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ABSTRACT 

Fmite element analysis (PEA) is a numerical analysis method which is used widely to 

obtain approximate solutions in many fields of engineering. With sophisticated 

computer hardware and software. FEA has recently become an effective tool in the 

design of rubber components. 

In this thesis. a study of the influence of hysteresis on the internal temperature rise of 

rubber components is presented. A method has been created in such a way that. by 

applying FEA. the internal temperature rise due to hysteretic effect can be predicted. 

In addition a study has been made to determine the effects of dynamic test conditions. 

such as strain amplitude and frequency. on the internal temperature rise of two types of 

rubber component: cylindrical anti-vibration mountings and a Chevron spring. An 

experimental design technique has been introduced to determine a mathematical 

relationship between the maximum temperature rise and the two test variables. Fmally. 

an experimental evaluation of FE results has been made to check their accuracy. 

Results have shown that FEA. combining stress and thermal analyses. is able to predict 

the internal temperature rise of the rubber components which are subjected to dynamic 

deformation under various test conditions. For both cylindrical anti-vibration 

mountings and a Chevron spring. it is found that the relationship between the 

maximum temperature rise (T""",) and the test variables (e.g .• strain amplitude (E) and 

frequency (f) can be expressed mathematically by a single equation as given below. 

T ..... = 30 + alE + a2f + a3E.f + 34E2 

where 30. at. a2. a3 and 34 are equation coefficients. It is evident that the maximum 

temperature rise increases non1inearly with the strain amplitude but increases linearly 

with frequency. Comparisons between the experimental and the computed results 

reveal that a good prediction of the internal temperature rise can be obtained from 

FEA. provided that both material data and the boundary conditions are specified 

accurately. 
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1.1 Introduction 

CHAPTER 1 

INTRODUCTION AND OBJECTIVES 

Finite element analysis, or FEA for short, has become an effective tool in the design of 

engineering components. It is of great interest to many designers, particularly to rubber 

technologists, because it provides advantages over the cut-and-try process or the closed

form solutions. The use of FEA, coupled with sophisticated computer hardware and 

software, can reduce the time required to develop rubber parts by reducing the number 

of iterations. In addition, FEA now can handle the nonlinear behaviour of elastomers, 

thus giving more accurate results. As a consequence, FEA is becoming widely used for 

the design of rubber components for a variety of engineering applications, including 

components ranging from fluid seals and automobile engine mounts to multilayer 

elastomeric bearings for earthquake protection. 

The mechanical behaviour of elastomers is characterised by using the constitutive 

theories (alternatively called material models) based on a strain energy density function. 

Numerous material models have been developed by many workers in order to account 

for both nonlinear behaviour and incompressibility of elastomers. The validity and 

efficiency of the newly developed models have been studied by comparing computed 

predictions with experimental data. Published work indicates that some of these models 

are valid only for infInitesimal strains, while some models can give good predictions over 

a wide range of deformations. 

Recently, many FE software packages, such as ABAQUS, NISA n, and PATRAN, have 

provided a number of hyperelasticity models to predict the behaviour of practical rubber 

components. Since all such models are in terms of strain energy density function, which 

is purely concerned with elasticity, design of rubber components by FEA is therefore 

confined to only elastic behaviour. Unfortunately, it is well known that rubber 
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vulcanisates are viscoelastic in nature, so that the influences of creep, stress relaxation 

and hysteresis play an important role in component performance. However, FEA based 

on the strain energy density function is still an essential tool in rubber design, provided 

that great care is exercised. 

For most applications, rubber components are subjected to dynamic stresses or 

deformations. It is widely known that one of the most important factors controlling the 

performance and the service life of the components is temperature. Basically, the 

practical concern of the temperature effect is that increasing temperature greatly 

accelerates the rate of oxidative reaction of rubber molecules, giving rise to higher crack 

growth rate and changes in rubber properties. Therefore, the performance and service life 

of rubber components are immensely dependent on the temperature. Since rubbers are 

not fully elastic, hysteresis generally has a great influence on the performance of rubber 

component because it brings about an internal temperature rise. This phenomenon is 

quite obvious and of particular importance in a rapid dynamic deformation as the 

temperature rise can be considerable and, of course, disastrous effect on the rubber 

component is inevitable. For this reason, it is a primary concern of this project to apply 

FEA to the prediction of internal temperature rise, due to the hysteretic effect, in rubber 

components (antivibration mountings and a Chevron spring) which are subjected to 

various service conditions. Specifically, the project is intended to provide guidance for 

engineers to determine suitable regions of service conditions if the temperature tolerance 

of the rubber compound is known. 

1.2 Objectives 

• To determine some essential parameters governing the temperature rise of rubber 

compounds. 
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• To devise and evaluate a new method by which the internal temperature rise can be 

predicted. 

• To study the effects of service conditions such as strain amplitude and frequency on 

internal temperature rise of two types of engineering component: antivibration mountings 

and a Chevron spring. 

• To investigate the effects of both geometric factor and deformation mode on the 

internal temperature rise of antivibration mountings. 

3 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction to Finite Element Analysis (FEA) 

2.1.1 A brief history of Finite Element Theory 

Finite element analysis (PEA) is a numerical analysis technique for obtaining approximate 

solutions to a wide variety of engineering applications. It was originally developed for 

structural analysis. Although the label "finite element method" was flfst introduced in 

1960, the idea of finite element analysis was created more than two thousand years ago 

by Greek mathematicians. It was started when many mathematicians were interested in 

determining the perimeter and area of a circle. Even though precise solutions had to wait 

for the advent of the calculus, in the meantime amazingly accurate results were found by 

using finite elements. A polygon was used to replace the circle in order to compute the 

perimeter. The straight line then becomes the finite element This concept is considered 

as one dimensional line element modelling. In addition, triangles originating from the 

centre of the circle to the vertices of the polygon were used to calculate the area of the 

circle. This is actually a fomt of two-dimensional triangular element modelling. It is 

obvious that the use of finite element is feasible to approximate both circumference and 

area of the circle, hence, to estimate the value of 1t. 

In antiquity, progress in the development of theory and the analytical techniques 

subsidiary to finite element analysis was very slow. In the early 1950's, the digital 

computer was flfst introduced as an aid to finite element analysis. Subsequently, the finite 

element method has developed simultaneously with the increasing availability of high

speed electronic digital computers, and a lot of computer specialists commenced to 

develop software for the method. Unquestionably, FEA is now a well-established 

technique and is widely used in a variety of fields of engineering. 
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2.1.2 The basic concept of FEA 

The basic principle of FEA is that a complicated problem can be divided into simpler 

subproblems, for which solutions can be achieved much more easily. Then the 

subproblem solutions are assembled to construct the ultimate solution of the original 

problem. 

In general, a complex body is divided into simpler subdivisions, called ''finite elements", 

by using a discretization technique. These elements are interconnected at joints which are 

usually called "nodes" or "nodal points". Simple functions are then chosen to 

approximate the field variable for each finite element Such assumed functions are called 

"interpolation or basis functions" and are usually polynomials. Since the interpolation 

functions are expressed in terms of the values of the field variables at nodes, the problem 

now becomes how to evaluate the field values at nodes. However, in some cases, internaI 

element points known as Gauss points are used in the solution process. The stresses are 

then extrapolated to the nodes, where they are averaged. Additionally, two important 

considerations should be taken into account. (I) Firstly, these interpolation functions must 

satisfy some continuity conditions across element boundaries. Secondly, certain 

boundary conditions must also be satisfied. There are several factors that affect the fina1 

solution, for instance: the types; the number and size of elements; the element 

distribution and grading; as well as the chosen interpolation function. 

2.1.3 Practical aspects of FEA 

In the past, a high level of effort was required for the application of FEA. The method 

was considered as the tool for specialists, especially in solid and structural mechanics. 

Furthermore, the high cost of computers and their limited power, together with the 

limited capabilities of finite element programmes, were also the main shortcomings of 

FEA. In recent years, the developments of computer hardware and software have 

advanced rapidly, offering users a lot of auxiliary systems, such as graphics, windows, 
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macros, etc. Consequently, FEA has currently become the most powerful technique for 

structural engineering applications. 

2.1.3.1 Computer involvement in FEA 

Engineering software has been progressing very rapidly, particularly in the use of graphic 

utilities. This progress is of great importance for the microcomputer environment It is a 

fact that the finite element software is now much easier to learn and to use efficiently, 

compared to the past. 

The primary principle of finite element software was reviewed by Nicholson and 

Nelson(2) as having three stages shown in Figure 2.1. 

Pre-processing 

Analysis 

Post-processing 

Figure 2.1 Three stages in fmite element software 

At the pre-processing stage, the input file is developed, consisting of several sections as 

follows: 

1. Control information (type of analysis, etc.); 

2. Mesh:- element types, nodal co-ordinates and connectivities; 

3. Material properties such as elastic modulus, etc.; 

4. Applied loads, e.g., force or heat flux data; 

5. Supports and constraints, e.g., prescribed displacements, etc. 

Once the input data have been assembled with the assistance of the pre-processor, the 

analysis processor is then activated to solve the problem, resulting in a generation of raw 
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output data. Typically, the post-processor module consists of graphical utilities, offering 

the analyst a choice of output display, for example, colour contour plots, deformed 

shapes, graphs, etc. At this stage, two considerations should be taken into account: 

validation and interpretation. To validate the output, experimental data may be compared 

with the output data. If the output response is inconsistent with the experimental data, 

the input file and the mesh configuration should be modified.. With consistency, the 

analyst can be confident in the mesh and the proceeding step will be carried out. The 

problem of interpretation is frequently encountered when the output is massive. 

However, current graphical display systems are able to make interpretation much easier 

and more reliable. In addition, regions of high interest can be "zoomed in" by the 

application of the current post-processors. 

2.1.3.2. Mesh development 

Generally, the basic philosophy of FEA is known as going from part to whole. Therefore, 

the subdivision or discretization process is essentially the first step in the solution 

process. After the discretization is complete, the domain body will be in the form of a 

network of finite elements. This network or collection of elements is called the finite 

element mesh. As already stated, there are two important factors that affect the solution 

obtained from PEA. One is the choice of finite elements and another one is the choice of 

interpolation functions. The selection of these factors is strongly dependent not only on 

the engineering judgement, but also on the required accuracy and the availability of a 

high performance computer and, hence, the cost 

In the past, manual mesh generation required considerable labour for complicated 

applications. Fortunately, automatic mesh generation has now been introduced and is 

used in conjunction with graphical displays. 

As the accuracy of FEA is greatly dependent upon selection of the number and location 

of finite element nodes and element types, several practical rules should be considered. (2) 
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1. Nodes should be located where concentrated loads or heat fluxes are applied. 

2. Nodes should be located where displacements and temperatures are constrained 

or prescribed. 

3. Nodes should be located along lines and surface patches over which pressures, shear 

stresses, distributed heat fluxes, and surface convection are present 

4. Nodes should be located at boundary points where the applied tractions and heat 

fluxes experience discontinuities. 

5. Nodes should be located along lines of symmetry. 

6. Nodes should be located along interfaces between different materials or components. 

7. Element aspect ratios (defined as ratio of largest to smallest element dimensions) 

should not be greater than five. 

8. Symmetric configurations should have symmetric meshes. 

9. The density of elements should be greater in domains with high stress or temperature 

gradients. 

1O.Element density variations should be gradual rather than abrupt. 

l1.Meshes should be uniform in domains with Iow gradients. 

12.Element orientations should be staggered to prevent bias. 

2.1.3.3 Element configurations 

In the discretization process, the number, shape, size and configuration of the elements 

must be particularly modelled in such a way that the actual structure is simulated as 

closely as possible. This process is based on individual engineering judgement. It should 

be realised that the original structure must be subdivided into sufficiently small elements 

so that the adequately accurate solution can be obtained. However, it should also be 

borne in mind that a finer subdivision will require more computational effort. 

As the computed solution depends heavily on the geometry of the element, the number 

and location of nodes and the node types, the configuration (or shape) of the basic 

element to be used are important issues in the application of PEA. Generally, a finite 
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element comprises a simple one-, two-, or three-dimensional configuration. Detailed 

information of these element configurations is given below. 

• One-dimensional elements 

In general cases, line elements are used as the representation of one-dimensional 

elements as shown in Figure 2.2. From the figure, it can be seen that the straight line 

ends at nodal points numbered I and 2 which are called external nodes because they 

represent interconnecting points to neighbouring elements. The additional nodal points 

may be required (e.g., nodes 3, 4, ... ) in some applications. Since these nodes are 

intermediate and not connected to any other elements, they are called internal nodes. The 

location of nodes is on the line segments. The number and type of nodes can be selected 

to suit the interpolation functions. The one-dimensional element is generally used for 

simple structures that can be modelled by line drawing, such as trusses and frames . 

• • • • 
1 3 4 2 

Figure 2.2 One-dimensional element 

• Two-dimensional elements 

Linear triangle elements are basically used as the representation of two-dimensional 

problems. The 3-node linear triangle is the simplest element for this case. More 

complicated and advanced triangles are also applicable, for instance, the quadratic 

triangles, the cubic and quartic triangles. Other common types of two-dimensional 

elements are the rectangular and quadrilateral shapes. The former can also be considered 

as the specific type of the latter. Although, practically, any two-dimensional problem can 

be represented by an assemblage of triangular elements, there are certain problems in 

which quadrilateral elements are advantageous. 
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(a) 3-node linear triangle 

4 5 2 

(c) to-node cubic triangle 

(e) 4-node linear rectangle 

············t·············t············ 

············t··· .. ········t············ 

(g) 16-node cubic rectangle 

(i) Quadrilateral element 

(b) 6-node quadratic triangle 

(d) IS-node quartic triangle 

................... -r ................. . 

(t) 9-node quadratic rectangle 

. . . 
......... + ........ + ......... + ....... . 
·········t········1-·········+········ 
...................................... 

; 1 1 

(h) 2S-node quartic rectangle 

G) Quadrilateral formed by 2 triangles 

Figure 2.3 Two-dimensional elements 
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In some cases, instead of using quadrilateral elements directly, it is possible to subdivide 

the domain into triangular elements without any difficulty, as a lot of modem pre

processors are advanced enough to do so. 

All the two-dimensional elements previously mentioned are shown in Figure 2.3. As can 

be seen, unlike one-dimensional elements, there are two possible types of external nodes 

for two-dimensional elements. For example, the corner nodes indicated by I, 2 and 3 in 

Figure 2.3(c) are called primary external nodes. When additional nodes appear on the 

element faces, like nodes 4, 5, 6, etc., they are referred as secondary external nodes. The 

internal nodes such as node 10 is also applicable in two-dimensional elements. 

• Three-dimensional elements 

Corresponding to the triangles, tetrahedron elements are frequently used in the three

dimensional problems. A tetrahedron contains four primary external nodes. Other forms 

of three-dimensional elements are also possible, i.e., a general hexahedron or a 

rectangular prism, which is classified as special case of the hexahedron. 

(a) Tetrahedron (b) Rectangular prism 

.·····1··········· ... ···· .... 
~..... i 

.' : .' . . ' . 

(c) Arbitrary hexahedron (d) 16-node brick element 

Figure 2.4 Some of the three-dimensional elements 
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Similar to the two-dimensional elements, secondary external nodes or internal nodes can 

be introduced for each of these elements. It should be noted that a hexahedron can be 

constructed from several tetrahedra. Some of the three-dimensional elements are shown 

in Figure 2.4. 

In the case of problems which cannot be represented by an accumulation of only one 

element type, two or more types of elements are necessary for such problems. These are 

generally known as "mixed assemblages".(3) 

2.1.3.4 Interpolation functions 

A solution of complicated problems can be approximated by subdividing the region of 

interest into finite elements and representing the solution within each element by a 

relatively simple function, namely an interpolation function. As a consequence, the 

selection of interpolation functions is fairly important in FEA. This function expresses the 

field variable, which is defined as the principal unknown of a problem such as 

displacement, temperature, etc., within the chosen element in terms of their values at 

nodes. The interpolation function is the assumed function which approximates the 

distribution of the field variable over a fmite element and it can be conveniently 

represented by a polynomial expression. Other functions, for instance, trigonometric, 

etc., are less frequently used. There are several reasons why the polynomials are used so 

extensively. Firstly, the use of polynomial provides the possibility to differentiate and 

integrate with relative ease. Secondly, it is easy to handle the mathematics of polynomials 

in formulating the appropriate equations for a variety of elements and in performing 

digital computation. Finally, it is easy to control the required accuracy by increasing its 

degree (or its order). A polynomial of arbitrary order gives a final solution closely to the 

true solution. It is also obvious that a polynomial of infinite order corresponds to an 

exact solution. However, practically, it is always limited to one of fmite order. The 

higher the order of polynomial used in the approximation, the more closely the exact 

solution is represented. 
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The general tenns of the nth order polynomial for one-, two- and three-dimension can be 

expressed as shown in the Equations (2.1), (2.2) and (2.3) respectively. Examples of 

interpolation function derived from these equations are represented in Table 2.1. The 

coefficients of the polynomial, the a's, are known as generalised co-ordinates. All the 

equations are normally converted into the element matrix forms which are convenient for 

computational process. 

Pn(X) = !ai xi 
i-O 

m 

Pn(X,y) = Lak Xi yi, i+j ~ n andm = 
hI 

m 

- - - - - - - - - (2.1) 

(n+l) (n +2) 
2 

- - - - - - - - - (2.2) 

Pn(X,y,Z) = Lal Xi yi Zk, i + j+k ~ n and 
I. I 

m = (n + 1)(n : 2)(n + 3) ________ (2.3) 

Table 2.1 Some examples of interpolation function 

Dimension Expression Behaviour 
One- Po(x) = ao constant 

PI(x) = ao + atX linear 
P2(X) = ao + atX + a2x' Quadratic 

Two- Po(x,y) = at constant 
Pt(x,Y) = al + a2X + a3Y linear 
P2(x,v) = al + a2X + a3V + 14XV + asx2 + 3(,y- Quadratic 

Three- Po(x,Y,z) = at constant 
PI(x,Y,z) = al + a2X + a3Y + 14Z linear 
P2(x,y,z) = al + a2X + a3Y + 14Z + asxy + 3(,XZ + a7Yz + quadratic 

2 9'; 2 asx + a9 + alOz 

Of particular importance are isoparametric elements, in which the geometry and the field 

variable are represented by the same interpolation function. 
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2.1.4 Solution procedures of FEA 

A primary strategy of the finite element solution can be briefly summarised step-by-step 

. as follows. 

1. Discretization of the continuum. 

The first step is to divide the continuum or the main body into suitable finite elements, 

whose nodes must be specified. A variety of element types may be used. Indeed, the 

number and the type of elements in a given problem are essentially based on engineering 

judgement 

2. Selection of the interpolation functions. 

After the elements and nodes have been specified, the next step is to choose the 

interpolation function to represent the variation of the field variable over the element 

Usually, polynomials are selected as interpolation functions for the field variable. With 

isoparametric elements, the degree of the polynomial chosen depends upon the number 

of nodes assigned to the element, the number of unknowns at each node and certain 

continuity requirements imposed at the nodes and along the element boundaries. 

3. Derivation of the element properties. 

Once the elements and their interpolation functions have been chosen, the matrix 

equations expressing the properties of the individual elements must be determined by 

using one of the following approaches. 

3.1. The direct approach which is generally used in relatively simple problems. It 

is derived from the direct stiffness method of structural analysis. 
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3.2. The variational approach which can be used for both simple and more 

complicated problems. This approach relies on the calculus of variations and involves 

extremizing a functional. For problems in solid mechanics, the functional variable turns 

out to be the potential energy and, therefore, this approach is then based on the principle 

of minimum potential energy. The variational approach is now applicable to a wide 

variety of engineering problems. 

3.3. The weighted residuals approach which is more versatile and advantageous 

because it is possible to extend the fmite element method to problems where no 

functional variable is available. The weighted residuals approach begins with the 

governing equations of the problem and proceeds without relying on a variational 

statement. This approach is used extensively to detennine the element properties for 

nonstructural applications such as heat transfer and fluid mechanics. 

4. Assembly of the element properties to obtain the system equations. 

This process includes the assembly of all element properties to estimate the properties of 

the overall system In other words, matrix equations expressing the behaviour of the 

elements must be combined to form the matrix equations expressing the behaviour of the 

entire system. In general, the basis for the assembly method is that the value of the field 

variable at a node where elements are interconnected must be the same for all elements 

sharing that node. 

5. Application of boundary conditions. 

Before the system equations can be solved, they must be modified to account for the 

boundary conditions of the problems. The boundary conditions imposed on nodes or 

elements are the known values of the dependent variables such as displacements or nodal 

loads, etc. 

15 



6. Solutions of the system equations. 

After the assembly process, the assembled system equations are solved to obtain the 

unknown nodal values of the field variable of the problem. In linear equilibrium 

problems, the solution techniques for solving these equations are straight forward. 

However, for nonlinear problems, the different solution techniques are applied in such a 

way that the desired solutions are obtained by a sequence of steps. More detailed 

description of the solution techniques for nonlinear problems is given later in Section 

3.3.5. 

7. Additional computations. 

Sometimes, after the solutions of the system equations are obtained, additional 

computation is required to calculate other important parameters such as stresses, strains, 

element strain energies, etc. Finally, some post-processing functions are performed to 

display or plot the results. 

Since the aim of this thesis is to illustrate the applications of PEA in the rubber field, the 

mathematical procedures are beyond the scope of this project. However, there are many 

references which give more detailed information if required. (3·8) 

2.1.5 Errors in FEA 

In spite of providing a highly accurate solution, there are two main classes of errors 

arising in PEA. These are: 
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1) Modelling error. 

This source of error results from insufficiently accurate input data such as the material 

properties and boundary conditions. Moreover, there often are compromises in the mesh, 

for example, modelling sharp comers as rounded. 

2) Numerical error. 

This source of error arises from not only the subdivision of the main body into discrete 

parts, but also the round off of the computer computation. The finite element represents 

a continuous system with a discrete system, at some loss of accuracy. Practically, the 

significance of discrete error is often assessed by comparing solutions from two meshes, 

the second of which is a refinement of the first. Round off errors ensue from the 

limitations in arithmetic operation of computer and may play an important role in a very 

large system (with a large number of nodes). 

2.2 Application of finite element analysis in elastomer design 

The application of finite element analysis is of great interest to many rubber 

technologists. The rapid progress and greater availability of related computer hardware 

and software, particularly computer-aided design (CAD) systems, has resulted in FEA 

becoming more and more important in the design of rubber components. The use of FEA 

provides the potential of designing and analysing problems much more efficiently and 

rapidly than trial-and-error processes. 

Generally, the major finite element application to rubber design is to determine the 

rubber component geometry to give required force-deformation behaviour. If the 

designed components do not meet the defmed requirements, for instance, if the 

development of excessive stress is found, the product can be redesigned and reanalysed. 
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Nevertheless, several difficulties arise with the application of PEA to rubber components. 

These are as follows:(2) 

• rubber is nearly incompressible, developing high stresses in regions of confinement; 

• rubber undergoes large strains so that geometric nonlinearlity becomes important and 

must be taken into account during the analysis; 

• rubber is normally bonded to much stiffer component such as metal plates; 

• rubber components are often small and thin; 

• failures normally take place at interfaces between rubber and stiffer components; 

• rubber material properties, represented in the form of a strain energy density 

function, are difficult to characterised experimentally. 

Because of such difficulties, great care is needed to achieve good analytical results. In 

recent years, a number of sophisticated software programmes have been developed with 

enhanced capabilities of designing and analysing rubber components, for example, 

ABAQUS, PATRAN and NISA 11. 

2.2.1 Introduction to closed-form solution and FEA 

Finite element analysis has obviously become an important tool in the design of 

elastomeric components because it now can handle the nonlinear characteristics of 

elastomers together with complex geometries of the components, thus increasing the 

design accuracy, while cutting the design time. 

In the past, design of elastomeric components depended largely on a cut-and-try process. 

Most designers were reluctant to use the finite element analysis due to two main 

misapprehensions. (9,10) The first one is that PEA is a time consuming process and requires 

excessive computational effort, particularly when applied to the nonlinear elastomers. 

The second one is that the application of simple closed-form handbook formulae to the 

design of complicated components is more cost effective than PEA. From the second 
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misapprehension, it is considered that FEA is not a means for developing conceptual 

design. but preferable to refme a concept if the cost can be justified. 

As a consequence of these misapprehensions, closed-form analytical solutions and 

handbook equations have been used extensively to reduce some of the cut-and-try 

iterations which are inherent to the design of simple elastic components. These 

techniques, however, are of limited use in designing the complex geometries frequently 

found in real design problems. To derive the equations, one important assumption is 

usually made, that is the rubber stress-strain response is linear. This assumption, 

however, does not exist in most situations because nonlinearlity is found in many cases 

when the rubber component is strained beyond 10%. In addition, most models neglect 

other important propenies such as the effects of material hysteresis and time dependent 

behaviour (creep and stress relaxation). Closed-form solutions are sometimes based on 

an intelligent guess. In many cases, therefore, a "fudge factor" based on experience must 

be added to the equation in order to take care of any unknown deviation between actual 

response and predictions. Some published work(9.IO) concluded that the accuracy of 

closed-form solutions is limited to simple component geometries and relatively small 

deformations. When real-life complexity is introduced, their accuracy. and hence 

usefulness, collapses. 

Fortunately, an alternative technique, which is more powerful than the closed-form 

solutions, has been introduced and used extensively in the design of elastic components, 

namely fInite element analysis. The basic philosophy behind the fInite element analysis is 

previously described in Section 2.1. In addition to providing acceptable accuracy, FEA 

provides superior benefIts, compared to the closed-form solutions, as illustrated 

belows. (9.10) 

• FEA can be used to analyse the dynamic behaviour of rubber components through 

the use of hysteresis data. 
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• FEA can reduce the time required to develop rubber parts by cutting the number of 

iterations required to achieve the final product 

• FEA can handle the nonlinear behaviour of rubber while the closed-form solutions 

cannot. 

• FEA can be used to estimate normal strain distributions along the interface between 

rubber and rigid components, which is not available with most closed-form solutions. 

2.2.2 Characterisation of rubber mechanical behaviour 

The most remarkable behaviour of rubber is that it exhibits elastic response up to large 

strains. This kind of behaviour is generaIIy known as "hyperelasticity" and can be 

described in terms of the "elastic potential function" or a "strain energy density" which is 

defmed as the strain energy stored in the material per unit of volume in the initial 

configuration as a function of strain at that point in the material. The hyperelastic 

constitutive relations based on the strain energy density have been widely used to 

represent the rubber-like materials, especially in the field of rubber engineering. 

However, it should be borne in mind that the hyperelastic behaviour represents the elastic 

characteristics of complete reversibility of the deformation as weII as the assumption that 

the response is independent of the deformation history. 

Numerous mathematical constitutive theories based on strain energy density functions 

have been developed for nonlinear, large elastic deformation of rubber materials. These 

theories, associated with the finite element analysis and computer-aided design, are very 

effective in design and analysis of elastic components operating in highly deformed 

states. 

