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ABSTRACT 

The use of cellular polyurethanes either as microporous foams 

in shoe upper materials (poromerics) or in closed cell form as soling 

materials has increased rapidly during the last few years in the 

footwear industry. Compared with vulcanised rubbers, these materials 

have high strength over an extended temperature range, high set and 

good resistance to cut growth. The research now presented.has been 

concerned with determining the·reasons for these mechanical 

properties of polyurethane as compared with compounded conventional 

vulcanised rubbers. 

The supplementary contribution to the thesis presents a review 

of earlier work on the strength and reinforcement of crystalline, 

amorphous and filled vulcanised rubbers and includes a short section 

on the effect of crosslinking on ultimate failure properties of 

natural rubber. This study has been extended by the author into the 

effect of chain branching in polyurethane elastomers on the failure 

properties. 

The viscoelastic properties of natural and artificial leathers 

are also discus·sed in order to demonstrate similarities between the 

different materials ~';d· show hO\fa cellu}.ar polyurethane sheet has . , 

hysteresial propertie., similar .. to those of a natural material of 

fibrous structure. 

I·t is shown that a cubical lattice model can be applied to 

explain the differences between such mechanical properties as modulus, 

~ensile and tear strength of a cellular polyurethane and the 

corresponding soliH material of the same polymer. This model, which 

has previously been applied to the mechanical properties of a 

natural rubber .latex foam, i'nc;li~ates that the strength of cellular 

polyurethanes is due to the very high strength of the solid material. 
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An extensive investigation into the effect of time and temperature 

on the tensile properties of cellular and solid polyurethanes is 

presented in order to show that polyurethanes of the type used in 

poromerics have a very broad relaxation spectrum extending over 18 

decades of time. Because of this response to deformation, the failure 

properties remain fairly constant over the temperature range from 

o 
Above 160 C, the tensile properties fall quite markedly. 

Stress softening in these polyurethanes is very high and can only be 

o 
reversed by heating to temperatures above 160 C. 

The cut growth and fatigue properties of cellular and solid 

polyurethanes are considered. Following a brief review of the 

investigation on cut growth and fatigue of vulcanised rubbers involving 

the use of tearing energy theory, it is shown that cut growth and 

hysteresis properties of vulcanised .rubbers can be correlated. The 

lower limit of tearing energy (To) below which no cut growth takes 

place in the absence of chemical effects is found to be higher for 

r~ 
polyurethanes than for vulcanised rubbers. Fatigue ~ of cellular 

polyurethanes is found to be due to cut growth from the largest pore 

in the sample. These data are also compared with measurements on 

other two phase elastomer systems such as styrene butadiene copolymer 

vulcanisates with high styrene content and polystyrene-polybutadiene 

thermoplastic rubbers. 

From an extensive review of the literature on the structure of 

polyurethane elastomers, it is deduced that polyurethanes of the type 

used in poromerics consist of a segmented structure of long polyester 

chains connected to very minute (25~) hard urethane segments. The 

cohesion of the hard segments is primarily due to hydrogen bonding 

and other physical forces. 



It is concluded that the high strength, good cut growth 

resistance and broad relaxation spectrum of polyurethanes are due to 

the reinforcement given by the hard urethane segments which act as 

well dispersed minute filler particles in the polyester rubber matrix. 

The hydrogen bonding between the hard segments dissociates at 

approximately 170
0
C so giving a degree of thermoplasticity which 

produces a very high permanent set. 

An appendix discusses some of the practical applications in the 

footwear industry of the. work presented, such as forming of poromerics, 

tearing from stitch-holes and flex cracking of solings. 
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CHAPTER 1 

INTRODUCTION 

1.1. USE OF POLYMERIC MATERIALS IN FOOTWEAR 

1.1.1. Introduction 
-=================== 

The traditional material used for centuries in the manufacture 

of footwear has been natural leather. In recent years leather has 

also been increasingly used in the manufacture of gloves, clothing 

and upholstery. The success of leather in these applications is due 

to the good comfort and hygiene properties offered to the wearer. It 

is also very tough yet reasonably flexible and has good durability. 

Despite these good properties, however, it suffers from a number 

of disadvantages. It cannot, for example, be obtained in uniform 

continuous sheets and this has delayed automation in these industries. 

Variations in leather quality arise from the techniques of husbandry, 

environment type and age of the animal. Serious faults, for example, 

within leather are caused by insects and fungal infections. These 

faults however can be masked by the tanner but not always 

satisfactorily. A certain amount of wastage must result from this 

treatment and this is the main reason why footwear and clothing 

manufacturers have increasingly turned to synthetic materials which 

can be obtained in continuous sheets and also have fairly uniform 

physical properties. 

Another reason for the emergence of synthetic leathers is the 

possibility of a supply gap existing in the next few years. By taking 

into account the increase in world population and also the increasing 

number of pairs of shoes per person, it is thought that the world 

output of hides will be at least 30% less than potential demand by 

1980. These figures exclude the increasing use of natural leather 

in clothing. In 1960, 75% of total leather usage in Britain was in 

Jootwear, whereas in 1970 this figure was reduced to 58%. 
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1 Polymers have been widely used as replacement materials for 

leather during the last 20 years. Only 7% of the footwear produced 

in the U.K. at present has leather soles. The rise in the use of 

polymeric based upper materials has not been as fast as soling 

materials but in 1970, 29% of the dress shoes produced in the U.K. 

had synthetic uppers. 

1.1.2. Soling Materials 
======================== , 
Polymers have been used as shoe soling materials for the last 

40 years but the most successful have been resin rubber soling sheets 

and direct moulded rubber soles which were introduced around 1950. 

Resin rubber was found to be the first material that looked like 

leather but in addition was more durable, completely waterproof and 

cheaper. In order to produce a lighter sole, microcellular rubber was 

later introduced. During the 1960's the use of PVC increased as a 

soling material mainly due to the relative ease of processing but it 

offered little in improved performance in wear. During the last few 

1-4 
years, however, microcellular polyurethane solings have. been 

introduced which have improved performance in wear over both rubber 

and PVC and are quite light in weight. 

1.1.3. Upper Materials 
~====================== 

The first group of materials to be used as substitutes for leather 

uppers in shoes were coated fabrics. Solid or cellular polyvinylchloride 

(PVC) coatings on a woven, non-woven or knitted base are the most 

widely used materials and are shown in the scannillg electron microscope 

(SEM) photograPhS5 in figures 1.1. and 1.2. PVC coated fabrics are 

satisfactory for use in certain types of footwear because the general 

appearance of leather is simulated and they also possess some similar 

properties. Their main disadvAntage, however, is that they lack the 

ability to ,'breathe' or transpire water vapour and air which is 

characteristic of leather and their use has therefore been restricted 
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Figure 1.1. 
a========:=a= 

SEM Cross-Section of Coated Fabric consisting of Solid 
PVC on woven fabric base. Magnification: 42 (After Hole 
and Whittaker5). 

Figure 1.2. 
=========== 

SEM'Cross-Section of Coated 
PVC on non-woven fabric base. 
Hole ~nd Whittaker5 ). 

Fabric consisting of Cellular 
M~gnification : 40 (After 
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to women's footwear of fairly open construction where these properties 

are not so important. 

The outstanding moisture absorption and permeabiiity properties 

of leather are due to the molecular and physical structure of its 

protein pre-cursor, collagen. Collagen is the main constituent of 

all structural tissue and is converted into leather by tanning with 

such agents as chromium salts, vegetable tannins and aldehydes. 

The most hydrophilic man-made polymer yet manufactured, however, 

does not absorb more water than does leather itself. This fact has 

led many manufacturers to the idea of using collagen or leather fibres 

6 
as a possible raw material for the manufacture of artificial leather • 

This class of materials is known as collagenous poromerics. Since 

1964, however, large financial investments have been made in the 

development and production of a completely man-made poromeric5- 7 • Up 

to present these have had better properties than the leather-based or 

collagenous types. 

1.2. POROMERICS 

1.2.1. Introduction 
-=================== 

The manufacture of a completely synthetic material with moisture 

absorption and permeability properties similar to the natural leather 

was started in the late 1930s by E. I. Du Pont de Nemours Inc., U.S.A. 

Commercial production of the Du Pont product, under the trade name 

'Corfam' was not started however until 1964, but as early as 1942, a 

8 U.S. patent was taken out to describe a shoe upper material composed 

of flexible fabric coated with a synthetic linear polyamide. They 

initially used the term 'poromeric' to describe the material and 

defined it as lA microporous, permeable, coriaceous sheet material 

comprising polyurethane reinforced with polyester'. 
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A number of new poromeric upper materials have come on to the 

5-7 market in recent years • In view of the development of these 

materials, the Shoe and Allied Trades Research Association has had 

to 'widen the first definition given by Du Pant and now defines a 

poromeric material used in footwear as la man-made shoe upper material 

which is generally similar in nature and appearance to leather and in 

particular has a comparable permeability to water vapour'. 

Most of the developments of poromerics have been based upon an 

attempt to imitate the fibrous structure of leatl!er. This is shown 

by the comparison5 of the scanning electron microscope photographs 

in figures 1.3. and 1.~. Figure 1.3. shows the structure of side 

leather and figure 1.~. shows the structure of poromeric 'Corfam' which 

has a high fibre density in the substrate. 'Leather consists also of 

a tightly packed fibre system but in contrast to the poromerics shows 

no large void spaces nor has any form of binder material between the 

fibres. 

1.2.2. Structure of Poromerics 
=============================== 

Poromerics in general have at least two discrete layers and some 

of the fibrous types such as 'Corfam', shown in figure 1.~. may have 

as many as five layers. 

The layers are: 

Tfiis is a very thin film applied to the otherwise complete 

poromeric. These finishes are commonly acrylic polymers but may 

sometimes be transparent polyurethane. 

b) Surface skin ---------------
This is usually an integral, part of the microporous layer, being 

formed as a result of fusion of the outermost cells. In some 
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-, 
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" ., ~,_,~ ••. :~---d;~~ 

Figure 1.3. 
==~======== 

SEM Cross-Section of Side Leather. Magnification 35 
(After Hole and Whittaker5) 

SEM. Cross-Section of "Corfam" poromeric. Magnification 
50 (After Hole and Whittaker5 ). 
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instances this surface is formed during a film release process and in 

others as part of the grain embossing process. The thickness and 

properties of this skin are very important because they affect the 

resistance to water penetration and the water vapour permeabilities 

of the poromeric, also its resistance to scuffing and snagging damage; 

in combination with the microporous coating, the skin deternlines the 

type of 'break' (wrinkle formation) that the· material will form when 

folded. 

The thickness of the combined surface skin and microporous layer 

can vary from 16 - 44% of the overall thickness in commercial materials7 • 

The micro porous layer is generally a permeable polyurethane foam of 

small cell dimensions. The density is usually about 0.5 gm/cc and 

therefore amongst polyurethane foams .would be considered as a high 

density material. 

d) The interlayer 
. -----------------
This is commonly a woven fabric which separates the microporous 

layer from the non-woven substrate in some materials. This component 

• 
serves several purposes, e.g. increases 'tensile and tear strength 

(but reduees breaking extension); controls stretch and creep; masks 

surface uneveness effects when material is strained; places the 

neutral plane of the material close to the surface skin. 

The interlayer fabric is polyester in 'Corfam', but other fibres 

are used in other poromerics. Although such interlayers provide the 

benefits listed above their use creates the problem of delamination 

which has caused some difficulties in shoe manufacture. 

e) The substrate ----------------
This can be a non-woven, woven or knitted fabric all of which 

are impregnated to various extents with a polyurethane elastomeric 
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binder. However, in one instance, discussed below, the substrate 

is cellular polyurethane only. 

In general, the impregnated substrates tend to behave like the 

fabric reinforcement which they contain, thus substrates with a 

non-woven matrix have a high breaking extension and tend to creep, 

whereas those substrates with woven fabrics have lower breaking 

extensions and tend not to creep; knitted substrates come somewhere 

between the two. The manufacture of poromerics has been discussed 

in several recent PUblications7 ,9. 

The five layers discussed above can be seen in 'Corfam' shown 

in figure 1.1•• The density of fibres in this material is very much 

higher than in any other poromeric and approaches that found in 

natural leather. The polyurethane microporous layer in 'Corfam' 

differs from most of the other poromerics in that it is based on a 

polyether polyurethane rather than a polyester. 

Figure 1.5. shows the structure of the poromeric 'Clarino' which 

is characterised by the absence of an interlayer. The other major 

difference between 'Clarino' and 'Corfam' is the much larger amount 

of foam elastomer in the substrate. It can be clearly seen from 

figure 1.5. how little adhesion is apparent between the fibres and 

. the foam, an interesting departure from the usual non-woven structure. 

It is this absence of adhesion that contributes to the relatively 

good h~ndle properties of 'Clarino'. The other significant feature 

in this connection is the small proportion of fibrous component in 

tEe substrate; it is much smaller in 'Clarino' than in any other 

fibrous based poromeric. The fibres in this material are nylon and 

viscose rayon. 

Gradual development of po~omerics has moved away from the "let's 

imitate leather" look and recently a new type of poromeric has appeared 
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Figure 1.5. =:::=_.==:::::;;;= 

, SEM Cross-Section of "ClaSinoll poromeric. Magnification 
90 (After Hole and Whittaker ). 

Figure 1.6. _.========= 

SEM Cross-Section of flPors-air" poromeric. Magnification: 
50 (After Hole and Whittaker ) 



-20-

which consists of just a surface skin and high density microporous 

polyurethane foam as shown by the scanning electron microscope 

photograph of 'Porvair' in figure 1.6. This material opens up a 

10 11 
number of possibilities for process developments ' within the 

!f<..'- oJ 
footwear industry. The modulus of 'Porvair' is lower than ~ the 

PISIW.t\.Ar-

fibrous poromerics.aRd it has good surface abrasion properties. 

The mechanical properties of this material are those of a polymer, 

and therefore are viscoelastic in nature, (i.e. dependent on time 

and temperature). 

1.3. THE PROBLEM TO BE INVESTIGATED 

The remarkable feature in the use of polyurethanes in footwear 

is that they are tough enough to replace a completely fibrous 

material. This is more particularly surprising when it is considered 

that the polyurethane is an unfilled cellular polymer of fairly low 

cross link density. 

The strength of normal vulcanised elastomers has been the subject 

of a considerable amount of published work in recent years; in 

particular, reinforcement of rubber by the inclusion of filler 

particles such as carbon black. This subject has been partly 

12-17 investigated by the author prior to the work presented in this 

thesis and a review paper on the strength and reinforcement of 

elastomers is included as a supplementary contribution. 

In particular it has been found that the strength of a rubber 

is dependent on the hysteresis in the vulcanisate and quantitative 

relationships have been derived between energy input to break and 

hysteresis at break and secondly energy input to break and strain 

at break for both filled and unfilled elastomers. The addition of 

filler particles such as carbon black to rubber causes a shell of 

immobilised rubber to form around the filler particle. This results 

in the bulk rubber acquiring additional characteristic response times 



which increase4 the viscoelastic hysteresis exhibited by the rubber 

in addition to the hydrodynamic increase in hysteresis caused by the 

addition of hard spherical particles to a viscous medium. 

The subject under investigation in this thesis however is the 

strength and other mechanical properties of cellular polyurethanes 

used in the footwear industry, particularly the microporous foams 

used in poromerics. These results are compared with those ~f both 

unfilled and filled vulcanised rubbers in order to provide an 

explanation for the high strength and abrasion resistance and good 

cut groWth properties of cellular polyurethanes. 

One of the other characteristic features of the high density 

cellular polyurethanes used in the footwear industry is that in 

contrast to vulcanised rubbers, the high strength of the material is 

maintained over a fairly wide temperature range (from 210 C to 

approximately 170
o
C). 

By the application of heat during conventional manufacture of 

shoes, it is possible to shape and completely set poromerics to a 

mould (last) shape. This would indicate that the polyurethanes used 

have a fairly wide distribution of relaxation times and this 

particular feature is studied in the present work. 

If the cellular elastomeric polyurethane is heated to 

temperatures of approximately 160
0 c or above, the material can be 

shaped to a mould by the application of pressure or vacuum. This 

behaviour indicates that the material is also thermoplastic in 

nature and this is further investigated in the thesis. 

When used in footwear applications, cellular polyurethanes 

require a high resistance to cut growth. In the case of soling 

materials, polyurethane has to resist the gro,<th of cracks from 

the penetration of sharp stones and flints whereas when used as 
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upper materials, the polyurethane has to resist the growth of cuts 

from stitch-holes and surface abrasion. The cut growth properties 

of these materials are discussed in this investigation in terms of 

the tearing energy theory developed for vulcanised rubbers. 

Practical applications of some of this work are considered in 

Appendix I. 
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CHAPTER 2 

EFFECT or' CHAIN BRANCHING ON FAILURE 
PROPERTIES OF POLYURETHANES 

2.1. INTRODUCTION 

12-14 It has been found in recent years that quantitative failure 

relationships can be obtained for amorphous rubbers between the energy 

input to break and hysteresis at break and secondly between the energy 

input and strain at break in a uniaxial tensile stress-strain test. 

These failure relationships have also been applied to amorphous 

rubbers filled with carbon black when it was shown that under conditions 

of constant energy input, both the strains at break and the hysteresis at 

break of the filled rubbers could be corrected and unified.with the gum 

rubber by use of a hydrodynamic factor. 

Another investigation17 showed that a strain-crystallizing rubber 

such as natural rubber diverged from the hysteresis failure law between 

o 
80 and 1)0 C. This divergence is due to the material between these two 

temperatures being in neither a uniformly crystalline nor totally amorphous 

state. Natural rubber was, however, found to obey the failure relationship 

between energy input to break and strain at break. This latter 

relationship17 was also obeyed by several dicumyl peroxide-cured natural 

rubber vulcanisates of differing crosslink densities. Under conditions 

of constant energy input to break, the strains at break of the different 

crosslinked mixes, when corrected by a parameter from rubber elasticity 

theory ~ecome coincident. 

Apart from this small study on NR vulcanisates, there has been little 

investigation into the effect of changing the degree of branching or 

crosslinking of the rubber on these failure relationships. As the 

polyurethane used in poromeric materials is generally reported to have 
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little crosslinking, an investigation by the author of the effect of 

changing the degree of branching associated with the polyol component 

in a range of knuwn polyurethane elastomers is presented in this chapter 

in order to provide a more satisfactory base on which the properties of 

the elastomeric polyurethanes used in poromerics can be compared. 

2.2. CAST POLYURETHANE ELASTOMERS 

The elastomers used in this study were identical with those 

previously considered by Buist et al18 ,19. A usual procedure for the 

preparation of cast polyurethane elastomers with a lightly crosslinked 

structure is to use formulations containing at least one component with 

more than two reactive end-groups, such as the reaction of a diisocyanate 

with a lightly branched, or mixture of linear and branched, polyester or 

polyether. The properties of the elastomers are determined mainly by the 

chain structure and degree of branching of the polymeric intermediate and 

by the 'stoichiometric balance of the components. 

Processing characteristics and properties of the products can be 

varied by use of more than one polyol component. This allows not only 

the degree of branching associated with the polyol component to be varied 

but by varying order of interaction of the polyols with the diisocyanate 

it is possible to vary processing factors such as temperature of reaction, 

viscosity and cure of casting mix; this also facilitates the incorporation 

of fillers. In addition to using polymeric polyol components, low 

molecular weight polyols may be included and branching can be introduced 

. 1819 by use of a polyol such as glycerol or tr~methylolpropane ' • This 

system was adopted for the cast polyurethane mixes used in tllis 

investigation which are shown in Table 2.1. 
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Daltorol PRl* is a slightly branched polyester based on adipic 

acid and Suprasec PRo is toluene diisocyanate (TDI). The reaction of 

Daltorol PRl' with somewhat less than an equivalent of Suprasec PR" 

yields a soft elastomer but by including trimethylolpropane in the 

formulation, the hardness and tensile strength can be increased. Small 

amounts of trimethylolpropane increase.resilience but high proportions 

give resinous products of low resilience and low ultimate elongation 

rather than elastomers. 

The procedure used for preparation of the polyurethane sheets was 

to add trimethylolpropane to Daltorol PR1" at the start of the dehydration 

stage. At the end of the dehydration period before additions of the 

Suprasec PR' the mixtures were cooled to about 4o°C. The sheets were 

supplied by Imperial Chemical Industries Ltd. (Dyestuffs Division) and 

were prepared by a simple casting technique. 

TABLE 2.1. 

FORMULATIONS OF CAST POLYURETHANE ELA.STOMERS 

(p~ 0... ......e. V 1u:::) 

Compound A B 

Daltorol PR1' 100 100 

Trimethylolpropane 3.5 7.0 

Suprasec PR" (2,4 - 2,6/80/ 
16.2 22.9 m/TD!) 

Cure (hours at 110
o

C) 3 3 

2.3. EXPERIMENTAL 

C D 

100 100 

10 13 

29.0 34.9 

3 3 

Ths test pieces were in the form of rings with inner diameters of 

23 mm and wall thickness of 2 mm. They were cut from sheets of rubber 

of· approximately 2.5 mm thickness by use of a two blade rotating cutter 

shown in the photograph in Figure 2.1. Soap solution was sprayed on to 

, Registered I.C.I. Ltd. Trade Names. 
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the rubber surface during cutting to obtain a clean cut. 

Each ring test piece was weighed so that its cross-sectional area 

could be accurately calculated from the ring circumference and density. 

The samples were extended on a Table Model (TM-M) Instron Tensile 

Testing machine. The Instron was regularly serviced and checked 

throughout the whole of this work described in the thesis. 

The test pieces were supported on double roller bearings shown in 

the photograph in Figure 2.2., one pair was attached to the load cell 

and the other to the crosshead. This type of support ensured that the 

ring test pieces' were in a state of unifolw tension and avoided the 

normal frictional forces that occur between a ring shaped test piece 

and support. Any differences in tension around the circumference of 

the test piece during extension were immediately removed by one or more 

of the rollers rotating. 

The crosshead travelled in a chamber maintained at a constant 

temperature by air blown into it through a thermostatically controlled 

heater. The variation of temperature throughout the chamber was less 

than ± 1
oe. The samples were tested over a temperature range from 

21 - 120
0 e and the rate of strain was 250% per minute in every case. 

The test pieces remained in the constant temperature enclosure 5 minutes 

before straining at each temperature. 

The experimental procedure to determine the energy input and hysteresis 

at break was to obtain, at each temperature, three tensile stress-strain 

curves' up to failure on.new samples. A fourth sample was then extended 

and the crosshead reversed just below the average breaking stress of the 

three samples. The energy input was obtained from the area under the 

extension curve and the hysteresis from the area between the extension 
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Two blade rotating cutter used to cut ring samples from the 
rubber. 

I 
i\ 

Figure 2.2~ 
====r=======-

Double roller bearing supports used for ring samples when 
strained in the Instron Tensile Tester. 
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. and retraction curves directly by use of an integrator unit attached to 

the Instron tester. 

2.4. EFFEc'r OF TEMPERATURE 

The tensile strength and hysteresis of all the mixes were found to 

be very low. The hysteresis ratio at break (ratio of hysteresis at 

break to energy input to break) at 21
0

C was found to be,10.9% for mix D 

and approximately 4% for mixes A and B. The hysteresis WaS negligible 

o at temperatures above 50 C and hence a full study on the effect of 

branching in polyurethanes on the energy at break/hysteresis at break 

failure criterion could not be carried out. 

The effect o.f temperature on energy input to break for all the 

mixes is shown in Figure 2.3. where the average value of energy input 

to break for each of the four rubbers is plotted on semi-logarithmic 

paper against the reciprocal of absolute temperature. 

E I , t d' 20,21 1 l'nk d h bb I d ar ler S U 1es on norma cross 1 e amorp ~us ru ers Slowe 

that the energy input to break Was related to the reciprocal of absolute 

temperature by an equation which was considered analagous to the Van't 

Hoff isochore: 

U
B 

= Dexp(G/T) 2.1. 

where D and G are constants. 

Straight lines have been drawn through the experimental points in 

Figure 2.3. and hence equation 2.1. is shown to be obeyed. The lines 

for the,different compounds are also approximately parallel indicating that 

the constant G is independent of the degree of branching in the polyurethane 

and hence must be a parameter associated with the base constituents of the 

rubber. Similar results21 were found on a series of SBR vulcanisates of 

differing crosslink densities. 
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D.012!;-:.5;-------~-::-:3·0::-------~---:3:"=-·5 

~CK)~l T . , 

Figure 2.). 
=========== 

Variation of energy input to break with reciprocal of absolute 
temperature for branched polyurethane elastomers. 

