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Abstract 

This thesis presents an atomic-scale study of nanoindentation, with carbon materials 

and both bcc and fcc metals as test specimens. Classical molecular dynamics (MD) sim- 

ulations using Newtonian mechanics and many-body potentials, are employed to investi- 

gate the elastic-plastic deformation behaviour of the work materials during nanometre- 

sized indentations. In a preliminary model, the indenter is represented solely by a 

non-deformable interface with pyramidal and axisymmetric geometries. An atomistic 
description of a blunted 90° pyramidal indenter is also used to study deformation of the 

tip, adhesive tip-substrate interactions and atom transfer, together with damage after 

adhesive rupture and mechanisms of tip-induced structural transformations and surface 

nanotopograpghy. To alleviate finite-size effects and to facilitate the simulation of over 

one million atoms, a parallel MD code using the MPI paradigm has also been developed 

to run on multiple processor machines. The work materials show a diverse range of 

deformation behaviour, ranging from purely elastic deformation with graphite, to ap- 

preciable plastic deformation with metals. Some qualitative comparisons are made to 

experiment, but available computer power constrains feasible indentation depths to an 

order of magnitude smaller than experiment, and over indentation times several orders 

of magnitude smaller. The simulations give a good description of nanoindentation and 

support many of the experimental features. 
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Chapter 1 

Introduction 

1.1 Simulation and Techniques 

Understanding the fundamental behaviour of some real system is best facilitated by 

constructing a model of the system. The term `system' essentially refers to an assembly 

of interrelated entities within some notional boundary. Models are usually governed 

by mathematical equations that describe the behaviour of the system at a simplified 

level, by making assumptions about how it operates. In many engineering and scientific 

disciplines, observed phenomena can stem from very complicated mechanisms. Hence, 

execution of a model which mimics such complex behaviour can involve considerably 

large numerical calculations. After the Second World War, engineers and scientists 

started employing computing machines to execute the large scale numerics that previ- 

ously were not feasible. This quickly led to the utilisation of computer simulation [1] as 

a research tool. The term `simulation' can be simply defined as a numerical technique 

which executes a mathematical model to yield a description of system behaviour over a 

specified period of time. 

Computer simulation has had a dramatic influence in scientific research and industry 

over the last fifty years or so, and has become a widely established and practiced disci- 

pline [2]. It allowed existing theories to be tested, which inevitably led to the revision 

of many models and therefore an improvement in our understanding. After initial scep- 

ticism, computer simulation has evolved into a standard method whereby theoretical 

models can be validated against experimental observations, and subsequently modified 

by analysing any discrepancies. Thus, the role of computer simulation lies somewhere 

between theory and experiment. One of the principal qualities of computer simulations 
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is that they do not incur the complexity or expense of experiments. They are amenable 

to manipulations and so allow the exploration of science under conditions where experi- 

ments may not be physically viable. For example, while it may be impossible to perform 

experiments under extremes of temperature or pressure, a computer simulation would be 

feasible. Furthermore, simulations permit better control over experimental conditions 

that can be achieved realistically. However, simulations are not without drawbacks since 

they are often very time-consuming, both to develop and implement. 

One of the most widespread uses of computer simulation is in materials science [3]. 

With increases in computer power and the development of better interatomic poten- 

tials, computer simulations are proving to be an essential integrated tool in materials 

research. There exists several different types of numerical simulations to study material 

phenomena, which can be divided up into atomistic models and continuum models. In 

continua, the material is often treated as a continuous medium, where the finite element 

method [4] is usually employed to solve the partial differential continuum equations that 

describe the material. In atomistic methods [5], the material is described at the atomic 

scale as an aggregate of individual atoms. This allows the dynamics of each atom to 

be studied, therefore allowing a detailed insight into atomic processes and mechanisms 
behind material phenomena. It has long been recognised that continuum models are less 

applicable when the scale of the material under investigation is reduced towards atomic 
dimensions. 

There are a wide range of atomistic modelling methods available. Routinely utilised 

techniques are Monte Carlo (MC) [5], the binary collision approximation (BC) [6] and 

molecular dynamics (MD) [6]-[7]. With the emergence of more powerful computers, ma- 

terial phenomena are also being calculated from first principles. Quantum mechanical 

methods, like ab initio [8] and tight-binding [9], describe the material at the electronic 

level by solving approximations to Schrödinger's equation. They are becoming increas- 

ingly important in predicting elementary physical material properties. However, they 

are somewhat restricted in the size of systems that can be studied by the complexity 

of the calculations. Currently, feasible systems described by ab initio involve up to a 

maximum of about 1000 atoms, although larger systems can be computed using tight- 

binding, but at the expense of further approximations. While the MC, BC and MD 

approaches allow employment of larger system sizes compared with first principles cal- 

culations, they are more restricted with accuracy. 
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MC simulations are typically applied to problems having a probabilistic basis. In 

materials science applications, MC simulations employ importance sampling to generate 

low states of energy. The first MC computer simulations were applied to the study of 

dense liquids in 1953 by Metropolis et al [10]. BC computer simulations model the 

atomic collisions by assuming that the particles interact in a pairwise fashion. Such a 

pairwise interaction is known as a binary collision. BC simulations were developed by 

authors such as Robinson [11] and implemented to examine radiation effects in crys- 

talline materials. The application of the BC method is best suited to the simulation 

of high energy ion bombardment. The first reported MD computer simulations were 

performed in 1956 by Alder and Wainright [12] to study the dynamics of hard spheres. 

In essence, MD simulations employ Newtonian mechanics to describe the dynamics for 

a system of atoms. Interaction forces are derived from classical many-body potentials, 

which are purely functions of the atomic positions. The classical equations of motion 

cannot be solved analytically, and so a finite difference scheme is implemented to in- 

tegrate the differential equations at discretised timesteps, where the dynamics of the 

system is then allowed to evolve to the next time interval. The primary MD simulation 

of a `real' material was published in 1960 by Vineyard et al [13] which reported on the 

simulation of radiation damage in crystalline Cu. In 1964 Rahman reported the initial 

MD simulation of a real liquid [14]. MD simulations were later developed by many 

authors, such as Beeler [15] and Harrison [16]. The first MD simulations were restricted 

to modelling a very small number of atoms, in the order of hundreds. However, with 

modern parallel architectures, systems involving millions of atoms can now be studied. 

Computer visualisation and animation [17] have become an essential integrated part 

of simulations. The role of computer graphics has greatly assisted many research areas, 

such as the design of new molecules [18]. Our understanding of material phenomena 

can be considerably enhanced by graphical representation, since the human eye cannot 

be relied upon to accurately perceive the information contained in large numerical data. 

Thus, computer visualisation provides a method to reveal processes and mechanisms 

in material phenomena that could otherwise go unseen by examining mass numerics. 

Informative visualisation is generally achieved by effective employment of colour, form 

and animation. The latter can be crucial in the exploration of data from simulations 

where minor kinetic processes (like small vibrations) have occurred. With modern day 

computer power, interactive visualisation software is increasingly used to provide an 
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excellent method for detailed examination of simulation data. 

1.2 Indentation of Materials 

1.2.1 Background 

The suitability of a material for employment in a given process, can be determined from 

knowledge of its mechanical properties. The science of tribology has matured over the 

last few hundred years as a variety of methods to probe material attributes, such as 
hardness, Young's modulus and elastic-plastic deformation behaviour, have been devel- 

oped. The deformation behaviour of materials is characterised by elastic and plastic 
deformation. If a force is applied to a material then constituent atoms will displace 

towards an equilibrium state, deforming the initial bonds in the process. If the bonds 

return to the original state as the applied load is reversed, then the deformation is said 
to be elastic. If bonds stay deformed then the deformation is defined as plastic. In 

plastic deformation the bonding between atoms can be considered to rupture and then 

reform, but in a different configuration. Thus, plastic deformation is characterised by 

permanent displacements of atoms. However, if broken bonds are not reformed then 

fracture can occur. The bulk material deformation behaviour is a function of the indi- 

vidual deformations of the bonds and can therefore be elastic and/or plastic. A simple 

way to examine the deformation behaviour of a material is through hardness testing. 

Hardness can be defined as the resistance to deformation. The first hardness calcu- 
lations were based on scratch tests [19], which depend on the ability of one solid body 

to scratch the surface of another. Some of the first scratch tests were performed by 

Reaumur in 1722. Mohs introduced a hardness scale in 1822 that was calibrated by 

selecting ten minerals as standards [20], ranging from talc to diamond. The modern 

scratch test has developed from the Mohs scale, where the hardness is evaluated from 

the dimensions of a diamond stylus scratch in the material [21]. This method has been 

shown to be successful at determining the variation in hardness across a grain boundary 

[22]. Mechanical properties of materials have also been studied by abrasion and erosion 

testing, where the hardness is determined from the rate of wear and loss of the mate- 

rial. However, these methods are generally less accurate compared with conventional 

techniques and are not typically utilised. 
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Indentation is the most preferred technique to characterise the mechanical properties 

of materials. A commonly used procedure is dynamic indentation or `rebound testing'. 

Here, an indenter is dropped onto the surface of a material, where the rebound height 

gives a measure of the hardness [23]. There are several variations of this method, such 

as damping or pendulum tests, which is generally used for large scale work materials. 

The most extensively used method is `static' indentation, which forms the basis of this 

thesis. In this procedure, a hard indenter is forced into the surface of a solid body and 

the force is measured as a function of the indentation depth. The force-depth informa- 

tion allows the mechanical properties of the sample to be readily evaluated. 

Towards the end of the 19th century, the Swedish engineer Brinell introduced a 

method known as the `Brinell test' [24]. This procedure uses a spherical indenter, which 
is generally made from steel or even tungsten carbide for indentation of hard materials. 
The technique was developed further in 1908 by Meyer [25]. However, very hard materi- 

als constrain feasible implementation of the Brinell test. In 1908, Ludwik implemented 

the first conical diamond indenters for hardness measurements [26]. These were later 

employed by Rockwell in 1919 for indentation of very hard materials [19]. Rockwell 

further implemented conical indenters with hemispherical tips. The first diamond pyra- 

midal indenters were introduced in 1922 by Smith and Sandland [27]. These square 

pyramidal indenters were later developed into the familiar Vickers hardness technique 

[28]. The introduction of the Knoop indenter in 1939 [29], allowed adequate indenta- 

tions in materials which had not been viable with the Vickers or Brinell indentations. 

This was because the Knoop indenter, which has a cross-sectional contact area in the 

shape of a parallelogram, allows a satisfactory contact area at relatively small penetra- 

tion depths. The introduction of the Berkovich indenter [30] in 1951 produced a sharper 

tip compared with the Vickers and Knoop indenters and soon became commonly used. 

With Berkovich geometry, three non-adjacent planes intersect at a single point, forming 

a three-sided pyramid. 

The underlined methods above have been extensively used to probe the microme- 

chanical behaviour of materials. However, the exploration of science on the nanometre 

scale (10-9m) has continued the miniaturisation of technology [31]-[32]. Materials be- 

yond submicrometre dimensions are now readily employed in many applications. For 

example, thin films have found numerous uses from protective coatings to functional 

layers with special electrical and magnetic properties. The mechanical behaviour of 
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nanosize materials may differ from the bulk material, due to the comparatively high 

surface area to volume ratio. Furthermore, mechanical properties may vary locally for 

a material if it is measured over nanoscale dimensions, due to the density of local de- 

fects and surface asperities. The mechanical behaviour of nanoscale materials is not only 

physically interesting, but it is also of significant technological importance as science and 

technology develops on the nanometre scale. Knowledge of mechanical behaviour and 

mechanisms at the nanometre scale is crucial for the design of nanosize materials with 

tailor-made properties. However, indentation into materials with nanosize dimensions 

is difficult. Indentation of thin films for example, needs to be only a few nanometres 

deep to avoid any influence from the underlying substrate. 

1.2.2 Indentation at the Nanometre Scale 

Experimental Review 

The development of new techniques to measure mechanical properties, friction, adhesion 

and surface topography on the nanometre scale, has given rise to the new research field 

of nanotribology. Proximal probe tips, such as the scanning force microscope (SFM) and 

the atomic force microscope (AFM), and related methods, have allowed investigations of 

materials on the nanometre scale. A widely expanding area of nanotribology is nanoin- 

dentation, which is a new technique designed to measure the mechanical properties of 

materials on the nanoscale [32]. The experimental nanoindentation procedure involves 

applying very small forces from a few pN up to tens of mN, to press a nanosize tip into 

the surface of a material, where the force is measured as a function of the indentation 

depth. The experimental procedure usually incorporates the SFM so that topographic 

images can be obtained using the same tip. Impressions only a few nanometres deep can 

be made to generate the force-depth information from which the mechanical behaviour 

of the sample can be evaluated. Therefore, this method allows the properties of mate- 

rials like thin films to be readily investigated. 

The experimental development of small-scale indentations has generated consider- 

able interest in the detailed mechanisms governing deformation. Over the last ten years 

or so, there has been an outbreak of activity in the study of tip-surface interactions. 

In the literature there is no shortage of papers encompassing the application of nanoin- 

dentation. Initial experimental work involved the indentation of materials of known 
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hardness so to calibrate the indenting instrument. A review of nanoindentation is given 

in the article by Nix [33]. Nanoindentation has been successfully implemented in ex- 

perimental work to investigate the mechanical behaviour of a wide range of materials, 

including covalent materials [34]-[35], semiconductor materials [36]-[37], metallic films 

[38]-[39], quasi-crystals [40]-[41], ceramics [42]-[43], thin films [44]-[45], biological mate- 

rials [46], ionic materials [47], and soft samples such as polymers [48]. In addition to 

these materials, more atypical specimens have also been probed experimentally, such as 

glass [49], ice [50], automotive brake pads [51], human dental enamel and dental restora- 

tive [52]-[53] and human bone [54]. The experimental investigations report a wide range 

of interesting phenomena during nanoindentation testing. Over the range of materials 

studied experimentally, contrasting deformation behaviour from purely elastic to severe 

inelastic has been observed. 

The general criteria for an indenter is for it to have a high mechanical hardness 

and a sharp protruding tip (or small radius of curvature), whose geometry should be 

precisely known when evaluating the mechanical properties of the substrate. In reality 

the tip blunts with continued operation and so the curvature of the apex is modified 

with repeated use. It should be emphasised that in reality, the apex of every inden- 

ter is paraboloidal in shape. A variety of indenter configurations have been reported 

in the literature for experimental nanoindentation studies. These include the com- 

mercially used three-sided Berkovich [55]-[56], cube-cornered [57]-[58] and four-sided 

Vickers indenters [59]-[60] as well as axisymmetric configurations like spherical [61]-[62] 

and conical [63]-[64] indenters. The most preferable indenter shape will depend on the 

kind of measurement required. A comparison between indentations made with differ- 

ent indenter geometries is given by Breder et al [65]. Generally the tip is made from 

diamond, the hardest material known to date, although other hard materials have also 

been implemented experimentally. Examples include Si [66], Si3Ni4 [67], Si with metal 

coatings [68], metals [69] and carbon nanotubes [70]. Axially symmetric indenters are 

not generally used since they are difficult to manufacture with the precision required in 

nanoindentation experiments. Frthermore, spherical indenters are not self symmetric 

and therefore the contact area is a more complicated function of depth. Cube-cornered 

diamond indenters are generally preferred for nanoindentation testing since they are less 

susceptible to blunting and are comparatively easy to fabricate from cut crystals. 

Usually the experiments are performed at room temperature and ambient pressure. 
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Although, in some cases there has been an attempt to control the surface chemistry 

and environment during nanoindentation testing. For example, experiments have been 

performed in ultrahigh vacuum (UHV) to maintain a specimen surface free from adsor- 

bates [71] and in a liquid environment [72] to relieve surface tension. Other indentation 

parameters have also been investigated experimentally. For example, the effect of tip 

momentum has been considered by Beake and Leggett [73] during nanoindentation of 

polymer films. They found that nanohardness exhibited different trends with a change 

in loading rate. Baltä Calleja [74] studied the influence of the holding time at peak load 

on polymeric materials and reported time-dependent mechanical behaviour. 

Theoretical Review 

Determining the mechanical properties of materials using modern nanoindentation equip- 

ment is relatively simple. However, understanding the mechanisms and nature of plas- 

tic deformation is difficult. Concurrent to experimental investigations, comprehensive 

computational studies have also been undertaken to elucidate material deformation 

behaviour. Recent developments in interatomic potentials coupled with advances in 

computer power and improved theoretical techniques, have enabled realistic nanoscale 

behaviour of materials to be studied. Computer simulations offer an ideal approach 

to investigating numerous questions which cannot be fully answered from experimental 

nanoindentation measurements. Furthermore, the simulated force-depth curve is advan- 

tageous since the shape can be related to specific atomic-scale events. 

One of the first finite element simulations of nanoindentation was performed by 

Bhattacharya and Nix [75] to study the indentation of silicon, nickel and aluminium 

using a 2D axisymmetric model. Subsequent finite element simulations have been per- 

formed by authors such as Vlachos et al [76] and Smith et al [77]. Such simulations 

have allowed qualitative information regarding mechanical properties of different mate- 

rials to be extracted. However, since the very nature of nanoindentation involves the 

deformation and rupture of bonds, the process is best studied atomistically to elucidate 

mechanisms of structural transformation during deformation. The atomistic model ap- 

proach is generally preferred to the finite element model because it allows a more detailed 

understanding of the transition from elastic to plastic behaviour and also the way in 

which defects and dislocations are created by the indentation process. 

Quantum mechanical techniques have allowed a thorough study of tip-surface in- 
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teractions [78]-[79]. The first principles calculations give a description of the quantum 

mechanical nature of interfacial bonding, and have therefore allowed detailed investiga- 

tions into the rupture and formation of bonds during plasticity. However, the complexity 

of the calculations involved, heavily constrain the number of atoms in a feasible sim- 

ulation. For example, in one ab initio quantum mechanical investigation by Ke et al 

[78], a Si tip was configured from only 4 atoms and a GaAs (110) substrate consisted of 

just under 100 atoms. Primarily, the materials studied from first principles are covalent 

materials such as Si and diamond. Apart from having large practical applications, such 

materials are computationally easier to study using quantum mechanics since the num- 

ber of electrons used in the calculations is relatively small. Typically, nanoindentation 

studies do not implement quantum mechanical methods since most related phenomena 

of interest stem from large scale dynamics. Hence, the most favourable approach to 

investigate the nanoindentation of materials is by the mature field of MD simulation. 

The limiting factor in modest sized MD simulations of nanoindentation is system size 

and feasible simulation time, which are constrained by the available computing power. 

The use of parallel computers with multiple processors relax these constraints, and allow 

systems involving potentially millions of atoms to be routinely employed [80]. A wealth 

of literature exists reporting MD simulations of nanoindentation for a wide range of 

materials, complementary to many of the experimental specimens. For a brief review 

of MD simulations of nanoindentation the reader is referred to the excellent review by 

Stuart et al [81]. In addition to nanoindentation, MD simulations have also been applied 

in other studies of nanotribology. Authors such as Harrison et al [82] and Komanduri 

et al [83] have reported, respectively, on the nanoscratching of diamond and metal sur- 

faces. Nanometric cutting of metal crystals has been examined by Fang et al [84] and 

Komanduri et al [85]. Recent studies by Landman et al [86] and Shimizu et al [87], 

reported on simulations of nanofriction for Si-Si and diamond-Cu interfaces observing 

the stick-slip phenomenon (the transition from static to dynamic motion). 

1.3 Overview of Thesis 

Motivated by the aforementioned experimental and theoretical work, this thesis presents 

an atomic scale study of nanoindentation, employing carbon materials and both bcc 

and fcc metals as test specimens. Classical MD using Newtonian mechanics are im- 
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plemented to simulate the indentation process. The principal intent of this work is 

to gain insight into the nanomechanical behaviour of materials, together with the tip- 

induced mechanisms that impart irreversible change in atomic structure. Qualitative 

comparisons between experimental measurements and the simulations are made where 

possible. While the experimental length scales have been reducing, with improved com- 

puter power those of simulations have been increasing. However, the available computing 

power and the timely execution of MD simulations constrain feasible investigations to 

systems comparatively smaller than those utilised in experimental work. Consequently, 

viable simulations performed here comprise of indentation depths an order of magnitude 

smaller than experimental values, and over indentation times several orders of magni- 

tude smaller. In addition to nanoindentation simulations, this thesis also discusses the 

development of a parallel MD code using the MPI paradigm to facilitate the simulation 

of more atoms and to alleviate finite-size effects. 

The fundamental principles of MD simulations are introduced in Chapter 2, together 

with the pertinent details of the application to simulating nanoindentation. Numerous 

methods to increase computational efficiency are also discussed. A preliminary model 

of the indenter is introduced in Chapter 3, where the atomic structure is ignored and 

represented solely by a non-deformable interface. Simulation results implementing this 

indenter model with graphite and diamond substrates are presented. The influence of 

indentation speed and tip geometry on the deformation behaviour of the carbon materi- 

als is also discussed. In Chapter 4, an atomistic pyramidal indenter model is introduced 

together with simulation results for different carbon materials, namely graphite, di- 

amond, a C60 fullerene film and amorphous carbon. The physical behaviour of the 

indenter during indentation is examined together with the role of surface termination 

on adhesion. The deformation behaviour of bcc Fe and fcc Ag metals is investigated in 

Chapter 5. The nature of the deformed material under the indenter and the induced 

surface topography is examined. The development of the parallel MD code is reviewed 

in Chapter 6. The performance of the parallel code is evaluated and opportunities for 

efficiency tuning are discussed. Parallel MD simulations of Fe indentation are presented 

in Chapter 7. Three different surfaces of Fe are examined with over one million atoms 

to study indentation-induced dislocations, together with the preferred crystallographic 

directions for pile-up. Finally, general conclusions and ongoing work are discussed in 

Chapter 8, together with suggestions for future work. 
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Chapter 2 

Simulation Methodology 

2.1 Introduction 

This chapter discusses the pertinent details of the MD technique and its application to 

simulating the nanoindentation process. The MD simulation method is introduced in 

the next section. The discussion is not intended to be an exhaustive attempt to cover 

the MD field, but only a review on the most fundamental principles. In addition, some 

`tricks of the trade' that are commonly used to improve the computational efficiency, 

such as bookkeeping techniques, are also introduced. The discussion is necessarily short 

and so for a more detailed discussion on the vast subject of MD, the reader is referred 

to Smith [6] or Allen and Tildesley [7]. The final section details the application of MD 

to the simulation of nanoindentation. 

2.2 Molecular Dynamics 

In this thesis the nanoindentation process is simulated at the atomic scale by MD [6]- 

[7]. In essence, the MD technique is used to model the motion of a system of atoms, 

interacting with each other by the means of Newton's law. The atoms evolve by the 

independent variables of space and time. The dynamics are described by assuming 

multiple interactions, where the forces the atoms exert on each other govern the rate 

and direction of motion. Hence, the basic feature of MD simulations is the calculation 

of the force on each atom and therefore the position of each atom throughout a specified 

period of time. In classical MD it is assumed that the motion of atoms can be modelled 
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using Newtonian mechanics. Thus, the equation of motion for the ith atom is 

d2 ri 
m2 = Fi (2.2.2.1) 

dt2 

where Ft denotes the force acting on the ith atom, with mass mi and position vector ri. 

Atoms are modelled as point masses with positions defined by Cartesian coordinates. 
The maximum number of atoms used in a simulation is determined by both the avail- 

able computer resources and the complexity of the interatomic potential. Simulations 

typically involve between 103 and 107 atoms, with a time scale in the order of ps. The 

phenomena under investigation is usually simulated in a three-dimensional computa- 

tional box. This is merely a simplistic approach; there is no constraint imposed on the 

form of the computational box. Although two-dimensional simulations are seldom used, 

some have been reported on for studying nanoindentation [88]-[90]. 

2.2.1 Interatomic Potentials 

Atoms interact with other atoms through many-body interactions from chemical bonds, 

van der Waals forces or electrostatic forces. Given all the atomic positions and veloci- 

ties, mechanical quantities such as potential and kinetic energy can be evaluated. It is 

assumed that the interaction forces can be obtained from the gradient of the interatomic 

potential V, with respect to the atomic positions. Hence, for a system of N atoms, the 

force acting on the ith atom is given by the expression 

F= 
äV(ri, r2, ... rN) (2.2.2.2) 

äri 

where Fi denotes the force vector for atom i, with position vector ri. 
The quantum aspects of the problem are contained in the interatomic potential. The 

function V generally contains a number of free parameters which are chosen to model the 

phenomena of interest. The interatomic potential is principally fitted to specific material 

properties such as the lattice constant, elastic constants and vacancy formation energy 

from experimental data or ab initio calculations. The detailed calculations necessary 

in MD simulations are timely to execute, making simulations lengthy, particularly for 

systems involving a large number of atoms. Force evaluations can be very time consum- 

ing, taking up to 90% of the total CPU time. For interaction between atoms where the 

energy rapidly decreases with increased separation, it can be assumed to be zero after 

a specific distance. Hence, the computational efficiency can be increased by truncating 
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the potential at a certain cut-off distance. However, the potential energy function must 

be continuous to prevent instabilities from occurring. This issue is usually overcome by 

introducing a `switching' function so that the potential energy is smoothly cut-off to 

zero at a specified cut-off distance. The only constraints on the potential V are that 

it must allow a broad range of simulations to be accurately performed and permit a 

physically meaningful interpretation from the results. Furthermore, the calculation of 

the interatomic potential must be computationally feasible. Hence, the form of the po- 

tential is crucial for efficient evaluation of the interaction forces and for the simulation 

to have sound predictive power. 

A simple approach to determine the energy of an atom is to sum over all pairwise 
interactions. Thus, for an atom i with neighbour(s) j, the energy Uj can be written as 

Ui =2 V(rij) (2.2.2.3) 

where V is a pair potential and r23 =I rah I is the separation between atoms i and j. 
The factor 2 ensures that the energy of the ij bond is shared equally among atoms i 

and j. For a system of N atoms, the total energy of the system can be written as 
N 

U= EEV(rij) (2.2.2.4) 
i j>i 

The pair potential V is usually constructed as an `effective' pair potential to represent 

the true many-body effects. 

Short-ranged pair potentials, like the screened Coulomb potential [6] and the Born- 

Mayer potential [91], are used to describe interactions between atoms at close separation, 

typically less than 1 A. Generally they are very computationally efficient to implement 

and have been used extensively in high energy collision cascades where atomic cores 

come into close separation. Two commonly used intermediate and long-range pair po- 

tentials are the Lennard-Jones `12-6' potential [92] and the Morse potential [93]. Both 

contain attractive and repulsive parts and have been successfully applied to simulations 

involving many-body dynamics. Most pair potentials are generally computationally in- 

expensive to perform and were typically used in MD simulations between the 1950's and 

the 1980's. However, two-body potential energy functions are limited since they fail to 

describe accurately large numbers of material properties. This problem can be overcome 

by extending the pair potential to describe the energy by a many-body expression. 

In a many-body potential, the energy can be described by summations over inter- 

actions between pairs, triplets,.. etc. of atoms. It is assumed that such a potential will 

20 



converge quickly and hence only three-body terms are usually considered. Furthermore, 

the force evaluations are desired to be as efficient as possible and the inclusion of higher 

order terms would obviously be more time-consuming. Numerous many-body potentials 

have been developed over the years and received widespread use in MD simulations. One 

example is bond order potentials, such as the Tersoff potential [94], [95] and the Brenner 

potential [96], [97]. 