A number of theories can now accommodate nonlinear elastic behaviour. These theories 

can be roughly classified into two main categories. (11) The first category assumes that the 

strain energy density function CW) is a polynomial function of the principal strain 
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invariants (I). The Rivlin model, for incompressible material, is the simplest example of 

this. If only the first order terms are used, the model is commonly known as the Mooney

Rivlin material model. The second category assumes that the strain energy density can be 

expressed by separated functions of the three principal extension ratios (A). Ogden(12), 

Peng(13) and Peng-Landel(14) material models are all in this category. 

It should be noted again at this point that the mechanical properties of rubber possess 

both elastic (reversible) and hysteresis (irreversible) effects but the strain energy density 

function is confined to only elastic effects and cannot involve hysteresis effect (IS) 

Unfortunately, some compounding ingredients such as carbon black, etc., are usually 

added to elastomers to modify their properties to suit an engineering application. The 

incorporation of these ingredients tends to increase the hysteresis effects (energy loss or 

heat generation) during deformation. However, this does not make the application of the 

strain energy density function useless, but it requires extra effort and great care in 

collection of experimental data and in the use and interpretation of FEA predictions. 

In this section, the basic principles of the widely known nonlinear elastic constitutive 

theories, which are used directly with the finite element analysis, are reviewed briefly. 

Nevertheless, it should be realised that the constitutive functions described here are just 

samples of those used to represent the elastic strain energy density of various elastomers. 

Practically, the choice is usually governed by their availability in an FE programme, 

coupled with the relevance to the material and application. 

• Neo-Hookean and Mooney-Rivlin material models 

According to Rivlin's theory(16), the elastic properties of a rubber can be represented in 

terms of a strain energy density function with particular regard to the strain invariants 110 

hand 13• The mathematical correlation can be approximated by the power series; 

-~ I' k W = "-C",,, (11 - 3) (h - 3)1 (h - 1) - - - - - - - - - (2.4) 
i+j+k -1 

21 



where W is the strain energy density, the stored strain energy per unit volume. 

Subscribed C's are the material constants. It. Iz and 13 are the three strain invariants, 

given in terms of the principal extension ratio At. A2 and A3 by 

1\ = 1.1 + A.~ + A~ - - - - - - - - - (2.5) 

12 = 1.21.2 + 1.2 1.2 + 1.21.2 
12 23 31 - - - - - - - - - (2.6) 

13 = A.1A.~A.~ - - - - - - - - - (2.7) 

An extension ratio (A) is comparable to a strain but is defmed as the ratio of a deformed 

dimension to the original (undeformed) dimension. 

By considering the pure homogeneous deformation of a unit cube of rubber (Figure 2.5), 

correlations between the true stresses (the ratio of force to the deformed cross-sectional 

area) and the strain energy density have been proposed as: 

12 = 

,2,2,2 awl 
+ 1\.1 1\.21\.3 a 13 

- - - - - - - - - (2.8) 

,2,202 awl 
+ 1\.1 1\.2 1\.3 a 13 

- - - - - - - - - (2.9) 

,2,202 awl 
+ 1\.1 1\.21\.3 a 13 

- - - - - - - - - (2.10) 

where tt. 12 and t3 are the true stresses in three principal directions. 

For incompressible material, h = 1 and Equation (2.4) reduces to 
M 

W = LQ; (1\ - 3)i (12 - 3~ - - - - - - - - - (2.11) 
i+j -1 
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Ca) (b) 

Figure 25 Pure homogeneous deformation diagram: (a) undeformed state and 

(b) deformed state 

The power series in Equation (2.4) is usually truncated by expressing only the leading 

terms, yielding the simplest constitutive equation for strain energy density function, the 

so called Neo-Hookean or Gaussian law. This can be expressed as; 

- - - - - - - - - (2.12) 

where C.o is the material constant and I. is the principle invariant. However, this model 

has a limited accuracy and is not reliable for general structure problems. So, terms 

containing I. and h have to be added by taking the first two terms of Equation (2.4), 

namely the Mooney-Rivlin material model. The strain energy density function based on 

the Mooney-Rivlin model is the most extensively used in stress analysis of elastomeric 

components. It was proposed by Mooney(l7) based on a linear correlation between stress 

and strain in simple shear. 

Forincompressible materials, the strain energy density function depends only on I. and h 

(where 13 = 1) and it can be mathematically expressed as; 

w = CIO (I. - 3) + COl (12-3) - - - - - - - - - (2.13) 

where I. and h are the principal invariants of the strain and CIO and Co. are the Mooney

Rivlin material constants. For a uniaxial extension where A2 = A3, the stress-strain 

equation for an incompressible Mooney-Rivlin material can be expressed as; 

- - - - - - - - - (2.14) 
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where (J is an engineering stress (ratio of force to undeformed cross-sectional area) and 

the extension ratios are dermed by 

Then, 

1 
1..2 = 1..3 = V. 

A{2 

2 
I1 = '),} +-

1 Al 

1 
12 = 21..1 + A~ 

- - - - - - - - - (2.15) 

- - - - - - - - - (2.16) 

- - - -- - - -- (2.17) 

In both cases of incompressible and compressible forms, the initial shear modulus (0) is 

associated with the material constants by the following equation; 

o = 2 ( CIO + COl) - - - - - - - - - (2.18) 

For incompressible material, the initial Young's modulus (E) can be represented by 

E = 30 = 6 ( CIO + COl) -- - --- - - - (2.19) 

but for compressible material, E is represented as; 

9KO 
E = (3K + 0) - - - - - - - - - (2.20) 

where K is the initial bulk modulus. 

In general, both CIO and all can be approximately checked when the initial value of 0 is 

known. Nevertheless, Medri(18) pointed out that this model is usually not accurate over 

large ranges of strains and should be used only for qualitative analyses. Furthermore, 

Tschogel(19) proposed that the shortcomings of the Mooney-Rivlin equation to 

characterise the behaviour of real rubbers arise from not taking enough terms in 

truncating Equation (2.4). 

• Morman and Pan material model 

Similar to the Mooney-Rivlin material model, a five parameter model has been 

introduced by Morman and Pan(IO) for incompressible hyperelastic materials. This model 
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overcomes the disadvantage of the Mooney-Rivlin material model by containing higher 

order terms, widely known as third-order deformation approximations. The expression of 

this model is 

W = CIO (11 - 3) + COl (Iz - 3) + CII (11 - 3) (Iz - 3) + 

- - - - - - - - - (2.21) 

where all the five constants (CIO, Co .. CII , Czo and C30) are characteristic parameters of 

the material which can be numerically determined from uniaxial and multiaxial stress 

relaxation data. (20) 

• Gent and Thomas material model 

This model has been proposed by Gent and Thomas. (21) According to this model, the 

strain energy density function is expressed in the form; 

w = Cl (11 - 3) + C21n (1213) - - - - - - - - - (2.22) 

where 11 = Ah M + (1..11..2)"2 - - - - - - - - - (2.23) 

Iz = 1..\2 + At + (AIA2i - - - - - - - - - (2.24) 

They also pointed out that this form has significant advantage over the two term 

Mooney-Rivlin form, particularly in representing uniaxial compression behaviour 

(equivalent to equibiaxial tension). 

• Cubic strain energy density function model 

A newly developed form of the strain energy density has been proposed by Yeoh. (22.23) 

This model presumes that ~w is extremely small compared to ~w, so that it can be 
ah aL 

I ed . h . B . aw adi f neg ect Wlt out any senous error. y equatmg ;-- to zero, the le ng terms 0 
uh 

Rivlin's strain energy density function then become; 

W = C IO (11 - 3) + C20 (11 - 3)2 + C30 (11 - 3)3 - - - - - - - - - (2.25) 
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As can be seen, the strain energy density is now a cubic function of (11 - 3). A 

comparison with experimental data showed that this model is capable of predicting 

multiaxial data with high accuracy. 

• Ogden material model 

Ogden(12,24) proposed a separability of the dependence of the strain energy function on 

the principal extension ratios (A.I. A.2 and A.3) with particular reference to the Valanis

Landel hypothesis(2S), as expressed in the form; 

- - - - - - - - - (2.26) 

For incompressible materials, the strain energy density function can be expressed as; 

3 m C· b 
W = L L _J (Ail - 1 ) 

i=l j=l bj 
- - - - - - - - - (2.27) 

where cJ and bJ are the material coefficients and A.i are the three principal extension ratios 

in a certain direction (i = 1,2,3). Other forms of strain energy density function proposed 

by Ogden are available in Reference (24) for further study. 

This material model can be used to determine the mechanical response of hyperelastic 

materials with high accuracy for large ranges of deformation, if the coefficients Cj and bj 

are chosen precisely. The assessment of such coefficients can be performed in several 

ways depending on the degree of accuracy required. These coefficients can be estimated 

from the Ogden formulations which are dependent on the deformation modes as follows; 

i) for simple uniaxial tension 

(j = L CJ A.brl - ;\(1+05b,) ] 
, - - - - - - - - - (2.28) 

where (j is the engineering stress and A. is the uniaxial extension ratio. 
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ii) for pure shear 

(J = ~ e
j
[ Ab,-l _ X(l+b,l ] - - - - - - - - - (2.29) 

J 

ill) for equibiaxial defonnation 

(J = ~ eX Ab,-l _ X(I+2b,l ] - - - - - - - - - (2.30) 
J 

In this model, the initial shear modulus (G) is expressed as half of the sum of the product 

of coefficients Cj and bj , i.e., for three sets of coefficients, 

G = 0.5 ( c1bl + C2~ + C3b:. ) - - - - - - - - - (2.31) 

It is also observed that, for incompressible materials, a two term Ogden model will be 

equivalent to a Mooney-Rivlin model, if the model is set as follows: b l = 2, b:. = -2, 

while, (CI)Ogd", = 2 (CIO)Moonoy and (C2)Ogd", = -2(COI)Mooney. 

• Other material models 

In addition to the above mentioned models, a large number of other material models have 

also been proposed. These include the Peng material model and the Peng-Landel material 

model. The latter is not only the simplest model, but also gives excellent results for a 

material with a linear stress-strain curve obtained by a uniaxial tensile test. Like Ogden 

material model, both Peng and Peng-Landel models are based on the assumption that the 

strain energy density is a separable function of the principal extension ratios and are 

available commerciaJ1y only in the TEXPAC finite element programme. More detailed 

information of these two models can be found in References(13) and (14). 

In the case of incompressible materials, Oden(26) proposed a Lagrange multiplier method 

which can be mathematically expressed as; 

P 
W = W(Ihh) + "2 (h - 1) - - - - - - - - - (2.32) 
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where P is the Lagrange multiplier of the constraints, represented by hydrostatic 

pressure. 

While all the models presume isothermal conditions, Nicholson and Nelson(2) attempted 

to account for the temperature effects. They proposed a strain energy density function 

based on a simple extension of the Mooney-Rivlin model as; 

W(T) = Cl (11 - 3) + C2 (h - 3) + pTOC3 (Tffo) In (Tffo) 

+2C4 (T-To) (11- 3) -- -- - - - - - (2.33) 

Some material models have also been developed particularly for nearly incompressible 

materials. In this case, the initial bulk modulus must be included. A three parameter 

model developed by Fried and Johnson(27) for compressible materials can be expressed 

as; 

- - - - - - - - - (2.34) 

where Cl and C2 are essentially the Mooney-RivIin coefficients, while C3 is a bulk 

modulus, the change in hydrostatic pressure required to affect a unit change in volume. 

For the hyperelastic material model proposed by George, Haduch and Jordan(28), the 

Mooney-Rivlin model can be expressed as follow; 

W = Cl (11 - 3) + Cdh - 3) + C3 (Il2 - I) + C4 (h - li - - - - - - - - - (2.35) 

I 
where C3 = -Cl + C2 - - - - - - - - - (2.36) 

2 

I 
~ = 2 [Cl (5v - 2) + C2 (I Iv - 5) 1 / (1 - 2v) - - - - - - - - - (2.37) 

Again, Cl and C2 are the Mooney-RivIin coefficients and v is the Poisson's ratio, ranging 

from 0.499 to 0.49999. In accordance with this range of Poisson's ratio, Finney(29) 

carried out the tests to detenmne shear modulus for elastomers and revealed that 
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Poisson's ratio of these materials is actually between 0.499 and 0.4999. In this published 

work, an advanced FE programme was introduced to overcome the compressible 

problem by incorporating the so-called Herrmann' s modified variational principle. 

However, this is beyond the scope of this project, so it is not described herein. 

2.2.3 Commercial software for FEA in elastomer design 

FEA is a numerical technique for which the use of computer hardware and software is 

inevitably required. In general, the selection of suitable software package must be taken 

into consideration by the designer. There is no general purpose software that can be used 

for all kind of problems. Therefore, it is useful to give here some commercially marketed 

finite element software (or sometimes called finite element codes) that can be used to 

analyse elastomeric components. (9) 

• ABAQUS by Hibbitt, Karlsson, and Sorensen, Providence, RI. 

• ADINA by Adina Engineering, Watertown, MA. 

• MARC By Marc Analysis Research Corporation, Palo Alto, CA. 

• NISA by Engineering Mechanics Research Corporation. 

• ANSYS by ANSYS, Inc., Houston, PA. 

Material data, covering the ranges of stress and strain anticipated in the subsequent 

analyses, is usually needed for most FE programmes. The efficiency of such programmes 

is related directly to the accuracy of this input material data. In general, when the test 

data input is specified, the programme starts performing some type of curve fitting 

routine, normally a regression based on the least squares technique, to estimate the 

material model coefficient values. The material model and its previously obtained 

coefficients are then used by the FE programme to interpolate and extrapolate stress

strain values for other deformation modes throughout the solution. Nevertheless, some 

FE programmes permit the use of relevant coefficients as direct input data if these 
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coefficients have been detennined by independent means, as illustrated in the following 

section. 

2.2.4 Experimental determination of elastic behaviour of rubber compounds 

As previously mentioned, to use FEA, the elastic material constants must be determined. 

In this section, a review of experimental procedures for characterisation of the material 

constants for the most two important models: Mooney-Rivlin and Ogden models is 

presented. In addition, a general approach for determination of strain energy density 

functions is also given. 

2.2.4.1 For Mooney-Rivlin material model 

For isotropic and incompressible material, the Mooney-Rivlin strain energy density 

function of can be expressed as; 

w = C IO (11 - 3) + COl (h - 3) - - - - - - - - - (2.38) 

For a special case of uniaxial tension or compression, the stress-strain relation is given 

by; 

,.,( aW 1 aw J 
= 1. all + A. all - - - - - - - - - (2.39) 

where CJ is the Cauchy or engineering stress. 

For simple shear, the stress-strain relation becomes 

1: ,.,( aw aw J 
-:; = 1. all + all - - - - - - - - - (2.40) 

where 1: is the shear stress and 'Y is the shear strain which is given in the form of the 

invariant 11 by Y = (11 - 3). 
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For a Mooney-Rivlin material, the partial derivatives ~w and ~w represent CIO and Col, 
a 11 a 12 

respectively, so that the Equations (2.39) and (2.40) become 

2(A~A-2) = (CIO + ~COI) - - - - - - - - - (2.41) 

- - - - - - - - - (2.42) 

In the case of simple tension, if ( a) ( A.I - ')..:1 rl is plotted against ')..-l, the resulting 
2 

plot will yield a straight line with the slope of Col and the interception of the vertical axis 

at 'A:l = 1 is (CIO + Col). A typical Mooney-Rivlin material plot for a simple tension is 

given as an example in Figure 2.6. 

o. ',-_________ -, 

slope = Col . 

1/ A. 

Figure 2.6 Mooney-Rivlin plot(lI) 

Figure 2.6 shows a good agreement between experimental data and Equation (2.41), 

apart from the marked upturn at large strain which is associated with the finite 

extensibility of the macromolecular network(3O) and crystallisation. (31) 

Since the Mooney-Rivlin form is derived from the linear relation between stress and 

strain, this form remains valid only from small to moderate deformation (say, less than 
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100% strain). Rivlin and Saunders(3l) pointed out that the Mooney-Rivlin material 

constants obtained by fitting a line to tensile data are not appropriate for predicting 

behaviour of rubber in other deformation modes. In spite of the foregoing disadvantages, 

the Mooney-Rivlin model is still favoured by many workers because it is simple and 

easily adaptable to routine use, even though some precision may be sacrificed. 

2.2.4.2 Ogden material model 

The Ogden material model represents the separability of the dependence of the strain 

energy density function on At. A2 and A3. For incompressible materials, the strain energy 

density function can be expressed as; 

3 m C, b 
W = L L _J ("'ii - 1 ) 

i=! j=! bj 
- - - - - - - - - (2.43) 

where Cj and bj are the material coefficients and A; are the three principal extension ratios 

(i = 1. 2, 3). The coefficients required for FE programme can be developed from either 

one or combination of these methods; a simple tension, pure shear and an equibiaxial 

tension. The Ogden formulations are given in the Equations (2.44), (2.45) and (2.46) for 

a simple tension, pure shear and equibiaxial tension modes, respectively. 

cr = L eX Abr ! - X(!+05b))] ---------(2.44) 
) 

cr = L eX Abr ! _ X(!+b)) ] 
J 

cr = L eX Abr ! _ ]."(!+2b)) ] 
J 

- - - - - - - - - (2.45) 

- - - - - - - - - (2.46) 

where cr is the engineering stress and A is the principal extension ratio. 

The number of coefficients required to fit the curve depends on the amount of accuracy 

desired. In general applications, three sets of coefficients are found to be sufficient to fit 

the data for most highly elastic rubber vulcanisates. Finney and Kumar(ll) presented a 

concept and methodology to develop three sets of Ogden coefficients as follows. 
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Generally, the problem seems to demand a nonlinear regression analysis, however, with 

careful selection of the initial values of the three sets of coefficients, a simple least 

squares technique together with linear iterations on bj can be applied to characterise the 

values of Ogden coefficients. 

By considering three sets of coefficients, the above three equations can be written in the 

following form; 

- - - - - - - - - (2.47) 

where Kh K2 and K3 are the quantities shown in parentheses in Equations (2.44) to 

(2.46). If N data points (Le., er;, A;, i = I,N) are collected from experiment, the above 

equation can be written in the matrix form as; 

(er) = [K] (c) - - - - - - - - - (2.48) 
Nxl Nx3 3xl 

The error (e) in the calculated and the experimental values of (er) can be expressed as; 

(e) = (er) - [K] (c) - - - - - - - - - (2.49) 

From the above equation, the least squares technique can be derived by minimising the 

error or [(er; - KiC)2] with respect to (Cj, j = 1,3), or in matrix notation, by minimising 

«( er) - [K]( C))T «( er) - [K]( c)) with respect to (c). By using calculus, 

or 

or 

!!... ( (er) - [K](c) Y ( (a) - [K](c)) = 0 
de 

[K]T[K] (c) = [K]T(cr) 

(c) = ([K]T[K])"I [K]T(cr) - - - - - - - - - (2.50) 

From Equation (2.50), the coefficients Ch C2 and C3 can be calculated from particular 

values of bI. ~ and hJ. 

The procedure to calculate the Ogden coefficients based on the tensile stress-strain data 

is summarised as follows. 
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1. Run a uniaxial tension test and plot a curve for a and A.. 

2. Extract N sets of a and A. from the curve (N should be sufficiently large enough to 

represent the whole curve). Preferably select (a,A.) set at an interval of A. = 0.1. 

3. Assuming that the data fit Equation (2.44), then, 

Oanal = Cl [:>..",.1 _ X(I+05b,l] + c
2 

[A.b,.1 _ X(I+o5b,l] 

+ c3 [A.b,.1 - X(I+05b,l] - - - - - - - - - (2.51) 

4. Let K., K2 and K3 be the quantities in the square parentheses, respectively. Select the 

initial values ofb., ~ and ~ as 0.1,1.0 and -0.1, respectively and calculate K., K2 and 

K3 for all the N number of points, giving matrix [K] of size Nx3. 

5. Calculate c., C2 and C3 by using the following equation; 

- - - - - - - - - (2.52) 

6. Based on Equation (2.51), the values of c., C2 and C3 can be used to calculate a .... for 

all N data points. Then calculate the sum of the square of the error (aM" - aexp), 

designated by SSE and compare it with the SSE calculated in the previous iteration. 

Store new SSE and the corresponding values of b., ~, ~, c., C2 and C3, if the new SSE is 

found smaller than the previous one. 

7. Vary b., ~ and ~ at 0.1, 1.0 and -0.1 interval respectively and repeat steps 3 to 6 

above; the coefficients b., ~, ~, Cl, C2 and C3 corresponding to the least SSE over 20 

iterations would give sufficiently close results to the experimental data. 

2.2.4.3 General approach for determination of strain energy density function 

Apart from the Mooney-Rivlin and Ogden models, attempts to characterise elastic 

behaviour of rubber have been successfully conducted by many workers. For example, 

Fmney and Kumar(ll) again proposed a practical procedure to develop both Peng and 

Peng-Landel material constants by using the results from a simple tension test, combined 

with either strip biaxial or an equibiaxial test. 
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Obata et al.(32) introduced a new approach to evaluate the strain energy density function 

empirically by using a specially designed apparatus for strip biaxial testing. For 

homogeneous biaxial deformation, the engineering stress 0"1 and o"z can be expressed in 

terms of; 

2( z 1 )(aw zaw) 
cri = ~ ~ - A;~ all + ~ aIz - - - - - - - - - (2.53) 

2 ( z 1 )(aw z aw) crz = ~ ~ - A;~ all + 1.; aIz - - - - - - - - - (2.54) 

~w and ~w can be calculated by substituting the data sets of 0"10 O"Z, AI and AZ 
all aI2 

Then 

obtained through biaxial experiments into the above equations. Based on this approach, 

Seki et al.(33) found that aW and aWare not constant but vary with strain invariants, 
all aI2 

particularly in the small strain region. Consequently, a least squares method was used to 

find the relation between aaW 
and 10, as shown in the following equation; 

I; 

= ai + hi ( Ii - 3 ) + Ci ( Ii - 3 } + di exp rei ( Ii - 3 )] 

- - - - - - - - - (2.55) 

A different approach was also introduced by Gregory.(34) Based on experimental data, he 

aw. aw 
found that -a IS much larger than -a ,and therefore, the latter can be neglected 

L h 
without significant error for engineering applications, especially for filled rubbers. 

According to this approach, Yeoh(23) proposed a strain energy density function expressed 

solely in terms of strain invariant Ih known as the cubic strain energy density function 

(See Equation (2.25)). With reference to this form of energy density function, the stress

strain relation for uniaxial tension (or compression) is given by; 

- - - - - - - - - (2.56) 
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while the stress-strain relation in simple shear is 

t 2 
= 2 C IO + 4 C20 (I1 - 3) + 6 C30 (11 - 3) - - - - - - - - - (2.57) 

This approach was also supported by Davies et aZYS
) They characterised the behaviour 

of filled rubber and demonstrated that the strain energy density function can be 

determined from stress-strain data in any simple deformation mode, i.e., shear or tension, 

without the necessity of relatively difficult biaxial measurement and this function should 

then be applicable to other deformation modes. 

2.2.5 A survey of published work in the application of FEA to rubber 

As already mentioned, FEA has become the most powerful technique in the design of 

engineering components. In recent years, it has been used widely in many fields, i.e., 

Engineering, Physics and Applied Mathematics. Many analysts have adopted FEA to use 

as a tool in the design of elastomeric components. As a consequence of material and 

geometric (in large deformation) nonlinearities as well as incompressible behaviour of 

rubbers, the application of FEA to rubber design requires more effort, in comparison 

with other fields of applications. The validity and efficiency of the FE technique have 

been determined and published by many authors. Meanwhile, several FE programmes 

have been particularly developed in order to get the best prediction. It is impossible to 

exhibit all the applications of FEA in the rubber analysis and, therefore, a partial list of 

published work is given below, many of which involve comparison with experimental 

data. 

• Fukahori and Seki(36,37) analysed stress and strain distribution around spherical holes 

and around rigid spherical particles by using FEA for small to very large 

deformation. The strain energy function was measured through strip biaxial (pure 

shear) testing. The numerical predictions were compared to the classical elasticity 

solutions. The results clearly showed that, in both cases, the computed stress and 

strain distributions agreed well with the classical theoretical ones at small strain. At 
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large strain, however, deviations between the numerical prediction and classical 

theoretical results were found. These tendencies are more pronounced in carbon 

black filled elastomers than the unfilled ones. They concluded that the deviations 

were attributed to geometric and material nonlinearities. In addition, the 

reinforcement of elastomers with rigid spherical particles was also analysed. (31) A 

three dimensional simulation was used as a model because it allowed for better 

natural boundary conditions, despite the difficulty to obtain the fine meshes. The 

computed results based on the strain energy density function of the unfilled rubber 

vulcanisates provided a good agreement with the Guth and Mooney equations at low 

filler volume fraction. In contrast, for carbon black filled elastomers, the 

computations yielded a good correlation with the experiments when a 20% increase 

in effective diameter of the filler was used (considering the effect of bound rubber). 

• Morman and Pan(9.10) used the ABAQUS programme to analyse and compare the 

predicted results with the closed-form solutions. Both simple and complicated 

components, for instance, bonded cylinder, idealised cylindrical rubber bushing, 

tearing energy specimen, silenbloc bushing and shear-compression engine mount, 

were analysed. Comparisons revealed that closed-form solutions were valid only for 

simple components and within infinitesimal strains. They are ineffective for 

complicated components or for a large range of deformation, for which the use of 

FEA is effective in this case. 

• Chang and Sun(38) presented a nonlinear elastic analysis of the hardness test by using 

both nonlinear fmite element analysis theories and closed-form solutions (the Hertz 

contact solution). The results showed that the elastic Hertz contact solution agreed 

well with FEA, therefore, they concluded that the linearly elastic Hertz contact 

solution is a reasonably accurate model. 
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• Dalgarno et al.(39) used the ABAQUS programme to analyse synchronous belt tooth 

failure. Good correlation between results obtained from FEA and those from 

experiment was demonstrated. 

• Seld et a1Y3) proposed a numerical method for the stress-strain analysis of multilayer 

elastomeric bearing under large deformation. A new apparatus was applied to 

determine the strain energy density function empirically, called as the strip-biaxial 

testing machine. A comparison of the results obtained from the experiment and those 

obtained from the developed numerical method was made and found to be 

remarkably good over a wide range of deformation. 

• Takayarna et al. (40) performed an analysis of a laminated rubber bearing using FEA 

based on a strain energy density function which was determined through biaxial 

elongation tests. The computed load-deformation relationship agreed quite well with 

the experimental results. By using the simulated stress and strain distributions, a 

mechanism for supporting a vertical load during horizontal deformation was 

proposed. 

• Nicholson and Nelson(2) applied the ABAQUS programme, based on the Mooney

Rivlin model, to analyse automotive exhaust hangers. The material data were derived 

from a uniaxial tension test. A least squares technique was used by the ABAQUS 

programme to fit the collected data in order to determine the Mooney-Rivlin material 

constants. After gaining confidence with the estimated constants, the exhaust hanger 

was modelled and analysed. The deformation mode and stress-strain relation were 

studied. 

