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STRUCTURE OF THE THESIS 
 

Chapter 1 

This chapter provides background to the present work. Sulphur cure systems and 

solid fillers are indispensable parts of rubber formulations. The health, safety, cost 

and environmental issues related to the excessive use of these chemicals in rubber 

compounds are mentioned. Two novel methods for the sulphur vulcanisation of 

rubber and mineral kaolin as a potential replacement for the current filler systems in 

rubber are studied.  

Chapter 2 

This chapter provides a review of the structure, properties and applications of NR, 

BR and EPDM rubbers. These rubbers were used in this project. Furthermore, 

rubber chemical additives were also reviewed with particular emphasis on the 

chemicals used in the sulphur vulcanisation of rubber and also mineral clays, kaolin, 

carbon black and silica/silane solid filler systems for rubber reinforcement.    

Chapter 3 

This chapter reports results on the measurement of the optimum loading of a 

sulphenamide accelerator for curing some sulphur-filled NR, BR and EPDM rubbers. 

The optimum loading of zinc oxide activator in the sulphur-filled rubbers with the 

optimum loading of TBBS was subsequently determined.  For each rubber, a new 

cure system based on the measurement of the optimum loading of TBBS accelerator 

and ZnO activator at a given loading of sulphur was developed.    

Chapter 4 

This chapter presents results on combining ZnO with TBBS by functionalising the 

surface of zinc oxide with TBBS molecules in an organic solvent to produce a 

convenient single material referred to as powder to cure some sulphur-filled NR. The 

optimum loading of the powder to fully cure the sulphur-filled rubber was 

subsequently measured.  
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Chapter 5 

In this chapter, solid kaolin filler pre-treated with a sulphur-bearing mercaptosilane 

was investigated as a possible replacement for toxic carbon black and expensive 

silica/silane systems in rubber reinforcement. This method react the sulphur in the 

silane with the NR chains to produce stable covalent sulphur bonds between the two 

which is essential for rubber reinforcement. The optimum loading of TBBS required 

for reacting the sulphur in the silane with the rubber phase was first measured and 

then an optimum amount of ZnO was also added to improve the efficiency of the 

TBBS reaction with the sulphur in the silane to achieve full cure of the rubber.  

Chapter 6 

Using the novel sulphur cure systems developed for NR, BR and EPDM rubbers in 

Chapter 3, NR, BR and EPDM rubbers were mixed with up to 140 parts per hundred 

rubber by weight (phr) mineral kaolin solid filler the surface of which was pre-treated 

with a mercaptosilane. The rubber compounds were subsequently cured and their 

viscosity, cure and mechanical properties were measured. The mechanical 

properties measured were, hardness, tensile strength, elongation at break, stored 

energy density at break, Young’s modulus, tear strength, and compression set. The 

glass transition temperatures and crosslink density of the rubber vulcanisates were 

also measured.    

Chapter 7 

This chapter summarises the conclusions from chapters 3 and 4 on the development 

of novel sulphur cure systems for NR, BR and EPDM rubbers. Also, conclusions 

from chapters 5 and 6 on the effect of the silane pre-treated kaolin filler on the 

mechanical properties of the NR, BR and EPDM rubber vulcanisates were included.  

Chapter 8  

This chapter provides suggestions for further work. The novel cure systems 

developed in this study can be used to cure rubbers other than NR, BR and EPDM 

and produce green rubber compounds for use by the rubber industry. Also, the 

mineral kaolin filler can be used more extensively in rubber reinforcement as 

potential replacement for carbon black and silica/silane systems.   
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ABSTRACT 
 

Two novel methods for the sulphur vulcanisation of NR, BR and EPDM rubbers 

using N-tert-butyl-2-benzothiazole sulphenamide (TBBS) accelerator and zinc oxide 

(ZnO) activator have been developed. In one method, the optimum loading of TBBS 

and ZnO were measured for some sulphur-filled NR, BR and EPDM rubbers. The 

cure systems for the NR were (S/TBBS/ZnO), (1/1.5/0.2), (2/1.5/0.3), (3/1.5/0.25), 

and   (4/3.5/0.2), for the BR, (0.5/1.75/0.2) and (1/3/0.2), and for the EPDM, 

(1/1/0.075). The cure was very efficient in spite of reducing the amount of TBBS and 

ZnO chemicals. In another method which used a single additive component in the 

form of a powder (TBBS/ZnO: 350mg/1g), the loading of the powder in NR was 

raised increasingly from 0.63 to 5.63 phr, the scorch time was unchanged and the 

optimum cure time reduced at 1.25 phr powder. The rate of cure accelerated at 1.25 

phr powder. The crosslink density reached its maximum value at 5.63 phr powder. 

This method reduced the TBBS and ZnO requirement in the cure system by 85wt%.  

Solid kaolin filler pre-treated with a sulphur-bearing mercaptosilane was used to 

reinforce NR, BR and EPDM rubbers. For NR, to react the sulphur in the silane on 

the kaolin surface with the rubber chains and optimise the reaction between the two, 

16 phr TBBS and 0.2 phr ZnO were added to the kaolin-filled rubber. The hardness 

and Young’s modulus increased and compression set decreased when up to 3 phr 

elemental sulphur was included in the kaolin-filled rubber with 16 phr TBBS and 0.2 

phr ZnO. The tensile strength, elongation at break, stored energy density at break, 

and tear energy of the rubber vulcanisate reduced when elemental sulphur was 

added. Notably, the inclusion of elemental sulphur was the key factor in controlling 

the rubber properties.  

In an extended work, 60 phr silane pre-treated kaolin was mixed with NR, BR and 

EPDM and the rubbers were cured using the novel cure systems developed earlier. 

The effect of 140 phr kaolin on the properties of NR was also investigated.   

For NR, the hardness increased by 64% when 60 phr kaolin was added and the 

trend continued rising by another 28% when the loading of kaolin reached 140 phr. 

Similarly, the Young’s modulus rose by 170% with 60 phr kaolin and then by an extra 
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148% when the full amount of kaolin, i.e. 140 phr, was reached. The tensile strength 

and tear energy were unchanged and the elongation at break and stored energy 

density at break deteriorated by a total of 65% and 34%, respectively with 140 phr 

kaolin. The compression set of the unfilled rubber was 41%, and it then rose to 64% 

and 71%, when 60 and 140 phr kaolin was added, respectively.  

For BR, the hardness increased by 23% and for EPDM, by 34%, respectively when 

60 phr kaolin was incorporated in the rubbers. For BR, the tensile strength, 

elongation at break and Young’s modulus rose by 759%, 256% and 114%, 

respectively. The compression set of the unfilled BR was 9.4%, and subsequently 

rose to 26% when 60 phr kaolin was mixed with the rubber.  

For EPDM, the tensile strength, elongation at break and Young’s modulus improved 

by 964%, 332% and 71%, respectively. For BR, the stored energy density at break 

and tear energy were increased by 2442% and 536%, respectively and for EPDM, by 

3133% and 1479%, respectively. The compression set of the unfilled EPDM was 

39%, and afterward increased to 48% with 60 phr kaolin.  

Kaolin was found to be extending or non-reinforcing filler for the strain-induced 

crystallising NR and highly reinforcing for the non-crystallising BR and EPDM.  
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Chapter 1 – Introduction 
 

1.1 Background 

Natural rubber (NR) and synthetic rubbers such as polybutadiene rubber (BR) and 

ethylene-propylene-diene rubber (EPDM) are used in many industrial applications. 

However, for shape retention, rubber must be cured. Rubber formulations have 

come a long way since Charles Goodyear discovered that heating raw rubber with 

sulphur modified the rubber to retain its shape. This was subsequently termed 

vulcanisation. To enhance the efficiency of vulcanisation in rubber, there has been 

an increasing trend to use more chemical curatives. The availability of new classes 

of chemicals known as accelerators and activators has speed up this process in 

recent years. Although it cannot be denied that sulphur vulcanisation is a much more 

efficient process today than it was at the time of Charles Goodyear, nevertheless 

serious health and safety issues related to its excessive use in rubber have 

emerged. Additionally, the chemical curatives are damaging to aquatic life and the 

environment. Consequently, the use of these chemicals is restricted by the new 

European chemicals policy, Registration, Evaluation, Authorisation and Restriction of 

Chemicals (REACH) and various legislations for environment, health and safety.  

Sulphenamide accelerators and zinc oxide (ZnO) and stearic acid activators are 

used extensively to cure a wide range of industrial articles. These chemicals are 

potentially harmful to health, safety and the environment according to the European 

Directive 2004/73/EC.  The exact amount of the chemical curatives in the sulphur 

vulcanisation of rubber has never been measured accurately and moreover, there is 

no reason why so many and so much of these chemicals need to be used in rubber 

compounds today.  

This work developed two novel methods for determine the exact amount of some 

common chemical curatives in the sulphur vulcanisation of NR, BR and EPDM 

rubbers. Method 1 measured the optimum loading of sulphenamide TBBS 

accelerator and ZnO activator at a given loading of sulphur.  Method 2 combined 

TBBS and ZnO chemicals into a single additive component referred to as powder 
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and then measured the optimum loading of the powder to fully cure some sulphur-

filled rubbers. These two methods helped to reduce the excessive amount of these 

chemicals in the sulphur vulcanisation of rubber and addressed the health, safety, 

and environmental issues related to the use of these chemicals in rubber compounds.   

Solid fillers such as carbon black and silica/silane systems are used extensively to 

reinforce the mechanical and dynamic properties of rubbers. Carbon blacks are toxic 

and silica/silane systems are expensive. This study examined effect of a mineral 

kaolin solid filler on the viscosity, cure and mechanical properties of NR, BR and 

EPDM rubbers. The kaolin filler was pre-treated with mercaptosilane to help its 

dispersion in the rubbers. The NR compounds had 60 and 140 parts per hundred 

rubber by weight (phr) and the BR and EPDM compounds 60 phr kaolin.  The cure 

systems which were developed in the early part of the study were used to cure the 

rubbers. As expected, the viscosity of the rubber compounds increased when filler 

was added, the scorch and optimum cure times as well as the cure rate index 

benefitted from the addition of the filler. The mechanical properties of the cured BR 

and EPDM gained significantly from the inclusion of kaolin in the rubbers but 

surprisingly NR did not benefit from kaolin.  It emerged that kaolin was non-

reinforcing or extender filler for NR and highly reinforcing for BR and EPDM rubbers.  

It was concluded that kaolin in conjunction with the new sulphur cure systems 

developed in this study is a viable replacement for carbon black and silica/silane 

systems in rubber reinforcement.  

The aim of this study is to develop environmental-friendly green rubber compounds 

for use in industrial rubber articles. This will be achieved by addressing the 

aforementioned health, safety, cost and environmental issues related to the 

excessive use of the chemical curatives in the sulphur vulcanisation of rubber, and 

finding a safer solid mineral filler to replace petroleum-based carbon black and 

synthetic silica/silane fillers in rubber reinforcement.  

 

The objectives are as following. 

1. To use a novel technique for measuring the optimum loading of accelerators and 

activators in the cure systems of some industrially important rubbers such as 
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natural rubber (NR), polybutadiene rubber (BR) and ethylene-propylene-diene 

rubber (EPDM).   

2. For the first time, to combine a sulphenamide accelerator with zinc oxide activator 

to produce a single additive component to use with sulphur in the cure systems of 

the rubbers aforementioned. 

3. To test a mineral solid kaolin filler the surface of which is pre-treated with a 

sulphur-bearing mercaptosilane and react the sulphur in the silane with the 

rubber chains to form stable covalent bonds and study it effects on the viscosity, 

cure and mechanical properties of natural rubber. 

4. To use the mineral solid kaolin filler pre-treated with mercaptosilane in NR, BR 

and EPDM rubbers in combination with the novel sulphur cure systems measured 

as described in part 1 above, and determine the viscosity, cure and mechanical 

properties of the rubbers cured with the new cure systems and reinforced with a 

high loading of kaolin, i.e. reaching 140 phr.   

5. To carry out an evaluation of the potential benefits of this new technology and 

greener rubber formulations to the rubber industry in terms of costs, health, 

safety and environmental impacts.     
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Chapter 2 - Literature review 
2.1 Introduction to elastomers and their properties 
Elastomers can be defined as of two types; 

• Very extensible (They stretch many times their original length) 

• Resilient ( they snap back to their original size and shape after being 

stretched)  

 

The combination of properties makes them very different from all other materials. 

The extensibility also makes them very flexible which, in some applications, is more 

important than great extensibility. 

2.1.1 Effect of temperature on elastomers 

The flexibility of the molecules inside the elastomer comes from free rotation of the 

bonds. Rotation generally requires little energy and will occur spontaneously in 

elastomers at room temperature where they are well above their glass transition 

temperature, Tg. On the other hand, when temperature is decreased the thermal 

motion of the molecules become slower and the chains are less flexible and so the 

material becomes stiffer. If temperature gets low enough (approaching Tg) then no 

rotations in the rubber molecules will take place. The deformation is only by straining 

of interatomic bonds, requiring very high forces. At this stage, the rubber is glassy 

and doesn’t exhibit rubbery behaviour at all. Elastomers have different Tgs Table 2.1 

which indicate major differences in their molecular structure and chemical 

composition. 

Table 2.1 Glass transition temperature of some Industrial rubbers [3] 

Elastomers Tg (oC) 
Natural Rubber (NR) -70 

Polybutadiene Rubber (BR) -108 
Butyl Rubber (IIR) -61 

Styrene-Butadiene Rubber (SBR) -61 
Polychloroprene  Rubber (CR) -49 

Acrylonitrile-Butadiene Rubber (NBR) -24 
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2.2 NR (Natural Rubber) 

2.2.1 Origin, molecular structure, chemical composition, properties and 
applications 

Natural rubber is extracted from latex tapped from the Heva Brasiliensis tree (rubber 

tree). Rubber trees are found in tropical countries such as, Malaysia, India and Brazil. 

Natural rubber is made of hydrogen and carbon and is known as hydro-carbon 

polymer. Its chemical composition is (C5H8)n where n is the number of monomers 

joined together to form a long chain. The monomer of natural rubber is called cis-1-4 

polyisoprene Fig. 2.1a. The second naturally occurring polyisoprene polymer is 

trans-1-4 polyisoprene Fig. 2.1b. Trans 1-4 polyisoprene is rigid at ambient 

temperature and must be heated to about 60oC before is soft enough to be 

processed. So, it is never used. Cis-1-4 polyisoprene is used to manufacture 

industrial rubber articles such as tyres and hoses. Natural rubber is an unsaturated 

hydro-carbon, non-polar, with 98% cis 1-4 polyisoprene. The presence of 98% cis 

makes structure of the rubber very stereo-regular in 3-dimensional space. . Natural 

rubber has a glass transition temperature of approximately -71oC. Due to the high cis 

content, the natural rubber chains can align themselves alongside each other to form 

internal regular structures called crystallites under the right conditions, for example 

when tensile strain on the raw rubber exceed 300% or when the rubber is cooled 

down slowly and progressively towards its Tg or is stored at a constant temperature 

for up to 320 hours [4].  

 

 

 

 

 

    

 

 

a      b 

Figure 2.1 a) cis-1,4 polyisoprene, b) trans-1,4 polyisoprene [4] 
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Natural rubber has high tear strength, long flex and high abrasion resistance. These 

are due to the ability of the rubber to crystallise when stretched, which reinforces the 

above properties. The rubber has also high resilience, and low hysteresis, due to its 

low Tg. It has high compression set resistance because of it low Tg and good low-

temperature flexibility as long as it does not crystallise at low temperatures. When 

natural rubber crystallises at lower temperatures it loses its flexibility and becomes 

rigid and non-elastic. Natural rubber has moderate to poor resistance to heat 

because the covalent bonds in the monomer have lower temperature of dissociation 

and tend to break down as temperature increases too high. The moderate and poor 

resistance of natural rubber to oxygen and ozone is due to the presence of 

unsaturation sites or chemically active double- bonds in the monomer. The minimum 

working temperature of natural rubber is -55oC. This is affected by the Tg of the 

rubber. The maximum working temperature of natural rubber is 100oC. This is 

decided by the dissociation temperature of the covalent bonds in the monomer 

backbone. Natural rubber is used to manufacture tyres, hoses, conveyor belting, 

anti-vibration mountings, bridge bearings and general purpose goods.  

Natural rubber has excellent adhesion to brass-plated steel cord, which is ideal in 

rubber tyres. It has low hysteresis which leads to low heat generation. It has low 

rolling resistance with enhanced fuel economy. It has very high resistance to cutting, 

chipping and tearing [3].  

Some important uses of natural rubber are in passenger car cross-ply tyres for its 

building tack, ply adhesion and good tear resistance. Natural rubber is used in the 

sidewalls of radial ply tyres for its fatigue resistance and low heat build-up. Large 

amount of natural rubber is used to make truck and earthmover tyres which require 

low heat build-up and maximum cut resistance. Natural rubber is widely used in 

industrial goods such as engineering products, resilient load bearing and shock or 

vibration absorption components and latex products such as gloves, and adhesives 

[4]. 
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2.3 BR (Polybutadiene Rubber) 

2.3.1 Origin, molecular structure, chemical composition, properties and 
applications 

Polybutadiene (BR) is originally made by emulsion polymerisation. It is available in a 

wide variety of polymeric materials ranging from general purpose, non-crystallising 

rubber to highly crystalline plastics. Polybutadiene can be used in a variety of 

products made from low to high molecular weight and different in microstructure. 

Comparatively high molecular weight polymers are solids, whereas low molecular 

weight polymers are liquid. The differences in microstructure determine the 

properties of both solids and liquids. Commonly used isomers are cis-1-4, trans-1-4 

and viny-1-4 polybutadiene Fig. 2.2 [5]. In this work Buna CB 24 high-cis was used 

which is made with neodymium catalyst and is not oil extended. CB 24 has high- cis 

content of over 92% [6] and a small portion of vinyl which is less than 4%. It is made 

using Ziegler-Natta catalysts derived from transition metals [7].    

 

 

 

 

 

         a        b 

   

 

 

 

 

 

          c 

Figure 2.2 a) trans-1-4 Polybutadiene, b) Cis-1-4 Polybutadiene, c) Vinyl-1-4 
Polybutadiene [5] 
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Randomly mixed micro-structured polymers (40-85%) are amorphous, possess 

intermediate properties and superior low temperature flexibility. Whereas, polymers 

with uniform (98-100% cis or trans) microstructure are crystalline. High cis 

polybutadiene possess low hysteresis, excellent dynamic properties and superior 

abrasion resistance. On the other hand, trans polybutadiene is a tough elastomer 

with high hardness and thermoplasticity, and poor hysteresis. High vinyl liquid 

polybutadiene are used to make thermosetting polymers with excellent electrical 

resistivity, excellent chemical resistance, high thermal distortion temperatures, and 

low water absorption [5].  

Polybutadiene rubbers are commonly used in conjunction with other polymers such 

as blends which inherently gives good hysteresis properties, abrasion resistance, 

and good low temperature properties. Typical blends include BR with NR or BR with 

SBR (styrene butadiene rubber) which give improved resistance to groove cracking, 

improved reversion resistance on over-cure and enhanced ageing resistance. High 

BR content in NR or SBR blends helps reduce rolling resistance of tyres and impact 

favourable ice traction properties. Another application of BR is the solid golf balls 

made from polybutadiene rubber on its own reinforced with silica pigment and are 

very tightly cured either by peroxide or sulphur [5].         

2.4 EPDM (Ethylene-Propylene Diene Monomer) 

2.4.1 Origin, molecular structure, chemical composition, properties and 
applications 

EPDM rubbers are formed by the process of ter-polymerisation. Like other non-

crystallising polymers, mechanical properties of the unfilled EPDM are rather poor, 

therefore reinforcing fillers are added. Generally EPDM is not used to obtain 

extraordinary mechanical properties for the required application hence easily 

processable semi-reinforcing fillers are used in EPDM compounds [8]. Due to its low 

density, high extender oil and high filler loading are used for economy reasons. The 

EPDM rubber grades containing oil can be used for low hardness compounds. High 

hardness is usually achieved by using blend of EPDM with NR and blend of EPDM 

with SBR. 

EPDM rubbers do not possess excellent low air permeability like the butyl rubber 

does, however they are used at fairly low levels in inner tubes to improve low 
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temperature properties, ageing, and processing characteristics. EPDM can be 

modified to produce different grades of rubber. The commercially available grades 

can be varying in polymerisation process, Mooney viscosity, relative molecular mass 

distribution, ethylene/propylene weight ratio, and the third unsaturated monomer 

(dicyclopentadiene (DCP) or ethylidene norbornene (ENB)) type and amount. 

Required grades can be chosen according to the application and costs [8].   

 

 

 

 

 

 

 

Figure 2.3 Molecular structure of EPDM [8] 

 

The molecular structure of EPDM rubber as shown in Fig. 2.3 contains no double 

bonds in the chain backbone and thus EPDM does not suffer deterioration due to 

molecular scission even after extended exposure to ultraviolet (sunlight). These 

compounds are generally suitable for high ozone environment and outdoor 

applications with no need for environmental protection in reinforced EPDM. 

Therefore, NR and SBR which have inferior environmental properties, i.e. poor 

oxygen ageing, are blended with EPDM for better environmental protection.   

EPDM rubbers contain excellent electrical insulation properties, such as high di-

electric strength, low power factors and corona discharge resistance, and radiation 

resistance. Thus, they are used in medium and high voltage cable covers [9]. They 

also contain good low temperature flexibility and stay flexible at above -50oC [8]. 

They have very good resistance to water absorption, with combined mechanical 

properties and relatively low cost, make them good rubbers for use in pond liners.    

Finally, EPDM rubbers are one of the most versatile, fast growing and interesting 

synthetic polymers. Excellent weather ageing, resistance to heat, oxidation, and 
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ozone are expected to fulfil the demand in automotive, construction and mechanical 

goods applications. The emerging advanced polymerisation technologies provide the 

ability to design polymers to meet the ever increasing demands for product quality 

performance and uniformity [10].      

2.5 Rubber cure systems 

2.5.1 Introduction 

Curing is the process of forming stable covalent bonds between the polymer chains. 

The process is widely used for enhancing the polymer properties. Since Charles 

Goodyear discovered in 1839 that heating raw rubber with sulphur modified the 

rubber so that it would retain its shape. In the early stages of his work, sulphur cure 

took almost 5 h to get a fully cured rubber. Since then the cure system has been 

improved and a large number of new chemical curatives have been introduced and 

marketed. In some tyre compounds, e.g. carbon black-filled natural rubber based 

truck tread compounds, cure system often consists of sulphur, accelerators (primary 

and secondary) and activators (primary and secondary), adding up to 10.25 parts per 

hundred (phr) by weight [2]. In addition, some antidegradants and processing aids 

are also added to tyres for environmental protection and viscosity modification. In 

some rubber articles, flame retardant (to suppress inflammability) and blowing 

agents (to produce foam rubber) are also added to achieve certain properties. 

However, over the years there has been an increasing trend to use more chemical 

additives to improve processing and mechanical and dynamic properties of raw 

rubbers [10].  

Excessive use of these chemicals is harmful to health, safety and the environment 

and their use is restricted by the new European REACH chemicals policy and 

various environment and safety legislation. For example, zinc oxide (ZnO) is used as 

primary activator in conjunction with stearic acid (secondary activator) in sulphur-

cure systems. The presence of ZnO in tyres has come under growing scrutiny 

because of the environmental concerns [11].   

2.5.2 Rubber cure systems 

A very wide range of chemicals can be used to produce crosslinks in rubbers. These 

crosslinks can vary from direct linkage of polymer chains itself, to the use of complex 
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urethanes as bridges. The choice of crosslinks is dependent on the required 

performance, cost and ease of processing of the rubber. There are a wide range of 

vulcanising agents which include sulphur, peroxides, metal oxides, phenolic resins, 

maleimides and urethanes. Most commonly used vulcanising agents are sulphur, 

peroxides and metal oxides due to their low cost [13].     

2.5.3 Sulphur cure systems 

2.5.3.1 Elemental sulphur 

Vulcanisation using sulphur is the most widely used method for crosslinking 

unsaturated rubbers such as NR, SBR, synthetic polyisoprene (IR), acrylonitrile-

butadiene rubber (NBR) and EPDM, due to its low cost and the flexibility possible in 

processing conditions, reaction rate and physical properties achievable. Initially, the 

vulcanisation was accomplished by heating elemental sulphur up to 8 phr at 140oC 

for about 5 h. The addition of activator such as ZnO significantly reduced the cure 

time from 5 hours to 3 h. Addition of accelerators in low concentration even helped to 

reduce the vulcanisation time considerably. The vulcanisation process with sulphur, 

activators and accelerators were commercialised significantly [12].  

Over the years, three different cure systems have been developed. They are named 

as efficient vulcanisation (EV), semi-efficient vulcanisation (SEV), and conventional 

vulcanisation (CV) systems. EV system gives relatively high mono-sulphidic and little 

or no polysulphidic crosslinks as they contain low level of sulphur and 

correspondingly high level of accelerator. SEV system gives an intermediate (both 

mono and polysulphidic crosslinks) distribution of sulphur and accelerator. CV 

system provides relatively high polysulphidic content with little or no monosulphidic 

crosslinks. The loading of accelerator and sulphur in EV, SEV and CV systems are 

shown in Table 2.2 below. 

Table 2.2 Loading of accelerator and sulphur in EV, SEV and CV systems [12] 

Type Sulphur (phr) Accelerator (phr)  Accelerator/sulphur ratio 
EV 0.4-0.8 2.0-5.0 2.5-12.0 
SEV 1.0-1.7 1.2-2.4 0.7-2.5 
CV 2.0-3.5 0.4-1.2 0.1-0.6 
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2.5.3.2 Accelerators  

Vulcanisation or crosslinking can take place by heating sulphur in the rubber itself 

and is a slow process, resulting in poor properties and long curing time. Adding a 

small amount of organic or inorganic compound can speed up the process quite 

considerably. These chemicals are called “accelerators” when they are added to 

rubber containing sulphur, it speeds up the curing reaction and the properties and 

performance of the rubber will be controlled efficiently [14]. 

Accelerators plays important role in vulcanising rubber. They control the time to 

onset of vulcanisation, the rate of vulcanisation and most importantly the type and 

number of sulphur crosslinks and crosslink density. Accelerators can be divided into 

two types [15]. 

 Primary accelerators  

Commonly used primary accelerators are marcapto-based, which impart good 

processing for rubber compounds and exhibit broad vulcanisation. They also 

used to delay the scorch time and medium to fast cure rate.  

 Secondary accelerators  

These accelerators are generally used to give fast cure and contribute 

positive attributes to general properties of the rubber. 