Bond order potentials, and related methods, were developed for application where 

directional bonding is important, like in covalent materials. In the basic formulation, 

the energy of an atom is given as the following sum over nearest neighbours j of i 

Ui =2 E[VR(rij) - B13VA(r=j)) (2.2.2.5) 
poi 

where VR and VA are pair-additive repulsive and attractive potential parts respectively, 
dependent only upon the atomic separation rzp. The function B1j is a many-body one, 

related to bond order and is dependent on bond angles and the positions of atoms i, j 

and the local environment of i. This approach is more complex compared with the pair 

potentials, but it is still significantly simpler than first principles methods. 
Another example of many-body potentials is the embedded atom method (EAM), 

which was developed by Daw and Baskes [98] for application to metals. The EAM 

method is based on the Hohenberg-Kohn theorem [99] which states: the energy contri- 

bution of an atom in an array of interacting atoms is a function of the local electron 

density, due to all other atoms, at the position of the atom concerned. The energy of 

an atom Ua is described by both a pair potential and a many-body function which are 

dependent only on the short range atomic separations. The energy U1 can be written as 

U= =2>V (r=. i) - F(pi) (2.2.2.6) 

where V(rte) is a pair potential and F is a many-body embedding function which takes 

the form F(pi) = pi . The function pi serves as a measure of the local electron density 

and is given as 

P= => c'zj 
3 

(2.2.2.7) 

where Oil is purely a function of the atomic separation. For a given atomic site i, the 

function pi determines the contribution to the electron density from atom j. The ex- 

act form of the potential V (rj, ) and the function p1 are specific to bcc and fcc metals. 
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The EAM has been successfully applied to simulations of phenomena in metals and has 

proved to give better results compared with pair potential energy functions. Conse- 

quently, the EAM has received widespread use for indentation of metals. Short ranged 

nearest-neighbour approximations of the EAM have also been developed for fcc metals 

by authors such as Johnson [100]. The simulations presented in this thesis employ both 

pair potentials and many-body potentials, and can all be analytically differentiated for 

force evaluations. 

2.2.2 Integration Algorithms 

For a computational cell consisting of N atoms, the dynamics are described by 3N simul- 

taneous differential equations. The simulated phenomena is discretised into timesteps, 

where the 3N Newtonian equations of motion are integrated numerically by means of 

a suitable integration algorithm. In the keV to sub eV energy range, timesteps are 

typically of the length one tenth to a few femtoseconds. This ensures that atoms (par- 

ticularly high energy atoms) do not displace a large distance in a single timestep. Most 

MD simulations routinely employ between one thousand and one million timesteps for 

a period of a few picoseconds to a few nanoseconds. Clearly, there will be an error 

in the calculations because of the transition from continuous to discrete variables. No 

integration algorithm provides an exact solution over a long duration of time, however, 

there are essential needs the algorithm must satisfy. Primarily the algorithm should be 

simple to implement and allow speedy execution, yielding accurate dynamical behaviour 

in the computational cell. However, for simulations utilising many-body potentials, the 

integration speed becomes less significant compared with the lengthy interaction calcu- 

lations. 

A range of algorithms have been suggested to integrate the equations of motion 

based on finite difference methods [101]. The most widely used method for integrating 

the equations of motion is the Verlet algorithm [7], which is derivable from a Taylor se- 

ries expansion. The Verlet algorithm is also a low order algorithm which is symplectic. 

There are a variety of algorithms derived from Verlet, such as the leap-frog algorithm 
[102] and the velocity Verlet algorithm [103]. Another widely used algorithm is the 

Beeman algorithm [104], which employs more accurate terms to describe the velocity at 

the expense of increased computation, but which is not symplectic. 

The time evolution of the position of atom i in the velocity Verlet algorithm is 
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described by 

ri(t + At) = ri(t) + Otvi(t) + 
2At2a, (t) (2.2.2.8) 

where ri, vi and ai are the position, velocity and acceleration vectors respectively for 

atom i and At denotes the timestep. The velocity evolution of atom i is determined by 

vi (t + At) = vi (t) +2 At I ai (t) + ai (t + At)] (2.2.2.9) 

The integration algorithm thus serves to predict the positions and velocities of N in- 

teracting atoms at a later point in time (t + At), given the dynamical data at time t. 

Hence, MD is a deterministic method which generates a trajectory that yields a descrip- 

tion of the time evolution of the system dynamics. The Verlet algorithm only permits 

small timesteps. There are higher order integration algorithms, such as the predictor- 

corrector algorithm, that allow the use of long timesteps. However, these require storage 

of higher-order derivatives of the atomic position and suffer from larger neighbour lists or 

more frequent updates. The Verlet algorithm and its numerous equivalents are suitable 
in most cases for employment in MD simulations. Most MD simulations generally use 

constant timesteps, although variable timesteps are also implemented, typically where 

there is a significant variation in kinetic energy. 

2.2.3 Boundary Conditions 

For crystalline materials, the computational box is usually generated by an algorithm 

which executes repetitions of the unit crystal cell along each dimension until the required 

system size is obtained. The constraints of computer power force MD simulations to 

employ small systems of atoms and hence it is important to chose a computational cell 

large enough to minimise any finite-size effects. Boundary conditions [8] are employed 

to maintain as accurately as possible the realistic physical behaviour of the simulated 

material. Hence, boundary conditions serve to mimic the influence of bulk material 

surrounding the computational cell. This ensures that physically meaningful properties 

of the material can be obtained from simulations employing a small number of atoms. 

There are typically four different types of boundary conditions imposed on atoms in 

the computational cell and are specific to the kind of phenomena under investigation. 

When there are no restrictions on the dynamics of an atom (typically atoms central 

to the simulated phenomena) then free boundary conditions are usually applied. Fixed 

23 



or rigid conditions can be applied to edge atoms to constrain the vertical or horizontal 

motion of the computational cell. An atom is simply made rigid by not integrating the 

equations of motion for that particular atom. However, although the fixed atoms are 

sited away from the centre of interest, they can be a problem by creating an artificial 

interface between the rigid atoms and the dynamic atoms. 

Another important use of boundary conditions is to control the temperature of the 

system. In classical MD simulations, the temperature of the system is proportional to 

the total kinetic energy of the atoms. In reality, energy imparted to material is allowed 

to dissipate through the bulk. However, due to the small number of atoms employed 

in typical MD studies, this cannot occur and therefore surplus energy is `trapped' in 

the computational box. In simulations of nanoindentation, the tip-substrate interac- 

tions produce heat which will be conducted through the substrate by atomic-vibrations. 
This will lead to heating of the system which may ensue in unrealistic behaviour of the 

material under investigation or even melting within the system. Hence, boundary con- 
ditions can be used to simulate effectively the dissipation of energy in the computational 

cell. There are numerous thermostats available, but the most straightforward approach 

is to damp the motion of selected atoms. Here, the dynamics of the atoms evolve in 

accordance with Newtonian mechanics, but the velocities are periodically rescaled in ac- 

cordance with some energy loss model. More sophisticated thermostats are achieved by 

Langevin dynamics, where additional friction and force terms are added to the equations 

of motion. For a thorough discussion of thermostats typically used in MD simulations 

the reader is referred to Hoover [105]. 

Edge effects can also stem from atoms at the edges of the computational cell, which 

behave differently than those in the bulk. This can sometimes be minimised by em- 

ploying periodic boundary conditions (PBCs) which allow edge atoms to interact with 

those on the opposite side of the computational cell. Therefore, atoms on the left side 

of the computational box can interact with those on the right side and so forth. If an 

atom leaves the computational cell, it reappears on the opposite side with unchanged 

velocity, ensuring that a constant number of atoms is maintained. Hence, PBCs can be 

employed to model infinite or semi-infinite system of atoms. When PBCs are utilised, 

the dimensions of the computational box must be calculated appropriately with respect 

to the material structure to ensure continuity in the atomic structure. PBCs can be 

disadvantageous when simulating inhomogenous systems or polycrystalline materials. 
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2.2.4 Neighbour Lists 

The timely execution of MD simulations is chiefly governed by force and energy evalua- 

tions. Hence, the efficiency of the code depends critically on how the force is calculated. 

Two atoms do not interact if their separation is larger than a certain cut-off distance, 

hence interactions are typically short. This does not imply that the interactions should 

be pairwise. There can be many-body terms. Therefore, the computational efficiency for 

force evaluations can be greatly improved by only calculating the interaction between 

atoms within a small distance of each other. This can be achieved by bookkeeping 

methods which exploit temporal locality. A common bookkeeping method used in MD 

simulations is the neighbour list [106]. 

In Fig. 2.2.1 the neighbour list for atom ao contains all atoms within a radius r, 
from ao, where rr is equal to the cut-off distance of the interaction potential for atom 

ao. Hence, only atoms within a radius r, from atom ao contribute to the force acting 

on atom ao. The neighbour list also contains atoms that are sited outside the inter- 

action range r, and within a radius r8 from atom ao, where r8 > r,. These atoms are 

contained within the so-called `skin' radius, which is implemented to improve further 

a10 

Fig. 2.2.1. Two-dimensional representation of a spherical neighbour list for atom ao. 
Atoms ai to a9 are sited within a distance r8 from atom ao and are included on the 

neighbour list. Only atoms ai to a5 contribute to the force acting on atom ao since 

they are within the potential cut-off distance r, Atoms a6 to a9 are sited outside the 

interaction range in the skin radius (r3 - re). Atom alo lies outside radius rs and therefore 

is not included on the neighbour list. 
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Fig. 2.2.2. Two-dimensional representation of the cell index method where the coiiipu- 

tational box is split into cells. The radial distance r,, is equal to the cut-off distance of 

the interatomic potential and the skin thickness. The dimension of the cells do is equal 

to rs. Only the shaded atoms are contained on the neighbour list for atom i. 

computational efficiency. The skin radius is chosen to be of sufficient thickness so that 

an atom outside the radius r, such as atom aio in Fig. 2.2.1, cannot displace into the 

interaction range r, after a single integration of the Newtonian equations. Therefore, the 

neighbour lists do not have to be iil)drited every timestep, but only if the displacement 

of an atom outside rs exceeds the skin thickness, rs - r(.. Atoms in the skin can cdisplace 

within the interaction range r, without the need for updating the neighbour lists since 

they have already been included. The thickness of the skin is a question of efficiency. 

A smaller skin thickness will reduce the size of the neighbour list for each atom anti 

therefore memory usage. However, in this scenario the neighbour lists will need to be 

updated more frequently. In contrast, if a large skin thickness is used, the updates of 

the neighbour list will be less frequent but the size of the lists will increase together with 

memory consumption. Hence, the skin thickness is generally chosen to balance the time 

computing the siirl)his atones on the neighbour lists against the time tiikeii to ulpdate 

theta. Since atonis do not trove very far during a single timestep, it neighbour list can 

be typically valid for up to 50 timesteps before the requirement, to >ulxlate. 

For a large system of atoms, the generation of neighbour lists itself eaii be (. oi11l)l1- 

tationally expensive if loots over all atoms are used to (leteluuine those atoitis within 

interaction range and within the skin r? zclihis. There are several methods that have been 



proposed to avoid this inefficient approach, such as the cell index method [1071. Here, 

the computational box is divided into cubic cells, as illustrated in Fig. 2.2.2. The dimen- 

sion of each cell (do) is equal to the summation of the cut-off distance of the interatomic 

potential and the skin thickness of the neighbour lists. For each cell, linked lists of 

inhabitant atoms and cell identification numbers are constructed. For any atom i, all 

neighbours within a radius r8 of i will be located within the host and primary neigh- 

bouring cells. Therefore, the neighbour lists can be generated for each atom by rapidly 

looping over the list of atoms contained in the host and the primary neighbouring cells, 

instead of looping over all atoms in the computational box. 

2.2.5 Molecular Dynamics Profile 

The basic profile of the MD simulation method is briefly summarised in Fig. 2.2.3. For 

details on how to construct a MD simulation code the reader is referred to Eckstein [108]. 

Firstly, the initial configuration of the computational cell must be defined together with 

the relevant atomic data. Crystal structures generated from an algorithm are usually 

constructed close to the equilibrium state. However, materials which have reconstructed 

or terminated surfaces must be allowed to relax to the minimum energy configuration 

before employment in the simulated phenomena. Once the initial configuration of the 

computational box has been defined, the boundary conditions and primary velocities 

must be declared for all atoms. The neighbour lists are then constructed and the initial 

energies and forces evaluated. From the force evaluations of each atom, the initial 

acceleration of the atoms can then be determined. 

The MD simulation then enters the core loop where the dynamics of the system 

are allowed to evolve to the next period in the discretised time scale by incrementing 

t to t+ At. The force is assumed to remain constant during the integration timestep. 

The acceleration of the atoms is implemented together with the positions and velocities 

at time t to calculate the positions at time t+ At. After the positions have been 

advanced, the validity of the neighbour lists at time t+ At is checked and, if necessary, 

the neighbour lists are reconstructed. The force is then evaluated at the new time of 

t+ At and the acceleration of the atoms is subsequently calculated. The velocities are 

then integrated to the time t+ At using the accelerations from both the current timestep 

and the previous timestep. If the motion of atoms is damped then the positions and 

velocities are adjusted, in accordance with some energy loss model. The process is then 
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repeated to evolve the dynamics of the system to t+2At and so forth until the required 

simulation time has been executed. Integration timesteps are also usually coupled with 

periodic data output. 

GENERATE COMPUTATIONAL BOX, DEFINING BOUNDARY 
CONDITIONS AND INITIAL VELOCITIES 

CONSTRUCT NEIGHBOUR LISTS AND CALCULATE 
INITIAL ENERGIES AND FORCES 

CALCULATE INITIAL ACCELERATION OF ATOMS 

OUTPUT DATA 

STOP IF REQUIRED SIMULATION TIME I 
HAS BEEN EXECUTED 

INCREMENT TIME 

91.1 INTEGRATE POSITIONS OF ATOMS 

UPDATE NEIGHBOUR LISTS IF REQUIRED 

CALCULATE ENERGY AND FORCES 

CALCULATE ACCELERATION OF ATOMS 

INTEGRATE VELOCITIES OF ATOMS 

MODIFY POSITIONS AND VELOCITIES OF 
DAMPED ATOMS 

Fig. 2.2.3. Flowchart representing the basic framework of the MD simulation method. 
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2.3 Molecular Dynamics Simulation of Nanoinden- 

tation 

The MD code used for simulating the indentation process has been developed from an 

existing standard MD code [109]. The original MD code is written in Fortran 77 and 

the MD simulations reported on here have been performed on SUN workstations un- 

der the UNIX environment. In the MD simulations, time is measured in femtoseconds 

(10-15s) and distance is measured in angstroms (1 A= 10-1°m). The angstrom is an 

ideal unit to use since most bond lengths are of the order of a few A. The equations of 

motion for all non-rigid atoms are integrated using the robust velocity Verlet algorithm 

with a constant integration timestep, between 0.5 - 1.0 fs depending on the speed of 
the indentation. Forces are measured in eV/A, where 1 eV/A ý- 1.602 nN. Preliminary 

simulations are performed with systems containing up to 105 atoms over maximum time 

scales of 150 ps. All of the simulation snapshot pictures presented in this thesis were 

produced using the public domain software Rayshade, which is designed for creating 

ray-traced images [110]. In the snapshots of the indentation process, atoms are repre- 

sented as spheres and substrate atoms are coloured according to their vertical position, 
displacement or energy, so that deformation is more discernible to the eye. In addition 

to these images, the indentation process is elucidated by making numerous animated 

movies of the simulations using animation software to study the atomic scale mecha- 

nisms and processes that may not be evident from the static snapshot images. Such 

movies were generated from a few hundred still images rendered using the Rayshade 

software package. A selection of movies are on the CD in the appendix. 

All the substrates considered in this study take the form of a rectangular crystal 
lattice, with the indenting surface being approximately square and described by the 

corresponding miller indices [111]. The substrates are modelled as ideal solids, with 

atomically flat surfaces. Each substrate atom is initially assigned zero velocity and the 

simulations are started from zero temperature. The surface of the work material is lo- 

cated at y=0 and the indentation depth is measured positively into the material. The 

force acting on the indenter is measured during both indentation and retraction, where 

the repulsive force is measured as positive and attractive force is taken as negative. For 

plotting convenience the load-displacement curves are produced by averaging out the 

force every 10 - 100 timesteps, depending on the length of the simulation. 
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Fig. 2.2.4. Schematic diagrain of' typical substrate boundary conditions utilised in the 

nanoindentation simulations. The dark and grey shaded atoms denote rigid and damped 

atoms respectively. No constraints are applied to the remaining atoms, which are de. - 
scribed solely by Newtonian mechanics. 

The strategy for substrate boundary conditions implemented in the simulations pre- 

seated in this thesis varies depending oil the material. However, as a visual aid a typical 

set of employed substrate boundary conditions is shown schematically in Fig. 2.2.4. 

The dark shaded atoms on the horizontal edges are fixed to prevent the work material 

from moving horizontally or vertically during the indentation process. This emulates 

reality where the substrate would be fixed to it sample holder. The grey shirded atoms 

are damped and free boundary conditions are applied to all the remaining atoms in the 

substrate. This scheme ensures that no significant variation in temperature occurs since 

the surplus imparted energy dissipates through the work material and is removed by 

the damped atoms at the horizontal boundaries. The clanhi)ing model is not based oil 

any concept of temperature control bitt for simplicity the Liiºdhard-Scharff inelastic loss 

model [112] is used, where the velocities oft he dynamic atoms are resealed intermittently 

at the end of each timestep. Periodic boundary conditions are applied to side atones of 

the substrates in the horizontal plane. No periodic boundary condition is Imposed in 

the direction normal to the surface of the work material. Interestingly, Soiree simulations 

of the nanoindentatioii procedure have reported use of periodic boundary conditions in 

the direction of inclentation [113]. 
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Chapter 3 

Nanoindentation of Carbon 

Materials Implementing the 

Interface Indenter Model 

3.1 Introduction 

Few elements have the ability to compose their atoms into such diverse crystalline forms 

as carbon [114]. The most familiar polymorphs of carbon include diamond, graphite 

and the recently discovered fullerenes. Carbon materials are finding widespread use 

in many advanced tribological applications [115]. For example, graphite is utilised to 

provide high wear resistance and low friction. Diamond coatings have been applied to 

machining purposes and to microelectromechanical systems. Amorphous carbon (a-C) 

films, or more specifically diamond-like-carbon (DLC) films, are used extensively in the 

computer industry to provide protective coatings on magnetic storage disks. The numer- 

ous attractive qualities offered by polymorphs of carbon to the field of nanotribology 
have motivated the exploration of their mechanical properties at the nanoscale. The 

ability of carbon to constitute a variety of configurations, together with the fact that 

the indenter is also commonly composed of the same material, also make it an ideal 

specimen for study. A number of groups have performed both MD simulations and ex- 

perimental investigations to examine the mechanical behaviour of carbon materials by 

nanoindentation. 

One of the first groups to simulate the nanoindentation of graphite and diamond by 
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MD was Harrison et al [116]-[117]. Using a hydrogen terminated diamond pyramidal tip, 

Harrison et al [116] indented the basal plane of graphite and also hydrogen terminated 

diamond {111} and {100} surfaces. The simulation results showed the indentations to 

be purely elastic with no irreparable damage to any of the work materials. Another 

study by Harrison et al [117] reported on the indentation of diamond {111} using a 
hydrogen terminated spa-bonded tip. On reversal of the tip from the work specimen, 

adhesion between the tip-substrate interface was marked by connective strings of atoms. 

Rupture of the connective atomic strings was observed with increasing the tip retrac- 

tion. This resulted in small plastic deformation to the tip and the local indentation area 

of the work material. However, these simulations were somewhat limited since only a 

very small number of atoms were used to simulate the indentation process. In [116] the 

tip was configured from 325 atoms and the substrates contained between 600 and 1200 

atoms. Peak indentation depths were in the range of 1-3A and consequently only the 

mechanical behaviour of the near surface region was probed. 

Using MD, Garg et al [118]-[119] reported on the indentation of diamond and 

graphite using single-walled capped carbon nanotubes as proximal probe tips. Dur- 

ing indentation of hydrogen-terminated diamond and a graphite sheet, Garg et al [118] 

observed buckling of the carbon nanotube tip followed by `slip' such that the tube was 

sharply bent with the end pointing upwards. On tip retraction, the nanotube indenter 

returned to its original configuration, and the diamond substrate deformed purely elas- 

tically. However, indentation of adsorbate free diamond resulted in interfacial bonding 

which destroyed the capped indenter on tip reversal. Another study by Garg et al [119], 

examined indentation of diamond and graphite substrates using multiwalled capped car- 

bon nanotubes as tips. They found the multiwalled tubes deformed in a similar fashion 

to the single-walled tubes, but were much stiffer than comparably sized single-walled 

tubes, due to the shell-shell interactions within the tip. Garg et al concluded that short 

carbon nanotubes make excellent proximal probe tips since they do not plastically de- 

form during tip crashes on inert surfaces, as conventional tips sometimes do. Indentation 

with carbon nanotubes by MD has also been applied to other materials, such as silicon 

[120]. 

In addition to diamond and graphite, MD simulations have also been performed to 

examine the nanoindentation of amorphous carbon (a-C) films by authors such as Glosli 

et al [121] and Sinnott et al [122]. Glosli et al [121] observed appreciable plastic de- 

32 



formation during indentation of a4 nm thick a-C film using a hard diamond indenter. 

The more recent study by Sinnott et al [122] reported on indentation of an a-C: H film 

on a diamond {111} substrate. After full extraction of the tip they found no depression 

left in the surface. The composition of the film was subsequently analysed and they 

found an almost exact bonding distribution as prior to indentation. This suggested that 

no significant structural rearrangement took place and therefore the indentation was 

considered primarily elastic. 

Experimental investigations have also been performed on diamond and graphite 
[123]-[124], reflecting purely elastic deformations. There has also been extensive exper- 

imental studies of disordered carbon. Martinez et al [125] performed nanoindentation 

of tetrahedral a-C films deposited on Si substrates with a diamond Berkovich indenter 

and reported primarily elastic behaviour. Li et al [126] investigated nanoindentation of 

a-C films deposited on Si substrates and observed fractured surfaces at different loads. 

Also reported in the experimental literature, is the indentation of polycarbonate using 

a carbon nanotube tip by Akita et al [127]. They observed plastic deformation of the 

capped tip, though the body of the nanotube maintained its initial configuration. 

This chapter presents MD simulations of nanoindentation of graphite and diamond. 

The atomic structure of the indenter is ignored and is instead described entirely as 

a non-deformable interface. The influence of indenter geometry is considered, where 

nanoindentations are performed using both pyramidal and axisymmetric interfaces. Fur- 

thermore, the influence of indentation speed is also examined for graphite by varying 

the period of indentation. For each substrate, the interaction forces between the atoms 

are derived from the many-body Brenner bond order potential for hydrocarbons [96]- 

[97]. The simulations with graphite implement an additional Van der Waals potential 

to describe the long-range interactions [128]. This is necessary to correctly describe the 

elastic properties of the work material. The interaction between the interface and the 

substrate is assumed to be purely repulsive and is described by the pairwise Biersack- 

Ziegler potential (ZBL) [129] for C-C interactions, smoothly cut-off at 4.0 A. For all 

substrates, the atoms neighbouring the fixed vertical borders are damped, while free 

boundary conditions are applied to all remaining atoms. In each simulation, the equa- 

tions of motion are integrated using a fixed timestep of 0.5 fs. Unless otherwise stated, 

all indentations are performed to a depth of 8A and substrate atoms are coloured ac- 

cording to their vertical displacement. For graphite, indentation periods of 5 ps and 
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50 ps are employed, reflecting average indentation speeds of 480 ins-' and 48 ms-i, 

respectively. An indentation period of 50 ps is used for diamond. Each simulation is 

run for the duration of the indentation period. All of the simulations in this Chapter 

(and the next two) are run in serial on small systems containing up to a maximum of 

around 100,000 atoms. 

3.2 Interface Indenter Model 

In this preliminary model, the indenter is represented as an interface which cannot de- 

form and is therefore modelled as infinitely hard. This is an extension of the work by 

Henkel [130]. Three different apex forms are considered for the indenter. The first in- 

denter geometry has the configuration of a 90° pyramid, as shown in Fig. 3.3.1. The 

three faces ABC, ACD and BCD constitute the total contact area of the indenter and 

meet at the vertex C. At the beginning of each simulation, the tip is positioned such that 

the line CH, which denotes the direction of motion, is normal to the substrate surface. 

The penetration depth of the indenter is denoted by h and the length of the sides of the 

cross-sectional triangular plane ABD is given by a, which is related to h by a= fh. 

The total contact area of the indenter is given by A, = 4.5h2 and the cross-sect iotial 

area is given by A, = 1.5f lie. 

In addition to the pyrarriida l ref)resciitation of the It i(l(Iitei, sinoýotli iii(lciiters formed 

by hyperbolae and parabolas of' revolution girre also itºvestigat ecl . 
Tints, these axisyitº- 
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Fit;. 3.3.1. Schematic crystal geometry of the 90° pyramidal indentation tip. 
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metric indenters will result in circular cross-sectional contact rather than triangular 

with the pyramidal indenter. The hyperboloid is described by z2 = zö + k2r2, where 

r2 = x2 + y2, zo is the distance from the vertex to the origin and k is the gradient of the 

corresponding asymptotes. The paraboloid takes the form z= zo + r2/2R, where R is 

the radius of curvature. The apex of the hyperboloid can therefore be approximated to 

that of the paraboloid by the relationship 

R= zo/k2. (3.2.3.1) 

At the start of each simulation, the apex of the interface is positioned at a height above 

the centre of the substrate surface equal to the cut-off radius of the tip-substrate inter- 

action potential. Thus, in the description of the axisymmetric interfaces, zo is equated 

to 4 A. The radius of curvature of the paraboloid indenter, R, is chosen to be 251. The 

apex of the hyperboloid is chosen to approximate that of the paraboloid and therefore, 

from Eqn. 3.2.3.1, k is assigned the value 0.4. 

Fig. 3.3.2 shows the vertical cross-section of the paraboloid and hyperboloid inter- 

faces, sited 4A above the centre of the substrate surface. The axisymmetric interfaces 

are positioned such that the bold dashed line AB, is normal to the substrate surface. 

The contact area of the pyramidal interface together with the axisymmetric interfaces is 

shown in Fig. 3.3.3, as a function of indentation depth. Clearly, the axisymmetric inter- 

faces have a much greater contact area than the pyramidal indenter. At an indentation 
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Fig. 3.3.2. Cross-sections of the hyperboloid and paraboloid interface configurations with 

zo equal to 4 A. The bold solid line denotes the hyperboloid interface with k=0.4 and 

the light dashed lines represent the corresponding asymptotes. The remaining solid 

line represents the paraboloid interface with a radius of curvature R= 25 A. The bold 

dashed line AB represents the direction of motion. 
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Fig. 3.3.3. Contact area of the interface as a function of the indentation depth. The solid 
bold line represents the hyperboloid interface and the dashed line denotes the pyramidal 
interface. The thin solid line denotes the paraboloid model of the interface. 

depth <1A the hyperboloid and paraboloid interfaces have comparable contact areas. 
However, as the indentation depth of the hyperboloid increases, i. e. the hyperboloid 

tends towards its asymptotes, the respective contact area increases considerably com- 

pared with the paraboloid interface. At an indentation depth of 8 A, the total contact 

area of the hyperboloid interface is almost twice that of the paraboloid. At the same 

penetration depth, the cube-cornered interface has a total contact area approximately 

one ninth and one fifth that of the hyperboloid and paraboloid interfaces, respectively. 
The height of each interface is equal to the maximum indentation depth, plus the cut- 

off radius of the tip-substrate interaction potential. Thus, the calculated height accounts 
for interaction between the substrate and the interface above the surface throughout the 

indentation. The pyramid interface is defined by four vectors, corresponding to the po- 

sition of the four vertices. A single vector corresponding to the position of the apex is 

defined for the paraboloid and hyperboloid interface. For each interface, the indentation 

depth is measured by calculating the distance between the apex and the undisturbed 

substrate surface. The movement of the tip is simulated in a stepwise, quasistatic fashion 

by imparting small increments to the interface. For each timestep during the simulation, 

a sinusoidal displacement, r(t), is imparted on the vector(s) defining the position of the 

interface to incrementally lower the apex towards the surface. The displacement r(t) is 

described by 

sin 7rtl rtZ, J (3.2.3.2) () ( 
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where rm is the maximum displacement of the tip from its initial position above the 

substrate surface, T is the indentation period (i. e. equal to half of the sine period) and 

t is the time elapsed. As the indentation period T increases, the slower the indenter 

will displace. To simulate an even slower indentation speed, the system could also be 

allowed to relax for an extended period of time after each displacement of the indenter 

[131]. For simulations of time T, the time schedule for the loading and unloading of the 

indenter is T/2. The manner in which the interface displaces in the simulations differs 

from experimental methods. In reality, a specified force is applied to the tip which dis- 

places into the substrate until the repulsive force from the work material equates to the 

force applied the indenter. Thus, in experiment the applied force to the indenter results 

in the penetration depth being the dependent variable. However, in the MD computer 

simulations employed here, the depth and velocity of approach is pre-specified and hence 

the force becomes the dependent variable. 