• Lindley'41) described the application of FEA to the deformation of rubber sheets. The 

sheet problem was considered as plane stress behaviour in which one of the principal 

stresses was zero, so that the other principal stresses could be evaluated. In addition, 
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the plane strain analysis of rubber was also carried out. (42) A form of strain energy 

density function which enabled solutions to be obtained at very high strains (beyond 

those of linear classical elasticity theory), was also introduced in the published work. 

• Tabaddor(43) conducted an experiment using FEA, based on the Mooney-Rivlin 

model (ADINA code), to analyse the problems of a cube under symmetrical loading 

and a sheet under symmetrical biaxial loads in the states of plane stress and plane 

strain. The stability of the solutions was evaluated analytically. 

• Finney(29) illustrated the benefits of FEA in the design of elastomeric components and 

applied FEA to: 

i) determine shrinkage or expansion when elastomeric parts are subjected to 

a thermal load; 

ii) determine the shape of edge contour to optimise particular properties, and 

iii) design a helicopter rotor thrust bearing in order to obtain a lower uniform 

value of shear strain when subjected to a real working condition. 

• Medri et al.(44) applied a new finite element programme, particularly developed for 

large hyperelastic deformations, to investigate the stress-strain field in fluid seals. 

Experiments were performed to check the validity of this programme. The numerical 

data were found in good agreement with the experimental data. 

• Cho et al.(45) used FEA (MARC code) to approximate the local stress of the rubber 

blocks with thin glass rods in their centres when subjected to tensile stress. The aim 

of this work was to get a better understanding of internal fracture of an elastomer 

containing a rigid inclusion. 
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The above published work only represents some examples of the application of FEA in 

rubber field. The importance ofFEA in rubber design is being significantly increased due 

to superior advantages of this technique when compared to either cut-and-try process or 

closed-form solutions. 

2.3 Dynamic properties of rubbers 

Rubber is a very versatile material which has been widely used in many applications. The 

successful use of rubber components arises from its flexibility, cushioning and damping 

properties to accommodate unwanted movement. For many engineering purposes, 

rubber is normally used for applications in which it undergoes rapid dynamic 

deformation. As a consequence, the use of rubber as an engineering material inevitably 

requires a basic knowledge of its dynamic properties. It is therefore of great importance 

to review the dynamic properties of rubber in this section. 

2.3.1 Terminology of dynamic properties 

Dynamic mechanical properties are generally defined as responses to periodically varying 

strains or stresses. (46.41) When a stress is applied to rubber, the strain does not respond 

instantaneously to the applied stress. In fact, it lags slightly behind the stress and this lag 

can be of practical importance in certain circumstances because it causes heat generation 

in the component. For small deformations in simple extension where a linear stress-strain 

relation exists, if stress and strain variations are sinusoidal (Figure 2.7), the stress and 

strain can be represented as; 

a(t) = 0"0 sin (ox + 0) 

€(,) = £0 sin OX 

- - - - - - - - - (2.58) 

- - - - - - - - - (2.59) 

where ao and £0 are respectively the stress and strain amplitudes, 0) is the angular 

frequency (defined by 21t times frequency in cycles per second), t is the time and 0 is the 

lag angle or phase angle between the sinusoidal stress and strain. 
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The total stress can be decomposed into two components; (i) an elastic stress component 

which varies strictly in-phase with the strain and (ii) a viscous component which is 900 

out-of-phase with the strain. The latter component is 900 in advance of strain because the 

viscous resistance depends mainly on the defonnation rate. The out-of-phase stress 

therefore reaches a maximum when the strain rate is increasing most rapidly, which takes 

place when the strain itself is zero. 

TIME (phlle angle) _ 

Figure 2.7 Sinusoidal stress and strain cycles 

The total stress can then be expressed mathematically as 

(J = Eo (E'sin OX + En cos ox) - - - - - - - - - (2.60) 

where E' is the storage or elastic modulus defined as a measure of elastic energy stored 

and recovered during the cyclic defonnation and En is the loss modulus defined as a 

measure of energy dissipated as heat Both E' and En can be represented by 

E' = in-phase stress amplitude/strain amplitude 

En = out-of-phase stress amplitude/strain amplitude 

A complex modulus E* can then be represented in tenns of a vector combination of the 

two moduli (See Figure 2.8) as 

E* = E' + i En - - - - - - - - - (2.61) 

where i denotes a component 900 out-of-phase. 
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E" 

E' 
Figure 2.8 Graphical relation between in-phase, out-of-phase and complex 

moduli 

The absolute value of the complex modulus then becomes 

I E* I = (E,)2 + (E,,)2 } 1/2 - - - - - - - - - (2.62) 

The ratio of E" lE' is tan S, generally known as "loss factor", "loss tangent" or 

"hysteresis factor". This hysteresis factor is quite important in the practical use of rubber 

in engineering application as it indicates the amount of energy input to be lost into heat 

Alternatively, the dynamic properties can be expressed in terms of the compliance which 

is defmed as follows. 

Complex compliance C* = llE* 

Storage compliance C' = E'/(E*)2 

Loss compliance CIf = E"/(E*)2 

For small deformations in simple shear, the corresponding shear moduli G' and G" are 

defined in a manner analogous to the ratio of the in-phase and out-of-phase shear 

stresses to the practical shear strain. A complex shear modulus (0*) is also represented 

by a similar equation. Likewise, the letter J is used instead of C for the compliance. 

Under small deformations, rubbers are considered as linearly elastic materials. Since they 

possess an extremely high bulk modulus compared to shear modulus, they are always 

regarded as relatively incompressible materials with the Poisson's ratio approaching 0.5 

and the Young's modulus (E') is approximately three times higher than the shear 

modulus (G'). 
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2.3.2 Factors controlling the dynamic properties 

Basically, there are several factors controlling the dynamic properties of rubber 

wIcanisate such as compounding ingredients, processing factors and environmental 

factors. Some of these factors are given in details below. 

2.3.2.1 Effects of temperature and frequency and their interaction 

The properties of rubber compounds are strongly dependent on both temperature and 

frequency (or strain rate for static deformation). This is clearly seen from the fact that 

rubbers progressively stiffen with either decreasing temperature or increasing frequency. 

It is understandable that a decrease in temperature causes a considerable reduction of 

thermal energy which is required for thermal motions of rubber molecules. Since rubber 

deformation depends greatly on these thermal motions, the response of these molecules 

to the external stress becomes more sluggish and the rubber becomes harder, or in other 

words, the modulus is increased. If the temperature continues to decrease until it reaches 

a certain value where no molecular motion can take place, the rubber will behave like a 

glass in which deformation completely depends on inter· atomic bonds. In the glassy 

state, very high stress is required for rubber to deform (very high modulus). 

A similar response is also obtained with increasing frequency of deformation. As rubber 

molecules require time to response or deform correspondingly to the applied stress, 

increasing frequency means that less time is available for deformation to occur, therefore, 

rubber progressively stiffens with increasing frequency. 

Based on changes in properties with frequency, the characteristics of unyulcanised 

rubber can be divided roughly into four different zones as shown in Figure 2.9.(46,48) In 

the ''flow region" where very low frequency is applied, the rubber molecules have 

enough time to snake through their entanglement constraints and completely rearrange 

their configurations. In the ''rubbery or plateau zone", the elastic modulus changes very 
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little with frequency and the loss modulus passes through a minimum. This behaviour is 

. not well understood, however, it is usually interpreted by a concept of entanglement 

coupling.(46) 

According to this concept, the entangled macromolecules have a potential to form a 

network in which they act in some respects as if they were tightly coupled at 

widely separated points. Within this zone, there is plenty of time for the network strands 
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Figure 2.9 Dynamic properties of unvuicanised NR over a wide frequency range 

at 25°C<48) 

between coupling points to rearrange their configurations and store elastic energy 

through an entropy change but there is not enough time for much more complicated 

molecular rearrangements such as snaking motions through the entanglements to occur. 

At higher frequency, the rubber characteristic is passing the rubbery zone into the 

"transition or semi-rigid zone" where the deformation time becomes too short to allow 

all the feasible configurational changes of a strand located between two entanglements. 

Then the strain corresponding to a given stress is less, and the modulus increases with 
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frequency. A lag between changing stress and changing strain results in the energy loss 

or energy dissipation and, therefore, both elastic and loss moduli increase with 

frequency, while tan 0 passes through a maximum In the "glassy zone" where the 

deformation time is not long enough to pennit any conformational rearrangements, the 

rubber becomes a hard glass-like solid. 

10 

~e 9 
-l:. 
c 
~ 
~ 

• : e 
" 9 

IQ 

"e 
? 
~ 

" .. :,9 
C> 

9 
8 

7 

7 

6 

~ 

--er' 
. ------TANJ' 

;>5 

1·5 

'" ~ 
1·0 

OS 

A--.,-_ 

-, -2 2 4 6 e 10 12 14 
LOe (FREQUENCY, cp.) 

B 

A 

o 2 4 6 
. LeG (FREQUENCY, <p.) 

8 le 12 14 

Figure 2.1 0 Comparisons of dynamic properties between; A, unvulcanised; B, 

soft vulcanisate without filler; C, CB-filled vulcanisate(48) 
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From the qualitative standpoint, the above pattem is also applicable to the behaviour of 

vulcanised elastomers (both filled and unfilled ones), as shown in Figures 2.10. 

Nevertheless, in vulcanised rubber, chemical crosslinks introduce the three-dimensional 

network structure which prevents a pennanent disentanglement of rubber molecules. For 

this reason, the flow region should not exist in the vulcanised rubbers. 

Up to this point, it is important to note that rubbers are most commonly used in the 

rubber zone where the magnitude of the elastic modulus is in its flat region and the loss 

(measured by tan I) is at minimum. 

As previously explained, the effects of increasing frequency and temperature seem to be 

inversely interrelated. The time-temperature superposition principle holds for various 

dynamic parameters, so that, a change in temperature from T to To would give identical 

effect to a change in frequency from 0) to onT, where aT is a shift factor. This shift factor 

is given by the semi-empirical WLF equation as; 

-16.2 (T-Tg) 
- - - - - - - - - ( 2.63) 

55.6 + (T - Tg) 

where Tg is the glass transition temperature. However, the equation is valid only for 

unfilled compounds and in a limited zone, say from the glass transition temperature (Tg) 

to about Tg + 1000C. (48.49) 

2.3.2.2 Effects of strain amplitude and carbon black 

Many workers(47.5o.sl) have found that the dynamic properties of gum vulcanisates are 

independent of strain amplitude. However, the presence of carbon black (CB), in filled 

vulcanisates, makes the strain amplitude dependence of the dynamic properties become 

very pronounced. Because of the interrelation involved, the effects of strain amplitude 
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and carbon black on dynamic properties of CB-filled vulcanisates will be reviewed 

. simultaneously. 

(i) Effect on elastic modulus 

The effect of strain amplitude on elastic modulus of CB-filled rubbers has been 

investigated extensively. During the 1960's, work in this field was dominated by 

Payne(S0,s1,s2) who proposed the mechanism of amplitude effect on dynamic properties of 

filled vulcanisates. His work was done on both NR and butyl vulcanisates. Experimental 

results showed that the addition of carbon black considerably increases the elastic 

modulus of the vulcanisates, especially at very high loading and very low strain 

amplitude, as can be seen in Figure 2.11. 
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Fjgure 2.11 Strain amplitude dependence of G' (HR with up to 23.2% volume of 

N330 at ambient temperature, 0.1 HziSO
) 

47 



At very low strain, the elastic modulus remains constant (at Go') up to a certain strain 

amplitude. With increasing strain amplitude, the elastic modulus starts decreasing up to a 

relatively high strain amplitude where the elastic modulus levels off at Gc.'. The reduction 

of elastic modulus with strain amplitude is not pronounced in gum and low CB-loading 

vulcanisates but it is very dominant in vulcanisates with high loading of carbon black. 

This effect is a consequence of the fonnation of carbon black structure (sometimes called 

secondary network) as it is evident that carbon black aggregates in an elastomeric matrix 

have a tendency to fonn networks, particularly at high loading giving rise to a secondary 

structure. Even though this structure is not comparable to the continuous network, it has 

a significant effect on the properties of filled rubber at very low strain. With increasing 

strain amplitude, the structure is partly destroyed, resulting in the reduction of elastic 

modulus until the structure is completely destroyed where the elastic modulus becomes 

constant. The difference in modulus (6.G' = Go' - Gc.') is therefore attributable to 

interaggregate association at low amplitude. It has been shown by many published 

work(47
.s3,54) that the effect of carbon black on elastic modulus at high strain (G .. ,) 

depends on structure of carbon black and does not depend on surface area of black. On 

the other hand, Medalia(sS) and Payne(S6,s7) revealed that l1G' is a function of surface area 

but independent of structure of black. By definition, Go' = Gc.' + l1G', thus Go' should be 

a function of structure of carbon black which governs Gc.', surface area and other carbon 

black properties as well as the degree of dispersion which govern 6.G'. In addition, Payne 

et al.(SI) also found that, at high strain where the carbon black network is completely 

broken down, the modulus of the filled vulcanisate is still higher than that of the 

corresponding gum vulcanisate. This difference has been considered as a hydrodynamic 

effect The principle of the hydrodynamic theory was ftrst originated by Einstein(S8) hased 

on the effect of a suspension of spherical particles on the viscosity of a liquid Then this 

theory was applied to explain the properties of rubber compounds by Smallwood(S9) and 

Guth.(6O) They proposed that the addition of carbon black increases the modulus of gum 

compound by the factor of X which is given by; 
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x = 1 + 2.5'1' + 14.1V - - - - - - - - - (2.~) 

where 'I' is the volume fraction of the spherical filler particles. 

Equation (2.~) is generally known as Guth and Gold equation and is valid only if the 

filler particles are spherical. Unfortunately, most carbon blacks depart considerably from 

spherical shape. Therefore, modification of Equation (2.~) was done by Medalia. (6\) He 

suggested that the volume fraction of filler, '1', must be replaced by the effective filler 

volume fraction, v; so that Equation (2.64) becomes 

X = 1 + 2.5 v + 14.1 v2 - - - - - - - - - (2.65) 

The effective filler volume fraction includes the rubber which is trapped within the 

indentations and void space of the carbon black aggregates and prevented from 

responding to the strain field of the surrounding elastomeric matrix. This rubber is called 

"occluded rubber" and it does not participate in any deformation process. 

(ii) Effect on loss tangent (tan Ii) and loss modulus 

Like elastic modulus, there is also a dependence of the loss tangent on amplitude, which 

is again more pronounced as the loading of carbon black is increased. (47) As can be seen 

from Figure 2.12, tan Ii is low at very low amplitude. With increasing strain amplitude, 

tan Ii rises to a maximum and then decreases somewhat. Obviously, an increase in carbon 

black loading affects the tan Ii considerably; the higher the loading of carbon black, the 

greater the value of tan Ii. (SO-52) 

In addition to carbon black loading, Medalia and co-workers(S3.62) also found that tan Ii is 

strongly dependent on the surface area but independent of the structure of carbon black. 

However, it should be realised that, since the structure of carbon black considerably 

affects the elastic modulus and E" = E' tan Ii, it also affects the loss modulus. The 
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vulcanisates(SO) 

dependence of loss modulus on strain amplitude is similar to that of loss tangent (See 

Figure 2.13). The loss modulus passes through a maximum as a function of strain 

amplitude. 

The effect of carbon black dispersion on tan 0 is also of great importance, as many 

authors(62-6S) have shown that tan 0 decreases with improVed carbon black dispersion. 

This is possibly due to the' reduction of carbon·carbon frictional losses as the dispersion 

is improved. In the same standpoint, an increase in rubber-carbon interaction, which can 

result in better dispersion during mixing process, also decreases the tan o. It is believed 

that improved dispersion on the micro-level, as the rubber-carbon interaction is 

increased, is attributable to (i) more successful separation of the carbon black aggregates 

from each other during mixing owing to the additional drag of the surface-bonded 

polymer molecules and (ii) prevention of reagglomeration of carbon black aggregates 

after mixing.(47) An increase in interaction between rubber and carbon black can be 

achieved by several techniques such as the addition of promoters or surface oxidation of 

carbon black, etc. (66) 

50 



• 

s 

...•. ?~ 
~~'-.-.--

• • 
I OQI. 0.1 

. boubt<z ~ S.tc~ln- :A.mpli,lud~ 
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vulcanisates(S2) 

2.3.2.3 Effect of crosslink density 

It is widely known that the modulus of rubber vulcanisate is proportional to the crosslink 

density. Payne et ar.sl) has found that an increase in the degree of crosslinking increases 

the elastic modulus of both gum and filled vulcanisates. On the contrary, tan () tends to 

decrease with increasing crosslink density. Similar results were also obtained by Meyer 

and Sommer(67) who found the reduction of tan 0 in CB-filled SBR vulcanisate as the 

amount of sulphur was increased up to a certain value before the tan () remained 

constant. 
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2.3.3 Hysteresis and heat generation 

As mentioned earlier, rubber is not a perfectly elastic material, as it is made-up from both 

elastic and viscous components. The viscous component gives rise to the phase 

difference (Ii) between stress and strain during dynamic deformation. This means that a 

part of the energy input during deformation is not recovered during the recovery part of 

the cycle. This irreversible part of energy is termed as "energy loss" or "hysteresis" 

which is the main source of heat generation in rubber component. 

2.3.3.1 Molecular aspects of hysteresis 

• Hysteresis in unfilled elastomers 

For unfilled elastomers, the viscous component which is responsible for hysteresis arises 

from friction of rubber molecules during the deformation. (49) This deformation involves 

dragging of rubber chains and chain segments within the rubber. If the molecular chains 

are forced into new locations more rapidly than the creation rate of vacant sites (holes) 

which takes place due to the thermal motion of the surrounding molecules, some of the 

mechanical energy input must be converted into thermal energy (heat) to promote 

random thermal motion of these molecules. The creation of vacant sites may be regarded 

as migration of holes constituting the free volume of the rubber. At lower temperatures, 

the vacant sites are created less rapidly giving rise to an increase in molecular friction 

and, hence, hysteresis. Increasing frequency of deformation also gives a similar effect as 

decreasing temperature. At adequately low temperature (or high frequency), the rubber 

characteristic approaches the glassy state where it becomes impossible for molecular 

motion to occur. In the transition zone hetween rubbery and glassy state, the hysteresis 

factor (tan Ii) increases to a maximum as the molecular motion becomes more difficult 

meaning that more thermal energy is needed to create the vacant sites. Then the 
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hysteresis factor starts falling again as the molecular motion is suppressed in the glassy 

zone. 

The effect of crosslinks is also of particular importance for molecular friction of rubber. 

Crosslinks and trapped entanglements, which are defined as entanglements that cannot be 

unravelled because each of the entangled subchains leads to crosslinks at both ends, 

impede the motion of molecular segments to which they are attached.(49) The higher the 

crosslink density, the lower the amount of dangling chain ends and of untrapped 

entanglements. Since friction is brought about by dragging of these species, higher 

crosslink density therefore causes lower friction and, hence, lower hysteresis . 

• Hysteresis in carbon black reinforced elastomers 

Apart from the internal friction of rubber matrix, in filled rubber compounds, reinforcing 

filler such as carbon black (CB) also plays a major contribution to hysteresis and heat 

generation. (47) Carbon black is normally in the form of aggregates of primary particles 

fused together. As previously mentioned, these carbon black aggregates in rubber matrix 

tend to form agglomerates, especially at high loading, leading to chain-like filler 

structures which are generally tenned "secondary network" or "carbon black 

network".(68) At low amplitude, there is little breakdown of interaggregate bonds, 

therefore, hysteresis is very low. However, when a rubber compound is stretched to a 

larger magnitude of strain, a continuous process of network breakdown and reformation 

takes place. (49,69) Increasing strain causes breakdown of interaggregate bonds, starting 

with the weakest bonds and progressing to the stmnger bonds. At the same time, as the 

rubber is distorted, the aggregates fonn new bonds at new positions, which are again 

ruptured and then reformed in other positions. The breakage and reformation of the 

interaggregate bonds is a hysteretic process which takes place consecutively during the 

deformation and causes a major share of the heat generation in filled compounds. At very 

high strain amplitudes where the carbon black network is broken down extensively, the 

reformation of network is very much slower than the cycle time, giving rise to the 
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reduction of hysteresis factor which represents the fraction of the mechanical energy 

input converted into heat. At high strain, the hysteresis is mostly dependent on molecular 

slippage. 

2.3.3.2 Mathematical aspects of hysteresis and heat generation 

When the dynamic stress is plotted against strain, for a single deformation cycle, the 

resulting plot is called hysteresis loop as shown in Figure 2.14. 

Sttess 

Strain 

Figure 2.14 Hysteresis loop in dynamic stress strain cycles 

If the stress and strain cycles are sinusoidal and the rubber behaviour is linear, the loop 

will be an ellipse. The slope of the ellipse's main axis (AC) represents the complex 

dynamic modulus (E *) while the area enclosed by the ellipse is the energy lost per cycle 

and per unit volume of rubber which can be expressed as; 

Em = 1t <ro £0 sin I) 

where cro = stress amplitude 

£0 = strain amplitude 

- - - - - - - - - (2.~) 
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Alternatively, the total energy loss for an actual piece of rubber can be obtained by 

replacing stress and strain amplitudes by the force and defonnation amplitudes, 

respectively. 

In addition to Equation (2.66), an expression of energy loss has been proposed in various 

ways; e.g.,(48.70) 

Damping factor = area of loop! area of triangle BU 

= 2lttanli 

Percentage damping = (area of loop! area ADIJGH) x 100 

= (112) It sin Ii X lOO! [1 + (114) It sin Ii) 

= (112) It sin Ii X lOO (if Ii is small) 

With reference to Figure 2.14, it should be noted that the area ADC is not the total 

energy input to the rubber during the deformation from point A to point C. This energy 

is represented by the area ACDEF. Therefore, the percentage damping is not the 

percentage of the energy input that is lost. To calculate the actual energy lost in one 

cycle (area of the loop), the percentage damping must be multiplied by the triangular 

area ADC (or more precisely area ADUGH) as represented in Equation (2.67). 

E Ico• = (112) It sin Ii (area ADC) - - - - - - - - - (2.67) 

As can be seen, Equation (2.67) is identical to Equation (2.66) as the area ADC is 

equivalent to (112) (20"0) (2eo). 

Since the energy loss is converted into heat and if the rate at which heat is dissipated 

away is not fast enough, this can cause a considerable temperature rise. This effect is 

obviously more pronounced in thick rubber components. Theoretically, if it is assumed 

that there are no heat losses from the component, the rate of temperature rise can be 

calculated by the following equation. (7\) 

~T = En" f _________ (2.68) 
~t c 
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where f = frequency 

t = time 

T = temperature 

and C = heat capacity per unit volume 

2.3.3.3 Practical aspects of hysteresis and energy loss 

In engineering design, several parameters should be taken into account in order to reduce 

the energy loss in the dynamic deformation. Some of these parameters are described 

below . 

• Effects of service conditions 

- Constant strain amplitude conditions 

From Equation (2.66), substitution of ao = E* f{) yields 

E b , = It E* f{)2 sin /) 

As E" = E* sin /), Equation (2.69) then becomes 

EIou = It E" f{)2 

- - - - - - - - - (2.69) 

- - - - - - - - - (2.70) 

Equation (2.70) shows that energy loss per cycle and per unit volume of rubber (E1ou) is 

directly proportional to the loss modulus (E") under the constant strain conditions. 

Meinecke and Taftaf12) proposed that E" is, as a good first approximation, independent 

of frequency and temperature range within which elastomers are norma11y used in 

technical applications. This implies that, under the constant strain conditions, the energy 

loss per cycle and per unit volume of rubber is proportional to the square of strain 

amplitude and independent of the frequency and temperature in this practical range as 

well. 
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- Constant stress amplitude conditions 

By substituting £0 = CIo/E*, Equation (2.66) becomes 

E .... = ltGo
2 sinll/E* 

Since the loss compliance can be defmed as C" = sin III E*, then 

E.... = 1t 002 C" 

- - - - - - - - - (2.71) 

- - - - - - - - - (2.72) 

Therefore, under this service condition, hysteresis is proportional to the loss compliance. 

- Constant energy input conditions 

As can be clearly seen from Equation (2.66), if the energy input (CJo£o) is kept constant, 

the energy loss per cycle and per unit volume of rubber is proportional to tan 11 . 

• Effect of carbon black loading 

An addition of carbon black into rubber matrix has a marked effect on the energy loss 

due to two main reasons. The first one is attributed to the effect of filler networking as 

previously described. Another reason is attributable to the effect of strain amplification 

(or hydrodynamic effect).(73.74) As the modulus of carbon black is very high compared to 

that of rubber so that it can be considered as an inextensible filler, the rubber matrix in 

CB-filled compound has to deform to a larger degree than the macroscopic strain 

applied. Based on the hydrodynamic theory, the actual strain in elastomeric matrix 

should be higher than the one applied macroscopically by a factor X which is given by 

X = 1 + 2.5 Y + 14.1 y2 - - - - - - - - - (2.73) 

Where v is the effective volume fraction of fIller. 

On the basis of Equation (2.70), if macroscopic strain is kept constant, the addition of 

carbon black should increase the energy loss with the square of the strain amplification 

factor, provided that the presence of carbon black does not change the energy dissipation 
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process inside the e1astomeric matrix. In the meantime, the volume of eIastomeric matrix 

subject to hysteretic loss is reduced by the amount of occluded rubber. Consequently, it 

might be thought to cause a reduction in the energy loss per cycle per unit volume. 

However, Meinecke(7S) has shown that this effect should not be taken into account. 

Moreover, he also found that the effect of carbon black loading on energy loss is 

insignificant if the rubber is subjected to constant stress amplitude conditions. This is a 

consequence of the enhanced modulus which results in a reduction of macroscopic strain 

by the factor of X. In the meantime, the local microscopic strain in the elastomeric matrix 

is increased by the same amount. Therefore, the effect of strain amplification is 

counterbalanced in this case . 

• Effect of crosslink density(7S) 

Since the modulus is directly proportional to the crosslink density, an increase in 

crosslink density will decrease the value of tan 1) (En lE'). It is important to note that the 

reduction in tan Ii is mostly attributed to a change in elastic response (E,) rather than in 

the viscous response (E''). Increasing crosslink density means that higher stress is 

required at the same strain amplitude and, at the same time, it reduces the value of tan Ii. 

With reference to Equation (2.66), the effect of increased stress amplitude 

counterbalances that of reduced tan Ii. Therefore, under constant strain amplitude, the 

energy loss is not significantly dependent on crosslink density. 

On the contrary, under constant stress amplitude, the increase in modulus with crosslink 

density leads to reductions of both strain amplitude and tan Ii. As a result, the energy loss 

decreases with increasing crosslink density in this condition. Likewise, under constant 

energy input conditions, an increase in crosslink density reduces the value of tan Ii, 

resulting in the reduction of energy loss. 
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2.3.3.4 The effects of hysteresis and heat generation on elastomers 

Heat generation causes a temperature rise in rubber components. Possible physical 

consequences of higher temperature include deterioration of some properties such as 

ultimate tensile strength, abrasion resistance, decreased modulus in filled vulcanisates, 

etc. More serious consequence arises from the chemical effects which take place faster at 

elevated temperature. Oxidation reactions are of great concern in this case because they 

play a major part not only in the properties of rubber but also in the fatigue life of rubber 

components. One such reaction is responsible for changes in the crosslink system. 