Accelerators are divided into different classes based on chemical structure and the 

cure rates in sulphur cure systems. Below in Table 2.3, different classes of 

accelerators are summarised. 

Table 2.3 Comparison of accelerators and their classes [16] 

Accelerator class Rate of cure 
Sulphenamides  Fast-delayed action 
Guanidines Medium 
Thiazoles Semi-fast 
Thiurams Fast 
Dithiocarbamates Very fast 
Aldehyde-amine Slow 
Dithiophosphates Fast 
 

Habitually, rubber compounds with particularly sulphur cure systems contain a 

mixture of both primary and secondary accelerators for specific applications. The 

mixture of these accelerators is determined by applying extensive knowledge of their 
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molecular structure, type and its relevance in each rubber compound. The 

combination of both accelerators gives good scorch and fast curing of compounds. In 

addition, rubber vulcanisates exhibit very good tensile and elastic properties which 

are mainly due to high degree of crosslinking. The chemical structures of some 

primary and secondary accelerators are given in Fig. 2.4 below [17].   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 Chemical structures of some primary and secondary accelerators [19] 

 
 

Sulphur cured rubber vulcanisates contain different types of crosslinks which include, 

mono, di or polysulphidic. The nature of crosslinks in a rubber vulcanisates depends 

on the type of accelerator used or a combination of primary and secondary 

accelerators, and sulphur to accelerator ratio. Some of the common accelerators and 

their chemical structures used in the sulphur vulcanisation are shown in Fig. 2.5 [17]. 
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Compound Structure Acronyms 
Benzothiazolesulphenamides 
 
N-tert-butylbenzothiazole-2-
sulphenamide 

 

 
TBBS 

 
N-cyclohexylbenzothiazole-2-
sulphenamide 

 

 
CBS 

Benzothiazoles 
 
2-Mercaptobenzothiazoles 
 

            

 
MBT 

 
2,2’-Dithiobenzothiazole 

 

 
MBTS 

Thiurams 
 
Tetramethylthiuram disulphide 

 

 
TMTD 

 

Figure 2.5 Important accelerators used in sulphur vulcanisation [19] 

 

TBBS and CBS are primary accelerators which provide considerably scorch delay, 

medium to fast cure and relatively good modulus development. Whereas, TMTD is a 

secondary accelerator and is seldom used alone, but commonly used in conjunction 

with primary accelerators to gain fast cures and shorter scorch time. [18] 

Sulphenamide accelerators form vulcanisates which have a wide range of crosslink 

densities and reversion resistant cure. The increased loading of sulphenamide 

accelerators indicates improvement in state and rate of cure, higher stress-strain 

properties, and better resilience compared to thiazole accelerators.     

2.5.3.3 Activators 

Activators are mainly used to enhance the efficiency and effectiveness of 

accelerators during the curing process. These chemicals increase the rate of 

vulcanisation by first reacting with accelerators to form rubber-soluble complexes. 
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These complexes then activate sulphur to form sulphur crosslinks. The most 

commonly used activators are ZnO and stearic acid for sulphur based vulcanisation 

[20]. Stearic acid is a fatty acid, which is added to improve the solubility of ZnO in the 

rubber. ZnO produces zinc ions in the presence of stearic acid, which form chelates 

with the accelerator and sulphides. This will help to increase the efficiency of 

vulcanisation process. Other metal oxides have been used for specific purposes 

such as, lead, cadmium, magnesium etc. ZnO has a melting point of 1975oC and is 

one of the most commonly used activators for sulphur vulcanisation of unsaturated 

elastomers such as, NR, BR etc. [21]. The role of ZnO in sulphur vulcanisation has 

been studied extensively [22-30]. ZnO increased the rate of sulphur vulcanisation 

and influenced the distribution of different types of crosslinks in the rubber 

vulcanisates. Stearic acid has a melting point of about 70oC and solubilises zinc in 

the rubber compound and form zinc stearate which is essential for sulphur cured 

rubber compound [31-36].      

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Effect of accelerators and activators on the cure rate of NR [20] 

 

Natural rubber normally contains fatty acid to solubilise the zinc salt. However, when 

the fatty acids are removed from the rubber, it will exhibit a much lower state of cure. 



16 
 

Therefore, fatty acids are added to ensure consistent cure rate. Moreover, 

sulphenamide accelerators generally require less fatty acid because they release an 

amine during the vulcanisation process which acts to stabilise the zinc [14].  

Zinc oxide and stearic acid are used as primary and secondary activators, 

respectively, in sulphur cure systems. Some typical examples of rubber articles 

made by these activators are tyres, conveyor belts and hoses. However, these 

activators are not effective in the absence of accelerators and cannot increase the 

cure rate in the rubber compounds. Paris [20] studied the effect of activators in 

sulphur cure system, as shown in Fig. 2.6 In the absence of accelerator, the 

activators were ineffective in increasing the number of crosslinks produced 

(compound 2). However, without activators, sulphenamide accelerators produced 

significant increase in crosslinks in a reasonable cure time (compound 3). In addition, 

stearic acid alone produced less crosslinks (compound 4) than adding zinc oxide 

alone (compound 5).         

Sulphur curing with the help of accelerators is the most common technique 

crosslinking elastomers. The accelerated sulphur crosslinking is applicable for 

(unsaturated hydrocarbons) containing elastomers including natural rubber, 

polybutadiene rubber and Styrene butadiene rubber as well as (saturated elastomers) 

nitrile rubber and EPDM. The typical cur systems for elastomer contain the following 

chemicals;  

Vulcanising agent (sulphur)  0.25-5.0 phr 

Activators: stearic acid  0.5-3.0 phr 

        Zinc oxide  1.0-10.0 phr 

One or more accelerators  0.2-5.0 phr 

Retarders (as required for adequate scorch safety)  

 

In sulphur curing, sulphur ring is opened by negative ions to make it active for curing. 

Negative ion can be from accelerators such as 2-mercaptobenzothiazile or HS- from 

hydrogen sulphide. The zinc oxide and stearic acid are involved in forming 

complexes with the sulphur and accelerator which leads to the attachment of sulphur 

to the main chains. The reactions normally take place in two stages [122]:  
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1. Formation of reactive crosslinking species, which defines the processing or 

scorch time 

2. Formation of crosslinks, which defines the cure time 

Many studies have been carried out to understand the mechanism of rubber 

vulcanization with sulphur in the presence of accelerators and activators. 

Vulcanization is the phenomenon of formation of cross links with rubber 

macromolecules. These cross links can be made up of sulphur atoms. 

Transformation of rubber from plastic to elastic state, lack of solubility in organic 

solvents, limited swelling ability, as well as modification of certain important physico-

mechanical properties, like tensile strength, elasticity, elasticity modulus, relative and 

plastic elongation, plastic compression, heat evolution, swelling stability, permeability 

to gases, resistance to low temperatures, can be explained by the presence of these 

cross links. 

In the case of natural rubber NR both tensile strength and modulus display a peak 

followed by a decrease of their values. The latter phenomenon is called Reversion. 

In the case of styrene-butadiene rubber (SBR) the tensile strength remains 

approximately constant, while the modulus increases (marching cure) and when the 

vulcanization time is too long leading to over cure, sudden reduction of elongation at 

break occurs, which is not observed in the case of natural rubber. The variation of 

mechanical properties (tensile strength, elasticity modulus) depends on nature of the 

polymer as shown in Fig 2.7. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Effect of vulcanisation time on the cure and mechanical properties of NR, 
and SBR [36] 
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Cross links which form bridges between the chains are stress bearing members 

contributing to elasticity and strength. Cyclic sulphides, accelerator fragments, vicinal 

cross links do not contribute to elasticity as shown in Fig. 2.8. ‘Sx’ refers to cross 

links consisting of more than two sulphur atoms (Polysulphidic cross links). ‘Sx’ gets 

desulphurated to form di or mono sulphidic cross links with the action of heat (as low 

as at 90 - 100°C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Mechanism of sulphur vulcanisation [36] 

 

2.5.3.4 Other ingredients for rubber compounds 

Apart from accelerators, activators and sulphur, which form the cure system, rubber 

compounds also contain a range of other ingredients such as, retarders, 

antidegradants, processing aids, colour pigments and special purpose additives.   

Antidegradants play an important role for rubber life. The presence of carbon-carbon 

double bonds renders rubber susceptible to attack by oxygen, ozone and also 

thermal degradation. However the oxidation in rubbers is accelerated by various 

factors such as, heat, heavy metal contamination, light, weather, fatigue, oxygen, 

ozone and atomic radiation etc. [37]. For instance, the oxidative ageing process 

causes the physical properties of natural rubber to deteriorate by either chain 

scission, resulting in reduction of chain length and average molecular weight, or 
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formation of additional crosslinks in the rubber, which results in a three dimensional 

structure and higher molecular weight. Therefore, natural rubber’s environmental 

degradation predominantly results in a weak, softened stock, often showing surface 

tackiness. However, EPDM, BR and nitrile rubbers environmental degradation by 

oxygen causes more crosslinks to form, which makes the rubber compound brittle 

with poor flexibility and elongation. To protect these unsaturated rubbers against 

ageing and to increase the service life of rubber articles, antidegradants, e.g. 

antioxidants, antiozonants, and waxes, are added to rubber during mixing. Usually 

waxes protect the rubber by diffusing to the surface and forming a thin solid layer. 

Whereas, antioxidants diffuse to the rubber surface and react with oxygen and ozone 

and significantly retard the ageing process [38]. Some commercially available 

antidegradants are, amine (diphenylamine derivatives), (dihydroquinolines), (ρ-

phenylenediamine-di-Alkyl), (ρ-phenylenediamine-Alkylaryl), and 

mercaptobenzimidazoles). However, phenylenediamines antioxidants provide 

excellent protection against O2, O3 and fatigue. Oxidative is by far the most common 

ageing process in articles made of unsaturated rubbers.          

Processing aids are added to alter viscosity and mainly consist of oils added during 

mixing or compounding. Plasticisers such as aromatic oil, paraffinic oil, and 

naphthenic oil provide flexibility at low temperatures without substantial loss in 

physical and mechanical properties [39]. Peptisers such as activated dithio-

bisbenzanilide reduce the molecular weight of rubber to make mixing easier. 

Lubricants for example paraffin wax and hydrocarbon based petroleum minimise the 

friction between rubber and internal wall of processing equipment. Releasing agents 

are sprayed on the inner surface of a mould to enable it to easily remove compounds 

after curing. Flame retardants are used to prevent rubbers to burn up to a certain 

extent and help to suppress the ability of rubbers to burn easily and produce flames. 

Pigments are added to impart colours to non-black rubber compounds and make 

them more attractive for users and contain both organic and inorganic pigments 

which provide good efficiency and brilliancy in colour shades. Blowing agents for 

instance sodium bicarbonate, ammonium carbonate and bicarbonate are used for 

producing micro porous and sponge rubber. These blowing agents decompose upon 

high temperature curing and release neutral gas during vulcanisation which gives 
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rise to pore formation. Reodorants are used to improve the smell of rubber 

compounds [39].  

To conclude, it is abundantly clear that the rubber industry has gained a great deal of 

benefit from using the above chemicals and additives to process, cure and protect 

rubber compounds against dynamic, mechanical and environmental ageing. 

Because of this reason, there are so many rubber articles in service today. However, 

most of these chemicals are harmful to human health, too costly and are damaging 

to the environment. The biggest challenge that the rubber formulation scientists and 

technologists are facing today is to reduce the number and amount of these 

chemicals, particularly the chemicals in the sulphur cure systems, of rubber articles. 

There is a fundamental problem with the excessive use of the chemical curatives in 

rubber compounds. There is no reason why so many and so much of them are in 

use in industrial rubber articles today.                       

2.6 Health, safety and environmental issues related to the excessive use 
of rubber chemicals 

Generally, rubber compounds are made from several chemicals as discussed in the 

above section. These compounds contains up to twelve different chemicals including 

fillers and curatives. The choice of suitable cure systems in order to ensure good 

mechanical and dynamic properties for manufactured rubber articles is essential. 

Following are the few examples of health and safety and environmental concerns 

and issues related to the excessive use of these harmful chemicals [40].  

2.6.1 Fillers   

Carbon black used in tyres is mildly toxic by ingestion, inhalation and skin contact. 

Approximately 65% of carbon black is used in tyre production. The international 

Agency for Research on Cancer (IARC) conducted a comprehensive study of carbon 

black and concluded that carbon black could be classified as carcinogenic to 

humans and definitely carcinogenic to animals [41]. The study also highlighted the 

respiratory effects on people who worked with carbon black. These tests included 

cough, sputum production, chest radiographic opacities and lung functions. There is 

a need to partially or completely replace carbon black with eco-friendly materials or 

natural minerals. On the other hand, silica is also used as filler for making rubber 

articles. The fine dust particle of silica can cause fibrosis, i.e. scar tissue formation in 



21 
 

lungs. Inhalation of silica dust particles increased the risk of developing pulmonary 

tuberculosis if exposed to the person with tuberculosis [42].  

2.6.2 Activators 
 

Zinc oxide and stearic acid are used as activators in rubber articles. Zinc oxide is 

added in relatively high concentrations of up to 5 phr. According to the European 

REACH chemicals policy and various environmental and safety legislation and the 

US Environmental protection energy (EPA), ZnO is classified as toxic and the 

earliest symptoms of this metal oxide fume is metallic taste in mouth, accompanied 

by dryness and irritation of the throat [43-44].    

2.6.3 Accelerators  
 

Most commonly used accelerators include, amines and sulphenamides. Thizoles 

dithiocarbonates etc. contains N-nitrosamines fumes. Many of these N-nitrosamines 

are carcinogenic [45]. They are formed by the reaction of an amine with a nitrosating 

agent. Nitrosamines are classified as carcinogenic to humans and animals by 

international organisations and regulatory authorities (IARC) [45]. It is worth 

mentioning again that according to European Directive 67/548/EEC, zinc oxide is 

very toxic to aquatic organisms and stearic acid cause skin and eye irritation and is 

classified as highly flammable[46].  

2.6.4 Antidegradants  
 

These chemicals are generally used to protect the rubber article against 

environmental degradation such as oxidative ageing. Generally, they are volatile 

under high temperature conditions, and migrate towards the rubber surface, giving 

rise to blooming and staining. For instance, antidegradants such as N-phenyl-N'-(1,3-

dimethylbutyl)-p-phenylenediamine (6PPD) partly decomposes and undergoes 

further reactions, which forms primary aromatic amines (PAA), which is highly critical 

and has hygiene concern  [48]. 

2.6.5 Curing agents 
 

A large amount of air contaminants are released during the vulcanisation process. 

Generally, sulphur and peroxide are used to cure most rubber compounds. However, 
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metal oxides, resin curing agents are also used in some applications. Several 

studies [48-51] have shown that excessive use of curing agents can cause 

respiratory morbidity. Other symptoms have also been reported such as headache 

and nausea among the workers who carry out vulcanisation [51-52].  

As mentioned above, most chemicals and curatives are harmful to environment, 

human and animal health alike. Thus, the use of these chemicals in industrial rubber 

compounds must be restricted or in some cases eliminated altogether.  

Recently, Ansarifar and co-workers developed a new technology for the sulphur 

vulcanisation of rubber compounds, which reduced the excessive use of the 

chemicals in the cure system significantly [53-55].  

In this study, the aim was to measure the optimum amount of the chemical curatives 

in the sulphur vulcanisation of some commercially important rubbers accurately, and 

by doing so, reduce the excessive amount of these chemicals and even to eliminate 

some of the chemicals altogether from the cure system without compromising the 

dynamic and mechanical properties of the rubber vulcanisates. Previous studies 

showed that it was possible to remove the secondary accelerator from the cure 

systems and reduce the amount of ZnO to less than 1 phr. In addition, stearic acid 

was taken out of the cure system entirely [53-55].        

2.7 Fillers 

For Industrial rubber applications, vulcanisation is not only determined by the nature 

and quantity of polymer used, the crosslinking (cure systems), and other ingredients 

but also by the nature and quantity of solid filler that is used. Vulcanised rubbers 

without fillers do not possess good mechanical properties such as tensile strength, 

tear strength, hardness, modulus, and abrasion resistance. Fillers are added to 

rubber to enhance its properties. There are two types of solid fillers: reinforcing fillers 

and non-reinforcing or extending fillers. Extending or non-reinforcing fillers are clay, 

kaolin (China clay) whitening and braites [60], which have little or no effect on the 

mechanical properties of rubber vulcanisates. On the other hand, reinforcing fillers 

such as carbon black, silica and fibres improve mechanical and dynamic properties 

for instance stiffness (hardness) tensile strength, modulus etc. [62]. Extent by which 

these properties improve rubber properties depends on the quantity and particle size 
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of the filler. The smaller the particle size, the larger is the surface area of the filler. 

Fillers with large surface area are more reinforcing because rubber chains interact 

more actively with large surface areas. Other factors such as surface chemical 

functionality are also important because they determine the strength of the rubber-

filler interaction which is essential in rubber reinforcement [65].    

2.7.1 Carbon blacks 

2.7.1.1 Background 

Application of carbon black in rubber compounds is over a hundred years old. During 

the late 1800 century black colloidal substance consisting wholly amorphous carbon 

namely lamp black was used as black pigment. In 1872 channel black was 

discovered and successively replaced the lamp black. Channel black is a type of 

carbon black which is formed by burning organic raw gas or oil. This process 

produces a black smoke containing extremely small carbon black particles, which 

eventually separate from the combustion gases to form intense black powder [2].  

2.7.1.2 Manufacturing processes of carbon black 

 Furnace black process 

This process of producing carbon black was first introduced in 1922 and was 

continued for 20 years with natural gas as feedstock and with semi-reinforcing 

furnace black [2]. After that fine furnace black and high modulus furnace black were 

added to the process. Later in 1940s, aromatic oil feedstock based process 

outmoded the old natural gas based process. The feedstock is burned in a reactor, 

producing carbon black and tailgas. After cooling down, the carbon black powder is 

separated from the tailgas. These gas components include, H2O, N2, CO, CO2, H2, 

C2H2 etc. and the process of separating is accomplished through the use of various 

commercially filter bags. After separation, carbon black is processed into varying 

grades/sizes [56].       

 Thermal black process 

Thermal process is almost similar to the furnace process. However, in thermal 

process carbon black is formed in the absence of oxygen. The feedstock in this 

process can be natural gas. The surface area and structure of carbon black is much 
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lower than carbon black formed in furnace process. Therefore, these blacks are not 

as reinforcing as furnace carbon blacks. Over 95% of carbon black is produced by 

furnace process and is used in the rubber industry.    

2.7.1.3 Composition, structure and surface activity 

During the combustion reaction carbon particles are formed with different dimensions 

and different grades depending on the specific application [58]. In general, carbon 

black grades with smaller particle size have better reinforcing qualities than those 

with larger particle size. Carbon black particles are spherical is shape and are 

generally termed as nodules as shown in Fig. 2.7 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Structure of carbon black [57] 

 

In the early days, there was no direct method for measuring carbon black surface 

activity. The surface of carbon black is influenced by the graphite plane orientation, 

the type and number of organic side groups. The molecular structure of carbon black 

is composed of amorphous graphite layer which is created from the microcrystalline 

arrays of condensed aromatic rings. The orientation of arrays within the amorphous 

mass appears to be random, consequently a large percentage of arrays have open 

edges of their layer planes at the surface of the particle. A large number of 

unsatisfied carbon bonds associated with these open edges provide sites for 

chemical activity. In addition, other elements such as oxygen, hydrogen and sulphur 
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are also present in a very small quantity [57]. It is not clear that these elements are 

confined to the surface only or are distributed throughout the carbon black 

aggregates. Bansal and Donnet [59] proposed several types of functional groups on 

carbon black surface as shown in Fig. 2.8. Carbon dioxide formed from the functional 

groups containing lactones and carboxylic acid. However, carbon monoxide is 

formed upon decomposition of phenols and quinines. In addition, hydrogen gas is 

likely to be produced from the reduction of -CH or -OH functional groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Aromatic layer plane with functional groups of carbon black [57] 

 

Wang, Wolff and Donnet [59-50] demonstrated that no direct correlation between the 

chemical groups on carbon black and rubber properties such as, tensile strength and 

modulus existed. Filler-rubber interaction was mainly by physical nature i.e. physic-

sorption. Wang and Wolff [61] recognised the highest activity on carbon black 

regions where density of available π electrons from the aromatic system would be 

greatest.   
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2.7.1.4 Effect of carbon black on the properties of rubber  

Rubber properties can be controlled by three main factors: loading of the filler, the 

specific surface area and the structure of filler. Typically rubber compounds are 

made by accelerated sulphur vulcanisation systems (as discussed above in sulphur 

cure systems) at high temperatures with any grade of carbon black filler and even 

with small amount of the filler, curing time is reduced significantly. As mentioned 

above, loading of the filler and specific surface area dominate the reinforcing effect in 

the rubber. A study was conducted to measure the mechanical properties of raw 

natural rubber and that of carbon black filled natural rubber composites. Natural 

rubber was reinforced with carbon black (specific surface area; 36.8 m2/g and 

particle size of N550) at a given loading of 24 phr and other compounding 

ingredients were also added on a two roll mill and the compound was cured at 143°C. 

Mechanical properties were tested and it was seen that hardens, tensile strength, 

tear strength of the carbon black filled rubber were significantly higher than those of 

the raw rubber, indicating the inherent reinforcing potential of carbon black. Whereas, 

percentage elongation at break of the carbon black filled rubber composites were 

lower than that of the raw rubber [62]. The effect of particle size and amount of 

carbon black on the cure characteristics and dynamic mechanical properties of 

vulcanised natural rubber have been extensively investigated. Results showed that 

when the particle size of carbon black decreased, the Mooney viscosity was 

increased effectively and the cure and scorch time were shortened. It was found that 

the addition of carbon black decreased tanδmax. The tensile modulus at 100% and 

300% elongation were increased when tanδmax was decreased [63].  

Higher structure of carbon black tends to offer greater reinforcement as observed by 

higher modulus at high strains in cured rubber. This is due to filled compound is 

subjected to higher strains, therefore physical properties becomes less influenced by 

the surface area of the carbon black. Carbon black structure appears to play only a 

small role in performance at low strains.  

An increasing loading of carbon black of any grade, tends to increase strength of the 

rubber. On the other hand, some properties such as, tensile strength and abrasion 

resistance, tend to decrease after a certain loading of carbon black. Figure 2.9 

shows the relationship between carbon black loading and selected rubber properties 

[64].    
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Figure 2.11 Relationship between carbon black loading and some rubber properties 
[64] 

 

Han et al. [65] measured the dynamic mechanical properties over a wide range of 

temperatures and strains of some vulcanised rubbers filled with carbon black (N330) 

and a surface modified carbon black, respectively. The surface modified carbon 

black was prepared by introducing special resorcinol formaldehyde latex (RFL) into 

N330 carbon black. The main chain of RFL had good compatibility with the rubber 

matrix, whereas the side chain with pyridine function reacted with the acidic 

functional groups on the surface of carbon black. The work suggested that surface 

modified carbon black filled rubber showed better dispersion and the results from the 

surface modified carbon black in the rubber matrix provided better understanding of 

the mechanism of reinforcement. Mechanical properties were improved with the 

surface modified carbon black due to the stronger filler-rubber interaction. The effect 

of two types of carbon blacks (CBs), N990 and Vulcan XC-72, on the mechanical 

properties and thermal conductivity of some filled silicone rubbers (SR) were 

investigated [66]. The result showed that CB particles increased the thermal 

conductivity, the thermal stability and the tensile strength of the silicon rubber 

composites. The scanning electron microscope showed that Vulcan XC-72 of higher 

structure created more conductive networks within the matrix, and the thermal 
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conductivity of the filled composites were superior compared to that of the N990 filled 

composites at given filler loading. In addition, Vulcan XC-72 enhanced the 

mechanical properties and electrical conductivity of the composites.       

2.7.1.5 Toxicology of reinforcing carbon black  

The toxicity of carbon black has been studied by a number of national and 

international agencies for risk associated with human health. These organisations 

include Environment and Health Canada, OECD, and the international Agency for 

Research on Cancer (IARC) [67-69]. The study on animal models shows carbon 

black was deemed to be a low acute toxicity by oral and inhalation exposure, with 

mild inflammation in rat lung with an exposure to ultrafine carbon black particles 

(particle size of 20 nm). However, no inflammation observed in rat lung following 

exposure to fine carbon black (particle size of 200 nm) [67]. Therefore, particle size 

of carbon black plays important role in inflammatory effects. OECD has determined 

that carbon black does not pose a significant health risk and is of low priority for 

further investigations. IARC has described carbon black as “possibly carcinogenic to 

humans” but also concluded that there is a limited evidence for carcinogenicity from 

carbon black based studies on humans. However, these studies are based solely on 

animals utilising very high exposure concentrations [68]. 

2.7.2 Silica 

2.7.2.1 Background 

Silica has been used in rubber formulations since early 20th century [70]. Like carbon 

black, silica is also reinforcing and has quite comparable reinforcing mechanism to 

carbon black. Over the years, since 1950s and 1960s, silica became important solid 

reinforcing filler in almost all kinds of rubber applications. However, silica was not as 

compatible as carbon black in some certain applications, such as tyre tread in which 

the dispersion of silica reduced the effectiveness of some of the properties of the 

rubber vulcanisates. Hydrated precipitated silica is polar and hydrophilic in nature 

due to having polysiloxane structure and the presence of numerous silanol groups. 

These groups react with rubber accelerators, causing a detrimental effect on the 

vulcanisation process. In addition, there is a possibility of having high filler-filler 

interaction and weak filler-rubber interaction due to silanol groups. As a result poor 
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filler reinforcement and performance was observed when compared with the effect of 

carbon black.  

2.7.2.2 Manufacturing processes of silica     

There are two processes of preparing silica fillers;  

The precipitation process 

The pyrogenic of thermal process (fumed silica) 

 The precipitation process  

Silica is manufactured from the raw material called alkali-silicate solutions which 

include, sodium silicate from which the silica is isolated by the addition of sulphuric 

acid. These precipitates consist of 86-88wt% of SiO2 and 10-14wt% of water and 

chemically bonded residues of salts formed at the conversion. The precipitated silica 

is obtained after filtration, washing and drying. However, properties of the final 

product can be controlled by the process conditions such as, precipitation time, 

temperature, electrolyte concentration and pH [2]. Therefore, products can be 

obtained ranging from silicas to silicates. The surface area of precipitated silica used 

for rubber applications are ranging from 25-250 m2/g. Finally, after the precipitation 

process the separation by filtration is carried out to wash of any salts that were 

formed during precipitation. Filtered precipitates are then dried in an oven.  