From the simple harmonic motion of the indenter given in Eqn. 3.2.3.2, the inden- 

ter will therefore be decelerating during the loading stage and accelerating during the 

unloading stage. The average speed of the interface during the indentation process is 

described by 2rm/T. The constraints on feasible computer simulations yield average 

indentation speeds typically between tens of ms-1 and a few hundred ms-1. Even at the 

slower displacement, the average indentation speed is still several orders of magnitude 

faster compared with experimental values, where the indentation speed is typically of the 

order 10-s - 10-9 ms-1. Indentation speeds as slow as experimental values are beyond 

present day capabilities of MD simulations. Although simulated indentation speeds are 

very fast, they are still several times slower than the speed of sound. 

3.3 Simulation Results and Discussion 

3.3.1 Graphite {0001} Substrate 

The structure of graphite [132] is illustrated in Fig. 3.3.4. The crystal is configured 

from hexagonal arrays of atoms, which are situated on a series of equally spaced parallel 

planes stacked in an alternating sequence ABAB. The distance between the parallel 

planes is 3.35 A, where the bonding is by Van der Waals forces [133]. The nearest 

neighbours in the hexagonal arrays are sited 1.42 A away. Each atom in the plane is 
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Fig. 3.3.4. The graphite crystal structure. The interplanar distance, a, is equal to 3.35 

A. The distance between the nearest neighbours, b, is 1.42 A. The planes A and B 

denote the stacking formation of the graphite crystal. The hexagonal elementary unit 

cell has a base of length c =2.46 A. The carbon atoms exist in spe hydribization 

symmetrically related to the three nearest neighbours. The covalent bonding in the 

layers is very strong, however the weak Van der Waals forces between the planes allows 

relatively easy displacement in a direction parallel to the layers. As a result, graphite 

is a material which is very soft and easily deformed. For simulations with graphite, the 

basal plane is indented. A crystal with approximate dimensions 1021 x 102 Ax 20 A, 

configured from 7 atomic layers, is utilised. The work material is composed from 28,244 

atoms with 2,464 atoms constituting the fixed boundary and 4,004 atoms forming the 

neighbouring damped region. 

Indentation with 5 ps Period 

Fig. 3.3.5 presents the force-depth curves from the T=5 ps simulations of inden- 

tation into the graphite {0001} lattice. The graphite specimen shows purely elastic 

behaviour towards indentation. However, for each different interface, the loading and 

unloading curves do not overlap. This feature arises from the unphysically fast speed 

of the indentation process. The interlayer atomic forces are quite weak and, in each 

case, the interface is extracted from the substrate at a speed which is quicker than the 

relaxation process in the graphite crystal. This gives rise to the unloading curve falling 

sharply during tip retraction, a feature normally associated with plastic deformation. 

In each force-depth curve, the peak force occurs just before maximum penetration and 
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Fig. 3.3.5. Force-depth curves from the T=5 ps simulations with the graphite {0001} 

crystal. The dashed line denotes the pyramid model of the interface. The bold solid line 

and thin solid line correspond to the hyperboloid and paraboloid models of the interface 

respectively. The loading and unloading curves do not overlap since the indenter is 

extracted quicker than the surface can relax. 

furthermore, the peak force for the axisymmetric interfaces occurs at a slightly lower 

penetration depth compared with the pyramidal interface. This attribute is further due 

to the high speed at which the interface penetrates and extracts from the substrate. As 

the interface makes mechanical contact with the first graphite layer it causes a quick 

displacement towards the second layer and so forth. This effect continues deep into the 

material such that several graphite layers have undergone a large displacement before 

the apex reaches the peak depth. This ensues in the peak force occuring before the 
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Fig. 3.3.6. The total number of interface-substrate atom interactions during the T=5 ps 

simulations on the graphite {0001} crystal. The dashed line denotes the pyramid model 

of the interface. The bold solid line and thin solid line correspond to the hyperboloid 

and paraboloid models of the interface respectively. 
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maximum depth. For indentation speeds slower than the relaxation process in the sub- 

strate, the force acting on the interface should decrease with the peak value occurring 

near to maximum penetration. 

The graphite work material shows greater resistance to the impinging axisymmetric 
interfaces, compared with the pyramidal structure. For the cube-cornered interface, the 

maximum force is 17 eV/A which occurs at a penetration depth of approximately 7 A. 

The work piece shows a very similar response as the hyperboloid and paraboloid inter- 

faces approach the surface, where both load-displacement curves show a characteristic 
dip in the force. The peak force acting on the axisymmetric interfaces was roughly 27 

eV/A occurring at an approximate penetration depth of 5.51 A. 

The number of atoms interacting with the interface during the T=5 ps simulations 
is shown in Fig. 3.3.6. The axisymmetric interfaces interact with approximately six 

times as many atoms compared with the pyramidal interface, which explains the higher 

indentation forces. For each of the curves in Fig. 3.3.6, the peak number of interface- 

substrate interactions occurs before the maximum indentation depth has been reached at 

t=2.5 ps. The number of atoms interacting with the axisymmetric interfaces increases 

in a very rapid fashion during the first 0.5 ps of the indentation process. This is because 

of the relatively large bulky tip compared with the pyramidal apex. The maximum for 

each curve corresponds roughly to the peak indentation force in Fig. 3.3.5. As each 

interface is rapidly extracted from the work sample, the number of interface-substrate 

interactions approaches zero at 4 ps, corresponding to an indentation depth of approxi- 

mately 3 A. 

The halfway stage of the indentation process is shown in Fig. 3.3.7 for each of the 

interface descriptions. Each snapshot shows the individual graphite layers bend under 

the influence of the impinging indenter. Clearly, the axisymmetric interfaces impart 

greater elastic deformation in the work material, compared with the pyramidal inter- 

face. At the completion of the indentation, Fig. 3.3.8 shows the distortion left in the 

work material. The distortion is more significant for indentation with the axisymmetric 

interfaces. This is not a permanent deformation of the substrate, as the graphite layers 

are oscillating after extraction of the apex. Simulations run for longer time, but with 

the same indentation period, show the damping of the system drives the system towards 

equilibrium and there is no remaining distortion in the substrate. 
Fig. 3.3.9 shows how the total energy of the graphite crystal changes during the 
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Fig. 3.3.7. Cross-sectional snapshot from the T5 ps simulations with the graphite 

{0001} crystal at t=2.5 ps with the interface profile for: (a) pyramid; (b) paraboloid; 

(c) hyperboloid. In these images, half of the atoms have been removed. 
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Fig. 3.3.8. Cross-sectional snapshot from the T=5 ps simulations with the graphite 

{0001} crystal at t=5 ps with the interface profile for: (a) pyramid; (b) paraboloid; 

(c) hyperboloid. In these images, half of the atoms have been removed. 
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Fig. 3.3.9. Total energy of the graphite {0001} crystal during the T=5 ps simulations. 

The dashed line denotes the pyramid model of the interface. The bold solid line and 

thin solid line correspond to the hyperboloid and paraboloid models of the interface 

respectively. 

indentation process. As the interfaces penetrate the surface, energy is added to the 

substrate as the atomic layers are compressed. In each case the energy added is greatest 

at approximately the halfway stage of the indentation process. The axisymmetric inter- 

faces add the energy to the graphite substrate at a quicker rate compared to the pyramid 

interface. The hyperboloid and paraboloid interfaces added approximately 140 eV and 

150 eV to the small graphite substrate respectively, while the pyramid interface added 

roughly 70 eV. These low energy values verify that the damped graphite atoms allow 

the surplus energy induced by the interface to effectively dissipate through the crystal. 

As each interface is extracted from the graphite crystal, the total energy decreases more 

slowly compared with the loading stage due to the rapid unloading speed of the inter- 

face. It can be inferred from Fig. 3.3.9 that at the completion of the indentation, the 

graphite substrate has not fully recovered as there is still energy stored in the crystal. 

Indentation with 50 Ps Period 

Shown in Fig. 3.3.10 are the load-displacement curves for the T= 50 ps simulations with 

the graphite substrate. The slower displacement of the interfaces has resulted in the 

loading and unloading curves overlapping, clearly reflecting the purely elastic response 

from the graphite substrate. This shows that the employed indentation speed is more 

akin to the relaxation process in the work material. This is further supported since, in 

each case, the peak force now occurs at the maximum penetration depth. Also, the force 
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Fig. 3.3.10. Force-depth curves from the T= 50 ps simulations of 8A indentation into 

the graphite {0001} crystal. The thin solid line denotes the pyramid model of the 

interface. The bold solid line and dashed solid line correspond to the hyperboloid and 

paraboloid models of the interface respectively. 

acting on each interface approaches zero after the apex is extracted from the substrate 

surface. Comparisons with the force-depth curves in Fig. 3.3.5 show that the slower 

indentation speed has reduced the force acting on each of the interfaces. The maximum 

force acting on the cube-cornered interface has decreased by about 40% to 10 eV/A, 

while the hyperboloid and paraboloid interfaces show an approximate reduction of 30% 

in the maximum force to 18 eV/A and 19 eV/A respectively. The force-depth curves 

corresponding to the axisymmetric interfaces are more analogous than in the faster T 

=5 ps simulations. 
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Fig. 3.3.11. The total number of interface-substrate atom interactions during the T 

= 50 ps simulations with the graphite {0001} crystal. The dashed line denotes the 

pyramid model of the interface. The bold solid line and thin solid line correspond to 

the hyperboloid and paraboloid models of the interface respectively. 
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Fig. 3.3.11 illustrates how the three interfaces interact with the graphite crystal 
during the T= 50 ps simulations. Comparisons with Fig. 3.3.6 show a similar number of 

atoms interact with each of the interfaces during the slower indentation. The maximum 

number of interface-substrate interactions occurs at the halfway stage of the indentation 

process. The slower penetration of the interface into the work material has resulted in 

a similar number of atoms interacting during the loading and unloading stages. The 

axisymmetric interfaces exhibit very similar interaction behaviour with the substrate 

throughout the indentation. 

Plan views of the graphite work material are presented in Fig. 3.3.12 at the halfway 

stage of the indentation process for both the T=5 ps and T= 50 ps simulations. 

The slower indentation speed of the pyramidal interface in Fig. 3.3.12(b) has allowed 

a greater displacement of atoms away from the tip, compared with Fig. 3.3.12(a). The 

same effect is observed with indentation utilising the axisymmetric interfaces. At the 

halfway stage of the indentation process, the images in Fig. 3.3.12(c) and (e) show 

the axisymmetric interfaces impart displacements up to the constrained boundaries of 

the work material. However, in Fig. 3.3.12(d) and (f) the slower indentation speed 

has allowed time for the displacements near the edges of the substrate to be reflected 

back. Hence, the elastic deformation was semi-restricted, rather like the bending of a 

beam with fixed abutments. This indicates that the force acting on the interface will 

be influenced by the size of the substrate and hence, a larger graphite sample is needed 

for indentation. The conclusion of the T= 50 ps simulations is shown in Fig. 3.3.13. 

Comparison with Fig. 3.3.8 shows there is less distortion in the substrate when the 

indentation speed is reduced. However, even longer indentation periods are required 

to preclude the distortion in the graphite work material by the end of the indentation 

process. 

Shown in Fig. 3.3.14 is the total energy of the graphite crystal during the T= 

50 ps simulations. Comparisons with Fig. 3.3.9 show that the slower displacement 

of the interfaces adds less energy to the graphite lattice, since the longer indentation 

time has allowed greater dissipation. In the T= 50 ps simulations the hyperboloid 

and paraboloid interfaces added approximately 29 eV and 30 eV respectively to the 

substrate while the pyramidal interface added roughly 16 eV. The greatest quantity 

of energy added to the substrate in the T= 50 ps simulations occurs approximately 

at the maximum penetration depth, as observed with the faster indentation speeds. 
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(a) 

(c) 

(e) 

(b) 

(d) 

Fig. 3.3.12. Plan view of the graphite {0001} substrate at the halfway stage for indenta- 

tion with: (a) pyramid (T -5 ps); (b) pyramid (T = 50 ps); (c) paraboloid (T = 5ps); 

(d) paraboloid (T = 50 ps); (e) hyperboloid (T = 5ps); (f) hyperboloid (T = 50 ps). 
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Fig. 3.3.13. Cross-sectional snapshot from the T= 50 ps simulations with the graphite 

{0001} crystal at t= 50 ps with the interface profile for: (a) pyramid; (b) paraboloid; 

(c) hyperboloid. In these images, half of the atoms have been removed. 
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Fig. 3.3.14. Total energy of the graphite {0001} crystal during the T= 50 ps simulations. 
The dashed line denotes the pyramid model of the interface. The bold solid line and 

thin solid line correspond to the hyperboloid and paraboloid models of the interface 

respectively. 

The total energy of the graphite lattice in the T= 50 ps simulations decreases at a 

similar rate to the increase in the loading stage, since the slower indentation speed has 

allowed the substrate more time to relax. At the completion of the simulations, the 

total energy of the work material is almost equal to its initial value, further verifying 

that the indentation period T= 50 ps is more analogous to the relaxation process in 

the graphite substrate. 

3.3.2 Diamond {100} Substrate 

Shown in Fig. 3.3.15 is the elementary cell of a diamond crystal. In diamond [134] 

each carbon atom bonds to its four nearest neighbours, which are sited 1.544 A away 

at the vertices of a regular tetrahedron. This particular arrangement results in the high 

atomic density of the material, which is the hardest known to date. In this investiga- 

tion, a diamond crystal is utilised with the {100} surface orientation. The crystal has 

approximate dimensions 103 Ax 103 Ax 21 A and is composed from 24 atomic layers. 

The work piece is configured from 40,368 atoms where 5,727 atoms constitute the fixed 

boundary and 9,329 atoms compose the damped adjoining region. 

The load-displacement curves from the indentation into the diamond crystal are pre- 

sented in Fig. 3.3.16. The loading and unloading curves corresponding to each model of 

the interface overlap, reflecting a purely elastic response from the work material. Com- 

parisons between Fig. 3.3.10 and Fig. 3.3.16 clearly reflect the greater nanohardness 
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Fig. 3.3.15. The elementary unit cell of a diamond crystal. The length of the cell, a, 
is equal to 3.58 A and the distance between the nearest neighbours, b, is equal to 1.54 
A. The angle c is equal to 109°. The carbon atoms exist in spa hydribization. The 

tetrahedral arrangement of the bonds is clearly seen. 

of diamond compared with graphite. The overlapping loading and unloading curves 

suggest that the speed of indentation is akin to the relaxation process in the diamond 

substrate. For indentation with the axisymmetric interfaces the loading curve exhibits 

a sizeable oscillatory nature, whereas the unloading part of the force-depth curves is rel- 

atively smooth. As the pyramidal interface reaches the indentation limit, it experiences 

a force of about 89 eV/A from the substrate. At the maximum indentation depth, the 

force acting on the hyperboloid and paraboloid interfaces is approximately 123 eV/A 

and 178 eV/A respectively. 
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Fig. 3.3.16. Force-depth curves from indentation into the diamond {100} crystal. The 

dashed line denotes the pyramid model of the interface. The bold solid line and thin solid 
line correspond to the hyperboloid and paraboloid models of the interface respectively. 
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Shown in Fig. 3.3.17 is the number of interface-substrate interactions for each of 
the three interfaces during the simulations with the diamond crystal. Comparisons with 
Fig. 3.3.11 show a larger number of atoms in the diamond lattice interact with the 

interfaces compared with atoms in the graphite substrate, clearly reflecting the greater 

atom-density of diamond. Hence, the interaction with more atoms in the diamond crys- 

tal ensues in greater repulsive forces exerted on the interfaces. Indentation into the 

diamond crystal has resulted in alike numbers of interface-substrate interactions during 

both the loading and unloading stages. The hyperboloid interface interacts with more 

atoms than the paraboloid interface, and the work material offers greater repulsive force 

to the paraboloid interface. Interestingly, the peak number of interacting atoms with 

the hyperboloid interface occurs in the region t= 18 ps to t= 32 ps, i. e. 7 ps either 

side of the halfway stage which corresponds to a penetration depth of approximately 6.8 

Ä. Within this region the number of interface-substrate interactions is very consistent, 

yet in the corresponding load-displacement curve in Fig. 3.3.16 the force continues to 

increase up to the indentation limit and decrease in a similar fashion during the unload- 

ing stage. 

Snapshots from the simulations with the diamond {100} crystal at the halfway stage 

are presented in Fig. 3.3.18. The images clearly show the diamond work piece deforms 

far less compared with graphite. Furthermore, the greater rigidity of the structure pre- 

vents the wave-like motion that occurs in the graphite substrate. Indentation with the 
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Fig. 3.3.17. The total number of interface-substrate atom interactions during the simu- 

lations with the diamond {100} crystal. The dashed line denotes the pyramid model of 

the interface. The bold solid line and thin solid line correspond to the hyperboloid and 

paraboloid models of the interface respectively. 
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(a) 

(h) 

(c) 

Fig. 3.3.18. Cross-sectional snapshot from the simulations with the diamond {100} crys- 

tal at t= 25 ps with the interface profile for: (a) pyramid; (b) paraboloid; (c) hyper- 

boloid. In these images, half of the atoms have been removed. 
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(a) 

(b) 

(c) 

Fig. 3.3.19. Plan view of the indented area in the diamond { 100} crystal at t= 50 ps. 

Interface corresponds to: (a) pyramid; (b) paraboloid; (c) hyperboloid. The white atoms 

show the reconstruction between 1st layer atoms. Note the damage to the surface in (c) 

inside the marked circle. 

52 



pyramidal interface in Fig. 3.3.18(a) shows that only atoms very close to the tip un- 
dergo a significant displacement. Penetration with the axisymmetric interfaces results 
in the reconstruction of surface atoms local to the indent. Plan views of the indentation 

region are presented in Fig. 3.3.19 at the conclusion of the simulation. Each image 

shows reconstruction of the surface atoms, mainly in the form dimers. The sharp apex 

of the impinging pyramidal indenter induces little surface reconstruction. By compari- 

son, both the axisymmetric interfaces generate a comparatively large reconstruction of 

the surface, but show some dissimilar characteristics. The paraboloid interface induces 

a broadly symmetric dimer surface reconstruction encompassing the local indentation 

region. However, with the blunter hyperboloid indenter the reconstruction occurs in 

a more distorted manner and non-symmetric fashion. The hyperboloid interface has 

actually caused the subsurface atoms sited directly underneath the apex to reconstruct. 

The surface dimer reconstruction imparted by the hyperboloid indenter surrounds the 

reconstructed subsurface. Clearly indentation with the hyperboloid interface has ensued 

in fractional tip-induced plastic deformation, as marked by the circle in Fig. 3.3.19(c). 

Fig. 3.3.20 presents the total energy of the diamond crystal during the indenta- 

tions. At the beginning of each simulation the diamond surface begins to reconstruct 

under its own potential and the energy decreases to some minimum configuration. The 

pyramidal interface added a maximum of roughly 200 eV to the substrate, occurring 

at approximately the halfway stage. The total energy decreases during the unloading 

process of each of the interfaces and approaches a minimum energy configuration at 
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Fig. 3.3.20. Total energy of the diamond {100} crystal during the indentation. The 

dashed line denotes the pyramid model of the interface. The bold solid line and thin solid 

line correspond to the hyperboloid and paraboloid models of the interface respectively. 
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approximately t= 45 ps, which corresponds to the apex of the interface at the surface 

of the work material. At the completion of the simulation with the cube-cornered in- 

terface, the total energy of the substrate is approximately equal to its minimum value 

after relaxation of the surface. Fig. 3.3.20 shows that the paraboloid indenter induces 

comparatively more energy into the diamond substrate than the hyperboloid interface. 

The maximum energy added by the hyperboloid interface was approximately 300 eV, 

occurring at the halfway stage of the indentation process. Interestingly, the total energy 

curve corresponding to the hyperboloid interface exhibits an unusual peak at t= 14 

ps, conforming to an indentation depth of approximately 5.3 A. At the conclusion of 

the simulation implementing the hyperboloid interface, the total energy of the diamond 

substrate has decreased by approximately 200 eV from its initial value. The paraboloid 

interface added a maximum of 500 eV to the diamond crystal. However, unlike the 

cube-cornered and paraboloid interface, this occurs not at the halfway stage of the in- 

dentation process as would be expected, but at t= 17.5 ps which corresponds to an 

indentation depth of approximately 6.71. Hereafter, the total energy starts to decrease, 

even though the paraboloid interface is continuing to penetrate deeper into the work 

piece and interacting with more atoms. At the completion of the simulation with the 

paraboloid interface, the total energy of the substrate has decreased by just over 500 eV 

from the initial value. The lower energy configuration of the diamond substrate following 

indentation with the axisymmetric interfaces arises from greater tip-induced structural 

re-arrangements. The peak in the curves for the axisymmetric interfaces probably stems 

from reconstruction within the bulk. As the interface is pressed into the diamond the 

atoms are compressed which increases the energy within the system. However, bulk 

reconstruction will lower the energy and so the total energy curve can decrease during 

the loading stage. Ideally, a reconstructed diamond surface should be used before the 

indentation is made. 

3.4 Determining Mechanical Properties 

3.4.1 Nanohardness 

Traditionally, hardness is determined from the maximum force on the indenter divided 

by the cross-sectional area of the indent. However, on the nanometre scale this concept 
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Fig. 3.3.21. Force-depth indentation curve showing the key quantities used to determine 

the mechanical properties of the substrates. 

is inadequate since if the indentation is purely elastic the calculated hardness would 

be infinite. In the definition of nanohardness, the subsequent quantities are used. The 

maximum penetration depth of the indenter is denoted by hmc and on extraction, the 

depth where the force equates to zero is defined by h f, as illustrated in Fig. 3.3.21. The 

nanohardness H of the substrate is calculated from the formula 

H_ 
Finax 
A, 

(3.4.3.1) 

where Fm is the exerted force at depth hm and A, is the cross-sectional area at the 

penetration depth hp, as shown in Fig. 3.3.21. The depth hp is taken to be half of 

the elastic recovery plus h f. Thus, even for purely elastic indentations, the concept 

of nanohardness is valid. The nanohardness technique eliminates the need to visualise 

indentations for extracting mechanical properties. Experimentally, the cross-sectional 

area A, can be determined using a calibration grid [124]. 

3.4.2 Young's Modulus 

The Young's modulus E of the work material is a measure of the elastic properties. This 

is calculated from the formula 

E=0.5(dF/dh)/ A, /ir (3.4.3.2) 

where dF/dh is the slope of the force-depth curve at the maximum penetration depth 

of the indenter. The simple macroscopic theory of contact theory by Hertz [135] states 
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that the applied load F is proportional to hm where m is a constant to be determined 

from the force-depth data. Typically m is in the range 1.4 to 1.6 (1.5 is characteristic 
for spherical indentation). For a detailed discussion on Hertzian mechanics, the reader 
is referred to Johnson [136]. 

3.5 Mechanical Properties of Graphite and Diamond 

The mechanical properties of the carbon materials were evaluated using force-depth data 

yielded from simulations employing larger substrates with the pyramidal indenter. Here, 

indentations were performed to a maximum penetration depth of 20 A with an inden- 

tation period of T= 100 ps. The nanohardness of the graphite and diamond substrates 

were evaluated using the formula given in Eqn. 3.4.3.1. The extracted nanohardness 

values for graphite and diamond were 3.5 GPa and 45 GPa respectively. These are 

much less than typical values in the literature [124], of approximately 10.5 GPa and 

117 GPa respectively. To determine the Young's modulus of the carbon specimens, the 

index m was determined from a log-log plot of the loading force-depth curve shown in 

Fig. 3.3.22. An analysis of the plots in Fig. 3.3.22 clearly shows that the force-depth 

curve for graphite does not follow a power law dependency. Even so, the index m was 

extracted using the slope of the curve at maximum indentation which gave a value of 

approximately 3.0. The log-log plot of the load-displacement curve for diamond broadly 

suggests a power law dependency. Here, the index m is determined to be 1.2. The values 

extracted for the index m are clearly outside the range assumed in Hertzian theory and 

hence the Young's modulus cannot be evaluated. Most likely, the problem here is two- 

fold. Firstly, larger indentation depths are required to produce results more comparable 

with experiment and the continuum model. Secondly, the Brenner potential used to de- 

scribe the C-C interactions in the carbon materials was principally developed to model 

chemical vapour deposition of diamond films and so little attention was paid to fitting 

the elastic constants. Thus, the Young's modulus determined from the simulations pre- 

sented here would obviously differ from experimentally determined values. While this 

work was in progress, an improved version of the Brenner potential, with correct fitting 

to the elastic constants, has been published [137]. 

To determine the extent of the limitation in the Brenner potential, nanoindenta- 

tion was repeated on graphite using the Tersoff potential for C-C interactions, [94]-[95]. 
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Fig. 3.3.22. A log-log plot of the loading force-depth indentation curves for the T= 100 

ps simulations on the graphite {0001} crystal (lower plot) and diamond {100} crystal 
(upper plot) with the pyramidal interface. 

The corresponding force-depth curve is presented in Fig. 3.3.23 together with the load- 

displacement curve from indentation employing the Brenner potential. Firstly, both 

potentials show the same qualitative behaviour of the carbon specimen. For shallow 

indentation depths around 2A both potentials yield a similar description of the defor- 

mation. However, as the indentation progresses there is a significant difference in the 

elastic behaviour of the material described by the two potentials. Indentation using 

the Brenner potential ensues in a peak force of approximately 10 eV/A compared with 

17 eV/A (i. e. 70% more than Brenner) using the Tersoff potential. Evaluation of the 

nanohardness using the Tersoff potential yields approximately 7 GPa. This value is 

closer to experiment than that determined from Brenner, but is still lower. Hence, even 

with the Tersoff potential, larger indentation depths are required to determine mechan- 

ical properties that agree better with experiment. The mechanical properties were also 

evaluated using the axisymmetric interfaces, which also ensued in values significantly 

different from experiment. 

It has been argued that the nanohardness of a material is actually a function of 
depth for small indentations. Both increases [138] and decreases [139] in nanohardness 

have been reported as the indentation depth increases. This is known as the indentation 

size effect. However, it is not known if such observations are real material effects. It may 

indeed be possible that mechanisms of deformation behaviour change in small volumes. 

It has also been argued that the apparent change in nanohardness at low indentation 
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Fig. 3.3.23. Force-depth curve from the indentation of graphite {0001} with the pyrami- 
dal interface and T= 50 ps. The upper curve (bold) corresponds to indentation using 
the Tersoff potential and the lower curve to the Brenner potential. 

depths stems from the experimental testing procedure [140]. Since the simulations pre- 

sented in this thesis involve indentation depths an order of magnitude smaller than in 

experiment, one can speculate how realistic any comparable discrepancies are. 

3.6 Summary 

The elastic deformation of the basal graphite plane and diamond {100} has been probed 

by nanoindentation, implementing an interface description of the indenter where the 

atomic structure was neglected. The influence of indenter geometry was investigated 

utilising pyramidal and axisymmetric interface configurations. The simulations showed 

that tip geometry has a significant influence on the deformation around the indent. Both 

materials under investigation offered greater resistance to the axisymmetric interfaces 

than the pyramidal interface due to the significantly greater contact area. Simulations 

with diamond showed that indentation of the {100} surface can ensue in dimer re- 

construction of surface atoms local to the indent. Reconstruction was least significant 

for indentation with the pyramidal interface and more pronounced for the axisymmet- 

ric interfaces. The paraboloid interface yielded greater dimer reconstruction than the 

hyperboloid, and was distributed in a axisymmetric fashion encompassing the local in- 

dentation region. Penetration with the blunter hyperboloid tip revealed reconstruction 

of the subsurface atoms, accompanied with fractional tip-induced plastic deformation. 

The damage imparted to the diamond substrate was highly localised, with no long-range 
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displacements of the perturbed atoms observed. The fractional plastic deformation of 
the diamond work piece was not reflected in the load-displacement curves and was only 

evidenced by visual inspection of the surfaces after the indentation. 