,ooo.} 
o Mix A 
e Mix B 
Q Mix C 
• Mix 0 

OOI'nO" --~';-;;·O;----;;'007·;!;OO;;-' ----;,,0.,....' ----," 

STRAIN AT BREAK {Ea) Ea Ve h {moles/cd h 

Figure 2.4,. 
===::::======= 

Variation of reduced energy input to break for polyureth~ne elastomers 
with a) strain at break b) strain at break multiplied by Ve'". 
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2.5. STRAIN AT BREAK 

2.5.1. Experimental Results 
======.====================== 

Work
12

-
14

;17 on both amorphous and strain-crystallising vulcanised 

rubbers has shown that the energy input to break (U
B

) is related to 

the strain at break (£B) up to the maximum extensibility of the network 

(EB max) by an equation of the following form: 

A E. 2 
B 

2.2. 

where A is a ·constant and T is the temperature of test. 
I • 

The energy 1S 

reduced by the term 294/T to allow for the temperature dependence of 

22 
rubberlike elasticity as predicted by the kinetic theory • This 

relationship is a modification of the 'failure envelope' approach of 

Smith
2
],24 and others25 who plot stress or real stress at break against 

the strain at break. The use of the parameter, energy input to break) 

allows, however, a quantitative relationship between the failure 

parameters to be derived. 

The variation of energy input to break with strain at break for the 

. four polyurethane rubbers is shown in Figure 2.4a. The results as 

predicted by.equation 2.2. produce a square law relationship, up to the 

maximum extensibility of the network (GB max), but are displaced along 

the strain axis. 

Earlier work17 ,21 on natural and styrene-butadiene rubber has shown 

that at the same energy input to break, the strains at break are in the 

.1-
ratio of their respective Y 2 values provided that the strains are below 

e 

the maximum extensibility of the network. y. represents the number of 
e 

network chains per unit volume of the rubber network and' is usually 

expressed in mol/cm). 

At very high temperatures, the amount of hysteresis for the 
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polyurethane was negligible·and hence .he rubbers could be considered as 

though they were in an equilibrium condition. The modulus at these high 

temperatures was therefore assumed to be the equilibrium modulus and was 

measured from the initial slope of the stress-strain curves. 

The classical theory of rubberlike elasticity specifies
26

- 29 that the 

equilibrium shear modulus (Ge) is given by: 

Ge = g V 
e 

RT 

where R is the gas constant and g is a numerical factor having a value of 

r 2 
approximately unity. The factor 9 includes the ratio e / 2 where 

r 
o 

2 
r is the mean square end to end distance of a strand and r 2 is the mean 

e 0 

square end to end distance.which strands of the same length would assume 

·1·f t· b l·k 30 ,31 ·bl· . 32-34 not cons ra~ned y cross 1n s and other POSS1 e contr1but1ons • 

In an idealized network V is the density of strands that are 
e "-

terminated both ends by chemical crosslinks, but it is rarely if ever 

possible to determine V accurately by independent means, hence the exact 
e 

value of g remains in doubt. If it is assumed for the present study that 

9 = 1 and that the equilibrium tensile modulus E = 3Ge, then equation 2.3. 
e 

becomes: 

E =3VRT 
e e 

2.4. 

1. 
Values of V 2 were therefore obtained by use of equation 2.4. from measured 

e 

values of equilibrium modulus and these are shown in Table 2.2. It is 

usually assumed for branched polymers that V includes chains between the 
e 

branch points. 

Mix 

A 

B 

C 

D 
-

TABLE 2.2. 
1. 

VALUES OF V 2 
e 

V t (mol/cmJ)! 
e 

1.39 x 10-2 

1.66 x 10-2 

2.07 x 10-2 

2.36 x 10-2 
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The strains at break of mixes A-D were multiplied by their respective 

.1 
V 2 values and the resulting graph is shown in Figure 2.4b. The agreement 

e 

between the four mixes on this type of graph is shown to be remarkably 

good and therefore the equation to the line for different crosslink 

densities can be expressed as 

U (294) _ DV £: 2 
B· ( T ) - e B, 

where D is a constant. 

2.5.2. Comparison "ith Vulcanised Rubbers 
===============~========================== 

A similar graph to that shown in Figure 2.4a. was found in an earlier . 
. t· t· 17. t th f·l t· f t 1 bb 1 . t 1nves 19a 10n 1n 0 e a1 ure proper 1es 0 na ura ru er vu can1sa es 

,and this is shown in Figure 2.5a. It is found that a square law 

relationship predicted by equation 2.2. is obeyed for three vulcanisates 

cured with 1, 2 and 4 phr (phr= parts per hundred) dicumyl peroxide. 

Values of V for these mixes "as obtained from the data of Porter35• 
e, 

In this early investigation17 , agreement between the vulcanisates on this 

type of graph was obtained by multiplying the strains at break for the 2 and 

.1 
4 phr dicumyl peroxide vulcanisates by the ratio of the respective V 2 

e 
.1 

value to the value of V 2 for the 1 phr dicumyl peroxide mix. 
e 

The results shown in Figure 2.5b. have, hm,ever, been obtained by 
.1 

multiplying the strain directly by V 2 and hence can be used as a direct 
e 

comparison with branched polyurethane rubber results shown in Figure 2.4b. 

A similar graph was obtained from work
21 

on styrene-butadiene rubbers 

of differing crosslink densities and the composite plots for the three 

systems are compared in Figure 2.6. It is s,een that the generalized failure 

relationship; equation 2.5., is approximately the same line for the three 

different polymer systems, amorphous, crystalline and branched, and is 

given by: 

U
B 

291• (4.1 x 103 ) V £ 2 2.6. 
= T e B 

if U
B is expr:essed in joules/cc. 
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.. 12-14 
The earl1er work on SDR and natural rubber showed that 

vulcanisates filled with various concentrations of carbon black could 

also be correlated on the energy input to break/strain at break graph 

by multiplying the strains at break of the filled vulcanisates by a 

hydrodynamic factor, (X) first derived by Guth and Gold36 for expressing 

the viscosi~y of a liquid containing small spherical particles to that 

of the liquid alone and given by: 

2 X = 1 + 2.5c + 14.1c 

The general failure relationship then can be expressed as 

2.8. 

which is obeyed by amorphous, crystalline and branched polymers at 

different degrees of crosslinking, whether filled or unfilled. 

2.6. CONCLUSIONS 

The tensile failure properties of a typical branched polyester 

polyurethane have been compared with earlier work on natural rubber and 

styrene-butadiene rubber vulcanisates. 

Although the low values of hysteresis at break excluded from the 

present investigation a comparison of the hysteresis properties and their 

effect on failure, a similar type of relationship to that found in 

vulcanised rubbers between energy input to break and reciprocal of 

absolute temperature has been established. The constant in this 

equation appeared to be independent of the degree of branching of the 

polyurethane. 

The·square law relationship between energy input and strain at 

break was found to be obeyed by polyurethane elastomers and correction 

by"a parameter from rubber elasticity theory unified the results. as 

found for both natural and styrene-butadiene rubber. The relationship 

was found, however, to be the same for the three polymer systems and hence 

must represent a basic material ~roperty. 
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CHAPTER 3 

VISCOELASTIC PROPERTIES OF NATURAL AND 
ARTIFICIAL LEATHERS 

J.1. INTRODUCTION 

The study described in the previous chapter complements the earlier 

investigations into the strength and reinforcement of rubbers (reviewed 

in the supplementary contribution to the thesis) and this provides a 

firm basis for comparison with the experimental results on polyurethanes 

whi ch are presented in C.hapters " - 6. 

Before studying in detail however, the mechanical properties of 

the polyurethanes used in poromerics, it is necessary to consider the 

properties of the various poromerics as a whole and compare these with 

the natural material, leather. 

Because both leather and poromerics have to undergo similar shaping 

and setting operations in the manufacture of footwear, some similarities 

in their viscoelastic properties would be exp.ected and this subject is 

considered in this chapter. 

Measurements of the viscoelastic properties of leather fibres 

were reported as early as 19"5 by MittonJ7 and in 191,,6 by Conabere and 

HaIIJ8• They found that the extension of the fibres under constant 

load increased sharply with increased humidity. Subsequent drying of the 

fibre produced contraction but did not produce complete recovery of the 

samples to their original dimensions. The load-extension curve of 

leather fibres was, however, found to be independent of temperature. 

This latter result was confirmed by Grassman and Zeschitz39 who 

measured the load-extension curve for leather fibres from _70
0 

to 60
oc. 

The effects of moisture and temperature on the viscoelastic 

properties of leather were extensively studied and reviewed by Butlin
40 

whilst developing the SATRA moist heat setting process in the early 1960'.s. 
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41 
Following Butlin' s work, Ward and Popplewell showed in 1963 that the 

stress relaxation of leather was exponentially related to time, a result 

very similar to that obtained with vulcanised rubber. More recently 

stress-softening effects have been observed in both ·leather and 

poromerics12 ,42,43 but no quantitative work has been presented up to 

present. 

,.2. EXPERIMENTAL 

Tensile test s~lples were cut parallel and perpendicular to the 

41 
backbone in the usually accepted sampling area of a standard full 

chrome willow side leather and a double buffed full chrome pearl split 

leather. 

Tensile test samples were also cut perpendicular and parallel to 

the roll direction of a number of commercially available poromericsj 

'Clarino I, .'Corfam', 'Hi-Telae', tpatora' and 'Porvair'. The structures 

0..0.<. 
of 'Corfam', 'Clarino' and 'Porvair' ~ described in Chapter 1. 

" 'Patora' contains a woven interlayer and R similar in structure to 

'Corfam' whereas 'Hi-Telae' is a 2-1ayer poromeric. 

The test specimens used in the majority of the tensile tests for 

leathers and poromerics measured 100 mm x 10 mm. To achieve greater 

accuracy in tests where the materials were stressed to strains of less 

than 10%, the size of the test specimens was increased to 200 nun x 25 mm. 

Tensile test results were obtained by use of an Instron Tensile 

o 
Testing machine in a conditioned atmosphere of 65% r.h. and 21 C. In 

view of moisture and temperature effects on the tensile properties of 

leather, all the samples were placed in the conditioned atmosphere at 

least 24 hours before the tests were performed. Load-extension curves 

were automatically recorded·on the chart recorder and hysteresis and 

energy density measurements were obtained by use of an integrator unit 

attached to the Instron chart recorder. The values of stress and strain 
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reported are referred to the original (before stressing) dimensions 

of the samples as is normally the convention with polymeric materials. 

3.3. STRESS-STRAIN PROPERTIES 

The stress-strain curves in Figure 3.1.(a) show three cycles 

obtained with double buffed full chrome pearl split 'leather cut 

parallel to the backbone; similar curves on 'Clarino' poromeric which 

is cut along the roll direction are shown in Figure 3.1.(b). In both 

cases, a considerable amount of energy is lost in the first cycle and 

a considerable amount of residual extension or set is retained in the 

material. Energy loss also occurs on the second and third cycles in 

both cases. Similar curves were found on the second leather and other 

poromerics. The curves illustrate the viscoelastic character of both 

leather and poromerics. 

A number of recent investigations have been concerned with the 

shape of the load-extension curve for leathers up to about 2% strain in, 

an attempt to relate these tensile properties to foot comfort. Upstone 

44 
and Ward found that at extensions up to 2% leather gave a non-linear 

stress-strain curve although they claimed the response of the material 
, 

was almost entirely elastic. Mitton and Price~5 reported similar 

experiments but found that in contrast to Upstone and Ward, the stress-

strain curve shm<ed considerable viscoelastic behaviour up to about 2% 

extension. They further explained the non-linearity of the stress-strain 

curve in this region as due to inherent stresses in different layers of 

unstrained leather. 

Figure 3.2.(a) and 3.2.(b) show three tensile cycles up to 2'~ 

extension for a full, chrome willow side leather and for the homogeneous 

poromeric 'Porvair' re,spectively. It is seen that in both cases a 

measurable amount of hysteresis occurs in the first cycle of both, 

materials ,."hich results in a certain residual extension or set. 
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(a) Stress strain curves obtained for double buffed full chrome 
pearl split leather cut parallel to backbone. 

(b) Stress strain curves obtained with Clarino poromeric cut 
along grain. 

4 

-S 3 

'" ,. 
'" '" ~;C .... 2 

'" 