 The pyrogenic of thermal process (fumed silica) 

This process of fumed silica is produced in a flame consists of microscopic droplets 

of amorphous silica fused into branched, three dimensional secondary particles 

which then agglomerate into tertiary particles. A mixture of gas containing SiCl4, 

hydrogen and oxygen is combusted in a reactor of about 3000oC.  

H2 + ½ O2 → H2O 

SiCl4 + 2H2O → SiO2 + 4HCL 

After the combustion process powder was recovered from the reactor. The resulting 

powder has extremely low bulk density and non-porous high surface area of about 

50-600 m2/g and the particle size of 5-50 nm.   
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As mentioned earlier, because of the surface properties of precipitated silica, there is 

difficulty in using it as reinforcing filler in hydrocarbon rubbers. The hydrophilic 

groups on the silica surface interact with rubber accelerators, resulting in detrimental 

effect on the cure time, cure rate and loss in crosslink density in the cured rubber. 

Although, there is a strong interaction between filler-filler but it has an adverse effect 

on the rubber reinforcement [71]. Moreover, processing becomes more difficult when 

a large amount of precipitated silica is added, because the viscosity increases 

significantly [72-73]. To get the best possible reinforcement and high filler-rubber 

interaction, surface modification of silicas have been studied over the years.  

2.7.2.3 Modification of silica surface with Si69 silane coupling agent  

Surface modification of the fillers is by far the most effective way of changing the 

surface properties to meet the required applications. Bifunctional organosilanes can 

be used as primers for treating silica surfaces to make the filler more suitable for use 

in rubber [74]. Bis(-triethoxysilylpropyl-)tetrasulphane (TESPT), also known as Si69 

coupling agent, is commonly used to modify surface of silicas. Silica incorporated in 

hydrocarbon rubber modified with Si69 has shown to improve the filler-rubber 

interaction. Si69 silane enables silica to be used in many applications and is now a 

key factor, being a successful replacement for carbon black in for example the tyre 

tread.  

TESPT silane coupling agent possesses tetrasulphane and ethoxy groups. The 

tetrasulphane groups Fig. 2.10 react with the rubber in the presence of accelerators 

at elevated temperatures, with or without elemental sulphur being present to form 

crosslinks in the unsaturated rubbers.  
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Figure 2.12 Chemical structure of TESPT (Si69 coupling agent) [74] 

 

The ethoxy groups react with silanol groups (present on the surface of silica) during 

mixing to form stable silane-filler bonds. Additionally, the silane reaction with silanol 

group Fig. 2.11(a-b) reduces their numbers and the remaining groups become less 

accessible to the rubber because of steric hindrance [74]. During the compounding 

and vulcanisation process, tetrasulphane groups (split due to heat treatment and 

also the influence of the accelerator) react with the rubber chains by forming mono-

sulphidic, di-sulphidic and poly-sulphidic covalent bonds.    
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Figure 2.13 a) Silica surface, b) Silanised silica nanofiller pre-treated with TESPT. 
Tetrasulphane groups react with rubber to form stable covalent sulphur bonds. [74] 

 

2.7.2.4 Effect of silanised silica nanofiller on the properties of rubber 

Carbon black and silanised silica reinforcing effects on rubber properties have been 

extensively studied and generally it has been acknowledged that they can reinforce 

rubbers to a large degree due to filler-rubber interaction. Voet and co-workers [75] 

examined the effect of silica–rubber adhesion on the mechanical properties of a 

sulphur cured styrene–butadiene rubber and showed that hardness and elongation 

at break were improved when a silane coupling agent was added. This was 

recognised by the chemical bonding between the filler and rubber, which was 

facilitated by the coupling agent. Ansarifar and co-workers [76] studied effect of 30 

phr precipitated silica on the mechanical properties of a sulphur-cured NR. The filler 

was introduced with liquid TESPT before it was added to the raw elastomer in the 

mixer. Results showed that the viscosity of the rubber compound decreased, the 

cure time shortened and the quality of the filler dispersion enhanced when the 

TESPT silane was present in the rubber. In addition, the tensile strength, elongation 

at break, and cohesive tear strength were also improved significantly [76]. The 

reinforcing effect of a large amount of silanised precipitated amorphous silica 

nanofiller on the mechanical properties of styrene butadiene rubber was studied. The 

hardness, tensile strength, elongation at break, stored energy density at break, 

modulus, crosslink density of the rubber vulcanisate were substantially increased 
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when filler was added. These properties were enhanced because of high filler-rubber 

interaction which was mainly due to the chemical bonding between rubber and 

TESPT. Therefore, pre-treated amorphous white silica with TESPT was found to be 

effective reinforcing filler for SBR. This optimum cure system in the rubber 

formulation consisted of 3 phr TBBS and 0.5 phr zinc oxide and when up to 0.7 phr 

elemental sulphur was added, some of the rubber properties improved and others 

deteriorated. However, it was beneficial to the cure properties ts2 and t95 were 

significantly decreased and the rate of cure increased noticeably. [77]. A similar 

study showed optimisation of the chemical bonding between the rubber and filler 

required 7.5 phr of TBBS. When zinc oxide was added to the filled rubber with 7.5 

phr TBBS the rubber became too brittle. Hence, the addition of zinc oxide and stearic 

acid offered no benefit to the crosslink density of the rubber. Mechanical properties 

were improved substantially and bound rubber and crosslink density measurements 

indicated strong rubber-filler adhesion [78]. Ansarifar et al used silanised silica to 

reduce the excessive amount of rubber curatives in SBR. They studied the reaction 

between the rubber reactive tetrasulphane groups of TESPT and the rubber chains 

to optimise cure. Accelerators TMTD and TBBS was used at 5 phr and 3 phr loading, 

respectively, and also 0.5 phr zinc oxide was added. There was no need to add 

stearic acid and elemental sulphur to the filled rubber and in fact, stearic acid was 

detrimental to ∆torque, which indicated the crosslink density changes in the rubber. 

Cure and some mechanical properties were improved substantially with TMTD. 

However, tensile strength, elongation at break, and stored energy density at break 

were inferior. Therefore, chemical bonding or crosslinking between the tetrasulphane 

groups of TESPT and the rubber chains were optimised with the sulphur bearing 

TMTD accelerator efficiently. This resulted in the significant reduction in the use of 

the curing chemicals [79].             

2.7.2.5 Toxicology of reinforcing amorphous white silanised silica  

The toxicity of commercially available amorphous and synthetic white precipitated 

silicas has been studied by a number of researchers and organisations including 

national and international agencies such as, Environmental Protection Agency (EPA) 

and organisation for Economic Cooperation and Development (OECD). These 

studies were based on animals with the toxicity related to the use of synthetic 
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amorphous silica and the results were remarkably consistent. The effects of 

amorphous silicas are transient and include an initial inflammatory response that 

occurs with exposure to particles [80]. The new European chemicals policy, 

Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) and 

various legislations for environment and safety restrict excessive use of chemicals in 

rubber which are harmful to health, safety and the environment. In order to address 

the health, safety and environment issues related to rubber compounds, it is 

essential to use chemical curatives and reinforcing filler more efficiently and 

effectively. However, there are some deficiencies in using the TESPT and 

precipitated silica in rubber reinforcement. When silica compounds are modified in 

situ with liquid TESPT, unreacted TESPT could sometimes be identified, indicating 

and incomplete and uneconomical modification process in situ. Also, different mixing 

equipment results in different mixing conditions gives different properties from those 

experienced using experimental compounds [81]. When silica reacts with liquid 

TESPT in situ, it generates harmful ethanol during mixing [82-83]. There is also a 

major concern related to the use of harmful curatives in the cure systems of rubber 

compounds. For instance, in some EPDM vulcanisates where liquid TESPT and 

precipitated silica were used [84], the cure system consisted of 5 phr zinc oxide and 

1 phr stearic acid (primary and secondary activators), 3.1 phr accelerators (primary 

and secondary), and 0.8 phr curing agents (sulphur substitute), adding up to 9.9 phr, 

which as too much. Therefore, using TESPT pre-treated silanised silica filler 

produced better quality rubber compounds and ethanol free mixing was obtained [85].  

2.7.3 Kaolin (China clay) 

2.7.3.1 Background 

Kaolin belongs to the group of minerals and is derived from the Chinese term 

“Kauling” which means high ridge. The mineral comprises of hydrated 

aluminosilicates such as dickite, nacrite, and halloysite [86]. Kaolinite is soft and non-

abrasive and has a low conductivity of heat and electricity. The structure of kaolinite 

consists of alumina octahedral sheet bound on one side to a silica tetrahedral sheet, 

stacked alternately. The two sheets of kaolinite form a tight fit with the oxygen atoms 

forming the link between the two layers as shown in Fig. 2.12 [87].      
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Figure 2.14 Structure of kaolin (China clay) [88] 

 

The composition of kaolinite (Al2O3.2SiO2.2H2O) mineral is 46% SiO2, 39.8% Al2O3 

and 13.9% H2O [89]. Kaolin is considered to be a phyllosilicate mineral. 

Phyllosilicates are characterised by an indefinitely extended sheet of rings, in which 

three of the tetrahedral oxygens are shared whereas every fourth oxygen atom is 

apical and points upward [88]. An individual kaolin particle has a hydroxyl surface on 

one side and oxygen surface on the other side as shown in Fig. 2.12. Kaolin has a 

plate like structure as shown in Fig. 2.13 compared to other traditional fillers like 

carbon black and silica which are spherical in shape. Kaolin is used as filler for many 

applications such as, paper, coating, paper filling, paints, plastics, and also rubber. 

 

 

 

 



36 
 

 

 

 

 

 

 

 

 

 

Figure 2.15 TEM image of kaolin particles showing plate like structure [121] 

 

2.7.3.2 Manufacturing processes of kaolin  

Kaolins are classified into primary and secondary. Primary kaolins are formed by the 

alteration of crystalline rocks such as granite where they remain in the place as it 

forms. Secondary kaolin deposits are sedimentary, formed by erosion of primary 

deposits. The secondary deposits contain about 85-95wt% more kaolinite than the 

primary which contains 15-30wt%. The primary deposits consist ore of quartz, 

muscovite, and fledspar. However, quartz, muscovite, smectite, anatase, pyrite and 

graphite are present in the secondary deposits. Kaolins deposits occur on every 

continent but only few of these can be mined and beneficiated to meet the industrial 

specifications required for use as filler. For instance, deposits are mined in countries 

like, United States (Georgia, South Carolina, and Texas), Brazil, and East Germany 

Spain etc.     

 Primary processing of kaolin 

Different kaolin grades can be produced by two commercialised methods of air 

floating or wet processing. Kaolin produced by air floating is cheap in which the 

mineral is crushed, dried and pulverised. It is then floated in an air stream and 

classified using an air classifier. Finally, finer particles are separated from the coarse 

particles and nano-kaolin particles. On the other hand, wet process is much more 

sophisticated and gives high quality consistent particle sizes with maximum purity. 
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This process starts with the formation of a clay-water suspension in a step referred 

to as blunging where kaolin slurry is produced that contain 45-50wt% solids. The 

slurry is then pumped into the processing plant for de-gritting, particle size 

distribution or morphology, leaching of colour bodies. Finally, apron drying and 

pulverisation or spray drying into bead form takes place [88].           

2.7.3.3 Kaolin surface treatment 

Surface modification of kaolin filler is another step that can improve and enhance the 

performance. Commercially kaolin produced is naturally very hydrophilic in nature 

due to hydroxyl groups, surface treatment can be applied to make them hydrophobic 

or organophilic. Surface treated kaolins are very useful in rubber industry. Since 

kaolin surface contains OH groups which makes it polar and moisture absorbing, 

surface treatment with silane improves the dispersion of the filler particles in the 

rubber matrix. One commonly used silane is 3-mercaptopropyltrimethoxysilane 

(MPTS), which contains less than 2wt% of sulphur. When sulphur reacts with rubber 

chains in the presence of an accelerator and activator, it produces stable covalent 

sulphur bonds. This in turn enhances the rubber/filler interaction and is immensely 

beneficial to the rubber reinforcement [90]. Using kaolin pre-treated with MPTS, a 

new method has been developed that optimises the reaction between the sulphur in 

MPTS on the kaolin surface and the rubber chains. This reduces excessive use of 

the chemical curatives and improves mechanical properties of the rubber vulcanisate. 

The Mooney viscosity, cure properties, hardness, tensile properties and Young’s 

modulus, tear strength, and compression set of rubber filled with MPTS pre-treated 

kaolin were measured [121].  

2.7.3.4 Effect of kaolin on the properties of rubber vulcanisates 

Numerous studies have looked into potential replacement of tradition fillers with 

kaolin in rubber compounds. A small amount of kaolin – 10 phr was modified with 

sodium salt of rubber seed oil (SRSO) and mixed with natural rubber [91]. The 

SRSO modified kaolin was more strongly bound in a constraint environment within 

the lamellae of kaolin. The rubber filled with SRSO-modified kaolin cured faster than 

that of a similar mix containing unmodified kaolin. In addition, the NR vulcanisates 

containing SRSO-modified kaolin showed considerable increase in tensile modulus, 

tensile strength, and elongation at break, indicating its potential as an organo-
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modified nano-filler [91]. NR nanocomposites reinforced with 20-50 phr of silane-

modified kaolin exhibited outstanding mechanical properties and much higher 

thermal stability compared with pure NR. The hardness and tensile properties 

improved with increasing filler loading and an optimum tensile strength was achieved 

at the highest loading of modified kaolin [92]. The surface of kaolinite clay was 

modified with different surface modifiers such as methacrylic acid and 

polymethacrylic acid. Natural rubber and styrene butadiene rubbers were mixed with 

modified and unmodified kaolins. The rheometric properties and mechanical 

properties of the rubber vulcanisates were determined. It was noted that there was a 

significant decrease in both the optimum cure time t90 and scorch time ts2 and an 

increase in the maximum torque values for both the NR and SBR compounds. 

Mechanical properties of the rubber vulcanisates were investigated and showed 

improvement in tensile strength and hardness for both modified and unmodified 

kaolin [93]. Nano-kaolin powder of different average thickness and specific surface 

areas were introduced into NR, SBR, BR and EPDM rubbers. The effect of nano-

kaolin on the rubbers was evaluated by comparisons with those from precipitated 

silica. Rheological and mechanical properties were measured. The results showed 

that nano-kaolin could greatly improve the vulcanisation process by decreasing the 

optimum cure and scorch times. Mechanical properties, thermal properties and 

rubber properties were substantially good. Tensile strength was close to that of the 

rubber filled with precipitated silica, but tear strength and modulus were inferior to 

those of silica. For natural rubber, tensile strength of nano-kaolin filled rubber was 

considerably higher than that of the precipitated silica filled one [94].  In a study, 

importance of the surface organo-modification of kaolin was demonstrated. Metal 

salt of rubber seed oil (RSO-Na) was used to modify kaolin and then was introduced 

into NR. Rubber composites mixed with various compositions of pristine and 

modified kaolin (2–10 phr) were then prepared and tested. The results showed that 

the modified kaolin improved the cure and mechanical properties of the rubber 

composite compared to the pristine kaolin-filled rubber. For example, the viscosity 

and hardness increased with increase in filler concentration. Furthermore, the extent 

of crosslink density and rubber-filler interaction also improved. It was concluded that 

the presence of the modified kaolin resulted in the formation of a higher number of 

crosslinks, which was attributed to the confinement of the rubber chains within the 

silicate galleries, and consequently to better interaction between the filler and the 
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rubber [95]. Formulation and morphology of novel-kaolin filler rubber composites 

were investigated [96]. Rubber composites included NR, SBR, BR, NBR, EPDM and 

CR, with various filler loading displayed superior mechanical and thermal properties 

such as, tensile strength but weaker elongation at break. It was concluded that kaolin 

could replace silica in the specific rubber products and was suitable for rubber 

reinforcement. The cure systems in these compounds consisted of two accelerators, 

two activators and elemental sulphur. It was clear that after surface treatment kaolin 

performed a lot better in rubber.    

2.7.3.5 Toxicology and environmental effects of kaolin 

Kaolin is classified as nontoxic mineral with the exception of possible dust particles. 

Only an approved dust mask would be highly recommended when using kaolin. The 

food and drug administration gives kaolin as “Generally Regarded as Safe” status 

(GRAS) [88]. Kaolin has been used in many consumer products in various industries. 

It is a very unique mineral that is chemically inert over a relatively high pH range. It 

has low conductivity of heat and electricity and it is lower in cost and readily available. 

Kaolin is used by rubber manufacturers due to its reinforcing and stiffening 

properties. When kaolin was incorporated in rubber it improved mechanical 

properties such as, tensile strength, tear resistance, abrasion resistance, heat 

generation, energy rebound, extrusion and plasticity, hardness, ageing 

characteristics etc. [97].   

2.7.4 Other fillers used for rubber reinforcement  

2.7.4.1 Fibres 

Fibre is a constitute material available to use as a reinforcing agent designed for a 

particular matrix system to make a composite material [98]. Reinforcement by fibres 

generally produces good stiffness. There is a variety of fibres used which give 

several different advantages in particular with their properties. Fibres such as, glass, 

carbon, talc, silica and high performance fibres, (aramidic) are combined with 

polymer to make composite materials.  

In a study, composites made from SBR and short fibres were prepared. The 

influence on the vulcanisation process and tensile strength were studied and the 

results showed that with fibres shorter cure time and a marginal increase in tensile 

strength was achieved but elongation at break of the compound was decreased [99]. 
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Natural rubber was mixed with short fibres and the reinforcing effect of the fibre on 

the rubber properties was discussed [100-103]. It was found that the fibre offered a 

similar level of reinforcement compared to carbon black and silica. In some other 

studies, tensile strength and elongation at break of natural rubber based composites 

substantially decreased with the addition of fibres [99]. The effect of aramid, glass 

and cellulose short fibres on the processing behaviour, crosslink density and 

mechanical properties of NR, EPDM and SBR was investigated [104]. The result 

showed aramid fibres were effective reinforcing agents for these rubbers giving rise 

to a significant increase in mechanical properties, such as tensile modulus and 

strength, and tear and abrasion resistance. In addition, there was a significant 

decrease in optimum cure time. The decrease in the cure time indicated that the 

fibres tended to increase the vulcanisation rate [104]. Another very important 

parameter of natural fibre was poor compatibility with polymer matrices, i.e. poor 

adhesion at the interface which ultimately resulted in non-uniform dispersion of fibres 

within matrix. Natural fibres are very hydrophilic in nature therefore their high 

moisture content and this led to harsh reduction of mechanical properties or 

delaminating [105]. In order to obtain optimum properties and to improve the 

adhesion between the fibre and matrices, adhesion promoters or chemical coupling 

agents are used. The fibre surface is treated with coupling agents in such a way that 

bonding between the fibre and matrix will be enhanced.  

2.7.4.2 Clays and organo-clays 

According to CMS (Clay Minerals Society), clay is a naturally occurring material 

composed of primarily fine-grained minerals when added as fillers, affects the 

behaviour of rubbers. The modification of clays with organophilic cations is 

essentially done to promote compatibility with rubber [106]. Clays are stacked 

layered inorganic compounds that are joined together by iono-covalent bonds. These 

layers are bound to each other in a perpendicular direction through weaker forces 

which can be separated from each other by applying a small amount of energy. 

However, a remarkable amount of energy is required to break the layers of clay [107].   
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2.7.4.2.1 Structure of clays  

The dispersion of clay in polymer matrix is one of the most important features of 

polymer nanocomposites. Fig. 2.14 shows the structure of montmorillonite (MMT), 

the most applied clay for the preparation of polymer nanocomposites.   

 

   

 

 

 

 

 

 

 

 

 

Figure 2.16 Structure of montmorillonite [107] 

 

This montmorillonite clay (MMT) is available in bulk and is very cost effective with 

high surface area. It contains less than 1wt% of crystalline silica and therefore 

considered safe and is handled as a standard powder [108].     

In a study, natural rubber latex clay nanocomposites reinforced with montmorillonite 

clay achieved good dispersion and provided better reinforcement. The physio-

mechanical properties of composites were measured. The crosslink density of 

nanocomposites was increased with an increase in clay loading. As a result, low 

loadings of MMT clay were able to significantly improve the reinforcement, whilst 

maintaining good elastic properties and barrier properties of the nanocomposites 

vulcanisates [109]. In another study, nanocomposites were prepared using a non-

polar polymer such as, EPDM reinforced with nanoclay at low filler loadings showed 

improved properties and better dispersion. EPDM and organoclay has been modified 
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to improve the dispersion of clay, provided better thermal stability and decreased 

swelling [110]. Rubber nanocomposites based on natural rubber and organically 

modified montmorillonite (OMMT) were prepared by melt intercalation technique, 

using a laboratory open mill, followed by compression moulding. The dispersion of 

OMMT in the NR was better for organoclay Cloisite 15A that showed a higher d-

spacing. X-ray diffraction (XRD) spectrum showed OMMT was nearly exfoliated in 

the NR. In addition, the presence of organoclay significantly decreased the cure time 

and scorch time. Mechanical properties such as, hardness and stresses at low strain 

of nanocomposites slightly increased with increasing d-spacing of organoclay and 

swelling behaviour was also increased with increase in d-spacing but elongation at 

break slightly decreased [111].  

2.7.4.3 Calcium carbonate 

Calcium carbonate (CaCO3), which is also known as whiting, chalk, limestone and 

calcite are added to the rubber to make it cost effective and improve hardness of 

rubber compounds. Calcium carbonate is used in the rubber industry for making 

electrical wires and cable insulation where low moisture content and natural 

insulating properties make a perfect choice for rubber compounder to use in rubber 

compounds. Particle sizes, ranging from 2 to 80 µm, are typically available for use 

and typical loading of calcium carbonate in rubber compounds ranges from 20 to 300 

phr [112].  

2.8 Health, safety, environmental and cost issues related to the use of 
carbon black, silica, mineral fillers and fibres in the rubber  

Summary - To enhance the mechanical properties of a rubber such as hardness, 

tear strength, tensile strength, and elongation at break, fillers with surface areas 

ranging from 150 to 400 m2/g are added [113].Among these fillers, short fibres, 

colloidal carbon blacks, metal oxides, and synthetic silicas are the most widely used 

materials in rubber reinforcement. Carbon black contains a low level of polycyclic 

aromatic hydrocarbons (PAHs) within the structure of CB. Many of these PAHs are 

tightly bound into the structure of the CM aggregate and are not free to migrate, but 

a small amount are on the surface. PAHs are known to be highly carcinogenic 

(cause cancer), mutagenic (cause mutation) and teratogenic (cause defects); and 
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therefore there is a considerable health risk associated with their use in the rubber 

compounds [113].   

According to IARC carbon black is classified as 2B rated, possibly carcinogenic to 

humans and definitely carcinogenic to animals [114-115]. Silica is also used as filler 

in rubbers. Silica contains silicosis, which has potential health effects such as, 

respiratory disease of lungs from inhalation of airborne crystalline silica dust. These 

dust particles cause fibrosis (scar tissue formation) in the lungs. The overall IARC 

evaluation was that crystalline silica inhaled in the form of quartz or occupational 

sources is carcinogenic to humans [115].  Traditional fillers such as carbon black and 

precipitated silica are both classified as harmful and pose serious health concerns. 

Whereas, natural minerals such as kaolin (China clay) are less harmful solid fillers 

and pose no considerable health risk associated with their use in rubber. In terms of 

costs, these natural solid fillers are readily available in the market and compared to 

carbon black and silica, mineral fillers are very cost effective and much safer to use 

in rubber composites and provide as good if not better mechanical properties.   

2.9 Summary  

Excessive use of the curing chemicals is harmful to health, safety, and the 

environment and their use is restricted by the new European chemicals policy, 

Regulation, Evaluation, Authorisation, and Restriction of Chemicals (REACH) and 

various legislation for environment and safety. Reduction in the use of these 

chemicals in rubber compounds is now a priority. In any rubber formulation, chemical 

curatives and solid fillers are indispensable. The former provides shape stability, and 

the latter reinforcement of the dynamic and mechanical properties of the cured 

rubber, which is essential for the performance, durability, and life of the final product 

in service [116,117]. According to the European Directive 67/548/EEC, zinc oxide is 

very toxic to aquatic organisms. Stearic acid causes skin and eye irritation and is 

classified as highly flammable [118]. Both of these chemicals are used extensively 

as activator in sulphur vulcanisation [119,120]. Besides, CBs could be highly toxic 

and pose a considerable health risk associated with their use in rubber compounds 

[113]. There is a need to replace CB with less harmful solid fillers. 
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Chapter 3 - Novel sulphur cure 
systems for rubber 

3.1 Introduction 
There are fundamental problems with the sulphur-cure systems in industrial rubber 

articles such as tyres, conveyor belts and hoses. The chemical curatives have never 

been measured properly and furthermore, there is no reason why so many and so 

much of them should be used in tyre compounds. This work was carried out to 

resolve this important issue and provide a precise method for measuring exact 

amount of the chemicals in sulphur-cure systems for tyres. Sulphenamide 

accelerators and zinc oxide (ZnO) and stearic acid activators are used extensively to 

cure a wide range of industrial articles. For example, in NR-based tyre belt skim 

compound [1], the cure system consists of sulphur, 5 parts per hundred of rubber by 

weight (phr); (N,N'-dicyclohexyl-2-benzothiazole sulphenamide) (DCBS) accelerator, 

0.7 phr; hexamethoxy methyl melamine (HMMM) accelerator, 2 phr; ZnO, 7 phr; and 

stearic acid, 1 phr. Zinc oxide and stearic acid can potentially be harmful to health, 

safety and the environment. According to the European Directive 2004/73/EC, zinc 

oxide is very toxic to aquatic organisms. Stearic acid causes skin and eye irritation 

and is classified as highly flammable [2]. DCBS and HMMM accelerators may cause 

eye, skin and respiratory irritation and are harmful to aquatic life [3,4].  