The influence of loading rate was also examined in the MD simulations with graphite 
by performing both `fast' and `slow' tip displacements. Indentation with the unphyis- 

cally fast indentation speed during the T=5 ps simulations left the substrates in a 
highly non-equilibrium state as surface waves oscillated about the undisturbed surface. 
This was attributed to the indentation speed surpassing the relaxation process in the 

indented specimen. The fast indentation speed ensued in unusual features in the corre- 

sponding force-depth curves. The quick extraction of the tip resulted in the unloading 

curve decreasing rapidly, exhibiting features usually associated with plastic deforma- 

tion. However, the simulations employing the quick indentation times still described 

the qualitative deformation behaviour. As the indentation speed was reduced, the force 

acting on the interfaces generally decreased, since the more leisurely displacement of 

the tip allowed the substrate more time to relax to the minimum energy configuration. 

With the slower loading rate, the force-depth curves now reflected the elastic response 

of the sample, since the loading and unloading curves overlapped. This suggested that 

the speed of indentation was more akin to the relaxation process in the substrate. 

Since the utilised Brenner potential was not correctly fitted to the elastic constants, 

simulations were also performed on graphite using the Tersoff potential for compari- 

son. The corresponding force-depth curves showed the discrepancy between the two 

potentials affected only the quantitative results, with the qualitative behaviour of the 

specimen being maintained. The nanohardness of the graphite and diamond specimens 

was considerably less than experimental values due to the small length scales involved. 

With this in mind, immediate future work was aimed at extracting qualitative informa- 

tion about the deformation behaviour of the indented specimens. Comparisons between 

the MD simulation results implementing the interface indenter description with experi- 

ment [124] are made in the subsequent chapter. 

Representing the indenter by a non-deformable interface is a simplistic approach. It 

suffers from not being able to allow the substrates to make a physical impact on the 

indeter. This limitation prohibits many tip-surface interaction phenomena, like tip de- 

formation and adhesion for example, from being studied. Therefore the indenter is best 

described atomistically. 
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Chapter 4 

Nanoindentation of Carbon 

Materials Implementing the 

Atomistic Indenter Model 

4.1 Introduction 

This chapter presents MD simulations of nanoindentation into various carbon materials, 

where the indenter is described atomistically. The atomistic model will allow the inter- 

action with the substrate to have some physical impact on the indenter [141]. Thus, 

deformation of the tip, adhesive tip-substrate interactions and atom transfer can be 

studied. The simulations with the atomistic indenter model probe the indentation be- 

haviour of graphite, adsorbate-free diamond and a crystalline film configured from C60 

molecules. Simulations with diamond examine indenter apex deformation by compres- 

sion and adhesion, for both `sharp' and `blunt' tips. Termination of the indenter surfaces 

with an adsorbate is also considered. Indentations implementing the saturated indenter 

are performed on both hydrogen terminated diamond and a-C substrates. Simulations 

with the a-C: H substrates also investigate the hybridisation status following indenta- 

tion, to ascertain tip-induced rearrangements in substrate bonding structure. In all 

simulations, the C-C, C-H and H-H interactions are described by Brenner's potential 

for hydrocarbons [96]-[97]. Unless otherwise stated, all substrate atoms are coloured ac- 

cording to their vertical displacement. For simulations with graphite and the C60 film, 

an additional Van der Waals potential is implemented to describe the long-range inter- 
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actions [128]. The interaction between the tip and the C60 film is also described by the 

Van der Waals potential. The MD simulations using both the interface and atomistic 

indenter model are also compared to the experimental results of Richter et al [124] for 

nanoindentation of highly oriented pyrolytic graphite (HOPG), synthetic diamond and 

a C60 fullerene film. 

4.2 Atomistic Indenter Model 

In the atomistic model, only one configuration for the indenter is considered. Thee iiideii- 

ter takes the form of a 90° pyramid, as shown in Fig. 3.3.1 (Chapter 3), and is formed by 

taking a cubic diamond {100} crystal and cutting along the {111} plane. The indenter 

is positioned such that the line CH, which denotes the direction of motion, is normal 

to the substrate surface. Therefore, the tip manoeuvres with the { 111 } planes parallel 

to the face of the sample. This particular orientation is chosen since a diamond crystal 

is more rigid when compressing perpendicular to the { 111 } planes, compared with the 

{100} planes. Furthermore, this is the same orientation used experimentally. However, 

at the atomic scale a perfect 90° diamond pyramid is unstable and the atoms oil the 

three {100} surfaces will reconstruct. Furthermore, the tip will also develop it certain 

curvature at the apex. 
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Fig. 4.4.1. Atom configuration for; (a) diatnoiid {100} tiiil-La"e (h) rc(otlStru(te(1 

{100}(2x1) diamond surface. Large and 5ina11 shaded circles rel)retient the first 'und 

third layer atoms respectively. The remaining large and snia11 circles denote the second 

and fourth layer atoms respectively. 
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The atoms on the three adjacent { 100} surfaces expose two dangling bonds. Hence, 

to employ the most stable indenter in the simulations, the surface atoms are dimer 

{100}(2x1) reconstructed as imaged in Fig. 4.4.1. The reconstruction is achieved by 

imparting small displacements of the {100} surface atoms prior to relaxation under the 

interatomic potential. An alternative method to dimer reconstruct the adjacent { 100} 

surfaces would be to apply heat to the indenter. The dimerisation results in one of 

the pair of dangling bonds becoming saturated and therefore lowering the energy of the 

indenter. Inelastic energy loss is applied to all atoms and the indenter is allowed to 

equilibrate. Following relaxation, the atomic coordinates are written out to a data file. 

Hence, at the start of an indentation simulation, the atomic data is simply read in from 

the data file and appropriate positioning and dynamical data is assigned. 

The diamond indenter tip is positioned at an appropriate height above the centre 

of the substrate surface, where the impression is to be made, outside the range of the 

tip-substrate interaction potential. The top two layers (i. e. the {111} planes) of the 

indenter have a prescribed motion, therefore mimicking the cantilever in the experimen- 

tal procedure. The remainder of the indenter atoms are damped. The displacement of 

the indenter is simulated in the same quasistatic fashion as in the interface model. For 

each timestep, a sinusoidal displacement, r(t) (as described by Eqn. 3.2.3.2, Chapter 

3), is imparted on the constrained atoms of the indenter. Hence. by displacing the rigid 

Fig. 4.4.2. Plan view of the preliminary 90° diamond pyramidal indenter used in the 

simulations. The dimer reconstruction of the three {100} faces is clearly seen together 

with the rounded apex. 
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atoms in the indenter, the tip will be forced to move relative to the substrate. The dis- 

placement of the constrained top layer atoms thus governs the motion of the indenter. 

The non-rigid atoms are displaced by integrating the equations of motion. The velocity 

of the fixed indenter atoms at time t is given as 

7r 7rt 
vt -rm cos (4.2.4.1) () 

T \T/ 

At time t=0, all the atoms constituting the indenter have an assigned velocity of 

rir/T. The indentation depth is measured by calculating the distance between the 

lowermost central carbon atom in the indenter tip and the undisturbed substrate surface. 
Mechanical contact is made when the tip-substrate separation is comparable to inter- 

atomic separation. The force acting on the indenter is simply determined by summing 

all the vertical force components on each constituent atom of the indenter, thus 

Fytotai =E F'vs (4.2.4.2) 
tip 

In the preliminary simulations with the atomistic indenter model, a diamond pyramid 

is implemented with an approximate maximum depth h= 26 A, as illustrated in Fig. 

4.4.2. The structure is composed from 4,056 atoms with 784 atoms fixed in the top 

{111} plane, which has a side of approximate length a= 68 A. The simulated indenter 

is about 100 times smaller in size than some of the finest tips used in experiments. 

The first two layers of the diamond apex in the {111} plane were truncated prior to 

relaxation under the many-body potential. The truncation of the {111} layers in the 

tip produces a blunt apex which, after relaxing to the minimum energy configuration, 

produces a small degree of curvature. Clearly this is still an approximation to the true 

experimental situation, where measurements have shown that a tip can have a radius 

of curvature up to several tens of nanometres, especially after continued use [124], [142). 

Although curvature has been added to the apex, the tip is still atomically sharp. 

4.3 Simulation Results and Discussion 

4.3.1 Graphite {0001} Substrate 

Simulations with graphite are performed employing the small substrate implemented 

with the interface indenter model in the preceding chapter. The indentation period is 
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T= 50 ps and the maximum displacement of the constrained indenter atoms, rmax, is 

set to 12 A with the indenter apex sited 4A above the graphite surface. This yields a 

maximum indentation depth of 8A and an average indentation speed of 48 ms-1. The 

simulation is run for a duration of 50 ps with a fixed timestep of 0.5 fs. The overlap- 

ping loading and unloading curves in Fig. 4.4.3(a) reflect a purely elastic deformation 

in response to indentation. The apex has compressed during the loading stage of the 

indentation process, since the maximum penetration depth of the indenter is 6.51 and 

not 8A as specified at the start of the simulation. Fig. 4.4.3(b) shows the diamond tip 

begins to constrain as it penetrates the graphite surface and continues to compress by 

a maximum of 1.5 A, occurring at the halfway stage of the indentation process. The 

maximum compression of 1.5 A corresponds to approximately 19 % of the specified 8A 

indentation distance into the graphite substrate. As the indenter is extracted from the 

substrate, the compression begins to relax and the indenter returns to its initial config- 

uration at a depth of approximately 2 A. Hence, the indenter only deforms elastically 

and maintains its structural integrity. 

Fig. 4.4.3(a) shows that the peak force acting on the indenter was approximately 7 

eV/A, which occurred when the tip reached its peak indentation depth of 6.5 Ä. The 

T= 50 ps simulation with the pyramidal interface showed a peak repulsive force from 

ö 

v 

w° 

8 

6 _. ý..,., __... _ _.. _ _.... ý , ... ý ý _. _. _ 

ýi 
4-ý. __ _. _.... ý. _ -_ _ 

2 . _, _. _ _ _.. __. __. ýý. _ .. ý ......... . 

0 .... j . _`.. __. _.. _. __ 

.4 -2 0Z4oa 
Indentation depth (A) 

8 

ä4 

b 

v 

J 

-, 
ý 

-ý-T, ý ýi 

.... .. ý.. ý, ý. -.... _.... _... ,... .. t 

fiý 

fý 

10 20 30 40 50 
Time (ps) 

(a) (b) 

Fig. 4.4.3. (a) Force-depth curve from the simulation of indentation into the graphite 

{0001} crystal. (b) The displacement of the apex during the simulation. The thin line 

represents the tip position during the simulation and the bold line denotes how the tip 

would displace in the absence of the substrate. 

64 



-20815 

-208153 

>, -208155 
N 

-208157 iC 
Ö 
F 

-208159 

-208161, 10 20 30 40 5( 
Time (ps) 

Fig. 4.4.4. Total energy of the graphite {0001} crystal during the indentation process. 

the graphite of approximately 10 eV/A at maximum penetration (Fig. 3.3.10, Chapter 

3), which is in good agreement with peak force obtained with the atomistic model of 
the indenter. Fig. 4.4.3(a) exhibits an oscillatory nature of the force during the loading 

stage of the indentation process. The largest oscillations occur during the first 4A of 
indentation. As the apex advances towards the indentation limit the oscillations de- 

crease. The unloading component of the curve shows a comparatively smooth decrease 

in force. The speed at which the indenter penetrates and extracts from the graphite 

surface, causing quick displacement of atoms, gives rise to these oscillatory features. 

Simulations utilising the same depth of indentation carried out over longer periods of 

time, show the oscillations in force decrease. 

Shown in Fig. 4.4.4 is the total energy of the graphite substrate during the indenta- 

tion. The maximum energy added to the graphite substrate is about 9 eV, which occurs 

approximately just before the halfway stage of the indentation process, at t= 23.5 ps. 
Comparison with Fig. 3.3.14 (Chapter 3) shows this is lower than the maximum energy 

added to the graphite by the cube-cornered interface, in the T= 50 ps simulation. This 

is because the atomistic indenter penetrates less into the work material, due to com- 

pression of the apex. 

Two snapshots during indentation of the graphite crystal are presented in Fig. 4.4.5. 

A hexagonal wave of displacing graphite atoms propagating across the substrate surface 

is shown in Fig. 4.4.5(a) at t=2.8 ps. The form of the wave clearly reflects the hexag- 

onal structure of the graphite substrate. The halfway stage of the indentation process, 

at t= 25 ps, is shown in Fig. 4.4.5(b). After extraction of the diamond tip, oscillatory 
hexagonal surface and subsurface waves were observed, which continued to oscillate for 

an extended period of time. There is no adhesion between the tip and the substrate 
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(a) (b) 

Fig. 4.4.5. Snapshots from the simulation of indentation into the graphite {0001 } crystal. 

(a) The indentation process at t=2.8 ps. Note the hexagonal wave propagating across 

the graphite surface. The white shaded atoms represent the undisturbed surface. (b) 

Halfway point of the indentation process at t= 25 ps. 

since the graphite surface is rather inert towards the diamond indenter. The ab-initio 

analysis by Ciraci et al [143] reported on the indentation between an Al tip and graphite 

{0001} and observed significant tip-sample interaction with bond formation. 

4.3.2 Diamond {100} Substrate 

Unless otherwise stated, simulations with pure diamond are performed º'ºuploying t he 

same small crystal implemented with the interface indenter nºodel in the preceding 

chapter. The surface atoms of all diamond {100} substrates are diner reconstructed. its 

illustrated in Fig. 4.4.1. and allowed to relax fully to the minimum energy configuration 

before commencing the indentation. The indentation period is 7' 50 ps and t 1w ºnax- 

imum displacement of the fixed indenter atoms, is set to IS A with the indenter 

apex sited 10 A above the diamond surface. This gives a maximum indentation depth 

of 8A and an average indentation speed of 72 Ins '. The simulations witIi dMnºond 

substrates are run with a fixed timestep of 0.5 fs for a duration of 75 ps to allow fur- 

ther retraction of the tip to study interfacial adhesion. The lord-displacement curve in 

66 



8( 

4( 

u 
-4C 

w 

-8C 

-12014 
-10 -6 -2 26 

Indentation depth (A) 

10 

-10 

-20 

-300 1'0 20 30 40 50 60 70 R( 

-Q 
ai 

b 

O 

Time (ps) 

(a) (b) 

Fig. 4.4.6. (a) Force-depth curve from the simulation of indentation into the diamond 

{100} crystal. The upper curve corresponds to the loading stage. (b) The displacement 

of the apex during the simulation. The thin line represents the tip position during the 

simulation and the bold line denotes the how the tip would displace in the absence of 

the substrate. 

Fig. 4.4.6(a) exhibits various atomic-scale events during the indentation. As with the 

graphite substrate, the force-depth curve for the diamond crystal also shows oscillations 

in the force. The loading and unloading curves in Fig. 4.4.6(a) overlap in the region 

from 2A to 6 A, showing the deformation to be elastic over this range. The diamond 

tip indented to a maximum depth of 4.5 A, where the reacting force was approximately 

80 eV/A. The T= 50 ps simulation with the cube-cornered interface showed a peak 

repulsive force of approximately 89 eV/A from the diamond crystal (see Fig. 3.3.16, 

Chapter 3) when the tip reached the maximum indentation depth. 

Fig. 4.4.6(b) shows the compression of the indenter apex during the indentation. 

Comparing Fig. 4.4.3(b) with Fig. 4.4.6(b) shows the indenter apex begins to compress 

only when it has reached the small graphite surface, whereas the compression of the 

tip initiates just above the the surface of the diamond work material. Furthermore, the 

indenter tip has compressed by approximately 3.5 A at maximum penetration, i. e. by 

about 44 % of the specified 8A indentation distance into the diamond substrate, com- 

pared to the value of about 17 % for the graphite work piece. The greater nanohardness 

of diamond compared with graphite is clearly reflected by the greater compression of the 

tip and the greater force exerted on the indenter. The compression of the indenter tip at 

the maximum penetration depth in the diamond { 100} substrate is shown in Fig. 4.4.7. 
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Fig. 4.4.7. A plan view of the diamond indenter at the maximum indentation depth 

into the diamond {100} substrate. The atoms are shaded according to their vertical 

compression during the indentation. The red shaded atoms denote those atoms that 

have not compressed. 

The tip compression is highly localised around the apex within ai few atomic layers. 

This is because the tip is atomically sharp and hence, the tip atoms have low coordina- 

tion. Since the network structure of diamond is not sufficiently formed iii t he apex, the 

mechanical strength of the acute tip is less compared with bulk diamond and hence, it 

compresses more easily. Both Fig. 4.4.3(b) and Fig. 4.4.6(b) show the tip compresses 

rapidly (luring initial mechanical contact. After several atomic layers in the apex, the 

diamond network structure is sufficiently developed such that indentation then ensues 

primarily in deformation imparted to the substrate rather than further compression of 

the tip. As the indenter penetrates the surface of the work piece the ill) is slightly 

twisted, which is clearly seen in Fig. 4.4.7. 

The negative force in Fig. 4.4.6(a) arises from interfacial bonding between the in- 

denter apex and the surface atoms of the diaruond lattice. This occurs because the 

carbon atoms on the diamond surface only have three covalent bonds with the nearest 

neighbours, leaving a fourth unsaturated bond dangling on the surface. The force of 

adhesion, which is the force required to pull-off the tip from the 5uh51 rate, is iºpproxi- 

mately 100 eV/Ä. Fig. 4.4.6(b) shows the indenter is still compressed as the tip is pulle<I 

out from the surface but at approximately -1 A alcove the diatuond face, the inclent er 

tip begins to elongate due to the bonding witlº the work maleriail. At aipproxiºuatcly 
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13 A above the substrate, the force exerted by the surface atoms becomes sufficient to 
break the bonding with the apex. A number of the atoms constituting the indenter tip 
become permanently displaced and are bonded to the substrate surface. However, none 

of the diamond substrate atoms are found bonded to the indenter after rupture of the 
interfacial bonding. 

Snapshots of the simulation indenting the diamond work material are presented in 

Fig. 4.4.8 1. The halfway stage of the indentation process is shown in Fig. 4.4.8(a) at 
t= 25 ps. Fig. 4.4.8(b)-(d) reveal the process whereby blunting of the indenter apex 

can occur. As the indenter is extracted from work material, Fig. 4.4.8(b) shows the 

bonding of the indenter tip with the substrate produces connective ̀ threads' of atoms, 

as marked by the arrows. This causes the surface of the diamond substrate to rise up 

towards the indenter. The connective strands of atoms form from the indenter apex 

where the atoms have low coordination. The threads of atoms measured up to a max- 
imum of approximately 9A and are formed almost entirely from indenter atoms. The 

indenter tip becomes highly disordered as the connective threads of atoms form. Fig. 

4.4.8(c) shows the connective skeins of atoms break as the indenter displaces further 

away from the work piece. The threads of connective atoms do not break near the 

substrate surface or near the indenter apex, but approximately halfway between. The 

blunted apex then reconstructs and Fig. 4.4.8(d) shows a ring of carbon atoms formed 

during the recrystallisation process, as marked by the arrow. After rupture of the con- 

nective threads, the atoms around the apex vibrated vigorously and the surface of the 

work piece was observed oscillating about the undisturbed surface. Fig. 4.4.8(d) also 

shows the 53 atoms composing the indenter tip that have been permanently displaced 

and remain bonded to the substrate surface in an amorphous arrangement. This is 

shown in detail in Fig. 4.4.9(a), while Fig. 4.4.9(b) shows that some of the substrate 

surface atoms have been permanently displaced above the dimer rows, as marked by the 

arrows. However, the subsurface layers remain intact so the recovery of the substrate is 

highly elastic, although the displacement of a few local surface atoms suggests fractional 

adhesion-induced plastic deformation. 

The total energy of the diamond work material during the indentation process is 

shown in Fig. 4.4.10. The peak energy added to the work piece during the indentation 

was approximately 140 eV, compared with 200 eV using the interface description of the 

'An animated movie of this is on the CD in the Appendix 
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pyramidal indenter. As the apex is extracted from the surface. the substrate energy in- 

creases as interfacial bonding exerts a pulling force on the substrate surface. The energy 

peaks just before t= 50 ps where a few 'strands' of indenter atones are broken and then 

(a) 

(e) 

ýý: 1;!, ý,, ý 

. mot, 
ý, 

ý`. = 

(b) 

77, 

(d) 

Fig. 4.4.8. Snapshots from the simulation of indentation into the (liatnon(I { Ituº} crystaI. 

The indentation process at: (a) t- 25.0 ps; (b) t (iO. ') Iss; (c) I (i2.8 Iss: (d) / 

75.0 ps. Note the connective 'threads' of indenter atoms and the ring of atoms foriiu I 

as the apex reconstructs. as marked by the aarrows. 
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(a) (h) 

Fig. 4.4.9. The indentation region of the diamond { 100} crystal surface at completion 

of the simulation showing the adhesion-induced plastic deformation. (a) The indenter 

atoms bonded to the diamond surface in an amorphous arrangement . 
(h) The priniarily 

elastically recovered surface together with the permanent displacement of sonic surface 

atoms, as marked by the arrows. 

starts to decrease. As the final -threads' of atoms are ruptured at apI)roxiinatelY I 

62.8 ps, the energy decreases further. 

Since the indenter tip compresses easily due to low atom coordination. indentation 

on the diamond substrate has also been performed with a blunt tip) indentcr. 'I'he dia- 

mond indenter is blunted by truncating the lowermost eight pit o, niic layers of the tip in 

-286475 

-286525 

I) >, 
-286575 In 

-286625 

H 
-286675 

-286725 
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Fig. 4.4.10. Total energy of the diamond {] 00} crystal dlnritig t he indent at ion process. 
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Fig. 4.4.11. Plan view of the blunt 'flat' tip diamond pyramidal indenter. 

the {111} plane. The indenter tip is therefore `flat* and not rounded as in experiniclit. 

The small indentation depth constrains the size of the indenter such t heut the apex is too 

small to blunt by rounding to give a well defined radius of curvature. Larger substrates 

will permit greater indentation depths. where blunting of the indenter tip h rounding 

will he feasible. The diamond indenter, as illust rated in Fig. 14.1. is configured fron 

3.940 atoms with a height h 21 A and side length a 68 A. 

The force-depth curve for indentation of the diamond work material wit h the blunt 

'flat' tip indenter is shown in Fig. 1.4.12(a). The indenter tip reric"hecl a maximum 

indentation depth of approximately 6.5 A, thus compressing by 1.5 A. As would be ex- 

pected the compression is much less compared with the indenter having it single atom 

apex. A snapshot of the conclusion of the simulation is shown in Fig. . 1. "1.12(b). 'I'h(, 

tip-substrate adhesion has clearly imparted more damage to the sahst raºt e surface º"unº- 

pared with Fig. 4.4.8 because the tip compressed less and indented fºurt her. I however. 

the adhesion does not occur primarily with the apex aºtoºns, since they are more highly 

coordinated than in the previous simulation. Insteml. the adhesion predoruinauºtly devel- 

ops with indenter atoms sited along the edges where the adjacent { IOO} planes jilt ersect 

since atom coordination is low. This is clearly illustrated in Fig. 1., 1.12(b) by the three 

connective threads protruding from the indenter edges. The aJ)ex-sulºstrate adhesion 

has resulted in considerable damage along one edge of the indenter. as nim-kerI by the 

arrows in Fig. 4.4.12(1)). At the conclusion of the indent at ion. the indenter mid the 

substrate are still bonded by connective thremis of atoms. The influence of 'shýºrl> and 
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Fig. 4.4.12. (a) Force-depth curve from the indentation of the diamond {lOO} substrate 

with the blunted indenter tip. (b) Snapshot of the conclusion of the simulation at t 

75 ps. The arrows show the damage along one edge of the indenter caused by rupture 

of the tip-substrate adhesion. 

'flat' tips has also been examined by Astala et al [111] using tight-binding Nil) siniiila- 

tions with a diamond indenter and Si substrate. 

Indentation has also been performed on a larger diamond substrate in an attempt 
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Fig,. 4.4.13. Snapshot of the simulation with the large diamond {1OU} substrate at 

100 ps. Note the transfer of substrate atoºu5 to the indenter and vice versa. 
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to study the impact of a deeper indentation depth on the interfacial adhesion. The 

larger crystal has approximate dimensions 150 Ax 150 Ax 35 A and is composed from 

40 atomic layers. The work material contains 141.120 atoms and the fixed boundary 

is constructed from 9,915 atoms and 24,660 atoms configure the neighbouring damped 

region. A simulation was performed for indentation to 20 A, with an indentation period 
T= 100 ps. The indenter apex was sited 10 A above the specimen at the start of 

the simulation, yielding an average indentation speed of 60 ms-I. The simulation was 

run for a duration of 100 ps with a fixed timestep of 1.0 fs. The greater indentation 

depth ensues in a higher degree of interfacial bonding since there is more interaction 

with the dangling bonds emanating from the substrate surface. 't'his results in a larger 

pull-off force compared with indentation of the smaller diamond substrate. A similar 

fate occurs with the indenter tip and substrate atoms as interfacial bonding produces 

strands of connective atoms. which reached a peak length of approximately 15 A. Fig. 

4.4.13 shows that in addition to apex atoms, the connective threads of atotus are also 

composed from several substrate atoms. As the connective strands of atoms rupture, 

8 substrate atoms become permanently bonded to the indenter as the tip reconstructs. 

N r. 

r 
l 

(a) (b) 

Fig. 4.4.14. Plan view of the indenter following illdelitat loll of diamond for (a) 7' 

50ps simulation; (b) T 100 ps simulation. Note t hee St ruº"t un"aºl disorder around t Iºe 

apex and edges. Also note the permanent iv rliSplaºr"PºI substrate atollis III (b) (shaded 

blue) that have become bonded to the indenter and those eºnl>eº1º1eºI in the t ifs. 
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The greater interaction between the substrate and the indenter has resulted in a larger 

transfer of tip atoms (approximately 150) to the surface of the work material. The simu- 

lations therefore suggest that the extraction of an indenting tip may constitute towards 

blunting effects by the addition and/or dispossession of atoms. 

The damage imparted to the indenter from the interfacial bonding is shown in Fig. 

4.4.14(a) and (b) following indentation of diamond with the T == 50 ps and T= 100 ps 

simulations, respectively. The structural arrangement of the indenter has becu Impaired 

locally around the tip and along the edges. Clearly, the larger indentation depth ensues 

in greater damage to the apex. Fig. 4.4.14(b) shows that some of the substrate atoms 

bonded to the indenter become embedded in the tip as the apex reconstructs following 

rupture of the interfacial adhesion. 

4.3.3 C(; O Fullerene Substrate 

The fullerenes [1451, also known as `l3uckrninsterfullerenes' or 'ßiºckyhalls, are a family 

of spherical molecules configured fron fused atoms arranged as pentagons and heX<ºgons. 

The pent agonal arrangement of a number of the atoms provides the curvature of Ilia 

molecule. To close into a spheroid these molecules must have 12 pentagons. giving 

a general composition Coo+ý,,,, where it is the variable number of lwxaigons. The (',; u 

fullerene is a soccer ball slumped molecule configured fron 60 (' Moms. as illust rated in 

Fig. 4.4.15, and is formed form 12 pentagons and 20 hexagmu5. The form of t 1w ('G,, 

fullerene resembles a rolled up graphene sheet. The most abundant of time fººIleremm s. 1 h(' 

Fig. 4.4.15. The Cco fullerene molecule. The hexagotiat and pentagonal <ari' aiigciiieut of 

the atoms is clearly seen. 
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C60 molecule is also the smallest stable member of the family. and hence it is the , lost 
difficult to compress. In molecular solids configured from C'(; () fullerenes. the molecules 

are bound by weak Van der Waals forces in all planes. This property therefore allows 

the individual C60 molecules to readily slip over each other in a similar fashion to the 

AB planes in graphite (see Fig. 3.3.4, Chapter 3). Hence, although a C60 molecule is 

very strong, a crystalline C60 substrate is comparatively easy to compress. 
For simulations of indentation into a C60 substrate, a lattice with approximate dimen- 

sions 154 Ax 154 Ax 61 A, composed from 8 layers of CGS, molecules is Innplenieni I. 