'I 

o 
~~~~~'---OO'.O"I~O----O •• C~15'-~O'.~02~O'.~"~~~O.~O~O)~---O~.~O~IC~~O~.~C~15----0-.0-2~O 

STRAIN' , STRAIN 

Figure 3.2. 
=========== 

(a) Stress strain curves up to 2% obtained for a full chrome 
willow side leather. 

(b) Stress strain curves up to 2% obtained for the poromeric 
Porvair. 
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Considerable stress softening (difference between/first and second 

extension curves at same strain) is also found in both materials at 

strains even as low as 2%. These results demonstrate the large 

viscous component in the tensile properties of leather and poromerics 

and hence support the conclusions reported by Mitton and price45• 

3.4. ENERGY MEASUREMENTS 

The energy inpuuto the first, second and third stress-strain 

cycles when taken to the same stress for all the poromerics and leathers 

~ 
was obtained from curves similar to those shown in Figures 3.1. and 

3.2. This procedure ~as repeated at a number of strains. The energy 

input to the first cycle is plotted against the hysteresis in the 

first cycle at each particular strain on double logarithmic paper 

in Figure 3.3. for the five poromerics and two types of leather. It is 

seen that the results fall on a fairly good straight line which is 

common to all the poromerics and leathers. Some of the points at very 

low energy values .arise from cycles taken to strains less than 2% 

whereas to obtain those at the very high energies strains up to about 

400% were necessary. The points on Figure 3.3. also include results 

from samples taken, in the case of leather, parallel and perpendicular 

to the backbone of the animal and in the case of poromerics both along 

and across the roll directions. The equation to the line shown in 

Figure 3.3. is given by: 

where l1is the energy input to the first cycle and "lis the energy 

lost or hysteresis in the first cycle. 

12-14 It has been found for amorphous vulcanised rubbers such as 

SBR that the energy input to break .(U
B

) is related to the hysteresis 
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HYSTERESIS 1Nl" CYCLE H, -'lcm' 
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Variation of energy input to first cycle with hysteresis in first 
cycle for a number of leathers and poromerics. Dotted line represents 
results for styrene butadiene rubber12. 

10 



at break (liB) by an equation of the 

U 291" 
B T = 

form 

3.2. 

where K1 is a constant and T is the temperature of test in oK. This 

relationship is dotted on Figure 3.3. for comparison. The interesting 

feature noticed here is that at any particular value of energy input, 

the hysteresis obtained in leather and poromerics is much larger than 

that obtained in vulcanised rubber. It is well known that normally 

crosslinked vulcanised rubber is too elastic to be used as a shoe 

upper material and hence it would appear' that the relation represented 

by equation 3.1. is a necessary condition for all shoe upper materials. 

The materials shown to follow the correlation in Figure 3.3. vary in 

structure from the natural totally fibrous material to poromerics such 

as 'Corfam' and 'Patora' which incorporate a microporous polyurethane 

foam layer, a woven inter layer and a densely packed fibre base to the 

non-fibrous poromeric, 'Porvair' made entirely of cellular polyurethane. 

The correlation shown therefore is obeyed irrespective of the composition 

of the artificial leather material. 

A similar correlation is found between the energy input to the 

second extension curve and hysteresis in the second extension cycle as 

shown in Figure 3.1". The equation of to the line is given by 

1 8 11°·86 U2 = • 2 

The correlation shown in Figure 3.1". again indicates the basic 

similarity in viscoelastic properties of natural and artificial leathers. 

3.1".2. stress Softening 
======================== 

The energy difference between the first and second extension curves 

when extended to the same stress, which represents the amount of stress 

softening, was also measured for all the leather and poromerics considered. 

The variation of stress softening with energy input to the first cycle 

is shown in Figure ).5. for double buffed full ch~ome pearl split leather, 
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Variation of energy input to second cycle with hysteresis in the second 
cycle for a number of leathers and poromerics. 
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full chrome willow side leather, the fibrous based poromeric 'Patora' 

and the homogenous poromeric 'Porvair ' • 

It is shown that the two leathers follow the same straight line 

on the logarithmic ploto The results for 'Patora' and 'Porvair' also 

follow reasonable straight lines but are slightly displaced from the 

line for leather. There is a slight departure at very high strains 

(above 35%) for leather and poromerics but these strains are well 

above those encountered in shoe manufacture or in wear. 

The interesting feature here, however, is that' at any particular 

value of energy input in the first cycle, the stress softening is 

much greater in the case of leather than the poromerics. The other 

fibrous poromerics considered in this study follow a very similar 

curve to that obtained with 'Patora' and these materials show slightly 

larger values of stress softening at the same energy input than the 

homogenous poromeric, 'Porvair'o 

The difference in stress-softening properties between the two 

extreme materials of the range considered, i.e. leather and 'Porvair' 

is illustrated more clearly by the graph on linear scales shown in 

Figure 3.6. where the various parameters are plotted against energy 

input to the first cycle. As shown by Figure 3.3., the relationship 

between hysteresis and energy input to the first cycle for leathers 

and poromerics is similar. The difference between values of 

hysteresis and energy input give the amount of energy stored in the 

materials. 

The major sources of hysteresis in footwear materials are firstly 

viscoelastic effects and secondly stress softening. 12-14 Work on rubbers 

has shown that a number of other contributions to hysteresis can occur 

including crystallisation of the polymer and breakage of weak cross 

links but these factors are thought to account for little hysteresis 
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Variation of stress softening measured as the energy difference 
between the first and second extension curves and the energy input 
to the first extension curve for two types of leather, poromerics 
Patora and Porvair. 
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in leatherlike materials. In leather some of the loss of energy 

attributed to stress softening would probably include contributions 

due to slip at fibre junctions and breakage of the individual leather 

fibres. 

If it is assumed that the hysteresis for leather and poromerics 

can be separated into two components, viscoelastic and 'stress softening 

effects, Figure 3.6. shows that although hysteresis at the same energy 

input is the same for both leather and poromerics, the amount due to 

viscoelasticity is much greater in tPorvair' than in natural leather. 

Conversely the amount of stress softening is greater in leather than 

'Porvair'. The amount of stress-softening. in the other fibrous based 

poromerics lies between the values for leather and 'Porvair' as shown 

in Figure 3.5. 

3.5. TENSION SET 

3.5.1. Correlation with other Parameters 
=;======================================= 

When a viscoelastic material is extended to a particular strain 

and then retracted, the material does not return to its original length 

but retains a certain amount of residual extension. For the purpose 

of this investigation, the residual extension has been divided by the 

original length of the unstrained, sample and termed "tension set". 

This particular property is considered important as it affects' the 

shape retention and comfort of footwear. 

Tension set is plotted as a, function of strain on double logarithmic 

scales in Figure 3.7. for the double buffed full chrome pearl split 

leather, the full chrome willow side leather and the poromeric 'Porvair'. 

The two leathers follow a eo~non straight line but the set at any 

particular strain for 'Porvair' is less than for leather. The set for 

'Porvair' however still follows a logarithmic relationship ,dth strain. 

The set results at any strain for the other fibrous poromerics fall 
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between leather and 'Porvair' and they have therefore, not been drawn 

on Figure 3.7. in order to aid clarity in presentation. 

Figures 3.5. and 3.6. showed that stress softening at the same 

value of energy input was greater for leather than for poromerics and 

on comparison of the results shown in Figures 3.5. and 3.7. it would 

appear that tension set could be related to stress softening. The 

variation of tension set with stres& softening for the two extreme 

materials of the range considered in this investigation, full chrome 

willow side leather and the cellular polyurethane poromeric 'Porvair' 

is shown in Figure 3.8. Over the range of strain considered in 

Figure 3.8. it appears that a reasonable correlation is obtained 

between tension set and stress softening. 

3.5.2. Variation with Time 
=========================== 

The tension set or residual ~xtension developed in a material which 

displays some viscoelastic effects is partially recoverable with time. 

This section considers the variation of tension set for leather and 

poromeric upper materials with time of recovery. 

Samples of full chrome willow side leather, 'Clarino' and 'Porvair' 

were stressed to various strains and then retracted. The residual 

extension was measured off the stress strain curve and was considered 

to be the tension set 1 sec. after the end of the test. The length of 

the strip was continually measured for about 4 weeks (over 107 secs). 

During this period they were left in a conditioned atmosphere at 65% 

The variation of tension set with time of recovery for samples 

of full chrome willow side leather is shown in Figure 3.9. After an 

initial period of fairly rapid recovery the tension set remains fairly 

steady with time and appears to reach a constant value. Similar 

results from stress relaxation measurements have been reported by Butlin
40

• 
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In one case he sho\.ed that even over a recovery period of' two years, 

the amount of' set remained f'airly constant. 

A graph similar to Figure 3.9. is shown f'or 'Porvair' in Figure 3.10. 

As noted in the earlier graphs, a larger strain is required in 'Porvair' 

to obtain the same amount of' tension set. 

In order to compare the recovery rates of' dif'f'erent materials, the 

recovery in residual extension between 1 and 107 secs. af'ter straining 

is plotted against the actual strain in the cycle in Figure 3.11. f'or 

leather, 'Clarino' and 'Porvair'o Although the results f'or 'Porvair' 

are slightly displaced f'rom leather and 'Clarino', the rates of' 

recovery of' these materials are not greatly dif'f'erent. 

3.6. CONCLUSIONS 

In this chapter, a number of common relationships between 

viscoelastic properties have been shown to occur in natural and 

artificial leathers. There is a general correlation between energy 

input and hysteresis in a stress-strain cycle and it would appear that 

this defines a condition f'or viscoelastic properties for all upper 

materials which are used in f'ootwear. A second correlation has been 

found between the stress softening in a stress strain cycle and tension 

set. Some similarity is also shown between leather and poromeric 

materials in the recovery of tension set with time. 

The most interesting f'eature in this analysis is that the various 

correlations between the viscoelastic properties are obeyed by materials 

which dif'f'er widely in structure from a natural totally f'ibrous material 

to a homogeneous cellular polyurethane elastomer. A more detailed 

investigation into the viscoelastic and mechanical properties of' 

cellular polyurethane elastomers used in porornerics is presented in 

Chapter 4 - 6. 
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CHAPTER 4 

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES 
OF SOLID AND CELWLAR POLYURETHANES 

4.1. INTRODUCTION 

In the previous chapter, the mechanical properties of a 

homogeneous cellular polyurethane elastomer which is used as a 

poromeric have been compared with fibrous based poromerics. Before 

considering further the mechanical properties of polyurethane' 

elastomers, it is necessary to determine how these properties are 

affected by the cellular structure. 

The study of the mechanical properties of cellular or foamed 

polymers as distinct from solid materials was started in the late 

1920's with the development of blown or expanded rubber. A number of 

46-48 " early papers d,scussed the physical properties such as density, 

hardness, tensile, hysteresis, damping, cell size, and insulation 

properties of these materials. 

Latex foam rubber was developed in the early 1930's, and a number 

49-52 of investigations have been undertaken into the tensile and 

compression properties of these materials. Most authors showed 

that the load-extension curves of foamed materials were sigmoidal, 

but~ittle theoretical work analysing such deformations was reported 
I 

although an extensive analysis53 - 55 of the elastic properties of cork 

was made in 1946 and showed that the sigmoidal load-compression 

curves obtained with cork could be interpreted on the basis of 

collapsing of cell walls. 

It was not until 1959 that a theory to describe the mechanical 

properties of foamed elastic mate~ials such as modulus, Gompression, 

56-58 tear, and tensile was developed by Gent and Thomas • This theory 

has now been developed further to describe viscoelastic59 and 

b "l"t 60 "f I permea 1 1 Y propertles 0 open-eel foamed materials and elastic 
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behaviour of closed-cell materials58 and has been successfully applied 

to measurements on natural rubber foams. Little work, however, has 

been reported on the application of a theoretical model to the 

mechanical behaviour of cellular polyurethanes. 

4.2. THEORETICAL HODEL 

The fairly simple model proposed by Gent and Thomas58 for a foamed 

material is shown in Figure 4.1., it consists of thin threads of 

unstrained length 10 and cross-sectional area D2 joined together to form 

a cubical lattice. The intersections of cubical regions of volume DJ 

are assumed to be essentially undeformable. 

A fractional extension of the foam by an amount e l parallel to one 

set of threads is therefore associated with a larger extension e of the' 

threads themselves, as follows: 

e 
;, = 

10 + D 
10 = 1 + f3 ~.1. 

The threads in the model occupy, for any cross section perpendicular 

to one set of threads, a fractional area of the total given by 

4.2. 
(D +10 )2 = 

The fractional volume V occupied by the solid material can be 
r 

evaluated by considering a cube of side (D +10) centered on one 

intersection, so that 

V = 
r 

The parameterj?therefore gives a direct measure of the foam density, 

and the relationship is shown graphically in Figure 4.2. 

4.J~ EXPERIHENTAL 

Sanlples of polyurethane foams were obtained from two commercially 

available poromerics: foam 1 was approximately 0.17 cm thick, while 

foam 2 was only 0.014 cm thick. It was necessary in the analysis of 

the results to obtain certain measurements on the solid polyurethane 
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Simple model of foamed material (After Gent and Thomas58 ) 
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Variation of parameter p with foam density from equation 4.3. 
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used in the foam. Unfortunately, it waS not possible to obtain the 

solid polymer direct, and hence it was obtained by solution of the 

cellular material in a suitable solvent and casting a solid film. 

The solvent was then removed by heat treatment. The densities of 

the foam and solid were measured in both cases; Tensile, tear, and 

compression data on the materials were obtained by use 'of an Instron 

tensile testing machine using suitable jaws and attachments for each 

particular experiment. 

The type of cell structure found in the polyurethane foams can 

be seen in the scanning electron photomicrograph shown in Figure 4.3. 

The cells are reasonably spherical, with the average diameter about 

10-3 cm, and can clearly be seen to be interconnecting. 

4.4. YOUNG'S MODULUS 

The tensile stress-strain curves of foam 1 and the corresponding 

solid material are shown in Figure 4.4. The tensile stress for the 

foam is based on the cross-sectional area of rubber, including holes. 

The results for a typical unfilled solid natural rubber vulcanizate 

, 12-14 from previous stud1es are also shown in Figure q.4. for comparison; 

and it can be seen that the initial modulus of the polyurethane foam 

is higher, although the actual tensile strength is lower than the NR 

vulcanizate. The modulus of the solid polyurethane is extremely high 

when compared to the corresponding foam, and its tensile strength is 

considerably in excess of that found in the natural rubber vulcanizate. 

The initial linear part of the stress-strain curve for both the foam and 

the solid polyurethane allows a value of Young's modulus to be obtained. 

It is possible to determine theoretically a value for Young's 

modulus of the foam, Y
F

, by considering the extension of the model shown 

in Figure 4.1. If a small strain is applied parallel to one set of threads, 

Y
F 

can be obtained from the product of three factors: (i) Young's modulus 
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Scanning electron microscope photograph of pol)~rethane foam 
used in poromerics showing type of cell structure (Nagnification 3,200). 
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of the solid material, Y; (ii) the strain magnification factor, eq. ~.1.; 

(iii) factor representing the true load-bearing area, eq. ~.2., hence 

producing the equation 

!2 YF = Y e ~ ~ 
(1 +/' ). , •• 

Using a more complicated yet more realistic model of a system of n 

randomly disposed threads entering each intersection and approximating 

2 56 these by spheres of surface area nD , Gent and Thomas found that the 

density of the foam was given by the same relation, eq. ~.3., and the 

equation for Young's modulus was only different by a factor of 2 from that 

given in eq. 4.4. 

Hence, Young's modulus can be ob£ained from 

Y = Y 12 
F 2(1 +~). 

~.5. 

The ratio Y~Y from the experimental results of Young's modulus for 

the two polyurethane foams and solid materials are plotted in Figure ~.5. 

against the volume rubber fraction V determined from measured densities 
r 

on the materials. Also shown on Figure ~.5. is the theoretical line 

obtained from eqs. ~.3. and ~.5. The values obtained for Young's modulus 

are therefore in reasonable agreement with theory. There is likely to be 

some error in the measurement of Young's modulus of the solid polymer in 

view of the difficulties involved in obtaining the material. 

~.5. TEAR PROPERTIES 

The most convenient method of measuring tear properties of rubber-like 

materials is to use the "tearing energy" approach developed by Rivlin and 

Thomas61 from the classical theory on the strength properties of glass 

developed by Griffiths
62 

in 1920. Tearing energy T is defined for a 

strained test piece containing a crack as 

dU 
T = - (fA, ~.6. 

where U is the total elasticallY stored'energy in the test piece and A 

is the area,of the cut surface. The derivative must be taken under 
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conditions that the applied forces do not move and hence do no. work •.. 

It thus represents the rate of release of strain energy as the crack 

propagates and can therefore be considered as the energy available to 

drive the crack through the material. It has been found that if tear 

or crack-grol~h measurements are expressed in terms of T, the results 

obtained from test pieces of different shapes are the same, and hence 

values of T are characteristic of the material and not of the form of 

th t t . 63 e es p1ece • The "trouser" tear test piece shown in Figure 1".6. 

was used for the present investigation, as the value of T can readily 

be calculated from the applied force F by the relationship 61,61" 

where h is the test piece thickness. 

Measured values of tearing energy from both foams are shown 

in Table 1".1. A considerable difference was noted between the values 

of initial tearing and those for steady propagation of the tear. A 

'similar difference in tearing energy values was also reported for latex 

58 foam rubbers by Gent and Thomas • 

TABLE 1".1. 

VALUES OF TEARING ENERGY 

Foam T (initiation) , T (steady), 
kg/cm kg/cm 

1 12.7 1,,3.5 

2 20.3 51".7 

p 
0.816 

1.35 

The minimum theoretical value of tearing energy, T
F

, for the model 

foam shown in Figure 1".1. is given by the energy required to break all 

the threads crossing a plane of unit area. The proportion of these 

threads to the total area of the foam structure is given by eq. 1".2., 

-
~ 
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Figure 4.6. 
=========== 

Trouser tear test piece used in tearing energy measurements. 

Figure 4.7. 
============ 

Scanning electron microscope photograph of polyurethane foam used 
in this investigation· showing that some pores can be of the order of 
10-2cm. (Magnification, 100). 



and hence the tearing energy of the foam is given by 

= E 10 e 2 
r (1 +;8 )2 

4.8. 

where E is the breaking energy per unit volume of the bulk materials. 
r 

The quantitylo (i.e. one thread length) is assumed in the theory to be 

the effective "width" of the tear tip and is obviously the minimum 

. possible value. Assuming that the model shown in Figure 4.1. can be 

applied to polyurethane foams, it is possible to calculatelo and 

compare this with the average and largest pore diameter obtained from 

microscopic measurements. The value~ was found from the curve shown 

in Figure 4.2. by measuring the densities of the solid and foam 

polyurethanes. Values for~ for foams 1 and 2 are listed in Table 4.1. 

The values for E were found by graphically integrating the stress-strain 
r 

curves for the two samples of solid polyurethane. On subsituting these 

-2 values in eq. 4.8.,10 was found to be 4 x 10 cms for both foam 1 and 

foam 2. Although the average pore diameter is about 2 x 10-3 cm for 

both foams, odd pores as shown in the scanning electron microscope 

-2 photograph in Figure 4.7. cm can be up to 2 x 10 cm in diameter. 

Hence it can be considered that values for initiation of a tear can 

be obtained from eq. 4.8. by assuming that the effective width of the 

tear tip is about two times the largest pore diameter. This difference 

is probably due to imperfections in the foam causing local deviations 

of the tear from a linear path which gives rise to a corresponding larger 

effective tear width. 

Gent and Thomas57 found that the effective width of the tear tip 

for natural rubber foams at similar densities to the polyurethane foams 

in this paper was about five times the average pore diameter. Average 

pore diameters in their case, however, '<ere a factor of 10 larger than 

those of the polyurethane foams used in this study. 
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4.6. TENSILE FAILURE 

Following the tearing energy criterion developed by Rivlin and 

Thomas
61 

it can be assumed that tensile rupture occurs by catastrophic 

tearing from a flaw in one of the test piece surfaces. 'The tearing energy 

of the foam, TF can then be expressed as63 

for a·test piece strained in simple extension where EF is the energy 

density at failure in the bulk of the test piece for the foam, L is the 

depth of the flaw, and k is a numerical constant which varies slightly 

~ith strain65 but can be taken for the purposes of this study as having a 

value of 2. 

The depth of flaw can then be calculated by measuring the tear 

strength and energy density to failure of the foam and substituting 

these values in eq. 4.10, 

4.10. 

The EF value was obtained by measuring the area under the stress-strain 

curve of the· foam. Using values of tear strength at initiation listed in 

-2 . -2 
Table 4.1., L was found to be 1.72 x 10 cm for foam 1 and 2.3 x 10 cm 

for foam 2. These values are very close to the largest pore diameters 

measured from scanning electron microscopy photographs. The numerical 

agreement suggests that tensile failure occurs by catastrophic tearing 

from a flaw of the order of the largest pore in length. This conclusion 

is in agreement with the work by Gent and Thomas on natural rubber foams 

and hence accounts for the relatively low values of tensile strengths 

found in foam materials in general. 
VM,.t-k..ML 

4.7.L CO~WRESSIO~ 
The type of stress-strain curve obtained in compression for the 

polyurethane foams used in poromerics is shown in Figure 4.8. Similar 
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resul ts have been reported previously for compression of polyurethane 

f 
66,67 

oams • The type of curves obtained resemble those for the 

classical treatment of the buckling of a simple strut in compression. 

For foam 1, the ratio o·f thread length to width of the threads (i.e., 

A -1) 1'S ~ 1.23, and hence the amount~ buckling of the threads would 

be minimal. The classical Euler theory for buckling of struts can 

1 b 1 · d68 1'f th 1 th f th t t' t 1 t 3 8 t· on y e app 1e e eng 0 e s ru s 1S a eas • 1mes 

their thickness, but it is informative to ascertain whether the 

assumed point of buckling (i.e., point at which curve changes slope) 

can be correlated with accepted "shape factor" theories of buckling 

from rubber engineering. 

The critical compressive strain, e
c

' of the individual threads of 

the model is given by69 

4.11. 

where er is the critical compressive stress, Y is Young's modulus of 
c 

the solid material, and S is the shape factor of the strut in compression 

as discussed by Payne70 and others69 in rubber engineering theory and 

defined as the ratio of the one loaded area to the total force~free area, 

and given by 

s = = I 
4 4.12. 

for a single rectangular strut such as those comprising the model structure 

shown in Figure 4.1. 

For foam 1, S therefore has a value of 0.20'*. The value of stress 

at.which the compression stress-strain curve in Figure 4.8. shows departure 

f~~m linearity is 4.05 kgf/cm2• The effective stress, however on each 

strut in the model will be much higher, as they only occupy a fractional 

area of the total as given by eq. 4.2. For lof 0.816, as in the case 

with foam 1, the threads occupy only 0.2 of the total cross-sectional 
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area of the foam; hence the critical buckling stress er for each 
c 

thread in the model is 20.25 kgf/cm
2• 

Using this value for 0- and the value of 387 kgf/cm2 predicted 
c 

by eq. 4.5. for Young's modulus of the solid material from measurements 

of Young's modulus on the foam, a value for critical compressive strain 

e of the struts of 0.05 is obtained. The actual effective buckling 
c 

strain of the foam, e , will be lower, however, due to the undeformable 
c 

regions at thread intersections as predicted by eq. 4.1. Hence the 

critical compressive strain of the foam from theory is 0.03, which compares 

reasonably well wi th the experimental value of 0.056 obtained from the 

compression stress strain curve in Figure 4.8. 

An alternative approach adopted by Gent and Thomas58 is to include 

in the classical Euler strut theory an unknown function of strain, f{e). 

The compression is assumed to be directed parallel to one set of threads 

in the model. structure shown in Fi gure 4.1. and to take pI ace by buckling 

of these threads. The force F on each thread is given by 

F = 
102 

where AK2 is the moment of inertia of the thread cross section. For 

threads of similar cross section, AK2 = mD4
, where m is a constant. The 

number of threads per unit cross sectional area is given by {lo- + D)-2, 

and hence the average compressive stress t is given by 

. F 
t -- (ID +D)<I 

4.14. 

by SUbstituting,6' for D/lo and absorbing the constant m in f{e). 

Bulk compressive strain e' is, however, influenced by two factors which 

can be considered additive: firstly the incompressibility of thread 

intersections as predicted by eq. 4.1. and secondly a contribution from 

simple compression of the threads by an amount t/Y
F

• Hence the bulk 

, 
compressive strain e will be given by 
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The application of such a theory to polyurethane foams is 

difficult, for, as can be seen in Figure 4.8., they display a large 

amount of energy loss or hysteresis and also a considerable amount of 

stress softening (i.e., the reduction in stress on the second 

extension curve). Although stress softening has been extensively 

t d · d12- 14 . t . l'ttl k t h b t d s u ~e ~n ens~on, ~ e wor appears 0 ave een repor e 

on stress-softening effects in compression. 

Despite the large amount of hysteresis, the analysis along the 

lines suggested by Gent and Thomas has, however, been also adopted 

in this paper to ascertain the form of the function f(e). 

By substituting measured values for bulk compressive stress ,(-t) 

and bulk compressive strain (e/ ) from Figure 4.8. it is possible, using 

the derived value fori and experimental values of Young's modulus for 

the solid polyurethane and foam, to obtain corresponding values of f(e) 

and effective strain e of the threads in the model by use of eqs. 4.14 

and 4.15. The relationship derived is shown in Figure 4.9. - It is of the 

general form expected for a buckling process and is very similar to that 

58 obtained for natural rubber foams ,although compression tests on the 

latter were only reported for foams with V less than 0.2. 
r 

4.8. CONCLUSIONS 

The theoretical model proposed by Gent and Thomas which has been 

applied here to the -mechanical behaviour of cellular polyurethane is a 

very idealised representation 'of an actual foam, which in practice must 

be far from homogeneous. The actual threads and intersections are of 

a ,ade range of shapes and sizes, as can be seen from the scanning 

ele-ctron microscope photographs. The apparent good agreement therefore 

obtained bet'<een experimental values of Young's modulus and theory is 

very satisfactory, particularly in view of the difficulties that occur 

with obtaining a reasonably good sample of solid material. 



The measured values of breaking energy are in good agreement with 

those calculated on the assumption that tensile failure occurs by tearing 

at the tip of the largest pore, which is the same criterion as that 

found for natural rubber foams. 

Values for tear strength at the initiation of a flaw can be obtained 

from the theory by assuming that the effective width of the tear tip is 

