
M343 11.93 54.82 3.40 186.3880 64 
M2736 11.77 55.07 3.24 178.4268 66 
M646 16.89 54.27 3.40 184.5180 92 

. Average 87 
STDDev 29 

L1341 17.63 54.82 3.31 181.4542 97 
L1643 15.15 . 54.25 3.30 179.0250 85 
L1026 25.97 54.58 3.28 179.0224 145 
L2321 27.45 55.04 3.34 183.8336 149 

Average 119 
STDDev 33 

Table 29(c): Compression Strength after 26 Days' Ageing of 20J Impacted Samples 

Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm2

) (MPa) 

82614 15.79 54.78 3.15 172.5570 92 
82615 16.89 54.82 3.17 173.7794 97 
82717 18.28 55.08 3.28 180.6624 101 
81135 23.01 55.18 3.21 177.1278 130 

Average 105 
STDDev 17 

M627 17.89 54.42 3.23 175.7766 102 
M2732 23.74 55.02 3.25 178.8150 133 
M647 21.51 54.83 3.42 187.5186 115 
M745 25.12 54.96 3.44 189.0624 133 

Average 121 
8TDDev 15 

L2422 21.51 54.55 3.34 182.1970 118 
L1344 20.19 54.74 3.33 182.2842 111 
L1347 20.08 55.22 3.32 183.3304 110 
L2446 14.25 54.62 3.32 181.3384 79 

Average 104 
STDDev 18 

Table 29(d): Compression Strength after 26 Days' Ageing of 30J Impacted Samples 
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Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

S261lU 43.41 54.68 3.19 174.4292 249 
S2616U 40.50 54.63 3.27 178.6401 227 
S2713U 51.87 54.55 3.26 177.8330 292 
S113lU 43.94 54.52 3.21 175.0092 251 

Average 255 
STDDev 27 

M623U 38.52 54.38 3.19 173.4722 222 
M82lU 38.81 54.56 3.20 174.5920 222 
M2733U 33.99 54.42 3.25 176.8650 192 
M746U 45.91 54.79 3.40 186.2860 246 

Average 221 
STDDev 22 

L2448U 43.28 54.86 3.36 184.3296 235 
L2444U 44.21 54.85 3.36 184.2960 240 
L2447U 42.62 54.76 3.37 184.5412 231 
L102lU 37.46 54.94 3.21 176.3574 212 

Avera~e 230 
STDDev 12 

Table 30(a): CompressIon Strength after 96 Days' Ageing of Unimpacted Samples 

Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

S1132 19.54 54.82 3.25 178.1650 110 
S2212 21.97 54.75 3.27 179.0325 123 
S2612 28.38 54.62 3.25 177.5150 160 
S2812 30.52 54.72 3.28 179.4816 170 

Avera~e 141 
STDDev 29 

M625 23.01 54.91 3.26 179.0066 129 
M227 29.46 54.07 3.23 174.6461 169 

M2735 33.35 54.42 3.18 173.0556 193 
M322 24.21 54.52 3.25 177.1900 137 

Average 157 
STDDev 30 

L2322 26.60 54.68 3.31 180.9908 147 
L2445 24.59 54.64 3.32 181.4048 136 
L1342 20.32 54.62 3.28 179.1536 113 
L1343 23.01 54.38 3.36 182.7168 126 

Average 130 
STDDev 14 

Table 30(b): Compression Strength after 96 Days' Ageing of 1 DJ Impacted Samples 
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Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

81133 23.11 54.82 3.21 175.9722 131 
S2613 21.24 54.26 3.25 176.3450 120 
82213 21.18 54.44 3.34 181.8296 116 
82813 25.33 54.41 3.30 179.5530 141 

Avera2e 127 
STDDev 11 

M626 19.27 54.88 3.20 175.6160 110 
M2731 18.74 54.78 3.18 174.2004 108 
M621 24.28 53.97 3.19 172.1643 141 
M623 19.60 54.04 3.21 173.4684 113 

Avera2e 118 
STDDev 16 

L2423 26.16 54.82 3.28 179.8096 145 
L2323 18.41 54.85 3.34 183.1990 100 
L2421 30.41 54.93 3.35 184.0155 165 
LI023 20.45 54.84 3.27 179.3268 114 

Average 131 
STDDev 29 

Table 30(c): Compression Strength after 96 Days' Ageing of 20J Impacted Samples 

Sample No. 
Force Width Thickness Area CAI Strength 
(kN) (mm) (mm) (mm') (MPa) 

82815 21.31 54.70 3.31 181.0570 118 
82814 23.54 54.52 3.29 179.3708 131 
81032 22.37 54.07 3.35 181.1345 123 
82712 22.04 54.82 3.27 179.2614 123 

Average 124 
STDDev 6 

M642 19.27 54.35 3.40 184.7900 104 
M2737 17.52 54.72 3.26 178.3872 98 
M622 15.10 54.67 3.29 179.8643 84 
M345 19.58 54.07 3.31 178.9717 109 

Avera2e 99 
STDDev 11 

L2443 19.87 54.68 3.33 182.0844 109 
L1642 16.20 54.81 3.31 181.4211 89 
L1742 18.01 54.95 3.23 177.4885 101 
L1745 17.79 54.85 3.22 176.6170 101 

Avera2e 100 
STDDev 8 

Table 30(d): Compression Strength after 96 Days' Ageing of 30J Impacted Samples 
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Laminate S in CAI 
. 

Actual Compression Strength Value Retention of Compression Strength. 
w.r.t. Dry Compression Strength 

Impact Dry 6 days 26 days 96 days Dry 6 days 26 days 96 days 
Energy 

0 280 231 223 255 100 83 80 91 
10 167 169 164 141 100 101 98 84 
20 157 124 122 127 100 79 78 81 
30 140 119 105 124 100 85 75 89 

Laminate M in CAI 

0 265 265 252 221 100 100 95 83 
10 169 154 160 157 100 91 95 93 
20 144 121 87 118 100 84 60 82 
30 120 105 121 99 100 88 101 83 

Laminate L in CAI 

0 233 229 211 230 100 98 91 99 
10 168 158 153 130 100 94 91 77 
20 148 149 119 131 100 101 80 89 
30 125 113 104 100 100 88 83 80 

Table 31: Retention In Compression Strength Due to Thermo-Humidity 

(After Various Duration in Water, at 70°C) 
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