Crystalline molecular solids composed from C60 molecules are generally employed as 

thin films. Therefore, in addition to tlhe vertical borders. the underside layer of the C,; () 

work material is fixed to emulate the physical presence of a hard underlying substrate. 

The substrate consists of 129,600 atoms and the fixed boundLarv is ('01151 rust ed from 

28.499 atoms and the damped neighbouring region is configured from 13.519 atones. 

The indentation period is T 50 ps and the maximum displacement oft he const rained 

indenter atoms. r,,, ax, is set to 24 A with the apex sited 4A above 1 he substrate surface. 

This yields a maximum indentation depth of 20 A and an average imlent apt ion speed of 

96 nºs i. The simulation is run with a constant tiineStel) of OJ Is for it (lln aat jot) of 75 

ps to allow further retraction of the tip. 

Fig. 4.4.16 presents the force-depth curve for indentation into the (, (; O work malerial 

Because of the oscillatioti5. the loading and liiiloa(liiig (ui"Veti ale 5liuvVil selmrid(Iy' i1i 
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Fig. 4.4.16. Force-(legt h curve frotri the Sill uilation of iudieIt at iou dito the ('au Suil, tit raat e 

for: (a) Loading process; (b) Unloading process. 
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Fig. 4.4.16(a) and Fig. 4.4.16(b) respectively. Both figures show very different features 

compared to the graphite and diamond force-depth curves. The loading curve shows 

small peaks of repulsive force for the approach of the indenter until a penetration depth 

of approximately 7 A. Hereafter, the load-displacement curve shows a rapid oscillation 

of both repulsive and attractive forces. As the indenter penetrates the first layer of the 

substrate the attraction is very small. However, after the first layer the bulk of the tip 

interacts with the substrate and the attractive interactions become significant, as shown 

in Fig. 4.4.16(a). The unloading curve shows the similar oscillatory features present 

in the loading curve. These characteristics are still present even when the indenter has 

been extracted from the surface of the C60 substrate. The oscillations reflect only the 

small attractive and repulsive forces between the tip and individual C60 molecules. Since 

the C60 molecules are bound by very small intermolecular forces, any initial repulsive 

force from the indenter becomes sufficient to displace the weakly bound molecules and 

so the force then decreases until the indenter reaches the next molecule. Thus, for the 

small indentation depths implemented here, the force-depth curve would not be expected 

(a) (b) 

Fig. 4.4.17. Snapshots from the simulation of indentation into the C60 substrate. (a) 

Halfway point in the indentation process at t= 25 ps. Note the emission of a few 

C60 molecules. (b) Completion of the simulation at t= 75 ps. Note the emission of a 

multitude of C60 molecules and the bonding of a C60 molecule to the indenter (marked 

by the arrow). 
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to exhibit a general increase/decrease to and from maximum penetration, as with the 

graphite and diamond simulations. The easy displacement of these molecules results in 

very low forces exerted on the tip, which showed only a very small compression. 
Shown in Fig. 4.4.17 are snapshots of the simulation of indentation into the Cho 

structure. In Fig. 4.4.17(a) the indentation process is shown at the halfway point, t 

= 25 ps. The displacement of the indenter to the maximum penetration depth has 

caused the emission of a few C60 molecules from the surface. In Fig. 4.4.17(b) the 

conclusion of the simulation is shown at t= 75 ps. It is evident that the indentation 

has induced sufficient energy into the C60 substrate to cause the ejection of a multitude 

of C60 molecules. Considering only those atoms displaced by more than 5A above the 

substrate surface reveals an approximate total of 117 C60 molecules emitted from the 

work material. However, the final positions of the atoms in the surface show no identifi- 

able `hole' as molecules from other parts of the surface have moved to fill the gap left by 

the extracted tip. This permanent displacement of individual molecules clearly shows 

the indentation into the C60 structure to be plastic. Fig. 4.4.17(b) also shows evidence 

of interfacial adhesion, where the arrow marks a C60 molecule bonded to the indenter. 

The transfer of C60 molecules to the indenter tip has been detected experimentally by 

Ruan and Bhushan during indentation of C60-rich fullerene films [146). 

4.4 Hydrogen Surface Termination 

Adsorbate-free diamond is extremely reactive since it exposes a mass of dangling bonds. 

The simulations presented in the preceding section show how easily an impinging dia- 

mond tip can bond with a substrate. However, in reality a diamond surface contains 

a layer of some adsorbate, such as hydrogen. Hydrogen-coated diamond, or hydrogen 

terminated diamond is very unreactive since the adsorbate saturates the dangling bonds. 

Therefore, the bonding between the work materials can be minimised by terminating 

the three adjacent {100} surfaces of the indenter with hydrogen to satisfy the valency 

requirements of the C atoms [147]. However, covering the indenter -surface with a layer 

of some adsorbate will reduce tip-substrate adhesion, but not necessarily prohibit it from 

occurring, since tip-induced reactions make break some C-H bonds creating a dangling 

bond. The very nature of the indentation process causes bonds between atoms to be 

broken and reformed. A diamond indenter terminated with hydrogen is shown in Fig. 
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Fig. 4.4.18. Plan view of the hydrogen terminated indenter used in the simulations. The 

green atoms denote carbon and the blue atoms represent hydrogen. 

4.4.18 after relaxation to the minimal energy configuration. It was generated by placing 

a hydrogen atom directly above each atom in the dimer rows at a distance equal to the 

C-H bond length of 1.078 Ä. In addition to the { 100} surfaces, an adsorbate H atom 

is also allowed to bond with the apex atom. The indenter is configured from 3,996 C 

atoms and 547 H atoms with a height h -- 25 A and side length a= 68 Ä. 

4.4.1 Diamond {100} Substrate 

For simulations with the diamond {100} substrate, the indenting surface is hydrogen 

terminated and dimer reconstructed. The diamond crystal has approximate dimensions 

450 
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Fig. 4.4.19. Force-depth curve from the simulation of indentation into the large diamond 

{100}: H substrate with the hydrogen terminated indenter. 
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(a) (b) 

Fig. 4.4.20. Snapshots from indentation of diamond {100}: H. (a) Halfway stage of the 

indentation at t= 75 ps. Note the bending of the atomic layers. (b) Conclusion of the 

indentation process at t= 150 ps. 

150 Ax 150 Ax 35 A, containing 144,648 atoms where 3,528 hydrogen atoms terminate 

the indenting surface. The fixed vertical boundary is composed from 10,167 atoms with 

25,272 atoms forming the damped neighbouring terms. The indentation period is 7' 

= 150 ps and the maximum displacement of the fixed indenter atoms, rmax, is set to 

30 A with the tip sited 10 A above the substrate surface. This renders a maximum 

displacement of 20 A with an average indentation speed of 40 ms-i. The simulation is 

run for a duration of 150 ps with a constant timestep of 1.0 fs. 

Fig. 4.4.19 presents the force-depth curve from the simulation of indentation into 

the diamond {100} substrate. The overlapping loading and unloading curves show the 

work material undergoes a completely elastic deformation with no evidence of interfacial 

adhesion. The peak force acting on the indenter was approximately 410 eV/A which 

occurred during the loading stage at an indentation depth of approximately 14.5 A. The 

apex compressed by a maximum of 5.5 A at the peak penetration depth. Snapshots 

from the simulation of indentation into the diamond {100} substrate are shown in Fig. 

4.4.20 2. At the halfway stage of the indentation process. Fig. 4.4.20(a) shows the 

diamond layers bending under the influence of the indenter. Fig. 4.4.20(b) shows the 

2An animated inovio of this is on the CD iii the Appendix 
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completely elastic recovery of the work material at the conclusion of the simulation. 
Visual inspection of the local indentation surface shows that there is no disruption to 

the original ordering of the hydrogen monolayer or the diamond surface atoms. 

4.4.2 Amorphous Carbon Substrates 

Since carbon has the ability to have two-fold, three-fold and four-fold coordination, 

there is a degree of freedom in the hybridisation status of atoms in a-C. The films are 

therefore characterised by determining both the mass density and nature of the chemical 

bonding. In theoretical work, the composition of the substrate can be derived from the 

carbon coordination number. For example, an atom with either four-fold, three-fold 

or two-fold coordination is described as an spa-, spe- or sp-like atom, respectively. A 

large fraction of tetrahedral coordinated atoms (spa-like) imparts a greater diamond-like 

character into the film and hence a high mechanical hardness. Films with a high spa 

content are usually called tetrahedral amorphous carbon or diamond-like-carbon (DLC). 

The fraction of sp 2 and sp 3 bonds is influenced by the formation process of the film. 

Experimentally, a-C films produced by sputtering graphite are primarily sp2 hybridised. 

Alternatively, deposition of a-C films by low-energy ion beams ensues in a high spa 

content. 

Two a-C substrates are used here, with comparatively high and low densities. The 

a-C substrates are formed from tessellation of a 128-atom bulk supercell, which is de- 

rived from an annealing regime using tight-binding [148]. Following repetitions of the 

supercell, the surface of the work material is hydrogen terminated and allowed to relax 

to a minimal energy configuration by applying inelastic energy loss. Both substrates 

have approximate dimensions 150 Ax 150 Ax 40 A. The low-density a-C: H work 

material is configured from 100,352 C atoms and 2,777 H adsorbate atoms. The rigid 

vertical boundary is formed from 12,061 atoms and the neighbouring damping region 

is configured from 33,970 atoms. The high-density a-C: H work piece is composed of 

131,072 C atoms and 4,194 H adsorbate atoms. The fixed vertical boundary is con- 

figured from 13,089 atoms and the adjacent damping region is configured from 46,151 

atoms. Simulations were performed on the a-C substrates with an indentation period 

T= 150 ps with the maximum displacement of the constrained indenter atoms, rm , 

set to 30 A with the tip sited 10 A above the substrate surface. This yields a maximum 

indentation depth of 20 A with an average indentation speed of 40 ms-1. The simula- 
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Table 4.1. Structure and bonding data for the a-C: H substrates at equilibrium prior to 

indentation. 

a-C: H substrate p Mean C-C Mean C-C-C Hybridization statusa 
bond length 

(g cm-3) (A) 

bond angle 

(degrees) 

Sp 

(%) 

sp2 

(%) 

spa 

(%) 

Low-density 2.2 1.47 116.3 10.3 68.8 19.4 

High-density 2.9 1.53 110.9 4.5 30.5 63.5 

aFor the low-density substrate the remaining percentage are outermost atoms with a 

coordination number of 1. For the high density substrate the remaining percentage are 

primarily outermost atoms with a coordination number of 1, together with some five-fold 

coordinated atoms. 

tions are run for a duration of 150 ps with a fixed timestep of 1.0 fs. 

Structure and bonding data for the two a-C: H substrates at equilibrium is given in 

Table 4.1. The structural composition of the a-C: H substrates is evaluated by assessing 

the hybridisation status of each atom. The carbon coordination number for each atom 

is determined by summing all the nearest neighbours, defined by the interaction cut- 

off radius of 2A in the Brenner potential. The composition of the low-density a-C: H 

substrate is largely dominated by spe-like atoms. Hence, the mean C-C bond length 

and C-C-C bond angle is close to that of graphite. The high-density a-C: H substrate is 

composed chiefly from sp 3-like atoms and so has a larger mean bond length and smaller 

mean bond angle (similar to diamond) compared with the low-density a-C: H work ma- 

terial. The high-density a-C: H film also contains a small fraction of atoms with five-fold 

coordination. 

The force-depth curve from indentation into the low- and high-density a-C: H sub- 

strates is shown in Fig. 4.4.22(a) and (b) respectively. Both curves show a large elastic 

recovery of the work material and also adhesion between the tip and the substrate. 

Only the surface atoms have been hydrogen terminated and since the surface of the 

work material is not atomically flat, there are void regions where carbon bonds remain 

unsaturated. Such voids are shown in Fig. 4.4.21 for both the low- and high-density a- 

C: H substrates. Clearly, the void regions are larger for the low-density material. Hence, 
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the unconcealed void regions imply that the a-C substrates employed here are only 

partially hydrogen terminated. The adhesion with the tip occurs primarily with unsat- 

urated subsurface atoms which are exposed in the void regions. However, adhesion may 

also occur from rupture of the C-H bonds in the tip which will create dangling bonds. 

The interfacial adhesion was investigated further by attempting to terminate the unsat- 

urated bonds that exist in the subsurface. However, when the substrate was allowed to 

relax to the minimum energy configuration, the surface was found to be unstable. In 

another attempt to improve the surface valency. a thicker film of hydrogen was deposited 

on the substrate surface. This still did not prevent the tip from adhering to subsurface 

atoms. In reality, an a-C: H film would have a multitude of surface impurities concealing 

the subsurface. 

Indentation with the low-density material results in a peak force of just over 100 

eV/A at the maximum indentation depth of approximately 17.5 A. Thus, the indenter 

tip has deformed by about 2.5 A. As the indenter is extracted from the work material, 

(a) (h) 

Fig. 4.4.21. Surface of the work material for: (a) low-density a-(,: Ii; (h) high-deiisity 

a-C: H. The circles encompass void regions of unsaturated subsurface atoms. The yellow 

atoms represent hydrogen and the red atoms denote carbon. (Note the formation of 

small rings of carbon atoms in the subsurface. This effect is less pronounced on the 

surface since the hydrogen atoms terminate the network paths. ) 
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Fig. 4.4.22. Force-distance curve for: (a) low-density a-C: H and (b) high-density a-C: H. 

the pull-off force required to rupture the interfacial bonding is just under 10 eV/A. 

Snapshots from the indentation of the low-density a-C: H substrate are shown at both 

the halfway stage and the conclusion in Fig. 4.4.23(a) and (b) respectively 3. As the in- 

denter is extracted from the work material, no threads of connective atoms are produced, 

as were observed with the adsorbate-free diamond substrate. Since most of the dangling 

bonds in the surface of the work piece have been saturated, the tip-substrate adhesion 

is minimal. The interfacial bonding is ruptured with relative ease and by the conclusion 

of the simulation no indenter atoms have been displaced to the work material, although 

3H atoms and 1C atom from the substrate remain bonded to the indenter. The small 

plastic deformation stemming from rupture of tip-induced interfacial adhesion could be 

further reduced with increased H saturation on the surface of the a-C: H substrates. 

At the maximum penetration depth of approximately 17 A into the high-density 

a-C: H substrate, the tip had compressed by 3A and the indenter experienced a peak 

force of about 265 eV/A. At the conclusion of the indentation process the interfacial 

bonding has not ruptured and the force of adhesion is greater than the pull-off force 

with the low-density a-C: H substrate at just under 70 eV/A. Snapshots of the inden- 

tation process are presented in Fig. 4.4.23(c) and (d). The two atoms marked by the 

arrows in Fig. 4.4.23(c) are surplus hydrogen atoms from the termination of the surface. 

These atoms are immobile throughout the simulation and remain above the undisturbed 

surface unbonded to any other atoms. As the tip is withdrawn from the work mate- 

rial, a small connective thread of atoms is produced. Even though the void regions 

3An animated movie of this is on the CD in the Appendix 
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of unsaturated subsurface atoms are smaller compared with the low-density material, 
indentation of the high-density material ensues in slightly larger adhesion. This stems 

(a) 

(c) 

(b) 

nay-`' ý:.. ý . 

(d) 

Fig. 4.4.23. Snapshots from the simulation of indentation into: (a) low-density a-C: 11 

at t= 75 ps; (b) low-density a-C: H at t 150 psi (c) high-density at t 75 

ps; (d) high-density a-C: H at t- 150 ps. Note the transfer of atotiis between tip and 

substrate as marked by the arrows in (b) and (d). The atoms marked by the arrows in 

(c) are immobile hydrogen atoms above the undisturbed surface and are not boIide(1 to 

any other atoms. 
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from the greater density of the material. With the low-density a-C: H work piece, only 

substrate atoms were transferred between the tip and the sample. However, with the 

high-density work piece, the greater interfacial bonding ensues in a small quantity of 
both tip and substrate atoms being transferred. Only 3C tip atoms were permanently 
displaced to the surface of the work material, while 3C atoms and 1H atom were trans- 

ferred from the substrate to the indenter apex. Although hydrogen termination of both 

the indenter and the a-C substrates has not prohibited interfacial bonding, the quantity 

of atom transfer is minimal compared with the simulations of adsorbate-free diamond 

indentation. The images in Fig. 4.4.23(b) and (d) show that there is no depression left 

in the substrate surface following full extraction of the indenter tip. Further structural 

analysis reveals no cracks in the a-C: H substrates since the indentation depth is too 

small. 

To determine the extent of rearrangement in the a-C: H substrates, the bonding 

in the work materials was examined subsequent to indentation. The bond length and 

bond angle statistics are presented in Fig. 4.4.24. The shortest C-C bond length in 

both materials is approximately 1.18 A, which probably conforms to a triple bond. The 

histograms show that there is a marginal change in bonding structure at the halfway 

stage of the indentation process as bonds local to the indent are distorted. Some of the 

C-H bonds sited around the indentation region are ruptured and reformed during pene- 

tration by the tip. The breakage of some C-H bonds creates defect states (i. e., dangling 

bonds), and leads to reconstruction locally which may therefore aid adhesion between 

tip and sample. The temporary fractional change in bonding structure at the halfway is 

reflected by the small variation in the carbon coordination numbers in Table 4.2. As the 

indenter reaches the maximum indentation depth at t= 75 ps, neighbouring substrate 

atoms are compressed and so the number of lower coordinated atoms is reduced and 

higher-coordinated atoms are formed. Clearly, more atoms with a large coordination 

number are formed for the high-density material compared with the low-density ma- 

terial. The increased coordination numbers of the compressed atoms thus ensues in a 

temporary distortion to the bond length and bond angles. This permutation is only a 

transitory change in the bonding structure since the distributions of bond length and 

bond angles in Fig. 4.4.24 at the conclusion of the simulation are approximately the 

same as prior to indentation. 

At the end of the indentation process, Table 4.2 shows a reduction in higher coor- 
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dinated atoms as the compression around the indent has relaxed. However, there are 

a small fraction of atoms that remain with higher coordination numbers. The results 

presented in Fig. 4.4.24 and Table 4.2 indicate that no significant permanent structural 

rearrangement takes place, suggesting that the indentation is primarily elastic for both 

materials. The fractional plastic deformation stems from tip-induced adhesion and rup- 
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Fig. 4.4.24. Histograms of: (a) low-density a-C: H bond lengths; (b) low-density a-C: H 

bond angles; (c) high-density a-C: H bond lengths; (d) high-density a-C: H bond angles. 

The distribution of bond lengths and bond angles are calculated in bins of 20 of an A 

and 5° respectively. The thin solid line and bold solid line correspond to t=0 ps and t 

= 75 ps respectively. The remaining dashed line corresponds to t= 150 ps. 
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ture together with deformation around the subsurface. In addition to the simulations 

presented here, indentations were also performed at different locations on the surface 

of the a-C: H substrates. The shape of the indentation curves was highly reproducible 

and the simulations yielded similar results for structural rearrangement. However, the 

degree of interfacial bonding was influenced by the the position of the tip with respect 

to the void regions of unsaturated subsurface atoms. 

The study by Sinnott et al [122] reported on indentation of diamond {111} covered 
by an a-C: H film. The a-C: H film was produced by heating central layers of a dia- 

mond slab to 8000K and then quenching the disordered section to room temperature. 

Preceding indentation, the amorphous film was composed of 21% spa-like atoms and 

58% spe-like atoms. Less than 2% had a coordination number of 2 and approximately 

0.1% of atoms had five-fold coordination. Thus, the film is analogous to the low-density 

material used in our simulations. The flat-ended sp 3 tip penetrated to about 4 A, ; z_- 

20% of the film thickness. After full extraction of the tip they found no depression left 

in the surface. The composition of the film was subsequently analysed and they found 

an almost exact bonding distribution as prior to indentation. This suggested that no 

significant structural rearrangement took place and therefore the indentation was con- 

Table 4.2. Carbon coordination numbers for the a-C: H substrates at different stages 

during the indentation process. 

a-C: H substrate t Coordination number 
2 3456 7 8 9 

(ps) (Number of atoms) 
Low-density 0 10337 69081 19441 00 0 0 0 

75 10314 68813 19604 142 36 6 1 1 

150 10350 69043 19517 71 0 0 0 

High-density 0 5857 40007 83180 1233 0 0 0 0 

75 5840 39604 82449 2204 152 48 7 5 

150 5874 40023 83284 1116 4 1 0 0 
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sidered elastic. They obtained a modulus of 157 GPa for the a-C: H, which compared 

well with experimental values of 100 - 260 GPa for films with 0% - 16% spa-like atoms 
[149]. With the larger indentation depths used in the simulations presented here for a- 
C: H, the qualitative results are similar to the smaller indentation simulations by Sinnott 

et al [122]. 

The use of Brenner's potential in modelling the sp 3 content in a-C films has been 

investigated in a recent report by Jäger et al [150]. They employed MD simulations to 

study ion beam deposition of diamond-like carbon (DLC) films. Using Brenner's po- 

tential in the original form, where the covalent bonding of nearest neighbours is cut-off 

between 1.71 and 2.0 A, they found the potential yielded a-C films with a very low spa 

content. However, the films had a high density despite having a significant composition 

of spe hybridised atoms. This discrepancy was attributed to the short range cut-off ra- 

dius between nearest neighbours in the potential. By increasing the nearest neighbour 

interaction radius, in accordance with the bond-order concept and so not altering the 

originally fitted potential properties, they discovered an improvement in modelling the 

spa content in the films. Their results now compared more favourably with experimental 

data, showing similar calculated densities and sp3 content. In addition to the study by 

Jäger et al [150], other authors have also reported on the implementation of extended 

cut-off interactions. Nordlund et al [151] recently reported on an extended cut-off radius 

for the Tersoff potential [94]-[95], in a study of small-scale defects on graphite surfaces. 

4.5 Experimental Results and Discussion 

This section discusses the experimental load-displacement curves by Richter et al [124] 

for nanoindentation into HOPG {0001}, the {111} face of synthetic diamond and a C60 

fullerene film, grown on glass. The experiments by Richter et al were performed using 

the Hysitron Nanoindenter Triboscope [152], based on a conventional SFM [153]. The 

preparation of the carbon samples is discussed in detail by Richter et al [124]. The 

indenter is made from diamond and has the configuration of a three-sided 90° pyramid, 

as in Fig. 3.3.1 (Chapter 3). Knowledge of the tip geometry is important since the apex 

curvature changes with use, so the actual contact area of the diamond indenter is deter- 

mined by the SFM instrument. The tip, as shown in the scanning electron microscopy 

picture in Fig. 4.4.25, is attached to the end of a cantilever and aligned such that the 
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Fig. 4.4.25. SEM image, showing the geometry of the diamond indenter tip. 

f1111 planes lie parallel to the face of the substrate. The cantilever is generally iiiade 

from Si or Si3Ni4 and is desired to have a low spring constant so forces can be determined 

from very small deflections. The nanoindentation procedure involves advancing the in- 

denter towards the surface of the sample material by the application of a dc voltage to 

generate an electrostatic force. The resulting force acting on the indenter will elastically 

deform the cantilever and the deflection is measured by a displacement sensor. Heüce, 

the force can be measured as a function of the indentation depth. The iu(leiihation 

region of the sample can also be imaged using the same tip, but in the sriiniiiig force 

microscopy mode. In this mode, the tip is brought to within it few uanometres ()I' Hie 

sample and the surface topography is subsequently obtained by scanniug the tip over 

the surface of the sample and measuring the small atomic forces between the apex iin(i 

the substrate. 

4.5.1 Graphite 10001 1 

Nanoindentation was performed on the graphite substrate for varying loads frmll : 350 

/2N to 1500 µN. Fig. 4.4.26 presents the experimental load-displacement curves, four III- 

clentation into the {0001} face of the HOPG substrate for loads of 1240 p. N and 1.150 

µN. Fig. 4.4.26(a) shows the loading and unloading curves to overlap, which gives a, 

purely elastic response from the graphite substrate. As the load is increased to at mitt 

1240 µN, the experimental load-displacement curve in Fig. 4.4.26(b) shows t hat a (lis- 
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Fig. 4.4.26. Experimental force-depth curves for indentation into the {0001 } face of 

HOPG graphite: (a) complete elastic behaviour; and (b) increasing force causing break- 

through of the layers: (+) increasing load curve; (x) decreasing load curve. 

continuity occurs in the value of the indentation depth. This attribute arises from the 

increased load, which has become sufficient to break through a number of the graphite 

layers, in this case about 130. This number of layers is dependent on the local defect 

structure in the graphite material. The breakthrough of graphite layers could not be 

verified in the MD simulations, primarily due to the low penetration depths. Consid- 

erably larger substrates would be required to observe a breakthrough of an atomically 

layered material such as graphite. Despite the breakage of a number of the substrate 

layers, the unloading curve in Fig. 4.4.26(b) lies parallel to the loading curve, and so 

shows an elastic recovery of the sample. The experimental curves show a power law 

dependency of the form F= kh', as discussed in Section 3.4, Chapter 3. An analysis 

of the force-depth curve in Fig. 4.4.26(a) shows the index m to be approximately 1.1 

for the HOPG substrate. The nanohardness for graphite calculated from Eqn. 3.4.3.1 

(Chapter 3) is 2.35 GPa for an elastic deformation depth of 202 nm. From Eqn. 3.4.3.2 

(Chapter 3) the Young's modulus is determined to be E= 10.5 GPa. 

4.5.2 Diamond { 111 1 

Varying loads from 2000 E2N up to 3350 fL were applied to the indenter to petºetrzatee 

the {111} surface of the synthetic diamond substrate. The corresponding experimental 
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Fig. 4.4.27. Force-depth curve for indentation into the { 111 } face of diamond at the 

maximum applied load of 3350 µN: (+) increasing load curve; (x) decreasing load 

curve. 

load-displacement curve is illustrated in Fig. 4.4.27, reflecting a purely elastic response 

from the material. It is interesting to note from Fig. 4.4.27, the small indentation 

depth achieved from the high force that was applied to the tip, clearly reflecting the 

nanohardness of diamond. An examination of the force-depth curve in Fig. 4.4.27 

shows that the index m takes a value of approximately 1.6 for diamond, giving a Young's 

modulus of E= 1137 GPa for an elastic recovery of 36 nm. The respective nanohardless 

is calculated to be 117 GPa. These values correspond well to those published in the 

literature [154]-[156]. 

4.5.3 C(; O Fullerene Film 

A maximum load of 150 µN was used to indent the surface of a C60 substrate of 1 

µm thickness grown on glass. The corresponding load-displacement curve is presented 

in Fig. 4.4.28. Despite a small elastic response during the unloading stage, primarily 

a large plastic deformation of the C60 substrate takes place. The response from the 

substrate to the small applied load clearly reflects a very weakly bound material where 

the individual C60 molecules are readily displaced. From an analysis of the force-depth 

curve in Fig. 4.4.28 the index m is calculated to be approximately 1.5 giving a Young's 

modulus for the fullerene substrate of E= 13.0 GPa. The nanohardiiess of the CfM 

substrate is calculated to be 0.21 GPa. These values are lower than those published in 

the literature [157]-[160]. 
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Fig. 4.4.28. Force-depth curve for indentation into the C60 substrate on glass at the 

maximum applied load of 150 11 : (+) increasing load curve; (x) decreasing load curve. 

4.6 Summary 

Nanoindentation of various carbon materials has been probed by MD simulations im- 

plementing an atomistic description of the indenter. The simulations yield the same 

qualitative behaviour for graphite and diamond as the interface indenter description 

in the previous chapter. For both indenter models, qualitative agreement was found 

between the MD simulations and the experimental results of Richter et al [1211. The 

experimental results extracted mechanical properties that compared well with other 

studies in the literature. Simulations with graphite reflected a chemically inert ma- 

terial, deforming purely elastically towards indentation, accompanied with hexagonal 

surface waves propagating from the point of indentation. The experimental observa- 

tions also suggested that the elastic behaviour of graphite can be accompanied with 

catastrophic breaking of atomic layers. Indentation of the C60 film by N1D revealed 

the permanent displacement molecules, reflecting a weakly bound material. The plastic 

deformation of the work piece resulted in adhesion between the tip and some individual 

C60 molecules. Experimental verification of the weakly bonded C60 film also suggested 

the predominately plastic response was also accompanied with small elastic behaviour. 