about twice the largest pore diameter. Tear strength results on poly­

urethane foams thus appear to differ from those on natural rubber foams 

as Gent and Thomas found that tear strength was much more dependent on 

the average pore diameter. In the case of the polyurethane foams examined 

in this paper the, average pore diameter was at least a factor of 10 lower 

than the maximum pore diameter. 

The shape of the compression stress-strain curve is similar to that 

obtained from the buckling of a strut in simple compression and can 

reasonably be described by the model proposed on the assumption that the 

threads in the model buckle under a compressive load. The arbitary function 

,fee) provides a measure of the.inhomogeneity of the foam structure, and 

the variation of fee) with strain is of the same form as that found for 

natural rubber foams. An alternative approach by use of shape factor 

theories predicts within a factor of 2 the value of the compressive 

buckling strain as compared with the value shown by the deviation in 

linearity of the compression stress-strain curve. 

Thus, the fairly simple model of a collection of thin threads of equal 

length joined together to form a cubical lattice appears to predict reason­

ably well the mechanical behaviour of cellular polyurethanes. These 

materials therefore follow similar relationships to those between foam 

and solid vulcanised rubbers and hence the high strength of cellular 

polyurethanes is very dependent on the very high strength of the solid 

polymer. 



-68-

CHAPTER 5 

EFFECT OF TIME AND TEMPERATURE ON 
THE TENSILE PROPERTIES OF POLYURETHANES 

5.1. INTRODUCTION 

As shown in the previous chapter, the mechanical properties of 

a cellular polyurethane can be related to the corresponding solid 

material by use of a fairly simple model. This model was initially 

found to relate similar properties in cellular and solid vulcanised 

rubbers. The high strength of the cellular polyurethanes referred t·o 

in Chapter 1 is therefore due to the very high strength exhibited by 

the solid polyurethane material. The reasons for this high strength 

are discussed in this and some of the later chapters of the thesis. 

A number of other features with regard to the properties of 

cellular polyurethane elastomers in poromerics were noted in Chapter 

1 such as high strength over a wide temperature range, the high set 

and shape retention, which indicates that the material has a broad 

distribution of relaxation times, and the indication of some 

. 0 
thermoplastic behaviour at temperatures above 160 C. In view of the 

importance of time and temperature in the final use of these 
<-

polyurethanes and in order to elucidate more clearly the reason for 

their good mechanical properties, a full investigation into the effe.ct 

of time and temperature on the tensile properties of both the cellular 

and solid polyurethanes is presented in this chapter. 

The first part of the chapter reports an investigation.into 

determining the relaxation spectrum of polyurethanes. The second 

part discusses the effect of time and temperature on the failure 

parameters of polyurethanes and compares these results with those 

obtained from vulcanised rubber and the third part of the chapter 

discusses the high temperature recovery of stress-softening. 
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5.2. EXPERIMENTAL 

Ring samples of the same diameter as the samples described in 

Section 2.3. of the thesis were cut from the cellular polyurethane 

used in poromeric materials (foam 1 from Chapter 4) and the 

corresponding solid material. Tensile stress strain curves were 

obtained for both materials by use of an Instron Tensile Testing 

Machine at six crosshead speeds from 0.05 cm/min.to 100 cm/min. 

(strain rate from 0.013 to 25 per min.). This procedure was repeated 

at 20 degrees' centigrade intervals between 21°C and 180
o
C. The 

tensile measurements for the cellular polyurethane were based in all 

cases on the cross sectional area including both rubber and cells. 

Hysteresis and stress-softening were also measured on a number 

of samples where the initial extension curve was reversed before the 

breaking point and these are reported in section 5.7.3. The testing 

procedure used for all these tests was the same as described in Section 2.3. 

of the thesis. 

For comparison with these results, ring samples of the same 

diameter were cut from the crosslinked polyether microporous layer 

of the fibrous based poromeric 'Corfam' and similar tensile stress 

strain curves were obtained. 

5.3. VISCOELASTIC PROPERTIES 

5.3.1. Theoretical Considerations 
================================== 

A'variety of methods have been used to study the viscoelastic 

properties of polymeric materials in terms of the relaxation or 

retardation spectrum. These methods include the response to 

sinusoidal stress (dynamic measurements71 ,72 ) stress relaxation73 ,74 

and creep under constant load75 and constant stress76 • Most of this 

work has been reviewed by Ferry27. 

The viscoelastic p'roperties of a polymer when subjected to a 

constant rate of deformation have been discussed by Alfrey77, Sips78 
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and smith79 ,80. The stress strain curves of a linear viscoelastic 

material can 'be conveniently related to a generalised Maxwell model 

which is characterised by the relaxation spectrum H('t') and the 

equilibrium modulus (Ee ). If the model in its relaxed state at 

zero time is subjected to a strain which increases linearly with 

time, the resulting strain and time dependent stress a{€,t) is given 

by the equation 

where R1 

= Ee.t +,[:';("':).(1 - e-t/'t')d.ln.'t' 

-"" ,... is the strain rate and L is the relaxation time. This 

equation shows that a{(,t)/R1 is a function only of time. Stress-

strain curves measured at 'different strain rates will superpose to 

cr(E t) . 
yield a single composite curve on a graph of log , /R1 aga1nst 

log t provided the data are reasonably linear viscoelastic. The 

slope of the stress-strain curve att = f/R1 equals the stress 

relaxation modulus E(t). This interrelation results from 

differentiating equation 5.1. with respect to strain (E) to yield. 

do­
dE 

.... ' 

=!1 =: = Ee" fH('l:) e-t/'l;' d.ln't= E(t) --
The major problem however with this analysis arises because 

polymers only exhibit linear viscoelastic behaviour at very low 

deformations. The stress-strain curves shown in figure 5.1. for the 
,je-l w .up~ ......... 

cellular polyu,rethane tested at g* i rates from 0.05 cm/min. to 

50 cm/min. show non-linear viscoelastic behaviour. Similar results 

were also found in the case of the solid materials. 

This non-linear dependence of stress on strain is due firstly 

to the fact that under most test conditions, relaxation of stress 

takes place continually during 'a test and secondly even in the absence 

of stress relaxation, the stress-strain is non-linear as predicted by 

the statistical theory of rubber elasticity. 
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Smith79 ,80 has sho,m that in the case of polyisobutylene and 

styrene butadiene rubber (SBR), equations 5.1. and 5.2',are applicable 

to stress-strain data up to 10~!o extension provided that stress or 

is replaced by real stress or the stress based on the actual cross 

sectional area of the stressed sample which for elastomers is equal 

to er (1+ t) or eTA • 

Before attempting to derive a relaxation spectrum for polyurethane, 

it is necessary to ascertain whether (l+E) is a suitable strain 

function which can be introduced into equations 5.1. and 5.2. to take 

account of this non-linear viscoelastic behaviour. 

5.3.2. Strain Function 
===-=================== 

A number of investigators81- 85 have found it useful in tensile 

creep and stress relaxation measurements to express the stress er(E,t) 

occurring after a time t at a constant extension rate from zero time 

as a product of a strain function and a time function which are 

mutually independent. A convenient method of expressing er (E,t) in 

a tensile stress-strain curve is by the following relationship. 

er (S,t) = F(t) £ 
ii(O 

where F(t) is the time function which is referred to later as the 

constant strain-rate modulus and g(£) is a function of strain which 

approaches unity as the strain goes to zero. 

In order to determine whether the stress-strain curves of 

cellular polyurethane could be represented by equation 5.3., values 

of stress at strains of 0.25, 0.50, 0.75, 1.00 and at further 0.50 

intervals were recorded at every strain ~ate and temperature. 

For each temperature, a graph was drawn of the stress at a 

particular strain against the t h,e to reach the particular strain. 

An example of these graphs is sho,m in figure 5.2. for the results 

at 60
oe. The lines through the points are approximately parallel 
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and t~s indicates that equation 5.3. is obeyed. Each parallel curve 

is displaced along the log er axis, .by the amount log g(e.)/£.. A 

similar set of curves was found at each of the test temperatures. 

This procedure indicated that a function g(£') existed which was 

independent of time over the range considered. It would be expected 

therefore that if g(E) was independent of time, it would also be 
, 

independent of temperature but as an extended temperature range 

corresponds with many decades of time at a single temperature, it was 

necessary to investigate the possible temperature dependence of g(€). 

Isochronal values of stress and strain were taken from plots 

similar to those in figure 5.2. for several temperatures and plotted 
S 

as log o-against log~as shown in figure 5.3. for data at 1,000 sec. 

It is observed that apart from a slight departure at higher strains 

o 
for the data at 20 C, the results lie again on parallel lines as 

predicted by equation 5.3. and demonstrates that g(E) is temperature 

independent. The data between two temperatures are therefore displaced 

along the log o-axis by an amount which equals the difference between 

the logarithms of the.constant strain rate modulus F(t) at the two 

temperatures. 

Having shmffi that equation 5.3. is applicable to the tensile 

data obtained on cellular polyurethanes, it is necessary to consider 

the value for g(~). One of the simplest analytical expressions is the 

modified Hooke's Law equation, 

o-A = E. £ 

so that the function g(E) is given by, 

g(E) = 1+ E. 
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By multiplying isochronal values of stress from graphs similar 
, 

to those shown in figure 5.2. by g(f) as defined in equation 5.5. and 

plotting this as a function of strain as in figure 5.4., it is seen 

that the modified Hookes Law equation is a reasonable approximation 

to the isochronal stress strain-curve up to about 150-200% extension. 

In order to take account of non-linear viscoelastic behaviour, 

it would appear appropriate therefore to put the term <r (£,t) equal 

to erA as shown by the following equation, 

in the calculation of the relaxation spectrum from equations 5.1. and 

5.4. RELAXATION MODULUS 

5.4.1.' Introduction 
-=================== 

. In order to calculate a relaxation spectrum for polyurethanes, 

it is necessary to determine the variation of relaxation modulus E(t) 

with time. Two methods for obtaining E(t) were used by SmI~fi80-in the 

analysis of tensile data of SBR and polyisobutylene. Both these methods 

have been applied to the tensile data on polyurethanes and are described 

in this section of the chapter. 

5.4.2. Method I ••• ~===z=====.=. 
The first method used by Smith79 for analysing the stress-strain 

curves of polyisobutylene made use of the fact predicted by equation 

5.1. that <r/lll was only a function of time. or €/R1• Data obtained 

therefore at different strain rates should superpose to give a single 

~~rve on a graph of log er/Ri against log €/R
1

• Data obtained at 

different temperatures can be combined by use of the time-temperature 

27,86 
reduced variable scheme of Ferry • 

This scheme is based on the assumption that all the relaxation 

times have the same temperature dependence and that the modulus of 
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each spring in the generalised Maxl<ell model is proportional to 

absolute temperature. By including this modification and the strain 

function given in equation 5.6., equation 5.1. becomes 

00 - El 
.. Ee. %laT + f1:'oH('t).(l - e R1

a
7'?d.ln "(0 

-00 

·where To is an arbitrary reference temperature, T is the temperature 

at which er and A are measured and aT is the ratio of any relaxation 

time at T to its value at To. 

Data measured therefore at different temperatures and strain 

.,..)-T I rates should superpose on a graph of log ( 0 R1aTT) against logo 

( £/R1~)· These quantities are termed reduced stress err and 

reduced strain £ r respectively. A graph of 0-;. against Er therefore 

is a hypothetical stress-strain curve measured at unit strain rate 

and temperature To. Equation 5.7. can therefore be expressed as: 

1"" -£"f 
err .. Ee. Er + t.H('l:).(1 - e ")d.ln.T 

-.. 
By differentiating equation 5.8. with respect to reduced strain, 

the stress relaxation modulus E(t) can be obtained as predicted by 

equation 5.2. By using reduced stress and strain, equation 5.2. 

becomes 

For 

Ob 

d(r,r f c-
o _cl ".. () .. Ee + H('t). e r T d.ln' .. E t 

dEr 
~ -~ 

c16u~ation purposes, .the equivalent equation can be used
9 

E(t) 
(d In crr) -

(d In £ ) 
( r) 

5.10. 

thus providing a method for obtaining the relaxation modulus-time 

curve for polymers from which the distribution of relaxation times or 

relaxation spcctru~ can be calculated. 
(crATo ) 

Values of stress function( R T ) and strain divided by rate 
( 1 ) 

([/R1 ) up to l5~ extension were evaluated from the experimental 

results for both the solid and cellular polyurethanes at the nine test 
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temperatures. In order to show that stress-strain data obtained at 

different strain rates superposed as predicted by equation 5.7., a 
er.x To 

graph of log against log £/R1 was drawn as shmm for the 

cellular polyurethane in figure 5.5. The value of the standard 

reference temperature To was taken as 294°A. 

The results as shown in figure 5.5. follow a very shallow curve 

which departs at higher times from a unit slope.' The data for each 

temperature is slightly displaced along the reduced stress axis. 
(J" .>. To 

Values of log aT 

against log S/R1 

were obtained by shifting the graphs of log ~~~­
R1T 

up a line of unit slope until all the curves for 

the different temperatures coincided. The distances the curves were 

o 
shifted relative to the standard reference temperature 294 A gave the 

actual values for log aT. These values are plotted against temperature 

in figure 5.6. 

Measurements by Thermal Mechanical Analysis showed that the glass 

'0 
transition temperature of the polyurethane was approximately -30 c. 

Using this value for Tg , values of ~ have been calculated by use of 

the Williams, Landel & Ferry (WLF) 

-8.86 (T - Ts) 

101.6 + T - Ts 

, 27 
equation given below. 

where T is the test temperature and Ts = Tg + 50. 

5.11. 

It is seen that the WLF equation agrees with the experimental 

points only over a very small temperature range and this is discussed 

further in Chapter 7. 

Similar curves to tho~e shown in figure 5.5. were obtained for 

the solid polyurethane and by using the values of log aT calculated 

for the cellular polyurethane material, composite master curves of 

reduced stress (~r) against re?uted strain (o/u1 ) were obtained for 

both the cellular and solid polyurethane and these are shown in 
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figure 5.7. It is seen that the mastercurves for the cellular and 

solid materials extend approximately for 20 decades of time and the 

results for the cellular material are, over the majority of the time 

scale,parallel to those for the solid polyurethane. 

The slope of the lines in figure 5.7. were measured graphically 

at a number of values of tjR1aT and by multiplying the slope by the 

ratio of reduced stress O"r to reduced strain Er at the respective time, 

it was possible by use of equation 5.10. to obtain values of relaxation 

modulus E(t) at each particular time. The relaxation modulus - time 

relationship for both materials is plotted in figure 5.8. on a double 

logarithmic scale. It is seen that the lines for, the solid and foam 

polyurethane are approximately parallel with a factor of 4.2 between 

the results. It would appear therefore that the properties of the 

cellular polyuret'hane are dependent on the corresponding solid 

material even at very long times. 

5.4.'. Method 2 
================ 

An alternative approach to the problem of analysing stress­

strain curves was suggested in a later paper by Smith80 who used it 

in calculating a relaxation spectrum for SBR and polyisobutylene. 

If the strain rate R1 is replaced in equation 5.1. by the 

equivalent function (Ejt), the rearranged equation becomes, 

cr(~t) = Ee +! E:('t').(l -e-tj't")d.ln't' 5.12. 

Th t o cr(f,t} h O h-''''' ° ° 1 • 11 d e ra 10 lE, W le lS a functlon of tlme a one, lS ca e 

the constant strain rate modulus F(t) which is related to the stress 

relaxation modulus E(t) by the following equation: 

E(t) = F(t) ° fl + ~:~~~ ~(t)J 
The relaxation modulus - time curve was recalculated for the 

cellular polyurethane by this method as a check on the initial 
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calculations. Section 5.3.2. showed that it was possible to separate 

the stress into a time and strain function and that the strain function 

g(E) Was equal to A for strains at all temperatures up to 15ry~. 

Using the same experimental data for the foam as used in the 

first method, the time dependence of ~7'£ (which is F(t) by definition) 

at temperatures between 21 and 180
0 c is shown in figure 5.9. by plots 

of 1 er ~ 294 
og -f-.T against log t. The curves in figure 5.9. were shifted 

along the log t axis to effect superposition as shown in figure 5.10. 

It was found that the shift distances (log aT) were in agreement with 

the results obtained earlier and shown in figure 5.6. 

Values of E{t) were calculated at various times from the results 

in figure 5.10. by use of equation 5.13. and these are compared with 

results obtained from the first method in figure 5.8. The agreement 

of the results between the two methods is very good and therefore the 

line drawn through the points in figure 5.8. can be taken as a 

reasonable description for the relaxation modulus - time curve from 

which the relaxation spectru~ can be calculated. 

5.5. RELAXATION SPECTRUM 

It is possible to calculate the distribution of relaxation times 

H{'t) from the relaxation modulus E{t) by using various approximation 

methods. The most common method is due to Alfrey77 who assumes that 

instead of mul.tiplying H{1:') by the kernel function e -tlr as in equations 

5.1. and 5.2. that this is approximated to by a step function going 

from 0 to 1 at L= t, so that 

E{t) .. I:{1;).1 In 1: 
In;; 

The integral in this case would not be grossly different from 

equation 5.2. and hence by differentiating equation 5.14. with respect 

to the Hmi t In t', equation 5.15. is obtained. 

d E{t) -"­
d In r ) t = 1: -
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This equation provides a method for obtaining the relaxation 

spectrum at T _ t from the negative slope of the relaxation modulus -

log time curve. 

This equation is only applicable to solid materials and hence 

can only be used to evaluate the relaxation spectrum for the solid 

polyurethane but as the modulus of the foam was related to the 

solid material by a common factor at every time, o~e spectrum 

representing the properties of both the cellular and solid 

polyurethane can be derived. 

The relaxation spectrum calculated from the curve shown in 

figure 5.8. by use of equation 5.15. is shown in figure 5.11. and 

compared in figure 5.12. with other typical spectra for elastomer 

27 systems from Ferry • The most interesting feature of the relaxation 

spectrum for polyurethane compared with crosslinked amorphous rubbers 

is the very flat plateau which extends for over 18 decades of time. 

This particular relaxation spectrum is similar in shape but slightly 

less in magnitude than that of an amorphous polymer below its glass 

transition temperature or a highly crystalline polymer. In the case 

of t.lle polyurethane, however, the material is flexible and above its 

o 
g1ass -transition temperature l<hich occurs at approximately -)0 c. 

5.6. YOUNG'S MODULUS 

5.6.1. Variation with Temperature 
================================== 

The normal form of stress-strain curves obtained for the cellular 

polyurethanes at various strain rates at 210
C are shown in Figure 5.1., 

the curve has an initial relatively steep slope and then flattens out 

at higher strains. Similar shaped curves were obtained for the solid 

material as shown in figure 1 .. 1,. The slope of the initial portion of 

the stress-strain curve permits a value of Young's modulus for the 
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polyurethane to be obtained. This value was measured off the stress-

strain curves obtained at every strain rate and temperature for both 

the solid and cellular polyurethanes. The variation of the logarithm 

of Young's modulus with temperature for both the solid and foam 

polyurethane at a strain rate of 10 cm/min. is shown in figure 5.13. 

Up to about 1600 c, the lines through the points for the foam and 

solid materials are parallel. The constant factor between the 

lines drawn through the results for the foam and solid materials is 

6.1. This value is the same as found between the mechanical properties 

of the cellular and solid polyurethanes at 21°C in Chapter 4 and is 

approximately that predicted by the cubical model theory of Gent and 

Thomas. Figure 5.13. shows that the properties of the cellular 

polyurethane are dependent on the properties of the corresponding 

solid material and a similar model can be applied to the difference 

in Young's modulus even at elevated temperatures up to approximately 

o 
Above 160 C, the values of Young's modulus for the solid 

polyurethane begin to fall and the parallel behaviour is no longer 

apparent. 

5.6.2. Variation with Strain Rate 
==~==============================~ 

Values of strain rate at , ... hich Young's modulus was measured were 

multiplied by the respective shift factor (log aT) at each temperature 

from figure 5.6. and a composite mastercurve was drawn of the logarithm 

of Young's modulus with strain rate as shown in figure 5.14. Over the 

majority of the time scale considered, the results for the solid 

polyurethane are parallel to those of the cellular material. The 

factor between the two lines drawn being 6.1. as found in the constant 

strain rate graph (figure 5.13.). The data at the higher two 

. temperatures (16o
o
C and 180

0
C)' appear to show a divergence from the 

parallel b~haviolrr at very low rates (i.e. long times) similar to 
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that shown on the temperature graph in figure 5.13. In general the" 

data for the solid polyurethane shows more scatter than that for the 

foam and this is presumably due to the difficulties in obtaining(a 

completely uniform solid sheet of the material. It would appear 

however that the Gent/Thomas model is applicable to vqlues of Young's 

modulus for polyurethanes over a large time scale as well as over a 

range of temperatures. 

5.7. TENSILE FAILURE PROPERTIES 

5.7.1. Stress and Strain at Break 
================================== 

The variation of tensile stress at break (O-B) and strain at break 

(£B) for the foam and solid polyurethanes with temperature from 0 to 
jo..(.) uea.-..:h'.s-

180
0 e at a "'''', all. rate of 10 cm/min. is shown in figure 5.15. The 

stress at break for both the foam and the solid is fairly high and 

slowly decreases with temperature until about 160
0 e when it drops 

suddenly. 
. 0 

The strain at break rises to a maximum at about 100 e but 

again drops quite markedly· above 160
0 e to a value of 1.~0 and 0.~2 

for the foam and solid respe~tively at 180
oe. 

5.7.2. Energy Input to Break 
.===~====~=================== 

A more useful measure of the strength of a polymer is the 

toughness or energy input to break as it combines both the contributions 

due to stress and strain at break. The variation of energy input to 

break with temperature for b·oth the foam and solid polyurethanes at a 
~~oJ up~' __ 

sb'";''' rate of 10 cm/min. is shown in figure 5.16. The energy input 

to break values for both the foam and solid polyurethanes remain fairly 

high and parallel up to approximately 160
0 e when the failure values 

drop quite markedly. In order to indicate the high strength and 

temperature stability of the polrurethane used in this investigation, 

typical results for styrene-bu"tadiene rubber (SBR) with 0 and 30 phr 

HAF carbon -black from earlier investigations12 ,13 are also shO\m for 
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comparison in figure 5.16. It is clearly seen that even the 

polyurethane· foam has higher strength properties over the majority 

of the temperature range considered than the solid reinforced rubber 
l 

vulcanisate. 

To determine whether tensile failure data can be shifted on a 

time-temperature scale values of energy input to break were plotted 

against time to break (tB) for each temperature. The time to break 

(tB) was divided by the shift factor (aT) at each temperature 

obtained from figure 5.6. and the resulting mastercurve is shown in 

figure 5.17. It is seen that the data superimposes remarkably well 

and the parallelism of the foam and solid results up to very long 

times is still apparent as well as the drop in energy to break at long 

times (or high temperatures). 

5.7.3. Hysteresis at Break 
.=========================~ 

. 12-14 Harwood, Payne and Whlttaker found for unfilled and filled 

amorphous vulcanised rubbers that the energy input to break in a 

stress-strain cycle was related to the hysteresis at break over a 

,temperature range from -40 to 1400 c by a t power law relationship 

(equation 3.2.). The experimental results in Chapter 3 however showed 

that the energy input and hysteresis at and up to failure for a range 

of poromeric materials both with and without a fibrous base and also 

natural leather obeyed a 0.88 power law relationship. The variation 

of energy input with hysteresis for the cellular polyurethane 

considered in this chapter is shown in figure 5.18. This material 

was also included in the study reported in Chapter 3. As found in the 

earlier investigation, the hysteresis values up to and at break fall 

on a common line. The experimental results for the solid polyurethane 

also fall on this line. The straight line relationship shown in figure 

5.18. for cellular and solid polyurethanes only is given by: 

6 
0.90 u 1 ~ 1. H·1 5.16. 
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A typical j power relationship between the failure parameters 

for a vulcanised amorphous rubber (SBR) is dotted on figure 5.18. 

for comparison. 

One of the fibrous poromerics (Corfam) used in the earlier 

experiments in Chapter 3 had a very thin microporous polyurethane 

film as the surface layer. Although when tested in total (i.e. 

polyurethane film + fibrous layers), this poromeric showed similar 

hysteresial ·properties to the other poromerics; it was known that 

the microporous layer was chemically crosslinked and based on a 

polyether· polyurethane whereas the majority of cellular polyurethanes 

used in poromerics including the one considered in Chapters 4 and 5 

are polyester polyurethanes with low crosslink density. 

The variation of energy input with hysteresis for the crosslinked 

polyether polyurethane is shown in figure 5.19. ~ for values ~ 

stn.ifl at break and at strains up to rupture. It is seen that the 

results up to break fall on a different line from those at break. The 

slope of the line through the failure points.is 0.79. It would appear 

therefore that as the amount of chemical crosslinking is increasedJthe 

slope on logarithmic scales of the line between energy input at break 

and hysteresis at break is decreased. This effect has also been 

21 
noticed in amorphous vulcanised rubbers such as SBR. The dotted line 

through the experimental points up to failure on figure 5.19. is the 

same line as drawn through the points for the polyurethane foam and 

solid materials shown in figure 5.18. 

5.7.4. Strain at Break 
======================3 

12-11, 
Work on both amorphous and strain crystallising vulcanised 

rubbers described in Chapter 2 and the supplementary contribution to 

the thesis showed that the energy input to break (UB) is related to 

the strain at break (E"B) up to the maximum extensibility of the network 
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(EB max.) by a relationship of the following form 

u. 294 • A (t )2 
B T ""B 

The variation of energy input to brewc with strain at break for 

the cellular polyurethane is shown on figure 5.20a and for the solid 

polyurethane in figure 5.20b. The results at temperatures above 

1600 C are shown by open circles and it is seen that the square law 

relationship between the two parameters is only obeyed at these high 

temperatures. As shown in figures 5.15. and 5.16., the strain at break 

and energy at break values are fairly high except at very high 

temperatures. The maximum extensibility (€B max.) of the cellular 

o 
polyurethane for example remains at a fairly constant value from 80 C 

o 
to 160 C as shown in figure 5.15. This is in contrast to a normal 

vulcanised rubber such as a SBR which has its maximum extensibility at 

The effect of crosslinking on the variation of energy input to 

break with strain at break is shown in figure 5.21a where the 

experimental results for the crosslinked cellular polyurethane layer 

of the poromeric 'Corfam' used in the previous section of the chapter 

are compared with the cellular polyurethane and solid results from 

figure 5.20. As found in the earlier investigations in Chapter 2 on 

branched polyurethane rubbers, increased crosslinking or branching 

results in the strain at break at a particular energy input to break 

being reduced. 

Section 2.5. showed that the strains at break at the same energy 

input to break for variou" crosslinked rubbers were in the ratio of 
.1 

their respective Ve
2 values provided that the strains were below the 

maximum extensibility of the network. Ve is termed the number of 

network chains per unit volume of the rubber network and is usually 

expressed in mOles/cc. Values for Ve were obtained from the 
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equilibrium modulus Ee by the following relationship (equ. 2.4.). 

Ee" 3 Ve RT 5.18. 

where R is the gas constant. 

A value of equilibrium modulus (E ) for the solid polyurethane 
e 