Basically, oxidation of unstretched rubber network causes both chain scission and 

crosslinking. If the former is predominant, the elastomer softens, while if the latter is 

predominant, the e1astomer stiffens and finally becoming brittle. Either condition will 

weaken an elastomer. It is apparent that the amount of chain scission will be greater than 

that of crosslinking in a stretched network due to the chain rupture resulting from 

mechanical loading. (76) Even though the oxidation reaction is a slow process at ambient 

temperatures, however, over a long periods of time, the effects of chemical changes are 

accumulated. Obviously, oxidation is speeded up at higher temperatures, therefore, it can 

be expected that an increase in temperature accelerates changes in the properties of 

rubber compounds. 

In addition, it is also evident that an increase in temperature gives rise to higher crack 

growth rate, resulting in a lower fatigue life of rubber component. (77.78) However, the 

degree of increase in crack growth rate is strongly dependent on the type of elastomer. (79) 

Experimental results obtained by Lake and lindley(80) show that an increase in 

temperature yields a dramatic reduction in the fatigue life of SBR gum vulcanisates (See 

Figure 2.15). 

The results correlate well with the increase in static cut growth rate measured over the 

same temperature range by Greensmith and Thomas(81) on another SBR gum vulcanisate. 

However, they also found that the effect of temperature on fatigue life of NR vulcanisate 
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is not very pronounced due to crystallising effect. On the contrary, Young(78) studied the 

effect of temperature on fatigue crack growth of NR gum compound and found that 

an increase in temperature from ambient temperature (25°C) causes a considerable 

increase in fatigue crack growth rate, leading to a marked reduction of fatigue life. 

Figure 2.15 Temperature dependence of fatigue life of SBR and NR at 100 cycles/min.: (e) 

SBRat 175% max.strain; (+) NR at 250% max. strain (lefthandscale) (80); 

(0) cut growth rate at constant tearing energy obtained by Greensmith and 

Thomas(81) on another SBR gum vulcanisate (right hand scale) 

Supportive results of the temperature dependence of fatigue life are also obtained from 

the work of Gent et al. (82) They proposed that an increase in temperature not only 

increases the crack growth rate of SBR gum compounds, but also reduces the threshold 

tearing energy which is defmed as the minimum tearing energy required for crack to 

grow. lbis means that premature tearing can take place easily as the temperature 

increases. 
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In addition, preliminary analysis of the effect of temperature on the critical tearing energy 

of CB-filled vulcanisates reveals that the critical tearing energy decreases with increasing 

temperature (See Figure 2.16). The results suggest that an increase in temperature 

causes a reduction in strength or resistance to tearing of the rubber vulcanisates. 

Consequently, premature failure is likely to take place as the temperature is increased. 

~~------------------------------------, 

15+-~--~--~-+--+-~--~~~~--+-~--~ 
20 30 ~ 50 60 70 80 

Temperature (C) 

1 ___ CB-rilled SBR ....... CB-6.1IedNR 

Figure 2.16 Temperature dependence of critical tearing energy of filled NR 

and SBR vulcanisates 

Another important phenomenon caused by heat generation is known as "blowout". This 

is nonnally found and considered as a major failure source in thick rubber components. 

When rubber is defonned, some part of the energy input is transfonned into heat. If the 

heat generated internally is not conducted away rapidly enough, the internal temperature 

will become high enough to cause the thermal decomposition of the rubber compound. 

Volatile products resulting from this decomposition can then develop an internal pressure 

which, if high enough, can tear open a path to the exterior (explosive rupture). In 

addition to the products of thermal decomposition, the internal pressure can also be 

brought about by volatilisation of either an ingredient of the rubber mix or a by-product 
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of wlcanisation. Gent and Hindi (83) studied heat build-up and blow-out of rubber blocks. 

They found that different elastomers have different blowout temperatures:

approximately 180°C for butyl rubber compounds and about 200°C or higher for NR and 

SBR compounds. Apart from the temperature rise, another factor that governs the blow

out of rubber is the Young's modulus of the rubber at the blow-out temperature. The 

compounds with low modulus at high temperature will soften and lose resistance to 

cavity expansion, thus, they are prone to blowout easier than those with high modulus. 

2.3.3.5 Basic principles to minimise heat generation 

To reduce the resulting deterioration of rubber components subjected to rapid dynamic 

deformation, certain strategies(49) can be applied to minimise heat generation or heat 

build-up. 

• The components should be designed in such a way that the strain amplitude at all 

points is kept to a minimum. 

• The rubber should possess low hysteresis at the temperature and frequency of 

interest. This can be achieved by using the carbon black with grade as coarse as possible 

(low surface area), provided that the requisite properties are maintained. Alternatively, 

the loading of black should be kept to a minimum, consistent with strength and modulus. 

Higher crosslink density is also beneficial in this case, provided that other essential 

properties such as tear strength are maintained at adequate levels. 

• The rubber should have high resistance to deterioration by heat and oxygen. Some 

compounding additives such as antioxidants and crack growth inhibitors should be taken 

into considerations. 

• Low service frequency, high heat conductivity and heat transfer coefficient between 

rubber and the surroundings are also of great concern to reduce the temperature rise in 

rubber components. 

• For rubber components subjected to constant strain conditions, heat build-up can be 

minimised by minimising E" ( = E' tan II ); i.e., by using carbon black of low structure to 
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minimise E', and of low surface area to minimise tan a. On the other hand, for those 

subjected to constant stress conditions, heat build-up can be minimised by using a black 

with high structure and low surface area to minimise the loss compliance. At a given 

modulus, the reduction of tan a can be achieved by using a low loading of a high 

structure black. (53.62) 

• Since carbon black dispersion also plays an important role on hysteresis of rubber 

compound; the better the carbon black dispersion, the lower the hysteresis, other 

techniques that can improve dispersion of carbon black such as the addition of promoters 

should be taken into account. 

2.4 Thermal properties of rubber compounds 

In the previous section, the dynamic properties of rubber were discussed, however, there 

are a number of other properties such as thermal properties with which engineers should 

be familiar in a general way, since they may be important for engineering applications of 

rubber compounds. As a consequence, a basic understanding of heat transfer and thermal 

properties of rubber is given herein. 

2.4.1 Basic principle of heat transfer 

Holman(84) proposed a definition of heat transfer as "science which seeks to predict the 

energy transfer which may take place between material bodies as a result of a 

temperature difference". The energy transfer is known as heat There are three modes of 

heat transfer: conduction, convection, and radiation. 
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2.4.1.1 Conduction heat transfer 

When a single body is subjected to a temperature gradient, heat (or energy) will be 

transferred from the high temperature region to the low temperature region. This mode 

of heat transfer is called "conduction" and, from Fourier's law for steady state 

conduction, the heat transfer rate per unit area is proportional to the normal temperature 

~ent, as shown in the following equation. 

dQ = -kA aT 
dt ax - - - - - - - - - (2.74) 

where dQ is the heat transfer ~ate and ~T is the temperature gradient in the direction 
dt dX 

of the heat flow. A is the area at right-angles to the direction of heat flow. The constant 

k is called the thennal conductivity of the material which is defmed(8S) as "the heat 

transport in a material per unit temperature gradient per unit area between two 

isothennal planes". 

In the case of unsteady state (transient) conduction, where the temperature at any point 

within a body varies with both time and position, the basic Fourier equation becomes a 

partial differential: 

- - - - - - - - - (2.75) 

where C and p are specific heat and density respectively. The expression.!.. is called 
pC 

"thermal diffusivity" of the material and is represented by a. A high value of a could 

either result from a high value of thennal conductivity (k), which would indicate a rapid 

energy transfer rate, or from a low value of the thermal heat capacity pC. The low value 

of the heat capacity indicates that less of the energy moving through the material would 

be absorbed and used to raise the temperature of the material; thus more energy would 

be available for further transfer. Therefore, the larger the value of a, the faster will heat 

diffuse through the material. 
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2.4.1.2 Convection heat transfer 

Convection is tenned as a mode of heat transfer that takes place between material 

bodies, for example, between a solid and a gas. When heat exchange occurs between 

solid and fluid, there is a thenna! boundary region or film at the surface in which the 

temperature changes from that of the solid surface to that of the bulk fluid. The overall 

effect of convection can be expressed by Newton's law of cooling: 

dQ = hA(8T) 
dt 

- - - - - - - - - (2.76) 

Here the heat transfer rate is directly proportional to the overall temperature difference 

between fluid and the solid surface area. The quantity h is called as "convection heat 

transfer coefficient". The heat transfer coefficient is sometimes called the film conduction 

or film coefficient because of its relation to the conduction process in the thin stationary 

layer of fluid at the solid surface. 

2.4.1.3 Radiation heat transfer 

In addition to the mechanisms of conduction and convection, heat may also be 

transferred into regions where a perfect vacuum exists. The mechanism in this case is 

electromagnetic radiation which is propagated as a result of a temperature difference. 

For an ideal radiator or black body, the rate of energy emission is proportional to the 

fourth power of the absolute temperature (Kelvin, °C+273) of the body. When two 

bodies exchange heat by radiation, the net heat exchange can be expressed as; 

- - - - - - - - - (2.77) 

where Cl is the proportionality constant, called Stefan-Boltzmann constant with the value 

of S.67E-08 W/m2.K4. 
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For other types of surfaces, like a glossy painted surface or a polished metal plate, less 

energy will be radiated compared to the black body. However, the total radiation emitted 

by these bodies still follows the 1'" proportionality but another factor is introduced called 

"emissivity, e", which relates the radiation of these surfaces to that of an ideal black 

surface. It is also noted that not all of the radiation leaving one surface will reach the 

other surface since some will be lost to the surroundings. The overall heat exchange then 

becomes; 

- - - - - - - - - (2.78) 

where Fo is the geometric "view factor" function and FE is the emissivity function. 

Emissivity is the ratio of the intensity (energy emitted per unit time and area) of emitted 

radiant energy to that emitted by a black body at the same temperature. In general, it is a 

surface property of a material (not a bulk property) and is a function of temperature. At 

thermal equilibrium, emissivity and absorptivity of a surface are equal. 

2.4.2 Thermal properties of rubber compounds 

2.4.2.1 Thermal conductivity 

Thermal conductivity is the basic parameter for defming heat flow in a material. 

Normally, the thermal conductivity of rubber compounds is inversely proportional to 

temperature(86) but, in the range of 20-90°C, the values of thermal conductivity of both 

gum and CB-filled compounds are slightly changed, therefore, it can be assumed that the 

thermal conductivity of rubber is independent of temperature without any significant 

errors. (8S) 

It is evident that thermal conductivities of raw polymers and their gum vulcanisates are 

very similar, although crosslinking and vulcanisation additives norma11y increase 

conductivity of a polymer somewhat (85.87-89) However, the inclusion of filler has a 
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marked effect on thennal conductivity of the rubber compounds. CarwiIe and Hoge(9O) 

postulated that 10 phr of carbon black may be expected to increase the thennal 

conductivity by about 17% at room temperature. In the meantime. Williarns(87) and 

Barnett(88) also proposed that thennal conductivity was an additive property depending 

on the volume fractions of the ingredients and it therefore could be calculated by 

multiplying the volume fraction of each ingredient by an appropriate conductivity and 

adding these products to the thennal conductivity of gum vulcanisate. Although it was 

assumed that a large variation in filler dispersion might have a measurable effect on the 

thennal conductivity of a compound but Sperberg. Harison. and SvetIik(91) have proved 

this assumption to be negligible. 

A large dependence of conductivity on loading of carbon black was reported by 

Kainradl. (92) He concluded that thermal conductivity of rubber compound increased 

almost linearly with black content in the range of 10-50 phr black. Likewise. a similar 

conclusion was also obtained from Kong et al. (93) They carried out an experiment based 

on NR and SBR with various loadings of carbon black (N330). Experimental results 

clearly showed that thennal conductivity increased linearly with black loading (as shown 

in Figure 2.17) and. therefore. the mathematical relations between thennal conductivity 

and carbon black loading were introduced as; 

k(w) = k(O) + 0.32w 

k(<1» = k(O) + 0.4<1>r 

- - - - - - - - - (2.79) 

- - - - - - - - - (2.80) 

where w is the weight fraction and <1>r is the volume fraction of carbon black. A list of 

thermal conductivities of various gum vuIcanisates is given in Table 2.2. 

Apart from carbon black loading. carbon black structure seems to have an influence on 

the thermal conductivity of rubber as well. Sircar and Wells(94) studied the effect of 

carbon black structure on thermal conductivity of NR and found that higher carbon black 

structure gives higher value of thermal conductivity. However. the degree of change in 
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thermal conductivity as a function of carbon black structure is small and is not straight 

forward. 

Table 2.2 Thermal conductivities of gum vulcanisates(8S) 

Gum vulcanisates k (X 104
), 

W/mK 
Silicone rubber 1758.1 
Butyl rubber(Eniav365) 1297.7 
Butyl rubber(Eniav365) 1130.2 
NBR(Perbunan N2810) 2051.1 
NBR(Perbunan N2810) 1758.1 
SBR(Buna Huls 152) 1925.6 
SBR(J3una Huls 152) 1674.4 
SBR 1758.1 
Polybutadiene(SKB-50) 1632.5 
NR· 1465.1 
cis-Polvbutadiene· 1674.4 
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Figure 2.17 Thermal conductivity of NR and SBR filled with various amount of 

carbon black (N330)(93) 
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2.4.2.2 Thennal diffusivity (a) 

Thermal diffusivity can be conveniently detennined by observing temperature change as 

a function of time for simple geometrical shapes under heating condition. (85.95) 

Alternatively, of course, if k, P and Cp are known or separately determined, a can be 

calculated from its definition as a = k/pCp. As specific heat is an additive property, it is 

generally convenient to calculate specific heats of rubber compounds than to measure 

them. Specific heat of a compound is given by 

- - - - - - - - - (2.81) 

where Wh W2 and W3 are weight fractions of the ingredients and Ch C 2, and C3 are their 

specific heats. Table 2.3 lists specific heats and densities of some polymers and 

compounding ingredients which may be useful in calculating the thermal diffusivity _ of 

rubber compounds. A value of 0.5 can usually be assumed without applicable overall 

error for minor ingredients such as organic accelerators, antioxidants, and softeners, if 

their actual values are not known. 

In general, for rubber compound above the glass transition, a tends to decrease slightly 

with increasing temperature. This is attributed to an increase of specific heat as 

temperature increaseS.(89.96-97) However, some authors(98) stated that there is no 

significant change in thennal diffusivity over the temperature range from room 

temperature up to 140°C. 

2.4.2.3 Heat transfer coefficient 

Heat transfer coefficient is not a material property of rubber and depends upon 

geometrical factors, fluid velocity, surface roughness, temperature gradient, wetting, and 

a radiation component depending on surface emissivity. 
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Table 2.3 Specific heat and density of rubbers and some mixing ingredients(8S) 

Specific heat, Density, 
J/g.K g/cm3 

NR 1.88 0.92 
Polybutadiene (emulsion) 1.97 0.892 
SBR(25.5%bound styrene) 1.88 0.933 
NBR(39% bound AN) 1.97 0.996 
Butyl rubber 1.94 0.92 
Neoprene 2.18 1.229 
Carbon black 0.85 1.82 
Magnesium oxide 1.00 3.31 
Zinc oxide 0.52 5.63 
Stearic acid 1.67 0.85 
Extender oils 1.88 -0.94 
Sulphur 0.72 2.03 

In heating and cooling of rubber in liquids or gases such as air or steam, the most 

appropriate heat transfer coefficient under particular circumstances is usually obtained 

from extensive compilation of such coefficients. However, if precise values are required, 

it is necessary to detennine heat transfer coefficient experimentally, under the exact 

conditions. It should be borne in mind that such detenninations inevitably require exact 

measurements of the surface temperature of the rubber and great care must be taken to 

avoid errors due to heat conduction along thermocouple wires. Approximate values of 

heat transfer coefficient for air flow parallel to a flat surface, generally useful for 

miscellaneous heat transfer calculations, are given in Table 2.4. The value of heat transfer 

coefficients of crude rubber and rubber filled with carbon black was also reported by 

Hahn(99) to be 6.70 W/m2.K with an air speed of 1.98 m/sec. In addition, Cuthbert(U10) 

also revealed that the heat transfer coefficient of rubber articles taken from moulds, for 

normal cooling to room temperature, was approximately 11.355 W /m2,K. 

Basically, solid surface films always introduce a barrier to heat flow between materials 

and, therefore, must be taken into account in most circumstances in which there is 
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Table 2.4 Heat transfer coefficients for air flow parallel to flat surface(85) 

Air speed, m/sec Heat transfer coefficient (h), 
W/m2.K 

0 6.245 
1.5 11.355 
3.0 17.032 
4.5 22.709 
6.0 28.386 
7.5 34.0632 

a surface contact between solid materials. The interface contact resistance depends upon 

the intimacy of contact of the surfaces. In general, if intimate contact between two 

surfaces is assured, the thennal resistance between the interface contact can be ignored. 

2.4.2.4 Emissivity 

The ability of a surface to emit radiant heat is represented by its emissivity. Emissivity of 

rubber usually decreases with increasing temperature. (101) For radiant heat exchange of 

rubber with surroundings at temperature up to 100°-200°C, emissivity will almost 

certainly be in the range of about 0.95 to 0.80 regardless of whether the compound is 

white or black. (8S) 
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CHAPTER 3 

PROJECT STRUCTURE AND METHODOLOGY 

3.1 Introduction 

This research is primarily concerned with the application of FEA in predicting the effect 

of hysteresis on temperature rise of rubber components under dynamic test conditions. 

Throughout this work, the finite element programme used for numerical computations 

was NISA 11 (Numerically Integrated element for System Analysis), developed 

commercially by Engineering Mechanics Research Corporation (EMRC). To use the 

programme, material constants were required. Those defining elasticity were based on 

the theory of "constant true Young's modulus with varying Poisson's ratio".(I02) 

Consequently, this chapter is aimed not only to represent the schematic diagrams of the 

experimental work, but also to describe some fundamental aspects of NISA 11 finite 

element programme as well as the basic principle of the above theory. 

3.2 Project layout 

Basically, the application of FEA in rubber field contains three distinct stages. The first 

stage deals with the characterisation of material behaviour required for the subsequent 

finite element analysis. The second stage is concerned with model simulation and analysis 

of the problems of interest. This stage involves model creation, specification of boundary 

conditions and material data, numerical computations as well as interpretation of finite 

element results. In the final stage, it is essential to carry out experiments and 

comparisons between experimental results and finite element predictions should be made. 

Thus, in summary, the project work can be divided into three main sections, as shown 

below. 

72 



Section I 

(Chapter 4) 

Preliminary determinations of material data. 

The material data include Mooney-Rivlin material constants, hysteresis 

factor (tan Ii) and heat transfer coefficients. Figure 3.1 shows the 

schematic diagram of work plan for the preliminary determinations. 

Rubber compounds 
(from Dunlop Metalastik Ltd.) 

I Curing tests 

Physical tests I 

Characterisation of Determination of Heat transfer 
Mooney-Rivlin hysteresis factors coefficient analysis 

constants 

DARTEC DMA 
(Amplitude & Frequency dependence) (femperature dependence) 

Figure 3.1 Schematic diagram of work plan for preliminary determinations of 

material data 
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Section IT 

(Chapter 5) 

: Finite element analysis of temperature rise in rubber components. 

Engineering components chosen for this study were cylindrical anti

vibration mountings and a Chevron spring. The effects of service 

conditions (strain amplitude and frequency) on the internal temperature 

rise were studied. In addition, for anti-vibration mountings, the effects 

of geometric factor and deformation mode were also included. The 

entire FEA procedure is schematically summarised as shown in Figure 

3.2, induding the material data requirements (in the parentheses) for 

each step. 

Model Creation 

NonIinear Stress 
Analysis 

[Material constants] 

Element Strain Energies 

Conversion 

[Hysteresis factor) 

I Model Creation I 
Steady State 

Thermal Analysis 

[Heat transfer coefficient] 

I Element Heat Generation Rates I ---------~) 
Input data 

I Temperature Rise I 

Figure 3.2 Schematic diagram of the entire FEA procedure 
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Section III 

(Chapter 6) 

: Evaluation of FEA results. 

To gain confidence in the prediction values obtained from Section H, 

temperature measurements of the rubber components subjected to 

various test conditions were carried out and comparisons between the 

experimental results and the FE predictions were made. All dynamic 

tests of rubber components in this section were undertaken at Dunlop 

Metalastik Ltd, Leicester, England. Figure 3.3 summarises the work 

plan for this section. 

Rubber components Dynamic tests ~ Comparisons made I (taken from Metalastik (at Dunlop Ltd.) 
production lots) 

Figure 3.3 Work plan for evaluation of FEA results 

3.3 NISAII 

3.3.1 Introduction 

NISA 11 is a general purpose finite element analysis programme, developed particularly 

for structural and heat transfer analysis. A wide range of analysis capabilities are 

available including: 

- Linear static analysis. 

- Nonlinear static analysis. 

- Steady state and transient heat transfer analysis. 

- Eigenvalue analysis. 

- Buckling analysis. 

- Modal dynamic analysis including transient dynamic, random vibration, frequency 

response and shock spectrum analysis. 
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3.3.2 NISA Pre- and Post- processors 

NISA II is interfaced directly with a 3-D interactive colour graphics finite element pre

and post- processing programme, called DISPLA y,003) This means that DISPLAY can 

write a file containing all the model and analysis directives required in a format 

acceptable to NISA II as well as read an output file containing the analysis results. In 

addition, DISPLAY can read or write a neutral file (or ASCII file) containing the model 

data in a well documented format which can be used by third party software or a user's 

own software to exchange information with DISPLAY . 

• Pre-processing 

In the first step of finite element analysis, it is necessary to create a geometrical model of 

the main body and, then, discretize this body into a mesh of nodes and elements. The 

pre-processing module in DISPLAY has been introduced for this purpose. It allows a 

user to create the FE model which is ready for calculations. This FE model usually 

consists of a mathematical description of the boundary and interior of the body. To 

achieve this, DISPLAY provides facilities to specify locations in space (called GRIDS), 

straight or curved line segments (called LINES), surfaces (called PATCHES) and solids 

(called HYPERPATCHES). All the above are referred to as geometric entities. In 

general, the pre-processor in DISPLAY provides a large number of operations for the 

generation and modification (such as translation, rotation, copying, mirror imaging, etc.) 

of geometric entities. 

To create a mesh for the body (meshing), there are also a variety of operations available 

in DISPLAY to accomplish FE generation. Meshing can be done either manually on each 

geometric entity or automatically by the automatic meshing capabilities of DISPLAY. It 

is also possible to create a FE model by using a combination of the two processes. The 

boundary conditions of the model (loads, constraints, etc.) can be applied easily with the 

auxiliary operations in DISPLAY. In addition, some sophisticated checks for distortion, 
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warping, skewness, etc. of elements, including potential discontinuities in the model, can 

be achieved with this powerful pre-processor. 

In addition to standard view, different model orientations are available to let the user 

obtain the most informative views. The model can be displayed in different plotting 

modes to obtain the maximum graphical information. Some highlights of the NISA pre

processing capabilities are given below: 

- CAD/CAM interface, directly from a geometry data base or through the IGES format. 

- 3-D geometric modelling, including points, lines, arcs, curves, surfaces and solids as 

well as surface intersections. 

- Geometric transformations, including translation, rotation, scaling, mirror imaging and 

dragging a curve along an arbitrary 3-D path. 

- 3-D interactive finite element mesh generation including automatic node and element 

generation. 

- Merging separate models into a larger one. 

- Defmition of element attributes including material and geometric properties. 

- Specification of loading and boundary conditions. 

- Extensive model editing capabilities. 

- Extensive plotting options. 

• Model checking including calculation of element areas, volume and distortion index. 

• Complete NISA data deck generation. 

• Post-processing 

Graphical representation and manipulation of the results may be performed interactively 

using the DISPLAY post-processing module. The major capabilities of the post

processing module are listed below: 

- Deformed geometry plots, separate or superimposed on undeformed geometry. 

- Contour plots of displacements, stresses, strains, temperatures and etc. on the original 

or deformed geometry. 
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- Contour plots of cut sections for 3-D models. 

- XY history plots for various output quantities (especially useful for transient heat 

transfer analysis, where X is time). 

- Animated deformed shapes. 

- Deformed history plots for nonlinear static analysis. 

3.3.3 Analysis types 

• Linear static analysis (STATIC) 

Linear static analysis deals with the linear behaviour of elastic structure under certain 

boundary conditions and statically applied loads. The analysis may involve the calculation 

of displacements, strains, stresses, element volume and energy in the structure. The basic 

equation for linear static analysis is derived from the principle of minimum potential 

energy and can be expressed mathematically by 

[K] u = P 

where [K] is the linear stiffness matrix of the structure, u is the nodal displacement 

vector and P is the load vector. 

• Nonlinear static analysis (NLST A TIC) 

Nonlinear static analysis is concerned primarily with the nonlinear behaviour of 

structures under static loading. There are two types of nonlinearity commonly found in 

real life problems. These are material and geometric nonlinearities. 

Material nonlinearity arises from the nonlinear behaviour of stress-strain relation. 

Applications for material nonlinearity are normally encountered in viscoelastic and 

elastoplastic problems. Three types of material nonlinear behaviour are accommodated in 

the programme. (104) These are (i) the elastoplastic material behaviour, (ii) creep model 
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and (iii) the hyperelastic or rubber-like material models. For hyperelastic material models, 

various forms of strain energy functions with finite compressibility or near 

incompressibility behaviour are available. 

The geometric nonlinearity is ascribed to large-deflection problems in which the 

deformed configuration must be involved in the analysis calculation. In this case, the 

classical theory of infinitesimal strains does not hold, and the strains are obtained from 

the displacements via a nonlinear differential operator. Applications for geometric 

nonIinearity are generally found in problems with large deformation, especiaJIy with 

rubber-like materials. 

In geometric nonlinearity, or combined geometric and material nonlinearities, a 

distinction between the undeformed and the deformed configurations of the structure 

must be taken into account. In this case, the equilibrium or energy balance equations 

must be applied to the deformed configuration. As a result, two' stress-strain 

formulations have been introduced, depending on the chosen reference configuration to 

describe the deformation of the body. These formulations are known as the total and 

update Lagrangian formulations. The total Lagrangian formulation uses a fixed 

configuration (undeformed state) as a reference, while, in the updated Lagrangian 

formulation, the reference configuration is always updated. It should be noted that both 

formulations are equivalent mathematically and, therefore, the same approximations 

should be obtained (except for round-off differences). The advantage of one formulation 

over one another is concerned with numerical efficiency, ease of handling particular 

nonlinear boundary conditions, etc. 

• Heat transfer analysis 

Heat transfer analysis is concerned with the flow or transfer of heat energy as a result of 

temperature gradients. This phenomenon is caused by three different processes: 

conduction, convection and radiation. In NISA 11, problems involving heat transfer due 

79 



to conduction with convection and radiation boundary conditions can be analysed. In 

addition. NISA 11 is also capable of analysing solidification and melting processes. 

provided that the assumptions of no volume change and no convection effect in the 

analysis are held. 