Simulations implementing the atomistic indenter representation have allowed the in- 

dentation to have some physical impact on the tip. Elastic deformation of the apex was 

observed as the tip compressed during penetration of the substrates. The hardest of the 

samples, diamond, compressed the tip the most, while indentation of the much softer 
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Cho film resulted in virtually no compression. Since the tip is atomically sharp, the apex 

atoms have low coordination. This leads to different mechanical properties compared 

with bulk diamond, and the tip is much softer and compresses more easily. Indentation 

of diamond with a blunted `flat' tip indenter showed less compression since the network 

structure in the apex was significantly more developed. 

The simulations show that when contacting surfaces are clean, i. e. free from ad- 

sorbates, then strong interfacial adhesion can occur. The tip-substrate adhesion stems 

from the large number of dangling bonds in the indenter and substrate. In the case 

of adsorbate-free diamond, interfacial adhesion was characterised by connective threads 

of atoms between the substrate and the tip. Connective strands measuring up to 15 

A were observed, and were composed chiefly from indenter atoms, although some sub- 

strate atoms were also constituents. Rupture of the connective threads ensued in atom 

transfer to and from both the indenter and work piece, in a predominantly amorphous 

arrangement. The addition and dispossession of atoms showed how the initial stages 

of tip blunting can occur. The tip-substrate adhesion imparted a small degree of plas- 

tic deformation in the surface local to the indentation. However, the fractional plastic 

deformation was not reflected in the force-depth curves and only determined by visual 

inspection of the indentation region. Despite interfacial adhesion, the diamond material 

reflected a predominantly elastic response towards indentation. 

Saturation of the indenter and substrate surfaces with an adsorbate show that a layer 

of impurities can significantly reduce, or even completely prevent, adhesion between tip 

and sample. Indentation of hydrogen terminated diamond {100} ensued in a purely 

elastic deformation of the work piece, with no observable interfacial adhesion and the 

tip retaining its structural integrity. Simulations performed on a-C: H substrates with 

comparatively high and low densities showed minimal tip-substrate adhesion occurred, 

with a very small transfer of atoms across the contacting interface. The adhesion with 

a-C: H occurred primarily because the substrate surface is only partially terminated and 

there are void regions where subsurface atoms expose dangling bonds. No significant re- 

arrangement in the bonding structure of the a-C: H work materials was found subsequent 

to indentation and the therefore the deformation was considered primarily elastic. 
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Chapter 5 

Nanoindentation of bcc and fcc 

Metals Implementing the Atomistic 

Indenter Model 

5.1 Introduction 

There has long been considerable motivation to probe the mechanical properties of met- 

als because of their widespread applications. The bulk deformation behaviour of metals 

towards indentation has been widely studied and documented [20]. It is well known 

that metals undergo appreciable plastic deformation in response to indentation, which 

can be partially recovered by annealing. It has been shown for macroindentations of 

metals that the material around the indenting tool can be extruded upwards in a process 

known as `piling-up', forming a collected heap on the surface [161] (the pile-up is also 

called a hillock). The opposite trend in metal indentation is called `sinking-in' where 

the material around the indent is depressed. In 1968 a pioneering study by Gane and 

Bowden [162] reported different metallic behaviour during hardness testing at different 

depth scales. Subsequent work has also suggested that the bulk behaviour of metals dif- 

fers as the scale of indentation depth is reduced. Hence, as the present day importance 

of device miniaturisation continues, probing the mechanical properties of metals at the 

nanoscale is becoming ever more crucial. To explore the nanoscale behaviour of metals, 

experimental and complementary theoretical studies have recently been undertaken. 

Extensive MD simulations of metal indentation have been performed by Landman 
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and co-workers [163]-[165] in the early part of the last decade. They reported on inden- 

tation of several different metals, including Au and Ni, using sharp metallic pyramidal 

tips. During the simulations an interesting asperity-substrate phenomena was observed 

in the loading stage. When the tip-substrate separation distance surpassed a critical 

value, some of the atoms in the tip and those sited directly underneath in the substrate 

surface jumped towards each other in a relatively short time span. This phenomenon, 

called a `jump-to-contact' (JC) or `avalanche in adhesion', stems from mechanical insta- 

bility in the tip-substrate system and ensues in `wetting' of the tip by substrate atoms 

(or vice versa). In the JC phenomena Landman et al observed that the material with the 

lowest modulus tended to bulge out towards the other. On reversal of the tip, the adhe- 

sive interface stretched and a `connective neck' was formed which proceeded to elongate 

leading to significant structural rearrangement and ultimately breakage. The formation 

and rupture of the connective neck allowed substantial atom transfer between the tip 

and the work piece. A recent study by Buldum et al [166] reported on the indentation 

of Cu {110} and Cu {100} using both sharp and blunt Ni tips. The sharp tip had a 

single atom asperity and produced multiple sequential JC phenomena on approach to 

the surface. The behaviour of the blunt hemispherical Ni tip was considerably different 

since only a single JC was observed. 

Landman et al [165] researched the tip-substrate bonding further by coating the tip 

with an epitaxial monolayer. During indentation with the coated tip the JC phenomena 

was again observed, but the asperity-substrate adhesion was significantly reduced. Al- 

though a connective neck was formed, atom transfer between the work material and the 

tip also decreased. This behaviour was attributed to the expitaxial monolayer prevent- 

ing a multitude of interfacial bonds. The force of adhesion for Ir and Pb substrates was 

examined by Sutton et al [113] for indentation with Ir and Pb tips. They introduced a 

monolayer on the surface of the work material. Although `soft' and `hard' monolayers 

were considered, in both cases a JC phenomena was observed and a connective neck 

formed during reversal of the indenter. The only difference between the soft and hard 

monolayer was a dominance in which of the surface or tip atoms stimulated the JC. 

Independent of the soft or hard monolayer, Sutton et al found the layer of impurities 

prevented a multitude of tip-substrate bonds forming, even when the apex penetrated 

through the surface impurities. Consequently the force of adhesion was less compared 

with indention with the clean surface. In conclusion, they found that interfacial adhe- 
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sion could be minimised by a monolayer of impurities on the sample surface. 
More recent MD studies of Pb indentation were reported by Tomagnini et al [167]. 

Using a pyramidal Au tip they simulated the indentation of Pb {110} at a tempera- 

ture of 600 K. The high temperature caused the substrate surface and subsurface to 

melt forming a liquid surface region. Subsequent to an observed JC phenomena as the 

indenter approached the work material, the tip of the impinging indenter dissolved in 

the liquid region of the work piece. During tip retraction a liquid-like connective neck 

was formed and increased in length as the indenter displaced further away from the 

substrate. In a study by Belak et al [168] the indentation of Cu {111} with a diamond 

indenter was explored. At an indentation depth of seven atomic layers almost the entire 

volume of the probing tip had been consumed. The range of the plastic deformation 

was limited to within a few lattice spacings about the indenter. Furthermore, little 

pile-up of atoms around the indent was observed. A minor dislocation loop was marked 

by the presence of a small step in the surface local to the indentation region. Further 

tip-induced phenomena occurring in metals have also been investigated. The induced 

surface topography in the form of pile-up has been studied by Bolshakov et al [169]. In a 

finite element study they found evidence that the piled-up material around an indented 

aluminium alloy material supported the load of the indenter. 

On the experimental front, numerous investigations of asperity contact with metals 

have also been reported. Kuipers and Frenken [170] investigated the indentation of Pb 

{110} with aW tip. At elevated temperatures the JC phenomena was observed, followed 

by the formation of a connective neck. Using STM Brandbyge et al [171] measured a 

nanowire up to 20 A in length when a connective neck between the tip and Au {110} 

substrate was elongated. Experimental indentation of metals has also been performed 

with a covalently bonded tip. For example, Pharr and Oliver [172] investigated the 

indentation of Ag {111} with a diamond pyramidal indenter. They observed a depth 

dependency of nanohardness, in two distinct stages. For indentation depths of about 

100 nm a gradual increase in nanohardness was found. However, when the indentation 

depth was reduced to 50 nm or less, the nanohardness increased sharply. The influence 

of specimen preparation methods on nanohardness was investigated by Liu et al [173] 

for indentation of high purity Cu {111} crystals. At indentation depths lower than 400 

nm they observed significant differences in nanohardness of the same sample polished by 

two different methods. The work by Corcoran et al [174] reported on diamond Berkovich 
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indentation of single Au crystals with different grain orientations. They found a series 

of `pop-ins' in the force-depth curves, which is a displacement discontinuity where in- 

creased indentation depth results in a stationary force value. Experimental studies have 

also been extended to investigate the nanomechanical behaviour of alloys [175]-[176]. 

This chapter presents MD simulations of nanoindentation into body-centred-cubic 

(bcc) Fe and face-centred-cubic (fcc) Ag using the atomistic indenter model. The two 

specific metals are chosen simply to investigate the behaviour of both bcc and fcc metals 

in response to indentation and to compare with available experimental results. The crys- 

tal configuration of Fe and Ag is presented in Fig. 5.5.1. Hillock growth phenomenon 

has been observed for indentation in quasi-crystals [40]-[41], showing a definite orien- 

tation and crystallographic dependence. The nature of the deformed material under 

the indenter and the induced surface topography in the form of hillocks, together with 

defects and the reconstruction of material after penetration is studied. In reality, metals 

occur as an assembly of small crystals randomly orientated with respect to each other. 

The boundaries between them are commonly referred to as grain boundaries [177]-[179] 

and are typically areas of low atomic density. Hence, indentation along grain bound- 

aries is also studied by simulation, since they play an important role in the adhesion and 

deformation of polycrystalline materials. Furthermore, different surface orientations are 

chosen for simulated indentation near a grain boundary so that the influence of surface 
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a 
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Fig. 5.5.1. (a) The unit bcc cell of a Fe crystal, where a denotes the lattice constant 

equal to 2.866 A and b denotes half the lattice constant. (b) The unit fcc cell of a Ag 

crystal, where a denotes the lattice constant equal to 4.086 A and b denotes half the 

lattice constant. 
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grain on mechanical behaviour can be studied. The simulation results are compared with 

experimental results for polycrystalline Fe and Ag in a companion paper [180], where 

nanoindentations were performed using the Hysitron Nanoindenter Triboscope [152] as 
detailed in the preceding chapter. The preparation of the polycrystalline samples is 

described in the companion paper. Also discussed in this chapter is the computational 

efficiency of Ackland's potential used to describe the Ag-Ag interactions. 

5.2 Simulation Details 

Indentations are performed on the bcc and fcc {100} crystal surfaces. For the investi- 

gation near a grain boundary, Fe 110011111} crystal grains are employed. Atoms on 

the vertical edges of the substrate are held fixed and all remaining substrate atoms 

are damped. Adhesion between the indenter and the work material is not permitted 

since the tip-substrate interactions are modelled in a purely repulsive way by the ZBL 

potential [129], which is smoothly cut-off at 3.59 A. Since the indenter and substrate 

interactions are modelled in an entirely repulsive way, the atomistic indenter without 

hydrogen termination is implemented here. 

For simulations with Fe {100}, a crystal with approximate dimensions 115 Ax 

115 Ax 40 A is employed. The {100} work piece is composed of 28 atomic layers and 

is configured from 44,800 atoms, where 4,368 atoms form the constrained boundary. 

The Fe 110011111} grain boundary substrate has approximately the same dimensions 

as the {100} substrate and is composed from 46,216 atoms, where 6,658 atoms form 

the fixed vertical border. The {100} grain and {111} grain are composed from 28 and 

49 atomic layers respectively. The grain boundary in the substrate is aligned vertically 

along the centre of the work material, where the indentation is made. The work material 

is formed by combining a Fe {100} and {111} crystal where the atoms at the boundary 

reconstruct. This process is repeated by translational motion between the two different 

crystal orientations and relaxing to find the minimum energy configuration. The Fe-Fe 

interactions are described by a potential with the Finnis-Sinclair form [181], which is 

smoothly cut-off at 3.62 A. Simulations with Ag are performed on a crystal with approx- 

imate dimensions 130 Ax 130 Ax 40 A. The {100} work material is composed of 20 

atomic layers and contains 40,960 atoms, where 4,960 atoms compose the fixed vertical 

border. The Ag-Ag interactions are described by Ackland's EAM potential [182], which 
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Fig. 5.5.2. Plan views of the indenter rotation with respect to the atomic structure of 

the substrate for: (a) Fe {100} with 0= 0°; (b) Fe {100} with 0 45°; (c) Ag {100} 

with 0= 0°; (d) Ag {100} with 0= 45°; (e) Fe { 100111111 grain boundary with _ 

0°. Large and small unshaded circles denote 1st and 3rd layer atoms respectively, while 

shaded circles represent 2nd layer atoms. In (a) and (c) the indenter side AC is parallel 

to (100) with remaining sides sited 15° from (110). In (b) and (d) the indenter side AC 

is parallel to (110), with remaining sides aligned 15° from (100). In (e) the central bold 

line denotes the grain boundary. 
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is smoothly cut-off at 5.0044 A. The elastic constants and stacking fault energy for the 

metal potentials are given in the references and are found to be in good agreement with 

experimental data. Simulations of duration 150 ps are exercised here for all work ma- 
terials, with an indentation period, T= 150 ps. At the beginning of each simulation, 

the indenter apex is sited 10 A above the middle of the substrate surface and the max- 
imum displacement of the constrained indenter atoms, rm, is set to 30 A. This gives 

an average indentation speed of 40 ms -1 and a maximum possible penetration depth of 
20 A. The equations of motion are integrated with a constant timestep of 1.0 fs. Unless 

otherwise stated all substrate atoms are shaded on their vertical displacement. 

The distribution of piled-up material reflects the crystal structure of the substrate. 
With axially symmetric indenters like spheres or cones, the tip-induced deformation 

should reflect only the crystal symmetry of the substrate. However, spherical indenters 

are not generally used since they are difficult to manufacture with the precision re- 

quired in nanoindentation experiments and are not self symmetric. With cube-cornered 

indenters there is an overlap between crystal and indenter symmetry, which complicates 

the analysis of pile-up formation. Therefore, the rotation of the indenter with respect 

to the atomic configuration of the substrate is examined. Pile-up will be a maximum 

if one side of the pyramidal indenter is aligned along a preferred direction for hillock 

formation. The rotation of the tip (defined by 0) is considered only for indentation 

of the single {100} bcc and fcc crystals. Two indenter orientations are studied where 

one cross-sectional edge of the pyramid is parallel to either the (100) or (110) direction. 

These alignments are chosen to reflect the surface symmetry of the crystals. For the 

grain boundary substrate, only one orientation of the indenter is considered. The ro- 

tation of the indenter with respect to the work material is shown schematically in Fig. 

5.5.2. 

5.3 Simulation Results and Discussion 

5.3.1 Body-centred-cubic Iron 

Fe {100} Substrate 

The force-depth curves for indentation of Fe {100} are shown in Fig. 5.5.3 where the 

upper portion of the curves corresponds to the loading stage and the lower portion is 
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Fig. 5.5.3. Force-depth curves from the simulations of indentation into the Fe {100} 

crystal. The bold solid line corresponds to indentation with 0= 0° and the remaining 

line denotes indentation with 0= 45°. 

the load during extraction. The different orientations of the indenter with respect to 

the substrate surface result in very similar force-depth curves. In both simulations the 

indenter reached a maximum penetration depth of approximately 17 Ä. The peak force 

acting on the diamond tip was 265 eV/A and 290 eV/A for indentation with 0= 0° and 

= 45° respectively, which occurred during the loading stage just before the maximum 

penetration depth at roughly 16 A. On tip retraction the force acting on the inden- 

ter quickly declines because appreciable plastic deformation has occurred. The elastic 

recovery of the substrate during the unloading stage takes place over approximately 7 

A depth. From Fig. 5.5.3 the load-displacement curves show the low coordinated tip 

compressed by roughly 3A during the indentation. Snapshots from the halfway stage 

of the simulations in Fig. 5.5.4(a) and (c) reveal the piling-up of work material along 

the indenter sides. At the conclusion of the simulations, Fig. 5.5.4(b) and (d) show the 

plastic deformation is characterised by a permanent impression in the Fe sample, which 

corresponds to the geometry of the indenter. Note the difference in the distribution of 

the material pile-up along the sides of the plastically deformed triangular region. This 

will be discussed in more detail in Chapter 7. 

As the impinging indenter makes mechanical contact with the substrate, some of 

the atoms sited directly below the tip are forced to release their stored elastic energy. 

A number of the Fe atoms close to the apex are displaced further into the substrate, 

while those Fe atoms that lie along the sides of the indenter are displaced outwards 

towards their neighbours. The displacement of these atoms introduces a series of point 

102 



defects (i. e. atomic irregularities in the lattice) in the substrate which evolve through 

the material during the indentation process. Hence, the plastic deformation develops 

by rapid rearrangement of bonding in the network structure. For more information on 

(a) 

(c) 

(b) 

(d) 

Fig. 5.5.4. Snapshots from the simulation of indentation into the Fe { 100} crystal wit li: 

(a) =0°att=75ps; (b)0ý 0°att=150ps; (c)0_=45°att- 75ps; (d)q 15" 

at t= 150 ps. Note the large plastic deformation of the substrate and the pile-up along 

the sides of the plastically deformed triangular region, as marked by the arrows. 
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crystalline irregularities in metals the reader may proceed to Damask and Dienes [183]. 

Some of the surface atoms that displace outwards move towards interstitial sites which 

ensues in the atom `popping' up on top of the surface. As a by product, vacant lattice 

sites are introduced which can become occupied by subsurface atoms as the indenta- 

tion progresses. This process also occurs in subsurface layers and therefore produces a 

plastic flow of atoms from the near surface region towards the crystal surface as they 

are sequentially displaced to and from lattice sites in consecutive atomic layers. As the 

indentation depth increases the atoms displaced above the surface accumulate and a 

well defined `pile-up' is formed. The atoms displaced further into the substrate do so 

sequentially through the motion of the point defects. At the halfway stage of the inden- 

tation process with 0= 00,135 Fe atoms have been displaced vertically by more than 10 

A into the substrate compared with 113 Fe atoms for indentation with 0= 45°. At the 

end of the indentation process, the maximum vertical displacement of a Fe atom into 

the material is 15.71 and 14.2 A for indentation with 0= 0° and 0= 45° respectively. 

A mechanism responsible for pile-up and plastic flow is captured in the snapshots 

shown in Fig. 5.5.5. The series of images show the transition of 2 4th layer atoms dis- 

placing to the 3rd layer. The impinging indenter causes a green 3rd layer atom in Fig. 

5.5.5(a) to displace towards an interstitial site in Fig. 5.5.5(b), as marked by the arrows. 

However, Fig. 5.5.5(c) shows the atom does not occupy the interstitial site and that it 

is energetically more favourable for the atom to be displaced up to a vacant lattice site 

in the 2nd layer. Similar behaviour is also observed with the blue 4th layer atoms as Fig. 

5.5.5(d) show they eventually occupy the vacant lattice sites inhabited by the displaced 

3rd layer atoms. Hence, the plastic flow of atoms is not of interstitial character since 

atoms are displaced to and from lattice sites during the transition to pile-up. Inspection 

of numerous other atom trajectories during the transition stage revealed this mechanism 

to be responsible for plastic flow and pile-up. However, other mechanisms ensuing in 

plastic flow and pile-up may also be active. 

Fig. 5.5.6 shows the displacement path of a 3rd layer Fe atom illustrating the tran- 

sition to pile-up via sequential jumps to preceding atomic layers. As the indentation 

progresses the atom is displaced towards the 4th layer. At point (A) the atom jumps up- 

wards to a vacant site in the 2nd atomic layer at (B). The jumping time between the two 

atomic layers is very small, with a speed of approximately 80 ms-1. The jumping speed 

is faster that the average indentation speed of 40 ms-1 yet considerably slower than the 
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speed of sound. After (B), the atom continues to displace further into the substrate 

as the indenter penetrates further until at point (C) where another junip occurs to a 

vacant lattice site. However, this jump occurs over two atomic layers such that at point 
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(a) 

(c) (d) 

Fig. 5.5.5. Snapshots of the indentation area for the 3`d Fe { 1001 layer ilitist rat ing t he 

mechanisms of pile-up and plastic flow. The green and red atoitis represent the T`' ]Ayer 

and the blue atoms are 4th layer atoms. The snapshots correspond to cj) = 0° at: (a) t 

=23.4ps; (b) t= 24.0 ps; (c) t= 24.6 ps; (d) t= 25.2ps. 

)OOOOOOOOOOOC 
)OOOOOOOOOOOC )OOOOOOOOOOOC )OOOO O oo00c 
)00 000000C 
)008%0 ooooc )ooooo 8ooooc 
)0000 08 00000C )000000 ooo0OC )OOOOOO000000 )OOOOOOOOOOOC YnnnnnnnnnnnC 

(h) 

X00000000000 
ýOO0000oOCý 0000 

ßö 8 ýj ýöö 
)oooý o )0000 00 

ö0öö 
)000000 00000 X0000000000 >00000000000 >nnnnýnnýnnn 

105 



(D) the atom is effectively above the surface of the work piece. The jumping speed is 

approximately the same as that during the transition from (A) to (B). Even though the 

atom is above the surface, the vertical position is still positive due to the small elastic 
deformation surrounding the indent. After the halfway stage there is a small elastic 

recovery of the surface as the tip is extracted and by the conclusion of the simulation 

the atom is displaced by half a lattice constant above the undisturbed surface. 

As the indenter reaches maximum penetration, Fig. 5.5.7(a) and (b) show the 

plastically deformed triangular region of the work material is surrounded by an area 

of axially symmetric elastic deformation. Thus, the elastically deformed area does not 

reflect the symmetry of either the tip or the substrate. The minicracks marked by the 

black arrows in Fig. 5.5.7(a) arise from the boundary conditions imposed on the work 

material. These characteristics are also present in the substrate during indentation with 

0= 450, but both Fig. 5.5.7(c) and (d) show the edges of the substrates have fully 

relaxed at the end of the simulation. Another interesting feature in all of the images 

in Fig. 5.5.7 is the minicracks near the edges of the central plastically deformed region 

where the stress concentration is high, as marked by the white arrows. For indentations 

with both 0= 0° and ¢= 45° the minicracks are only observed propagating along the 

(100) directions up to a maximum of approximately 12 A in length. They are most sig- 

nificant at the halfway stage of the simulation, but at the conclusion of the indentation 

process, Fig. 5.5.7(c) and (d) show that the surface has partially reconstructed. 

The piling-up of work material along the indenter sides occurs during the loading 
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> -1.0, 
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25 50 75 100 125 15 
Time (ps) 

Fig. 5.5.6. The vertical displacement path of a 3rd layer Fe atom showing the transition 

to pile-up during indentation with 0= 0°. The capital letters indicate where the atom 

jumps to vacant atomic sites in preceding layers during the transition stage. 
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(a) 

((j) 

(b) 

(d) 

Fig. 5.5.7. Plan view of 18t layer atoms in the Fe { 100} substrate showing the plant R Billy 

deformed triangular region with: (a) 0= 0° at t- 75 ps; (b) 0= 45° at f 75 ps; 

(c) = 0° at t -= 150 ps; (d) 0= 45° at t= 150 ps. careen shaded atoms denote those 

atoms displaced above the surface by more than 1A and blue shaded atoms represent 

those atoms displaced by more than 1A below the surface. The red atones have not 

been displaced by more than IA either above or below the surface. Note the ininicracks 

near the edges of the plastically deformed region as marked by the white arrows. Also 

note the edge effects of the substrate marked by the black arrows in (aa). 
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stage of the indentation process and proliferates with increased penetration depth. At 

the conclusion of the simulation with 0= 00, there are 137 Fe atoms that have been 

displaced above the substrate surface. Fig. 5.5.7(c) shows that there is no piling-up of 

material along the side of the plastically deformed triangular region that lies parallel to 

the (100) direction, but occurs along the remaining sides orientated close to the (110) 

direction. The pile-up occurs here since the sides of the indenter displace the atoms 

closer to the nearest neighbour direction than the side parallel to the (100) direction. 

Following indentation with 0= 45°, Fig. 5.5.7(d) shows that the pile-up of material 

occurs along each of the triangular sides of the plastically deformed region. However, 

the bulk of the pile-up occurs along the side of the deformed region that lies parallel to 

the (110) direction. Analysing Fig. 5.5.7(c) and (d) shows that the yield of material 

pile-up is greatest when the substrate atoms are displaced along the (110) direction, i. e. 

the nearest neighbour direction, and least along the (100) direction. At the conclusion 

of the indentation process with 0= 45° there are 90 Fe atoms that have been displaced 

above the undisturbed substrate surface. Since the indenter is not axially symmetric, 

the rotation angle ¢ clearly influences the abundance of atoms constituting the surface 

pile-up. 

Structural analysis of the pile-up material around the plastically deformed triangular 

region shows it to be primarily arranged in crystalline bcc form with no vacancies or 

interstitials. The pile-up material on the surface of the substrate is mainly composed 

of 1st layer Fe atoms, with a sizeable fraction originating from the subsurface layers 

through the process of tip-induced plastic flow. Following indentation with 0= 0°, the 

surface pile-up has a maximum height of 6.4 A (approximately 38% of the maximum 

penetration depth) and is configured from 80 1st layer atoms, 39 2nd layer atoms, 16 3`a 

layer atoms and 2 atoms from the 4th layer. For 0= 45°, the assemblage of Fe atoms on 

the crystal surface peaks at roughly 4.2 A (approximately 25% of the maximum pene- 

tration depth) above the undisturbed surface and is configured from 81 16t layer atoms 

and only 9 atoms from the 2nd layer. Piling-up of the work material is also observed 

on the subsurface layers, showing similar distribution to those atoms on the surface of 

the substrate. After the 5th layer of the Fe sample, no significant piling-up is observed 

along the indenter sides. 

At the end of the loading stage, the indenter just penetrated through the 13th layer 

in the Fe sample and so the images in Fig. 5.5.8 reveal the defects that occur in the 
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(a) (b) 

Fig. 5.5.8. Plan views of the Fe {100} substrate showing only the 15th layer at t 150 

ps with: (a) 0= 0°; (b) 0= 45°. The blue shaded atoms denote those atoms displaced 

from the 14th layer. The green shaded atoms represent those atoms displaced from layers 

preceding the 14th layer. The red shaded atoms represent atoms originating from t he 

15th layer. Note the minicracks along both the (100) and (110) directions as marked by 

the arrows. 

substrate layers underneath the tip at maximum indentation. Fig. 5.5.8 shows some 

atoms from preceding layers are permanently displaced to the 15th layer of t 1ºe subst rat e 

and arranged in crystalline bcc form. This in turn causes some of the atoms fron tlºe 

15th layer to be displaced to the succeeding layers. An animated movie shows that the 

displacement of atoms to succeeding layers occurs by the motion of point defects. Fur- 

thermore, as the indenter is extracted. some of the atoms from proceeding layers are 

displaced back to their original layer. Both images in Fig. 5.5.8 show the displacement 

of atoms induces uiinicracks in crystal configuration, as marked by the arrows. which 

are observed along both (100) and (110) directions. This effect toutinues furl her dowim 

into the lattice and thus a deep crystal is required for the simulations. The range of 

plastic deformation exceeds more than twice the maximum indentation depth. 

The compression of the Fe atoms during time indentation process has been examined 

by analysing the change in density of the substrate atoms. Radial (list ril)llt ion plots 

are presented in Fig. 5.5.9 at various stages of the indentation process with c;, ) O" 
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Fig. 5.5.9. Radial distribution plot of Fe density for indentation with 0= 0° at: (a) t 

=0 ps; (b) t= 75 ps; (c) t= 150 ps. For each atom, ai, in a local area containing 

an initial 8,354 atoms around the local indentation region, the density of Fe atoms is 

evaluated in an annulus of width 0.1 A which is sited at a radial distance rA from ai. 
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and provide a helpful insight into the structural change of the work piece. The plot in 

Fig. 5.5.9(a) corresponds to indentation at t=0 ps and clearly reflects the crystalline 

configuration of the Fe substrate. The average number of neighbours for each Fe atom 

is slightly less than those in an effectively infinite system of bcc atoms, due to the in- 

clusion of surface atoms. Fig. 5.5.9(b) shows the radial distribution of Fe density at 

the halfway stage of the indentation process. The spreading of the distribution shows 

how the contact region becomes disordered during the indentation. Clearly there is a 

limit in the compression of the Fe atoms. Detailed analysis reveals that the Fe atoms 

compressed to a minimum distance of 2.05 A from each other. This corresponds to 

approximately 17 % compression in the nearest neighbour bond length. Fig. 5.5.9(c) 

shows the radial distribution of Fe density at the conclusion of the indentation process. 