was obtained from the limiting value of the relaxation modulus - time 

'curve shown in figure 5.8. This value was 20 kgf/cm
2 

and occurred at 

a temperature of about 180oC. By using equation 
1-

V " e 
-2 ' t 

was found to be 1.33 x 10 (moles/cc). 

5.18., the value. of 

The strains at break for the solid polyurethane shown in 
.1 

figure 5.21a were multiplied by this value of Ve " and the results are 

plotted in figure 5.21b. The line plotted through the points on 

figure 5.21b is the line for the combined results of SBR, NR and 

branched polyurethane elastomers from Chapter 2 (figure 2.6) which 

appears to be a good approximation to the results for the solid 

polyurethane used in this investigation. 

The equation to the line shown in figure 5.21b is given by 

U (294) (4.1 x 1,03 ) Ve E 2 
B Cr) .. B 

if U
B 

is expressed in joules/cc. This equation therefore which was 

previously found applicable to branched, crystalline and amorphous 

polymers at various degrees of crosslinking (Chapter 2) now appears 

to be applicable to the type of polyurethanes used in poromeric 

materials. These latter materials therefore despite their very high 

strength and other special features appear to obey similar laws to 

normal rubberlike materials. 

5.8. STRESS SOFTENING 

The results presented in Chapter 3 showed that stress softening 

occurred in both natural and artificial leather materials. This' is 

illustrated further in figure 5.22. where the cellular polyurethane, 
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used in the earlier sections of this chapter, has been repeatedly 

cycled. Each stress-strain cycle has been taken to a higher maximum 

stress than the previous cycle. In all cases lower stress values are 

obtained at the same strain on the second extension curve than on 

the initial curve provided that the extension was lower than that 

previously applied. At strain levels higher on the second extension 

curve than that applied on the initial curve, the stress-strain curve 

was unaffected by prestraining and followed the normal (uncycled) 

stress-strain curve for the material which is shown by the dotted 

line in figure 5.22. This behaviour is very similar to that observed 

. hI· d bb 12-1l" 1n an amorp OllS vu canlse ru er • The earlier work on stress 

softening17 ,87 in vulcanised rubbers which crystallise on extension 

such as natural rubber showed that although the rubber could be cycled 

in a similar manner, the second extension curve when taken past the 

reversal point on the initial stress-strain curve did not coincide 

with the uncycled curve. 

The earlier sections of .this chapter have shown that polyurethane 

o retains a high strength up to about 160 C. Above this temperature the 

strength drops quite markedly. In order t~ investigate this change in 

properties more thoroughly and to understand the mechanism which 

resulted in stress softening, some experiments were undertaken where 

the polyurethane foam was allm<ed to recover at various temperatures 

after stress softening. Several stress-strain curves were obtained at 

every 50% extension up to 300"/0 where the second extension curve was 

taken up to the same initial strain as on the first extension curve. 

Each group of samples (taken to strains from 50 to 3000/0) were then 

o 
left at a number of temperatures up to 170 C overnight (16 hours) and 

then recycled to the same initial extension. Energy under the initial 

first and second extension curves and "recovered stress-strain curve 
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was measured and figure 5.23. shows the variation of energy input with 

strain both before and after recovery at a number of recovery 

temperatures. Leaving the samples overnight at the testing 

o 
temperature (20 cl shows only a small amount of recovery of stress 

softening. The amount of recovery increases as the overnight recovery 

temperature is increased. Even at 140
oc, the stress softening is not 

completely recovered. At 170
0
C however, the stress softening is over 

recovered. This temperature is above the temperature at which the 

sharp change in mechanical properties noted in the earlier sections 

of this chapter occurs. 

This anomalous behaviour when the polyurethane samples were heated 

o 
to 170 C suggested that some.stress was already put in the material 

during manufacture and as a check on this phenomenon, some unstressed 

o 
samples of the cellular polyurethane were heated up to 170 C and then 

cycled to various strains. It was found that the material appeared to 

be stiffer after this treatment and as shown by the dotted line in 

figure 5.23., the results were almost identical with those samples 

which had been prestrained and allowed to recover at 170
o

C. It was 

concluded therefore that the over-recovery noted with the cellular 

polyurethane is due to inherent stresses put into the material during 

manufacture. 

5.9. CONCLUSIONS 

The two methods used by Smith to determine the relaxation spectrum 

of SBR and polyisobutylene from tensile stress-strain data have been 

shown to yield the same result and provide a satisfactory method for 

determining the relaxation spectrum for polyurethane elastomers. The 

time - temperature shift factors have been found to be higher than 

those predicted by the WLF equat~on. The relaxation spectrum for 
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polyurethane is a very flat plateau which extends for over 18 

decades of time. The shape of the spectrum resembles that of an 

amorphous polymer below its glass transition temperature and is 

only slightly less in magnitude. The polyurethane however is still 

flexible and above its major glass transition temperature which 

o 
occurs at about -30 C. 

The cubical model relationship between the foam and solid 

polyurethan~s described in Chapter 4 has been found to be applicable 

to values of Young's modulus at very high temperatures or long times. 

The high strength of polJ~rethane is shown to be reasonably temperature 

o 
independent until about 160 C, when it drops quite markedly which 

indicates some structural change in the material. This particular 

feature is discussed further in Chapter 7. 

Due to their essential linear or non-chemically crosslinked 

structure, polyurethane elastomers used in poromerics are highly 

hysteresial in character and their properties apart from strength 

resemble those of a very low.crosslinked vulcanised rubber. The 

normal square law relationship for vulcanised rubbers between energy 

input to break and strain at break is obeyed by these polyurethane 

elastomers only at very high temperatures (above 160
o

C) when the 

sharp drop in strength occurs. By obtaining a value for equilibrium 

modulus, it is possible to correlate measurements on this graph with 

the general relationship applicable to crystalline, branched amorphous 

and filled vulcanised rubbers at various degrees of crosslinking 

described in Chapter 2. 

Stress softening is also not completely recovered in these 

polyurethanes until the temperature is raised to about 1700 C (i.e. 

above the point·where the large drop in mechanical properties occurs}. 
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CHAPl'ER 6 

CUT GROWTfl AND FATIGUE PROPERTIES 

6.1. INTRODUCTION 

The earlier chapters of this thesis have described differences in ,the 

tensile properties of polyurethanes compared with vulcanised rubbers. One 

of the most important properties of cellular polyurethanes for their use' in 

the footwear industry is that they have a high resistance to cut growth. 

It is therefore important to consider this particular property separately 

and compare the cut growth resistance of polyurethane with vulcanised 

rubbers. 

A number of investigations have been undertru<en in recent years into 

the cut growth and fatigue properties of vulcanised rubbers. Most of the 

investigators have expressed these properties in terms of a parameter termed 

tearing energy (T). This approach has been used in determining the cut 

growth and fatigue properties of polyurethane and is described in this 

chapter. 

6.2. TEARING ENERGY THEORY 

6.2.1. Introduction 
============~======= 

Cut growth in polymers, like that in metals, begins at individual 

points or flaws where the stress is locally very high88- 90 • The determination 

of the magnitude of the stresses at and around the tip of a flaw in a piece 

of highly strained rubber is a complex problem. It has been shown, however, 

for vulcanised rubbers that the consequence of this high stress concentration 

can be assessed by use of a simpler parameter known as Tearing Energy (T). 

The concept of "Tearing Energy" for polymeric materials was originally 

61 
developed to describe the tear behaviour of rubber by Rivlin and Thomas 

and is an extension of the classical theory for the strength properties of 

glass developed by Griffiths62 in 1920. The theory was briefly discussed 

in Chapter 4 when it was used to' express the tear properties of cellular 

polyurethanes. 
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Tearing energy (T) is defined, for a strained test piece containing.a 

crack as: 

T = - (-~ ~) 
. e 

6.1. 

where'U is the total elastically stored energy in the test piece and A is 

the area of the two sides of the cut surface; The derivative must be taken 

under conditions that the applied forces do not move and hence do no work. 

The suffix e denotes that the differentiation is carried out at constant 

deformation. It. thus represents the rate of release of strain energy as 

the crack propagates and can, therefore, be considered as the energy 

available to drive the crack through the material. It has been found that 

if tear or crack growth measurements are expressed in terms of T, the 

64 
results obtained from test pieces of different shapes can be correlated • 

The dependence of T on flaw size, applied force or deformation can be 

deduced for various types of test piece. For example the tearing energy61 

for the 'trouser' tear test piece shown in Figure 6.1(a). is approximately 

given by: 

T = 
2F 
h 

6.2. 

where F is the applied force and h is the test piece thickness. 

For a test piece in the form of· a strip with a small cut of length 

'C' in one edge, deformed in simple extension, as shown in Figure 6.1(b)., 

the tearing energy is given by: 

6.3. 

where U i's the strain energy density in the bulk of the test piece (i.e. 

away from the cut) and K is a slowly varying function of strain which has 

b d t . d .. 11 6'5 ft· t 200" een e erm1ne emp1r1ca y or s ra1ns up 0 ~. 

shown in Table 6.1. 

Values of K are 
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Tensile strip 
(cut grm<th test piece) 

(b) 

Figure 6.1. 
=========== 

Cut growth and fatigue test pieces. 

I Dumb-bell 
(fatigue test pie·ce) 

(c) 
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This latter type of sample was used for the cut growth results 

described in this chapter. It has the advantage that the stress-concentrating 

effects of both flaw size and deformation (which govern K and U) are expressed 

in terms of the single parameter T. 

TABLE 6.1. 

VALUES OF PARAMETER K (AFTER GREENSMITH65) 

Strain K 

0 11 

0.10 2.85 

0.20 2.66 

0.40 2.43 

0.60 2.27 

0.80 2.15 

1.00 2.05 

1.50 1;85 

2.00 1.67 

) 2.00 1.67 

The tearing energy theory has been successfullY applied to tear
91

, cut 

growth, fatigue
88

- 90 and to a limited extent to tensile failure92 of 

conventional vulcanised rubbers.· 

6.2.2. Application to Cut .Growth 
================================= 

It has been found for vulcanised rubbers that when the tearing energy 

exceeds a minimum value denoted by To' the amount of cut growth per cycle 

(dc) . . 88-90 (d;) for a tensIle test pIece containing an edge crack (Figure 6.1(b).) 

in repeated extension test at a particular frequency depends on the maximum 

value of T attained in each cycle and can be expressed by an equation of 

the .following form 

dc 
dn = 6.4. 

where G is a constant. This is illustrated for a number of rubbers in 
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Figure 6.2. The actual value of the power m is unfortunately dependent on 

the type of pOlymer89 ; for natural rubber, m = 2; for a range of synthetic 

rubbers (e.g. butyl, polychloroprene, polybutadiene), m = 3; and for styrene-

butadiene copolymer rubber, m = 4. This type of equation has also only been 

shown to hold for measurements carried out at room temperature (approximately 

21
o

C). It has been shown
88

- 90 that a minimum value of tearing energy (To) 

exists below which there is no mechanical cut growth, and hence this defines 

a fatigue limit for repeated stressing below which the life can be indefinite 

in the absence of any chemical effects. 

6.2.3. Application to Fatigue Properties 
========================================= 

Failure of rubber test pieces containing no artificially inserted cracks 

b d d d f th t th b h . 89 . t t 11 can e e uce ram e eu grow e aV10ur by assuming ha natura y 

occurring flaws of length Co are present in the rubber. In the case of a 

cellular material, Co would be expected to be in the same order as the 

largest pore size. 

It is possible to eliminate from equations (6.3.) and (6.4.), the 

parameter T and hence form the differential equation: 

= 

The differential equation can be solved to give the number of cycles 

n to increase the crack from Co to S· 

G ( 1 1 ) 
6.6. n = (m-1) {2KU)m ( C m-1 sm-1 ) 

0 

When failure occurs the final crack length will be much greater than the 

initial flaw size (Co) and hence the number of cycles to failure N (e) is 

given by 

G 
= (m-i) ( 2KU)m 

1 
C m-1 

o 
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Variation of rate of cut growth per cycle with Tearing energy for 
a number of vulcanised rubbers. "(After Lake and Lindley 8-90) 
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Equation 6.7. expresses the fatigue life N (e) of a rubber when subjected 

to continuous cycling at constant temperature but at varying strains (e) 

in terms of,the cut growth constant G, initial flaw size Co and maximum 

strain energy U in a cycle which can be derived from the maximum strain. 

88 
Good agreement has been found between the predicted fatigue life from 

equation 6.7. and experimental data provided that the correct value of m 

for each particular polymer considered is substituted in "the equations. 

6.3. INTER-RELATION BETWEEN FATIGUE AND STRENGTH/HYSTERESIS THEORY 

Before discussing the cut growth and fatigue properties of cellular 

polyurethanes, the author has attempted to correlate the energy input to 

break/hysteresis at break failure relationship for vulcanised rubbers, 

discussed in sections 3.~.1. and 5.7.3. with the cut growth and fatigue 

theory discussed in the previous section. Up to the present these two 

approaches to the failure of rubber have been considered separately. 

Recent work93 has also shown that if fatigue tests are carried out on 
AM..[li~ 

synthetic rubbers at a fixed strainLbut over a variable temperature range, 

then the fatioue life is dependent on the amount of hysteresis exhibited by 
a.ttAriirv.-A..t... ' 

the rubber at that strairt. For SBR at 175% extension and over a temperature 

o 0 
range of -40 C to +80 C and over a frequency range 0.008 Hz to 8Hz, the 

fatigue life N(t) can be expressed as 

hP 
N(t) = A 6.8. 

where h is the hysteresis ratio raised to the power p, which was found 

approximately to be 6, and A is a constant. 

If it is assumed that the total fatigue life N over a variable temperature 

and strain range can be expressed as 

N = N(e) N(t) 

then by combining equations (6.7.), (6.8.) and (6.9.) the follOl,ing relationship 



can be derived 

G 
N = (m-1l (2KUlm 

1 
c m-I o 
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6.10. 

If p = 6 and m = 3 which is normally the case for amorphous polymers 

and N = 1 which is the case for a normal tensile test 

6.11. 

This equation can then be directly compared with the hysteresis at 

break failure criterion for vulcanised rubbers which when expressed in terms 

of hysteresis ratio a. break (hB) is given by 

6.12. 

if the small temperature correction factor is omitted. 

The constant.Ki in equation 6.12. is therefore identified with constants 

derived from the fatigue failure equations: 

( G )t 
= ("::2'( 2:::K"'l'"'J':::Ac,--,C""o"""2·) 6.13~ 

If it is assumed that the parameter A remains constant for a number of 

amorphous polymers, then for rubbers where m = 3, Ki is proportional to 

2~ 3 ~ (G/Co )'. Values of K1 from the data of Harwood and Payne and values of 

Co and G from the data of Lake and Lindley89,95 are shown in Table 6.2. 

The variation of Ki with G/C; is shown in Figure 6.3. for the rubbers 

listed in Table 6.2. with the exception of NR which crystallizes strongly on 

extension and does not obey either equation 6.11. or 6.·12. A line of slope 

! predicted by equation 6.13. is shown in Figure 6.3. to be a reasonable 

approximation to the results. Apart from experimental error, the difference 

'~ c4AA- -+0 
between the experimental points and the t power law __ be e"ill .iRse By (a) 

the slightly different mixed compounds used by Harwood and Payne and Lake 

and Lindley, (b) the likely variation in the constant A between different 

polymers; (c) for some rubbers, m = J is only an approximation, and for SBR 
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Relationship between K13 from equation 6.12. and G/Co2 from equation 
6.11. Dotted line of slope j predicted by equation 6.13. is also shown. 
Actual values are shown in Table 6.2. 
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in particular, a value of m = 4 in equation 6.11. should be used. The 

hysteresis failure criterion, equation 6.12. however is obeyed for SBR as 

well as for all other amorphous rubbers and also to a limiting extent for 

a strain-crystallising rubber such as natural rubber; and this possibly 

indicates the usefulness of the equation compared with fatigue equations 

which vary considerably between the different polymers. 

TABLE 6.2. 

COMPARISON OF TENSILE AND FATIGUE FAILURE PARAMETERS 

K) Co G G/Co 2, 
1 Rubber J.cm-) cm X 10) arb. units arb. units 

(Ref. 94) (Ref. 95) (Ref. 89) 

Butyl 49 5 0.091 0.0)6 

SBR 61 5.5 0.056 0.019 

BR 88 2.5 • 0.0)1 0.050 

NBR 97 4 1.100 0.690 

NR 124 2.5 2.200 ).500 

• Assumed same as NR as shows evidence of strain crystallisation 
on extension. 

6.4. CUT GROWTH OF CELLULAR POLYURETHANES 

6.4.1. Experimental 
==================== 

The cut growth experiments were carried out on tensile strips (shown in 

Figure 6.1(b).) of approximate dimensions 15 cm x 2.5 cm and about 2 mm 

thick. A cut about 0.5 mm long was made in the centre of one edge of the 

sample by use of a razor blade and the test piece was then clamped into 

position on a repeated extension machine and extended to a suitable strain 

and cycled., 

The repeated extension machine which was designed for the project is 

shown in the photograph in Figure 6.4. The machine consists of twelve 

testing stations arranged six on either side of a central bar. The clamps 
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I . 

Figure 6.4. 
=========== 

Repeated extension machine used for all the cut growth and fatigue 
measurements. 
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on the central bar oscillate backwards and forwards between stationary 

clamps which could be adjusted to give extensions on the test pieces from 

o to 16 cms. The machine speed was approximately 12IJ cyc~<:s per minute. 

A six figure counter was attached to the side of the machine. Metal 

collars were also attached to the stationary clamps which allowed the 

samples to remain unloaded when the machine was left off overnight. 

At each strain selected, three samples were placed on the repeated 

extension machine and during the test the length of cut was measured with 

a magnifying micrometer eyepiece. The test piece waS slightly strained to 

facilitate observation. Readings were taken at intervals corresponding to 

approximately a 10% increase in cut length. Razor cuts tend to have very 

sharp tips and a small amount of rapid growth often occurs before the tip 

of the cut roughens to its steady state. This period of initial rapid 

growth was usually ignored. A typical example of the variation of cut 

length with number of cycles is shown in Figure 6.5. for a cellular 

polyurethane test piece strained to 70%. 

6.4.2. Experimental Results 
============================ 

By measuring energy inputs at various strains along the stress-strain 

curve and using published values of 2K shown in Table 6.1., it was possible 

to determine the variation of 2KU with strain for the cellular polyurethane 

and this is shown in Figure 6.6. 

Several cut growth tests were carried out" at a number of extensions up 

to 100% maximum initial strain for the polyurethane and a number of graphs 

similar to. Figure 6.5. were produced. For each graph, the rate of cut growth 

(~) was determined from the difference in cut length divided by the number 

of cycles between the two experimental readings. This rate. was then referred 

to the tearing energy calculated from the average of the two cut lengths and 

the 2KU value obtained from Figure 6.5. at the maximum initial strain of the 
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Variation of 2KU with strain for the cellular polyurethane. 
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cycle. The test was stopped when the cut reached about m% of the test 

piece width as the theory is inapplicable above this cut width. It was 

possible, however, to cover a decade of tearing energy values with one test 

piece. A different range of T was covered by cycling another sample to a 

. different maximum strain, hence changing 2KU. 

In all the experiments no correction was made for permanent set 

developed in the test piece. Provided that all the measurements were referred 

to the initial stress-strain curve of the material the correction was 

unnecessary. (This procedure differs slightly from the published work
88- 90 

on solid rubbers where set is usually allowed for in both the cut growth 

and in the stress-strain measurements). 

The variation of the rate of cut growth with tearing energy for 

the cellular polyurethane is shown in Figure The lowest recorded value 

of tearing energy at which some cut growth was observed was 2.~ kgf/cm. 

Cut growth samples put on the repeated extension machine at a tearing 

energy value of 1.7 kgf/cm showed no cut growth after repeatedly being 

stretched for J million cycles. It was therefore assumed that the value of 

To for the cellular polyurethane was approximately 2 kgf/cm. 

Above To' however, as shown in Figure 6.7. a relationship to the power 

6 is obeyed between cut growth rate and tearing energy and hence equation 

6.~. can be written for this material as: 

dc 
dn = 6.1~. 

This .power is mnch higher than is normally found in a solid rubber 

I 88-90 po ymer but can vary according to the cellular structure as discussed 

later. 

In order to confirm whether equation 6.i~. was correct for the cellular 

polyurethane used in poromerics and secondly to obtain a value for the minimum 
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flaw size Co at which cut growth occurs, conventional fatigue tests where 

no cuts were placed in the sample were undertaken and the results of these 

experiments are described in the next section. 

6.5. FATIGUE PROPERTIES OF CELLULAR POLYURETHANES 

6.5.1. Experimental 
==================== 

Dumb-bell samples of the type shown in Figure 6.1(c). were cut from 

the cellular polyurethane used in the cut growth investigation. The samples 

with no inserted cuts were then placed on the repeated extension machine 

shown in Figure 6.~. The number of cycles to failure for each of the 12 

samples repeatedly strained to the same initial strain was then recorded. 

The strains were calculated as a function of the original length of the 

parallel side centre section of the dumb-bell with no allow.ance being made 

for set in a similar manner to that described for the cut growth experiments. 

The whole experiment was repeated at a number of strains between 200 and 350%. 

6.5.2. Experimental Results 
=============~===~==~===~~~= 

The variation of the average number of cycles to failure for the 12 

samples with strain is shown in Figure 6.8. In order however to confirm 

whether equation 6.1~. and the cut growth theory outlined was applicable to 

cellular polyurethanes, the average number of cycles to failure of the 

twelve samples used at each strain was plotted as a function of 2KU on 

logarithmic scales as shown in Figure 6.9. A sixth power line has been drawn 

through the results in Figure 6.9. to give the relationship from equation 

= 
G 

6.15. N(e) 
5 (2Ku)6 

From the intercept (N') of the line on the 2KU = 1 (log 2KU = 0) axis, 

it is possible to derive a value for the effective flaw size Co from 

N*(e) = 6.16. 
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Variation of average fatigue life of twelve test pieces with 2KU 
for cellular polyurethane. Dotted lines indicate maximum and minimum 
fatigue life of 12 samples at each 2KU value. 
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The value of G = 2.86 x 1010 cgs cycle.units is obtained from the line 

shown in Figure 6.7. Using the value of N* = 4.6 x 1020 from Figure 6.9., 

the value of Co is found to be 6.6 x 10-3 cms. 

The scanning electron microscope photograph of the cellular polyurethane 

shown in Chapter 4 indicated that the average pore diameter was approximately 

2 x 10-3 cm but a few cells of up to 2 x 10-2 cms in diameter were present. 

The calculated value for Co appears therefore to be well within the range of 

cell diameters found in the cellular polyurethanes used in poromerics in 

practice. 

The results shown in Figures 6.8. and 6.9. are the average number of 

cycles to failure for 12 samples. of the cellular polyuretnane at various 

strains but the actual number of cycles for the first and last samples of 

the twelve to fail were very different. A sixth power law has been dotted 

on Figur~ 6.9. through the maximum and minimum number of cycles to failure 

of the twelve samples. From the respective N* values and equation 6.16., 

an indication of the maximum and minimum flaw size could be obtained and 

these are shown in Table 6.3. 

TABLE 6.3. 

VALUES OF EFFECTIVE FLAW SIZE Co FROM FATIGUE DATA 

No. Cycles to N* Co Failure cms 

Max. 1021 
5.6 x 10-3 

Av. 4.6 x 102D 6.6 x 10-3 

Min. 8 x 1019 
9.3 x 10-3 

.. These values of effective flaw size are therefore within the range 

of cell diameters found actually in cellular polyurethanes in practice. 
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It is concluded therefore that the tearing energy theory developed for 

vulcanised rubbers appears to be applicable to cellular polyurethanes of the 

type used in poromerics and that fatigue failure of these materials under 

repeated straining is due to cut growth from the largest cell in the sample. 

The fatigue behaviour of cellular materials is therefore similar to that 

found in solid vulcanised rubbers with the size of the largest hole in 

cellular materials taking the pl~ce of the size of natural flaws in solid 

rubbers. 

6.6. COMPARISON cur GROWTH RESULTS WITH OTHER MATERIALS 

6.6.1. Solid Polyurethane Elastomers 
===================================== 

Similar cut growth measurements to those reported in Section 6.4. were 

also undertaken on the solid polyurethane of the same composition as the 

cellular material. The variation of the rate of cut growth with tearing 

energy for the solid polyurethane is shown in Figure 6.10. 

The line through the results for the cellular polyurethane from 

Figure 6.7. is also dotted on Figure 6.10. for comparison. The line drawn 

through the results for solid polyurethane has a slope above To on the 

(5 ) 
double logarithmic scales of( 1

2
) to give the relationship 

dc 
dn 

(solid) = 6.17. 

which is different from that for the cellular polyurethane (equation 6.14.). 

This is observed by the difference in slope of the two lines in Figure 6.10. 

The higher slope in the case of·the foam polyurethane would be expected as no 

allowance has been made for the effect of the cells. The cut grollth process 

in solid materials is also different as it is a continuous growth of a crack 

whereas in the foam polyurethane it is a repeated process of crack initiation 

through the polyurethane solid strands and rapid growth through the holes. 
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-129-

The lower limiting value of tearing energy (To) at which no cut growth 

occurs for the solid material is 1.5 kgf/cm which is approximately the same 

as found for the cellular polyurethane in the earlier sections of the paper. 

The effect of generating a cellular structure in a polyurethane material 

used in poromerics appears to have little effect on To but increases the 

rate of cut growth with tearing energy. 

6.6.2. Effects of Chemical Crosslinking 
======================================== 

The microporous polyurethane coating of the fibrous poromeric 'Corfam' 

was stripped away from the base and some cut growth measurements were made 

on this material. As discussed in Chapter 5, this particular polyurethane 

coating was different from the previous foam and the majority of poromerics 

in that it is based on a polyether polyurethane rather than a polyester and 

it was also chemically crosslinked. 

The variation of rate of cut growth with tearing energy is shown in 

Figure 6.11. compared with the cellular polyurethane used in the earlier 

sections of this chapter. Although a 6th power law between cut growth rate 

and tearing energy is still obeyed, the effect of chemical crosslinking is 

to decrease the value of To. 

6.6.3. Vulcanised Rubbers 
========================== 

Th "" t th bl" 88-90 t " e maJor1 y of e pu 1shed cut growth tes results wh1ch are 

expressed in terms of the parameter 'tearing energy' have been confined to 

vulcanised rubbers such as natural rubber (NR) and styrene butadiene rubber 

(SBR). In general these test results have been calculated on a slightly 

different"basis from the measurements discussed in this chapter. In the 

work on vulcanised rubbers, account ha; been taken of tension set developed 

during an experiment when calculating strain. Tearing energy values are 

therefore lower than those normally quoted. 



~ 

cm/MC 

Figure 6.11. 
============ 

10' 

10' 

10' 

10' 

10 

-130-

X-lINI<ED 
CEllULAR P U. 

0 

.; 

4 
I 
I 
I 
I 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

CELLULAR P. U. 

o 

0 

0 

10' f 
l'~O"'----71~--~1~O----~1O~'----~10' 

TEARING ENERGY· I<gf/cm 

Variation of rate of cut growth with tearing energy for chemically 
crosslinked rnicroporous polyurethane surface layer from poromeric 
"Corfam" with cellular polyurethane results from Figure 6.7. 



-131-

The cut growth results for the solid and cellular polyurethane materials 

were however re-calculated in this manner and are compared with solid NR and 