Heat transfer analysis can be classified into two main categories: steady state heat 

transfer analysis (SHEA T) and transient heat transfer analysis (THEAT). The analysis in 

the former category deals with problems when material properties and boundary 

conditions are time independent. Conversely. if the material properties andlor the 

boundary conditions of the problem are time dependent. the transient heat transfer 

analysis must be performed to solve such problem. 

In each category. both linear and nonlinear analysis may be performed. The problem will 

be analysed by a linear heat transfer analysis. if the following conditions are met: 

- no radiation boundary conditions; 

- no phase change. and 

- material properties, convective coefficients, specific heat fiuxes, and specified 

internal heat generations are temperature independent. 

However, if the above of these conditions are not satisfied. a nonlinear heat transfer 

analysis is required to solve that particular problem. 

3.3.4 Material models 

• Linear elastic material model 

In this model, the stress-strain relation of the material is assumed to be constant, i.e., 

independent of the stress and strain states. The behaviour of ideal elastic solid obeys 

Hooke's law, thus, this model is alternatively known as the Hookean material model. 

This model requires elastic constants to characterise the constitutive relation. If the 
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elastic constants are direction ally independent, the model is generally known as the 

"isotropic linear elastic model". In this case, only two independent constants (Young's 

modulus and Poisson's ratio) are required to define the constitutive relations. On the 

other hand, if the material has different elastic constants in three mutually perpendicular 

directions at any point in the material, the model will be called "orthotropic linear elastic 

model" and more independent constants are required to define the constitutive relations. 

• Elastoplastic material model 

The materials in this model are assumed to behave elastically up to a certain stress value 

(Yield point), after which a combined elastic and plastic behaviour takes place. Plasticity 

is characterised by an irreversible permanent straining that occurs in the material once the 

elastic stress limit is reached. NISA 11 provides various options of specifying the stress

strain relation of this model, for instance: elastic and perfectly plastic, elastic and linear 

hardening, etc. 

• Hyperelastic material model 

A hyperelastic material is an elastic material of which its behaviour can be represented by 

a strain energy density function. This model normally represents rubber-like materials. 

For isotropic material, the strain energy function is expressed in terms of the strain 

invariants I., h and 13• Both [mite compressibility and near incompressibility can be 

handled in NISA 11. Even though rubbers are considered virtually incompressible, as 

evidenced by their very high bulk modulus compared to their shear modulus, the default 

value of the Poisson's ratio (v = 0.499) for near incompressibility is usually sufficient for 

analysis of problems under incompressibility assumption. 
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• Heat transfer material models 

Similar to the linear elastic material model, heat transfer material model can be divided 

into two main groups: isotropic and orthotropic material models. For isotropic material 

model, all thermal properties are assumed to be direction ally independent. If this is the 

case, only one thermal conductivity value is required, coupled with some other applicable 

thermal properties such as specific heat and density. On the contrary, for orthotropic 

material model, the thermal properties are assumed to be directionally dependent and, 

therefore, three values of thermal conductivity are required, along with some other 

applicable thermal properties. 

For both heat transfer material models, the material properties can be defined as 

constants or variables as a function of time or temperature. 

3.3.5 Solution techniques for nonlinear analysis 

Application of PEA to problems involving linear elastic materials is straightforward, 

because the material parameters are constant and only one application of the solution 

process is required to solve a particular loading case. However, it is obvious that many 

phenomena found in real applications are nonlinear. Depending on the sources of 

nonlinearity, nonlinear problems can be divided into three categories as followsYoSj 

(i) Problems with material non linearity . This category is limited to problems in which 

the stresses are not linearly proportional to the strains, but in which only small 

displacements are considered. 

(ii) Problems with geometric nonlinearity. The problems in this category involve linear 

elastic material being subjected to a large deformation. 

(iii) Problems with a combination of material and geometric nonlinearities. The problems 

in this category involve nonlinear constitutive behaviour as well as relatively 

large deformation. The deformation of a rubber-like material is the obvious example 

of this category. 
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Since the fundamental methods of solving the problems under all three categories are the 

same, the solution techniques described in this section are based on the problems under 

the first category. In general, the solution of nonlinear problems by FEA is usually 

accomplished by one of the three basic techniques: incremental or stepwise method, 

iterative or Newton-Raphson methods and step-iterative or mixed methods. 

3.3.5.1 Incremental method 

According to the incremental method, the solution of the nonlinear problems can be 

obtained by subdividing the applied load into many small partial loads or increments, 

then, calculating the displacements based on the linear equations. In other words, a fixed 

value of stiffness matrix [K] is assumed throughout each increment, however, different 

values of stiffness matrix may be applied in different load increments. The displacement 

increments are accumulated to give the total displacement at any stage of loading, and 

the incremental process is repeated until the total specified load has been reached. The 

accuracy of the incremental method is dependent upon the size of load increments. It is 

evident that the accuracy of the solution can be improved by taking smaller increments of 

load, however, an increase in accuracy is obtained with an expense of additional effort. 

3.3.5.2 Iterative method 

The iterative method is a sequence of calculations in which the structure is fully loaded in 

each iteration. After each iteration, the portion of the total loading that is not balanced is 

calculated and used in the next step to compute an additional increment of the 

displacements. This process is performed repeatedly until equilibrium under the total load 

is approximated to some acceptable degree, or in other words, convergence of the 

solution is achieved. 

Let (Qo) and (qo) be the initial loads and displacements. For the ilb cycle of the iteration 

process, the required load for an additional displacement is determined by 
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(Qi) = (Q) - (Qc.i-tl - - - - - - - - - (3.1) 

where (Q) is the total load to be applied and (Qc. i-tl is the load equilibrated after the 

previous step. The basic equation to compute an increment to the displacements during 

the ilb step then becomes 

[K<O] (~qi) = (Qd - - - - - - - - - (3.2) 

where (K] is the tangent stiffness matrix and the superscript (i) denotes a cycle of 

iteration. The total displacement after the ilb iteration is computed from 
i 

(qd = (qo) + l: (t.<]j) - - - - - 7 - - - (3.3) 
j -I 

Fmally, (Qc. i) is calculated as the load required to maintain the displacement (qi). The 

procedure is repeated until the increments of displacement or the unbalanced force 

become zero. That means (t.qd or (Qd becomes null or sufficiently close to null 

. according to some pre-selected convergence tolerance. 

During each increment, the tangent stiffness matrix maybe updated at each iteration 

(Newton-Raphson method), or kept constant in all iterations (modified Newton-Raphson 

method). Both conventional method and the modified Newton-Raphson methods are 

illustrated graphically in Figure 3.4. 

o Q 

0 3 Q, 

q q 

Figure 3.4 Newton-Raphson methods: (a) conventional and (b) modified method 

84 



Although the use of the modified Newton-Raphson method may be cost effective in 

some specific material nonIinearity applications, the utilisation of this method is not 

always successful in solving problems with general material and geometric nonlinearities. 

3.3.5.3 Mixed procedures or step-iteration method 

Basically, this method is a combination of the incremental and iterative schemes. In this 

method, the load is applied incrementally, and, in each increment, the iterative scheme is 

performed until specified convergence is achieved or maximum specified iterations are 

reached. It is reported that the method provides higher accuracy with more 

computational effort. A graphical representation of this method is given in Figure 3.5. 

° 

0;+1 

''0, 

q,. .. , q 

Figure 3.5 Step-iteration or mixed method 

3.4 Characterisation of material constants via the theory of "constant true 

Young's modulus with varying Poisson's ratio" 

In general, the material behaviour of rubbers is usually represented in terms of the strain 

energy density function, originally developed by RivlinY06) It is offered as an option in 
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most commercial FE programmes, such as ABAQUS, PATRAN, NISA 11 and MARC. 

For relatively low strains, the nrst two terms of Rivlin function (Mooney-Rivlin model) 

can provide a good prediction of rubber behaviour. However, for higher strains, more 

terms including power or cross product terms are needed. 

Practically, FE programmes require the material constants Qj as the input data. The 

material constants can be determined by the methods reviewed in Section 2.2. However, 

it is obvious that the material constants derived from uniaxial tensile data alone, using the 

conventional methods, are not suffIciently accurate to describe rubber behaviour in 
. 

multiaxial deformations. Therefore, combined tests or biaxial tests are always 

recommended. Unfortunately, in this case, specially designed equipment is necessary. 

As a consequence, to reduce the complexity and overcome the need for equipment for 

multiaxial data test, a new approach called "constant true Young's modulus with varying 

Poisson's ratio" has been introduced by Turner and Brennen(I02) to generate the general 

biaxial tensile data from the uniaxial tensile data. This approach has been supported and 

further validated by other authors.(lo7.I08) 

3.4.1 General concept of the approach 

It is a fact that, in uniaxial tension, the relation between true elastic stress and strain is 

linear over the strain range encountered in most engineering applications (say, up to 

100% strain). A true elastic stress is defmed as a ratio of the extension elastic force to 

the current cross-sectional area. From the assumption of incompressibility, where AIA2A3 

= I, the relationship between a true stress (ti) and an engineering stress (O"i) is given by 

0"' 
t; = ---2- = O"i Ai 

A.j A.k 

where the subscripts refer to the directions of the principal stresses. 
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Based on the standard equations of elasticity at low strain (where the Young's modulus 

is assumed to be constant), the rubber's nonlinear multiaxial behaviour can be 

accommodated by considering the Poisson's ratio to be a variable, i.e., a function of the 

principal extension ratios. Thus, the stress-strain relations are given by 

El = AI - 1 = (lIE) [tl - v(tz + 13)] - - - - - - - - - (3.5) 

Ez = A.z - 1 = (lIE) [tz - v(13 + tl») - - - - - - - - - (3.6) 

103 = A.3 - 1 = (lIE) [13 - V(tl + tz») - - - - - - - - - (3.7) 

where v is the Poisson's ratio. 

For biaxial deformation, when t3 = D, rearrange Equation (3.6) and substitute into 

Equation (3.5), then 

Similarl y; 

It = 
E [(AI - 1) + '\) (Az - 1») 

(1 _ '\)z) 

E [(Az - I) + '\) (AI - I») 
12 = (1 _ '\)2) 

- - - - - - - - - (3.8) 

- - - - - - - - - (3.9) 

By substituting Equations (3.8) and (3.9) into Equation (3.7) and rearranging, the 

equation becomes 

-'\) [(AI - 1) + (Az - 1») 
(1 - '\) ) 

- - - - - - - - - (3.10) 

By multiplying Equation (3.10) with -(I-v) and rearranging, the Poisson's ratio is then 

given by 

v = (1 
"1 + AZ - A3 - 1) 

I - A3 
- - - - - - - - - (3.11) 

lfincompressibility is assumed [A3 = (AIAZrl), the Poisson's ratio can then be deftned as 

a function of AI and AZ by 

v = - - - - - - - - - (3.12) 
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3.4.2 Conversion of true Young's modulus into Rivlin material constants 

From the above approach, only a single material property (a constant true Young's 

modulus) is required to describe the rubber elastic behaviour. Unfortunately, most FE 

programmes dealing with nonlinear hyperelastic analyses only accept the material data 

input in terms of the Rivlin strain energy function or other similar functions such as 

Ogden, etc. As a consequence, the true Young's modulus must be converted into such a 

function. 

With a given true Young's modulus, the varying Poisson's ratio theory can be used to 

calculate the true stresses for any biaxial state of deformation as deflned by the two 

extension ratios AI and 1..2• If the combinations of the biaxial state are chosen carefully to 

cover the entire range of interested deformation, the constants of a Rivlin strain energy 

function can then be determined by a regression technique. 

For this purpose, special software "elastic.exe", specifically written by Dr. P.S. 

Oubridge(I09), has been introduced. A basic principle of this programme is that, with a 

specifled maximum strain, the programme generates a series of combinations of the two 

extension ratios AI and 1..2• Initially, six values of AI are selected with equi-spaced interval 

up to maximum strain, but excluding 0% strain (AI = 1). For each value of At. the values 

of 1.2 are selected in such a way that the numbers of 1..2 are graduated from 5 at the 

lowest AI to 10 at the highest. Subsequently, the programme employs the true Young's 

modulus to calculate the principal true stresses for each of the 45 combinations of the 

extension ratios. Based on the stress-strain relation in any biaxial state (See Equation 

(3.13», if the Rivlin strain energy function rN) is partially differentiated with respect to 

the two strain invariants (It and Iz) and substituted into the equation, the Rivlin material 

constants can then be obtained by the multiple regression technique. 

-- ---- - - - (3.13) 
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For instance, in the Mooney-Rivlin materia! model where W = CID (11 - 3) + Col (h - 3), 

h aW d aw will be . a! h .a! C d Co t e terms - an -a eqUlV ent to t e maten constants 10 an h 
all h 

respectively. Equation (3.13) then becomes 

tl - tj = 2 <AI - A~)[ CID + A~ Cod 

where CID and Col are the Mooney-Rivlin constants. 
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CHAPTER 4 

PRELIMINARY DETERMINATIONS OF MATERIAL DATA 

4.1 Introduction 

This chapter describes the detennination of all material data governing the temperature 

rise of the rubber components. Of particular importance are the material constants 

required to define the elastic behaviour of the rubber compounds. Other parameters 

needed are thermal conductivity and the hysteresis factor (tan Il). The latter parameter 

indicates the portion of strain energy to be converted into heat. Finally, to define the 

amount of heat dissipated to the surroundings, heat transfer coefficients for all 

constituent materials of the components to air must also be determined. 

4.2 Materials 

• Rubber compounds 

Two different rubber compounds were used in this study. Both of them were supplied by 

Dunlop Metalastik Ltd., UK. and were coded as "MetaIastik 19055" and "Metalastik 

32053". The compound recipes are not given as, for commercial reasons, they should be 

kept confidential. Nevertheless, brief information of each compound is given below. 

- "MetaIastik 19055" is used mainly in anti-vibration mountings. It is natural 

rubber reinforced with N539 black to obtain the required hardness of 55 

IRHD (International Rubber Hardness Degree). 

- "Metalastik 32053" is used mainly in Chevron springs. It is polyisoprene 

rubber reinforced with N660 black to obtain the required hardness of 53 

IRHD. 
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• Mild steel (Bright Drawn Steel), supplied by A.H. AlIen Steel Services (Derby) 

Ltd., UK. (for heat transfer coefficient analysis only). 

• Aluminium (commercial grade), supplied by East Midland Alloys Ltd., UK. (for 

heat transfer analysis only). 

4.3 Curing test 

An investigation of optimum curing time (t95) of the two compounds was undertaken 

using a Wallace Shawbury Precision Cure Analyser. The test conditions were set at 1.7 

Hz, 0.24 strain and 150°C. For each compound, the test was repeated three times and 

the average value of t9S was used for the subsequent mouldings. 

4.4 Determination of Mooney-Rivlin constants 

4.4.1 Introduction 

Determination of Mooney-Rivlin constants from simple uniaxial tensile data via the 

theory of "constant true Young's modulus with varying Poisson's ratio" was undertaken 

successfully by using the software "elastic.exe". As this programme requires the true 

Young's modulus as an input, the following experimental procedure has been developed 

to fulfil this requirement. 

4.4.2 Methodology 

To determine the true Young's modulus, an approximately 2 mm. thickness test sheet for 

each compound was prepared by using a compression mould at 150°C for a period of t9S 
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(6 minutes for "Metalastik 19055" and 14 minutes for "Metalastik 32053"). The test 

specimens were then produced by means of a cutter with general dimensions as shown 

below. The orientation of the test pieces was chosen to follow the direction of milling. 

12mm llOmm 
~~.------------------------------+ 

1~1C=---------~1=5mm~-------:J 

Figure 4.1 The test piece dimensions for the near equilibrium stress-strain 

measurement. 

Since both "Metalastik 19055" and "Metalastik 32053" rubber compounds are reinforced 

with carbon black, the viscoelastic effect (stress relaxation) is of great importance. As a 

consequence, to obtain near elastic deformation data, the effect of stress relaxation must 

be eliminated. (102) Therefore the following test procedure was used for this purpose. 

Initially, the test specimens were stretched by means of the Hounsfield tensile testing 

machine to a certain extension, say 10% strain, and were held at that extension for 600 

seconds, allowing the rubber molecules to relax before the current force was recorded. 

Then, the same procedure was repeated at higher extensions (up to 80% strain). 

From the experimental force-extension data, a relationship between engineering stress 

and strain was established. Based on Equation (3.4), the engineering stresses at any 

particular strain were then converted into the true stresses. Thereafter, a graphical 

correlation between true stress and strain was established and the true Young's modulus 

of the vulcanisate was defmed by the initial slope. 

To investigate the temperature dependence of elastic properties, the test was also carried 

out at different temperatures ranging from ambient temperature up to 100°C. 
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As previously mentioned, converSIOn of the true Yo ung ' s modulus into the Mooney-

Rivlin constant s was undertaken by the programme "elastic .exe" . Apart from the true 

You ng ' s modulus, the only other datum required for thi s programme was the max imum 

strain to be considered . Within thi s max imum strain, the programme would generate a 

sequence of combinations of the two ex tension ratios AI and 1..2 and calculate the 

principal true stress for each combination created . Finally, multiple regression analysis 

was employed to obtai n the Mooney-Rivlin elasti c constant s. 

4.4.3 Resul ts a nd disclIssion 

The plots of engineering stress versus strain for "Metalastik 19055" and ' 'Metalastik 

32053" are shown in Figures 4 .2 and 4.3, respectively. The result s clearly show that the 

relationshi p between engineering stress and strain of both compounds is markedly 

nonlinear. 
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Figllre 4.3 Engineering stress against strain for "Metalastik 32053" 

On the contrary, as the ordinate axis is changed from engineering stress into true stress 

(See Figures 4.4 and 4.5), a perfectly linear relationship is obtained, at least up to 80% 

strain. Similar results were also obtained by Meinecke and Taftaf72
) who made 

measurements of relaxed stress under uniaxial extension on fi lled SBR and found a linear 

relationship up to 80% strain for the high loading. 
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Figllre 4.4 True stress against strain for "Metalastik 19055" 
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Figllre -1.5 True stress against strain for "Metalastik 32053" 

In addition, a linear relationship between true stress and strain for gum vu lcanisates was 

also found by Tsuge et a/. (I 10) This assures us that, at low strain ampli tudes, only a single 

material parameter (the true Young ' s modulus) is required to represent the elastic 

behaviour of t he rubber compounds. 
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Figllre -1.6 The effect of temperature on true Young' s modulus 
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Figure 4.6 illustrates the temperature dependence of the true Young's modulus. As can 

be seen, the true Young's modulus gradually decreases with increasing temperature. This 

is attributed to the increase in thermal mobility of rubber molecular chains with increased 

temperature. However, it can be observed that the reduction in modulus is not 

pronounced within the test temperature range. 

Table 4.1 shows the results obtained from the programme "elastic.exe" with the specified 

maximum strain of 80%. Results clearly show the existence of correlation between 

temperature and the Mooney-Rivlin constants. 

~ hi 41 Th M a e e oone .-Ri r I v In e aSllc constants 
Material Temperature Moonev-Rivlin constants 

(OC) CIO Col 
"Metalastik 19055" 21 0.42 0.11 

40 0.40 0.11 
60 0.40 0.10 
80 0.38 0.10 
100 0.37 0.10 

"Metalastik 32053" 21 0.33 0.08 
40 0.32 0.07 
60 0.31 0.Q7 
80 0.31 0.07 
100 0.31 0.Q7 

It is obvious that both CIO and Col are inversely proportional to the temperature. This is 

likely due to the fact that both CIO and Col are directly related to the true elastic 

(Young's) modulus as shown approximately, for simple extension, by E = 6 (CIO + 

CoI)Yll) Therefore, as the temperature increases, the true Young's modulus decreases 

and, hence, the material constants also decrease. Nevertheless, it should be noted that the 

reduction of material constants with increased temperature is not really significant in 
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tenns of quantitative considerations. As a consequence, the effect of temperature on 

material constants can be assumed to be negligible without serious error. 

4.4.4 Conclusions 

The following conclusions can be drawn from the experimental results. 

i) Within the measured strain range, the uniaxial elastic behaviour of the rubber 

compounds is perfectly linear and can be represented by true Young's moduli. 

ii) The temperature dependence of both the true Young's modulus and the material 

constants is not pronounced, even though a slight reduction in their values with 

increasing temperature is observed. 

iii) Regardless of the temperature effect, the Mooney-Rivlin constants of both 

compounds used in this project are given below. 

For "Metalastik 19055" : 

For "Metalastik 32053" : 

ClO = 0.42 MPa and 

Col = 0.11 MPa. 

ClO = 0.33 MPa and 

Col = 0.08 MPa. 
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4.5 Determination of hysteresis factor 

4.5.1 Introduction 

Basically, there are several factors controlling the dynamic properties of rubber products, 

such as compound composition, processing factor and test conditions. However, only the 

influences of test conditions are of particular concern in this project. As, in most 

applications, rubber components are normally subjected to various strain amplitudes, 

frequencies and service temperatures and the hysteresis factor is, of course, dependent 

on these variables, therefore, the effects of these varibles on the hysteresis factors of the 

two rubber compounds "Metalastik 19055" and " Metalastik 32053" have been 

thoroughly investigated in this section. 

4.5.2 Methodology 

• The effects of strain amplitude and frequency 

The investigation of the effects of strain amplitude and frequency on hysteresis factor 

was carried out by using a DARTEC (± 5 kN) servo-hydraulic testing machine. The 

circular cross section test pieces with the dimensions shown in Figure 4.7 were prepared 

by bonding rubber to metal plates using a normal adhesion system. Firstly, the surfaces of 

the metal plates were cleaned with a fine steel wool to eliminate rust and dirt. Then, 

further surface treatment was achieved by using 1,I,l-trichloroethane to degrease and 

remove residual contamination. Finally, the bonding system, comprising of Chemlok 205 

primer and Chemlok 220 covercoat (Durham Chemicals, UK.), was applied to the 

properly prepared surfaces with a drying period of 30 minutes between coats. After the 

surface preparation was complete, the rubber was then cured and bonded to the metal 

plates in a transfer mould at 150°C for a period of 16 minutes (for "Metalastik 19055") 

and 22 minutes (for "Metalastik 32053"). Subsequently, the test pieces were tested at 
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three different frequencies; 0.1, 1 and 10 Hz. At each frequency, the test pieces were 

tested over a range of strain amplitudes, varying from 0.04 to 0.4. The ambient 

temperature was about 20°C and the tests were of short duration to avoid a significant 

temperature rise in the test pieces. Three test pieces were tested at each frequency and 

the average values of hysteresis factor were reported. 

80.. 8mm 

32 nun 

Figure 4.7 The cross section view of the test specimen for the Danec 

servo-hydraulic tester 

• The effect of temperature 

An evaluation of the effect of temperature on hysteresis factor was undertaken 

successfully by using the Du Pont 928 DMA (Dynamic Mechanical Analyser). Specimens 

with approximate dimensions of 13x13X2 mm. were dynamically deformed in flexural 

mode with the oscillation amplitude of 1.00 mm. The frequency was kept constant at 1 

Hz. The test temperature was increased continuously with a constant rate of 3°C/min, 

starting from ambient temperature up to 100°C. The value of hysteresis factor was then 

recorded at every 5°C interval. 

4.5.3 Results and discussion 

The effects of strain amplitude and frequency on hysteresis factor of both rubber 

compounds are graphically shown in Figures 4.8 and 4.9. Regardless of frequencY range, 

results clearly show that the hysteresis factors of both compounds decrease slightly with 

increasing strain amplitude. However, within the strain amplitude ranging from 0.04 to 
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0.4 , the decrease in hysteresis factor is insignificant. Consequently, for simpl icity 111 

modelling, it is assumed that hysteresis factor of these panicular compounds IS 

independent of strain amplitude and it value can be represented by a single mid-range 

value (See Figures 4 .8 and 4.9) . 

OO~5 

f) O~2 L 

:; 0039 
.!! 
g 

0036 g. 1\ ~ 
LI Mid-range va tue = 0.039 I 

0.033 

003 

o 01 02 0' 04 
Strnlll 

I ~ O IJ[/ """' 1111 ___ 10 111 I 
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When the effect of frequency is considered, it is apparent that frequency also has no 

significant effect on the hysteresis factor of both compounds, even though a slight 

increase in hysteresis factor with increased frequency can be observed. 

Similarly, from DMA results (Figure 4.10), it can be seen that the effect of temperature 

on hysteresis factor is not pronounced, as the hysteresis factor of both compounds 

remains substantially constant over the test temperature range (25-95°C). 
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Figure 4 .10 Hysteresis fac tor against temperature of two Metalastik compounds 

The independence of hysteresis factor on both frequency and temperature can be 

explained below. In general, the effects of both frequency and temperature on hysteresis 

factor of a typical rubber vulcanisate containing carbon black are inversely interrelated 

and can be represented diagrammatically in Figure 4.11.(48) Within the experimental 

frequency ra nge, the rubber molecular chains have adequate time to move in response to 

the applied stress . This means the rubber characteristic falls within the rubbery region 

where the frequency dependence is not pronounced. Moreover, it is evident that the 

presence of carbon black can also reduce the frequency dependence of the hysteresis 

factor.(1I 2) 
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Likewise. at the test temperatures which are far above the glass transition temperatures 

(Tg) of both natural and polyisoprene rubbers. the rubber molecules certainly possess the 

characteristics of the rubbery state as the molecular movement can take place very easily 

due to high themlal energy. 

Tan 8 I Rubbery slate I 

Temperature 
• 

I Transi tion Slate I I Glassy Slate I 

Frequency 
Tg 

Figure 4.11 Typical hysteresis curve of CB-filled rubber vu1canisate 

4.5.4 Conclusions 

Taken as a whole. it can be concluded that 

i) Regardless of the strain amplitude effect. the hysteresis factor of both compounds 

can be represented by a single value as shown below. 

For "Metalastik 19055" hysteresis factor = 0.039 or loss angle (8) = 2.23° 

For "Metalastik 32053" hysteresis factor = 0.027 or loss angle (8) = 1.55° 

ii) The hysteresis factors of both rubber compounds are found to be independent of 

both frequency and temperature within the tested ranges. 
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4.6 Heat transfer coefficient analysis 

4.6.1 Introduction 

Heat transfer coefficients of "Metalastik 19055", " Metalastik 32053", steel and 

aluminium to air were determined by using NlSA finite element package based on results 

obtained experimentally by observing temperature changes at any point in the sample as a 

function of time. 

4.6.2 Methodology 

• Specimen preparation 

11rree cylinder-shaped specimens for each material were prepared with the diameter and 

length of 26 and 46 mm, respectively. Vulcani sation of both rubber compounds was 

undertaken at 150°C for 30 minutes . 

• Experimental procedures 

Initially, one specimen for any material of interest was tested. A measurement of 

temperature change was carried out by creating a tiny hole into the specimen. Then, a 

fine (0.5 mm diameter) calibrated thermocouple wire was carefull y inserted through the 

hole, ensuring that: 

(i) a good con tact between thermocouple and material matrix was attained, and 

(ii) the exact position of the extreme of the thermocouple wire was known. 