Other formulations such as the one for an IR/EPDM rubber blend used in wiper 

blades have also many chemical curatives in their cure system [7]. In this blend, the 

cure system consists of sulphur, 1.5 parts per hundred of rubber by weight (phr); 

Durax (N-Cyclohexyl-2-benzothiazole sulphenamide) (CBS) accelerator, 1.2 phr; 

Methyl Tuads (Tetramethylthiuram Disulphide) (TMTD) accelerator, 0.25 phr, ZnO, 

7.5 phr; and stearic acid, 2 phr activators. CBS and TMTD accelerators are harmful 

by inhalation and if swallowed and very toxic to aquatic environment. These 

chemicals are harmful when contact with skin and eyes. For BR based innerliner 

compounds [8]. The cure system consists of sulphur, 0.5 phr; magnesium oxide 

(MgO) accelerator, 0.15 phr; 2-2’-Dithiobis(benzothiazole) (MBTS), 1.5 phr; ZnO, 3 

phr; stearic acid, 1 phr activators. MgO and MBTS accelerators can cause irritation 

to skin and very toxic to aquatic environment. Avoid release to the environment 
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results in irritation to eyes and respiratory system. Previously, Ansarifar and co-

workers reported a method for measuring the chemical curatives in sulphur cure 

systems for rubber, which eliminated stearic acid entirely and reduced the ZnO 

requirement to less than 1 phr [5,6]. Although it cannot be denied that sulphur 

vulcanisation is a much more efficient process today than it was at the time of 

Charles Goodyear, nevertheless serious health and safety issues related to its 

excessive use in rubber have emerged. Additionally, the chemical curatives are 

damaging to aquatic life and the environment. Consequently, the use of these 

chemicals is restricted by the new European chemicals policy, Registration, 

Evaluation, Authorisation and Restriction of Chemicals (REACH) and various 

legislations for environment, health and safety. It is worth mentioning that the exact 

amount of the chemical curatives in the sulphur vulcanisation of rubber has never 

been measured accurately and furthermore, there is no reason why so many and so 

much of these chemicals need to be used in rubber compounds today. 

3.2 Experimental 

3.2.1 Materials and mixing 

The raw rubbers used were standard Malaysian natural rubber (NR) grade L 

(98wt%1,4-cis content; SMRL); high cis polybutadiene rubber (96wt% 1,4-cis content; 

Buna CB24, Bayer, Newbury, UK; not oil extended); ethylene-propylene-diene 

rubber (EPDM; 48wt% ethylene content,  9wt% ethylidene norbornene content, and 

13wt% oil content, Keltan 6251A, Lanxess, The Netherlands). The other ingredients 

were sulphur (curing agent: Solvay Barium Strontium, Hanover, Germany), N-tert-

butyl-2-benzothiazole sulphenamide (a fast-curing delayed action accelerator with a 

melting point of 105oC) (Santocure TBBS, Sovereign Chemicals, USA), zinc oxide 

(ZnO; an activator, Harcros Durham Chemicals, Durham, UK), stearic acid (an 

activator, Anchor Chemicals Ltd, UK), and N-(1,3-dimethylbutyl)-N'-phenyl-p-

phenylenediamine (an antidegradant with a melting point of 45oC, Santoflex 13, 

Brussels, Belgium). These chemicals are used extensively in tyre compounds.  

The raw rubber was mixed with the chemical ingredients in a Haake Rheocord 90 

(Berlin, Germany), a small size laboratory mixer with counter-rotating rotors to 

produce compounds. The Banbury rotors and the mixing chamber were initially set at 

ambient temperature (23oC) and the rotor speed was set at 45 r.p.m. The volume of 
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the mixing chamber was 78 cm3, and it was 60% full during mixing. Polylab monitor 

4.17 software was used for controlling the mixing condition and storing data. To 

prepare the compounds, the raw rubber was introduced first in the mixer and then 

sulphur, TBBS, ZnO and stearic acid were added and mixed for 8 min in total. The 

temperature of compounds during mixing was 51-56oC.   

The viscosity of the compounds was measured at 100oC in a single-speed rotational 

Mooney viscometer (Wallace Instruments, Surrey, UK) according to British Standard 

1673, Part 3, 1969 and the results were expressed as Mooney Units (MU). The cure 

properties of the compounds were measured at 160 ± 2oC in an oscillating disc 

rheometer curemeter (ODR, Monsanto, Swindon, UK) at an angular displacement of 

± 3o and a test frequency of 1.7 Hz according to the British Standard ISO 3417.  

From the cure traces, scorch time, ts2, which is the time for the onset of cure, and 

the optimum cure time, t95, which is the time for the completion of cure were 

determined. The cure rate index, which is a measure of the rate of cure in the 

compound, was calculated using the method described in British Standard ISO 3417, 

2008. ∆torque was afterwards plotted against the loading of TBBS, ZnO, and stearic 

acid. ∆Torque is the difference between the maximum and minimum torque values 

on the cure trace of a compound and is an indication of crosslink density changes in 

the rubber. 

3.3 Methodology 

3.3.1 Addition of TBBS and ZnO to the sulphur filled NR, BR and EPDM 
rubbers 

3.3.1.1 Addition of TBBS and ZnO to NR filled with 1, 2, 3 and 4 phr sulphur 
 

For NR with 1 phr sulphur, the loading of TBBS was increased from 0.25 phr to 3.5 

phr (Table 3.1).  
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Table 3.1 Formulation of NR compounds with 1 phr sulphur and an increasing 
loading of TBBS 

Formulation (phr)                                            Compound no 
 

 1 2 3 4 5 6 7 8 
SMRL (NR) 100 100 100 100 100 100 100 100 

Sulphur  1 1 1 1 1 1 1 1 
TBBS 0.25 0.5 1 1.5 2 2.5 3 3.5 

                           ODR test results at 160oC 
 

Min torque (dNm) 15 15 15 14 14 14 14 14 
Max torque dNm) 20 26 33 37 40 42 44 46 
∆Torque (dNm) 5 11 18 23 26 28 30 32 
Scorch time ts2 (min) 9.5 8.7 9.7 9.7 9.7 11 10.4 10.6 
Optimum cure time t95 
(min) 

12.4 12.7 14.8 15.9 16.2 19 18.9 19 

The ∆torque values were plotted against the loading of TBBS to determine the 

optimum amount required to react the sulphur with the rubber (Fig 3.1). 

 

Figure 3.1 ∆Torque versus TBBS loading for the compounds with 1 phr sulphur in 
NR 

Figure 3.1 shows ∆torque as a function of TBBS loading for the rubbers with 1 phr 

sulphur. ∆torque increased from 5 to 23 dNm as the loading of TBBS was raised to 

1.5 phr and it continued rising at a much slower rate to about 32 dNm when the 

loading of TBBS reached 3.5 phr. The addition of 1.5 phr TBBS was sufficient to 

react the sulphur with the rubber to from crosslinks.  Further increases in the TBBS 

loading to 3.5 phr had a lesser effect on the ∆torque value, which increased only 

marginally. Therefore 1.5 phr TBBS was sufficient to fully react the sulphur with the 
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rubber to produce sulphur covalent bonds between the two. There are two types of 

behaviour in figure 3.1 first ∆torque increases as a function of TBBS loading at a 

steep rate when up to 1.5 phr of TBBS. Thereafter the increase in ∆torque is less 

steep. The exact reason for these types of behaviour is not known at this stage. 

However it may be speculated that above the optimum TBBS loading they may be 

less TBBS available to react the sulphur with the rubber hence giving lower cross 

link density as shown by smaller increase in ∆torque.    

The cure trace of the rubber with the optimum loading of TBBS (1.5 phr) was 

examined for proof of full cure (Fig 3.2). 

 

 

 

 

 

 

 

 

 

Figure 3.2 cure trace (torque vs time) of the compound with 1 phr sulphur and 1.5 
phr TBBS 

For NR with 1 phr sulphur, 1.5 phr TBBS, the loading of ZnO was increased from 

0.05 phr to 0.5 phr (Table 3.2) 
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Table 3.2 Formulation of NR compounds with 1 phr sulphur, 1.5 phr TBBS and an 
increasing loading of ZnO 

Formulation (phr)                                  Compound no 
 

 9 10 11 12 13 14 15 
SMRL (NR) 100 100 100 100 100 100 100 

Sulphur  1 1 1 1 1 1 1 
TBBS 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
ZnO 0.05 0.1 0.15 0.2 0.3 0.4 0.5 

                           ODR test results at 160oC 

Min torque (dNm) 15 16 16 16 16 15 15 
Max torque dNm) 36 40 41 42 45 46 48 
∆Torque (dNm) 21 24 25 26 29 31 33 
Scorch time ts2 (min) 9.5 9.4 8.1 8.4 8.1 7.7 7.7 
Optimum cure time t95 
(min) 

16.3 15.6 13.4 15.5 14.6 14.3 13.7 

 

Figure 3.3 shows ∆torque as function of ZnO loading for the rubber with 1 .5 phr 

TBBS and 1 phr sulphur. ∆torque increased from 21 to 26 when the loading of ZnO 

raised to 0.2 phr and it continued rising at a much slower rate at about 33 dNm when 

the loading of ZnO reached 0.5 phr. The addition of 0.2 phr ZnO was adequate to 

improve the efficiency of TBBS as indicated by large increase in ∆torque value.  

 

Figure 3.3 ∆Torque versus ZnO loading for the compounds with 1.5 phr TBBS, 1 phr 
sulphur in NR 
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The cure trace of the rubber with the optimum loading of TBBS (1.5 phr) and ZnO 

(0.2 phr) was examined for proof of full cure (Fig 3.4). 

 

 

 

 

 

 

 

 
Figure 3.4 cure trace (Torque vs time) of the compound with 1 phr sulphur, 1.5 phr 

TBBS and 0.2 phr ZnO 

For NR with 1 phr sulphur, 1.5 phr TBBS, and 0.2 phr ZnO, the loading of stearic 

acid was increased progressively from 0 phr to 2.5 phr (Table 3.3) 

Table 3.3 Formulation of NR compounds with 1 phr sulphur, 1.5 phr TBBS, 0.2 phr 
ZnO and an increasing loading of stearic acid 

Formulation (phr)                                            Compound no 
 

 16 17 18 19 20 21 22 23 
SMRL  (NR) 100 100 100 100 100 100 100 100 

Sulphur  1 1 1 1 1 1 1 1 
TBBS  1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
ZnO 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Stearic acid 0 0.5 0.75 1 1.4 1.8 2.1 2.5 
                           ODR test results at 160oC 

 
Min torque (dNm) 16    14 14 14 13 13 13 12 
Max torque dNm) 42    41 41 41 40 40 40 39 
∆Torque (dNm) 26    27 27 27 27 27 27 27 
Scorch time ts2 (min) 8.4   8.2 8.6 8.0 7.8 8 8.2      7.5 
Optimum cure time t95 
(min) 

15.5   13.7 14 13.9 12.7 12.6 12.7 11.9 

 



61 
 

Figure 3.5 shows ∆torque versus stearic acid loading. The inclusion of stearic acid in 

the cure system for NR has no benefit for the ∆torque at all, which stayed constant at 

about 27 dNm. It is abundantly clear from the results that ZnO is a very effective 

primary activator in improving the performance of TBBS in the absence of stearic 

acid (a secondary activator). 

 

Figure 3.5 ∆Torque versus stearic acid loading for the compounds with 1.5 phr TBBS, 
1 phr sulphur, 0.2 phr ZnO in NR 

For NR with 2 phr sulphur the loading of TBBS was increased from 0.5 phr to 3.5 phr 

(Table 3.4). 

Table 3.4 Formulation of NR compounds with 2 phr sulphur and an increasing 
loading of TBBS 

Formulation (phr)                                  Compound no 
 

 24 25 26 27 28 29 30 
SMRL (NR) 100 100 100 100 100 100 100 

Sulphur  2 2 2 2 2 2 2 
TBBS 0.5 1 1.5      2 2.5 3 3.5 

                           ODR test results at 160oC 

Min torque (dNm) 18 15 15 15 14 14 14 
Max torque dNm) 31 36 40 44 46 49 50 
∆Torque (dNm) 13 21 25 29 32 35 36 
Scorch time ts2 (min) 8.3 8.1 8.3 8.5      8.5 8.9 8.9 
Optimum cure time t95 
(min) 

23.3 12.6 13.6 14 14.7 15.3 15.7 
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The ∆torque values were plotted against the loading of TBBS to determine the 

optimum amount required to react the sulphur with the rubber (Fig 3.6). 

 

Figure 3.6 ∆Torque versus TBBS loading for the NR compounds with 2 phr sulphur 

 

∆torque increased from 13 to 25 dNm as the loading of TBBS was raised to 1.5 phr 

and it continued rising at a much slower rate to about 36 dNm when the loading of 

TBBS reached 3.5 phr. The addition of 1.5 phr TBBS was sufficient to react the 

sulphur with the rubber to from crosslinks.  Further increases in the TBBS loading to 

3.5 phr had a lesser effect on the ∆torque value, which increased only marginally.  

The cure trace of the rubber with the optimum loading of TBBS (1.5 phr) was 

examined for proof of full cure (Fig 3.7). 
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Figure 3.7 cure trace (torque vs time) of the compound with 2 phr sulphur and 1.5 
phr TBBS 

 

For NR with 2 phr sulphur and 1.5 phr TBBS, the loading of ZnO was increased 

progressively from 0.05 phr to 0.5 phr (Table 3.5). 

Table 3.5 Formulation of NR compounds with 2 phr sulphur, 1.5 phr TBBS and an 
increasing loading of ZnO 

Formulation (phr)                                  Compound no 
 

 31 32 33 34 35 36 37 
SMRL (NR) 100 100 100 100 100 100 100 

Sulphur  2 2 2 2 2 2 2 
TBBS 1.5 1.5 1.5    1.5 1.5 1.5 1.5 
ZnO 0.05 0.1 0.15 0.2 0.3 0.4 0.5 

                           ODR test results at 160oC 

Min torque (dNm) 16 17 17 17 17 17 16 
Max torque dNm) 41 45 46 48 52 53 55 
∆Torque (dNm) 25 28 29 31 35 36 39 
Scorch time ts2 (min) 7.7 7.7 7.1 6.9 6.5 6.2 6 
Optimum cure time t95 
(min) 

14 13.1 11.9 11.4 10.7 10.3 10 
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Figure 3.8 shows ∆torque as function of ZnO loading for the rubber with 1.5 phr 

TBBS and 2 phr sulphur. ∆torque increased from 25 to 31 when the loading of ZnO 

raised to 0.2 phr and it continued rising at a much slower rate at about 39 dNm when 

the loading of ZnO reached 0.5 phr. The addition of 0.3 phr ZnO was sufficient to 

improve the efficiency of TBBS as indicated by large increase in ∆torque value. 

 

Figure 3.8 ∆Torque versus ZnO loading for the compounds with 1.5 phr TBBS, 2 phr 
sulphur in NR 

 

The cure trace of the rubber with the optimum loading of TBBS (1.5 phr) and ZnO 

(0.3 phr) was examined for evidence of full cure (Fig 3.9). 
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Figure 3.9 cure trace (torque vs time) of the compounds with 2 phr sulphur, 1.5 phr 
TBBS and 0.3 phr 

For NR with 3 phr sulphur the loading of TBBS was increased from 0.5 phr to 3.0 phr 

(Table 3.6). 

Table 3.6 Formulation of NR compounds with 3 phr sulphur and an increasing 
loading of TBBS 

Formulation (phr)                                            Compound no 
 

 38 39 40 41 42 43 44 45 
SMRL (NR) 100 100 100 100 100 100 100 100 

Sulphur  3 3 3 3 3 3 3 3 
TBBS 0.5 0.75 1 1.25 1.5 2 2.5 3 

                           ODR test results at 160oC 
 

Min torque (dNm) 16    16 15 16 15 15 15 14 
Max torque dNm) 34    36 38 40 42 46 48 50 
∆Torque (dNm) 18    20 23 24 27 31 33 36 
Scorch time ts2 (min) 6.4   6.9 7 7.3 7.2 7.3 7.4 7.8 
Optimum cure time t95 
(min) 

25.2  15.6 11.2 12 12.3 
 

13.1 13.4 14.2 

 

Figure 3.10 shows ∆torque as a function of TBBS loading for the rubbers with 3 phr 

sulphur. ∆torque increased from 18 to 27 dNm as the loading of TBBS was raised to 

1.5 phr and it continued rising at a much slower rate to about 36 dNm when the 
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loading of TBBS reached 3 phr. The addition of 1.5 phr TBBS was sufficient to react 

the sulphur with the rubber to from crosslinks.  Further increases in the TBBS 

loading to 3 phr had a lesser effect on the ∆torque value, which increased only 

marginally. 

 

Figure 3.10 ∆Torque versus TBBS loading for the compounds with 3 phr sulphur in 
NR 

 

The cure trace of the rubber with the optimum loading of TBBS (1.5 phr) was 

examined for proof of full cure (Fig 3.11). 
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Figure 3.11 Cure trace (torque vs time) of the compounds with 3 phr sulphur and 1.5 
phr TBBS 

 

For NR with 3 phr sulphur and 1.5 phr TBBS, the loading of ZnO was increased from 

0.05 phr to 0.4 phr (Table 3.7) 

Table 3.7 Formulation of NR compounds with 3 phr sulphur, 1.5 phr TBBS and an 
increasing loading of ZnO 

Figure 3.12 shows ∆torque as function of ZnO loading for the rubber with 1.5 phr 

TBBS and 3 phr sulphur. ∆torque increased from 27 to 38 when the loading of ZnO 

rose to 0.25 phr and it continued rising at a much slower rate at about 39 dNm when 

the loading of ZnO reached 0.4 phr. The addition of 0.25 phr ZnO was adequate to 

improve the efficiency of TBBS as indicated by large increase in ∆torque value. 

  

 

Formulation (phr)                                           Compound no 
 

 

 46 47 48 49 50 51 52 53 54 
SMRL (NR) 100 100 100 100 100 100 100 100 100 

Sulphur  3 3 3 3 3 3 3 3 3 
TBBS 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
ZnO 0.05 0.075 0.1 0.125 0.15 0.2 0.25 0.35 0.4 

                                             ODR test results at 160oC 
  

Min torque (dNm) 16 17 17 16 16 17 16 17 16 
Max torque dNm) 43 45 46 47 48 50 54 56 55 
∆Torque (dNm) 27 28 29 31 32 33 38 39 39 
Scorch time ts2 (min) 7.1 6.6 6.4 6.1 6 6 5.5 5.6 5.2 
Optimum cure time t95 
(min) 

13.2 11.8 11 10.3 9.6 9.7 9.8 9.7 8.7 
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Figure 3.12 ∆Torque versus ZnO loading for the compounds with 1.5 phr TBBS, 3 
phr sulphur in NR 

 

The cure trace of the rubber with the optimum loading of TBBS (1.5 phr) and ZnO 

(0.25 phr) was examined for evidence of full cure (Fig 3.13). 

 

 

 

 

 

 

 

 

 

Figure 3.13 cure trace (torque vs time) of the compound with 3 phr sulphur, 1.5 phr 
TBBS and 0.25 phr ZnO 
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For NR with 4 phr sulphur the loading of TBBS was increased from 0.5 phr to 3.0 phr (Table 3.8) 

Table 3.8 Formulation of NR compounds with 4 phr sulphur and an increasing loading of TBBS 

 

Figure 3.14 shows ∆torque as a function of TBBS loading for the rubbers with 4 phr sulphur. ∆torque increased from 23 to 41 dNm 

as the loading of TBBS was raised to 3.5 phr and it continued rising at a much slower rate to about 44 dNm when the loading of 

TBBS reached 4.5 phr. The addition of 3.5 phr TBBS was sufficient to react the sulphur with the rubber to from crosslinks.  Further 

increases in the TBBS loading to 4.5 phr had a lesser effect on the ∆torque value, which increased only marginally.  

Formulation (phr)                                          Compound no  
 

   

 55 56 57 58 59 60 61 62 63 64 65 66 
SMRL (NR) 100 100 100 100 100 100 100 100 100 100 100 100 

Sulphur  4 4 4 4 4 4 4 4 4 4 4 4 
TBBS 0.5 0.75 1 1.25 1.5 2 2.5 3 3.5 3.8 4.2 4.5 

                                             ODR test results at 160oC    
     

Min torque (dNm) 17 16 16 16 16 15 15 15 14 14 14 13 
Max torque dNm) 40 41 41 42 44 48 51 53 55 56 55 57 
∆Torque (dNm) 23 25 25 26 28 33 36 37 41 42 41 44 
Scorch time ts2 (min) 5.8 6.2 6.4 6.6 6.7 6.7 6.9 7.3 7.2 7.4 7.9 7.7 
Optimum cure time t95 
(min) 

28 21 15.5 10.9 11.1 11.6 12.2 13.2 13.3 13.6 15.7 14.8 
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Figure 3.14 ∆Torque versus TBBS loading for the compounds with 4 phr sulphur in 
NR 

The cure trace of the rubber with the optimum loading of TBBS (1.5 phr) and ZnO 

(0.2 phr) was examined for proof of full cure (Fig 3.15). 

 

 

 

 

 

 

 

 

 
 

Figure 3.15 cure trace (torque vs time) of the compound with 4 phr sulphur and 3.5 
phr TBBS 
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For NR with 4 phr sulphur and 3.5 phr TBBS, the loading of ZnO was increased from 

0.05 phr to 0.4 phr (Table 3.9) 

Table 3.9 Formulation of NR compounds with 4 phr sulphur, 3.5 phr TBBS and an 
increasing loading of ZnO 

Formulation (phr)                                            Compound no  
 

 67 68 69 70 71 72 73 74 75 
SMRL (NR) 100 100 100 100 100 100 100 100 100 

Sulphur  4 4 4 4 4 4 4 4 4 
TBBS 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 
ZnO 0.05 0.075 0.1 0.125 0.15 0.2 0.25 0.3 0.4 

                           ODR test results at 160oC  
  

Min torque (dNm) 16    16 16 16 16 16 16 16 15 
Max torque dNm) 54    57 57 58 61 61 63 63 64 
∆Torque (dNm) 38    41 41 42 45 45 47 47 49 
Scorch time ts2 (min) 6.4   6.5 6.2 6 6.3 5.2 5.5 5.1 5.1 
Optimum cure time t95 
(min) 

14.2   13 12.5 12.3 11.9 10.5 10.4 10.2 10.2 

 

Figure 3.16 shows ∆torque as function of ZnO loading for the rubber with 3.5 phr 

TBBS and 4 phr sulphur. ∆torque increased from 38 to 45 when the loading of ZnO 

raised to 0.2 phr and it continued rising at a much slower rate at about 49 dNm when 

the loading of ZnO reached 0.4 phr. The addition of 0.2 phr ZnO was adequate to 

improve the efficiency of TBBS as indicated by large increase in ∆torque value. 
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Figure 3.16 ∆Torque versus ZnO loading for the compounds with 3.5 phr TBBS, 4 
phr sulphur in NR 

 

The cure trace of the rubber with the optimum loading of TBBS (1.5 phr) and ZnO 

(0.2 phr) was examined for proof of full cure (Fig 3.17). 

 

 

 

 

 

 

 

 

Figure 3.17 cure trace (torque vs time) of the compound with 4 phr sulphur, 3.5 phr 
TBBS and 0.2 phr ZnO 
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Figure 3.18 summarises the optimum loading of TBBS for the sulphur-filled NR 

rubbers. It is interesting that the rubbers with 1, 2, and 3 phr sulphur required 1.5 phr 

TBBS and the one with 4 phr sulphur, 3.5 phr TBBS for full cure.     

  

 

 

 

 

 

 

 
 
 
 
Figure 3.18 ∆Torque versus TBBS loading for the compounds with different amounts 
of sulphur. (■) compound with 1 phr sulphur, (▲) compound with 2 phr sulphur, (•) 
compound with 3 phr sulphur, (♦) compound with 4 phr sulphur. Each point on the 

graph corresponds to one compound 

 

Figure 3.19 summarises the optimum loading of ZnO for the sulphur-filled NR 

rubbers with the optimum loading of TBBS. It is interesting that the sulphur-filled 

rubbers with 1.5 phr TBBS needed 0.2-0.3 phr ZnO whereas the sulphur-filled rubber 

with 3.5 TBBS required a similar amount of ZnO, i.e. 0.2 phr.      

There are two types of behaviour in each curve of figure 3.18 first ∆torque increases 

as a function of TBBS loading at a steep rate when up to optimum loading of TBBS. 

Thereafter the increase in ∆torque is less steep. The exact reason for these types of 

behaviour is not known at this stage. However it may be speculated that above the 

optimum TBBS loading they may be less TBBS available to react the sulphur with 
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the rubber hence giving lower cross link density as shown by smaller increase in 

∆torque.    

 

 

 

 

 

 

 

 

 
Figure 3.19 ∆Torque versus ZnO loading for the compounds with different amounts 

of sulphur and TBBS. (■) compound with 1 phr sulphur and 1.5 phr TBBS, (▲) 
compound with 2 phr sulphur and 1.5 phr TBBS, (•) compound with 3 phr sulphur 

and 1.5 phr TBBS, (♦) compound with 4 phr sulphur and 3.5 phr TBBS. Each point 
on the graph corresponds to one compound 

 

3.3.1.2 Measurement of crosslink density of some NR rubber vulcanisates 

The crosslink density (CLD) of some NR rubbers containing 1 and 4 phr sulphur and 

1.5 phr TBBS and increasing loading of ZnO was determined by swelling technique 

in an organic solvent. The CLD was then calculated, using the Flory-Rehner 

equation [11,12]. The aim was to determine correlation between the crosslink density 

of the rubbers and ∆torque values.  

3.3.1.2.1 Method 

The solvent used for the crosslink density (CLD) determinations was toluene. For the 

determination. 1.2 g of rubber was placed in 300 ml of the solvent in labelled bottles 
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and allowed to swell for 50 days at 21oC. the sample weight was measured every 

day until it reached equilibrium and the solvent was then removed. The samples 

were dried in air for 9 h and then in an oven at 80oC for 24 h, and allowed to stand 

for an extra 24 h at 23oC before reweighing. The CLD was calculated using the 

following equation;  

−[ln(1 − 𝑣𝑣𝑟𝑟) +  𝑣𝑣𝑟𝑟 + 𝑥𝑥1𝑣𝑣𝑟𝑟2] = 𝑉𝑉1𝑛𝑛 �𝑣𝑣𝑟𝑟
1/3 −  𝑣𝑣𝑟𝑟

2
�           (1) 

where,  𝑣𝑣𝑟𝑟 is the volume fraction of polymer in the swollen mass, 𝑉𝑉1 is the molar 

volume of the solvent, 𝑛𝑛 is the number of network chain segments bounded on both 

ends by crosslinks and 𝑥𝑥1 is the Flory solvent-polymer interaction term (𝑥𝑥1 = 0.393) 

[9,10].  

The volume fraction of a rubber network in the swollen phase is calculated from 

equilibrium swelling data as: 

𝑣𝑣𝑟𝑟 =  1
1+𝑄𝑄

            (2) 

where, Q is equal 

𝑄𝑄 =  �𝑤𝑤1 ×𝐷𝐷𝑝𝑝�
(𝑤𝑤2 × 𝐷𝐷𝑜𝑜)

           (3) 

where, 𝑤𝑤1 is the weight of the swelling gel, 𝐷𝐷𝑝𝑝 is the density of the polymer NR was 

taken as 0.92 g/cm3, 𝑤𝑤2 is the initial weight of polymer, 𝐷𝐷𝑜𝑜 is the density of the 

solvent 0.867 g/cm3 for toluene.  