As the compression in the work material relaxes, the plot shows the density of atoms in 

the substrate begins to return to its original distribution. However, the small discrep- 

ancy between Fig. 5.5.9(a) and (c) arises primarily from the plastic deformation of the 

substrate. 

Fe {100}{111} Grain Boundary Substrate 

Shown in Fig. 5.5.10(a) is the force-depth curve for indentation into the Fe {100}{111} 

grain boundary substrate with 0= 0°. The peak force is approximately 170 eV/A at a 

penetration depth of about 14 A. Comparison with Fig. 5.5.3(a) shows that the maxi- 

mum force is about 60% of that for the {100} substrate. Although the {111} surface is 

closer packed than 11001, the weaker bonding along the grain boundary accounts for the 
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} Fig. 5.5.10. Force-depth curve from the simulation of indentation into the Fe { 100} {1 11 

grain boundary substrate with 0= 0°. 
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lower force experienced by the indenter. The indenter reached a maximum penetration 

depth of approximately 18 A and the tip compressed by 2 A. Fig. 5.5.10 shows a plateau 

in the load-displacement curve during the loading stage, in the indentation region 13 

A- 18 A. The indenter displaces more slowly near the peak penetration depth. and 

atoms relax to more favourable minimum energy configurations. The weaker bonding 

on the grain boundary assists this process and a number of substrate atoms are pushed 

up onto the surface near the halfway stage of the indentation. Therefore, the plateau in 

Fig. 5.5.10 stems from significant volume and density changes induced under the inden- 

ter tip in a short period of time. The rearrangement of atoms leading to a stationary 

value in the force curve is known as a `pop-ins and has been observed experimentally 

for other metals [174], [184]-[185]. The same displacement discontinuity has also been 

been observed for other materials, such as semiconductors [186]-[187]. Experimentally, 

`pop-ins' are commonly attributed to the breakthrough of oxide layers. A displacement 

discontinuity in the unloading curve is known as a `pop-out' and has also been observed 

(a) (h) 

Fig. 5.5.11. Snapshots from the simulation of indentation into the Fe 1100111111 graul 

boundary crystal with 0= 0°. The grain boundary is aligned vertically along the middle 

of the substrate with the {I11} grain on the left and the {100} grain on the right. (a) 

The halfway stage of the simulation at t= 75 ps. Note the piling-up of' substrate atones 

occurs largely on the surface of the {100} grain. (b) Conclusion of the simulation at t. 

= 150 ps. Note the permanent impression of the indenter left in the substrate. 
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experimentally for some materials such as Si [188]. 

Snapshots from the simulation of indentation into the Fe { 100} { 111 } grain bound- 

ary substrate are presented in Fig. 5.5.11 i. The pile-up of material occurs primarily 

on the { 100} grain of the substrate. There is no clear piling-up of material on the 

{111} facet. After full tip retraction, structural analysis reveals no voids across the 

grain boundary. Furthermore, a small amount of atom migration across the { 100111111 

interface could be found in both grains. Fig. 5.5.12(a) shows the elastic deformation of 

substrate atoms around the plastically deformed triangular region. In the {100} grain. 

the substrate atoms displace more axisymmetrically, compared with the {111} grain. 

At the conclusion of the indentation process, 173 Fe atoms have been displaced above 
'An animated movie of this is on the CD in the Appendix 

(a) (h) 

Fig. 5.5.12. Plan view of the plastically deforrrred triangular region in t he Fe { 1O0} {I11} 

grain boundary substrate showing only l't layer morns at: (a) t- 75 ps; (b) 1 150 

ps. The grain boundary is aligned vertically along the middle of the sitbstratte with the 

{111} grain on the left and the {100} grain on the right. The green shaded aatonis denote 

those atoms displaced above the layer by more than 1A and the blue shaded atotirs 

represent those atoms displaced by more than 1A below the layer. The red <atotiis have 

not been displaced by more than 1A either above or below the layer. The ýIrrows in (b) 

mark vacant lattice sites in the piled-up material. 
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the substrate surface by more than 1A on the {100} grain. Only four Fe atoms con- 

stituting the pile-up material are displaced above the {111} surface. The peak height 

of the piled-up material was approximately 8.2 A (approximately 45% of the maximum 

penetration depth) above the surface with the {100} orientation. The difference in the 

pile-up yield for the {100} and 11111 surface is discussed in more detail in Chapter 

7. The piled-up material is primarily crystalline bcc and contains no interstitial sites, 
however there are two noticeable vacant lattice sites above the {100} grain as marked 

by the arrows in Fig. 5.5.12(b). 

5.3.2 Face-centred-cubic Silver 

From the load-displacement curves in Fig. 5.5.13, indentation with 0= 0° results in 

a peak force of 125 eV/A acting on the indenter, which occurs just before the halfway 

stage of the indentation process at a penetration depth of approximately 17.5 A. In- 

dentation with 0= 45° results in a slightly lower peak force of 110 eV/A, occurring 

at a penetration depth of about 18.5 A. Comparing Fig. 5.5.3 with Fig. 5.5.13 shows 

that the maximum force acting on the indenter from the Ag sample is less than half 

that exerted by the Fe substrate, which clearly reflects the difference in nanohardness 

between the two samples. The diamond apex reached a maximum indentation depth of 

about 18 A and 19.5 A with 0= 0° and 0= 45° respectively. Indentation of the Fe 

{100} substrate results in greater compression of the diamond tip compared with the 

softer Ag work material. As the indenter is extracted from the Ag crystal, the elastic 

recovery of the substrate takes place over the penetration range of approximately 8A 

- 18 A and 11 A- 19.5 A for indentation with 0= 0° and 0= 45° respectively. Fig. 

5.5.3 and Fig. 5.5.13 show that the elastic recovery of both the Fe and Ag substrates 

during the unloading stage occurs over a range approximately equal to 35% - 40% of the 

maximum indentation depth. This is a much larger elastic recovery than experimentally 

observed due to the small penetration depths in the simulation model. 

The halfway stage of the indentation process in Fig. 5.5.14(a) and (c) shows the 

substrates accommodating a large volume of the indenter, with piling-up of the work 

material along the indenter sides 2. The primary mechanism leading to plastic-flow and 

material pile-up is the same as observed for Fe {100}. At the conclusion of the simula- 

2An animated movie of this is on the CD in the Appendix 
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Fig. 5.5.13. Force-depth curves from the simulation of indentation into the Ag {100} 

crystal. The bold solid line corresponds to indentation with 0= 0° and the remaining 
line denotes indentation with 0= 45°. 

tion, Fig. 5.5.14(b) and (d) show damage similar to that imparted to the Fe substrate, 

with a large permanent impression of the indenter left in the work material. The images 

in Fig. 5.5.14 also reveal `slip markings' or `slip bands' on the surface of the substrate 
(as marked by the arrows) and occur as planes of atoms glide over each other once a 

critical stress level has been surpassed. These crystallographic planes are called slip or 

glide planes. The direction of the slip is called a slip or glide direction. Hence, a slip 

system is a combination of the slip plane and slip direction. Crystallographic slip is 

a kind of dislocation, which in essence can be described as a lattice imperfection. For 

fcc crystals, the slip plane is typically the close packed {111} plane. The direction of 

slip in Fig. 5.5.14 is along the (110) directions which agrees exactly with the literature 

[189]. A schematic representation of the slip system in the Ag work material is shown 

in Fig. 5.5.15. The slip direction is along (110) since this is the direction where the 

fill} plane intercepts the {100} surface. The slip deformation behaviour of bcc metals 

is more complicated than fcc since slip can occur on a number of planes [190]-[191]. The 

deformation to the Ag crystal is both by piling-up of atoms along the indenter sides and 

by slip along glide planes. 

At the halfway stage of the simulation with 0°, 69 Ag atoms have been displaced 

by more than 10 A vertically into the material, compared with 43 atoms for 0= 450. 

This is less than half the number of Fe atoms that displaced in the same manner during 

the simulations on the Fe {100} substrate. As the diamond apex reached peak pene- 

tration into the Ag crystal, the maximum vertical displacement of an Ag atom into the 
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work material is 14.4 A and 16.6 A for indentation with 0= 0° and 0= 45° respec- 

tively. Fig. 5.5.16(a) and (b) clearly show a less axially symmetric elastic deformation 

(a) 

((j) 

(h) 

(d) 

Fig. 5.5.14. Snapshots from the simulation of indentation into t lie Ag {100} crystal wit h: 

(a) 0= 0° at t= 75 ps; (b) 0 -- 0' at t= 150 ps: (c) () -I5" pat t- 75 ps; (d) 0 15° 

at t= 150 ps. Note the large plastic deformation of the substrate and 1 he piling-up of 

atoms along the sides of the plastically deformed triangular region. Also note the slip 

markings on the surface of the work material as marked by the arrows. 
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of surface atoms around the indenter compared with Fe. An interesting feature present 
in the surface of the work material during indentation with 0= 0°, is the minicrack 

marked by the arrow in Fig. 5.5.16(a). The feature measures approximately 25 A in 

length and is also observed in subsurface layers, propagating along the (110) direction. 

As the indenter is withdrawn from the work material the minicrack fully reconstructs. 
The crystalline formation of slip bands in Fig. 5.5.16(a) and (b) propagated very 

quickly as a wave from the centre of the substrate surface along the (110) directions (i. e. 

the out-of-plane (111) directions) until they interacted with the boundaries. In reality, 

the slip markings would glide away from the indentation trace until they interact with 

defects in the crystal or collide with a grain boundary. The simulation cell employed 

here is much too small to observe such an effect. The transition from the slipped to 

the unslipped region is spread over several lattice distances. In the transition region, 

each atom is displaced further away from its initial lattice site. The highest point of 

the slip bands above the surface lay between 1A and 1.3 A. The slip planes have not 

moved vertically by half a lattice constant and therefore the crystal continuity is not 

completely maintained. During indentation with 0= 0°, a parallel set of slip bands were 

observed propagating side-by-side. However, for indentation with ¢= 45°, only single 

slip bands propagated along the (110) directions. Although shallow, the slip bands were 

comparatively wide with peak measurements between 35 A and 40 A. At the conclusion 

of the indentation process, some of the slip bands have fully relaxed, while others are 

permanent deformations in the work material. The permanent slip markings do not 

Fig. 5.5.15. Schematic representation of the slip system in the Ag {100} work material. 

Slip occurs in the {111} planes (shaded), along the compact (110) directions. 
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(a) 

(c) 

(b) 

(d) 

Fig. 5.5.16. Plan view of the 1st layer atoms in the Ag {100} substrate showing the 

plastically deformed triangular region with: (a) 0= 0° at t= 75 ps; (b) 0- 45° at t 

= 75 ps; (c) 0= 0° at t= 150 ps; (d) 0= 45° at t 150 ps. The blue shaded atoms 

represent those atoms displaced by more than 1A below the surface. The green shaded 

atoms denote those atoms displaced above the surface by more than: (a), (b) 0.1 A; 

(c), (d) 1 A. The red atoms have not been displaced by more than 1A below the surface 

or by: (a), (b) 0.1 A; (c), (d) 1A above the surface. Note the minitrack in (a) marked 

by the arrow. 
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occur along each of the four possible compact directions in both simulations, which can 
be attributed to the asymmetry of the indenter. Additional simulations on Ag {100} 

established that a critical indentation depth of approximately 10A needed to be reached 
for slip markings to appear on the substrate surface. 

Comparison between Fig. 5.5.7(c), (d) and Fig. 5.5.16(c), (d) reveals that more sub- 

strate atoms are displaced above the surface of Ag than Fe. This would be expected 

since Ag is much softer than Fe and so pile-up can occur more easily. In Fig. 5.5.16(c) 

and (d), the distribution and yield of material pile-up is clearly influenced by the rota- 

tion of the indenter. Following indentation with ¢= 0°, Fig. 5.5.16(c) shows a large 

accumulation of Ag atoms along the side of the plastically deformed triangular region 

parallel to (100). Here, the atoms appear to displace onto the surface along the (110) 

direction. There is also a substantial assemblage of Ag atoms along the remaining sides 

of the deformed region. The side of the plastically deformed region that lies parallel to 

the (110) direction in Fig. 5.5.16(d) shows few Ag atoms thrown up onto the surface. 

The remaining sides of the plastically deformed triangular region also show a small yield 

of displaced Ag atoms onto the surface compared with Fig. 5.5.16(c). 

Structural analysis of the pile-up material on the surface of the Ag substrate shows 
the atoms to be primarily arranged in crystalline fcc form with no vacancies or intersti- 

tials. Following indentation with 0= 0°, the piled-up material reaches a peak height of 

6.1 A (approximately 34% of the maximum penetration depth) and is configured from 

201 1st layer atoms and 28 2nd layer atoms. After indentation with 0= 45°, the pile-up 

material peaks at 5.91 (approximately 30% of the maximum penetration depth) above 

the undisturbed surface and is composed of 143 1st layer atoms, 21 2"d layer atoms and 

2 3rd layer atoms. Permanent slip markings are also observed on the subsurface layers 

of the work material, forming similarly to those on the substrate surface, but with de- 

creasing widths and lengths. Further analysis reveals that permanent slip markings are 

formed on each atomic layer to the maximum penetration depth. In each layer, these 

features are comparable to those in the preceding layer, but less substantial. Piling-up 

of material also occurs along the sides of the plastically deformed triangular region in 

the subsurface layers. However, after the 5th substrate layer, no significant piling-up of 

material occurs along the sides of the plastically deformed region. This is analogous to 

the observations of piled-up material on the subsurface layers in the Fe {100} substrate. 

Atoms in the Ag substrate near the peak penetration depth of the indenter behave in 
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Fig. 5.5.17. Radial distribution plot of Ag density for indentation with 0= 0° at: (a) 

t=0 ps; (b) t= 75 ps; (c) t= 150 ps. For each atom, a;, in a local area containing 

an initial 8,008 atoms around the local indentation region, the density of Ag atoms is 

evaluated in an annulus of width 0.1 A which is sited at a radial distance rA from ai. 
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a very similar manner to the atoms in the Fe substrate, where some layer atoms are 
displaced from preceding layers. As with Fe, the range of plastic deformation in Ag 

exceeds twice the peak indentation depth. The maximum kinetic energy of both the Fe 

and Ag substrates during the indentation was approximately 20 eV, which, if averaged 

across the substrate, corresponds to a peak temperature increase of about 5 °C. 

The radial distribution of Ag density in the work material for indentation with 0 

= 0° is presented in Fig. 5.5.17 at different stages of the indentation process. Fig. 

5.5.17(a) corresponds to the start of the indentation process at t=0 ps, and illustrates 

the crystalline structure of the Ag substrate. The radial distribution of Ag atoms at 

the halfway stage of the indentation process is presented in Fig. 5.5.17(b). As observed 

with Fe, the contact area becomes disordered during the indentation. Detailed analysis 

of the plot shows the limit in compression between two Ag atoms is approximately 2.55 

A. This corresponds approximately to 12% compression of the nearest neighbour bond 

length. Fig. 5.5.17(c) shows the radial distribution of Ag atoms at the conclusion of the 

indentation process. 

5.4 Modification of Ackland's Ag Potential 

In Ackland's EAM Ag potential, the energy of an atom, U=, is determined by both a 

pair potential and a many body function, as discussed in Section 2.2.1, Chapter 2. The 

functions V(rte) and q5(rzj) (given in Chapter 2, by Eqn. 2.2.2.6 and Eqn. 2.2.2.7) are 

described by cubic splines fitted to various crystal properties. By denoting the atomic 

separation between atoms i and j as r, the functions V(rij) and 0(rij) are written as 

6 
V(r) _ ak(rk - r)3H(rk - r) (5.4.5.1) 

k=1 

2 
E Ak(Rk - r)3H(Rk - r) (5.4.5.2) 
k=1 

where rk and Rk are chosen knot points such that rl > r2 > r3 > r4 > r5 > r6 and 

Rl > R2. The function H(x) is the Heaviside step function and is defined such that 

H(x) =0 for x<0 and H(x) =1 for x>0. The coefficients ak, Ak and rk, Rk are given 

in Table 5.1. The coefficients rl and Rl represent the cut-off radii of V (r) and c(r) 

respectively, which is equal to the separation distance between an atom and its third 

neighbours. In an infinite volume of an ideal fcc crystal, each atom i has 12 18t, 6 2nd 
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Table 5.1. Coefficients ak and rk in Ackland's Ag potential. The values are in units of 
the lattice constant (4.086 A). 

Coefficient Value Coefficient Value 

al 20.368494 rl 1.2247449 

a2 -102.36075 r2 1.1547054 

a3 94.31277 r3 1.1180065 

a4 -6.220051 r4 1.0000000 

a5 31.08088 r5 0.8660254 

a6 175.56047 r6 0.7071068 

Al 1.458761 Rl 1.2247449 

A2 42.946555 R2 1.0000000 

and 24 3rd neighbours which are situated at a and a2 respectively from i, where 

a denotes the lattice constant. The cut-off radii in Ackland's Ag potential is at the 

third neighbour spacing. This is not ideal for a MD simulation since the neighbour lists 

generated for each atom will be large due to the significant number of third neighbour 

atoms. By modifying the potential energy function such that the cut-off occurs just 

before the third neighbours, the size of the neighbour lists can therefore be reduced and 

hence, the computational efficiency for energy and force evaluations can be increased. 

In the MD simulations, the neighbour lists have a skin radius equal to 5% of the 

potential cut-off. Therefore, by cutting Ackland's Ag potential off at 4.765 A, the 

neighbour lists would have a new radius of 5.003 A and will not include third neighbours. 

Fig. 5.5.18 shows the modification to the pair potential which was formed by truncating 

V (r) from the maximum at r/a -ý 1.084, and replacing it with a cubic spline which is 

smoothly cut-off at 4.765 A. The modified potential V (r) is described as 

Ek-1 ak(rk - r)3H(rk - r) if r< rt, 

V (r) = (5.4.5.3) 
[ti(r 

- rtr)3 + t2(r - rtr)2 + t3] H(rt - r) if r> rtr 

ti = 1.267566 t2 = -0.641271 t3 = 0.024315 
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Fig. 5.5.18. The bold line represents Ackland's Ag pair potential V (r) plotted against 

r/a, where a is the lattice parameter and r is the atomic separation. The dashed line 

shows the modified part of the potential which is cut from the local maximum at r/a 

1.084 A and smoothly cut-off at r/a = 1.166 A. 

where rtr : 1.084 and rt -_ 1.166 in units of the lattice parameter. The function O(r) 

is also cut-off at 4.765 A by adjusting the coefficient Rl in Table 5.1 to rt. 
The load-displacement curves in Fig. 5.5.19 show a comparison between Ackland's 

original potential and the modified potential for indentation of Ag {100} with 0= 0°. 

Implementing the modified potential results in a peak force of approximately 95 eV/A 

acting on the indenter at an indentation depth of about 19 A. This corresponds to a 
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Fig. 5.5.19. Force-depth curves from the simulation of indentation into Ag {100} with 

= 0°. The bold line represents indentation with all Ag-Ag interactions described by the 

modified Ackland's Ag potential, which is smoothly cut-off at 4.765 A. The remaining 

line corresponds to indentation where all Ag-Ag interactions are described by Ackland's 

original Ag potential, which is smoothly cut-off at 5.0044 A. 
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ha 

Wa 

Fig. 5.5.20. Cross-section of a substrate employing the embedded original-modified Ack- 

land Ag potential. The substrate has a height ha, a width wa and is split into regions Ra 

and Rb. Region Ra is constrained by vertical boundaries at a distance Wb from all sides 

of the substrate and a horizontal border positioned at a distance hb from the underside 

of the substrate. Region Rb is then defined as the remaining volume in the substrate. 

In the embedded region Ra, Ackland's normal potential is implemented and in region 

Rb, the modified version of Ackland's potential is employed. 

decrease of 24% in the maximum force of 125 eV/A observed when Ackland's original 

potential is employed. The two load-displacement curves compare well for low inden- 

tation depths. However, as the indenter tip displaces further into the work material, 

the discrepancy between the two curves becomes more significant. Furthermore, the 

elastic recovery of the work material is slightly less for indentation using the modified 

potential. The total CPU time for the simulation employing the modified potential was 

approximately 71.5 hours compared with 108.8 hours for the simulation utilising the 

original potential (times are based on the SUN workstation). Hence, by truncating the 

the potential just before the third neighbours, the total CPU time has been reduced by 

approximately 34% at a cost of significant inaccuracies describing the Ag-Ag interac- 

tions. 

The discrepancies between the load-displacement curves in Fig. 5.5.19 occur since 

the modified potential only yields an accurate description of the silver work piece in an 
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ideal equilibrium state. The discrepancies in Fig. 5.5.19 can be reduced by employing 

both Ackland's potential and the modified potential, as illustrated in Fig. 5.5.20. By 

considering an embedded region of the substrate encompassing the local indentation re- 

gion, Ra,, the Ag-Ag interactions are described by Ackland's original potential and hence 

the correct mechanical behaviour of the work material should be closely maintained. In 

the region Rb outside the local indentation area, the Ag atoms are less dynamic than 

those sited around the local indentation region (Ra) and hence, the atoms in region Rb 

can be described by the modified potential to increase the computational efficiency of 

the simulation. 
Fig. 5.5.21 shows force-depth curves for indentation employing Ackland's orig- 

inal potential and the embedded original-modified potential. The force-depth curve 

compares very well to that produced from employment of Ackland's original potential. 

There is clearly less discrepancy between the two load-displacement curves compared 

with Fig. 5.5.19. With the embedded original-modified potential, indentation results in 

a maximum force of approximately 120 eV/A acting on the indenter at an penetration 

depth of approximately 18 A. The elastic recovery of the substrate compares very well 

between the two force-depth curves. This would be expected since the elastic recovery 

of the work material is centred around the local indentation region, where the Ag-Ag 

interactions were described by Ackland's original potential. The total CPU time was 
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Fig. 5.5.21. Force-depth curves from the simulation of indentation into Ag {100} with 0 

= 0°. The bold line represents indentation implementing the embedded original-modified 

potential, where ha 40 A, hb 10 A, Wa - 130 A and Wb 35 A. The remaining 

line corresponds to indentation where all Ag-Ag interactions are described by Ackland's 

original potential. 
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approximately 77.9 hours, which lies between the CPU time for indentation with the 

original potential (108.9 hours) and the modified potential (71.5 hours), as would be 

expected. Using the embedded original-modified potential maintains the development 

of slip bands on the Ag surface and also ensues in a similar distribution of tip-induced 

pile-up. 

The embedded original-modified potential could be successfully applied to simulated 

phenomena where a large volume of the work piece is consistently in a near ideal equilib- 

rium state. For example, during indentation of an Ag substrate configured from millions 

of atoms, there will be tens of thousands of atoms outside the local indentation region 

near the sides of the work material that will remain in a near equilibrium state. These 

atoms can be described by the modified potential, thus considerably decreasing the 

size of neighbour lists and increasing computational efficiency. However, the embedded 

original-modified potential presented here needs to be investigated further to examine 

any impairments of material properties and also the influence of the boundary separat- 

ing regions Ra, and Rb. For example, if the modification to Ackland's potential impairs 

the elastic properties, then indentation of the work material may ensue in discrepancies 

in the deformation behaviour across the Ra and Rb interface. The simulations using Ag 

in the preceding section used Ackland's original version of the potential. 

5.5 Experimental Results and Discussion 

5.5.1 Body-centred-cubic Iron 

Nanoindentations were performed on ferrite grains between 5 and 30 pm, in ordinary 

steel C 35 samples. Due to limitations in experimental resources, the crystal orientation 

of the ferrite grains could not be distinguished. A SFM image of the ferrite grains is 

presented in Fig. 5.5.22. The surface image shows different crystal orientations sepa- 

rated by grain boundaries. Multiple indentations were performed at various locations in 

the work piece with different loading forces and penetration depths. Nanoindentation 

into grain 1 with a force of 3 mN results in hillock growth along the left and right sides 

of the indented region. Along the uppermost edge, there is comparatively less piling-up 

of the work material. Two indentations were made in grain 2, where the large and 

small indented regions correspond to a maximum indentation force of 3 mN and 2 mN 
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respectively. Here, the hillock growth is distributed more symnietrically around the lo- 

cality of the indentation. The difference between the indentation images in grain 1 and 

grain 2 clearly suggest a different orientation of the crystal structure of the substrate 

with respect to the indenter. Nanoindentation was also performed directly on the grain 

boundary between grains 1 and 2 in Fig. 5.5.22, with a force of 0.5 mN. To capture 

the mechanical properties of only the grain boundary, the indentation force has to be 

reduced otherwise the bulk behaviour of the adjacent grains will become too influential. 

The indentation image on the grain boundary in Fig. 5.5.22 clearly shows piling-up 

occurring preferentially in grain 2. 

Fig. 5.5.23(a) shows a SFM image of indentations with a force of 1.5 inN in adjacent 

ferrite grains. The hillocks clearly form differently in each grain. The peak height of t he 

piled-up material in the upper indent is approximately 17'/0 of the maxirnuin penctratioii 

depth. For the lower indent, the peak height of the hillocks is about 33`%, of the maxi- 

mum indentation depth. A typical force-depth curve for Fe is shown in Fig. 5.5.23(b) 

with a peak indentation force of 1.5 mN, which results in a Ynaxinitnn penetration depth 

of approximately 160 nin. The elastic recovery of the ferrite work nnaterial is 14 nisi, 

Fig. 5.5.22. SFM irrvage of ferrite grains with several imnoiiidentationti (as iºiimrked by 

the arrows) in grain 1 and grain 2 with a 7naxinniin force 43 inN (large iudeiit s) away 

from the boundary and 0.5 mN at the boundary. There is allot her iudleernt in grain 2 

(smaller image) with an indentation force of 2 iriN. Irrlage size 12 liuº x 12 /im. 
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Fig. 5.5.23. (a) SFM image of adjacent ferrite grains with indents in both grains showing 

pile-up of different forms. (b) corresponding force-depth curve for nano indentation with 

a maximum indentation force of 1.5 mN: (+) increasing load curve: (x) decreasing load 

curve. 

i. e. about 10% of the maximum indentation depth. For the 3 inN indentation iinageti 

in Fig. 5.5.22, the plastic deformation of the work material is 87%r amid 8J`% for graili 1 

and grain 2 respectively. For indentation at the grain boundary, the blast is defia imiat i()u 

is approximately 86%. The nanohardness of the ferrite work immaterial is 1.9 ± O. 1 ("P il 

and using Hertzian theory of contact (Section 3.4. Chapter 3), the Young's modulus i, 

160 f 11 GPa. 

5.5.2 Face-centred-cubic Silver 

The surface of a polycrystalline Ag sample is presented in Fig. 5.5.2.1. The three (fit'- 

ferent grains A, B and C are separated by grain boundaries. In grains 13 mid C, twill 

lamellas are clearly visible. The crystal orientation of ea(1i of the three gm i is coill(l l1( t 

be determined, for the same reason With the polyerstýullill( ferrite s, uiiple. 111(1( 111atlO1l 

into grain A results in it symmetric (list rilnttloll of the piled-up thaiteriaal, whereas irn- 

dentation of grains B and C ensues in hillocks formed predoiiiinmo lV along orte si(fe of 

the indentation region. Different crystal orientations of t lie grains result ill the 

tion of the hillock distribution in the indentation images. In Fig. 5.5.25(; 0, the height 

profile line scan shows the hillocks formed around the 100 i>>n iu(leiºt at ioii ill gratin A 

have peak heights of 34 11111 and 46 nni. From Fig. 5.5.25(1)), the hillock formed atroiui(l 
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Fig. 5.5.24. SFM image of three adjacent Ag grains A, B and C showing grail! bowidaaries 

and twin lamellas in B and C. The superimposed images correspond to indeents iii the 

grains with an a maximum indentation force of 0.5 in\. 

the indentation in grain B is similar to those around the indent gat ioii in grail! A, with a 

maximum height of 42 nm. 