SBR d t f bl ' d 88-90. F' 6 "1 Alth h th f a a rom pu ~she papers ~n ~gure • 2. oug e slope 0 

the rate of cut growth - tearing energy curve is similar for solid 

polyurethane and NR indicating as found in practice that both materials are 

highly hysteresial in character, the polyurethane is displaced along the 

tearing energy axis resulting in a far higher value for To for polyurethane 

than normally obtained for vulcanised rubbers. The reason for this behaviour 

is discussed later in the thesis. 

6.6.4. Styrene-Butadiene Block Copolymer 
========================================= 

The variation of rate of cut growth with tearing energy for a typical 

styrene-butactiene thermoplastic rubber is shown in Figure 6.13. The tests 

were performed on a"2.5 mm thickness moulded sheet of the material. Careful 

preparation of the sheet was undertaken to reduce anisotropy in the material 

to below 3%. The most interesting feature of the results shown in Figure 6.13. 

is that the value of To appears to be high compared with conventional 

vulcanised rubbers and is similar in magnitude to the polyurethane rubbers. 

A number of investigations96 ,97 have shown that the structure of 

thermoplastic rubbers consists of long flexible polybutadiene chains attached 

randomly to hard polystyrene blocks of approximately 300 ~ diameter. The 

~"" . 
same thermoplastic rubber was also pro!. ed by using 2.0 phr dicumyl peroxide 

as a crosslinking agent and the cut growth results for this material are also 

shown in Figure 6.13. It is quite clearly seen that the introduction of 

crosslinks· considerably reduces the value of To. This is thought to be due 

to the crosslinking preventing the formation of the domain structure of the 

polystyrene in the polybutadiene network. This effect of crosslinking in 

reducing To is analagous to the behaviour exhibited by polyurethane described 

in Section 6.6.2. 
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Variation of rate of cut growth with tearing energy for NR and SBR 
from published data88-90 with solid and cellular polyur~thane results 
from this investigation. (Results for polyurethane corrected to take 
account of tension set developed during course of test). 
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6.6.5. Random Styrene Butadiene Copolymer 
========================================== 

Limited cut growth experiments were also undertaken on a styrene 

butadiene copolymer with approximately 80% of styrene. The variation of 

rate of cut growth with tearing energy for this material compared to a 

conventional vulcanised styrene butadiene rubber (SBR) is shown in 

Figure 6.14. It is seen that the introduction of a high amount of styrene 

resin to the rubber increases the value of To. It is interesting to note 

that the usual type of microcellular rubber soling is manufactured from 

a styrene butadiene copolymer with a high styrene content and this has 

excellent resistance to cut growth in Wear. 

6.7. CONCLUSIONS 

Up to the present, two main approaches to the failure of rubber have 

been developed, Harwood and co-workers have found quantitative failure 

relationships between energy input to break, hysteresis at break and strain 

at break. This work has been extended by the author in Chapters 2 and 5. 

The second approach from investigations by Lake, Lindley and Thomas into 

the cut growth and fatigue properties of vulcanised rubbers has been by use 

of the tearing energy theory. The author has attempted in Section 6.3. of 

this chapter to bring these two theories together and has derived a relationship 

between the parameters from the hysteresis failure criterion with those from 

the tearing energy theory of fatigue failure. 

The tearing energy theory has been shown to be applicable to cellular 

polyurethanes.- The main point emerging from this investigation is that the 

lower limi~ of tearing energies (To) below which no cut growth occurs in the 

absence of chemical effects is far higher for polyurethanes than for the 

majority of vulcanised rubbers. The tearing energy theory is also shown to 

be applicable to the fatigue properties of cellular polyurethanes. The 
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calculated initial effective flaw size from where the cut would appear to 

start is of the same magnitude as the largest hole in the cellular material. 

Chemically crosslinking the polyurethane is shown to decrease the value of 

Experimental results on a styrene-butadiene block copolymer thermoplastic 

rubber also show To to be fairly high compared with conventional crosslinked 

vulcanised rubbers. The thermoplastic rubbers do show some similarity to 

polyurethanes, in that when the thermoplastic rubber is crosslinked, the value 

of To decreases. Similarly a styrene-butadiene copolymer with a large 

styrene content has a higher value of To than a conventional crosslinked 

SBR vulcanisate. It would appear therefore that the introduction of some 

form of domain structure into a material increases the value of minimum 

tearing energy (To). The structure of polyurethane elastomers is considered 

in Appendix 2. 
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CHAPTER 7 

GENERAL CONCLUSIONS 
\ , 

s.~ QJthe mechanical properties o£ cellular polyurethane elastomers 

used in poromeric materials have been measured experimentally and the 

results are presented in this thesis. This work is supplemented in 

Chapter 2 by other experimental results obtained by the author on 

branched polyurethane elastomers. All these results are compared 

with those found in normal commercial vulcanised rubbers. 

The major conclusion to be drawn £rom this work is that the 

polyurethanes used in poromeric materials exhibit superior mechanical 

properties to those found in both filled and unfilled vulcanised 

rubbers. A general explanation is now put forward in this chapter 

for these superior properties. 

A number of relationships between various parameters for vulcanised 

rubbers such as the cubical model theory to explain the difference in 

mechanical properties of the foam and solid materials or secondly the 

variation of energy input to break with strain at break or hysteresis, 

have been found also to be obeyed by polyurethanes. In some properties, 

hOlvever, there are some large differences in magnitude, the most 

important being with respect to strength, hysteresis, temperature 

stability and cut growth resistance. 

In order to provide an explanation for the good mechanical 

proper~ies of polyurethanes, it is essential to refer to the structure 

of these elastomers. A review of published literature is given in 

Appendix 2. It has been shown by a number of investigators into the 

structure of polyurethane elastomers that they are composed of 

alternating hard and soft segments. The hard segments are approximately 

25 - 50~ in diameter and contain urethane or urea groups whereas the 

soft flexible segments are in the order of 100 -200~ and are formed 
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from the linear polyether or polyester chain segments. The hard 

segme~ts are held together by hydrogen bonding and other intermolecular 

]15 attractions. 

The hard urethane segment presumably acts as a filler particle 

within the polyester or polyether rubber matrix. Introduction of a 

filler such as carbon black into an amorphous vulcanised rubber 

increases the ~odulus, hysteresis and abrasion resistance. The higher 

level of these properties in polyurethanes is presumably due to the 

very small size of the hard urethane segment. The mechanical properties 

of vulcanised rubbers improve as the particle size of the filler is 

reduced, as there is a larger particle surface area for polymer 

attachments and a smaller inter-particle distance. Both these effects 

considerably modify the relaxation behaviour of a large volume of the 

rubber. In vulcanised rubbers, the carbon black particles however 
s_ 

(e.g. 5IF, ISAF) are about 300X in diameter whereas the size of the 

hard segments in polyurethanes are a factor of ten smaller than this; 

hence the degree of reinforcement is far greater thus resulting in a 

high modulus and tensile strength. 

The work of Harwood et al12,1~,98 showed that the introduction of 

30 phr HAF carbon black into styrene butadiene rubber increased, not 

only the strength and hysteresis but also the temperature stability 

and caused a broadening of the relaxation spectrum. These features 

have also been demonstrated in. polyurethanes as shown in Chapter 5. 

The introduction of a filler into an amorphous rubber resulted in the 

filled rubber no longer obeying the Williams, Landel an1 Ferry (WLF) 

equation and this was observed in polyurethanes. The presence of the 

hard segment in polyurethanes leads to additional characteristic 

response times as described in the theoretical work of Radok and Tai99 

on hard inclusions in viscoelastic media and produces a wide 
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distribution of relaxation times as found in filled vulcanised 

bb 
12,1t.,98 

ru ers • 

One further important feature of the physical structure of 

, 
polyurethanes is that the filler particles (the hard segments) form 

a well dispersed molecular arrangement. Because the hard segments 

are formed chemically they will in general be better dispersed in 

the rubber matrix than the fillers (carbon black) in normal vulcanised 

rubbers. This is a secondary factor which must contribute to their 

good mechanical properties. 

In a number of polymers such as natural rubber, crystallisation 

of the material is a main process in rendering high strength. Although 

some polyurethanes arc known to crystallise, no evidence either from 

their mechanical properties or by comparing their IR spectrum with a 

crystalline polyurethane adhesive has been forthcoming to show 

crystallisation effects in the type of polyurethanes used in this 

investi,gation. Their superior mechanical properties must therefore 

arise mainly from their unique molecular structure. 

High hysteresis at a particular energy input is a necessary 

condition for all materials which are to be used as artificial leathers 

in footwear as shown by the results on viscoelastic properties of all 

the fibrous poromerics and leather in Chapter 3. The hard segment 

arrangement in the homogeneous cellular polyurethane poromeric appears 

to res~lt in the required mechanical properties which are comparable 

with semi-fibrous or totally fibrous materials which are used in the 

same application. '. The brr.ad relaxation spectrum of polyurethanes is 

also ideal for their use in footwear where high set and hysteresis 

is required to give good shape retention over a very long time scale. 
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Studies into the high temperature transitions of polyurethanes, 

o 
reported in Appendix 2 show that at about 160 - 170 C, the hydrogen 

\ 
bonding which normally acts as a physical crosslink between the hard 

segments in the polyurethane elastomer dissociates. This is the 

reason for the large drop in mechanical properties noticed at about 

these temperatures. This particular feature can be used to advantage 

in the footwear industry as it allows a permanently shaped article to 

be produced by conventional plastics fabrication techniques such as 

pressure or vacuum forming as described in Appendix 1. If the 

homogeneous cellular polyurethane is strained at 170
o

C, at which 

temperature dissociation of the hydrogen bonding between the hard 

segments occurs, then on cooling the hydrogen bonding reforms to 

physically crosslink the material in the stretched state, inducing. 

a permanent set. The polyurethane is therefore to some extent 

thermoplastic in nature. 

o 
Unfortunately 170 C is too high a temperature to use in the 

conventional manufacture of footwear and therefore some further 

investigation is required into the possibility of modifying the 

polyurethane to reduce the temperature at which the hydrogen bonding 

dissociates. The reduction of this temperature to 120
0
C without 

altering any other properties could have a profound effect 

commercially and completely change footwear production methods. 

It was shown in Chapters 3 and 5 that poromeric materials of all 

types display stress softening effects similar to those found in 

vulcanised rubbers. Before stress softening can be fully recovered 

in a cellular polyurethane, the material has to be heated to a 

temperature of approximately 170°C. It is necessary therefore to 

disrupt the hydrogen bonding between the hard segments before stress 

softening in polyurethanes is fully recovered. 
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One of the most remarkable features of the polyurethane used in 

poromerics is their very high resistance. to cut growth and for this 

reason, this particular property has been fully investigated and 

reported in Chapter 6. The tearing energy theory developed by 

investigators61 ,88-90 at NRPRA for analysing the tear, cut growth 

and fatigue properties of vulcanised rubbers has been found to 

satisfactorily describe the cut growth and fatigue behaviour of 

cellular polyurethanes. For example, tensile fatigue measurements on 

cellular polyurethanes using test-pieces with no inserted cuts, showed 

that failure of the cellular polymer was caused by cut growth from 

the largest cell in the sample. The measured large cells in the 

test-pieces agreed satisfactorily with those calculated theoretically 

from the tearing energy theory. 

The most interesting feature of the cut growth results on both 

the foam and solid polyurethanes was the large value of To (i.e. the 

minimum value of tearing energy under which no cut growth takes place 

in the absence of chemical effects). Values of To are at least a 

factor of ten higher than found in vulcanised rubbers. The high value 

of T reflects the good cut growth properties of cellular polyurethanes 
o 

found in practice. These measurements can be directly applied to 

practical problems such as flex cracking in solings as shown in 

Appendix 1. 

Limited work has been published on the cut growth properties of 

. 89 
filled vulcanised rubbers but it has been shown that To is increased 

by about 50% with the addition of a reinforcing carbon black to a 

vulcanised rubber. Non reinforcing fillers have been found to have 

little effect on the value of To but they also do not alter the 

relaxation spectrum of the rubber. To is also high in a styrene 

butadiene block copolymer which consists of a well dispersed filler 
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system of polystyrene domains in the polybutadiene network. Crosslinking 

the block copolymer reduces the value of To. Similarly To is also 

increased in SBH vulcanisates when a high amount of styrene resin is 

introduced. It would appear therefore that the value of To is related 

to the hysteresis in the material and it is thought that the high 

hysteresis resulting from the "built in well dispersed filler system" 

in polyurethane elastomers causes the high value of To. 

Theoretical values
100 

of To have been derived for vulcanised 

rubbers from equations based on chemical bond strengths and these 

values agree well with those found in practice. However these 

theoretical equations have been derived for essentially elastic 

systems. Some further detailed study is now required to introduce a 

factor into these equations which takes account of viscoelastic effects 

and therefore extends the theory to filled rubber systems including 

polyurethane and thermoplastic elastomers. 

Other investigators, as described in Appendix 2, have found that 

chemically crosslinking the polyurethane reduces the strength of the 

polymer as the crosslinking prevents the formation of the molecular 

arrangement of the hard and soft segments. A limited amount of work 

in Chapter 6 shOl,ed that To was lower for a crosslinked cellular 

polyether than for the linear cellular polyester urethane. This 

particular study should be extended however preferably using the same 

polyur~thane and examining the actual change in mechanical properties, 

especially To' with increased crosslinking. Highly branched 

polyurethane rubbers as d€3cribed in Chapter 2 are very weak in 

mechanical properties. 

Although abrasion resistance has not been considered separately 

in this thesis, SChallamach
101

.has shown qualitatively for vulcanised 

rubbers. that wear decreases a·s the mechanical damping or hysteresis 



of the rubber increases. The exceptionally high hysteresis in 

polyurethanes must contribute to the very good abrasion resistance 

of polyurethane elastomers used in poromerics as found in practice. 

The whole field of abrasion resistance of polyurethane however is an 

ideal subject for further investigation. 

The high strength, abrasion resistance and good cut growth 

properties of the high density cellular linear polyurethanes used in 

the footwear industry is due to the hard urethane segments in the 

polyether or polyester rubber chains. These hard segments act as 

well dispersed minute filler particles in the rubber matrix to 

produce a very effective "self reinforced" elastomer. 
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APPENDIX 1 

PRACTICAL APPLICATIONS 

Al.i. FORMING OF POROMERIC UPPER MATERIALS 

The high set that can be obtained in polyurethane materials by 

heating them to l70
0

C so that the hydrogen bonding between the hard 

segments dissociates, then stretching and subsequently cooling the 

material to reform the physical crosslinking (hydrogen bonding) has 

been utilised recently in process developments in the footwear 

industry. 

This thermoplastic type of behaviour of poromerics which are 

made entirely of cellular polyurethane allows conventional plastics 

fabrication techniques such as vacuum and pressure forming to be used 

in the shaping of shoe uppers. This significant change from 

conventional shoemaking has potential material and labour cost 

savings. 

The vacuum forming process developed at SATRA consists of heating 

to i70
0
C a sheet of the poromeric upper material and then forming the 

material over a nest of moulds by applying a vacuum. All stretching 

and compression of the upper takes place during moulding so that when 

cool, the material is permanently set to the mould shape. 

Pressure forming is a further development in the preforming of 

shoe uppers which uses positive air pressure by which .greater forces 

can be. applied during forming than in the case of vacuum forming. In 

pressure forming a slightly different process concept is used, upper 

components are assembled in the flat prior to forming. The preclosed 

upper is then clamped in a jig and heated to about l70
0

C. A cold 

mould as used for vacuum forming is then forced into the hot upper 

to give a mechanical stretching action. Air pressure of up to 5 

atmospheres is then applied to finally conform the upper to the 



mould shape. The upper is cooled to set it to the mould shape by 

the action of the cold mould and cold air being blown on to it. 

Al.2. FLEX CRACKING OF SHOE SOLINGS 

One of the most common problems with shoe soles is flex cracking 

and a typical example is shown in figure Al.l. This particular sole 

was made from an experimental cellular polyurethane compound and 

failure has resulted from the growth of one or more cracks which 

ei ther were initially present in the material or were introduced by 

the environment and imposed deformation on' the shoe. It is interesting 

to note that failure has occurred at the flexing point of the sole 

where the imposed strain is the highest. It has been observed that 

the growth of these cracks is generally quite slow at first but then 

accelerates rapidly as the flaw size increases. 

Using the same procedure as described in Chapter 6, a value of 

To (i.e. the minimum value of tearing energy under which no cut growth 

takes place in the absence of chemical effects) was obtained for a 

polyurethane soling compound. This was found to be 1 kgf/cm. 

The minimum tearing energy (To) is a function of strain energy 

density (U) and initial flaw size (Co) and hence as shown in Chapter 6 

can be 'expressed as 

To" 2KUCo 

Provided therefore that values on the right hand side of the 

equati?n remain below 1 kgf/cm, no cut growth will occur and the sole 

will not fail in wear. 2KU is however a function of strain as shown 

in Chapter 6 and therefor~ as the strain increases, the.critical flaw 

to initiate failure of the sole will decrease. This relationship 

for the polyurethane soling material is shO\m by the solid line in 

fi gure Al.2. 
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Figure A1.1. 
============ 

Typical example of flex cracking in shoe soles 
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Variation of critical flaw size to initiate failure of sole, 
calculated from TOI with strain for the polyurethane soling material. 
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At strains less than 10%, fairly large flaws in the material can 

. be tolerated and will show no cut growth as the line in figure A2.2. 

is an asymptote to the strain axis. This is observed in practice as 

flaws well over 1.0 cm will not generally grow in the heel or waist 

of a shoe sole as the strain on these parts of the sole in wear is 

generally less than l~h. 

The critical area is in the flexing point of the sole and this 

is where flex cracking generally occurs. Strains on the sole in this 

region are often in the order of 25%, but this depends very much on 

the type and thickness of the sole and its pattern. Figure A2.2. 

predicts that flaws above 2 mm will show evidence of cut growth. 

This value for critical flaw size compares well with the results 

obtained from wear trial results on solings. 

Standard tests on solings place a 2 mm cut in the sole across 

the flexing point and it is expected that in a satisfactory sole, no 

growth of the cut will occur after a reasonable period of wear. 

Similarly, the standard physical test to determine flex cracking of 

soles known as the Ross test, flexes a sample of the material with a 

o . 
2 mm cut through 90 C so that strains induced in the position of 

maximum strain where the cut is placed are of the order of 2~h. 

Satisfactory shoe soles are expected to show no further growth of the 

cut after 150 kilocycles. 

If it is assumed that a cut in a shoe sole when flexed grows in 

a similar manner to a cut in a tensile test piece, then the tearing 

energy approach appears to predict a reasonable value of maximum cut 

length which the shoe sole can withstand in the flexing point without 

shmdng any evidence of cut growth. The critical value of 2 mm has 

been found from numerous wear trials on soling materials to be the 

acceptable standard length of. cut which should show no evidence of 
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further growth after a reasonable period of wear and this size of cut 

has subsequently been used in the establishment of test methods and 

procedures. 

The formation of cracks in a shoe sole in wear is due mainly to 

sharp objects such as nails, thorns, flints, drawing pins or pieces. of 

glass getting embedded into the sole. A typical example is shown in 

the photograph in figure Al.). of a cross-section of a polyurethane 

sole which has flex cracked. The initiating flaw was obviously the 

piece of sharp glass which was embedded in the position of failure on 

this particular sole. The length of the piece of glass across the 

cutting edge when removed from the sole was ).2 mm and hence failure 

would be expected from consideration of the cut growth theory. 

Al.). INCLUSION OF LARGE HOLES IN SOLINGS 

One feature of early expanded polyurethane soles and some 

experimental compounds was the inclusion of large holes in the foam 

structure. The problem, although not completely eliminated in the 

polyurethane solings produced at present, has however significantly 

decreased. 

One particularly bad example is shown in the photograph in 

figure Al.4,. where a cross-section cut across a cellular polyurethane 

sole shows some very large holes, the diameter of these holes being 

up to 5ry,~ of the thickness of the sole. The important feature with 

this p~rticular example is that the holes are at the flexing point of 

the sole and hence are large enough to cause cut growth and ultimate 

failure of the sole as shown in the previous section. One slight 

difference between this type of flaw and ·that arising from the 

inclusion of some sharp glass is that, in the latter case, the flaw 

has a sharp tip which often causes a short period of rapid grO\{th 

until the tip roughens to a steady state. Hence, possible propagation 



Figure Al.). 
============ 

Cross-section of sole at point where it had cracked in wear showing 
piece of glass which had initiated failure. 

Figure A1.t.. 
============ 

Experimental polyurethane soling compound showing large holes at 
flexing point of sole. 
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of the flaw will be slightly less likely in the case of the large 

hole than in the case of the flaw from the cut glass. Nevertheless, 

flaws such as those shown in figureA1.4. could be a major cause of 

failure of solings. Flex cracking failure of a cellular polyurethane 

of the same compound as that shown in figure A1.4. is shown in 

figure A1.5. The position of cracking on the sole has been opened up 

and a hole measuring 4 mm in diameter is seen. Although it cannot be· 

confirmed in this particular example that the large hole has induced 

cracking, it is certainly true that the hole has contributed to the 

weakness of the material in this area and hence the subsequent failure 

of the shoe sole. 

In order to determine the reason for the holes, scanning electron 

microscope photographs were taken on samples which contained some large 

holes. A general photograph of the hole is shown in figure Al.6. and 

an enlarged photograph of the edge of the hole in the same sample is 

shown in figure Al.? The regular cellular structure of the 

polyurethane is apparent up to the edge of the large hole and no evidence 

of collapsed cell structure can be seen around the hole. The most 

probable mechanism of hole formation is, therefore, that they are due 

to inclusion of air during the mixing process which results in holes 

being retained when the sole is moulded. 

G t d T k · 102 1 b en an omp 1ns have recent y suggested that a hole can e 

formed. from a bubble of air which is trapped during the mixing and 

shaping processes. This is thought to be ·the case with the large 

bubbles found in the polyurethane soling compounds. During the mixing 

stage the rubber is a soft, highly viscous liquid, and the dominant 

forces on the trapped bubble would, therefore, arise from surface 

tension forces. The gas contained in the bubble would then dissolve 

into the rubber under increasingly large local pressures as the bubble 
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Figure A1.5. 
============ 

Cross-section of polyurethane soling material across flex cracked 
edge showing large hole in this area. 

Figure A1.6. 
============ 

Scanning electron microscope photograph of cross-section of typical 
polyurethane soling material showing a large hole. Magnification: J~. 
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Figure A1.7. 
============ 

Close up on edge of hole shown in Figure A1.6. Magnification 525. 

Scanning electron microscope photograph at edge of a large hole of 
a second polyurethane soling material of lower density than the sample 
shown in Figure A1.7. Magnification: 120. 
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becomes smaller. As gas diffusion is relatively slow in rubbers, the 

bubbles may not have completely disappeared-when crosslinking occurs 

and the rubber is transformed into an elastic solid. Their theory 

predicts that if holes have reached a small initial radius at the 

time of crosslinking, they decrease in size after crosslinking, but 

if large holes occur at the crossliru<ing stage, they are retained in 

the final product with little decrease in size. 

Further confirmation that the large holes are due to air 

inclusions is shown by the scanning electron microscope photograph 

in figure Al.B. of a different polyurethane soling compound of lower , 

density than the material shown in figure Al.7. 

The photograph in figure Al.B. shows the edge of a large hole 

similar to that shown in figure-A1.7. No sign of any collapsed cell 

structure around the large hole can be seen. This was also found with 

the earlier polyurethane compound. Another feature shown in figure 

Al.B. is that the normal cellular structure of the polyurethane 

soling which is formed during the reaction stage by either a reaction 

between the water and isocyanate or by the incorporation into one of 

the compounds of a volatile solvent has penetrated into the large 

hole. This would indicate that the large hole existed before the 

reaction stage of the process and would confirm the view that it was 

due to an air inclusion in the mixing stage which was retained in the 

final product. 

Al.4. GROWTH OF CUTS FROM STITCH HOLES IN POROMERIC UPPER 
MATERIALS 

One of the problems which is common. in unreinforced or non fibrous 

polyurethane poromerics is growth of cuts from stitch holes in wear. 

A typical example is shmm in figure A1.9. where failure of the shoe 

"'-
has resul ted ~ cut growth from stitch holes at the tab point. 
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Figure Al.9. 
============ 

Growth of cuts from stitch holes at tab point in a cellular 
polyurethane poromeric upper material. 



-155-

The results are reported in Chapter 6 on the cut growth 

properties of the homogeneous cellular polyurethane poromeric 

showed that To was about 2 kgf/cm. Using the variation of 2KU 

with strain for the polyurethane shown in Chapter 6, it has been 

possible to determine the variation of critical flaw size for cut 

growth with strain and this is shown by the dotted line on figure 

A1.2. 

The size of a stitch hole in a poromeric upper material can be 

up to 1 mm in diameter. The critical strain therefore for the start 

of cut· growth from figure A1.2. assuming a 1 mm flaw would be 25%. 

Measurements at SATRA on upper materials in wear have shown that 

surface strains on shoe uppers in wear can be up to 40% on the tops 

of folds and up to 25% at tab·points. The tearing energy theory 

therefore appears to predict to a reasonable degree of accuracy the 

type of conditions that cause failure in wear. 



APPENDIX 2 

REVIE1,r OF THE STRUCTURE OF 
POLYURETHANE ELASTOMERS 

A2.1. INTRODUCTION 

The major part of this thesis has reported experimental 

investigations by the author into the mechanical properties of 

polyurethane elastomers and has compared these properties with those. 

obtained from vulcanised rubbers. In order to provide a satisfactory 

explanation for some of the superior properties of polyurethanes, it 

was necessary to understand their structure and a literature survey 