3.3.1.2.2 Materials  

The rubber formulations selected and the CLD of the rubber vulcanisates are 

summarised in (Table 3.10). Note that these compounds are the same ones shown 

in Table 3.1 (compound 8), Table 3.2 (compounds 9, 11, 12, 14), Table 3.8 

(compound 66), and Table 3.9 (compounds 69, 70, 72, 73). 
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Table 3.10 Formulation and crosslink density measurement of selected NR compounds with 1 phr and 4 phr sulphur, TBBS and 
ZnO loading 

 

 

 

 

 

 

 

 

 

Formulation (phr)                                          Compound no   
    
 8 9 11 12 14 66 69 70 72 73 

NR 100 100 100 100 100 100 100 100 100 100 
Sulphur  1 1 1 1 1 4 4 4 4 4 
TBBS 1.5 1.5 1.5 1.5 1.5 3.5 3.5 3.5 3.5 3.5 
ZnO 0.05 0.1 0.2 0.3 0.5 0.05 0.125 0.15 0.2 0.3 

                                             ODR test results at 160oC  
   

Min torque (dNm) 15 16 16 16 15 16 16 16 16 16 
Max torque dNm) 36 40 42 45 48 54 58 61 63 63 
∆Torque (dNm) 21 24 26 29 33 38 42 45 47 47 
Scorch time ts2 (min) 9.5 9.4 8.4 8.1 7.7 6.4 6 6.3 5.5 5.1 
Optimum cure time t95 
(min) 

16.3 15.6 15.5 14.6 13.7 14.2 12.3 11.9 10.4 10.2 

Crosslink density 
mol/cm3 

1.94 ×
10−5  

1.65 ×
10−5  

3.14 ×
10−5  

4.28 ×
10−5  

6.15 ×
10−5  

1.69 ×
10−5  

1.62 ×
10−5  

1.47 ×
10−5  

3.67 ×
10−5  

3.28 ×
10−5  
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3.3.1.2.3 Results and discussion 

Figure 3.20 shows crosslink density versus ∆torque for the NR compounds with 1 

phr sulphur, 1.5 phr TBBS and increasing loading of ZnO (compounds 8, 9, 11, 12, 

14; Table 3.10).  As expected, the crosslink density increased when ∆torque 

increased. Also as shown in Figure 3.21, for the NR with 4 phr sulphur, 3.5 phr TBBS 

and an increasing loading of ZnO a similar trend emerged (compounds 66, 69, 70, 

72 and 73; Table 3.10).   

 

Figure 3.20 Crosslink density vs Torque for compounds 8, 9, 11, 12 and 14 in Table 
3.10 
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Figure 3.21 Crosslink density measurements for the samples 66, 69, 70, 72 and 73 
in Table 3.10 

 

As the figure 3.20 shows, at the lowest crosslink density, i.e. 0.00001939 mol/m3, the 

torque is calculated to be 20.65 dNm. Furthermore, at the highest crosslink density, 

i.e. 0.0000615 mol/m3, the torque is about 33.23 dNm. This expected since higher 

crosslink density always correlates with higher torque values. This was expected.  

Clearly, there is a direct correlation between crosslink density and ∆torque. This 

correlation helps to avoid measuring the crosslink density changes by the swelling 

method, which uses a volatile organic solvent, and resorts to a much safer method 

on the ODR machine.   
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3.3.2 Addition of TBBS and ZnO to BR filled with 0.5 and 1 phr sulphur 

For BR with 0.5 phr sulphur, the loading of TBBS was increased from 0.5 phr to 3.0 

phr to react the sulphur with the rubber chains (Table 3.11) 

Table 3.11 Formulation of BR compounds with 0.5 phr sulphur and an increasing 
loading of TBBS 

Formulation (phr)                                            Compound no 
  
 76 77 78 79 80 81 82 83 

Buna CB 24 (BR) 100 100 100 100 100 100 100 100 
Sulphur  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
TBBS  0.5 1 1.25 1.5 1.75 2 2.5 3 

                           ODR test results at 160oC 
 

Min torque (dNm) 14    13 14 14 14 13 14 13 
Max torque dNm) 39    47 52 56 58 59 58 58 
∆Torque (dNm) 25    34 38 42 45 46 44 45 
Scorch time ts2 (min) 19.2   13.8 13.8 12.8 14.4 11.1 12.7 13 
Optimum cure time t95 
(min) 

90.9   78.1 81 76.6 77.7 66.8 73.8 85.4 

Figure 3.22 shows ∆torque as a function of TBBS loading for the BR rubbers with 0.5 

phr sulphur. ∆torque increased from 25 to 45 dNm as the loading of TBBS was 

raised to 1.75 phr, and then it stopped rising once the loading of TBBS reached 3 phr. 

The addition of 1.75 phr TBBS was sufficient to react the sulphur with the rubber to 

form crosslinks.  

 

Figure 3.22 ∆Torque versus TBBS loading for the compounds with 0.5 phr sulphur in 
BR 

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5 3 3.5

∆T
or

qu
e 

(d
N

m
) 

TBBS Loading (phr) 



80 
 

 The cure trace of the rubber with the optimum loading of TBBS (1.75 phr) was 

examined for proof of full cure (Fig 3.23). 

 

 

 

 

 

 
 
 
 
Figure 3.23 cure trace (torque vs time) of the BR compound with 0.5 phr sulphur and 

1.75 phr TBBS 

 

For BR with 0.5 phr sulphur and 1.75 phr TBBS, the loading of ZnO was increased 

from 0.05 phr to 0.35 phr (Table 3.12).     

Table 3.12 Formulation of BR compounds with 0.5 phr sulphur, 1.75 phr TBBS and 
an increasing loading of ZnO 

Formulation (phr)                                                    Compound no 
   
 84 85 86 87 88 89 90 91 92 

Buna CB 24 (BR) 100 100 100 100 100 100 100 100 100 
Sulphur  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
TBBS  1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75  
ZnO 0.05 0.075 0.125 0.15 0.175 0.2 0.25 0.3 0.35 

                                      ODR test results at 160oC 
  

Min torque (dNm) 14    14 14 14 15 15 15 16 14 
Max torque dNm) 76    78 82 83 85 85 83 88 87 
∆Torque (dNm) 62    64 68 69 70 70 68 72 73 
Scorch time ts2 (min) 15.1   14.4 14.5 14 16.5 13.2 15.2 16.7 13.3 
Optimum cure time t95 
(min) 

61.1   60.2 57.9 56.3 62.1 55.7 58.9 65.2 55.5 
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Figure 3.24 shows ∆torque as function of ZnO loading for the rubber with 0.5 phr 

TBBS and 1.75 phr sulphur. ∆torque increased from 60 to 70 when the loading of 

ZnO was raised to 0.2 phr and it continued rising at a much slower rate at about 73 

dNm when the loading of ZnO reached 0.35 phr. The addition of 0.2 phr ZnO was 

adequate to improve the efficiency of TBBS as indicated by large increase in ∆torque 

value. 

 

Figure 3.24 ∆Torque versus ZnO loading for the compounds with 0.5 phr sulphur and 
1.75 phr TBBS in BR 

 

The cure trace of the rubber with the optimum loading of ZnO (0.2 phr) was 

examined for evidence of full cure (Fig 3.25). 
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Figure 3.25 cure trace (torque vs time) of the BR compound with 0.5 phr sulphur, 

1.75 phr TBBS and 0.2 phr ZnO 

For BR with 0.5 phr sulphur, 1.75 phr TBBS and 0.2 phr ZnO, the loading of stearic 

acid was increased from 0 phr to 3 phr (Table 3.13) 

Table 3.13 Formulation of BR compounds with 0.5 phr sulphur, 1.75 phr TBBS, 0.2 
phr ZnO and an increasing loading of stearic acid 

Formulation (phr)                                            Compound no 
  
 93 94 95 96 97 98 99 100 

Buna CB24 (BR) 100 100 100 100 100 100 100 100 
Sulphur  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
TBBS  1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 
ZnO 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Stearic acid 0 0.5 0.9 1.3 1.7 2.1 2.5 3 
                           ODR test results at 160oC 

 
Min torque (dNm) 15    12 14 12 14 14 14 14 
Max torque dNm) 85    62 74 65 71 70 67 64 
∆Torque (dNm) 71    50 60 53 57 56 53 50 
Scorch time ts2 (min) 13.2   12.1 11.5 10.4 12.6 12 11.8 12.1 
Optimum cure time t95 
(min) 

55.7   50.2 52.3 48.3 50.9 44.4 43.5 40.9 

 

Figure 3.26 shows ∆torque versus stearic acid loading. When stearic acid was added 

to the BR with 0.5 phr sulphur, 1.75 phr TBBS and 0.2 phr ZnO, Δtorque first 
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decreased sharply from 71 to 50 dNm and then remained almost steady until the 

loading of stearic acid reached 3 phr. Evidently, small amounts of stearic acid, i.e. up 

to 0.5 phr, were detrimental to the crosslink density of the rubber as indicated by 

drop in Δtorque. 

 

Figure 3.26 ∆Torque versus stearic acid loading for the compounds with 0.5 phr 
sulphur, 1.75 phr TBBS, 0.2 phr ZnO in BR 

For BR with 1 phr sulphur, the loading of TBBS was increased from 0.5 phr to 3.8 

phr (Table 3.14). 
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Table 3.14 Formulation of BR compounds with 1 phr sulphur and an increasing loading of TBBS 

 

 

Figure 3.27 

shows 

∆torque as a function of TBBS loading for the BR rubbers with 1 phr sulphur. ∆torque increased from 39 to 60 dNm as the loading 

of TBBS was raised to 3 phr, and then it stopped rising once the loading of TBBS reached 3.8 phr. The addition of 3 phr TBBS was 

sufficient to react the sulphur with the rubber to form crosslinks.  

 

 

Formulation (phr)                                          Compound no   
    
 101 102 103 104 105 106 107 108 109 110 

Buna CB 24 (BR) 100 100 100 100 100 100 100 100 100 100 
Sulphur  1 1 1 1 1 1 1 1 1 1 
TBBS 0.5 0.75 1 1.25 1.5 2 2.5 3 3.4 3.8 

                                             ODR test results at 160oC  
   

Min torque (dNm) 15 14 14 14 15 13 14 14 14 14 
Max torque dNm) 54 57 59 62 63 63 69 74 72 77 
∆Torque (dNm) 39 43 45 48 48 50 55 60 58 63 
Scorch time ts2 (min) 14.3 11.5 11.6 11.6 11.8 10.6 10.3 10.2 10.1 12 
Optimum cure time t95 
(min) 

77 45.2 44.6 45.3 48 44.6 50 51.8 55.9 61 
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Figure 3.27 ∆Torque versus TBBS loading for the compounds with 1 phr sulphur in 
BR 

Note: The amount of sulphur use in figure 3.22 was 0.5 phr, however in figure 3.27 is 

1 phr, there seems to be a correlation between sulphur and TBBS to require 

optimum ∆Torque. 

The cure trace of the rubber with the optimum loading of TBBS (3 phr) was 

examined for proof of full cure (Fig 3.28). 

 

Figure 3.28 cure trace (torque vs time) of the BR compound with 1 phr sulphur and 3 
phr TBBS 

30

35

40

45

50

55

60

65

70

0 0.5 1 1.5 2 2.5 3 3.5 4

ΔT
or

qu
e 

(d
N

m
) 

TBBS Loading (phr) 



86 
 

For BR with 1 phr sulphur and 3 phr TBBS, the loading of ZnO was increased from 

0.05 phr to 0.45 phr (Table 3.15). 

Table 3.15 Formulation of BR compounds with 0.5 phr sulphur, 1.75 phr TBBS and 
an increasing loading of ZnO 

Formulation (phr)                                                    Compound no 
   
 111 112 113 114 115 116 117 118 119 

Buna CB 24 (BR) 100 100 100 100 100 100 100 100 100 
Sulphur  1 1 1 1 1 1 1 1 1 
TBBS  3 3 3 3 3 3 3 3 3  
ZnO 0.05 0.075 0.1 0.15 0.175 0.2 0.25 0.35 0.45 

                                      ODR test results at 160oC 
  

Min torque (dNm) 14    14 14 14 14 15 15 14 15 
Max torque dNm) 92    94 96 101 103 108 108 109 109 
∆Torque (dNm) 78    80 82 87 89 93 93 95 94 
Scorch time ts2 (min) 10.7   10.3 10.1 9.8 10.3 11.8 10 10 11.8 
Optimum cure time t95 
(min) 

48.1   44.7 42.7 39.8 39.2 43.3 40 
 

40.6 46.5 

Figure 3.29 shows ∆torque as function of ZnO loading for the rubber with 3 phr 

TBBS and 1 phr sulphur. ∆torque increased from 78 to 93 dNm when the loading of 

ZnO raised to 0.2 phr and it continued rising at a much slower rate at about 94 dNm 

when the loading of ZnO reached 0.45 phr. The addition of 0.2 phr ZnO was 

adequate to improve the efficiency of TBBS as indicated by large increase in ∆torque 

value. 

 

Figure 3.29 ∆Torque versus ZnO loading for the compounds with 1 phr sulphur and 3 
phr TBBS in BR 
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The cure trace of the rubber with the optimum loading of ZnO (0.2 phr) was 

examined for proof of full cure (Fig 3.30). 

 

 

Figure 3.30 cure trace (torque vs time) of the BR compound with 1 phr sulphur, 3 phr 
TBBS and 0.2 phr ZnO 

 

Figure 3.31 summarises the optimum loading of TBBS for the sulphur-filled BR 

rubbers. As shown, the rubbers with 0.5 and 1phr sulphur required 1.75 and 3 phr 

TBBS, respectively for full cure.     
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Figure 3.31 ∆Torque versus TBBS loading for the compounds with different amounts 
of sulphur (•) compound with 0.5 phr sulphur, (♦) compound with 1 phr sulphur. 

Each point on the graph corresponds to one compound 

 

Figure 3.32 summarises the optimum loading of ZnO for the sulphur-filled BR 

rubbers with the optimum loading of TBBS. Interestingly, the sulphur-filled rubbers 

with 1.75 and 3 phr TBBS needed only 0.2 phr ZnO to be fully cured. That suggested 

that the ZnO requirement was not necessary dependent on the loading of TBBS 

though the amount of TBBS needed to react the sulphur with the rub was dependent 

on the sulphur loading.  
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Figure 3.32 ∆Torque versus ZnO loading for the compounds with different amounts 
of sulphur and TBBS. (▲) compound with 0.5 phr sulphur and 1.75 phr TBBS, (♦) 

compound with 1 phr sulphur and 3 phr TBBS. Each point on the graph corresponds 
to one compound 
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3.3.3 Addition of TBBS and ZnO to EPDM filled with 1 phr sulphur 

For EPDM with 1 phr sulphur, the loading of TBBS was increased from 0.25 phr to 

3.8 phr (Table 3.16) 

 

Table 3.16 Formulation of EPDM compounds with 1 phr sulphur and an increasing 
loading of TBBS 

 
 

 

Figure 3.33 demonstrates Δtorque versus TBBS loading for the EPDM with 1 phr 

sulphur.  ΔTorque increased steeply from 26 to 42 dNm as the loading of TBBS was 

boosted from 0.25 to 1 phr. Subsequently, there was no improvement in Δtorque 

once the amount of TBBS reached 3.8 phr. Apparently, 1 phr TBBS was enough to 

react the sulphur with the rubber.  

 

 

 

Formulation (phr)                                                    Compound no 
   
 120 121 122 123 124 125 126 127 128 

Keltan 3251A (EPDM) 100 100 100 100 100 100 100 100 100 
Sulphur  1 1 1 1 1 1 1 1 1 
TBBS  0.25 0.5 0.75 1 1.25 1.5 2 2.5 3.8  

                                      ODR test results at 160oC 
  

Min torque (dNm) 15    16 17 16 16 16 15 15 14 
Max torque dNm) 41    49 54 57 59 58 58 56 54 
∆Torque (dNm) 26    33 37 42 43 42 43 41 40 
Scorch time ts2 (min) 18.7   19.6 24.8 22.1 21.7 20.9 31.4 25 23 
Optimum cure time t95 
(min) 

104.8   87.2 59.9 59.5 61.8 64.2 74.1 75.6 751 
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Figure 3.33 ∆Torque versus TBBS loading for the compounds with 1 phr sulphur in 
EPDM 

 

The cure trace of the rubber with the optimum loading of TBBS (1 phr) was 

examined for evidence of full cure (Fig 3.34). 

 

Figure 3.34 cure trace (torque vs time) of the EPDM compound with 1 phr sulphur 
and 1 phr TBBS 
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For EPDM with 1 phr sulphur and 1 phr TBBS, the loading of ZnO was increased from 0 phr to 0.4 phr (Table 3.17) 

Table 3.17 Formulation of EPDM compounds with 1 phr sulphur, 1 phr TBBS and an increasing loading of ZnO 

 

 

Figure 3.35 shows ∆torque vs ZnO loading for rubber with the optimum loading of TBBS. ΔTorque rose noticeably from 41 dNm at 

0 phr ZnO to 56 dNm at 0.075 phr ZnO and the rate of increase slowed down significantly thereafter. Δtorque then reached to about 

67 dNm when the loading of ZnO was raised by an additional 0.325 phr. It is remarkable that a small amount of ZnO, i.e. as low as 

0.075 phr, had such a major influence on the performance of TBBS in the cure system as indicated by a significant rise in Δtorque. 

Formulation (phr)                                                     Compound no  
     
 129 130 131 132 133 134 135 136 137 138 139 

Keltan 3251A (EPDM) 100 100 100 100 100 100 100 100 100 100 100 
Sulphur  1 1 1 1 1 1 1 1 1 1 1 
TBBS  1 1 1 1 1 1 1 1 1 1  1 
ZnO 0 0.05 0.075 0.1 0.125 0.15 0.2 0.25 0.3 0.35 0.4 

                                       ODR test results at 160oC  
    

Min torque (dNm) 16 16    16 17 17 16 16 15 15 16 16 
Max torque dNm) 57 69    72 70 72 73 71 72 74 81 83 
∆Torque (dNm) 41 53    56 53 55 57 55 57     59 65 67 
Scorch time ts2 (min) 22.2 18.5   17 17.9 17.3 15 20.6 16.9 16.6 15.1 14.6 
Optimum cure time t95 
(min) 

59.5 40.5   37.7 40.2 41.4 37 44.8 41 41 40.1 40.2 
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Figure 3.35 ∆Torque versus ZnO loading for the compounds with 1 phr sulphur and 1 
phr TBBS in EPDM 

 

The cure trace of the rubber with the optimum loading of ZnO (0.075 phr) was 

examined for evidence of full cure (Fig 3.36). 
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Figure 3.36 Cure trace (torque vs time) of the EPDM compound with 1 phr sulphur, 1 
phr TBBS and 0.075 phr ZnO 

For EPDM with 1 phr sulphur, 1 phr TBBS, and 0.075 phr ZnO, the loading of stearic 

acid was increased from 0 phr to 3 phr (Table 3.18) 

Table 3.18 Formulation of EPDM compounds with 1 phr sulphur, 1 phr TBBS, 0.2 phr 
ZnO and an increasing loading of stearic acid 

Formulation (phr)                                            Compound no 
  
 140 141 142 143 144 145 146 147 

Keltan 3251A (EPDM) 100 100 100 100 100 100 100 100 
Sulphur  1 1 1 1 1 1 1 1 
TBBS  1 1 1 1 1 1 1 1 
ZnO 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 

Stearic acid 0 0.5 0.9 1.3 1.7 2.1 2.5 3 
                           ODR test results at 160oC 

 
Min torque (dNm) 16    16 15 15 14 14 15 14 
Max torque dNm) 72    62 60 59 58 57 57 55 
∆Torque (dNm) 56    47 45 44 44 43 42 41 
Scorch time ts2 (min) 17   25.6 23 21.9 22.8 19.2 19.1 18.8 
Optimum cure time t95 
(min) 

37.7   49.3 45 42.7 46.3 41.8 43.7 40.2 
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Figure 3.37 when 0.5 phr stearic acid was mixed with the EPDM with 1 phr sulphur, 

1 phr TBBS and 0.075 phr ZnO, ∆torque decreased from 56 to 47 dNm and 

subsequently continued decreasing slowly to about 42 dNm when the amount of 

stearic acid was raised to 2.5 phr. The crosslink density as shown by Δtorque did not 

benefit from the addition of stearic acid to the rubber and consequently it can be 

eliminated from the cure system completely. 

 

Figure 3.37 ∆Torque versus stearic acid loading for the compounds with 1 phr 
sulphur, 1 phr TBBS, 0.075 phr ZnO in EPDM 

 

After these measurements were completed, there were seven cure systems 

depending on the amount of sulphur in the rubber (Table 3.19). The cure systems 

consisted of sulphur, TBBS and ZnO. For the NR with 1 phr sulphur, the total amount 

of TBBS and ZnO was 1.7 phr and this increased to 3.7 phr for the NR with 4 phr 

sulphur (compounds 148-151). For the BR with 0.5 phr sulphur, the total amount of 

TBBS and ZnO was 1.95 phr and this rose to 3.2 phr for the BR with 1 phr sulphur 

(compounds 152 &153).  For the EPDM with 1 phr sulphur, the total amount of TBBS 

and ZnO was 1.075 phr (compound 154). Note that there were only three chemicals 

in the cure systems. This was a significant reduction both in the number and amount 

of the chemicals in the cure system. Compounds 151, 152 and 154 were then 
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selected for further work. A high loading of mineral kaolin was mixed with these 

compounds and then they were cured and their mechanical properties measured. 

The results will appear in Chapter 6.  

 

Table 3.19 Rubber formulations and cure properties of the rubber compounds 

 
Formulation (phr)                            Compound no.  
 148 149 150 151 152 153     154 
SMRL (NR) 100 100 100 100 - - - 
Buna CB 24 (BR) - - - - 100 100 - 
Keltan 3251A (EPDM) - - - - - - 100 
Sulphur 1 2 3 4 0.5 1 1 
TBBS 1.5 1.5 1.5 3.5 1.75 3 1 
ZnO 0.2 0.3 0.25 0.2 0.2 0.2 0.075 

                                   ODR test results at 160oC  
        
Minimum torque (dNm) 16 17 16 14 15 15 16 
Maximum torque (dNm)                    42 52 54 58 85 108 72 
∆Torque (dNm)                                 26 35 38 44 70 93 56 
Scorch time, ts2 (min)                       8.4 6.5 5.6 4.9 13.2 11.8 17 
Optimum cure time, t95 (min)           15.5 10.7 9.8 9.4 55.7 43.3 37.7 
Cure rate index (min-1)                     14.1 23.8 23.8 22.2 2.36 3.18 4.8 
Exact Optimum cure system          
(S/TBBS/ZnO)                             (1/1.5/0.2)    (2/1.5/0.3)   (3/1.5/0.25)  (4/3.5/0.2)  (0.5/1.75/0.2) (1/3/0.2) (1/1/0.075) 
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3.4 Conclusions 
A new method measured the exact optimum amount of TBBS accelerator and ZnO 

activator at a given loading of sulphur in the composites of NR, BR and EPDM and 

eliminated stearic acid from the cure system entirely. The requirement for ZnO was 

0.075-0.3 phr. interestingly, in spite of using less chemical curatives in sulphur 

vulcanisation, the rubber composites were fully cured.   The following conclusions 

were drawn.  

1. The optimum loadings of TBBS for the NR with 1, 2, 3 and 4 phr sulphur were 1.5, 

1.5, 1.5 and 3.5 phr, respectively. 

2. The optimum loading of ZnO for the NR with 1 phr sulphur and  1.5 phr TBBS, 

the NR with 2 phr sulphur and 1.5 phr TBBS,  the NR with 3 phr sulphur and 1.5 

phr TBBS, and the NR with 4 phr sulphur and 3.5 phr TBBS were 0.2, 0.3, 0.25, 

and 0.2 phr, respectively.    

3. The optimum loading of TBBS for the BR with 0.5 and 1 phr sulphur were 1.75 

and 3 phr, respectively.  

4. The optimum loading of ZnO for the BR with 0.5 phr sulphur and 1.75 phr TBBS 

and the BR with 1 phr sulphur and 3 phr TBBS were 0.2 phr, respectively.  

5. The optimum loading of TBBS for the EPDM with 1 phr sulphur was 1 phr.  

6. The optimum loading of ZnO for the EPDM with 1 phr sulphur and 1 phr TBBS 

was 0.075 phr.    

7. Relation between ∆torque and mechanical properties will be discussed in chapter 

6. 

This study measures the optimum loading of TBBS accelerator for curing some 

sulphur-filled NR, BR and EPDM rubbers. The optimum loading of zinc oxide 

activator in the sulphur-filled rubbers with the optimum loading of TBBS was 

subsequently determined.  For each rubber, a new cure system based on the 

measurement of the optimum loading of TBBS accelerator and ZnO activator at a 

given loading of sulphur was developed.    
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Chapter 4 – Revisiting the 
sulphur vulcanisation of rubber 

 
4.1 Introduction 
As mentioned earlier in Chapter 3, sulphenamide accelerators and zinc oxide (ZnO) 

activator are used extensively to cure rubber articles [1]. In sulphur cure systems 

currently in use, these chemicals are used as individual powders and then mixed 

with the raw rubber to produce rubber compounds [2&3].  However, literature review 

has indicated that no work has been done to date to study effect of the combined 

chemicals on the cure properties of rubber.  One method of combining these 

chemicals together to produce a single additive component is by coating the surface 

of ZnO with the TBBS molecules. This work functionalized ZnO with TBBS 

accelerator in an organic solvent to produce a single dry powder and then examined 

its effect on the cure properties of NR. The aim was to minimize use of these two 

chemicals in the cure system and enhance the efficiency of the sulphur vulcanisation 

of the rubber.   