Thereafter, the assembly was brought to temperature equilibrium in an oven maintained 

at approximately 80°C and then suddenly brought out and hung in the air to cool down 

at a constant room temperature (l8°C). The temperature readings were then recorded 

periodically for 1080 seconds and, finally, a graph of temperature reduction against time 

was created. 
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After recording the experimental data, a transient heat transfer analysis in NISA was 

performed to determine the value of heat transfer coefficient According to the 

symmetric configuration, only a quarter of each specimen was modelled and analysed. 

The model was then subdivided into 276 axisymmetric eight-node quadrilateral elements 

as shown in Figure 4.12. 
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Figure 4 .12 Geomerry Ca) and FE model (b) of a cylinder specimen for transient 

heat transfer analysis 

The boundary conditions were applied as follows. The initial temperature of all nodes 

was set to be the same as the oven temperature. Likewise, the film temperatures at both 

side edge (SE) and top edge (TE) were defined by the room temperature. The material 

properties used for the analysis were given in Table 4.2. 

Initially, one estimated value of heat transfer coefficient was applied to the element faces 

along the side edge and top edge. The transient thennal analysis was then perfonned to 
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Table 4.2 Material properties for thermal analysis 

Material Metalastik Metalastik Steel* Aluminium** 
Property 19055* 32053* 

Thermal conductivity (W /mm.K) 0.000225 0.000219 0.05 0.203 
Specific heat (J/g.K) 1.975 1.995 0.460 0.90 
Density (g/mm3

) 0.00107 0.00106 0.0078 0.00271 
• Data supplied by Metalastik Ltd . 

•• Data obtained from "Metallic materials·o(l'» 

compute the temperature at any point in the model as a function of time. With the 

DISPLA Y post-processor, a plot of computed temperature against time at a point in the 

model identical to the location of the thermocouple in the specimen was established. The 

curve was then compared to the experimental curve. Thereafter, the value of the heat 

transfer coefficient was adjusted to gain the best fit between the simulated and the 

experimental curves. This procedure yielded the best value of heat transfer coefficient for 

the specimen. 

To check the validity of this value, the other two specimens for each material were tested 

with the same procedures, except that the thermocouple wire was inserted at different 

positions. The transient heat transfer analysis was then run by using the value of heat 

transfer coefficient previously obtained. Enally, the computer generated curves were 

compared to the experimental curves. 

4.6.3 Results and discussion 

The temperature reduction traces of "Metalastik 19055", "Metalastik 32053", steel and 

aluminium with various values of heat transfer coefficients are shown in Egures 4.13 to 

4.16, respectively. Obviously, the results indicate that the method used herein is capable 

of estimating the value of heat transfer coefficient of materials with high accuracy as, 

when the right value of heat transfer coefficient is chosen, the computed curve fits very 

well with the experimental curve. It is also apparent that the temperature reduction traces 
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Fig llre -1.1-1 Temperature reduction traces of "Metalastik 32053" at position 

(8 , I O. 5) with various va lues of heat transfer coefficient 
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Figure -1. /5 Temperature red uction traces of steel at position (8 ,5) wit h various values 

of heat transfer coefficient 
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Figure -1.16 Temperature reduction traces of aluminium at position (9, 15) with various 

values of heat transfer coeffi cient 
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I 

are fairly ensitive to any changes in heat transfer coefficient. As can be seen, a slight 

change in heat transfer coefficient ITom the best value results in a noticeable deviation 

from the experimental curves. Table 4.3 represents the best values of heat transfer 

coefficient for each material. 

Table -1.3 Heat transfer coefficients of materials 

Material Heat transfer coefficient (W/mm2 K) 
"Metalastik 19055" 0.174E-04 
"Metalastik 32053" 0.175E-04 
Steel 0.097E-04 
Aluminium 0.095E-04 

To validate the best value of heat transfer coeftlcient obtained, the test was repeated at 

different positions by using the value of heat transfer coefficient shown in Table 4.3 for 

the transient thermal analysis . Figures 4. 17 to 4.20 show the comparisons between 

the computed and experimental temperature traces for each material of interest at 

different positions. 
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Figure -1.1 7 Temperature reduction traces of"Metalastik 19055" (a) at position 

(0,2) and (b) at position (6,0) 
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Figllre -1.20 Temperature reduction traces of aluminium (a) at position (0, 11) 

and (b) at position (6,5) 

As can be seen, the computed results fit very well with the experimental results in any 

positions selected. In fact , these results confirm that the va lues of heat transfer 

coefficient obtained from this method are accu rate and reliable. It is also observed that 

the values of heat transfer coefficient of the two rubber compounds are al most identi cal 

and, simi larly, for those of the two metals. This is attributed to the fact that heat transfer 

coefficient is not a material specific but , on the contrary, it depends mainly on severa l 

factors, for instance, specimen shape, temperature gradient, surface emissivity, etc. In 

this case, the va lues of heat transfer coefticient of rubber compounds are almost double 

tho e of metals. This is possibly due to the effect of surface emi sivity as all test 

speci mens were in the same shape and subject to the same heat treatment. Clearly, an 

addi ti on of carbon black into rubbers wou ld bring the compounds closer to the classical 

black body from which more energy will be radiated (higher surface emissivity) 

compared to a glossy painted surface or a polished metal surface. 

Even though the heat transfer coefficient will be dependent on geometry, for simpli city 

of FEA in thi s project, the effect of geometry on the heat transfer coefficient is 

disregarded as va rious component geometries were modelled and analysed. An error 

introduced by this disregard will be di scussed later in Chapter 6. 
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4.6.4 Conclusions 

In sununary, results clearly show that 

1. the method used herein is capable of measuring the heat transfer coefficient of 

materials with high accuracy. The values of heat transfer coefficient for each material 

of interest are given in Table 4.3. 

2. heat transfer coefficient is not a material specific but mainly dependent on the surface 

appearance. A material with glossy, polished surface tends to have lower value of heat 

transfer coefficient, compared to that with a black, matted surface. 

111 



5.1 Introduction 

CHAPTERS 

MODELLING WORK 

- The prediction of the temperature rise of rubber components subjected to dynamic 

deformation was undertaken by means of Finite Element Analysis (FEA). Throughout 

this work, all fInite element problems were modelled and solved numerically by the 

NISA (114) package installed into a PC 486/66 MHz. 

5.2 FEA of approximately cylindrical anti·vibration mountings 

5.2.1 Mounting geometry 

Mountings with a wide variety of shapes and sizes are now commercially available to 

enable engineers to choose the appropriate design to protect instruments from vibration. 

In this study, three different sizes of mountings were selected from the "MetaIastik 

Instrumountings Brochure,,(IIS) and their geometries are displayed in Figure 5.1. 
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Figure 5.1 Geometries of (a) small, (b) medium and (c) large mountings 

5.2.2 Rubber compound 

The rubber compound considered in the modelling of rubber mountings was supplied by 

MetaIastik and it was coded as "MetaIastik 19055". The compound recipe is not given 

herein as, for commercial reasons, it should be kept confidential. The mechanical 

properties of this compound were represented in terms of the Mooney-Rivlin 

hyperelastic material model. The two material constants used for the analysis, together 

with some other essential material data such as hysteresis factor and heat transfer 

coefficient, were determined using the procedures described in Chapter 4. 

5.2.3 Problem description and experimental design 

In a typical service environment, the mountings are normally subjected to either dynamic 

shear or axial deformation. Based on the deformation mode, the simulations of rubber 

mountings were of four kinds: 

(1) mountings subject to dynamic axial deformation without precompression; 

(2) mountings subject to dynamic axial deformation with 10% precompression; 
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(3) mountings subject to dynamic shear deformation without precompression; 

and 

(4) mountings subject to dynamic shear deformation with 10% precompression. 

For any kind of deformation, the performance of the mountings is strongly dependent on 

strain amplitude and frequency. Thus, the effects of these factors on temperature rise 

were of great interest in this project. To obtain a response equation relating the 

temperature rise to the two factors, an experimental design with 2 factors namely the 

central composite design(lI6) was introduced. In the design, it is preferable to define the 

factor levels in design units. The total design can be constructed as represented 

diagrammatically in Figure 5.2. According to this diagram, nine simulations were 

performed for each deformation mode. Details of the test conditions for these 

simulations are given in the subsequent sections. 

(0.1.414) 

(-1.1) (1,1) 

(-1.414.0) «( 0) (1.414.0) 

(-1.-1) (1.-1) 

(0,-1.414) 

Figure 5.2 The experimental design for 2 factors;-strain amplitude and frequency 

5.2.4 The FEA procedures 

Basically. because of the complexity of the calculations, it is of great importance in FEA 

to make the number of unknowns as small as possible by taking advantages of symmetry 
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wherever applicable. However, a point to be borne in mind is that, to take the benefit 

from symmetry, both the geometry and the applied loading must be symmetrical. 

The FEA procedures for the mountings described below are divided into two, based on 

the deformation mode because of the demands, or otherwise, of symmetry. 

5.2.4.1 Dynamic axial deformation. 

When axial deformation is considered, the symmetrical requirements explained above can 

be met by 2-D axisymmetric modelling. As can be seen from Figure 5.3, symmetry 

considerations made it possible to model only a quarter of the domain (shaded area). 

:::1:: stram amplitude 

axisymmetric axis.. _-_ -_ ~~. 

\ ...... __ symmetry plane 

Figure 5.3 2-D axisymmetric modelling of rubber mountings 

• Dynamic axial deformation without precompression 

By considering the mountings subject to 15% strain deformation at 40 Hz as an example, 

the FEA procedures can be described step by step as follows. 

Step (1) The FE meshes for stress analysis were created and shown in Figures 5.4. 

Two-dimensional eight-node quadrilateral elements were chosen to 

represent these models. Only the rubber parts were modelled and analysed, 

since the metal parts were considered as a fully elastic material with a very 
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SL 

high Young's modulus value which would not distort or give any heat 

build-up under dynamic deformation. 

TL 

TL .............. 

/ 
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SL I 

BL RL 

(a) Small mounting (b) Medium mounting 

TL 

I I / / 
I I / 

I I 
SL I 

y 

RL 

(c) Large mounting Lx 
Figure 5.4 FE meshes for stress analysis 

Step (2) Since the mountings, in one cycle, were deformed in both extension and 

compression, two models per mounting were then created based on the 

deformation mode. For all models. the displacement boundary conditions 

were applied to ensure that all nodes along the bottom line (BL) were 
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Step (3) 

Step (4) 

Step (5) 

restrained not to move in Y -direction, while all nodes along the symmetry 

line (SL) were restrained not to move in X-direction. As the rubber part 

was bonded to steel plate at the top line (11.), the steel plate constrained the 

movement of rubber at the interface. Consequently, while all nodes along 

this surface contact were specified to move either down wards 

(compression) or upwards (extension) to 15% strain, their movements 

along the X-direction were restricted. 

The hyperelastic Mooney-Rivlin material model was selected to define the 

material data. The two elastic constants were (See Chapter 4) 

ClO = 0.42 MPa 

ClI = 0.11 MPa 

and Poisson's ratio = 0.499. 

The stress calculations of these models were then performed by means of 

nonlinear stress analysis. During the computation, the displacement was 

divided into, and applied in, 100 equal steps. 

After the nonlinear stress analysis, the element strain energies for each 

model were extracted from the output file and converted further into 

element energy losses and element heat generation rates P.«L)J.J).i.t.'y9J.l.lm~, 

respectively. At this stage, essential parameters for this conversion were 

the hysteresis factor, frequency and element volume data. Unfortunately, 

the element volume data cannot be obtained from nonlinear stress analysis, 

consequently, the same FE models were subjected to linear stress analysis 

in order to fulfill this requirement. The method and equations used for the 

conversion are fully described in Appendix I. 
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Step (6) To estimate the temperature rise resulting from heat generation, a finite 

element thermal analysis must be performed. In this analysis, the steel plate 

must be modelled together with the rubber matrix in order to accommodate 

the effects of both heat conduction and heat convection occurring during 

the analysis. The meshes previously shown were then modified by modelling 

TS TS 

I--H-+++H+! MS 
MS 

I I I I 
I I I I 

I I I RS 

RS I 

(a) Small (b) Medium 

TS 

MS 

f / / 
I I 
I I RS 

(c) Large 

Figure 55 FE meshes for thermal analysis of rubber mountings 
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Step (7) 

Step (8) 

Step (9) 

the steel plate bonded to the top of the rubber component as represented in 

Figures 5.5. Up to this point, it should be noted that bolts were ignored in 

the modelling as preliminary analyses had shown that the bolts had no effect 

on temperature rise in the mountings. Two-dimensional 8-node quadrilateral 

axisymmetric elements were selected to represent the thermal analysis 

models. 

The thermal boundary conditions were then applied based on the 

assumption that rubber mountings are always connected finnJy to a huge 

metal instrument for testing and heat generated can be transferred from the 

rubber matrix into the steel plate and the instrument and finally convected to 

air. With regard to this assumption, the nodal temperatures at the metal 

plate-instrument interface (TS) were set to remain at ambient temperature 

(20°C) throughout the analysis. In the meantime, heat transfer coefficients, 

previously determined in Chapter 4, of "Metalastik 19055" (0.174E-04 

W/mm2.K) and mild steel (0.097E-04 W/mm2.K) were applied to the 

element faces along the outer surfaces of rubber (RS) and steel plate (MS), 

respectively. Lastly, the element heat generation rates per unit volume, 

calculated from step (5), were applied to the elements in the rubber matrix. 

The material data used for thermal analysis were as follows. 

For rubber matrix : Thermal conductivity = 0.000225 W/mrn.K* 

For steel plate : Thermal conductivity = 0.05 W/mrn.K* 

*Data supplied by Metalastik 

After the FE models were complete, steady state thermal analysis was 

performed. With the NISA post-processor, contour plots of equilibrium 

temperature distribution of these mountings were established and the 
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maximum temperature rise was found by subtracting the ambient 

temperature from the maximum equilibrium temperature. 

Step (10) The above procedures were then repeated with different analysis variables 

(strain amplitude and frequency) with particular regard to the experimental 

design sets as shown in Table 5.1. Fmally, the "STATGRAPHICS'~l17) 

programme was introduced to analyse the FE results, in order to estimate 

the mathematical relationship between maximum temperature rise and the 

two variables. 

Table 5.1 The experimental design sets for mountings (small, medium and large) 

subjected to dynamic axial deformation without precompression 

Problem No. A* B* Strain (0/0) Frequency (Hz) Note 
1 +1 +1 15 40 Factorial coint 
2 +1 -1 15 10 Factorial point 
3 -1 +1 5 40 Factorial point 
4 -1 -1 5 10 Factorial point 
5 +1.414 0 17.07 25 Star point 
6 -1.414 0 2.93 25 Star point 
7 0 +1.414 10 46.21 Star point 
8 0 -1.414 10 3.79 Star point 
9 0 0 10 25 Central point 

'" A and B are in design units 

• Dynamic axial deformation with 10% precompression 

In this case, even though the main FEA procedures were almost the same as those 

previously described, there were some exceptions as presented below. 
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i) In step (2), the boundary conditions for nonlinear stress analysis were re-specified. 

Let us consider the mountings subjected to 7.5% strain at 40 Hz as an example. With 

10% precompression, 3 models for each mounting were created based on three 

different levels of strain amplitude. Hence, the nodes along the top line (TL) of the 

three models were then moved to the strain levels of 2.5%, 10% and 17.5%, 

respectively, whereas the other displacement boundary conditions were set to remain 

the same as those in the previous section. 

ii) In step (10), the PEA procedures were repeated with the analysis variable sets as 

shown in Table 5.2. 

Table 5.2 The experimental design sets for mountings (small, medium and large) 

subjected to dynamic axial deformation with 10% precompression 

Problem No. A B Strain(%) Frequency (Hz) Note 
1 +1 +1 7.5 40 Factorial point 
2 +1 -1 7.5 10 Factorial point 
3 -1 +1 2.5 40 Factorial point 
4 -1 -1 2.5 10 Factorial point 
5 +1.414 0 8.535 25 Star point 
6 -1.414 0 1.465 25 Star point 
7 0 +1.414 5 46.21 Star point 
8 0 -1.414 5 3.79 Star point 
9 0 0 5 25 Central point 

5.2.4.2 Dynamic shear deformation 

Unlike the axial deformation, the symmetrical criteria for shear deformation can only be 

met by 3-D solid modelling. Only one particular symmetry plane lying paraIlel to the 

direction of shear could be taken into account for the modelling benefit As a 

consequence, in this case, PE problems were created by modelling half of the whole 

domain. 
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• Dynamic shear deformation without precompression 

In general, the basic principles of the FEA procedure in this case are very similar to those 

illustrated in section 5.2.4.1. Only the FE meshes, boundary conditions and the simulated 

test conditions are different. As an example, by considering the mountings subject to 

30% shear strain at 40 Hz, the FEA procedures can be summarised as shown below. 

Step (1) 

Step (2) 

Step (3) 

Step (4) 

The FE meshes for stress analysis of small, medium and large mountings 

were created as shown in Figures 5.6. Three-dimensional 20-node 

hexahedron elements were selected to form these models. 

As the mountings were considered as being sheared in both the X and -X 

directions, two models for each mounting were created based on the 

direction of shear. For all models, the displacement boundary conditions 

were applied in such the way that all nodes along the bottom surface were 

constrained not to move in any direction. Meanwhile, all nodes along the 

top surface were specified to move either to X or -X direction for 30% 

strain, whereas their movements in Y and Z directions were restricted 

during the deformation. 

The material data were specified as 

CIO = 0.42 MPa 

Cll = 0.11 MPa 

and Poisson' s ratio = 0.499. 

Nonlinear stress analysis was then employed to compute the element strain 

energies of these models. 
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(a) Small (b) Medium 

z 

(c) Large kc: 
Figure5.6 FE meshes for stress analysis of mountings (3-D modelling) 

Step (5) 

Step (6) 

The element energies obtained were processed further by the method 

described in Appendix I in order to calculate the net element heat 

generation rates per unit volume for each mounting. 

Again, for steady state thermal analysis. modifications of the meshes shown 

in Figures 5.6 were made by modelling the steel plates to both ends (top 

and bottom) as represented in Figure 5.7. 
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(a) Small (b) Medium 

(c) Large 

Figure 5.7 The thennal3D-solid element models of rubber mountings 

Step (7) The thennal boundary conditions were then specified as follows. 

• All nodes along the top and bottom end surfaces were set to remain at 

20°C throughout the analysis. 

• The heat transfer coefficients of rubber and mild steel were applied to 

the element face along the outer surfaces of rubber and steel, respectively. 

However, it should be noted that the surfaces along the symmetry plane 
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Step (8) 

Step (9) 

were insulated, as no heat was allowed to transfer across this plane. 

t The element heat generation rates per unit volume, obtained from step 

(5), were finally applied to the rubber elements. 

The material data used for thermal analysis were: 

For rubber; Thermal conductivity = 0.000225 W /mm.K 

For steel plate; Thennal conductivity = 0.05 W/mrn.K 

The steady state thermal analysis was then perfonned to estimate the 

maximum equilibrium temperature for each model and, by subtracting the 

ambient temperature (20°C), the maximum temperature rise was predicted. 

Step (10) Based on the experimental design, the above procedures were repeated 

with different variable sets as shown in Table 5.3. Finally, the temperature 

rise results were analysed by the "STATGRAPHICS" programme. 

Table 5.3 The experimental design sets for mountings under dynamic shear 

defonnation without precompression 

Problem No. A B Strain(%) Frequency (Hz) Note 
1 +1 +1 30 40 Factorial point 
2 +1 -1 30 10 Factorial point 
3 -1 +1 10 40 Factorial point 
4 -1 -1 10 10 Factorial point 
5 +1.414 0 34.14 25 Star point 
6 -1.414 0 5.86 25 Star point 
7 0 +1.414 20 46.21 Star point 
8 0 -1.414 20 3.79 Star point 
9 0 0 20 25 Central point 
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• Dynamic shear deformation with 10% precompression. 

The same analysis procedures described above were repeated with the following 

exceptions: 

i) In step (2), three models per mounting were created based on the boundary conditions 

applied. In the first model, to simulate the 10% precompression, all nodes along the 

bottom surface were restrained not to move in any direction. In the meantime, all 

nodes along the top surface were specified to move downwards to 10% strain while 

their movements in the other two directions were restricted. In addition, the nodes 

along the symmetry plane were specified not to move in Y -direction. For the other 

two models, the same boundary conditions were also applied. However, while the 

10% precompression boundary conditions being retained, the nodes along the top 

surface were set to move further to a certain strain in X and -X directions for the 

second model and the third model, respectively. 

ii) In step (10), the above procedures were carried out repeatedly with the variable sets 

as represented in Table 5.4. 

Table 5.4 The experimental design sets for mountings under dynamic shear 

deformation with 10% precompression 

Problem No. A B Strain (%) Frequency (Hz) Note 
1 +1 +1 15 40 Factorial point 
2 +1 -1 15 10 Factorial point 
3 -1 +1 5 40 Factorial point 
4 -1 -1 5 10 Factorial point 
5 +1.414 0 17.07 25 Star point 
6 -1.414 0 2.93 25 Star point 
7 0 +1.414 10 46.21 Star point 
8 0 -1.414 10 3.79 Star point 
9 0 0 10 25 Central point 
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5.2.5 Results and Discussion 

5.2.5.1 Dynamic axial deformation with/without precompression 

- Contour characteristic of equilibrium temperature distribution 

With the NISA post-processor, the computed temperature results of the mountings can 

be represented in terms of a colour contour plot. For example, the contour plots of the 

equilibrium temperature distributions for the mountings subjected to dynamic axial 

deformation without precompression for 10% strain and 25 Hz (central point) are shown 

in Figure 5.8. Likewise, the contour plots for those subjected to dynamic axial 

deformation with 10% precompression for 5% strain and 25 Hz are shown in Figure 5.9. 

Similar patterns of temperature contours are also obtained for the mountings subjected 

to different test conditions. Obviously, the maximum equilibrium running temperature is 

found, in all cases, at the centre of the mountings, whereas the minimum equilibrium 

running temperature is found at the rubber-metal interface area. The contour plots show 

that there are various gradations of temperature between the centres and the rubber 

surfaces. This temperature distribution arises due to the fact that, during the dynamic 

deformation, heat generated as a result of hysteresis can be dissipated away from the 

rubber matrix by two main heat transfer processes: heat convection and heat conduction. 

Heat convection takes place at the rubber-air interface and the heat transfer rate depends 

mainly upon both the overall temperature difference and the convective heat transfer 

coefficient between the rubber surface and air. On the other hand, heat convection does 

not occur at the rubber-metal interface. As the rubber is well bonded to the metal plate, 

the intimate contact between rubber and metal surfaces is assured. The film barrier to 

heat flow (alternatively called the convective interface contact resistance) between the 

two materials, therefore, no longer exists. (85) Consequently, the only mode of heat 

transfer taking place at this interface is heat conduction by which heat is dissipated to the 

metal. 
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Figllre 5.8(a) Equilibrium temperature di stribution for the small mounting 
subjected to dynamic axial deformation without precompression 
(a quarter of mounting is shown) 
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Figllre 5.8(b) Equilibrium temperature distribution for the medium mounting 
subjected to dynamic axial deformation without precompression 
(a quarter of mounting is shown) 
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FiKllre 5.8(c) Equilibrium temperature distribution for the large mounting 
subjected to dynamic axial deformation without precompression 
(a quarter of mounting is shown) 
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Figllre 5.9(a) Equi li brium temperature distribution for the small mounting 
subjected to dynamic axial defomlation with 10% precompression 
(a quatter of mounting is shown) 
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Figllre 5.9 (b) Equi li brium temperature distribution for the medium mounti ng 
subjected to dynamic axia l deformation with 10% precompression 
(a quarter of mounting is shown) 
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Figure 5.9 (e) Equil ibrium temperature distribution for the large mounting 
subjected to dynamic axial deformation with 10% precompression 
(a quarter of mounting is shown) 
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Both heat convection and heat conduction mentioned above are responsible for the 

temperature reduction of the rubber surfaces. Once the temperatures at the rubber 

surfaces are lowered, the temperature difference within rubber itself brings about the 

conduction heat transfer. In this case, heat will be transferred from the high temperature 

region (at the centre of rubber matrix) to the low temperature region (at the rubber 

surfaces). It should be borne in mind that all these heat transfer processes take place 

simultaneously. Since rubber is a poor conductor, at equilibrium state where the element 

heat generation rate is equivalent to the element heat dissipation rate, the contour plots 

of equilibrium temperature distribution are obtained with various gradations of 

temperature between the innermost region and the outermost region. As the equilibrium 

temperature at the rubber-metal interface is lower than that at the rubber-air interface, 

this is an indication that the heat conduction rate at rubber-metal interface is much higher 

than the heat convection rate. A possible explanation is given to the assumption made 

earlier during the modelling. According to this assumption, the metal plate is connected 

fmnly to a huge metal bar and, therefore, the conducted heat will be dissipated away very 

quickly, due to a very high thermal conductivity of metal, from the metal plate into the 

metal bar and, finally, to the surroundings. This phenomenon is generally known as "heat 

sink". For this reason, the temperature of the metal plate is expected to remain at 

ambient temperature all the time, giving rise to a larger temperature difference between 

rubber and metal surfaces and, hence, a faster heat conduction rate at the rubber-metal 

interface. A mathematical proof of this will be given in the next chapter. 

- The effects of test conditions and geometric factor on the maximum temperature 

rise 

In the project, importance is given to the maximum equilibrium temperature because it is 

this parameter which indicates the degree of possible thermal degradation taking place 

inside the rubber matrix. However, instead of the maximum equilibrium temperature, the 

maximum temperature rise (the maximum equilibrium temperature - ambient 

temperature) is chosen to represent the temperature results in the subsequent section. 
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This is because the maximum equilibrium temperature depends on the ambient 

temperature whereas the preliminary analyses have shown that the maximum temperature 

rise is independent of the ambient temperature, provided that the variation in ambient 

temperature does not change significantly the physical and thermal properties of the 

rubber compound. 

Table 5.5 summarises the maximum temperature rises (T max,), together with the 

maximum element strain energy densities (E,...,) obtained during the dynamic 

deformation, for the mountings subjected to the various test conditions. As the strain 

energy density is directly proportional to the heat generation rate, the maximum 

temperature rise is found to increase with increasing the maximum element strain energy 

density when compared at the same frequency. However, it should be noted at this point 

that, apart from the strain energy density, the maximum temperature rise also depends on 

the frequency and the mounting geometry as these two factors govern the rates of heat 

generation and heat dissipation, respectively. 

Based on the experimental design technique, a mathematical relationship between. the 

maximum temperature rise and the two test variables (strain amplitude (e) and frequency 

(0) for each mounting can be obtained as given in Table 5.6. This relationship is 

generaJIy known as the "Quadratic response model" which can be represented 

mathematically by the foIIowing form: 

T..... = aa + al.e + a2.f + a3e.f + :14.10
2 + as.e 

where T ..... = maximum temperature rise 

e = strain amplitude 

f = frequency 

and aa, at, a2, a3, :14 and as are equation coefficients. 