was undertaken. A brief review of this literature survey into the 

structure of polyurethane elastomers is presented in this Appendix. 

A2.2 POLYURETHANE ELASTOMERS 

The basic research work on polyurethane elastomers was carried 

.. 103,104 . w . 
out by Bayer and co-workers at Leverkusen 1n est Germany 1n 

1937 when they discovered the di-isocyanate addition polymerisation 

process. This resulted in the production of several different types 
I 

of polyurethanes and polyureas and was extremely suitable for the 

planned build-up of elastomers with segmented structure. Although 

there are a number of textbooks and papers which deal with the 

production and properties of polyurethane elastomers in general, it 

is only in the last few years however that fundamental research work 

into the physical structure of these materials has been reported. 

There are a large number of methods whereby polyurethanes can 

be produced but the most widely used production method is the 

reaction of a di- or polyfunctional hydroxyl compound, e.g. hydroxyl-

terminated polyester. or polyethers with di- or polyfunctional 

isocyanates. The general structure of a linear polyurethane105 

derived from a dihydroxyl compound HOROH and a diisocyanate OCNR'NCO 
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can be represented by the following general formula: 

(0 0) 

~-R-o-LNH-R'-NH-tO-~ 
n 

The functionality of the hydroxyl-containing component as well 

as of the isocyanate can be increased to three or more to form 

branched or cross-linked polymers such as the rubbers considered 

in Chapter 2. Other structural changes can also be made. The 

nature of R for example may be changed drastically in molecular 

weight or type (polyether, polyester or simple glycol). The nature 

of R' may also be altered (HDI, NDI, TDI or MDI). 

Mainly for these reasons, polyurethanes are unique in that 

crosslinking, chain flexibility and intermolecular forces can be 

varied widely and almost independently so that the class of materials 

known as polyurethane include fibres, soft and hard elastomers, 

flexible and rigid foams,miscellaneous coatings and highly crosslinked 

plastics. 

Urethane elastomers are usually prepared from a long chain diol 

such as linear polyester or polyether of molecular weight 1,000 to 

2,000, a diisocyanate and a low molecular weight chain extender such 

as a glycol or diamine. One of the most successful reaction sequences 

105 
used is that of the prepolymer method. In the first stage of the 

process, the dial is caused ·to react with an excess of diisocyanate 

to produce either a moderate molecular weight liquid or low melting 

solid termed the prepolymer. 

The second step in the process is the addition of a low molecular 

weight glycol or diamine. The final curing step involves the reaction 

of the terminal isocyanate groups with active hydrogen-containing 

groups in the polymer chain, e.g. urethane groups to give allophanate 

branch points. 
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A large variety of structures can be built into the polymer 

chain depending on the nature and molecular weight of the diol and 

ratios of reactants. The interpretation of the chemistry of 

. 103 104 106 107 
elastomer structure was made by Bayer and co-workers ' , , • 

One of the first references to the physical structure of urethane 

elastomers was by Saunders and Frisch105 in 1962 who suggested that 

they should be considered as block copolymers where the length and 

structure of each block could be controlled within certain limits. 

A typical elastomer is represented by figure A2.1. in which E 

designates the repeating ester unit, A the aromatic portion of the 

isocyanate, U the urethane group, G a glycol extender and UU the 

allophanate branch point. Thus, "the polymer contains a moderately 

flexible, long, linear polyester segment, then a relatively stiff 

segment composed largely of aromatic and urethane groups. Branching 

can occur only at these stiff segments (if the polyester or polyether 

is linear). 

The average length of the stiff aromatic-urethane segment can 

be controlled, as can the number of branch points. Furthermore, 

the flexibility of the linear portion may be controlled by the choice 

of a very flexible polyether or polyesters of moderate to low 

flexibility. The stiffness of the aromatic-urethane portion may be 

controlled in part by the choice of isocyanate, e.g. 1, 5-naphthalene 

/ , 

diisocyanate providing greater rigidity than 2, 4-tolylene diisocyanate 

(or, in an extreme case, than 1, 6-hexamethylene diisocyanate). The 

urethane portion may also serve as a means of control, with greater 

rigidity being obtained from glycol extenders which contain aromatic 

nuclei, compared to aliphatic glycols. Even greater rigidity is 

obtained" if an aromatic diamine is used as an extender, giving urea 

groups in the chain. The amount of crosslinking may be controlled by 
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Structure of Urethane Elastomer (After Saunders and Frisch105 ) 

~ 
---25 A 

TT 
-150A 

HARD SEGMENTS 
(showing physical attraction) 

SOFT SEGMENTS 

Figure A2.2. 
============ 

Structure of a segmented urethane 
elastomer comprising har~ and soft 
segments (After Oertel 11 ,115, 
Bonart 119, 120). 
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adjusting the ratio of isocyanate groups to the total of all active 

hydrogen groups in the reactants, or by using tri (or higher) 

functional chain extenders, such as triols. 

In terms of polymer interactions, Saunders and Frisch considered 

that the properties of these elastomers were the result of a 

combination of segment flexibility, chain entanglement, orientation 

of segments, hydrogen bonding and other van der Waals forces, the 

rigidity of aromatic units and crosslinking. The urethane elastomers 

differ from the more familiar olefin-derived elastomers in that 

hydrogen bonding and other van der Waals forces play a much more 

pronounced role in the urethane systems. 

One further difference noted in polyurethane elastomers initially 

108 
by Pigott et al was that increased chemical crosslinking caused a 

reduction in modulus and strength whereas in hydrocarbon elastomers 

an increase in degree of crosslinking results in increased modulus. 

Saunders and Frisch105 suggested that this was due to a reduction in 

orientation of the chains and hence a reduction in the probability of 

obtaining hydrogen bonding and benefit of other intermolecular 

attractive forces. Therefore with increased chemical crosslinking, 

a spatial separation of the chains occurs which reduces effective 

intermolecular attractions. A similar interpretation of the 

phenomenon has been given by Quant109 • This observation supports the 

view that the major portion of the strength of urethane elastomers is 

due to forces other than primary valence bonding and was confirmed by 

110 Schollenberger et al • 

111 
More recently Dieterich and co-workers at Bayer when discussing 

the basic chemistry of polyurethane ionomers have suggested that the 

anomalous increase~in permanent elongation with increasing degree of 

crosslinking is due to the breakage and reformation or slippage of 
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hydrogen bonds between the hard segments when the polyurethane 

elastomer is stretched. 

Following these early investigations, the physical structure of 

. . 112 113 114-116 117-120 polyurethanes was d~scussed by R1nke ' ,Oertel and others 

which led to the general picture for the structure of a segmented 

urethane elastomer shown in figure .A2.2. of hard and soft segments. 

The soft segments were formed from the linear polyether or 

polyester chain segments about 100 - 200~ long which at service 

temperatures are sufficiently high above their second-order transition 

I 
temperature, or in the case of crystallisable soft segments above 

their melting temperature, to give the material an extensibility of 

several hundred per cent. 

The hard segments originate from a diisocyanate and a chain 

extender or crosslinking agent (e.g. diol or diamine) and hence contain 

urethane or urea groups. These hard segments are at service 

temperatures below their second order glass transition point and 

cause physical interchain reaction which prevents the material from· 

flowing so that elasticity is maintained. 

A2.3. X-RAY INVESTIGATIONS 

In 1966, on the basis of a fairly detailed study, Shimanskii et 

al 121 , using a range of polyfunctional alcohols and isocyanate noted 

a specific X-ray diffraction band corresponding to angles of 

diffraction between 100 and 12
0 

which originate from the hard segments. 

They went on to postulate that the diffraction band was caused by 

urethane bridges. 

Shimanskii et al also considered the orientation of the 

macromolecules (presumably hard segments) during the extension of the 

elastomer and made reference to earlier work by Kazarayan and 

T 
. 122 

svank~n • They made X-ray studies at zero, 30~6 and 50~ 
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exte~sion and found an increased ordering of the macromo~ecules with 

increase in extension of the polyester urcthane. 
- ---.- -.- t1.A- -t-W- <9-

A similar but more detailed study ~ Shimanskii et al was made 

independently by Bonart
120 

in 1968 who studied the physical structure 

of crosslinking in two polyurethane elastomers: a mixed polyester and 

a polyether using the chain extenders ethylene-diamine and hydrazine. 

Both in the case of the polyether-based material which showed 

elongatio~ crystallisation of the soft polyether segment and in the 

case of the polyester polyurethane which showed a paracrystalline 

chain arrangement of the soft segments when stretched, an intense 

12X interference line was found. The crystal reflexes associated 

with the soft segments were only of low intensity. When both 

polyurethane samples were stretched to about 50~~ and placed in warm 

water at 80
0 c for about 30 minutes, the 12X interference line still 

remained fairly intense while the crystallinity in the soft segments 

disappeared completely. Bonart concluded that the 12X interference 

line must be associated with the hard segments and he then proceeded 

to demonstrate that the interference line was due to a system of 

hydrogen bridges between the hard segments. 

Some of these conclusions were confirmed in the work of Heikens 

et a1 123 • They found that when using diamines as chain extenders, an 

alternation of the elastic properties occurred corresponding to the 

numbe~ n of the CH2 groups of the diamine. This led to the 

conclusions that physical crosslinking between the hard segments not 

.only depends on the concentration of urethane or urea segments but 

also on the.spatial characteristics which either favour or hinder 

the intermolecular action thus indicating a structural problem which 

was not only chemical but also physical. 
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Bonart, Morbitzer and Hentze
124 

follm<ed these studies by 

consiCiering the structure of the crosslinking l<hich results from the 

use of butanediol - 1, 4 chain extender. By varying isocyanate 

content, they found from their X-ray measurements that the higher 

the hard segment content of polyurethane, the less was the likelihood 

of the soft segment showing stress-induced crystallisation. They 

postulated that the hard segment content of the material acted as a 

crystallisation-inhibiting filler. 

A2.4. ELECTRON MICROSCOPY Im'ESTIGATIONS 

Considerable attention in recent years has been directed to 

using the electron microscope for studying the rather complex 

morphology of block copolymers. Some electron microscopy has been 

d . f l' t· t h·' 125-127 b t th t one us~ng sur ace rep lea lon ec nlques u e mos 

extensive work has been done using transmission electron microscopy 

through thin films. 
. 128-130 Kato's technlque of using osmium tetroxide 

as a chemical staining agent has been applied by many authors studying 

131-135 block copolymers • 

136 Koutsky et al reported in 1970 some transmission electron 

microscopy measurements on thin films of segmented polyester and 

polyether urethane elastomers. They found dark domains of 30 -

1002 width in polyester urethanes and from 50 - 100R in polyether 

urethanes which they presumed to be due to the hard aromatic-urethane 

microphase. The dark domains were similar to those observed in 

styrene-butadiene block copolymers but the latter were about 3002 

in size. 

This work provided direct evidence for the existence of a 

domain structure in polyurethanes which was in agreement with the 

results discussed above on X-ray, thermal scanning and mechanical· 

properties.of polyurethanes. 
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A2.5. HIGH TEMPERATURE TRANSITIONS 

""c l" 108,110,137-140 
~r y work on the modulus-temperature relation-

ships was reviewed by Saunders and Frischl05 • Of particular 

importance was that the modulus-temperature curves showed two marked 

transitions, one occurring below room temperature and one well above 

100
0

C with unusually high modulus values (approx. 108 dynes/cm2 ) 

between these temperatures. The low temperature transition is , 
presumably due to the onset of rotation in the flexible polyester 

or polyether segments whereas the high temperature transition has 

been ascribed to the dissociation of secondary bonding between the 

hard segments. The high modulus between the two transition 

temperatures has also been ascribed to the intermolecular hydrogen 

bonding between the hard segments. 

Clough and Schneider141 in 1968 made a study of structural 

ordering and transitions in both polyether and polyester-based 

compounds by use of rapid scanning thermal methods, light scattering 

and X-ray diffraction. As well as finding a transition T1 at -10 to 

_20oC and the normal transition at about 140
0 c which they termed T

3
, 

o 
they also found a transition at about 80 C nearer the middle or upper 

end of the rubbery plateau region which they termed T2 • The T2 

transition had not been shown up in any mechanical measurements 

reported earlier. 

T~ is usually taken as the major glass transition temperature 

which is related to the onset of rotation about bonds in the flexible 

polyester or polyether chains. This has been shown in volume 

. t 138 11 . h' 1 t 105,142,143 expanSlon measuremen s as we as In mec anlca measuremen s 

as discussed later, although Miller
144 

has suggested that the true 

glass transition actually occurs'at a lower temperature and Tl only 

reflects the change from viscoelastic to elastomer mechanical behaviour. 
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interpreted in terms of a dissociation of intermolecular secondary 

bonding. 145 This suggestion is supported by the work of Andrews , 

Tanaka et a1 146 , Boyarchuk et al 147 and Cooper and TObolsky142,143. 

The T2 transition occurring at 80
0 c is associated with H-bonding 

between the urethane secondary amine group and the ester carbonyl or 

ether oxygen of the prepolymer, while the T
J 

transition occurring at 

about 140
0 c or above is ascribed to interurethane H-bonding. Clough 

and Schneider
141 

suggested that the extent of interurethane bonding 

and domain structure was higher in polyether than in polyester 

polyurethanes. They further suggested, however, the larger amount of 

H-bonding between the urethane and the groups of the polyester chain 

leads to higher but more temperature-dependent modulus values than 

in the equivalent polyether-based polyurethane. This they suggest 

would lead to greater hysteresis in the stress-strain curve in the 

polyester urethanes compared with the polyether types. 

In a later paper, Clough, Schneider and King 148 confirmed by the 

use of small angle X-ray scattering techniques, the conclusions found 

in the study above. They found that samples which exhibited a strong 

T
J 

showed relatively strong scattering between T2 and T
J 

which did 

not diminish in intensity when measurements were made between these 

two temperatures. They also found that longer urethane segments led 

to a m9re intense scattering and thus to a higher degree of domain 

structure. 

148 A note aqded to the proof of Clough et aI's paper confirmed 

the view that the transition T
J 

was associated with the dissociation 

of urethane structure. They found a 8~~ reduction in scattering 

o 
intensity at 25 C after an Es~ane 5707 sample had been heated to 

o 
180 C for 1 minute compared with that obtained before heating. 
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121, 
Bonart, Morb;tzer and Hentze found in their differential 

thermal analysis (DTA) studies on urethane elastomers using 

butanediol - 1, I, as the chain extender that an endothermal 

transfonoation at approximately 230
0

C indicated the melting of the 

hard segment crystallites whereas the heat distortion temperature 

(HDT) occurred at about 170
0

C well below the hard segment melting 

points and hence was connected with the thermal instability of 

physical crosslinking in agreement with the work of Clough et al. 

In a study of modulus-temperature behaviour, Cooper and 

11,3 Tobolsky in 1966 compared two polyester urethanes with a 

polystyrene-butadiene block copolymer. For comparison the modulus-

temperature behaviour of a typical linear amorphous polymer is shown 

in figure A2.3. Above the glass transition temperature (Tg), the 

modulus decreases by a factor of one thousand and approximately at 

107 dynes/cm2 , there is a slight plateau region due to entanglement 

interactions. The plateau region generally is strongly altered by 

changes in molecular weight of the polymer and by crosslinking. A 

semi-crystalline polymer as shown in figure A2.3. retains a very high 

modulus until the crystallites melt at Tm. The linear polyester 

urethanes examined by Cooper and Tobolsky, however, have a high 

'value of plateau modulus as shown in figure A2.3. which was 

unaccounted for by either crosslinking or primary chemical bonds or 

the presence of a crystalline phase. The modulus-temperature profile 

is similar to that found in the polyurethane elastomers in Chapter 5. 

Similar results to those obtained on the polyester polyurethane 

were found in polybutadiene-styrene block copolymers when a high 

. 11,3 
amount of styrene was incorporated and this led Cooper and Tobolsky 

to conclude that in both systems a similar physical interaction takes 

place which reinforces the structure until the Tg of the higher 
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modulus block is reached. Moreover, they suggested that hydrogen 

bonding could not alone account for the general phenomenon but also 

a proper molecular association of hard and soft· regions must occur 

in amorphous segmented systems in agreement with the earlier work of 

Bayer10J and others105,12J referred to previously. The association 

of the hard segments in the solid state is required for the occurrence 

of the second higher temperature Tg which is responsible for the 

reinforcement of the system, whereas a similar association of the 

flexible polyester segments influences the low temperature properties. 

A similar study on a range of polyurethanes produced by different 

isocyanates and differing composition and structure of the hard and 

soft segments was reported by Williams et al149 in 1968. Their 

conclusions agreed in general with those presented by Cooper and 

Tobolsky of the soft segment having its greatest effect on the 

transition region whereas the hard segment influenced the rubbery 

plateau and flow behaviour. They found, however, that the modulus­

temperature profiles for various linear chain extenders in the }IDI 

capped polyurethanes were different and hence it was thought that 

hydrogen bonding could not be the only mechanism which held the hard 

segments together and acted as the points for the soft segments or 

"pseudo crosslinks". They suggested that the proper molecular 

association of the hard segments must also be relevant to explaining 

the properties. They compared the properties obtained from the 

polyurethane system with those of styrene-isoprene block copolymer 

in a similar manner to that of Cooper and Tobolsky. 

A2.6. STRESS SOFTENING AND BIREFRINGENT MEASUREMENTS 

.. ·The· experimental results presented in Chapters J and 5 showed 

that linear polyurethanes of the· type used in poromerics displayed 

stress softening effects similar to that observed in vulcanised 
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rubbers. As early as 1960, Trick150 showed that the modulus of a 

linear diamine-cured polyurethane decreased on repeated extension 

whereas a similar system containing crosslinking via triol linkages 

showed no such effect 151• This latter material had much lower 

modulus and tensile properties. These observations have been confirmed 

in this thesis as the branched polyurethane elastomers referred to in 

Chapter 2 showed negligible hysteresis and stress softening in direct 

contrast with the linear polyurethane from poromeric materials. 

An interesting investigation into the effect of crosslinking on 

the stress softening characteristics of styrene-butadiene-styrene and 

polyester-urethane block copolymer elastomers was made by Cooper et al152 

in 1968. They found that crosslinking had little effect on the ·stress 

softening characteristics of these materials until the crosslinking 

disrupted the aggregated hard segments of the block copolymer. .At high 

levels of crosslinking, reversible stress-strain curves were observed. 

They concluded that the "modulus enhancement" observed in these block 

copolymer elastomers appears to lessen as the material exhibits less 

stress softening. 

Birefringence techniques have in recent years been applied to 

studying styrene-butadiene and styrene-isoprene block copolymers15J ,154. 

Puett155 in 1967 used birefringence-stress measurements to demonstrate 

that the stress-strain behaviour of polyurethanes is partially influenced 

by the.presence of ordered microcrystalline regions. 

Estes et al 156 in 1969 showed typical stress-softening behaviour 

in a polyester-urethane and compared these results with birefringence 

measurements. The main conclusions from ·their work were; (1) The 

birefringence-stress curves were non-linear making the stress optical 

coefficient stress-dependent; . (2) The birefringence-strain curves 

were remarkably linear up to high strain levels and (3) Considerable 
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stress softening occurred causing hysteresis in the stress-strain, 

birefringence-stress and to a smaller degree in the birefringence­

strain curves. The similarity in mechanical and optical properties 

of polyurethanes with other known block copolymer systems led to 

the overall conclusion that polyurethane elastomers possess a 

segregated domain structure comparable with that observed in 

hydrocarbon block copolymers by electron microscopy. 

A2.7. CONCLUSIONS 
• 

A number of investigations by X-ray diffraction patterns, rapid 

scanning thermal methods, differential thermal analysis, biref:;ingence 

and mechanical data have been referred to in this review to show that 

polyurethane elastomers are composed of hard and soft segments. The 

hard segments are approximately 25 - 502 in diameter and contain 

urethane or urea groups while the soft flexible segments are in the 

order of 100"- 2002 and are formed from the linear polyether or 

polyester chain segments. There are therefore similarities in the 

structure of polyurethane elastomers with other block copolymers such 

as butadiene-styrene although the size of the hard segments in the 

latter are of the ~rder of 3002. 

Crosslinking in polyurethane elastomers is obtained by the 

aggregation of the hard urethane segments through hydrogen bonds, 

Van der Waal's forces and other intermolecular physical attractions. 

To obtain h1gh strength, a proper molecular arrangement of hard and 

soft segments must occur in addition to the hydrogen bonds and other 

forces between the hard segments. Chemically crosslinking the 

polyurethane appears to disrupt the molecular arrangement and over 

a certain critical level, significantly decreases the strength of 

the material. 
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Various measurements at high temperatures have shown that two 

major transitions occur in polyurethane elastomers. The first occurs 

o 0 
around -10 C to -20 C and is due to the onset of rotation in the 

flexible polyether or polyester chain, whereas the second transition 

at about 160
0

e is due to the dissociation of the interurethane 

hydrogen bonding. Two further transitions have also been noted. One 

at Booe is ascribed to hydrogen bonding between the urethane secondary 

amine group and ester carbonyl or ether oxygen of the prepolymer, and 

o the other at 2]0 e to the melting of the hard urethane segments. 

The aggregation of the hard segments also accounts for the high 

modulus of polyurethanes in the rubbery plateau region. The transition 

o 
at about 150 e due to the dissociation of the interurethane bonding 

gives the Inaterial a certain degree of thermoplasticity. 
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Synopsis 
This paper mainly reviews the studies of the authors into the 
mechanisms of strength, reinforcement and hysteresis of fillers in 
polymers. The subjects discussed include low strain amplitude 
dependence of modulus and hysteresis. stress·softening effects. 
the energetics at rupture over a wide temperature range and rate 
of straining. energy failure envelopes, as well as proposing a 
physical interpretation of the phenomenon of reinforcement by 
small particles. 

Introduction 
Over recent years, studies have been undertaken by many 
investigators including the authors, into the reinforcement of 
polymers with fine particulate fillers. 

The authors believe that the behaviour of filler particles in rubber 
at low strains is a completely different mechanism from that 
occurring at high strains. Moreover they contend that stress­
softening in filled vulcanizates. an energy dissipative mechanism 
at high strains is not to be associated with any rubber-filler 
breakdown. but can be explained by changes that take place in 
the rubber phase of the filled vulcanizate. The effect of adding 
the filler particles to rubber has been to increase the hysteresis 
exhibited by the rubber both hydrodynamically and visco­
elastically. The total hysteresis exhibited by a rubber has been 
shown to influence greatly the strength. and quantitative relation­
ships between hysteresis and strength have been derived. 

This paper presents a review of these studies which previously 
have only been presented in separate publications, and shows how 
the combination of these separate studies has led to confirming 
a previously proposed theory of reinforcement. 

Hysteresis Effects at Low Strains 
The application of low amplitude sinusoidal oscillations on a 
rubber vulcanizate results in the ensuing strain lagging behind 
the stress. This is because of the viscoelastic nature of rubber. 
The complex shear modulus (G*) of rubber can be expressed in 
terms of an elastic (in-phase) shear modulus (G') and a viscous 
(out-of-phase) shear modulus (G") :---vhich for low amplitude 
sinusoidal strain are related by the following two equations:-

G'~G'+iG" (1) 
and 

Tan 3 ~ G"'G' 

where 0 is the phase angle between the sinusoidal stress and 
strain and tan 0 gives a measure of the hysteresis exhibited by a 
rllbber at low strains. 

The variation of these dynamic parameters for rubbers containing 
carbon black filler with strains up to about 10% in s. 3ar has been 
the subject of numerous papers by Paynel-~. The in-phase 
shear modulus (G') decreases with small sinusoidal strain 
oscillations as shown in Fig. 1 for butyl rubber containing 
increasing concentrations of HAF carbon black. The effect 
increases with increasing concentration of carbon black and is 
associated with properties of the filler particle. 

The in-phase shear modulus appears to have a limiting value both 
at low strains (Go') and at high strains (G'co). The difference 
between these two limits (G' 0 - G'(O) has been shown to 
correlate with dispersion of the carbon black filler within the 
rubber vulcanizate. (G' 0 - G' co) decreases with improvement in 
dispersion~ as estimated from electron microscope and con­
ductivity7, R measurements on filler-loaded vulcanizates. 

The variation of out-of-phase shear modulus (G") with strain is 
shown in Fig. 2 for a typical series of vulcanizates. G" passes 
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Fig. 1. Variation of in-phase shear modulus (G') with double 
strain amplitude for a series of Butyl vulcanizates containing HAF 
carbon black 
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Fig. 2. Variation of out-ol-phase shear modulus (G") with 
double strain amplitude for a series of Butyl vulcanizates contain­
ing HAF carbon black 



.through a maximum value (G" max.) in the region of strain 
where G' changes most rapidly. Values of G" max. correlate well 
with resilience and heat build-up data and are linearly related to 
the modulus change (G'o - G'co) by an equation of the follow­
ing form 

G" max ~ A + B (G'o-G'",,) (2) 

The value of B ranges from 0·1-0·2 depending on the type of 
mix being used and A is assumed to be the "out-of-phase" 
modulus of an ideally dispersed vulcanizate. A recent study9 

showed that A had a value of 5x10." dynes.cm-:!. This effect. is 
the result of a mechanism causing energy dissipation and is 
attributed to the breakdown and reformation of the three­
dimensional or aggregated carbon black structure during the 
imposed oscillation. 

The breakdown and reformation of the carbon black. structure has 
been more clearly demonstrated in a recent paperlO. It is found 
that the hysteresis-strain behaviour exhibited by filled rubber 
vulcanizates can be described by a domain theory proposed by 
Everett and co-work.ersll,12 which was applied by them to 
adsorption hysteresis. Fig. 3 shows typical sequences of 
boundary loops and ascending and descending scanning curves 
which demonstrate the existence of independent domains within 
carbon black filled rubber vulcanizates, It should be noted here, 
however, that there is evidence of stress-softening in the first two 
cycles at these low strains, but the effect is small and can be 
neglected compared with the overall effect of the carbon black 
particle. Stress-softening is much more important at higher 
strains and will be discussed 'separately in the next section. 
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Fig. 3. Typical load-deflection boundary and scanning loops for 
NR vulcanizate with 60 phr HAF carbon black 

Filler agglomeration effects have also been recently demonstrated 
in other two-phase systems such as carbon-black in low viscosity 
paraffinl3 and bentonite and stockalite clays in both rubberlf. and 
water l6• Fig. 4 shows the effect of bentonite and stockalite clays 