4.2 Experimental 
4.2.1 Materials, mixing and functionalising ZnO with TBBS  
The raw rubber and chemicals used were described fully in the Experimental section 

of Chapter 3. Zinc oxide was coated on TBBS to study the minimum amount of 

TBBS needed to satisfactorily crosslink the rubber. Adsorbing the TBBS onto the 

ZnO provided a convenient single material component to use as additive. The 

quantity of TBBS required to provide monomolecular coverage of the zinc oxide was 

determined to be 35 mg/g based on the approximate surface areas of the TBBS 

molecule (6 x 10-19 m2) and the ZnO (50 m2/g) used. Gradually, the amount of TBBS 

to coat the zinc oxide was increased from 100 mg/g to 350 mg/g to find a material 

with optimum properties. The material with 35 mg/g TBBS led to a very slow cure, 

but material with 350 mg/g gave a good cure comparable to much higher loadings of 

TBBS as shown in (Table 4.1). A large batch was then prepared with this ratio from 

202.0 g of ZnO and 70.7 g of TBBS which was mixed in 100 ml of ethyl acetate 

solvent (sigma Aldrich, UK) in a 500 ml beaker. The suspension stirred magnetically 
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for 15 min at room temperature (21.5°C). The mixture was filtered under suction 

using an electric diaphragm vacuum pump (capable of achieving 50 mmHg). The 

white solid was left to dry overnight and then further dried in a vacuum oven at 50°C. 

Evaporation of the filtrate on a rotary evaporator indicated the mass lost was 0.110 

g, indicating the bulk of the TBBS was absorbed onto the ZnO. The additive will be 

referred to as the “powder”. In another experiment, the loading of the powder with 

350 mg/g of TBBS was increased progressively to determine its effect on the cure 

properties of the rubber (Table 4.2). 

The raw rubber was mixed with the chemical ingredients in a Haake Rheocord 90 

intermixer as described in Chapter 3. To prepare the rubber compounds, the raw 

rubber was introduced first in the mixer and then after 30 seconds, the sulphur and 

powder were added and mixed for 8 min in total. The temperature of the rubber 

compounds during mixing was 52-62oC. In total, nineteen rubber compounds were 

prepared. The cure properties of the rubber compounds were them determined at 

160 ± 2oC in an oscillating disc rheometer curemeter according to the British 

Standard ISO 3417:2008.The tests ran for up to an hour. From the cure traces, the 

cure properties of the rubber compounds were measured (see also the Experimental 

section in Chapter 3). Results from these tests are summarised in Tables 4.1 and 

4.2. ∆Torque was subsequently plotted against the loading of the powder. Recall that 

∆Torque is the difference between the maximum and minimum torque values on the 

cure trace of a rubber compound and is an indication of crosslink density changes in 

the rubber. 
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Table 4.1 Formulations and cure properties of the rubber compounds with an 
increasing amount of TBBS in the powder 

Formulation 
(phr) 

Compound no 
 

1 2 3 4 5 6 7 8 9 10 
NR 100 100 100 100 100 100 100 100 100 100 

Sulphur  4 4 4 4 4 4 4 4 4 4 
TBBS Loading 
in the powder 

0.135 0.192 0.247 0.296 0.342 0.351 0.358 0.367 0.376 0.383 

ZnO Loading 
in the powder 

1.345 1.288 1.233 1.184 1.138 1.129 1.122 1.113 1.104 1.097 

 Curemeter test results at 160oC  
  

Min torque 
(dNm) 

17  15 15 15 15 16 16 16 15 17 

Max torque 
(dNm) 

32 32 31 31 38 46 45 51 50 53 

∆Torque (dNm) 15 17 16 16 23 30 29 35 35 36 

ts2 (min) 10.7 8.5 10.4 9.1 4.4 3.2 3.2 3.6 3.5 3.6 

t95 (min) 55.4 54.5 55.5 54.8 41.4 9.9 10.7 8.4 8.1 8.9 

CRI (min-1) 2.2 2.2 2.2 2.2 2.7 14.9 13.3 20.8 21.7 18.9 
phr: parts per hundred rubber by weight 
 

Table 4.2 Formulations and cure properties of the rubber compounds with increasing 
amounts of the powder 

Formulation (phr) Compound no 
 

1 2 3 4 5 6 7 8 9 
NR 100 100 100 100 100 100 100 100 100 

Sulphur  4 4 4 4 4 4 4 4 4 
Powder 0.63  1.25 1.88 2.5 3.13 3.75 4.38 5 5.63 

          
                          Curemeter test results at 160oC  

 
Min torque (dNm)  17 16 15 15 15 16 17 16 15 
Max torque (dNm) 39 46 56 63 68 75 77 80 80 
∆Torque (dNm) 22 30 41 48 53 59 60 64 65 

ts2 (min) 4.3 3.4 3.3 3.3 3.4 3.6 3.7 3.8 4.0 
t95 (min) 30.8 7.7 7.0 6.9 6.8 7.2 7.0 7.1 7.4 

CRI (min-1) 3.8 23.2 27.0 27.8 29.4 27.8 30.3 30.3 29.4 
phr: parts per hundred rubber by weight 
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4.3 Results and discussion 

4.3.1 Effect of an increasing loading of TBBS in the powder on the cure 
properties of the rubber  
As mentioned earlier, in one experiment the loading of TBBS in the powder was 

raised from 100 mg/g to 350 mg/g (equivalent to an increase of 0.135 phr to 0.383 

phr in the formulation, (Table 4.1) to measure the optimum amount required to cure 

the rubber. When the cure traces of the rubber compounds were examined, the cure 

was marching until the loading of TBBS in the powder reached 0.351 phr (cf. figures 

4.1a and 4.1b). The torque remained at this level until the loading of TBBS in the 

powder rose to 0.358 phr. Subsequently, the cure experienced reversion when the 

loading of TBBS in the powder was increased to 0.383 phr (Fig. 4.1c). It is clear that 

larger amount of TBBS in the powder shortens the cure cycle very substantially. 

Besides, it was interesting that the cure behaviour was so sensitive to small changes 

in the amount of TBBS in the powder. As figures 4.1a-4.1c show, the cure was 

marching first, then reached equilibrium and finally underwent reversion as the 

loading of TBBS in the powder was increased from 100 mg/g to 350 mg/g.        
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Figure 4.1 Typical cure traces (Torque (dNm) vs Time (min)) of the rubber 
compounds with an increasing loading of TBBS in the powder. a) compound with 

0.135 phr TBBS in the powder; b) compound with 0.351 phr TBBS in the powder; c) 
compound with 0.383 phr TBBS in the powder 

 

The increase in the loading of TBBS in the powder had a major influence on the 

crosslink density and cure rate of the rubber as indicated by big rises in the value of 

∆torque and CRI, respectively. ∆Torque was almost constant at about 15-17 dNm 

with up to 0.296 phr TBBS in the powder. It then rose sharply to 36 dNm when the 

TBBS loading in the powder reached 0.383 phr (Fig 4.2). 

4.1 a 

4.1 b 4.1 c 
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Figure 4.2 ∆Torque vs TBBS loading in the powder for the rubber compounds shown 
in Table 4.1. Each point on the graph corresponds to one rubber compound 

 

The cure rate index was unaffected by increase in the TBBS loading in the powder 

up to 0.342 phr but rose sharply to about 21.7 min-1 when the TBBS loading in the 

powder reached 0.376 phr and then decreased to 18.9 min-1 at 0.383 phr TBBS 

loading in the powder (Fig. 4.3). 

Although further increase in the loading of TBBS in the powder, could have 

increased the ∆torque value further in figure 4.2. However, the powder with 350mg of 

TBBS/1gm of ZnO was efficient in curing the rubber as shown in figure 4.1. 

Therefore no further increase in the TBBS loading in the powder was considered.    
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Figure 4.3 Cure rate index vs TBBS loading in the powder for the rubber compounds 
shown in Table 4.1. Each point on the graph corresponds to one rubber compound 

 

The scorch time was somewhere between 10.7 and 9.1 min with up to 0.296 phr 

TBBS in the powder and then decreased to 4.4 min at 0.342 phr TBBS in the powder. 

It subsequently reached a plateau around 3.2-3.6 min when the TBBS loading in the 

powder was raised to 0.383 phr (Fig 4.4). The increase in the loading of TBBS in the 

powder for up to 0.296 phr had little or no effect on the optimum cure time which 

remained essentially unchanged at about 54.5-55.5 min. However, this was followed 

by a sharp decrease to 41.4 min at 0.342 phr and then to 10.7 min at 0.358 phr 

TBBS loading in the powder. The optimum cure time attained a constant value at 

around 8.1-8.9 min when the loading of TBBS in the powder was increased to 0.383 

phr.   
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Figure 4.4 Optimum cure time, t95, and scorch time, ts2 vs TBBS loading in the 
powder for the rubber compounds shown in Table 4.1. Each point on the graph 
corresponds to one rubber compound, optimum cure time (■), scorch time (•) 

 

It was clear that increase in the amount of TBBS in the power to above 0.342 phr 

was greatly beneficial to the cure cycle of the rubber by significantly reducing the 

optimum cure time (Fig 4.4). The rate of cure benefitted significantly at above 0.342 

phr TBBS in the powder with the highest rate, 21.7 min-1, recorded at 0.376 phr 

TBBS in the powder. But the cure rate index decreased to 18.9 min-1 when the TBBS 

loading in the powder was raised further to 0.383 phr. The powder with 350 mg/g 

TBBS (equivalent to 0.383 phr in the formulation) was selected for further work 

because the rubber compound cured with this powder had the largest ∆torque value, 

and very short scorch and optimum cure times. For this rubber compound, the cure 

rate index was 18.9 min-1 (Table 4.1) 

As figure 4.2-4.4 indicated ∆torque and the cure properties of the rubber, i.e. cure 

rate index, scorch and optimum cure time are very sensitive to the loading of TBBS 

in the powder. Therefore, It is clear that the TBBS coverage on the ZnO surface is 

the determining factor in the cure properties of the rubber. When the TBBS loading in 

the powder exceeds 0.351 phr (fig 4.3) the cure rate index increased quite 
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substantially. Similarly the scorch and optimum cure time decreased noticeably. It is 

likely that after full surface coverage is achieved some extra TBBS may be available 

for reaction with sulphur to produce cross links. However, a full study of the surface 

coverage of ZnO coated by TBBS will shed light on the results in these figures.    

4.3.2 Effect of an increasing loading of the powder on the cure properties of 
the rubber 

In this experiment, the amount of TBBS in the powder was kept constant at 350 mg/g 

(equivalent to 0.383 phr in the formulation). The loading of the powder in the rubber 

was subsequently raised from 0.63 phr to 5.63 phr. When the cure traces were 

examined, for the rubber compound with 0.63 phr powder the cure reached 

equilibrium after 40 minutes (Fig 4.5a). Though, when the loading of the powder was 

raised to above 0.63 phr, the cure underwent reversion soon after 8 minutes and the 

cure cycle was a lot shorter. The cure reversion accelerated when the loading of the 

powder in the rubber kept rising to its highest level, i.e. 5.63 phr (cf. Figures 4.5b and 

4.5c).   
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Figure 4.5 Typical cure traces (Torque (dNm) vs Time (min)) of the rubber 
compounds with an increasing loading of the powder. a) compound with 0.63 phr 
powder; b) compound with 2.5 phr powder; c) compound with 5.63 phr powder 

 

When solid fillers are added to the rubber they replaced soft rubber and by doing so 

the viscosity of rubber increased [7]. The increase in viscosity when solid filler is 

added is due to rubber filler interaction which is due to attractive van der Waals 

forces. The addition of ZnO is known to increase rubber viscosity [7]. However note 

that the ZnO used in this work was coated with TBBS and this might have hindered 

interaction of ZnO with the rubber. However, as fig 4.5 shows the addition of up to 

5.63 phr powder has little or no effect on the viscosity of the uncured rubber as 

indicated by the minimum torque in table 4.2. The minimum torque, Tmin, was not 

affected by increase in the loading of the powder in the rubber and remained at 

around 15-17 dNm. The maximum torque, Tmax, which shows extend of crosslinks in 

the rubber, kept rising from 39 to 80 dNm as the loading of the powder was raised 

from 0.63 to 5.63 phr (Table 4.2). Figure 4.6 shows ∆torque as a function of the 

4.5 b 4.5 c 
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powder loading. ∆Torque increased from 22 to 48 dNm when the loading of the 

powder was raised from 0.63 to 2.5 phr, and it continued rising at a much slower rate 

to about 65 dNm when the loading of the powder reached 5.63 phr.  

 
 
Figure 4.6 ∆Torque vs powder loading for the rubber compounds shown in Table 4.2. 

Each point on the graph corresponds to one rubber compound 

 

Evidently, the addition of 2.5 phr powder was sufficient to react the sulphur with the 

rubber to form stable covalent crosslinks or chemical bonds between the rubber 

chains. As mentioned earlier, the optimum loading of TBBS in the powder was 350 

mg/g. Therefore, 26wt% of the powder was TBBS and the remaining 74wt% ZnO. 

On this basis, the 2.5 phr powder contained 0.65 phr TBBS and 1.85 phr ZnO. In 

some NR-based industrial articles such as rubber thread and tyre bead filler/apex 

rubber compound, the loading of accelerators can reach 4.5 phr [5] and that of ZnO 

to10 phr [6], respectively. Obviously, there is scope to reduce the excessive amount 

of these chemicals in rubber compounds quite substantially.   
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Figure 4.7 optimum cure time, t95 and scorch time, ts2 vs powder loading for the 
rubber compounds shown in Table 4.2. Optimum cure time (♦), scorch time (•). 

Each point on the graph corresponds to one rubber compound 

 

The scorch time was fairly constant about 3.3-4.3 min when the full loading of the 

powder was added. The optimum cure time decreased sharply from 30.8 to 7.7 min 

with 1.25 phr powder and afterwards, it showed no obvious trend and remained 

somewhere between 6.8 and 7.4 min when the loading of the powder was raised to 

5.63 phr (Fig 4.7). The rate of cure as indicated by the cure rate index (CRI), 

benefited significantly from the addition and progressive increase in the amount of 

the powder. It rose sharply to 23.2 min-1 when 1.25 phr powder was added. The 

increase was about 510%. Afterwards, it continued rising at a much slower rate to 

27.8 min-1 when the loading of the powder reached 2.5 phr. It subsequently 

plateaued at about 27.8-30.3 min-1 with the full loading of the powder (Fig 4.8). 

Clearly, above 1.25 phr powder loading, the rate of cure gained not as much, i.e. 

only 30%.     
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Figure 4.8 cure rate index vs powder loading for the rubber compounds shown in 
Table 4.2. Each point on the graph corresponds to one rubber compound 

 

4.4 Discussion 

For a tyre belt skim compound, which has 5 phr sulphur and 10.7 phr chemical 

curatives, the scorch time (ts2) and optimum cure time (t90) are 2.6 min and 9.5 min 

at 160oC, respectively [4]. The cure rate index is 14.5 min-1. It is interesting that with 

a smaller amount of sulphur, i.e. 4 phr, and only 2.5 phr of the powder (0.65 phr 

TBBS and 1.85 phr ZnO), shorter scorch and optimum cure times and a much faster 

rate of cure, i.e. CRI of 27.8 min-1, were recorded for our rubber compound 

(compound 4, Table 4.2). In fact, 20wt% reduction in sulphur and 77wt% lesser 

chemical curatives shortened the optimum cure time by 34% (the t90 of our rubber 

compound was 6.3 min) and increased the rate of cure by 130%. But the scorch time 

(ts2) of our rubber compound was 27% longer than that of the tyre belt skim 

compound. Note also that no stearic acid was used in the cure system. The trend 

observed here suggests that a much lesser consumption of the chemical curatives, 

i.e. TBBS and ZnO, in sulphur vulcanisation, yields significantly shorter cure cycle 
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and hence a more efficient cure. However the increase in ∆torque for tire belt 

compound was 767% whereas our compound with 2.5 phr increase in ∆torque was 

320%, therefore the tire belt skim compound has the high cross link density 

compound with our compound 4 (2.5 phr) in table 4.2. In addition, for more accurate 

comparison it is essential that ∆torque should match. Further work is being done to 

match the ∆torque values by increasing the loading of sulphur in our compounds and 

measuring the exact amount of the powder loading to the optimum ∆torque values.  

Other benefits include improvement in health, safety and the environment as well as 

major cost reduction. It seems that coating ZnO with TBBS into a single additive is a 

more efficient method of using these chemicals in rubber vulcanisation than the 

methods which are currently in use. This has the added advantage of eliminating 

secondary accelerators and too much ZnO from the cure system. All the signs are 

that the sulphur cure systems currently in use in industrial rubber compounds such 

as tyres are basically inefficient, too costly and no longer viable and hence must be 

improved. Combining the chemical curatives by means of functionalising them 

undoubtedly is the most effective way in making green compounds for industrial 

rubber articles.  

4.5 Conclusion 

Coating ZnO with TBBS to provide a single additive component reduced the 

excessive use of these chemicals in the sulphur vulcanisations of NR. Some 

powders were tested and the following conclusions drawn.     

1. When the loading of TBBS in the powder was raised progressively to 0.383 phr, 

the scorch time and optimum cure time of the rubber decreased at 0.351 phr 

TBBS. The rate of cure as indicated by the cure rate index increased at 0.351 phr 

TBBS in the powder. The crosslink density as shown by ∆torque rose, reaching 

its optimum value at 0.383 phr TBBS loading in the powder.       

2. When the loading of the powder in the rubber was raised increasingly to 5.63 phr, 

the scorch time was unchanged and the optimum cure time reduced at 1.25 phr 

powder. The rate of cure as shown by the cure rate index accelerated at 1.25 phr 

powder. The crosslink density as indicated by ∆torque rose, reaching its 

maximum value at 5.63 phr powder.    
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This study combines ZnO with TBBS by functionalising the surface of zinc oxide with 

TBBS molecules in an organic solvent to produce a convenient single material 

referred to as powder to cure some sulphur-filled NR. The optimum loading of the 

powder to fully cure the sulphur-filled rubber was subsequently measured. 

Functionalising the surface of ZnO with TBBS reduced the excessive use of these 

chemicals in the cure system and provided a more efficient way of mixing them with 

the raw rubber.       
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Chapter – 5 Kaolin-Filler as a 
possible reinforcing agent for 

natural rubber 
5.1 Introduction 

Carbon black (CB) is one of the most widely used additives in industrial rubber 

compounds. Some CBs have large surface area, ranging from 30 to140 m2/g [1], 

which makes them highly reinforcing and are used extensively in tyres [2]. 

Mechanical properties such as hardness, tensile strength, tear strength, fatigue life 

and Young’s modulus improved significantly when CB was added to rubber [3]. 

However, CB is toxic and health risk is associated with its use in rubber compounds 

[4]. There is a need to replace CB with other less harmful solid fillers.  Several 

studies looked into potential replacement of CB with kaolin (China clay) in rubber 

compounds.  Kaolin has a plate-like structure (Fig 5.1) whereas CB is spherical in 

shape.  

The purpose of this study is to use kaolin pre-treated with MPTS, a new method has 

been developed that optimises reaction between the sulphur in MPTS on the kaolin 

surface and natural rubber chains. This reduced excessive use of chemical curatives 

and improved mechanical properties of the rubber vulcanisate. The Mooney viscosity 

[7], cure properties [8,9], hardness [10], tensile properties and Young’s modulus [11], 

tear strength [12], and compression set [13] of NR filled with MPTS pre-treated 

kaolin were measured. The preliminary results indicated that when the reaction 

between the rubber and kaolin was optimised, the addition of elemental sulphur was 

the key factor in controlling the rubber properties. This made the MPTS pre-treated 

kaolin an ideal replacement for CB in tyres.  
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Figure 5.1 TEM micrograph showing kaolin particles [17] 

 

A small amount of kaolin (10 parts per hundred rubber by weight) (phr), was modified 

with sodium salt of rubber seed oil (SRSO) and mixed with natural rubber (NR). The 

SRSO-modified kaolin was more strongly bound in a constraint environment within 

the lamellae of kaolin. The rubber filled with SRSO-modified kaolin cured faster than 

that of a similar mix containing unmodified kaolin. Besides, the NR vulcanisates 

containing SRSO-modified kaolin showed considerable increase in tensile modulus, 

tensile strength, and elongation at break, indicating its potential as organo-modified 

nanofiller [5]. NR nanocomposites reinforced with 20 to 50 phr of saline-modified 

kaolin exhibited outstanding mechanical properties and much higher thermal stability 

compared to the pure NR. The hardness and tensile properties improved with 

increasing filler loading and an optimum of tensile strength was achieved at the 

highest loading of the modified kaolin [6]. The cure systems in these compounds 

consisted of one accelerator, two activators and elemental sulphur [5,6]. Clearly, 

after surface treatment, kaolin performed better in rubber. Kaolin surface possesses 

OH groups (Al2Si2O5(OH)4), which make it polar and moisture absorbing. To improve 

dispersion of the filler particles in rubber, the filler surface is treated with silane. One 

commonly used silane is 3-mercaptopropyltrimethoxysilane (MPTS) that contains 

less than 2wt% of sulphur (Fig 5.2). When sulphur reacts with rubber chains in the 
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presence of accelerator and activator, it produces stable covalent sulphur bonds. 

This in turn enhances the rubber/filler interaction and is immensely beneficial to the 

rubber reinforcement [6].  

 

 

 

 

 

 

Figure 5.2 Chemical structure of 3-mercaptopropyltrimethoxysilane (MPTS) 

 
Using kaolin pre-treated with MPTS, a new method has been developed that 

optimises reaction between the sulphur in MPTS on the kaolin surface and natural 

rubber chains in this work. This reduced excessive use of chemical curatives and 

improved mechanical properties of the rubber vulcanisate.  

5.2 Experimental 

5.2.1 Materials and mixing 

The raw rubber used was standard Malaysian natural rubber grade L (98 wt. % 1, 4-

cis content; SMRL). The reinforcing filler was Mercap 100 (Imerys Ceramics, USA). 

Mercap 100 is kaolin (China clay) the surface of which had been pre-treated with 

MPTS and has a 25 m2/g surface area (measured by N2 adsorption) (Imerys 

Ceramics). In addition to the raw rubber and kaolin, the other ingredients were N-

tert-butyl-2-benzothiazole sulfenamide (a fast curing delayed action accelerator) 

(Santocure TBBS, Sovereign Chemical Company, USA), zinc oxide (ZnO; an 

activator, Sigma-Aldrich Company Ltd, UK), and elemental sulphur (curing agent: 

Solvay Barium Strontium, Hannover, Germany).   

The compounds were prepared in a Haake Rheocord 90 (Berlin, Germany), a small 

size laboratory mixer with counter rotating rotors. In these experiments, the  

Banbury rotors and the mixing chamber were initially set at ambient temperature 

(23oC) and the rotor speed was set at 45 r.p.m. The volume of the mixing chamber 
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was 78 cm3, and it was 58% full during mixing. Polylab monitor 4.17 software was 

used for controlling the mixing condition and storing data.   

5.2.2 Addition of TBBS to the kaolin-filled rubber 

To activate the sulphur in MPTS, TBBS was added. The loading of TBBS in the 

kaolin-filled rubber was increased from 6 to 30 phr to measure the amount needed to 

react the sulphur in MPTS with the rubber chains to produce crosslinks and optimise 

the chemical bonding between the two (Table 5.1). The idea was to add a minimum 

amount of TBBS to the rubber and produce the largest effect on the ∆torque. 

∆Torque (the difference between the maximum and minimum torque values on the 

cure trace of the rubber) (Fig 5.6a) is an indication of crosslink density changes in 

the rubber [14,15]. The formation of cross-links may provide good strength between 

the rubber and filler which is greatly beneficial to the rubber reinforcement [15,16]. In 

total, 7 rubber compounds were made.  

 

Table 5.1 Formulation of NR compounds filled with 60 phr kaolin and an increasing 
loading of TBBS 

Formulation (phr)                                  Compound no 
 1 2 3 4 5 6 7 

SMRL (NR) 100 100 100 100 100 100 100 
Kaolin  60 60 60 60 60 60 60 
TBBS 6 8 14 16 18 26 30 

                           ODR test results at 160oC 

Min torque (dNm) 9 7 7 7 7 5 4 
Max torque dNm) 16 17 29 33 38 34 32 
∆Torque (dNm) 7 10 22 26 31 29 28 
Scorch time ts2 (min) 39 36.3 34.6 34.9 37.8 37 36.8 
Optimum cure time t95 
(min) 

70.7 64.7 61.8 64.5 74.3 76.9 89.9 

 

It has been reported [18] when solid filler is added to raw rubber viscosity will 

increase. This will depend on strong interaction with the rubber due to attractive van 

der Waals. However, in the absence of interaction between filler and rubber it is 

likely that further addition of solid filler may actively reduce the viscosity. The results 

in Table 5.1 seem to the show this trend. Therefore, the rubber did not adhere to the 

TBBS solid surface to cause increasing viscosity and had an opposite effect.     



119 
 

5.2.3 Addition of ZnO and elemental sulphur to the kaolin-filled rubber with 
TBBS 

The loading of ZnO was increased progressively from 0 to 2 phr to measure the 

amount needed to improve the efficiency of TBBS and increase chemical bonds or 

cross-links between the rubber and MPTS in the kaolin-filled compound (Figure 5.6b). 

In total, 7 rubber compounds were made Table 5.2. The loading of elemental sulphur 

was raised gradually from 0 to 4 phr to evaluate its effect on the cure properties of 

the kaolin-filled rubber compound with TBBS (Figure 5.6c), and the kaolin-filled 

rubber compound with TBBS and ZnO (Figures 5.7a, 5.7b & 5.7c). In total, 4 rubber 

compounds were made.  

 

Table 5.2 Formulation of NR compounds filled with 60 phr kaolin, 16 phr TBBS and 
an increasing loading of ZnO 

Formulation (phr)                                  Compound no. 
 8 9 10 11 12 13 14 

SMRL (NR) 100 100 100 100 100 100 100 
Kaolin 60 60 60 60 60 60 60 
TBBS 16 16 16 16 16 16 16 
ZnO 0 0.05 0.1 0.35 1.0 1.5 2.0 

                           ODR test results at 160oC 

Min torque (dNm) 7 6 7 7 7 7 7 
Max torque dNm) 33 22 40 43 44 45 47 
∆Torque (dNm) 26 16 33 36 37 38 40 
Scorch time ts2 (min) 34.9 46 35.4 33.1 34.6 32.7 30.2 
Optimum cure time t95 
(min) 

64.5 68.8 68.6 56.3 58.7 58.1 71.2 

 

After these measurements were completed, 5 rubber compounds were prepared for 

further tests (compounds 1-5; Table 5.3). The raw rubber was placed in the mixing 

chamber and mixed for 2 min, and then kaolin was put in and mixed for another 8 

min. Finally, after 10 min mixing, TBBS, ZnO and elemental sulphur were added and 

mixed for another 5 min. The total mixing time was 15 min because this time was 

long enough to fully disperse the kaolin particles in the rubber matrix (Figure 5.3). 