- - - - - - - - - (5.1) 

However, it can be observed that the response equations shown in Table 5.6 do not 

include the frequency squared term. This is because the equation coefficient as is very 

small, compared to the other coefficients, and is proved by the "STATGRAPHICS" 

132 



Table 55 The maximum temperature rise and the maximum element strain energy density for mountings subjected to dynamic 

axial deformation. 

Deformation Test conditions Em ... (xl0·2 rnJ/mm3) Tm"" eC) 
mode Small Medium Large Small Medium Lar!1;e 

2.93%strain, 25 Hz 1.43 0.43 0.51 0.8 1.6 4.2 
5%strain, 10 Hz 4.17 1.26 1.50 0.9 1.9 4.9 
5%strain, 40 Hz 4.17 1.26 1.50 3.8 7.6 19.4 

Dynamic axial lO%strain, 3.79 Hz 16.97 5.06 6.06 1.5 2.9 7.4 
without lO%strain,25 Hz 16.97 5.06 6.06 9.6 19.2 48.9 

precompression lO%strain, 46.21 Hz 16.97 5.06 6.06 17.8 35.5 90.3 
15%strain, 10 Hz 39.38 11.39 13.87 8.9 17.5 44.6 
15%strain, 40 Hz 39.38 11.39 13.87 35.4 70.1 178.3 

17.07%strain, 25 Hz 51.87 14.76 18.13 29.0 57.2 145.3 
1.465%strain, 25 Hz 0.58 0.18 0.18 0.3 0.6 1.4 
2.5%strain, 10 Hz 1.68 0.53 0.53 0.3 0.6 1.6 
2.5%strain, 40 Hz 1.68 0.53 0.53 1.4 2.6 6.5 

Dynamic axial 5%strain, 3.79 Hz 6.78 2.13 2.14 0.5 1.0 2.5 
with 10% 5%strain, 25 Hz 6.78 2.13 2.14 3.5 6.4 16.3 

precompression 5%strain, 46.21 Hz 6.78 2.13 2.14 6.4 11.8 30.1 
7.5%strain, 10 Hz 15.43 4.82 4.84 3.2 5.8 14.7 
7.5%strain,40 Hz 15.43 4.82 4.84 12.6 23.1 58.9 

8.535%strain, 25 Hz 20.12 6.25 6.28 10.3 18.8 47.8 



programme to be statistically insignificant. Consequently, the tenn as.f was eliminated 

and the other equation coefficients (ao, a .. a2, a3 and 34) were then re-determined. 

Table 5.6 The estimated response equations for the mountings subjected to 

dynamic axial deformation 

Deformation Size The response equations R-squared 

mode 

Small T""", = 9.61 + 9.92e + 6.56f + 5.93ef 0.996 

+ 2.65e2 

Without Medium Tm8J< = 19.22 + 19.58e + 13.06f + l1.72ef 0.996 

precompression + 5.08e2 

Large Tm8J< = 48.85 + 49.78e + 33.19f + 29.80ef 0.996 

+ 12.94e2 

Small T""", = 3.48 + 3.52e + 2.36f + 2.11ef 0.996 

+0.90e2 

With 10% Medium T""", = 6.40 + 6.43e + 4.33f + 3.86ef 0.997 

precompression + 1.63e2 

Large Tm8J< = 16.29 + 16.3ge + 11.02f + 9.82ef 0.997 

+ 4.15e2 

As can be seen, all of the coefficients of correlation (R-squared value) are very high 

(>0.99 with 8 degree of freedom). This indicates that it is acceptable to use these 

response equations to estimate the maximum temperature rise for any combination of the 

test variables. Also, it can be observed that, even though these three mountings are 

different in size, their response equations are very similar in tenns of the relative values 

of their coefficients. 

Equation (5.1) reveals that the relationship between maximum temperature rise and 

strain amplitude is nonlinear. This nonlinearity arises from the fact that the maximum 
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temperature rise is directly proportional to the heat generation rates, that is the product 

of loss energy (strain energy x hysteresis factor) and frequency. Basically, it is accepted 

that the strain energy is proportional to the product of stress and strain. For a given 

"modulus" or stiffness, where stress can be represented mathematically in terms of strain, 

the strain energy is therefore proportional to the square of the strain. According to this 

relationship, the maximum temperature rise is found to be related nonlinearly to the 

strain amplitude as stated clearly by the squared term of the equation. As previously 

mentioned, the maximum temperature rise is directly proportional to the product of 

energy loss and frequency, thus, a linear relationship between the maximum temperature 

rise and frequency is obtained, even though there is an interaction effect of strain 

amplitude and frequency on the maximum temperature rise. The interaction term 

indicates that the effect of varying frequency on the maximum temperature rise differs 

according to the level of strain amplitude and vice versa. Moreover, it can be observed 

that the equation coefficients (aa, alo az, a3 and 34) are all positive for each individual 

equation. This means the maximum temperature rise will increase continuously with 

increasing strain amplitude and/or frequency. 

In addition to the qualitative similarities, there is also a quantitative correlation between 

the response equations obtained from the same deformation mode. As can be observed, 

regardless of the test conditions, the maximum temperature rise of the small, medium and 

large mountings can be related mathematically, as expressed below. 

T max. (I.) = KLM • T max. (M) = KLS • T ma><. (S) 

and, therefore, 

Tmax.(M) = KMS • Tmax.(s) 

- - - - - - - - - (5.2) 

- - - - - - - - - (5.3) 

where Tmox.(I.) , Tmox. (M) and Tmax. (S) are respectively the maximum temperature rise of the 

large, medium and small mountings. Since the constants KLM, KLS and KMS depend on the 

size differences between the mountings, they will be called the "geometric difference 

constants". Table 5.7 lists the approximate values of these geometric difference 

constants. 
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It should be noted at this point that the mountings selected in this study are different not 

only in size but also in configuration, therefore it is impossible to determine precisely 

the effect of geometric factor on the maximum temperature rise. However, it is expected 

Table 5.7 Approximate values of the geometric difference constant 

Dynamic axial without Dynamic axial with 

precompression 10% precompression 

KLM 2.54 2.54 

KLS 5.07 4.67 

K MS 2.00 1.83 

that the maximum temperature rise should depend on both surface area and volume of 

the mountings as these two parameters are known to have a great influence on heat 

transfer process. It is understandable that an increase in surface area will promote the 

convective heat dissipation process by which heat can be transferred out of the rubber 

matrix. Thus, more heat can be dissipated away as the surface area of the mountings is 

increased. Consequently, an increase in surface area generally causes a reduction in the 

maximum temperature rise. On the contrary, an increase in volume of the mounting 

generally results in an increase in distance between the centre and the surface and, 

therefore, causes a reduction in heat conduction rate at the centre of the mounting. 

Unquestionably, the maximum temperature rise should increase with increasing volume 

of the mountings. For this reason, attempts have been made to study the qualitative 

relationship between the maximum temperature rise and the ratio of volume to surface 

area of the mounting. Table 5.8 lists the volume (V) and surface area (A) for each 

mounting. The plots of the maximum temperature rise against the ratio of volume to 

surface area under various test conditions are then established as shown in Figure 5.10. 
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Table 5.8 Volume and surface area of the mountings 

Size Volume Total surface area Volume/total surface area 

(mm3
) (mm2

) (mm) 

Small 284.6 537.9 0.53 

Medium 2212.7 1729.4 1.28 

Large 10290.4 4598.2 2.24 

The results show that, for the same test conditions, the maximum temperature rise 

increases with the ratio of volume to surface area of the mounting. This is the reason 

why the maximum temperature rise of the large mounting is much higher than those of 

the medium and small mountings. Unfortunately, due to the configuration difference of 

the selected mountings, the results shown in Figure 5.10 cannot be interpreted 

quantitatively, for instance, to estimate the maximum temperature rise of other 

mountings with different ratios of volume to surface area . 

• Contour plots of the maximum temperature rise 

With reference to the response equations shown in Table 5.6, the contour plots of the 

maximum temperature rise as a function of strain amplitude and frequency can be 

generated, as shown in Figures 5.11 and 5.12 for the dynamic axial deformation without 

and with 10% precompression, respectively. Practically, these contour plots can be used 

as guidance for rubber engineers to determine suitable regions of service conditions for 

these particular mountings if the temperature tolerance of the rubber compound is 

known. 
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5.2.5.2 Dynamic shear deformation with/without precompression 

- Contour characteristic of equilibrium tempera ture distribution 

As in the case of dynamic axial deformation, the contour pattern of equilibrium 

temperature distribution is found to be independent of the test conditions. For this 

reason, only the contour plots for the mountings subjected to chosen test conditions are 

given. Given as examples are the contour plots for the mountings subjected to dynamic 

shear deformation without precompression at 20% strain and 25 Hz (Figure 5.13) and 

those for the mountings subjected to dynamic shear deformation with 10% 

precompression at 10% strain and 25 Hz (Figure 5.14). It can be observed that, 

regardless of the difference in deformation mode, the main characteristic of the 

temperature distribution pattern remains unchanged. The maximum equilibrium running 

temperature is still found at the centre of the mountings, while the minimum equilibrium 

running temperature is found at the rubber-metal interface area. This characteristic is 

governed mainly by the heat transfer process as explained fully in the previous section. 

However, it is obvious that the temperature gradation pattern obtained from dynamic 

shear deformation is not axisymmetrical, unlike the pattern obtained from dynamic axial 

deformation. This is attributed to the fact that the temperature rise at any point in the 

rubber matrix is proportional to both heat dissipation rate and heat generation rate. Due 

to an axisymmetry of the mounting configuration, the distribution pattern of heat 

dissipation rate should be axisymmetrical, regardless of the deformation mode. 

Generally, it is understandable that the heat generation rate is directly proponional to the 

strain energy in which its di stribution pattern depends remarkably on the deformation 

mode (the applied loads or displacement). Thus, the distribution pattern of heat 

generation rate should also depend on the deformation mode. In the case of dynamic 

axial deformation, the applied displacement is axi symmetrical , therefore, an 

axisymmetrical distribution pattern of heat generation rate can be expected. As the 

distribution patterns of both heat di ssipation rate and heat generation rate are 

axisymmetrical, the temperature gradation pattern should also be axisymmetrical (See 
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also Figures 5.8 and 5.9). On the contrary, in the case of dynamic shear defonnation, the 

applied displacement is not axisymmetrical, giving rise to a non-axisymmetrical 

distribution pattern of heat generation rate within the rubber matrix. The temperature 

gradation pattern is, therefore, found to be non-axisymmetrical as obviously seen in 

Figures 5.13 and 5.14. In addition, for the dynamic shear defonnation, precompression 

appears to have a great influence on the temperature gradation pattern. Again, this 

indicates that the temperature gradation pattern depends greatly on the deformation 

mode • 

• The effects of test conditions and geometric factor on the maximum temperature 

rise 

Table 5.9 shows the maximum temperature rise (T max.) and the maximum element strain 

energy density (Emax.) for the mountings subjected to dynamic shear defonnation under 

various test conditions. Again, based on the experimental design technique, the response 

equations relating the maximum temperature rise to the two test variables are obtained as 

represented in Table 5.lD. 

It is clearly seen that the coefficients of correlation for all response equations are very 

high (> 0.99). This assures us that these response equations fit very well to the computed 

data and, therefore, can be used to estimate the relationship between the maximum 

temperature rise and the test variables with high accuracy. It is also evident that the 

"Quadratic response model" (Equation (5.1)) is perfectly applicable to represent the 

response equations shown in Table 5.lD. This means that the qualitative relationship 

between the maximum temperature rise and the test variables for the mountings 

subjected to dynamic shear defonnation is the same as that for the mountings subjected 

to dynamic axial defonnation. 
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Table 5.9 The maximum temperature rise and the maximum element strain energy density for mountings subjected to dynamic 

shear deformation. 

Deformation Test conditions Em"" (x 10'2 m1/mm3) Tm"" (OC) 
mode Small Medium Large Small Medium Large 

5.86%strain, 25 Hz 1.17 0.47 0.47 0.6 1.3 3.1 
10%strain, 10 Hz 3.40 1.37 1.36 0.8 1.5 3.6 
10%strain, 40 Hz 3.40 1.37 1.36 3.0 5.9 14.5 

Dynamic shear 20%strain, 3.79 Hz 13.36 5.43 5.38 1.1 2.2 5.5 
without 20%strain, 25 Hz 13.36 5.43 5.38 7.5 14.6 36.1 

precompression 20% strain , 46.21 Hz 13.36 5.43 5.38 13.9 27.1 66.8 
30%strain, 10 Hz 29.20 12.01 11.88 6.7 13.1 32.3 
30%strain, 40 Hz 29.20 12.01 11.88 26.9 52.4 129.3 

34.14%strain, 25 Hz 37.21 15.42 15.24 21.7 42.3 104.3 
2.93%strain, 25 Hz 3.00 1.52 1.56 0.7 1.5 3.5 

5%strain, 10 Hz 5.07 2.58 2.65 0.5 1.0 2.5 
5%strain, 40 Hz 5.07 2.58 2.65 2.0 4.2 9.9 

Dynamic shear 10%strain, 3.79 Hz 9.71 5.07 5.21 0.4 0.9 2.3 
with 10% 10%strain, 25 Hz 9.71 5.07 5.21 2.7 6.2 15.3 

precompression 1O%strain, 46.21 Hz 9.71 5.07 5.21 5.0 11.4 28.3 
15%strain, 10 Hz 11.32 7.40 7.57 2.0 4.5 11.1 
15%strain, 40 Hz 11.32 7.40 7.57 8.2 18.0 44.5 

17.07%strain, 25 Hz 15.68 8.29 8.46 5.9 13.7 34.0 



Table 5.10 The estimated response equations for the mountings subjected to 

dynamic shear deformation 

Deformation Size The response equations R-squared 

mode 

Small Tmax = 7.50 + 7.47e + 5.05f + 4.48ef 0.997 

+ 1.84e2 

Without Medium Tmax = 14.64 + 14.52e + 9.85f + 8.72ef 0.997 

precompression + 3.57e2 

Large Tmax = 36.15 + 35.82e + 24.33f + 21.52ef 0.997 

+ 8.7ge2 

Small T""", = 2.77 + 1.8ge + l.77f + 1.18ef 0.996 

+ 0.31e2 

With 10% Medium Tmax = 6.17 + 4.33e + 3.92f + 2.5gef 0.999 

precompression +0.72e2 

Large Tmax = 15.29 + 10.7ge + 9.69f + 6.48ef 0.999 

+ 1.74e2 

Moreover, quantitative interpretation of these response equations reveals that Equations 

(5.2) and (5.3) are also applicable to represent the relationship between the temperature 

rises obtained from different sizes of mounting. Table 5.11 shows the approximate values 

of geometric difference constant for the dynamic shear deformation. It can be observed 

that the geometric difference constants obtained from dynamic shear deformation are 

slightly different from those obtained from dynamic axial deformation. The results 

indicate that there is a small dependence of the geometric difference constant on the 

deformation mode. 
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Table 5.11 Approximate values of the geometric difference constant. 

Dynamic shear without Dynamic shear with 

precompression 10% precompression 

l<J.M 2.47 2.46 

l<J.s 4.82 5.42 

KMs 1.95 2.21 

The effect of the ratio of volume to surface area on the maximum temperature rise is 

illustrated in Figure 5.15. Again, the results indicate that the maximum temperature rise 

increases continuously with increasing the ratio of volume to surface area. This confmns 

that the ratio of volume to surface area is one of the main factors governing the 

maximum temperature rise of the mountings . 

• Contour plots of the maximum temperature rise 

According to the response equations shown in Table 5.10, the influences of strain 

amplitude and frequency on the maximum temperature rise can be represented in the 

form of a contour plot as given in Figures 5.16 and 5.17 for the dynamic shear 

deformation without and with 10% precompression, respectively. 
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Figure 5. 17 (e) The effects of strain amplitude and frequency on the maximum 

temperature rise (0C) for the large mounting subjected to 

dynamic shear deformation with 10% precompression 
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5.2.6 Conclusions 

Taken as a whole. the results reveal that 

1) The temperature distribution pattern is dependent on the deformation mode but 

independent of the test conditions. 

2) Regardless of the effects of deformation mode. size and test condition: 

2.1 The maximum temperature rise is found at the centre of the mounting; 

2.2 Due to the "heat sink" effect. the minimum temperature rise is found at 

the rubber-metal interface area; 

2.3 The relationship between the maximum temperature rise and strain 

amplitude is found to be nonlinear due to the nonlinear relationship 

between the strain energy and the strain amplitude. 

2.4 The maximum temperature rise is found to be linearly related to the 

frequency. 

3) The relationship between the maximum temperature rise and the test variables of the 

mountings subjected to dynamic axial deformation and dynamic shear deformation can 

be represented mathematically by the response equations. as given respectively in 

Tables 5.6 and 5.10. 

4) The maximum temperature rise depends on both volume and surface area of the 

mounting. It is obvious that the maximum temperature rise increases as the ratio of 

volume to surface area is increased. 
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5.3 FEA of the Chevron spring 

5.3.1 Chevron geometry 

A Chevron spring is a "V"-shaped laminated rubber mounting which is constructed by 

alternately stacking rubber layers and metal plates and bonding them together to form an 

integrated construction. Even though a wide variety of Chevron springs have been 

developed with different designs to suit particular service applications, only one Chevron 

spring, also supplied by Metalastik Ltd., was chosen for the study and its geometry is 

shown in Figure 5.18. 

5.3.2 Rubber compound 

The rubber compound used in FEA of Chevron spring was coded as "Metalastik 32053". 

The physical characteristics of this compound were represented by the Mooney-Rivlin 

hyperelastic material model. Its material constants, hysteresis factor and heat transfer 

coefficient were determined by the methods described in Chapter 4. 

5.3.3 Problem description and experimental design 

In general, Chevron springs are used extensively in the axle-box suspension system of rail 

vehicles. A pair of springs are normally fitted in a vee shape (See Figure 5.19) to provide 

flexibility in three directions; longitudinal, lateral and vertical. An outline of deformation 

characteristic of the Chevron spring is shown schematically in Figure 5.20. As the 

Chevron springs lie at an angle 110 to the vertical axis, the deformation of rubber layers 

takes place simultaneously in shear and compression when loaded vertically. 
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Figure 5.19 Vee shaped fitting of Chevron springs in axle-box 
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Figure 5.20 Defonnation characteristic of Chevron springs under vertical load 

(defonned shape of rubber not shown) 

In the present project, the sirnulations were carried out based on the assumption that the 

spring is compressed vertically to 35 mm on which the dynamic vertical defonnation is 

superimposed. Two defonnation modes that actually take place in the rubber spring can 

be calculated by using basic trigonometry. According to Figure 5.20, if the vertical 

deflection A mm is applied, then 
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shear deflection 

compression deflection = A. sin(II°) mm 

Again, the relationship between temperature rise and the two important variables 

(vertical deflection and frequency) was established by means of the experimental design 

technique. Table 5.12 represents the simulated test conditions for the Chevron spring. 

Table 5.12 Test conditions for the Chevron spring 

Problem No. A B Vertical Frequency (Hz) Note 
deflection (mm) 

1 +1 +1 21 2.4 Factorial pOint 
2 +1 -1 21 0.8 Factorial point 
3 -1 +1 5 2.4 Factorial point 
4 -1 -1 5 0.8 Factorial pOint 
5 +1.414 0 24.312 1.6 Star point 
6 -1.414 0 1.688 1.6 Star point 
7 0 +1.414 13 2.731 Star point 
8 0 -1.414 13 0.469 Star point 
9 0 0 13 1.6 Central point 

5.3.4 The FEA procedures 

For the chosen Chevron spring, symmetry considerations made it possible to model and 

analyse only half of the spring body (See Figure 5.21). 

As an example, the analysis procedures for the Chevron spring subject to 35 mm vertical 

pre-deflection and 21 mm dynamic vertical deflection applied on top at 2.4 Hz are listed 

below. 

Step (1) An FE mesh of the spring for stress analysis was created. As the main 

purpose was concerned with the bulk behaviour leading to heat generation 

instead of the localised stress distributions, the actual contour of the fillet 
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Figure 5.21 Bottom view of Chevron spring with symmetry plane (dotted line) 

edges was not important for the analysis. To simplify the mooelling, the 

fillet edges were assumed to be flat instead of concave. Since the thickness 

of the metal plates was relatively thin compared with that of rubber layers, 

a combination of two element types was selected to represent this mooel; 

20- nooe hexahedron 3D-solid elements for rubber layers and 20-nooe shell 

elements for the metal plates. Figure 5.22 shows the Chevron mesh which 

consists of 6 divisions along the Y-axis, 8 divisions along the Z-axis and 1 

division for each layer (totally 4 layers of rubber and 5 layers of metal 

plates) along the X-axis. It should be noted that shell elements are not 

displayed in Figure 5.22 because they are represented by the defined 

surfaces between rubber layers; whist the metal parts that protrude from 

the rubber matrix were not modelled as they have no effect on stress 

behaviour of rubber layers. 

159 



SURFACE AWNG TilE 
SYMMETRY PLANE 

OUfERMOST 
SURFACE 

z 

Figure 5.22 FE mesh of Chevron spring for stress analysis 

Step (2) Since there were three different vertical deflection levels being considered 

(14mm, 35mm and 56mm), three models were then created from the mesh 

shown above. For all models, the boundary conditions were specified in 

such the way that all nodes along the innermost surface were fixed not to 

move in any direction while those located on the symmetry plane were fixed 

not to move in Y-direction. However, for nodes along the outermost 

surface, the boundary conditions were applied differently in each model. In 

the first model, to simulate the l4mm vertical deflection, all nodes along 

this surface were set to move simultaneously in -x (compression) and -Z 

(shear) directions for 14.sin(11°) mm and 14.cos(11°) mm, respectively. 

Similarly, the displacement boundary condition set of 35.sin(1l 0) mm and 
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Step (3) 

Step (4) 

Step (5) 

Step (6) 

Step (7) 

35.cos(llO) mm and another set of 56.sin(llO) mm and 56.cos(llO) nm 

were applied respectively to the second and the third models. 

The material data (See Chapter 4) were defmed as; 

For rubber : CIO = 0.33 MPa 

For metal plates 

Col = 0.08 MPa 

Poisson's ratio = 0.499 

Young's modulus = 2.12E+<l5 MPa* 

Poisson's ratio = 0.291 * 

• Typical values for mild steel obtained from "Introduction to Engineering 

Materials,m8) 

Nonlinear stress analysis was then performed and the element strain 

energies for each model were subsequently extracted from the output file. 

The linear stress analysis was performed on these models to obtain the 

element volume data required for the conversion of element strain energies 

into element heat generation rates per unit volume. The conversion was 

then carried out based on the method illustrated in Appendix I. 

In this step, the FE mesh for thermal analysis was created. Unlike the mesh 

for stress analysis, this mesh contained only one element type (20-node 

hexahedron 3-D solid elements) and the metal plates were represented by 

two different materials: aluminium for the innermost plate and mild steel for 

the interleaves and the outermost plate, as shown in Figure 5.23. 

After the mesh creation was complete, the thermal boundary conditions 

were defmed as follows. 
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Fig ure 5.23 FE mesh of Chevron spring for thermal analysis 

• All nodes located on both innermost and outermost surfaces were set to 

remain constant at ambient temperature (20°C) throughout the analysis. 

• The heat transfer coefficients of rubber "Metalastik 320S3" (0.17SE-04 

W/mm2.K), steel (O.097E-04 W/mm2.K) and aluminium (O.09SE-04 

W/mm2.K) were applied to the element faces along the outer surfaces of 

rubber, steel and aluminium, respectively. One thing to remember is that no 

heat should be allowed to transfer through the symmetry plane. As a 

consequence, the element faces along the symmetry plane were insulated 

(zero heat flux) in this case. 

• Fmally, the element heat generation rates obtained from step (S) were 

applied to the ru bber elements. 
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Step (8) 

Step (9) 

The thennal material data were defined as 

For rubber : Thennal conductivity = 0.000219 W/mm.K* 

For aluminium Thennal conductivity = 0.203 W/mm.K** 

For steel : Thennal conductivity = 0.05 W/mm.K* 

• Data supplied by Metalastik Lld. 

•• Data obtained from "Metallic Materials" (I ") 

The steady state thennal analysis was then performed in order to estimate 

the equilibrium running temperature of this model Thereafter, the ambient 

temperature (20°C) was subtracted from the maximum equilibrium 

temperature to yield the maximum temperature rise. 

Step (10) The above procedures were repeated with different variable sets, as 

previously shown in Table 5.12. Fmally, the maximum temperature rise 

results were analysed by the "STATGRAPIDCS" programme. 

5.3.5 Results and discussion 

- Contour characteristic of equilibrium temperature distribution 

The contour plot of equilibrium temperature distribution for the Chevron spring, which is 

subjected to 13 mm dynamic vertical deflection at 1.6 Hz (central point), is given as an 

example in Figure 5.24. Similar patterns of temperature contours were also obtained for 

the Chevron spring subjected to different test conditions. As can be seen from Figure 

5.24 (a), the maximum equilibrium temperature is found at the centre of the second 

rubber layer. Again, due to the presence of "heat sink" at the innermost and outermost 

metal plates, the minimum equilibrium temperature is found at the areas adjacent to these 

metal plates. It is also obvious that the temperature gradation pattern of the Chevron 

spring is very complicated, compared to that of the mountings. This is attributed to the 
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complexities of (i) the Chevron spring configuration, (ii) the deformation mode which is 

a combination of both compression and shear and (iii) the heat transfer processes taking 

place in the rubber component due to the metal insertions. 

- The effect of test condition on the maximum temperature rise 

Table 5.13 summanses the maximum temperature rise of the Chevron spnng under 

various test conditions. Based on the experimental design technique, a mathematical 

relationship between the maximum temperature ri se and the test variables (vertical 

deflection (d) and frequency (f)) can be established as shown below. 

Tmax. = 19.41 + 23.76 d + 11.52 f + 11.88 d.f + 7.26 d2 
- - - - - - - - - (5.4) 

Table 5.13 The maximum temperature rise of the Chevron spring subjected to 

35 mm pre-vertical deflection 

Test condition Maximum temperature rise 
(OC ) 

1.688mrn dynamic vertical deflection at 1.6 Hz 0.3 
5mm dynamic vertical deflection at 0.8 Hz 1.4 
5mm dynamic vertical deflection at 2.4 Hz 4.3 

13mm dynamic vertical deflection at 0.469 Hz 5.7 
13mm dynamic vertical deflection at 1.6 Hz 19.4 

13mm dynamic vertical deflection at 2.731 Hz 33.2 
21mm dynamic vertical deflection at 0.8 Hz 25.2 
21mm dynamic vertical deflection at 2.4 Hz 75.6 

24.312mm dynamic vertical deflection at 1.6 Hz 67.6 

The coefficient of correlation (R-squared) is found to be very high (0.996). This indicates 

that Equation (5.4) can be used to represent the relationship between the computed 

maximum temperature rise and the test variables with high accuracy. It is observable that 

Equation (5.4) fits very well to the "Quadratic response model". This suggests strongly 

that the relationship between the maximum temperature rise and the vertical deflection is 

nonlinear. On the contrary, a linear relationship between the maximum temperature rise 
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and the test frequency is found . The interaction term indicates that the effect of va ly ing 

frequency on the maximum temperature ri se depends on the level ofvel1ical deflection and 

vice versa. A full explanat ion of thi s behaviour was given previously in Section 5.2.5. 1. 