in water. The shape of the curves are similar to those shown in 
Fig. 1 : G'o - G'co increasing with increasing concentration of 
clay as observed in the carbon black filled rubber results. 
Bentonite and stockalite clays are known to form three-dimen­
sional structures when suspended in liquids and the shape of the 
curves in Fig. 4 is most certainly due to this effect and gives 
credence to the hypothesis that this effect is the same as that 
encountered in rubber-filler composites. 

A more strik.ing example of this effect was obtained by swelling 
crystals of phenyl-l3-naphthylamine (PBN) into rubber and 
evaporating off the solvent I6,17. The PBN formed fern-like 
crystal structures within the rubber as shown in Fig. 5 and, on the 
deformation of this material, produced effects (Fig. 6) analagous 
to those obtained in the other two-phase systems considered 
above. 

The magnitude of the energy lost (hysteresis) results from the 
breakdown of this filler structure is diffjcult to measure accurately 
but. for an NR vulcanizate containing 50% by volume of carbon 
black., it has been estimated to be less than 1 joule cm-3 • This 
energy loss, however, is of great importance in the heat build-up 
of filled rubbers when undergoing rapid flexing at these small 
strains. Improved methods of dispersing the filler particles 
within the vulcanizate reduce the effect and measurements of 
the modulus change at these low strains is being used increasingly 
in technological development work as a reliable index of dispersion 
in rubber-fjller composites. 
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Stress-Softening Effects 
All rubbers, vulcanized or unvulcanized, filled or unfilled. require 
a greater stress to produce a given elongation in the first extension 
curve than during subsequent extensions. This well-known 
phenomenon called stress-softening. which causes an appreciable 
amount of energy dissipation, is often referred to as "Mullins 
Effect" in view of the study by Mullins18, 18 to the phenomenon 
in filled rubber vulcanizates. 

One of the first references to stress softening was by Bouasse and 
Carriere20 in 1903 and many investigations into the phenomenon 
have been reported since. Several recent theories have been 
proposed to explain stress-softening behaviour in filled rubber 
vulcanizates. Dannenberg21 , Boonstra22 and co-workers23,24 
envisage a slippage of the rubber network chains over the surface 
of the carbon black particles whilst Kraus et al.2G consider the 
effect to be the result of several mechanisms, thixotropy involving 
transient carbon black structures. rupture of network chains 
connecting filler particles and disruption of the "permanent 
structure" of the carbon black.. Harwood and Payne, however, 
in a series of recent papers26~30, claim that most of the stress­
softening occurs in the gum phase of filler-loaded vulcanizates 
leaving little to be explained in terms of breakage or slippage of 
rubber to filler bonds. The various theories will not be considered 
in great depth here as the whole phenomenon of stress-'softening 
was the subject of a fairly comprehensive review recentlyll1. 

A typical set of stress-strain cycles are shown in Fig. 7 for NR 
gum and NR containing 60 phr HAF carbon black.. When tl1e 
curves for the gum and filled rubbers are taken up to the same 
stress level, it is shown that the amount of stress-softening 
between the first and third extension cycles (curves 1 and 5) is 
remarkably similar. Stress-softening in N R has been attributed to 
crystallisa.tion23 but the same effect has also been shown to 
occur in amorphous polymers such as butadiene-acrylonitrile 
rubber31 (NBR) and styrene-butadierie rubber32 (SBR) and in a 
whole host of other non-cryst~lIising materials. 
>00 

~!OO 
~ 
~ • 
:;, 50 

........... .... ~ .. ,~ -

Fig. 7. Stress-strain curves for gum NR and NR containing 
60 phr HAF carbon black showing similar stress-softening 
behaviour 

Stress-Softening in Other Materials 
Stress-softening has been observed in- a wide range of"other 
polymers and fibres. Puett et al.33 showed the normal characteristics 
of stress-softening occurring in nylon, certain wool fibres and in 
unfilled, uncrosslinked ethylene propylene block co-polymer 
films of different degrees of crystallinity. 
Recent studies34 have shown that stress-softening is exhibited in 
certain shoemaking materials. Fig. 8 shows both the virgin stress­
strain curve and a cycled stress strain curve for full chrome leather. 
Clearly the Mullins Effect or stress-softening is evident here and 
in this respect leather can be regarded as showing similar 
properties to polymer. Leather consists of a network of inter­
laced protein (collage·n) fibres35 which are made up of various 
interconnected sub-units known as fibrils, photofibrils and 
filaments. In addition to molecular bonds connecting the 
molecules in the fundamental chains, other bonds known as 
hydrogen bonds tie the chains, fibrils, photofibrils, etc. together. 
These bonds are not as strong as the molecular bonds but they do 
provide sufficient cross·ties between the sub-units. In the 
presence of moisture the interchain H-bonds being fairly weak 
often rupture. On drying in an extended or distorted condition, 
there is reformation of the interchain H-bonds and hence a new 
secondary network is produced. This behaviour is completely 
analagous to the labile crosslinks obtained in a polysulphide 
vulcanizate as discussed below. 
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Fig. 8. Stress-strain curves for full chrome leather showing stress· 
softening behaviour 

The stress-softening effect has also been demonstrated in a 
poromeric material34 such as "Corfam"* or "Clarino"* shown in 
Fig. 9. These materials exhibit similar properties to leather and 
are being used increasingly in the shoemaking industry. These 
materials are based on viscoelastic polyurethane but are different 
from rubber in that they have a non-uniform structure. Corfam, 
for example, consists of a polyurethane foam layer, a fabric inter­
layer consisting of mainly polyester fibres with a little cotton and a 
base layer consisting of randomly orientated polyester fibres held 
together by a polyurethane binder. The energy losses observed 
in a poromeric material are associated with the movement of 
polymer chains, crosslinks and entanglement points when the 
poromeric is stressed. The permanent set obtained is due to the 
very wide distribution of relaxation times exhibited by the visco­
elastic response of the polyurethane molecule and the presence 
of hydrogen bonds between neighbouring chains which break 
under mechanical stress38 and in ptesence of moisture as discussed 
for leather. 

Mechanism of Stress-Softening 
Harwood and Payne2B have shown that stress-softening in 
unfilled rubber vulcanizates can be partially recovered by heating 
the samples in vacuo for about twenty-four hours. They further 
found that it was possible to recover completely the stress­
softening in unfilled vulcanizates containing predominantly 
monosulphide crosslinks and carbon-carbon crosslinks. How­
ever, only partial recovery was observed in polysulphide cross­
linked rubbers. The recovery of stress-softening indicates that no 
basic breakdown process has occurred and is hence attributed to 
quasi-irreversible rearrangement of molecular networks due to 
localised non-affine deformation. This results from short chains 
reaching the limit of tl,leir extensibility leading to a relative 
displacement of the network junctions tram their initial random 
state. The incomplete recovery in the case of polysulphide 
vulcanizates is attributed to the breakage of crosslinks and their 
reformation in the extended state to create a secondary net­
work31- 40• Similar behaviour is expected in poromeric materials 
due to the weak hydrogen bonds in polyurethane. 

The recovery of stress-softening in filled vulcanizates by both 
heating and swelling treatments is demonstrated in Fig. 10. The 
stress on the second extension curve and on the curves after 
heat and swelling treatments is plotted against the stress 
occurring at the same strain on the initial extension curve, hence 
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providing a convenient method of comparison for an NBR 
rubber filled with 60 phr ISAF carbon black. At low stresses 
recovery is complete and in fact in the case of NBR, over­
recovery is obtained but at the higher stresses there is only partial 
recovery and permanent stress-softening still remains. 
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Fig. 9. Stress-strain curves for Corfam Lodestar showing stress­
softening behaviour 
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Fig. 10. Partial recovery of stress-softening by heat and solvent 
treatments for NBR filled with 60 phr ISAF carbon black 

The recovery at low stresses is presumably the recovery of 
the carbon black aggregates referred to previously. The recovery 
of the molecular network after rearrangement at the higher 
stresses is very likely hindered by the presence of the filler 
particles and complete recovery is not obtained. The formation 
of the filler structure in the extended state limits recovery 
presumably in a similar way to the secondary network produced 
by labile crosslinks. 

Stress-softening. therefore, in filler-loaded vulcanizates with 
weak crosslinks. can be accounted for by three main mechanisms: 

1. Rearrangement of the rubber network associated with slip 
of entanglements and non-affine displacement of net' 
junctions in the rubber matrix. This occurs in gum vulcani: 
and the gum phase of filler-loaded vulcanizates. 

2. Structural changes of the carbon black aggregates. Tt 
associated with the possible breakdown and reformatic 
filler domains. 

3. Breakage of weak crosslinks such as hydrogen bonds, 
type links and polysulphide crosslinks. 

The other mechanisms proposed by 800nstra and Dan 
berg21 - 24 of the slippage of rubber chains on the carbon I 
surface or breakage of rubber to filler bonds proposed by Beu, 
Kraus25, therefore, can only account for a very small fraction ( 
energy losses and are hence thought unlikely. 

Fig. 11 shows a photograph of a network of string which pro' 
an interesting model for stress-softening in unfilled vulcani2 
Knots have been tied between two pieces of string so that a 
acts as a tetrofunctional crosslink point. The lengths of l: 
between the knots are randomly varied 50 that some piecl 
string between the crosslinks are short whilst others are 
lengthy. The network of string was inserted between the 
of an Instron Tensile testing machine and stress-cycle 
produce the curve shown in Fig. 12. The type of curves st 
in Fig. 12 are clearly srmilar to those obtained on material 5yS 
referred to earlier. 

Fig. 11. Model system of knots tied in string to demon 
stress-softening effects 

Extension 

Fig. 12. Stress-strain curves obtained from model system 01 
in string shown in Fig. 11 



Effect of Fillers on Strain at Break 
T. L. SmithU and others4.3 over recent years have developed the 
concept of a "failure envelope" which is a unique curve peculiar 
to each polymer relating the stress at break (O"e) or real stress at 
break CiB (1 + Ee) to the strain at break (ea) over a wide range of 
temperature and rate of strain. It was found by Harwood and 
PayneU , U that a quantitative relationship between the failure 
parameters could be obtained by using work done (or energy 
density) to break (Us) instead of stress at break. 

Fig. 13a shows the energy input to break plotted against the 
strain at break for SBR containing increasing amounts of HAF 
carbon black. The energy input to break is multiplied by the ratio 
between the chosen reference temperature (294 OK) and the 
experimenta'l temperature to allow for the temperature depen­
dence of rubber-like elasticity as predicted by the kinetic 
theory'S. It is found that as the temperature is increased, the 
failure points for the gum rubber move clockwise around an 
envelope passing through a maximum strain (£a (max» at a 
temperature of about ooe. The results for the filled rubbers lie 
along lines parallel to the gum rubber . 
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Fig. 13. Vartation of reduced energy input to break with (a) strain 
at break. (b) strain at break corrected by hydrodynamic factor for 
SBR with 0, 30, 60 and Ba phr HAF carbon black 
Mullins and Tobinu have shown that Young's m~dulus of carbon 
black filled rubber vulcanisates can be expressed in terms of the 
modulus of the unfilled rubber by use of an expression from 
hydrodynamic theory c;Jeveloped by Guth and Gold48 relating the 
viscosity of a liquid containing hard spherical particles to that of 
the liquid alone 

x ~ 1 + 2·5e + 14·1e' (3) 
where c is the volume concentration of filler. 
It was found by applying this factor X to the strain axis in Fig. 13a, 
the gum and filler loaded results coincided as shown in Fig. 13b 
for strains up to £8 (max.). The slope of the graph on the log 
scales was found to be 2 and hence the relationship between 
energy input and strain at break can be expressed as ei4)u. ~ A(X ,.)' (4) 

where A is a constant. This type of relationship has also been 
found to hold both in other amorphous polymers such as NBR 
and also in crystalline polymers such as natural rubber". 

Mullins and Tobin41 have suggested that when the factor X is 
applied to filled vulcanizates, it takes account of both the 
disturbance of the strain distribution and the absence of deforma­
tion in that fraction of material composed of filler. It is shown in 
Fig. 13b that the results at low temperatures do not coincide and 
this indicates that the hydrodynamic correction factor X is too 
large when the moduli of the filler and rubber approach parity50. 

The bulk strains at break, therefore, of the filled and unfilled 
rubbers are related by a factor X under conditions of constant 
energy input. It must be remembered that when this type of 
agreement is obtained, the temperature of the filler loaded rubber 
is always higher than that of the unfilled rubber. 

Effect of Changing Degree of 
Crosslinking 
In view of the apparent good agreement between data from filled 
and unfilled rubbers by using the failure envelope approach 

outlined above, it was decided to investigate47 the effect of 
changing the degree of crosslinking on this type of graph. 
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Fig. 14. Variation of reduced energy input to break with (a) strain 
at break. (b) strain at break multiplied by crosslinking correction 
factor for NR vulcanized with 1, 2 and 4 phr dicumyl peroxide 

Fig. 14a shows results of energy input and strain at break for three 
NR gum compounds vulcanized with 1, 2 and 4 phr dicumyl 
peroxide ("dicup") to produce carbon-carbon crosslinks tested 
over a range of temperatures from 21 °e to 140oe. The crosslinks 
in a dicup vulcanizate are non-labile and have no extra linkages 
such as the cyclic sulphides that occur in polysul phide vulcanizing 
systems. The results as in the case of the polysulphide rubbers 
shown above produce a square law relationship up to the finite 
extensibility of the network t8 (max.) but the individual lines for 
the three vulcanizates are displaced along the strain axis. It has 
been shownf>1 that the maxi mu m elongation of the rubber net­
work is proportional to N!- where N is the number of links in a 
mono mer chain and is, therefore, inversely proportional to 
~ ei where~ e is the number of chains per unit volume of the 
rubber network. As the lines in Fig. 14a are parallel up to the 
maximum elongation of the rubber network, their strains up to 
this position should, therefore, be in the ratios of their respective 
~ et values. PorterU has obtained values of"l ei from measure­
ments of C, in the well-known Mooney-Rivlin equation and the 
ratios for the three dicup rubbers 'Used there are given as 

'I e.f~ e, ~ 3·08 

~ e'~e,;, 1·67 

where-v el refers to value of~ e for the 1 phr dicup·vulcanizate. 

The strains at break for the 2 and 4 phr dicup vulcanizates were 
multiplied by the square root of this ratio ·and the results are 
shown in Fig. 14b. The agreement between the vulcanizates on 
this type of plot is good and the equation of the line for different 
crosslink densities can be expressed as 

(
294)U _ C I~e \ , 

T 8 - \re;j Ea (4) 

when the rubbers are referred to the 1 phr dicup vulcanizate and 
where C is a constant. 

This type of relationship was also found to hold for polysulphide 
vulcanized NR and hence by combining equations (3) and (4) it 
can be shown that the equation 

(2i4) Us ~ 0 ~:,) (X'b)' (5) 

is applicable to allvulcanizates of different degrees of crosslinking 
of one curing system both filled and unfilled with carbon black 
when referred to the 1 phr vulcanizate and where D is a constant. 

Effect of Fillers on Total Hysteresis 
When a viscoelastic material such as rubber is deformed by the 
application of a force, some of the mechanical work required is 
stored in the material and the remainder is dissipated as heat. 
This energy dissipation or hysteresis results from several different· 
mechanisms which are dependent on the type of material and the 



experimental conditions. A measure of this quantity can be 
obtained from the area of the loop between the extension and 
retraction curves in a single tensile stress-strain cycle. 

The major sources of hysteresis in filled rubbers can be listed as 
follows: 

1. Viscoelasticity 
This becomes increasingly important as the temperature of 
test is lowered. 

2. Crystallisation 
This occurs in some rubbers (e.g. natural rubber) when they 
are stretched and the molecules align. 

3. Breakdown of filler aggregates 
4. Changes in network configurations (stress-softening) 
5. Changes in network structure (i.e. the breakage of weak 

crosslinks such as a polysulphide crosslink). 

The last three processes have been discussed in the previous 
sections. Processes (1) and (2) are well documented58

- U and 
will not be discussed further in this review. 

It has been found that the strength of a rubber vulcanizate is not 
dependent on any individual contribution to the energy dissipa­
tion but is dependent on the combined effect of all the processes 
which are applicable to the particular rubber and experimental 
conditions used. 

The energy input to break (Us) is related to the hysteresis at 
break (Hs) for amorphous polymers by the relationship44,66 

Ci4)! U. ~ K H.! (6) 

where K is a constant. 
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Fig. 15. Reduced energy input to break as function of reduced 
hysteresis at break for SBR containing· 0. 3~. 60 and 80 phr HAF 
carbon black 

Equation (6) can be rewritten in terms of hysteresis ratio (he) 
where 

h. ~ H./U. 
to yield 

Ci4) U. ~ K' h'. (7) 

The maximum value of Us 2~4, therefore, occurs when all the 

work done in stretching the rubber is dissipated (he = 1) and 
is, therefore, equal to K3. This is thought to occur at the glass 
transition temperature of the polymer". 

The results for the filled rubbers are displaced from the gum 
rubber, the displacement increasing with increasing concentration 
of carb'on black and it was found that by dividing the hysteresis 
by the factor X used in the previous section, the results for the 
gum and filler-loaded rubbers coincided44,46. Some disagree­
ment is noticed at higher energies (Iow temperatures) and this is 
presumably due again to the hydrodynamic correction being too 
large when the moduli of the rubber and filler particle approach 

parity. The relationship therefore for gum and filier-Ioc 
rubbers can be expressed as 

ei4)!u.~ K(~)! 
Values of energy density and hysteresis measured before fa 
have been shown not to obey any of the above equations 
and hence equations (6) to (8) have been found to represer 
excellent description of failure. 

The lowest values of UB recorded agree with values rece 
given in a theory by Lake and Thomasu for a lower limit of tea 
energies (To). 

(To) can be expressed as the energy required to produce 
area of new surface and defines a fatigue limit below which 
fatigue life under repeated s~ressing can be virtually indefi 

(To) has values ranging from 1-5x10" ergs and is related 
minimum value of energy input to break (U e (min.» for a tel 
test piece by the following relationship58, 58 

U. (min) ~ 2~~0 
Co is the "characteristic flaw size" and for SBR is givel 
5'5x10-8 cm. Hence for SBR, values of UB (min) range' 
0·04 to 0'15 joules cm-a. The lowest experimental valUE 
SBR gum has been found to be approximately 0'15 joules c 

The failure equations, therefore, appear to represent a f 
criterion of failure between the upper limit of a totally hyster 
system and a lower limit which is in accordance with calcul 
values of other limiting parameters. 
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Fig. 16. Reduced energy input to break as function of red 
hysteresis at break for NR containing D. 30, 60 and 80 phr 
carbon black 

Equations (6) to (S) are not applicable to natural rubber30, 

in the temperature range SO°C-140°C as demonstrated in Fi 
Within this temperature region, the hysteresis at break has 
found to be less than predicted. This anomalous behavio 
not obtained in non~crystallising isomerised natural rubber: 
indicated by the dotted failure line on Fig. 16, and is h 
attributed to the ability of N R to crystallise at high strains il 
region 80°C-140°C. The bulk of the polymer remains a 
phous whilst the highly strained regions around the inh 
flaws in the sample crystallise60• Outside this temperature re 
the rubber is either predominantly crystalline (Iow temperat 
or predominantly amorphous (high temperatures). The rE 
for N R with 30 and 60 phr HAF carbon black show si 
anomalous behaviour" and only follow curves of slope app 
mately i at temperatures above 100o e. The addition of S( 
carbon black in natural rubber appears to suppress or COl 

the anomalous crystallisation behaviour and yield a line of : 
! similar to that obtained in amorphous polymers. 

The correction factor X can be eliminated by combining equa 
(3) and (8) to yield 

Ci4)1 U.~ F(HC.)! 
where F is a constant. This equation unlike equations (6) t 
is not a sensitive description of failure but is applicable: 
rubbers both filled and unfilled and eliminates uncer1 
associated with a hydrodynamic correction factor. 



The Application to Reinforcement Theory 
At the same reduced energy input to break, the bulk hysteresis of 
gum and filler-loaded rubbers are related by a hydrodynamic 
correction factor as indicated by equation (8). This can also be 
expressed by the fact that at the same reduced energy input to 
break, the bulk hysteresis of the gum rubber and the hysteresis 
of the rubber phase of the filler-loaded rubber is the same. An 
important point, however, is that this relationship only applies 
when the temperatures of the gum and filter loaded rubbers are 
different. This is demonstrated in Fig. ·17 where the temperature 
difference between SBR gum and SBR with 30 phr HAF carbon 
black to obtain the same energy input to break is plotted against 
the temperature of the gum rubber. Hence it is shown that in 
order to obtain agreement by the hydrodynamic correction 
factor both in the case of the strain at break (equation 4) and in 
the case of hysteresis at break (equation 8), the temperature of 
SBR with 30 phr HAF carbon black must be at least 40°C above 
that of the unfilled rubber. 
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Fig. 17. Temperature difference between SBR gum and SBR 
containing 30 phr HAF carbon black as function of temperature of 
the gum rubber when both vulcanizates exhibit the Same energy 
input to break 

The effect of temperature is better demonstrated in Fig. 18 where 
log energy input to break (Us) is plotted against temperature for 
SBR gum and SBR filled with 30 phr HAF carbon black. At 
temperatures above room temperature the energy input to break 
of the filled rubber is approximately an order of magnitude above 
that of unfilled SBR. Similar results have also been shown4ri to 
occur when stress at break is plotted against temperature. 
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Fig. 18. Energy input to break as lunction 01 temperature lor 
SBR and SBR containing 30 phr HAF carbon black at a strain 
rate 01300% per sec. 

Because of the interdependence of time and temperature53 in 
viscoelastic materials. the curves shown in Fig. 18 were of 
necessity obtained at one extension rate (300% per minute). 
The behaviour of filled and gum SBR vulcanizates with respect 
to extension rate, or time as distinct from temperature is illustrated 
in Fig. 19. Reduced energy input to break is plotted as a master 
function of the logarithm of reduced time to break (log tb/ar) 
in a tensile test. To obtain the master function, isothermal curves 
relating reduced energy to break to log time at break (tb) obta!ned 
by stretching the rubber at different extension rates, were shifted 
along the log time axis to produce a master curve for the reference 
temperature 294 "K. The shifts along the log tb scale (1og ar) 
were similar to those predicted by the well-known WLF equa­
tion8i• Again it is noticed that the difference between the energy 
input to break values for the gum and filler loaded rubbers at 
the higher times to break are an order of magnitude. 
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Fig. 79. Reduced energy input to break as ,function 01 reduced 
time to break lor SBR gum and SBR containing 30 phr HAF 
carbo,!- black 
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Fig. 20. Hysteresis at break as lunction 01 temperature lor SBR 
gum and SBR containing 30 phr HAF carbon black 

These results suggest that the rubber phase of filler loaded 
vulcanizates exhibit more hysteresis than the corresponding gum 
vulcanizate when compared isothermally. Fig. 20 illustrates this 
point more clearly where the bulk hysteresis of t~~ t~o 
vulcanizates are plotted as a function of temperature. Unification 
of the isothermal gum and filler loaded results by the ~ydro­
dynamic correction factor does not succeed. After correctlo.n by 
equation (4) the filled rubber still exhibits more hysteresIs at 
break than the gum rubber at the same temperature of test. 
although the difference does decrease as the ~emperature of the 
test is raised. A small correction could be applied to take account 
of the breakdown of the filler structure but this would by no means 
unify the results. The hydrodynamic correction factor. theref?re. 
can only be applied in cases where the rubber phase of the filler 
loaded vulcanizate is in the same viscoelastic condition as the 
gum rubber. This necessitates the temperature of test for SBR 
with 30 phr HAF carbon black to be at least 40"C above the 
temperature of test of the unfilled SBR. 



In an attempt to investigate more clearly the role of time and 
temperature in reinforcement of rubbers, Harwood, Payne and 
Smith4S have considered a more fundamental approach. The 
tensile stress of a rubber (0') can be factorized62,63 into a strain 
factor f(e) and a time-dependent modulus function 0 (t) 

(f~I(,)x0(t) (11) 

This type of analysis has been applied to SBR gum and filler 
loaded vulcanizates by using an empirical relationship due to 
Martin. Roth and Stiehler64 (MRS equation) which has been 
shown to be applicable to SBR by SmithU and .landel and 
Stedry6s: The M RS equation is given by 

1(,) ~ • .' 1 exp A[ .-t] (12) 

where A is the extension ratio equal to (1 + e) and A is a constant. 

Harwood et al. have concluded from their investigations that the 
strain function for filled rubbers is the more temperature-sensitive 
parameter. It is found that the constant A is independent of 
temperature for the gum rubber but does increase very slightly 
with increasing temperature for the filled vulcanizate. There is, 
however, at least a factor of 2 between A for the filled and 
unfilled rubbers. This increase in A for filled rubbers is similar to 
the increase in A obtained with increasing crosslink density68 

and implies that the presence of the filler particles tightens the 
network but that the "tightness" decreases with increasing 
temperature. Two possible explanations of this behaviour are: 

1. The rubber chains adhering to the surface of a carbon black 
particle, desorb from the surface of the filler particle as the 
temperature is raised 
or 

2. There is a shell of rubber chains immobilised around each 
filler particle, which decreases in thickness with increasing 
temperature. 

It is conditional, however, to the derivation of the hydrodynamic 
correction factor (equation 3) by Guth and Gold48 and Small­
wood61 from the initial findings of Einstein68 that there is complete 
wetting of the filler surface by the rubber. This correction factor 
has been shown to be applicable to the ultimate strains and 
hysteresis at break provided the test conditions are favourable 
and this, together with the conclusions from stress-softening, of 
there being strong adhesion between the filler particle and the 
rubber discussed earlier, and the electron microscope investiga­
tions by Hess69

, confirm that rubber-filler breakdown can be 
neglected with reinforcing fillers. 

[t is thought, therefore, that explanation (2) is the more probable 
mechanism which is compatible with the widely-held concept of 
a region of restricted rubber surrounding the filler particles. 

Conclusion 
This review has discussed in some depth hysteresial mechanisms 
that have been stud ied in recent years. Others such as crystallisa­
tion and viscoelasticity have been widely discussed previously. 

The most interesting feature of the work is the influence that the 
combined hysteresis due to all the mechanisms has on the 
strength of rubber. The finding of a unique relationship between 
hysteresis and strength is of great importance and the general 
applicability of the relationship to filled rubbers by use of a 
hydrodynamic correction factor when test conditions are suitable 
is most useful. 

Hysteresis is increased by the presence of fillers viscoelastically as 
well as hydrodynamically but it is not until data are expressed 
in terms of time or temperature that the viscoelastic contribution 
is noticed. The concept of a filler particle surrounded by a layer 
or shell of rubber, with properties different from that of the 
rubber continuum, is not a new one, but the approach to reinforce­
ment by the consideration of bulk energies is novel. Other 
evidence for rubber chain hindrance close to the filler surface is 
forthcoming from the investigations of Westlinning7l1, Schoon71, 

Grosch72 and Smit;3. Radok and co-workers74 in a series of 
papers on the theory of inclusions in viscoelastic materials have 
shown that if the conclusions are non·rigid but possess a 
modulus differing from that of the bulk rubber, then the bulk 
rubber acquires additional characteristic response times which is 
equivalent to increasing the hysteresis exhibited by the rubber. 

This approach, therefore, provides a physical explanation of why 
the strength of amorphous polymers with 30-60 phr carbon 

black filler can be anything from 10 to 20 times greater 
the corresponding unfilled amorphous polymer at on 
temperatures. 
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