When mixing ended, the compound was removed from the mixer and allowed to cool 

down to ambient temperature (21oC). Temperature of the compounds during mixing 

was 48-58oC.  The compounds were kept at ambient temperature (21±2oC) for at 

least 24 h before their viscosity and cure properties were determined. They were 
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later cured at 160oC for 64 min to produce sheets of rubber approximately 2.4 mm 

thick and cylindrical samples 5.9 mm thick and 15.3 mm in diameter for measuring 

mechanical properties and hardness, respectively.     

The Mooney viscosity [7], cure properties [8,9], hardness [10], tensile properties and 

Young’s modulus [11], tear strength [12], and compression set [13] of NR filled with 

MPTS pre-treated kaolin were measured. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 SEM micrograph showing dispersion of the kaolin in the rubber after 15 
min mixing time [17] 

 

5.3 Results and Discussion 

Figure 5.4 shows ∆torque as a function of TBBS loading for the kaolin-filled rubber. 

∆Torque increased from 6.5 to 26 dN m as the loading of TBBS was raised from 6 to 

16 phr, and it continued rising at a much slower rate to about 27 dN m when the 

loading of TBBS reached 30 phr. Evidently, the addition of 16 phr TBBS to the 

kaolin-filled rubber was sufficient to react the sulphur in MPTS with the rubber chains 

to form cross-links or chemical bonds between the two.     
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Figure 5.4 ∆Torque versus TBBS loading for the kaolin-filled rubber. Each point on 
the graph corresponds to one compound 

 
 

To enhance the efficiency of TBBS in the kaolin-filled rubber, ZnO was added. 

∆Torque increased from 26 to 35 dNm when 0.2 phr ZnO was included, and it 

continued rising at a much slower rate to 40 dNm when the loading of ZnO reached 

2 phr (Fig 5.5). The inclusion of 0.2 phr ZnO was sufficient to optimise the efficiency 

of TBBS and increase chemical bonding between MPTS and the rubber.  
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Figure 5.5 ∆Torque versus ZnO loading for the kaolin-filled rubber with 16 phr TBBS. 
Each point on the graph corresponds to one compound 

 

∆Torque increased from 26 to 72 dNm when 4 phr of elemental sulphur was added 

to the kaolin-filled rubber with 16 phr TBBS. The cure characteristics were also 

affected (Table 5.3). The scorch time, ts2, and optimum cure time, t95, decreased 

from 35 to 5 min and from 64 to 12 min, respectively. The rate of cure increased 

sharply, with the cure rate index rising from 3.5 to14.3 min-1 (cf. Fig 5.6a and Fig 

5.6c).    
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Figure 5.6 Typical cure traces of the kaolin-filled compounds with a) 16 phr TBBS, b) 
16 phr TBBS and 0.2 phr ZnO, c) 16 phr TBBS and 4 phr elemental sulphur 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Typical cure traces of the kaolin-filled compounds with a) 16 phr TBBS. 
0.2 phr ZnO and 0 phr elemental sulphur, b) 16 phr TBBS, 0.2 phr ZnO and 1.5 phr 
elemental sulphur, c) 16 phr TBBS, 0.2 phr ZnO, and 3 phr elemental sulphur 
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Probably, the most interesting feature in Figures 5.6a and 5.6c was the fact that the 

sulphur in MPTS had a much longer reaction cycle, i.e. longer optimum cure time, 

than elemental sulphur at the same temperature (cf. compound 1 and compound 2; 

Table 5.3). This highlighted a fundamental problem with the use of sulphur-bearing 

silane in rubber compounding. In tyre making often silica, liquid silane, e.g.  

3-(triethoxysilylpropyl)-tetrasulphane (TESPT), and elemental sulphur are used to 

reinforce and cure rubber compounds, respectively [3]. Previous studies [15] showed 

that silica-filled rubber compounds containing liquid TESPT had short optimum cure 

times when elemental sulphur was present and this did not allow sufficient time for 

sulphur in TESPT to react fully with the rubber chains to produce strong stable 

sulphur covalent bonds, which were essential for rubber reinforcement. In this study 

a similar problem albeit more acutely, was also encountered in the use of MPTS-pre-

treated kaolin in NR.   

In addition to compounds 1& 2, three more kaolin-filled compounds containing 16 phr 

TBBS and 0.2 phr ZnO with 0 phr, 1.5 phr  and 3.0 phr elemental sulphur were also 

prepared (compound 3-5; Table 5.3) and cured for 64 min. This allowed sufficient 

time for the sulphur in MPTS to fully react with the rubber chains and at the same 

time, the compounds also benefitted from cross-links formed between the rubber 

chains when elemental sulphur was added. The mechanical properties of 

compounds 3-5 were later measured (Table 5.3). Compounds 1 and 2 were 

excluded from further work.  Note that only one accelerator, one activator and 

elemental sulphur were used to cure the rubber compounds. Traditionally, two 

accelerators and two activators have been used with elemental sulphur to cure 

rubber compounds for tyres [3].               
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Table 5.3 Rubber formulations and Mooney viscosity, ODR test results at 160oC 
hardness, tensile properties, Young’s modulus, tear strength, and compression set 
carried out on the 3 rubber compounds 

 
Formulation (phr)                            Compound no. 
  
 1 2 3 4 5  
SMRL (NR) 100 100 100 100 100  
Kaolin 60 60 60 60 60  
TBBS 16 16 16 16 16  
ZnO 0 0 0.2 0.2 0.2  
Elemental Sulphur 0 4 0 1.5 3.0  
       

                                   ODR test results at 160oC 
       
Minimum torque Tmin (dNm) 7 8 6 7 7  
Maximum torque Tmax (dNm)                    33 80 41 67 88  
∆Torque (dNm)                                 26 72 35 60 81  
Scorch time, ts2 (min)                       35 5 34 6 6  
Optimum cure time, t95 (min)           64 12 65 35 15  
Cure rate index (min-1)                     3.5 14.3 3.2 3.5 11.1  

 
Mooney viscosity, hardness, tensile properties, Young’s modulus, tear 
strength, and compression set carried out on the 3 rubber compounds 

  
Mooney viscosity ML (1+4) 
at 100oC 

- - 26 27 28 

Hardness (Shore A) - - 36 53 58 
Tensile strength (MPa)  - - 11.7 12.7 8.6 
Elongation at break (%) - - 1025 721 608 
Stored energy density at 
break (MJ/m3) 

- - 50.4 45.0 29.4 

Youngs modulus (MPa) - - 2.3 3.5 3.9 
Tear energy (kJ/m2)  - - 9.8 7.5 7.0 
Range of values (kJ/m2) - - 9.2-10.1 6.6-7.8 6.4-9.6 
Compression set (%)   - - 76 47 42 

Compounds 3, 4 and 5 were cured for 64 min. 
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The properties that gained the largest benefit from the addition of elemental sulphur 

to the kaolin-filled rubber with 16 phr TBBS and 0.2 phr ZnO were hardness, Young’s 

modulus and compression set. The hardness increased by 61%, the Young’s 

modulus by 70% and the compression set decreased by 42% when the full amount 

of elemental sulphur was added. The tensile strength showed a marginal 

improvement, i.e. 9%, when 1.5 phr of elemental sulphur was included and then 

deteriorated by 32% after the amount of elemental sulphur reached its full amount. 

The elongation at break, stored energy density at break, and tear energy reduced by 

almost 41%, 42%, and 29%, respectively when up to 3 phr elemental sulphur was 

incorporated into the rubber (cf. compound 3 with compound 4 and compound 5; 

Table 5.3).  

In a study, silica, nanoclay and carbon black filled (EPDM) mixtures were prepared 

and subsequently vulcanised. Rheological property measurements indicated the 

storage modulus, loss modulus, and complex dynamic viscosity of silica-filled EPDM 

mixtures were much higher than those of CB-filled EPDM mixtures. The optimum 

cure time of silica- and nanoclay-filled EPDM mixtures increased with filler loading, 

whereas the values for CB-filled mixtures slightly decreased with loading. The 

hardness, modulus, elongation at break, and tensile strength of all the vulcanisates 

increased with increasing filler loading. The elongation at break of CB-filled EPDM 

vulcanisates increased insignificantly with CB loading. Among the three fillers, the 

increase of the tensile strength and elongation at break was most significant for 

silica-filled EPDM vulcanisates. Remarkably, for 30 phr silica-filled EPDM 

vulcanisates, a tensile strength and elongation at break of 23.5 MPa and 1045% was 

achieved, respectively [19]. Therefore to conclude, MPTS pre-treated kaolin could be 

a viable replacement for CB in tyre applications and besides, adding elemental 

sulphur is the key factor in controlling the mechanical properties of the rubber.     
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5.4 Conclusions 

1. To react the sulphur in MPTS on the kaolin surface with the NR chains and 

optimise the reaction between the two, 16 phr TBBS and 0.2 phr ZnO were 

added to the kaolin-filled rubber.  

 

2. The hardness and Young’s modulus increased and compression set decreased 

when up to 3 phr elemental sulphur was included in the kaolin-filled rubber with 

16 phr TBBS and 0.2 phr ZnO. The tensile strength, elongation at break, stored 

energy density at break, and tear energy of the rubber vulcanisate reduced when 

elemental sulphur was added. Notably, the inclusion of elemental sulphur was the 

key factor in controlling the rubber properties.  

 
3. The preliminary results indicated that when the reaction between the rubber and 

kaolin was optimised, the addition of elemental sulphur was the key factor in 

controlling the rubber properties. This made the MPTS pre-treated kaolin an ideal 

replacement for CB in tyres. 

 
 

From the current study, sulphur-bearing silanised mineral kaolin solid filler as a 

possible replacement for toxic carbon black in rubber reinforcement was investigated. 

This method reacts the sulphur in the silane with the NR chains to produce stable 

covalent sulphur bonds between the two which is essential for rubber reinforcement. 

The optimum loading of TBBS required for reacting the sulphur in the silane with the 

rubber phase was first measured and then an optimum amount of ZnO was also 

added to improve the efficiency of the TBBS reaction with the sulphur in the silane to 

achieve full cure of the rubber.  
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Chapter – 6 The potential of 
kaolin as reinforcing filler for 
rubber composites with new 

sulphur cure systems 
6.1 Introduction 

Solid fillers and curing chemicals perform two distinct functions in rubber compounds. 

Fillers increase the dynamic and mechanical properties [1-2] and curing chemicals 

produce crosslinks between the rubber chains at elevated temperatures, i.e., 140-

220oC [3-4]. Since the discovery of their reinforcing qualities almost 100 years ago, 

petroleum-based colloidal carbon blacks (CB) have been used extensively in rubber 

reinforcement [5-6]. The term reinforcement is defined as the increases in properties 

such as tensile strength, tear strength, hardness, abrasion resistance and modulus 

[7]. Synthetic silicas have been replacing CBs in some applications for example tyre 

tread compound [8] and proved to be as effective as CBs. However, the surfaces of 

silicas possess siloxane and silanol groups, which make the filler acidic [9] and 

moisture adsorbing [10]. Acidity and moisture are both detrimental to the cure of 

rubber compounds [11] and can also cause loss of crosslink density in sulphur-cured 

rubbers [12]. Bifunctional organosilanes, known also as coupling agent, remedy the 

problems aforementioned and are used to enhance the reinforcing capability of 

silicas in rubber [12]. Other fillers such as layer silicates [13-18], carbon nanotubes 

[19-21], and exfoliated graphene [22-23] have been intensively researched as a 

potential reinforcing agent in rubber. Several examples of reviews [24-27] suggest 

that the nanofillers mentioned above are a promising reinforcing agent to improve 

mechanical and dynamic properties of rubber particularly at low filler loading. Among 

the fillers, hydrous aluminium phyllosilicates or clay minerals such as montmorillonite 

(MMT) and kaolin have received much attention in recent years because they are 

relatively inexpensive and also non-carcinogenic.  Since MMT consists of a triple-

layer sandwich structure, hence its dispersion mechanism in rubber is different from 

carbon black and silica which have a spherical shape [28]. As reported in literature 

[28-32] intercalation and exfoliation morphologies are used to characterise the clay 

https://en.wikipedia.org/wiki/Hydrate
https://en.wikipedia.org/wiki/Aluminium
https://en.wikipedia.org/wiki/Silicate_minerals#Phyllosilicates
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layer dispersion in clay/polymer nanocomposites. The latter morphology is more 

desirable due to its high surface area, which is important in rubber reinforcement. 

Nevertheless, producing a high level of clay dispersion in rubber is still a challenge.     

Several studies have looked into potential replacement of CB and silica with kaolin. 

Similar to silica, the kaolin surface possesses OH groups, which makes it polar and 

moisture adsorbing. To improve dispersion of the kaolin particles in rubber, the filler 

surface is often treated with silane [33].  

In a study, importance of the surface organo-modification of kaolin was 

demonstrated [34]. Metal salt of rubber seed oil (RSO-Na) was used to modify kaolin 

and then was introduced into NR. Rubber composites mixed with various 

compositions of pristine and modified kaolin (2-10 phr) were then prepared and 

tested. The results showed that the modified kaolin improved the cure and 

mechanical properties of the rubber composite compared to the pristine kaolin-filled 

rubber. For example, the viscosity and hardness increased with increase in filler 

concentration. Furthermore, the extent of crosslink density and rubber-filler 

interaction also improved. It was concluded that the presence of the modified kaolin 

resulted in the formation of a higher number of crosslinks, which was attributed to the 

confinement of the rubber chains within the silicate galleries and consequently, to 

better interaction between the filler and the rubber.   

Typical rubber formulation for commercial products such as NR-based conveyor belt 

cover consists of up to eleven different chemical additives including cure system and 

reinforcing filler. The cure system is made of sulphur, three accelerators (primary 

and secondary), and primary and secondary activators (zinc oxide and stearic acid), 

respectively), adding up to 9.7 parts per hundred rubber (phr) by weight [35]. The 

reinforcing filler is carbon black (CB) [35]. In any rubber formulation, chemical 

curatives and solid fillers are indispensable. The former provides shape stability and 

the latter, reinforcement of the dynamic and mechanical properties of the cured 

rubber, which is essential for the performance, durability and life of the final product 

in service [36-37].   

The aim of this study was to investigate effect of up to 140 phr of kaolin modified with 

a mercaptosilane on the viscosity, cure and mechanical properties of some 

commercially important rubber composites. The study used a new method described 
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in chapter 3 for measuring the exact amount of the chemical curatives required in the 

sulphur vulcanisation of the rubbers. The idea was to substantially reduce the usage 

of these harmful chemicals and replace toxic carbon black and silica/silane filler 

systems with the much safer mineral kaolin.   

6.2 Experimental 

6.2.1 Materials and mixing  

The raw rubbers used were NR, BR and EPDM. Full details were provided in the 

Experimental section of Chapter 3. The reinforcing filler was Mercap 100 the surface 

of which had been pre-treated with 3-mercaptopropyl-trimethoxysilane (MPTS) to 

reduce its polarity and prevent it from adsorbing moisture.  As mentioned earlier, 

surface polarity and moisture are detrimental to the dispersion of filler particles in 

rubber and sulphur vulcanisation of rubber compounds [9-12]. MPTS contains less 

than 2wt% of sulphur. Mercap 100 has a very fine particle size of about 0.3 micron 

and 25 m2/g surface area measured by nitrogen adsorption (Imerys Ceramics, USA). 

It contains approximately 90 parts per million (ppm) of sulphur, which primarily 

comes from trace secondary minerals, mainly pyrite (FeS2) with a melting point of 

1,100oC. The kaolin was supplied in a plastic bag. The powder was placed in an 

oven at 80oC for at least 48 h to remove moisture if any before mixing it with the 

rubbers.  

In addition to the raw rubbers and kaolin, the other ingredients were elemental 

sulphur (curing agent, Solvay Barium Strontium, Hannover, Germany), TBBS 

accelerator, ZnO activator, and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylene- 

diamine (6PPD) (an antidegradant with a melting point of 45-51oC, Santoflex 13, 

Brussels, Belgium). 

The raw rubbers were mixed with the chemical ingredients in a Haake Rheocord 90. 

To prepare the unfilled NR, BR and EPDM compounds, the raw rubber was 

introduced first into the mixer and mixed for 1 min and then sulphur, TBBS, ZnO, 

stearic acid and antidegradant were added and mixed for another 12 min. A similar 

procedure was used for making the kaolin-filled compounds where kaolin was added 

3 min after mixing started. The temperature of the compounds during mixing was 58-

62°C. Table 6.1 shows the rubber formulations, their viscosity and cure properties.   
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Table 6.1 Formulations, Mooney viscosity and cure properties of the rubber 
compounds 

Formulation 
(phr) 

Compound no 
1 2 3 4 5 6 7 

NR* 100 100 100 - - - - 
BR* - - - 100 100 - - 

EPDM* - - - - - 100 100 
Sulphur  4 4 4 0.5 0.5 1 1 
TBBS 3.5 3.5 3.5 1.75 1.75 1 1 
ZnO 0.2 0.2 0.2 0.2 0.2 0.075 0.075 

Santoflex 13 1 1 1 1 1 1 1 
Kaolin  0 60 140 0 60 0 60 

Mooney 
viscosity   

ML(1+4, 100oC)  
44 52 85 42 66 70 89 

Curemeter data at 160oC  
 Tmin 

(dNm) 
 12 15 20 15 19 16 19.5 

Tmax 
(dNm) 

55 79 89 87 75 71 64 

∆Torque 
(dNm) 

43 64 69 72 56 55 44.5 

ts2 
(min) 

4.7 3.2 2.1 11.3 3.5  6.2 2.6 

t95 
(min) 

8.3 4.8 3.1 47.5 12.5 21.5 40 

CRI (min-1) 27.8 62.5 100 2.8 11.1 6.5 2.7 
*The viscosity of the raw NR, BR and EPDM rubbers were 89, 46, and 88 MU, 
respectively.     

 

In chapter 5 the reaction between the sulphur in the silane present on the surface of 

kaolin was reacted with the rubber chain by first adding on increasing loading of 

TBBS and then ZnO. In the first instant the optimum loading of TBBS was reacting 

the sulphur in the silane with the rubber was determined by plotting ∆torque against 

the TBBS loading to optimise the efficiency of TBBS reaction with the sulphur. To 

produce chemical sulphur cross links with the rubber ZnO was added. The loading of 

ZnO was increased to determine the optimum loading. However, In Chapter 6 the 

cure system was determined in the absence of kaolin and elemental sulphur was 

used as curing agent. In each case ∆torque was plotted against the TBBS loading. 

To determine optimum loading of TBBS and then ZnO was added to optimise the 

efficiency of TBBS and the correct amount of TBBS and ZnO for optimum cure kaolin 

was then added to reinforce the rubber.  
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6.2.2 Viscosity, cure properties, hardness, tensile properties, tear energy and 
compression set of the rubber vulcanisates 

The viscosity, cure properties, hardness, tensile properties and tear energy of the 

rubbers were measured according to the procedures described in the British 

Standards.   

 Viscosity: British Standard 1673, Part 3 (1969), using a Mooney viscometer 

(Wallace Instruments, Surrey, UK) and the results were expressed as Mooney   

Units (MU).  

 Cure properties: British Standard 1673: Part 10 (1977), using oscillating disc 

rheometer curemeter (ODR, Monsanto, Swindon, UK) at 160 ± 2oC. From the 

cure traces (e.g. Fig 6.1), scorch time, ts2, which is the time for the onset of cure, 

and the optimum cure time, t95, which is the time for the completion of cure were 

determined. ∆Torque which is the difference between the maximum and 

minimum torque values on the cure trace of a compound and is an indication of 

crosslink density changes in the rubber [38] was also measured. ∆torque was 

afterwards plotted against the loading of TBBS, ZnO, and stearic acid.   

 Cure rate index (CRI): British Standard 903: Part A60: Section 60.1. (1996). CRI 

is an indication of the rate of cure in the rubber.    

 Hardness: British Standard 903: Part A26 (1995), using cylindrical samples 6 mm 

thick and 15 mm in diameter, in a Shore A Durometer hardness tester (The Shore 

Instrument & MFG, Co., New York). The test temperature was 23.5oC.   

 Tensile stress-strain properties (tensile strength, elongation at break, stored 

energy at break and Young’s modulus: British Standard 903: Part A2 (1995), in a 

LR50K plus materials testing machine (Lloyd Instrument, UK), using standard 

dumbbell test pieces. Lloyd Nexygen 4.5.1 was used to process and store the 

data. The test temperature was 22oC and the crosshead speed was set at 100 

mm/min.  

 Tear energy: British Standard 903: Part A3 (1995), in a LR50K plus materials 

testing machine (Lloyd Instruments, UK), using trouser test pieces. The test 

temperature was at ambient (23oC), tear angle 180o, and crosshead speed was 

set at 50 mm/min. 

 Compression set: British Standard 903: Part A6 (1992), in circular steel 

compression set jig, 210 mm in diameter, at 25% compression for 24 h at 70oC, 
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using cylindrical samples 6 mm thick and 15 mm in diameter. At the end of each    

test, the sample was removed and allowed to cool down at room temperature 

(20oC) for 30 min before the set was measured.    

 

Figure 6.1 typical torque vs time cure trace produced by ODR at 160oC. Data for 
compound 5 in Table 6.1 ΔTorque = Tmax – Tmin 

 

6.2.3 Glass transition temperature of the rubber composites 

When solid filler is added to rubber for e.g. kaolin, it interacts with rubber chains. 

This interaction could be either chemical for e.g. formation of sulphur bonds between 

the rubber and filler as described in chapter 5 or it could be physical interaction due 

to van der Waal forces. To assist the effect of the filler on the rubber Tg is essential 

to determine how solid filler affect glass transition temperature. Tan δ is the ratio 

between loss modulus and elastic modulus. The loss modulus represents the 

viscous component of modulus and includes all the energy dissipation processes 

during dynamic strain. The loss modulus, storage modulus and tan δ were measured 

in DMAQ800 model CFL-50 (TA Instruments, USA), using Universal Analysis 2000 

Software Version 4.3A. Test pieces 35 mm long, 10 mm wide and approximately 2.8 

mm thick were used. The tests were performed at 1Hz frequency. The samples were 

deflected 256 µm (nominal peak to peak displacement) during the test, and the 

Tmax 

Tmin 
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sample temperature was raised from -130oC to 30oC at 3oC/min steps. The 

measurements were repeated to ensure reproducibility of the results. The glass 

transition temperature of the rubber composites was subsequently determined from 

the peak values on the tanδ vs temperature traces (Fig 6.10).   

6.2.4 Swelling tests in solvent  

The organic solvent used for the swelling tests was a laboratory reagent grade 

Toluene (Fisher Scientific, UK). In these tests, approximately 1.5 g of rubber was 

placed in 60 ml of the solvent in labelled bottles and allowed to swell for 50 days at 

20°C. The weight of the sample was measured every day until it reached equilibrium.  

The mass of the rubber in the kaolin-filled sample was calculated before it was 

placed in the solvent. Increase in the weight of the sample in the solvent was 

attributed to the swelling of the rubber phase. This excluded the dilution effect of the 

unswellable rigid kaolin from the measurements. The degree of swelling or solvent 

intake of the rubber in percentage was calculated, using the following expression: 

Degree of swelling =  
𝑊𝑊𝑊𝑊𝑟𝑟−𝑊𝑊𝑊𝑊𝑟𝑟

𝑊𝑊𝑊𝑊𝑟𝑟
 ˟ 100               (1) 

where Wsr is the weight of the swollen rubber and Wdr the weight of the dry rubber in 

the sample.  

6.2.5 X-ray diffraction analysis of the kaolin powder and internal structure of 
the NR composites 

The X-ray diffraction (XRD) patterns of the layered kaolin and NR composites 

(compounds 1-3; Table 6.1) were produced on a Bruker D2 diffractometer (Bruker, 

Germany). The diffractometer was equipped with Cu Kα radiation (λ= 0.15418 nm), 

10 mA of current and 30 kV of voltage. A minimum of 3 g of dried kaolin powder was 

used to carry out the X-ray analysis of the mineral clay. Square flat sheets, 20 mm 

by 20 mm and 2.8 mm thick, of the cured rubbers were used for the X-ray analysis of 

the NR composites. The experiment was performed at low angle in the range  

2θ = 1-10oC with the scan rate of 0.02o/s. In addition, the spacing between the 

structural layers of the kaolin was measured according to the Bragg’s law (eq. (2)),  

n λ = 2 d sin θ                    (2) 
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where n is an integer, λ is the X-ray wavelength, d is the interlayer spacing, and θ is 

the angle of diffraction.  Some XRD diffraction patterns of the solid kaolin particles 

and NR composites were subsequently produced (Fig 6.8 and Fig 6.9).     

6.2.6 Assessment of the kaolin filler and dispersion of the kaolin particles in 
the rubbers by electron microscopy    

The kaolin was investigated by a transmission electron microscope (TEM) model 

2000FX (JEOL, Japan). A small amount of the dry kaolin powder, approximately 0.1 

g in weight, was placed in a glass tube and mixed with 3 ml of a HPLC grade 

methanol solvent (Fisher Scientific, UK). The glass tube was then placed in an 

ultrasonic machine for 15 minutes in order to disperse the kaolin particles in the 

solvent. After this time elapsed, an electron transparent standard holey carbon film 

10-20 nm thick was placed on a copper mesh grid 25 microns thick for TEM samples 

and inserted in the tube to collect the kaolin nanoparticles. The grid was recovered 

and placed on a clean tissue paper to remove excess solvent and left in a clean 

cabinet at room temperature (~20oC) for 24 hours to allow the solvent to fully 

evaporate before placing it in the TEM. Some micrographs were then prepared for 

final analysis (Fig 6.6).     

To select a suitable mixing time for incorporating the kaolin in the rubbers, the mixing 

time was increased to 24 min to disperse the kaolin particles fully in the rubber. 