Since the equation coefficients of the equation are all positive, the maximum temperature 

rise will increase continuously with increasing vertical deflection and/or frequency. 

- Contour plot of the maxim um temperature rise 

Even though the maxImum temperature rise of the Chevron spnng under vanous test 

conditions can be estimated by Equation (5.4), for ease, it is common to represent the 

relationship between the maximum temperature rise and the test variables in terms of the 

contour plot, as shown in Figure 5.25 . 
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Figure 5.25 The effects of vertical deflection and freq uency on the maxImum 

temperature ri se (0C) for the Chevron sp ring subjected to 35 mm 

pre-vertical deflection 
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5.3.6 Conclusions 

From the results, several conclusions can be drawn as given below. 

1) Regardless of the test condition, the maximum temperature rise of the Chevron spring 

is found at the centre of the second rubber layer. 

2) The relationship between the maximum temperature rise and the vertical deflection is 

found to be nonlinear whereas that between the maximum temperature rise and the 

frequency is found to be linear. There is also an interaction effict between the 

vertical deflection and frequency on the maximum temperature rise. 

3) The mathematical relationship between the maximum temperature rise and the test 

variables for the Chevron spring subjected to 35mm pre-vertical deflection can be 

established as shown in Equation (5.4). 

4) The maximum temperature rise increases linearly with frequency and at increasing 

rate with the vertical deflection. 
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6.1 Introduction 

CHAPTER 6 

EVALUATION OF FEA RESULTS 

In general, the accuracy of any FE prediction is dependent upon how accurate the 

material data and environmental boundary conditions are defined In many applications, 

precise material data are difficult to determine experimentally. Inaccurate data can cause 

significant errors. In addition, sensible assumptions are always introduced in order to 

simplify FE problems, provided that the accuracy of a prediction is not compromised. 

Whenever possible, an experimental evaluation of FE results should be made to check 

their accuracy. 

6.2 Methodology 

Measurements of the temperature rise of anti-vibration mountings and a Chevron spring 

were made with the co-operation of Metalastik Ltd .. All specimens were taken randomly 

from Metalastik production lots. 

For anti-vibration mountings, the specimens were pierced centrally to make a hole 

through the rubber matrix. Insertion of a calibrated thermocouple wire into this hole was 

carried out with special care to ensure that 

i) a very good surface contact between thermocouple wire and rubber matrix was 

achieved and 

ii) the extreme of thermocouple wire was located at the precisely known position (See 

Figure 6.1), so that comparisons between experimental data and FE results could be 

made. 

Thereafter, the prepared specimens were tested by means of a Keelavite dynamic testing 

machine. Figure 6.2 shows how the specimens were set into the machine. Due to some 
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limitations of the machine, only medium and large mountings were tested in the dynamic 

axial deformation mode. 

9.15 mm 15.625 mm 

3mm 

• 8mm 11 mm 

Medium mounting Large mounting 

Figure 6.1 Cross-section (a quarter) of mountings representing the exact 

locations of thermocouple wire (. ) 

/ .. - ;~ •.. 

Figure 6.2 Testing machine for anti-vibration mountings 
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In the case of Chevron spring, a tiny hole was made through the centre of the middle 

steel interleaf and the testing was carried out by using a specially designed machine 

developed by Metalastik Ltd., and calibrated regularly by the National Measurement 

Accreditation Service (See Figure 6.3). 

The test conditions, including the rubber compounds used for each test component, are 

given in Table 6.1. It should be noted that measurement of temperature rise for the 

Chevron spring was carried out at only one test condition due to the high cost of both 

the Chevron spring and the testing procedure. 

Figure 6.3 Testing machine for the Chevron spring 

During each test, the running temperature was recorded continuously as a function of 

time (1 hour for anti-vibration mountings and 2 hours for the Chevron spring), making 

sure that the equilibrium temperature was reached. Subsequently, the room temperature 
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was subtracted from the equilibrium running temperature to yield the temperature rise at 

that position. 

Table 6.1 Test conditions and rubber compounds of anti-vibration mountings and the 

Chevron spring 

Test Specimens Compound Deformation Modes Test Conditions 
Deflection levels** Frequency 

Anti-vibration Metalastik Axial deformation 8 % strain 15Hz 
Mounting 19053* without 10% strain 25Hz 
(Medium) precompression 12 % strain 35Hz 

Axial deformation 3 % strain 10Hz 
with 5 % strain 25Hz 

10% precompression 6 % strain 30Hz 
Anti-vibration Metalastik Axial deformation 8 % strain 15Hz 

Mounting 19059* without 10 % strain 25Hz 
(Large) precompression 12 % strain 35Hz 

Axial deformation 3 % strain 10Hz 
with 5 % strain 25Hz 

10% precompression 6 % strain 30Hz 
Chevron Spring Metalastik Vertical deformation 21 mm 0.8Hz 

32053 with 35 mm 
ore-vertical deflection 

• .. * These compounds are SImIlar 10 • Metalastik 19055 but differ shghtly IR hardness degree whIch are 

denoted by !be last two figures . 

•• Deflection levels shown are single deflection amplitudes and the strain levels given are calculated 

with respect 10 the original shapes. 

Based on the test conditions shown above, FE meshes were created and analysed by the 

procedures described fully in Section 5.2.4 and 5.3.4 for anti-vibration mountings and a 

Chevron spring, respectively. Fmally, comparisons of FE predictions and experimental 

results were made. 
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6.3 Results and Discussion 

6.3.1 Anti-vibration mountings 

Comparisons of temperature rise obtained from PEA and experiment, for anti-vibration 

mountings subjected to dynamic axial deformation with 10% pre-compression, are given 

in Table 6.2. Results clearly show that, in all cases, good agreement between computed 

and experimental data is obtained, even though the computed values tend to be slightly 

higher than the experimental ones. This is possibly due to the fact that, in PEA, the 

simulations were carried out under a natural convection assumption where the air 

surrounding the component, which is considered as a convective medium, is stationary. 

However, in practice, this assumption is not held as, during dynamic deformation, the 

motion of the top metal bar (See also Figure 6.2) induces air flow with a certain velocity. 

Table 6.2 Temperature results for anti-vibration mountings subjected to dynamic axial 

deformation with 10% pre-compression 

Size Test No. Test conditions Temperature rise (OC) 

Experimental Computed %Difference 

Medium 1 3%strain, 10 Hz 0.9 0.9 0 

2 5%strain, 25 Hz 5.6 6.0 7.1 

3 6%strain, 30 Hz 9.5 10.5 10.5 

Large 4 3%strain, 10 Hz 2.6 2.7 2.7 

5 5%strain, 25 Hz 15.7 16.3 3.8 

6 6%strain, 30 Hz 24.4 28.5 16.7 

This motion-induced air flow promotes convective heat dissipation and, therefore, can 

cause an increase in the values of heat transfer coefficient (h) of both rubber and metal 

plates. A reduction in the temperature rise of the rubber components will result from this 

effect. This mode of convection is generally known as "forced convection" because the 
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air motion is caused by external mechanical means.(119.121) The effect of motion-induced 

air flow (or forced convection) is, of course, dependent strongly on deflection amplitude 

of the defonnation. Frequency, on the other hand, is expected to play an important role 

only at high deflection amplitudes. 

Since the effect of forced convection was overlooked in the present project, PEA is 

likely to give higher values of temperature rise, compared to the experimental ones. As 

can be observed from Table 6.2, the % difference between experimental and computed 

data increases as the tests are carried out at more severe test conditions (higher strain 

amplitude and frequency). This is attributed to the effect of forced convection which 

becomes more important as the deflection amplitude and frequency of the tests are 

increased. However, since all tests shown in Table 6.2 were carried out at relatively low 

strain amplitudes in which the effect of forced convection is not very pronounced, PEA 

provides good predictions of temperature rise in the components. 

Table 63 Temperature results for anti-vibration mountings subjected to dynamic axial 

deformation without pre-compression 

Size Test No. Test conditions Temperature rise (0C) 

Experimental Computed %Difference 

Medium 1 8%strain, 15 Hz 6.5 7.0 7.7 

2 10%strain, 25 Hz 14.5 18.3 26.2 

3 12%strain, 35 Hz 25.5 37.1 45.5 

Large 4 8 %strain, 15 Hz 19.0 18.7 1.5 

5 lO%strain, 25 Hz 36.2 48.9 35.1 

6 12%strain, 35 Hz 54.8 98.8 80.3 

As the strain amplitude is increased, the motion-induced air flow becomes an important 

factor governing heat dissipation rate of the components and cannot be simply ignored in 

the modelling. This can be seen from the temperature results for anti-vibration mountings 
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subjected to dynamic axial defonnation without precompression but higher strains (See 

Table 6.3). Although FE results agree quite well with the experimental results for tests 

carried out at 8% strain and 15 Hz (test No. 1 and 4), FEA fails to provide a good 

prediction of temperature rise at more severe test conditions (test No. 2,3,5 and 6). In 

this case, the computed temperature rise is found to be considerably higher than the 

experimental one, with a % difference of up to 80.3%. This failure is believed to occur 

because the effect of forced convection is not taken into account in the modelling. 

To show the significance of the effect of forced convection on temperature rise, FE 

problems for test No. 2,3,5 and 6 (in Table 6.3) were reanalysed by using the modified 

values of convective heat transfer coefficient to override the effect of forced convection. 

Modification of heat transfer coefficient is done by the following procedure. Based on 

data published by Gehman(8S), heat transfer coefficient for air flow parallel to flat surface 

has been found to be linearly related to the air speed, and the correlation can be 

expressed mathematically by 

V 
hv = (1 + -1 ) ho - - - - - - - - - (6.1) 

.5 

where ha = natural convective heat transfer coefficient (air speed = 0 m/s) 

hv = forced convective heat transfer coefficient (air speed = V m/s) 

According to Equation (6.1), measurement of air speed (V) flowing parallel to 

component surface must be undertaken to calculate the accurate value of heat transfer 

coefficient This is practically impossible in this case because the direction of air flow 

caused by metal bar motion is not uniform. However, since the aim of this section is to 

give a general idea of how much the forced convection can affect the temperature rise, 

for simplicity, the air surrounding the mounting is assumed to flow unifonn1y with the 

same speed as the metal bar. The speed of metal bar can be calculated by the following 

equation; 

V = 4Af - - - - - - - - - (6.2) 
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where A = deflection amplitude (m) 

f = frequency (S·I) 

The calculated air speeds as well as the approximate values of heat transfer coefficient 

obtained from Equation (6.1) under particular test conditions are shown in Table 6.4. 

Also given in the table are values of experimental temperature rise and the computed 

temperature rise obtained by using the modified heat transfer coefficients. As can be 

seen. the values of computed temperature rise are reduced markedly to approach those 

of the experimental temperature rise. as the values of heat transfer coefficient are 

modified. The results suggest strongly that the effect of forced convection is important 

in these particular cases and must be taken into considerations in the modelling. 

Table 6.4 Temperature results for anti-vibration mountings analysed with the modified 

values of heat transfer coefficient (hy ) 

Size Test Airspeed hy Temperature rise (0C) 

conditions (m/s) Experimental Computed %Difference 

Medium 100strain. 1.83 2.22ho 14.5 15.1 4.1 

25Hz 

12%strain. 3.07 3.05ho 25.5 28.5 11.8 

35Hz 

Large 10% strain. 3.13 3.09ho 36.2 37.9 4.7 

25Hz 

12%strain. 5.25 4.50ho 54.8 71.5 30.5 

35Hz 

In addition to the effect of forced convection. a small error can be introduced as a result 

of the following assumptions which have been made previously to simplify the modelling. 
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i) In Section 4.4, the true Young's modulus of the compound is assumed to be 

independent of temperature, despite the fact that it decreases gradually with 

increasing temperature (See also Figure 4.6). 

ii) In Section 4.5, the hysteresis factor is assumed to be constant, regardless of the strain 

amplitude effect. A single mid-range value of hysteresis factor is, therefore, selected 

and used in PEA (See also Figures 4.8 and 4.9). 

According to these assumptions, an error can take place as explained below. At low 

strain amplitudes, the value of hysteresis factor used in the modelling is slightly less than 

the actual value. It is therefore expected that the computed temperature rise should be 

slightly lower than the experimental one. In the meantime, increasing of temperature 

during the test results in a gradual reduction in the true Young's modulus and, hence, the 

heat generation rate. This gives rise to a small reduction of the experimental temperature 

rise. Since the consequences obtained from these two assumptions are counterbalanced, 

the degree of error introduced is thought to be very small. At higher strain amplitudes, 

the effect of the latter assumption is less pronounced, as the actual value of hysteresis 

factor approaches the value used in the modelling. On the contrary, a dramatic increase 

in temperature during the test makes the effect of the fonner assumption become more 

pronounced. As a consequence, the experimental temperature rise is expected to be 

slightly lower than the computed one. However, since the true Young's modulus of the 

compound is found to decrease only about 10% over the tested temperature range (200 C 

-lOO°C), the error caused by these two assumptions is considered to be small in 

comparison with that caused by the forced convection. 

Another source of heat dissipation that was not taken into account in the modelling is 

heat radiation. Although, in actual problems, heat can be dissipated from rubber surface 

to the surroundings by radiation, the heat dissipation rate by this process is considerably 

less than that by conduction or convection. Let us consider a rubber body at 
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temperature T placed finnly in between two huge metal bars the temperatures of which 

remain constant at ambient temperature (23°C) as shown in Figure 6.4. Approximate 

values of heat transfer rate per unit area by conduction (rubber-metal interface), 

convection (rubber-air interface) and radiation can then be calculated by Equations 

(2.74), (2.76) and (2.77), respectively. 

The ratios of the calculated heat transfer rate per unit area by conduction (Qed ), natural 

convection (Qcv) and radiation (Qd) as a function of temperature difference, for rubber 

compound "Metalastik 19055" (approximate value of emissivity (E) = 0.9(85), are given 

in Table 6.5. Apparently, heat conduction between rubber-metal interface is the main 

Heat conduction 
,. ,. ,. 

+-- ,1 1 1 

+--
Hea t convection 

+--
T "-.../"">0 Heat radia tion 

+-- I I 

nl, 
Heat conduction 

Figure 6.4 Heat dissipation processes of rubber body placed firmly between two 

huge metal bars 

source of heat dissipation process in this case. In comparison with heat radiation, heat 

convection also plays an important role on heat dissipation process. The effect of heat 

convection will become even more important when forced convection takes place, 

because it increases markedly the value of heat transfer coefficient and, hence, the heat 

convection rate. 
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Even though heat radiation is more pronounced as the temperature difference is 

increased, its effect on temperature change is considered insignificant in many 

engineering applications where heat dissipation is primarily based on heat conduction and 

convection. Consequently, the effect of heat radiation can be ignored without any serious 

error in this case. 

Table 6.5 The ratios of heat transfer rate per unit area (Q) by three different 

processes: conduction (Qed), natural convection (Qcv) and radiation (Qu) 

Temperature difference (.1 T) Qed/Qcv/Qu 

5 41.4/3.2/1 

10 40.4/3.1/1 

20 38.4/3.0/1 

30 36.6/2.8/1 

50 33.1/2.6/1 

80 28.7/2.2/1 

One other source of error is concerned with frictional heat. Since the thermocouple wire 

was inserted into the rubber matrix prior to the dynamic deformation, the friction 

between rubber matrix and thermocouple wire is likely to cause localised temperature 

rise in the components. However, as the thermocouple wire is very smaIl (0.5 nm 

diameter), the amount of heat generation caused by friction is thought to be insignificant, 

compared to that caused by hysteresis. As a consequence, the effect of frictional heat 

was not considered during the temperature measurements. Nevertheless, if a very precise 

value of temperature rise caused solely by hysteresis is required, an amendment in 

experimental procedures must be made to eliminate the effect of frictional heat 

It is also of importance to point out another reason why the measured temperature rise is 

generally less than that predicted. Since the thermal conductivity of the thermocouple 
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wire is high compared to that of the rubber, heat conduction along the thennocouple 

wire will distort the temperature contours, giving rise to a reduced temperature at the 

thennocouple tip. However, as thennocouple wire used in this project is very frne, this 

source of error is not pronounced and can be considered insignificant 

Finally, since the accuracy of the FEA solution depends strongly on the accuracy of the 

input data, it is interesting to detennine the effect of variation in the value of thennal 

conductivity on the maximum temperature rise. Attempts, therefore, have been made to 

reanalyse the frnite element problem for the large mounting subjected to 12% strain at 35 

Hz. The modified value of heat transfer coefficient (see Table 6.4) was employed. The 

value of thermal conductivity was varied from 1.80E-04 to 2.70E-04 W/mm.K (± 20% 

from original value). Table 6.6 illustrates the influence of changing the value of thennal 

conductivity on the maximum temperature rise. Apparently, the maximum temperature 

rise is fairly sensitive to the variation in the value of thermal conductivity as it is found 

that the maximum temperature rise decreases with increasing thermal conductivity. 

Consequently, it can be said that an error in the prediction of the maximum temperature 

rise might arise due to inaccurate input data, particularly the value of thennal 

conductivity. However, examination of value of thermal conductivity in the literature and 

comparison of experiments with prediction in the work reported here suggest that the 

value of 2.25E-04 W/mm.K is appropriate for the rubber compound investigated. 

Table 6.6 The effect of variation in the thennal conductivity on the maximum 

temperature rise 

Thermal conductivity (xlO-4 W/mm.K) Maximum temperature rise (DC) 

1.80 86.2 

2.02 78.2 

2.25 71.5 

2.48 66.0 

2.70 61.6 
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6.3.2 Chevron spring 

The temperature rise of the Chevron spring obtained from measurement and computation 

is found to be 17.0°C and 20.1 °C, respectively. Again, the computed temperature rise is 

higher than the measured one (with 18.8% difference in this case). As in the case of the 

anti-vibration mountings, the main source of error in the modelling is attributed to the 

effect of forced convection. In addition, in the modelling, parts of steel interleaves that 

protrude from rubber matrix were ignored. Since these parts are likely to promote 

somewhat the heat dissipation process, particularly heat convection, due to an increase in 

surface area, it can be expected that the temperature rise obtained from FEA should be 

slightly higher than that from the measurement. Despite these two sources of error, FEA 

still provides an acceptable prediction of temperature rise for Chevron spring. However, 

it should be borne in mind that, to use FEA for temperature rise prediction at higher 

strain amplitude or frequency, the effect of forced convection must be taken into 

account. 

Another important point, which can be drawn from the results, is concerned with the 

assumption made earlier in Section 4.6.3. In this assumption, the effect of geometric 

factor on heat transfer coefficient is disregarded in order to simplify the modelling work. 

Since good agreement between experimental and computed data is obtained while certain 

error is brought about mainly by the two factors mentioned above, this is an indication 

that the error introduced by this assumption is very small and can be ignored. 

6.4 Conclusions 

In summary, the results show that: 

1. FEA gives a good prediction of temperature rise for both anti-vibration mountings 

and Chevron spring, provided that the effect of forced convection is not very 

pronounced. On the contrary, when the effect of forced convection comes into play, 
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FEA based on natural convection fails to provide a sensible prediction. This is the 

case in which modification of natural convective heat transfer coefficients (ho) is 

needed. 

2. Other possible sources of error in the modelling, for instance, heat radiation, frictional 

heat, etc., are insignificant and negligible, compared to the effect of forced 

convection. 
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CHAPTER 7 

OVERALL CONCLUSION AND RECOMMENDATIONS 

7.1 Overall Conclusion 

Taken as a whole, the present work has shown that FEA can be used, in association with 

some additional calculation procedure, to predict the internal temperature rise of rubber 

components. The additional calculation was needed to estimate the energy dissipation 

due to hysteresis, since FEA is capable only of analysing hyperelastic problems. To use 

FEA for this purpose, some essential parameters such as the Mooney-Rivlin material 

constants, hysteresis factor, thermal conductivity and heat transfer coefficient are 

required. Experimental determinations of such parameters have given some important 

conclusions as listed below. 

1. The elastic behaviour of the rubber compounds is perfectly linear throughout the 

measured range and, therefore, it can be represented by a single parameter, the true 

Young's modulus. The Mooney-Rivlin material constants can then be characterised 

by using the theory "constant true Young's modulus with varying Poisson's ratio". 

2. Determination of hysteresis factor reveals that, within the tested ranges of strain 

amplitude (0.04-0.4), frequency (0.1-10 Hz) and temperature (21°-100°C), their 

influences on the hysteresis factors of both NR and IR compounds can be 

disregarded for practical design purpose. 

3. The heat transfer coefficients for natural convection can be determined by using FEA 

based on the results obtained experimentally from the measurement of temperature 

changes at any point in the specimen as a function of time. 

The application of FEA in predicting the internal temperature rise of the rubber 

components has shown that, for both anti-vibration mountings of approximately 
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cylindrical geometry and a Chevron spring, the relationship between the maximum 

temperature rise and the two test variables (strain amplitude and frequency) can be 

expressed mathematically by a "quadratic response model" in which the frequency 

squared tenn is statistically insignificant. This means that the maximum temperature rise 

is non1inearly related to the strain amplitude but linearly related to the frequency. There 

is also an interaction between the effects of strain amplitude and frequency on the 

maximum temperature rise. For instance, it is found that the maximum temperature rise 

increases linearly with frequency but at increasing rate as the strain amplitude is 

increased. It is also evident that, for anti-vibration mountings, the maximum temperature 

rise is dependent on both volume and surface area of the mounting. Obviously, the 

maximum temperature rise is found to increase with the ratio of volume to surface area. 

Comparisons of the maximum temperature rises obtained from the measurements and 

PEA reveal that PEA is capable of predicting the internal temperature rise of rubber 

components with high accuracy, provided that both material data and environmental 

boundary conditions are accurately defined. The major source of error found in this work 

is attributed to the effect of forced convection, due to local air disturbance by the test 

machine motion, which becomes more pronounced at high amplitudes and frequencies 

7.2 Recommendations for Further Work 

1. In the modelling work (Chapter 5), all FE models were analysed with the values of 

heat transfer coefficient corresponding to the natural convection assumption. It was 

observed that the computed temperature rise is higher than the experimental one, 

particularly at severe test conditions. To reduce the error introduced by this 

assumption, it is recommended that the FE models should be reanalysed with the 

modified values of heat transfer coefficient in which the effect of forced convection is 

taken into consideration. 
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2. It would also be interesting to study the effect of varying the precompression on the 

internal temperature rise of rubber mountings. 

3. The main scope for further work is in mapping the changes in critical tearing energy 

(f c) due to the temperature distribution and in predicting the fatigue resistance or 

service life based on the critical tearing energy distribution. 
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APPENDIX I 

CONVERSION OF STRAIN ENERGY INTO HEAT GENERATION RATE 

As previously mentioned in Section 2.3, when a stress is applied to rubber, the strain 

does not take place correspondingly to this stress. In fact, the strain always lags behind 

the stress, resulting in the phase difference (15) which is of practical importance in a rapid 

dynamic defonnation. When force and deflection or stress and strain are plotted against 

each other, they produce a "hysteresis loop". If the stress and strain cycles are sinusoidal 

and the rubber characteristics are linear, this loop is fully elliptic as shown in Figure 

A. 1.1. 

Force 

Fo 

Fo 

G F E Deflection 

So 

Figure A.I.I Hysteresis loop in dynamic stress/strain cycles 

The amount of energy loss per cycle is represented by the area of the ellipse which is; 

EIos. = 1t Fo So sin (15) - - - - - - - - - (A. 1.1) 

or EIooI = 1t 0"0 Eo sin (15) - - - - - - - - - (A. 1.2) 

where Fo and 0"0 are force amplitude and stress amplitude, and 

So and Eo are deflection amplitude and strain amplitude. 
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Obviously, Equation (A.1.1) gives the total energy loss in the piece of rubber whereas 

Equation (A.1.2) gives the enery loss per unit volume of rubber. Alternatively, the 

energy loss can be respresented as; 

Em = 1/2 7t sin (Ii) (area ACD) - - - - - - - - - (A. 1.3) 

Equation (A. 1.3) is identical to Equation (A. 1.1) as area ACD can be expressed as; 

area ACD = 1(2 (2Fo) (2So) = 2 Fo So 

Based on Equation (A.1.3), to obtain the energy loss, the area ACD must be pre

determined. This can be done if the elastic strain energies (E) of the rubber at points A, B 

and C are known as it is evident that 

area ACD = 2 [(Bc - EB) - (EB - EN) - - - - - - - - - (A. 1.4) 

A validation of Equation (A.1.4) is given below. As can be seen from Figure A.l.l, the 

elastic strain energies at points A, B and C can be represented by 

EA = area OAG = ao - - - - - - - - - (A. 1.5) 

EB = area OBF = ao + a. + a2 --- .... ---- (A16) . . 
Bc = area OCE = ao + a. + a2 + a3 + 14 + as 

--------- (A. 1.7) 

Substitution of Equations (A.1.5), (A.1.6) and (A. 1.7) into Equation (A.l.4) yields 

2 [(Ec - EB) - (EB - EA)) = 2 [ (a3 + 14 + as) - (a. + a2) ) 

= 2 14 (as a. = a3 and a2 = as) 
1 

= 14 + a2 + as (as a2 = as ="214) 

= areaACD 

Therefore, Equation (A.l.4) is proved to be valid. By substituting Equation (A.1.4) into 

Equation (A.1.3), the energy loss then becomes; 

- - - - - - - - - - (A.1.8) 
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As heat generation rate (H) required in thermal analysis must be in tenns of J:m:rgyJQS~ 

J]..t~.1'.~r."!1iLY91\l.m~.Qf.rnQ~, the energy loss obtained must be converted further by the 

following equations; 

H 
Elo", xf - V 

- - - - - - - - - (A. 1.9) 

1t sin (0) [(Bc ~ EB) - (EB - EA)] x fl H = or - - - - - - - - - (A. 1.10) 

where f = frequency 

V = volume of rubber 

According to equation (A. 1.1 0), the heat generation rate can be easily calculated if the 

strain energies at points A, B and C are obtained. 

In this study, the element strain energies at points A, B and C were obtained from the FE 

nonlinear stress analysis, while the element volume data were extracted from the FE 

linear stress analysis results. Frequency was the known parameter and the lag angle (0) 

for each compound was pre-deterrnined by the procedure previously described in 

Chapter 4. 

Units used in this project 

Throughtout this work, the elastic constants or stresses were in MPa and the dimensions 

of the components denoted were in mm. Therefore the elastic strain energy per element 

was in MPa.mm' = N.mm = mJ (as 1 Pa = 1 N/m2 and 1 N.m = 1 J). The energy 

loss obtained would also be in units of mJ. As the frequency of deformation was in Hz, 

the heat generation rate per unit volume of rubber obtained from equation (A.1.1O) will 

be in mJ/sec.mm3 = mW/mm' (as J/sec = W). 
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In steady state thennal analysis, the units of thennal conductivity were in W/mm.K, the 

required heat generation rate per unit volume, therefore, must be in W/mm'. This means 

that the equation actually employed in this project is as given below. 

*** H = 
7t sin (11) [(Bc - EB) - (BB - EA)] x f xlO-3 

V 
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