Twenty-four hours after the mixing ended, the rubbers were examined in a scanning 

electron microscope (SEM) to assess the filler dispersion. Dispersion of the kaolin 

particles in the rubber was assessed by a Cambridge Instruments Stereo scan 360 

Tungsten filament scanning electron microscope. Small pieces of the uncured rubber 

were placed in liquid nitrogen for 3 min and then fractured to create two fresh 

surfaces. The samples, 9 mm2 in area and 7 mm thick, were coated with gold and 

then examined and photographed in the SEM. The degree of dispersion of the kaolin 

particles in the rubber was then studied from SEM micrographs. After the 

micrographs were examined, a total mixing time of 13 min was found to be sufficient 

to fully disperse the kaolin particles in the rubbers (Fig 6.7). This mixing time was 

then used to make rubber compounds for this study. 
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6.3 Results and discussion 

Three cure systems were selected for further work. For NR, the cure system 

consisted of 4 phr sulphur, 3.5 phr TBBS, and 0.2 phr ZnO; for BR, 0.5 phr sulphur, 

1.75 phr TBBS and 0.2 phr ZnO; for EPDM, 1 phr sulphur, 1 phr TBBS and 0.075 phr 

ZnO. The procedure for measuring the optimum loading of TBBS and ZnO in the 

sulphur filled NR, BR and EPDM rubber were described fully in chapter 3. To protect 

the rubbers against environmental ageing, 1 phr antidegradant (6PPD) was also 

added. Note that there were only three chemicals in the cure systems, i.e. sulphur, 

TBBS and ZnO, which added up to 7.7 phr in the NR compounds, 2.45 phr in the BR 

compounds and 2.075 phr in the EPDM compound. This is a significant reduction 

both in the number and amount of the chemicals in the cure system. In addition to 

the chemical curatives, the NR compounds had 60 and 140 phr kaolin and the BR 

and EPDM compounds 60 phr kaolin (compounds 1-7, Table 6.1). These 

compounds were mixed as described already and their viscosity and cure properties 

measured. They were then cured at 160oC and their hardness, tensile properties and 

tear energy determined.   

6.3.1 Effect of kaolin on the viscosity and cure properties of the rubber 
compounds  

The inclusion of kaolin affected the viscosity and cure properties of the rubbers not in 

the same way. The viscosity of NR increased from 44 to 85 MU when 140 phr kaolin 

was added (Fig 6.2). A similar trend was also observed for BR and EPDM where the 

viscosity rose from 42 to 66 MU and from 70 to 89 MU, respectively after 60 phr 

kaolin was mixed (Table 6.1). This was expected, since the inclusion of solid 

particles in raw rubber raises the rubber viscosity [39]. 
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Figure 6.2 Mooney viscosities versus kaolin loading for composites 1-3 in Table 6.1 

 

The ts2 and t95 of NR shortened from 4.7 to 2.1 min and 8.3 to 3.1 min, respectively 

with 140 phr kaolin (Fig 6.3). 

 

Figure 6.3 Optimum cure time, t95 and scorch time, ts2 versus kaolin loading for 
composites 1-3 in Table 6.1. Optimum cure time (■), scorch time (•) 

 

The rate of cure as indicated by CRI benefitted greatly from kaolin and increased 

from 27.8 at 0 phr kaolin to 100 min-1 at 140 phr kaolin loading (Fig 6.4). Probably, 
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this was the highest cure rate ever reported for a sulphur-cured NR-based 

compound.  

 

 

 

Figure 6.4 Cure rate index versus kaolin loading for composites 1-3 in Table 6.1 

As mentioned earlier, ∆torque is an indication of crosslink density changes in the 

rubber. ∆torque for NR increased from 43 to 69 dNm as the loading of kaolin was 

raised from 0 phr to 140 phr , which indicated a large rise in the crosslink density of 

the rubber (Fig 6.5). 

 

Cure characteristics of rubber vulcanisates are show in Table 6.1. Minimum torque 

increases steadily with increase in filler concentration for vulcanisates. Since 

minimum torque can be regarded as a measure of stock viscosity, the addition of 

kaolin of a smaller size tend to impose extra resistance to flow due to a higher 

restriction of molecular motion of the nanocomposites [53]. The implication of this is 

that incorporation of modified kaolin increases the viscosity of the vulcanisate. 

Whereas, the maximum torque which is correlated with hardness also increases with 

increasing kaolin loading. Since the modulus of kaolin is higher than the rubber 

matrix, the incorporation of kaolin will increase the stiffness of the nanocomposites. 

Similar trend was observed for the difference in torque i.e. ∆torque and this indicates 

the extent of cross linking and rubber-filler interaction of the nanocomposites.     
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Torque difference is a measure of the shear dynamic modulus, which indirectly 

relates to the crosslink density of the nanocomposites [54,55]. The presence of the 

kaolin has therefore resulted in increase in the torque value caused by the formation 

of a higher number of crosslinks, which could be attributed to the confinement of the 

elastomer chains within the silicate galleries and consequently, to better interaction 

between the filler and the natural rubber. Maximum torque can be regarded as a 

measure of composite modulus. The significantly increased values in maximum 

torque with filler are indirect evidence.  

 

Figure 6.5 ∆Torque versus kaolin loading for composites 1-3 in Table 6.1 

 

For BR, the addition of kaolin shortened the ts2 and t95 from 11.3 to 3.5 min and 47.5 

to 12.5 min, respectively. The rate of cure also improved from 2.8 to 11.1 min-1. 

Though, kaolin had a detrimental effect on the crosslink density of the rubber 

because ∆torque decreased from 72 to 56 dNm (Table 6.1).  

For EPDM, the ts2 decreased from 6.2 to 2.6 min but surprisingly, the t95 increased 

from 21.5 to 40 min when 60 phr kaolin was added. Compound 7 had a marching 

cure and the torque kept increasing as a function of time. To calculate an optimum 

cure time for this compound, an arbitrary maximum torque value was considered. 

Hence, there was some uncertainty regarding the exact optimum cure time of this 

compound. But, it was evident that kaolin retarded the cure, causing it to march 

indefinitely. It is worth mentioning that the remaining compounds in Table 6.1 had 

equilibrium cure (Fig 6.1). The rate of cure declined as shown by a large fall in CRI 
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from 6.5 to 2.7 min-1. The rubber lost some crosslinks as demonstrated by reduction 

in ∆torque from 55 to 44.5 dNm Table 6.1. This revealed the damaging effect of 

kaolin on the crosslink density of both BR and EPDM.     

 

6.3.2 Effect of kaolin on the hardness and mechanical properties of the rubber 
composites   

Table 6.2 summarises the hardness and mechanical properties of the rubber 

composites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 
 

Table 6.2 Hardness and mechanical properties of the rubber vulcanisates 

Properties  Compound no 
1 2 3 4 5 6 7 

NR 100 100 100 -  - - - 
BR - - -     100 100 - - 

EPDM - - -       - - 100 100  
Kaolin 0 60 140       0 60 0 60 

∆Torque 43 64 69        72 56 55 44.5 
        

Hardness 
(Shore A) 

33 54 69 44 54 41 55 

Range of 
values 

 (Shore A) 

32-35 51-55 68-70 43-44 54-56 41-42 55-56 

Tensile 
strength 
(MPa) 

22 22 20 1.7 14.6 1.4 14.9 

Range of 
values  
(MPa) 

21-22 21-22 18-21 1.5-1.8 14.5-
15.5 

1.3-1.7 14.7-
17.5 

Elongation at 
break (%) 

1667 997 587 250 889 350 1512 

Range of 
values (%) 

1645-
1669 

994-999 577-628 239-283 878-950 333-370 1492-
1651 

Young’s 
modulus 
(MPa) 

1.0  2.7  6.7 1.4 3.0 1.4 2.4 

Range of 
values (MPa) 

1.0-1.1 2.3-3.2 5.8-11.6 1.4-1.7 2.8-3.0 1.3-1.4 1.8-2.7 

Compression 
set (%) 

41 64 71 9.4 26 39 48 

Range of 
values (%) 

39-42 61-65 71-71 9.4-9.4 26-28 37.5-39 46-50 

Stored energy 
density at 

break (MJ/m3) 

90 90 59 2.4 61 3.0 97 

Range of 
values 

(MJ/m3) 

90-91 86-91 54-65 2.4-3.0 60-70 2.9-3.7 96-121 

Tear energy 
(KJ/m2) 

13 13 14 1.1 7 1.9 30 

Range of 
values 
(KJ/m2) 

11-15 11-20 11-20 0.76-1.7 4.6-11.5 1.3-2.0 26-32 

Glass 
transition 

temperature, 
Tg (oC) 

-41 -43 -42 -100 -97 -42 -40 

Degree of 
swelling (%)  

489 347 335 360 428 263 323 
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The properties benefitted to a great extent from the addition and progressive 

increases in the loading of kaolin. For e.g. NR, the hardness increased by 64% when 

60 phr kaolin was added and the trend continued rising by another 28% when the 

loading of kaolin reached 140 phr. Similarly, the Young’s modulus rose by 170% with 

60 phr kaolin and then by an extra 148% when the full amount of kaolin, i.e. 140 phr, 

was reached. This was expected, since when soft rubber is replaced with solid filler, 

the rubber becomes harder, causing the Young’s modulus to increase. The tensile 

strength and tear energy were unchanged and the elongation at break and stored 

energy density at break deteriorated by a total of 65% and 34%, respectively when 

140 phr kaolin was mixed with the rubber. Notably, the compression set of the rubber 

was adversely affected by the addition of kaolin. For the unfilled rubber, the set was 

41%, and it then rose to 64% and 71%, when 60 and 140 phr kaolin was added, 

respectively.  

Kaolin was very beneficial to the properties of BR and EPDM. For BR, the hardness 

increased by 23% and for EPDM, by 34%, respectively when 60 phr kaolin was 

incorporated in the rubbers. For BR, the tensile strength, elongation at break and 

Young’s modulus rose by 759%, 256% and 114%, respectively. The compression 

set of the unfilled rubber was 9.4%, and subsequently rose to 26% when 60 phr 

kaolin was mixed with the rubber.  

The effect of kaolin on the properties of EPDM was even more impressive. For this 

rubber, the tensile strength, elongation at break and Young’s modulus improved by 

964%, 332% and 71%, respectively. The properties related to fracture were also 

enhanced very substantially. For BR, the stored energy density at break and tear 

energy were increased by 2442% and 536%, respectively and for EPDM, by 3133% 

and 1479%, respectively. The compression set of the unfilled rubber was 39%, and 

afterward increased to 48% with 60 phr kaolin. Hence kaolin was detrimental to the 

compression set resistance of these rubbers.  
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Figure 6.6 Transmission electron micrograph showing kaolin particles 

 

Evidently, kaolin is extending or non-reinforcing filler for the strain-induced 

crystallizing NR, and highly reinforcing for the non-crystallizing BR and EPDM. Since 

kaolin has a platelet structure (Fig 6.6), it may be assumed that the mechanism by 

which rubber is reinforced may be different to that by spherical particles such as CB 

and silica. The results suggest that strain-induced crystallizing NR benefits less from 

kaolin than the non-crystallizing BR and EPDM do.  In a study [40], some rubber 

composites were obtained by mixing NR, BR, and EPDM with up to 60 phr kaolin. 

The cure system consisted of 3 phr primary and secondary accelerators and 4 phr 

primary and secondary activators, adding up to 7 phr, as well as 2.5 phr sulphur. The 

kaolin-filled rubber composites had outstanding mechanical and thermal properties. 

For the NR composite, the highest hardness (38 Shore A), tensile strength (10.10 

MPa) and elongation at break (296%) were recorded at 40 phr loading of kaolin. For 

the BR composite, the highest hardness (58 Shore A), tensile strength (7.75 MPa) 

and elongation at break (53%) were measured at 50 phr loading of kaolin. Finally, for 

the EPDM composite, the highest hardness (58 Shore A), tensile strength (9.26 MPa) 

and elongation at break (208%) were determined at 50 phr kaolin, respectively. Our 

results compared well with the reported ones above. For instance, the filled EPDM 



146 
 

composite had a hardness of 55 Shore A, tensile strength of 14.9 MPa and an 

elongation at break of 1512%, significantly better than those reported for the EPDM 

above, in spite of the cure system having one accelerator and one activator, adding 

up to 2.075 phr (Table 6.1). All the indications are that kaolin reinforces rubber 

effectively, and reduction in the use of the chemical curatives in the vulcanisation 

process does not affect the mechanical properties of the rubbers adversely.   

There are various factors which affect reinforcement of rubbers by solid fillers. They 

are filler-rubber interaction [41-42], filler-filler interaction [43], and formation of 

crosslinks in rubber [4]. Increasing mixing time is an effective way to disperse solid 

fillers in rubber compounds [44].   

 

 

Figure 6.7 scanning electron micrograph showing good dispersion of the kaolin 
particles in rubber matrix, Data for the NR composite with 60 phr kaolin after 13 min 
mixing time 

 

As Figure 6.7 shows, the kaolin particles dispersed well in the rubber matrix. The 

reinforcing effect of kaolin on the mechanical properties was optimized through good 

dispersion [45] and consequently the filler-filler interaction was minimal. The rubber 

breaks down during mixing, which causes reduction in molecular weight and 

viscosity. This is often compensated by the reinforcing effect of the filler. The 

reduction in molecular weight is attributed to the mechanical rupture of the primary 
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carbon-carbon bonds that are present along the backbone of the rubber chains [46]. 

For example, for unfilled NR, a mixing time of 11 min reduced the molecular weight 

by roughly 25% [47] and its viscosity by 13% [48]. As the results in Table 6.2 show, 

in spite of a long mixing, i.e. 13 min, the mechanical properties of the BR and EPDM 

composites improved significantly when kaolin was added. This showed the 

reinforcing capabilities of kaolin.   

Although, mixing of the rubber-nanocomposites compound for more than 10 min 

results in the degradation of macromolecules in all structures of rubber.  

The influence of filler on this process is evident. The effect of molecular weight vs 

mixing time probably is a result of two processes; the first was related to scission 

mechanism of macromolecules, making possible the mechano-chemical 

transformations during mastication of rubber. It reduces molecular weight, especially 

the longest chains, and generates macro radicals. Second, this process consists of 

both branching of macromolecules because of macroradical recombination and 

networking because of interferences of macroradicals with the surface of filler. It 

gives a growth of the molecular weight of rubber. Competition of these processes in 

the change of the molecular weight gives a maximum in the resulting function [56]. 

Solid fillers reinforce rubber properties because of their large surface area. There 

were at least two contributions made to the rubber-kaolin interaction. Kaolin had a 

surface area of 25 m2/g and this provided area for bound rubber to form. The 

formation of bound rubber increases with factors such as temperature, time, surface 

activity and surface area of the filler [5]. A mixing temperature of 58-62oC and a 

mixing time of 13 min provided a favourable condition for bound rubber to form in the 

composites. In addition, the silanisation of the kaolin surface with MPTS, helped to 

improve the filler dispersion and increased the available surface area for rubber to 

interact with the filler to form bound rubber. Viscosity increases as a function of 

bound rubber, and bound rubber improves as a function of filler surface area and 

filler loading [49]. The results in Table 6.1show large increases in the viscosity for the 

kaolin-filled rubbers, signifying bound rubber formation in the composites. Effect of 

bound rubber on the filler-rubber interaction has been studied extensively and all the 

results suggest major enhancement of this property when bound rubber forms [5].  

In a study, modified kaolin was introduced into NR and cured at 140oC for 10 min to 

produce some composites [34]. The interspacing between the kaolin layers 

measured by XRD was from 7 to 14 Ao. The result showed as layered structure for 
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kaolin with the interspacing up to 14 Ao this is similar to the interspacing of our kaolin. 

The presence of the modified kaolin resulted in increase in the torque value caused 

by the formation of a higher number of crosslinks, which was attributed to the 

confinement of the rubber chains within the silicate galleries and hence to better 

interaction between the filler and the rubber. The XRD indicated a gallery spacing of 

about 7 Ao for the kaolin used in this study. Since the size of a carbon atom along 

the backbone of hydrocarbon rubber is about 3 Ao [50], it is likely that some 

segments of the rubber chains entered into the kaolin galleries during mixing, 

causing strong interaction between the two. This in turn, could have enhanced the 

kaolin-rubber interaction and improved the properties of the BR and EPDM 

composites Table 6.2. It seems that confinement of the rubber chains within a 

layered structure is a major factor in the ability of mineral fillers such as kaolin to 

reinforce the rubber properties. Apparently, this was not so for the NR composite.  

 

 

 

Figure 6.8 XRD diffraction pattern for the solid kaolin particles 
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Figure 6.9 XRD diffraction patterns for the NR composites (kaolin in phr) 
(compounds 1-3 Table 6.1) 

 

The NR viscosity increased by approximately 64% when the loading of kaolin was 

raised from 60 to 140 phr (Table 6.1). When the viscosity rose, higher shear forces 

were produced in the rubber, resulting in a more efficient break down of the filler 

aggregates, better dispersion of the filler particles and more surface area for the 

rubber chains to interact with (Fig 6.7). Consequently, more bound rubber was 

formed in the kaolin-filled composites.  Furthermore for NR, the peaks on the XRD 

patterns of the kaolin-filled composites were the same as the ones appearing on the 

XRD pattern of the kaolin particles but getting larger as more kaolin was added (cf. 

Fig 6.8 with Fig 6.9). It was concluded that there was no evidence of crystallisation in 

the rubber. Small amounts of suitable impurities accelerate the crystallisation 

process markedly in NR in the absence of strain, presumably by promoting crystal 

nucleation [51]. Clearly, this was not the case with kaolin.   

As mentioned earlier, Δtorque is an indication of crosslink density changes in rubber. 

The Δtorque of the NR composites increased from 43 to 69 dNm when the loading of 

kaolin was raised from 0 to 140 phr, respectively (Table 6.1). This indicated a 

significant rise in the crosslink density of the composite. For the BR and EPDM 
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composites, ∆torque decreased by approximately 22% and 19%, respectively when 

60 phr kaolin was added (Table 6.1).   

The compression set of the composites increased when kaolin was incorporated in 

the rubber (Table 6.2). In the swelling tests, the unfilled NR composite solvent intake 

was 489%, and decreased to 347% and 335% for the composites with 60 and 140 

phr kaolin, respectively. The decrease in solvent intake correlated well with the 

increase in ∆torque (Table 6.1), since higher crosslink density inhibits chain mobility 

and reduces swelling [39]. But the compression set increased by 73% when the 

kaolin loading was raised to 140 phr. However, higher loading of filler is known to 

increased compression set [52]. This trend did not match that of the ∆torque (Table 

6.2) because higher crosslink density should have reduced the set. The reason for 

this discrepancy is not immediately clear but it is likely that the NR composites had 

more physical links and less chemical crosslinks, which affected both the extent of 

swelling and Δtorque.   

For the unfilled and filled BR and unfilled and filled EPDM composites, the solvent 

intake was 360% and 428%, and 263% and 323%, respectively. The higher solvent 

intake indicated lesser crosslink density or lower ∆torque than the unfilled 

counterparts. This meant higher compression set for the filled composites. As shown 

in Table 6.2, the filled BR and EPDM composites did have lower ∆torques, which 

implied lesser crosslink density and higher compression set. It appeared that kaolin 

was detrimental to the crosslink density of these composites. It is expected that 

swelling of the BR and EPDM composites was affected mostly by the chemical 

crosslinks and less by the physical ones. Therefore, chemical and physical 

crosslinks influenced the ∆torque and solvent intake in these composites though the 

exact contribution to the crosslink density remains to be determined.    
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Figure 6.10 Typical DMA traces for the NR composite with140 phr kaolin 

 

Glass transition temperature is governed by the extent of chain mobility within the 

rubber network. When chain mobility is inhibited, e.g. by the presence of chemical 

and/or physical crosslinks between the rubber chains and strong rubber-filler 

interaction, Tg rises [51]. The Tg of the unfilled NR composite was -41oC and rose to 

about -42 and -43oC when the filler loading was 60 phr and 140 phr, respectively 

(Table 6.2). The Tg for the unfilled and filled BR composites and unfilled and filled 

EPDM composites were -100oC and -97oC, and -42oC and -40oC, respectively. The 

kaolin filler raised the Tg of the composites by up to three degrees centigrade (Figure 

6.10).  
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6.4 Conclusions  

From this study, the following main conclusions can be drawn.  
 
1. A new method measured the exact optimum amount of TBBS accelerator and 

ZnO activator at a given loading of sulphur in the composites of NR, BR and 

EPDM and eliminated stearic acid from the cure system entirely. The requirement 

for ZnO was 0.075-0.2 phr. interestingly, in spite of using less chemical curatives 

in sulphur vulcanisation, the rubber composites were fully cured with outstanding 

properties.        

2. Kaolin was extending or non-reinforcing filler for the strain-induced crystallizing 

NR and highly reinforcing for the non-crystallizing BR and EPDM.  

It is predictable that reduction in the use of ZnO and stearic acid will improve health 

and safety at work-place, reduce cost, and minimise damage to the environment.  

The use of MPTS pre-tread kaolin in conjunction with the new method for measuring 

the exact amount of the curatives in sulphur vulcanisation provides an effective 

means for designing green composites for industrial applications. The indications are 

that MPTS pre-treated kaolin is an ideal replacement for carbon black and 

silica/silane systems in rubber reinforcement, at least for non-crystallising BR and 

EPDM rubbers. 

In the current study, The novel sulphur cure systems developed for NR, BR and 

EPDM rubbers in Chapter 3, NR, BR and EPDM rubbers were mixed with a high 

loading of mineral kaolin solid filler which was pre-treated with a mercaptosilane. The 

rubber compounds were subsequently cured and their mechanical properties 

measured. The results suggested that kaolin was non-reinforcing or extending filler 

for NR and highly reinforcing filler for BR and EPDM. Significant benefit to the 

mechanical properties of the rubbers from kaolin in combination with the efficient 

sulphur cure systems developed here are the right steps towards developing green 

compounds for the rubber industry.   
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Chapter 7 – Conclusions 
 

From this study, the following conclusions were drawn.  

7.1. Novel sulphur cure systems for NR, BR and EPDM rubbers. 

1. The optimum loadings of TBBS for the NR with 1, 2, 3 and 4 phr sulphur were 1.5, 

1.5, 1.5 and 3.5 phr, respectively. 

2. The optimum loading of ZnO for the NR with 1 phr sulphur and  1.5 phr TBBS, 

the NR with 2 phr sulphur and 1.5 phr TBBS,  the NR with 3 phr sulphur and 1.5 

phr TBBS, and the NR with 4 phr sulphur and 3.5 phr TBBS were 0.2, 0.3, 0.25, 

and 0.2 phr, respectively.    

3. The optimum loading of TBBS for the BR with 0.5 and 1 phr sulphur were 1.75 

and 3 phr, respectively.  

4. The optimum loading of ZnO for the BR with 0.5 phr sulphur and 1.75 phr TBBS 

and the BR with 1 phr sulphur and 3 phr TBBS were 0.2 phr, respectively.  

5. The optimum loading of TBBS for the EPDM with 1 phr sulphur was 1 phr.  

6. The optimum loading of ZnO for the EPDM with 1 phr sulphur and 1 phr TBBS 

was 0.075 phr.    

7. When the loading of TBBS in the powder was raised progressively from 0.135 to 

0.383 phr, the scorch time and optimum cure time of the rubber decreased at 

0.351 phr TBBS. The rate of cure as indicated by the cure rate index increased at 

0.351 phr TBBS in the powder. The crosslink density as shown by ∆torque rose, 

reaching its optimum value at 0.383 phr TBBS loading in the powder.   

8. When the loading of the powder (TBBS/ZnO:350mg/1g) in the rubber was raised 

increasingly to 5.63 phr, the scorch time was unchanged and the optimum cure 

time reduced at 1.25 phr powder. The rate of cure as shown by the cure rate 

index accelerated at 1.25 phr powder. The crosslink density as indicated by 

∆torque rose, reaching its maximum value at 5.63 phr powder.   

 

 All the indications are that methods 1 and 2 offer a significantly more efficient 

use of TBBS and ZnO chemicals in the sulphur vulcanisation of NR, BR and 
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EPDM rubbers. This helps to reduce excessive use of these chemicals and 

offers a more efficient cure cycle for these rubbers. 

7.2 Reinforcing capabilities of mineral kaolin for NR, BR and EPDM 
rubbers 

9. To react the sulphur in MPTS on the kaolin surface with the NR chains and 

optimise the reaction between the two, 16 phr TBBS and 0.2 phr ZnO were 

added to the kaolin-filled rubber.  

10. The hardness and Young’s modulus increased and compression set decreased 

when up to 3 phr elemental sulphur was included in the kaolin-filled rubber with 

16 phr TBBS and 0.2 phr ZnO. The tensile strength, elongation at break, stored 

energy density at break, and tear energy of the rubber vulcanisate reduced when 

elemental sulphur was added. Notably, the inclusion of elemental sulphur was the 

key factor in controlling the rubber properties.  

 

11. Kaolin was extending or non-reinforcing filler for the strain-induced crystallizing 

NR and highly reinforcing for the non-crystallizing BR and EPDM.  

Although both methods showed that kaolin was a reinforcing filler, but method 1 

used significantly more TBBS, i.e., 16 phr for curing NR. Therefore, method 2 

may be the preferred one, since it uses a great deal less TBBS for NR, i.e. up to 

3.5 phr.  

 It is predictable that reduction in the use of TBBS and ZnO and elimination of 

stearic acid from the cure system will improve health and safety at work-place, 

reduce cost, and minimise damage to the environment.  The use of MPTS 

pre-tread kaolin in conjunction with the use of the novel cure systems 

developed in Chapters 3 and 4 provide an effective means for designing 

green rubber composites for industrial applications. The indications are that 

MPTS pre-treated kaolin is an ideal replacement for toxic carbon black and 

expensive silica/silane systems in rubber reinforcement, at least for non-

crystallising BR and EPDM rubbers. 
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Chapter 8 – Suggestions for 
further work 

 
 

8.1 – Use of novel sulphur cure systems in NR, BR and EPDM 

In Chapter 3, the optimum loading of TBBS and ZnO were measured for NR at 1, 2, 

3 and 4 phr loading of sulphur. However, for BR the optimum loading of TBBS and 

ZnO were determined at 0.5 and 1 phr loading of sulphur.  For EPDM, the optimum 

loading of TBBS and ZnO were measured at 1 phr sulphur loading.  Therefore, a 

future work should aim to measure the optimum loading of TBBS and ZnO at 2, 3, 

and 4 phr sulphur loading for this rubber.   

In Chapter 4, the optimum loading of the powder (TBBS/ZnO: 350mg/1g) was 

measured for the NR with 4 phr sulphur. The cure efficiency was excellent. Hence a 

future work should repeat a similar study for the NR, BR and EPDM rubbers at 

different loading of sulphur, e.g. 1, 2, 3, and 4.  

8.2 – Exploring the reinforcing properties of mineral kaolin  

In Chapter 6, the reinforcing capabilities of mineral kaolin on NR, BR and EPDM 

properties were studied. As the results showed, kaolin was highly reinforcing filler for 

non-crystallising BR and EPDM but non-reinforcing filler for NR. The results for 

crystallising NR were puzzling.  So a future study should examine why kaolin did not 

reinforce the mechanical properties of the NR vulcanisate. Also, in BR and EPDM 

rubbers, the loading of kaolin was limited to 60 phr in this study. A future work should 

increase the amount of kaolin in BR and EPDM and also styrene-butadiene rubber 

(SBR), which is used extensively in passenger car tyres to above 100 phr to 

investigate its effects on the rubber properties.   
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