No slip markings are observed on the surface of the polycryshilline Ag smupl ' fol- 

lowing indentation, due to the limitation of the SFM instrument. I1 wever, it recent 

experimental study by Zimmerman ci (ii [192] observed several slip iiiarkiiºgs following 

indentation of An { 100} with a tungsten indenter. Shown in Fig. 5.5.26(; 1) is all S'1'\ I 

image by Ziminermmn ct al [192] '3 of two nainoindent atioiis oil the An 11001 surface. 

The image clearly shows pile-up around the indents toget her wit li slip iuiarkiugs along 

the (110) direction, which were observed up to several lnitidre(I migstroiuis iiiviy from 

the indentation region. In a study by Gonzalez ct al [193], slip iiuarkitigs observed ()it t lie 

Au {100} surface following indentation had au estimated height of (1.7 Aa 11(1 widths up 

to 7 mini. Shown in Fig. 5.5.26(b) is a STMT image obtained by Ziiiiºueri>>aui rt (11 [1921 

of a slip marking on Ag {100}, induced frohe ion-botubairdinciit and annealing. The \lI) 

simulations on Ag presented in this chapter rel)rodIice siiirilar tip-induced slit) >iiarkitigs 

3Witli permission 
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Fig. 5.5.25. Nanoindentations in Ag with section analysis showing t lie piling-up of' werk 

material. Indents correspond to: (a) grain A acid (h) grain B in Fig. 5.5.2-1. Note, t fie 

black and white arrows in the graph in (b) are the wrong way aarolllI(l. 

on the {100} surface as observed on Ali by Ziiiuineriiian et al [192]. 

A force-depth curve is presented in Fig. 5.5.27 for 1.5 nºN indent at ion of the poly- 

crystalline Ag work material, which results in an indentation (lel>tli of aif)f)roxiiuait('lV 

320 11111. Indentation of the ferrite grains with the saiue force resulted in halt' I lie umax- 

imtiiiº indentation depth observed with Ag. The elastic deformation for Ag is IS iiiii, 

i. e. about 6% of the maximum indentation depth. The 1m1 ist is deforuulat i(>ii of the Ag 

material is therefore greater than the ferrite grain at 94(/, IS «-oul(l be exl)ccted since 

Ag is softer than Fe. The nxnoliardness for Ag is calciilLated to be 0.42 ± 0.03 ('l'ei sind 
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(a) (h) 

Fig. 5.5.26. (a) STM image of two nanoindentations in the Au { 100} surface. Note I], (, 

pile-up formed around the indents and the slip markings sited along the (11O) direction. 

Image size 98 nin x 98 nm. (b) STM image of a slip marking on Ag 11001. Image size 

11.6 nin x 11.6 nm. Capital letters are used to compare the orientations of t he slip 

markings in (a) and (b). 

the Young's modulus is 144 f 10 GPa. For both the hcc and fc( inaterials. (liffereiit 

crystal orientations were not reflected in the nanohardness ýiiºcl Young's modulus values 

since the variation lies within the experimental error. The experimental error ill the 
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Fig. 5.5.27. Load-displacement curve for üaiioiiideiitat ion in At; with a >riaxiiiiuiü iileii- 

tation force of 1.5 rriN: (+) increasing lodui curve; (x) decreasing load curve'. 
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nanohardness is 5% and 7% in the Young's modulus. 

5.6 Summary 

We have performed MD simulations of nanoindentation into bcc Fe and fcc Ag sub- 

strates, including an investigation of the effect near grain boundaries. The rotation of 

the non-axisymmetric indenter with respect to the atomic structure of the substrate was 

considered to study the influence of the bcc and fcc crystal planes. The simulations give 

a good description of nanoindentation in the Fe and Ag substrates, supporting many of 

the experimental features. Visual inspection of the specimen's surface, shows the profile 

of the damage imparted to the work materials is characterised by the indenter geome- 

try. For the softer fcc material, inelastic deformation is also characterised by numerous 

slip markings on the surface. Slip was only observed in the simulations propagating 

along the (110) directions (i. e. the out-of-plane (111) directions), which is in excellent 

agreement with experimental observations by Zimmerman et at [192]. The theoretical 

and experimental force-depth curves agree qualitatively, reflecting a harder bcc material 

compared with fcc. However, the MD simulations reflected a higher elastic deformation 

of the materials compared with experimental observations, due to the small indenter 

tip and penetration depths. For both work materials, the simulated load-displacement 

curves were not especially sensitive to the orientation of the indenter with respect to 

the crystal geometry of the substrate. 

The MD simulations show that indentation ensues in tip-induced piling-up of sub- 

strate atoms, which agrees qualitatively with experiment. The pile-up does not occur 

as a viscous flow, but as a series of sequential displacements by the motion of point 

defects. The hillocks formed primarily on the surface and subsurface layers of the work 

material, along the indenter edges and were suppressed at the corners of the indent. 

The piling-up of material occurs preferentially along the close packed planes in the work 

material and forms in the same crystalline arrangement as the substrate. The piled-up 

material was found to contain no interstitials and, in some cases, a fraction of vacancies. 

The yield of material pile-up was greater for the softer fcc crystal structure than the 

harder bcc. Hillock growth was influenced by both the rotation of the indenter and the 

crystal orientation of the substrate, which agrees qualitatively with experiment where 

there is a definite observed orientation and crystallographic dependence. Analysis of 
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structural transformations around the indentation region were analysed by constructing 

radial distribution functions. Spreading of the distributions showed that the substrate 

contact region becomes disordered during indentation, but predominantly returns to 

its original crystallographic configuration as the indenter is withdrawn. Outside of the 

indentation region, all the material remained highly crystalline, deforming elastically in 

a broadly axisymmetric fashion. Indentation near a grain boundary showed a constant 

rearrangement of atoms occurs near the maximum indentation depth causes a `pop-in' 

in the force-depth curve. Along the grain boundary the weaker bonding also reduced the 

nanohardness of the material with the maximum force about half that of the adjoining 

{100} grain for a given indentation depth. 

It is difficult to compare the experimentally determined mechanical properties for 

the Fe and Ag materials with macroscopic values, since they were calculated using 

larger-scale materials. Only a comparison for the nanohardness of Ag with other experi- 

mentally measured values could be found in the literature which is in excellent agreement 

[172]. The mechanical properties calculations from the MD simulations show a relative 

difference in nanohardness compared to experimental values. For Fe, the calculated 

nanohardness from the simulated load-displacement curves was 7.4 GPa, approximately 

four times the experimental value. Using Hertzian theory of contact the Young's mod- 

ulus was 39 GPa, about one quarter of the experimental observation, indicating that 

greater indentation depths are required in the simulations for agreement with the con- 

tinuum model. A similar discrepancy is found between the extracted values for Ag from 

simulation and experiment. Although there are discrepancies in the elastic properties 

of the Brenner potential, it is not so influential in this case, since diamond is so much 

harder than Fe and Ag. 

The computational efficiency of Ackland's Ag potential in the MD simulations has 

also been examined. By modifying Ackland's potential such that it cuts-off before the 

third neighbours, the efficiency of the MD simulation code could therefore be improved. 

For simulations where all Ag-Ag interactions were described by the modified poten- 

tial, the total CPU time was reduced by approximately 34%. However, it was found 

that both the indentation force and elastic recovery of the work piece was underes- 

timated. An embedded original-modified potential was then employed, where Ag-Ag 

interactions in the local indentation region were described by Ackland's original poten- 

tial and Ag-Ag interactions outside the local indentation region were described by the 
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modified potential. This method closely reproduced the mechanical behaviour observed 

with indentation using just the original potential and reduced the total CPU time by 

approximately 28%. 

Current simulations on the SUN workstations are constrained to simulations of a 

maximum of about 100,000 atoms. This limitation results in visible finite-size effects 

during the nanoindentation. For example, with the metals the range of plastic defor- 

mation exceeded the depth of the substrate and with Ag the tip-induced slip bands 

propagated until they interacted with the fixed edges. With graphite, waves of elastic 

deformation propagated until they intersected the rigid substrate sides. One way to 

partially alleviate such finite-size size effects is to employ a greater number of atoms by 

developing a parallel MD program for use with multiple processors. 
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Chapter 6 

Parallel Molecular Dynamics 

6.1 Introduction 

There is a continual demand for high computational speed by data intensive applica- 

tions in industry and research. For example, in computational materials science the 

evaluation of mass numerics heavily constrains feasible system size. To overcome this 

constraint, increases in computer power have to be achieved. Preliminary efforts to de- 

velop computer speed focussed on the fabrication of smaller and faster circuit elements. 

Although the performance of computers has grown exponentially, the fabrication of ad- 

vanced processors is restricted by inherent physical limits. Furthermore, the cost of 

single processor computers increases more than their performance. Hence, increased 

computer performance cannot depend merely on the development of faster processors. 

An alternative approach to achieving boosted computational speed is through a par- 

allel computer, which, by broad definition, consists of multiple processors which can 

operate on the same problem simultaneously. Implementing a set of processors to work 

co-operatively to solve a computational problem is known as parallel processing, and 

can be performed on a single machine containing multiple processors and/or on a series 

of interconnected computers. The latter approach has become a common method for 

building a `parallel environment' on budget, where networks or clusters of workstations 

are referred to as a Beowulf machine [194]. For further information on parallel process- 

ing the reader may wish to proceed to the excellent book by Foster [195]. 

Parallel computers have evolved to become everyday tools of the computational scien- 

tist. Although parallel processing is more widespread with workstation clusters because 

of cost, massively parallel machines with up to hundreds of thousands of processors are 
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also implemented. In essence, the idea of parallel processing is that n CPUs provide 

up to n times the speed of a single CPU. Hence, the processing time should be nth of 
that obtained implementing a single CPU. In reality, this scenario is seldom achieved 

since the work load cannot be divided equally among the processors. Furthermore, 

surplus processing time is incurred by necessary data transfer and the synchronisation 

of computations. Despite this, substantial improvements in total processing time can 
be accomplished. The speedup therefore allows the use of larger-scale problems to be 

evaluated by parallel processing in a reasonable amount of time, or for smaller-sized 

problems to be computed in a shorter amount of time. 

Significant implementation of parallel computers occurred approximately two decades 

ago. Typical parallel computers consisted of multiple processors connected to a globally 

addressable memory, see Fig. 6.6.1(a). Numerous parallel languages have been devel- 

oped for parallel processing with shared memory. Probably the most widely utilised is 

OpenMP [196], which has evolved as a standard for shared memory programming envi- 

ronments. The modern day trend with shared memory parallel computers is to utilise 

a small number of very fast processors. However, as the number of CPUs on shared 

memory computers increases, performance improvements are limited. To overcome this 

constraint, parallel computers implemented distributed memory, as illustrated in Fig. 

6.6.1(b). Here, each CPU has local memory which is only addressable from the CPU to 

which it is associated with. Hence, this provides a scalable architecture since additional 

memory is attainable for additional CPUs. Since there is no shared memory in this case, 

INTERCONNECTION NETWORK 

CP 

MEMORY 

CPUs 

(a) (b) 

Fig. 6.6.1. Schematic representation of. (a) shared memory model; (b) distributed mem- 

ory model. 
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parallel processing explicitly involves passing information (or messages) from one CPU 

to another. In a distributed memory architecture this is achievable since the processors 

are interconnected in a communications network. 

In general, parallel processing with the message passing model creates a fixed num- 
ber of multiple tasks across selected processors. Each task executes the same program, 
but operates on different data. The operated data can be accessed by other processors 

through message passing. Hence, communications serve to avoid duplicate work being 

processed. A variety parallel languages have evolved for message passing, such as Paral- 

lel Virtual Machine (PVM) [197] and the Message Passing Interface (MPI) [198]-[199]. 

First developed in 1993-1994, MPI has evolved as a standard in message passing, as de- 

fined by the MPI forum [198]-[199]. In essence, MPI is a library of functions and macros 
(not a language) that enables message passing and supports numerous programming 

languages such as Fortran, C and C++. MPI also provides the portability which allows 

applications developed on one platform to be run on another, without requirements of 

redevelopment. 

In MD, the computational goal for parallelisation is to perform each timestep as 

quickly as possible. This permits larger atom numbers to be utilised or longer simu- 

lation times. Furthermore, parallelisation allows the possibility of using more complex 

interatomic potentials. At present, optimum parallel MD simulations on typical multi- 

processor machines involve systems of around 10-100 million atoms. The use of massively 

parallel machines allows systems of around one billion atoms to be employed. Many im- 

plementations of parallel MD having been developed [80], [200]-[201] to obtain better 

cost effectiveness. Bachlechner et al [200] performed MD simulations using approxi- 

mately 2.1 million atoms to study dislocation emission at the Si/Si3Ni4 interface. In a 

recent study by Walsh et al [201], MD simulations with up to 100 million atoms were 

carried out to study nanostructured materials. 

This chapter discusses the development of a parallel MD code using MPI. With 

the increasing availability of multiprocessor computers, developing problems in a form 

compliant for parallel solution is critical for effective computation. In principle, par- 

allelisation of a MD simulation on a parallel machine with np processors consists of 

decomposing the system of atoms into np smaller systems. Parallelisation is achieved 

by loop splitting, where the work done in a loop is split over processors. For example, 

consider the following loop: 
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DO I=1, N 

A(I) = B(I) + C(I) 

ENDDO 

By implementing parallel processing, this loop can be executed upon by a group of pro- 

cessors simultaneously. If N processors are available then one processor could execute 

A(1) = B(1) + C(1) and another processor A(2) = B(2) + C(2) and so forth. Hence, 

loop splitting provides a method for rapidly increasing the total execution time of a 

program. In MD there are many opportunities for parallelisation since numerous cal- 

culations are independent, such as energy and force evaluation. Therefore, they can be 

computed in parallel in any order and any grouping. In addition to describing the par- 

allelisation of the serial MD code, the basic performance characteristics are determined 

and evaluated for conjecturing scalability to larger physical systems and larger parallel 

machines. 

6.2 Program Development 

Parallelising serial programs for use with a distributed parallel computer is not an easy 

task to perform. Parallelisation increases the complexity of software because of the extra 

degrees of freedom it introduces. The extended complexity stems from many difficulties, 

such as: 

" What program revisions are required to facilitate parallelism and reduce commu- 

nications overhead? 

" What kind of parallelisation scheme should be adopted such that the resources of 

the target architecture are effectively used? 

" What is the impact on performance by varying system size and the number of 

processors? 

Hence, the transition from traditional sequential computation generally requires a com- 

prehensive reformation of the basic strategies to develop optimised parallel code. Re- 

formulating serial code into a form compliant for parallelisation is a type of functional 

decomposition. 
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6.2.1 Revision to Fortran 90 

Since the existing MD code was developed under the Fortran 77 standard, the pre- 
liminary reformation was focussed on a thorough revision to the Fortran 90 standard 
[202]. Fortran 90 is better suited to more modern computing than its predecessor and 

offers many features that facilitate functional decomposition. The most useful proper- 

ties which have been implemented are modules and dynamic array allocation. 

Modules, which are perhaps the most important quality of Fortran 90, are varieties 

of a program unit like subroutines and functions. They offer extremely powerful func- 

tionality since they control accessibility of the entities declared within to other program 

units. Thus, the essence of modular design is to reduce program complexity and fur- 

thermore, to facilitate code reuse. A module has the general form 

MODULE module name 

Declaration statements. 

CONTAINS 

Definitions of module procedures. 

END MODULE module name 

Contained within a module are different procedures which all have local data access. 

Therefore, procedures which are interrelated and require access to the same data are 

usually grouped together within a module. The accessibility of the procedures outside 

the module can by controlled through private and public declarations. Such declara- 

tions further allow modules to manage the practicability of data. Thus, modules can 

provide global data access, therefore making the need for common blocks and the pass- 

ing of information via arguments redundant. Since modules involve declarations, they 

are implemented at the beginning of a program or other modules via a USE module name 

statement. Therefore, entities made employable by this statement are accessed by use- 

association. 

A great disadvantage with Fortran 77 is the requirement for static array alloca- 

tion. However, in many scientific programs the exact size of an array is not known 

until numerous computations have been performed or some data inputted. Therefore, 

programmers have to guess the size of the array prior to execution, which can lead to 

obvious problems. This issue is rectified in Fortran 90 by allowing dynamic array allo- 

cation through the ALLOCATABLE statement. Here, the compiler defers the allocation of 
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space to an array until it is allocated dynamically in the execution through the ALLOCATE 

statement. In programs where storage needs to be efficiently controlled, dynamic arrays 

can be deallocated by the use of DEALLOCATE. The ability to deallocate an array is also 

useful where the size of an array repeatedly changes, since the array can be resized after 
deallocation. 

6.2.2 Profile of Serial MD Code 

Profiling is the process of determining how much each part of the code contributes to the 

total execution time. Thus, profiling the serial MD code will conclude which portions of 

the code will return the largest performance gains when parallelised. The compliancy 

of the identified portions for parallelisation can then be assessed, and functional de- 

composition applied if required. The preliminary parallelisation issues were focussed on 

constituents of the MD core, namely the routine calculations incurred every timestep. 

The essence of the MD core consists of the calculation of the force on each atom and 

the integration of the equations of motion, where coordinates and velocities are updated 
(see Fig. 2.2.3, Chapter 2). This is also coupled with the periodic recalculation of the 

cell lists and neighbour lists. The total expense of cell and neighbour list construction 

together with force evaluation and integration is illustrated in Table 6.1, as a percentage 

of the elapsed time during a typical simulation. 

Table 6.1. Expense of force evaluation and integration together with cell/neighbour list 

construction following indentation of Fe 1100}, as percentage of total elapsed time. The 

whole system was configured from 48,856 atoms and the simulation run for 150 ps. 

Constituent of MD core Expense as % of total elapsed timea 

Cell list construction 0.04 

Integration 3.1 

Neighbour list construction 4.7 

Force evaluation 91.5 

aThe remaining percentage of runtime stems from system initialisation/termination and 

data output in the non-core. 
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Clearly the most computationally intensive constituent of the MD core is the force 

evaluations (. -- 90% of the total runtime). By comparison, the time incurred during 

integration and construction of the cell/neighbour lists accounts for an almost inconse- 

quential amount. Parallelising the non-core will yield an insignificant payoff since the 

contribution to total execution time is negligible. Although neighbour list updates incur 

far less time than force evaluations, they are the next largest contributor to total run- 

time. Hence, preliminary parallelisation efforts are concentrated on the force evaluations 

and construction of the neighbour lists. Thus, only selected parts of the MD core will 

run in parallel with the remainder effectively running as serial. Indeed it is possible that 

the MD core could become inefficient if the remaining core constituents are parallelised 

since the algorithm may become communication bound. To develop a highly optimised 

and efficient code, the cost of recomputation always has to be weighed against the cost 

of communicating the same result between processors. 

6.2.3 Functional Decomposition 

Energy and Force Evaluation 

The existing serial version of the code uses a tri-component potential for C/Si/H systems 

[203]. Of the tri-component description, only the Brenner hydrocarbon potential is 

implemented in the simulations presented in this thesis. The general format of the 

subroutine used in the potential evaluation is shown in Fig. 6.6.2. The energy and force 

calculations are split into two different parts. In the first component (Fig. 6.6.2(a)), 

information from the neighbour list is extracted. Each atom and its neighbours are 

examined to determine the type of interaction. If the interaction is of Brenner-metal 

type, then the repulsive ZBL pair potential is evaluated. If the interaction is of Brenner- 

Brenner or metal-metal type, then the neighbours are stored in an array if they are within 

the interaction range. This array is effectively the same as the neighbour list, minus those 

atoms that reside in the skin. Atoms that lie outside the interaction range are simply 

neglected. Furthermore, pairwise terms such as bond length, direction cosines and both 

cut-off functions and derivatives are calculated and stored. Since the neighbours of 

an atom and the corresponding pairwise terms are entailed many times during energy 

evaluation, the storage is done to improve computational efficiency since it saves time 

recalculating. The second part of the energy evaluation (Fig. 6.6.2(b)) consists of the 
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LOOP OVER ALL ATOMS 

LOOP OVER ALL NEIGHBOURS 

DETERMINE TYPE 
OF INTERACTION 

IF INTERACTION IS IF INTERACTION IS 

CARBON-METAL BRENNER-BRENNER 
OR METAL-METAL 

STORE NEIGHBOURS WITHIN 
INTERACTION RANGE 

EVALUATE PAIR 
POTENTIAL 

CALCULATE AND STORE PAIRWISE 
TERMS LIKE BOND LENGTH AND 

DIRECTION COSINES 

FINISH LOOP 

FINISH LOOP 

(a) 

START POTENTIAL CALCULATION 
LOOP OVER ALL ATOMS 

LOOP OVERALL STORED NEIGHBOURS 

ACCESS STORED PAIRWISE TERMS 

IF INTERACTION IS IF INTERACTION IS 
METAL-METAL BRENNER-BRENNER 

EVALUATE EAM II EVALUATE BREN 
POTENTIAL POTENTIAL 

FINISH LOOP 

FINISH LOOP 

(b) 

Fig. 6.6.2. Flowchart of the energy and force subroutine in the serial MD code. The 

subroutine is split into: (a) Pair potential evaluation for Brenner-Metal interactions and 

storage of pairwise terms; (b) Many-body calculations for EAM and Brenner potentials. 
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LOOP OVER ALL METAL ATOMS 

LOOP OVER ALL NEIGHBOURS 

DETERMINE TYPE 
OF INTERACTION 

IF INTERACTION IS 
IF INTERACTION IS METAL-METAL 
METAL-BRENNER 

STORE NEIGHBOURS WITHIN 
INTERACTION RANGE 

STORE BRENNER 
ATOMS 

CALCULATE AND STORE PAIRWISE 
TERMS LIKE BOND LENGTH AND 

DIRECTION COSINES 

FINISH LOOP 

EVALUATE PAIR POTENTIAL 
IF REQUIRED 

EVALUATE EAM POTENTIAL 

FINISH LOOP 

(a) 

Part I Part 2 

LOOP OVERALL BRENNER ATOMS START BRENNER POTENTIAL CALCULATION 
LOOP OVER ALL BRENNER ATOMS 

LOOP OVERALL NEIGHBOURS 
LOOP OVER ALL STORED NEIGHBOURS 

STORE NEIGHBOURS WITHIN 
INTERACTION RANGE 

I 
ACCESS STORED PAIRWISE TERMS 

CALCULATE AND STORE PAIRWISE 
TERMS LIKE BOND LENGTH AND EVALUATE BRENNER 

DIRECTION COSINES POTENTIAL 

FINISH LOOP II'j FINISH LOOP 

FINISH LOOP II FINISH LOOP 

(b) 

Fig. 6.6.3. Flowchart of the energy and force evaluation in the serial MD code following 

functional decomposition. For metal atoms, the potential calculation is executed in one 

loop over atoms and their neighbours. For Brenner atoms, the evaluation is separated 

into parts 1 and 2 for the pairwise terms and many-body calculations respectively. 
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many-body calculations. For each atom, the pairwise interactions are extracted from 

the temporary neighbour list. The stored pairwise terms are also accessed for use in the 

many-body calculations. The EAM or Brenner potential is then evaluated depending 

on the type of interaction. 

The function of the energy and force subroutine depicted in Fig. 6.6.2 is five-fold, 

with the pairwise storage for metal and Brenner atoms and the evaluation of three 

different potentials. The first consideration was to reduce the complexity and improve 

the readability of the code by splitting the EAM and Brenner potentials into separate 

subroutines, together with the calculation and storage of the pairwise terms. The revised 

format of the energy and force subroutine is shown in Fig. 6.6.3. In each subroutine 

only the metal or Brenner atoms have to be looped over, which facilitates better the 

parallelisation of the potential loops. The reformation shown in Fig. 6.6.3 also imposes 

a simple constraint that all atoms must be grouped together by their potential type, 

since it is easier to loop over consecutive numbers of atoms. 

In the Brenner potential the force acting on the bond i-j in Fig. 6.6.4 is dependent 

on the first and second neighbours of atoms i and j. Hence, the storage of pairwise terms 

for all Brenner atoms is required before the respective potential is evaluated. However, 

the most significant problem with the subroutine illustrated in Fig. 6.6.2(a) is the storage 

of pairwise terms for each metal atom. For the metal potentials, only the pairwise terms 

associated with atom i are required. Therefore, the global storage of pairwise terms in 

Fig. 6.6.2 incurs excess memory. This is remedied in the revision of the energy and force 

subroutine in Fig. 6.6.3, by calculating the pairwise terms and evaluating the potential 

Fig. 6.6.4. The energy of the bond i-j in the Brenner potential is dependent on the 

positions of i and j and the positions of all the 1st and 2nd neighbours of i and j. 

144 



in the same loop. The pairwise terms stored for each atom are overwritten by the meat 

iteration and so memory storage of the pairwise terms is minimal, regardless of sý"steiii 

size. Also computed in the loop over metal atoms is the pair potential for Brenner-metal 

interactions. It makes no difference if the pair potential is calculated in the loop over 

the Brenner atoms other than the order of computation is reversed. 

Neighbour List Construction 

The existing serial MD code utilises the cell index method [107] (as discussed in Sect ion 

2.2.4, Chapter 2) to build the neighbour lists. For each atom, the neighbour list is con- 

strutted employing a linked list approach [7]. The essence of linked lists is siuiiiiiarised 

in Fig. 6.6.5, showing a two-dimensional representation of cells. To coiistruct a neigli- 

hour list for atom i in cell number 5, only the host cell and half of the iieigliboiiriiig cells 

(shaded region) are considered. When the neighbour list of atone i is constructed, airy 

atoms that are located in cells in the unshaded region, say atone j, will not he ii cludc(l. 

The idea is that when the neighbour list of atom j is constructed it will cotºsi<k i ; ill 

atoms in cells 4,5,6,7 and 8. Therefore, if atom i is within lilt eni t ion nnit; e, it will 

add i to the neighbour list of j, but it will also add j to the Ileiglil)oiiº. list o>f* r using t he 

linked list approach. Thus, the significance of using linked lists is to save (uii )ltt ißt iuu 

time, since it reduces the number of cell evaluations required to, ("oººstrlu"t. the neighimur 

list of each atom. The general format of the serial \IU code used to) geuen ºt et Ile uciglº- 

bour list for each atom is sliowii in Fig. G. G. G. The cells are first looped over and the 

primary atom in the cell identified. The atoms in tl1(' host cell mid hilf, 11(igill)OI1Fiiig 

cells are then looped over and added to each others ueiglii)oitr lists it' Hie pair intci-; t 

and have not been previously considered. 

7 

./ 

9 

4 5 

1 2 3 

Fig. 6.6.5. Two-dimensional representation of' (-(, 11,,, used in t lu linked list , ilgOrit hui. 
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However, the linked list method cannot be used with relative ease if the neighbour 
list routine is to be parallelised. Consider again the two-dimensional cell depiction in 

Fig. 6.6.5. If the construction of neighbour lists is partitioned across multiple processes, 

then the neighbour list for atoms i and j may reside on different processes. Clearly this 

introduces coding complexity if atoms located on different processors are to be added 

to each others neighbour lists. As a preliminary solution, the construction of neighbour 

lists was modified to include the evaluation of all neighbouring cells and the employ- 

ment of linked lists was made redundant. The existing format of the neighbour list 

routine also had to be changed to allow easier parallelisation. This was achieved by first 

looping over all the atoms in the system, followed by only the host and neighbouring 

cells. Thus, the parallelisation is accomplished by splitting the loop over the atoms 

across the processors. This approach leads to simplification in neighbour list pointers 

and determining efficient load balancing. In addition to the structural change of the 

LOOP OVER CELLS IN X-DIMENSION 

LOOP OVER CELLS IN Y -DIMENSION 

LOOP OVER CELLS IN Z-DIMENSION 

LOOP OVER HOST CELLAND HALF 
THE NEIGHBOURING CELLS 

IDENTIFY FIRST ATOM IN CELL 

LOOP OVER ATOMS IN NEIGHBOURING 
CELL OR HOST CELL 

IF WITHIN RADIUS THEN ADD ATOMS 
TO EACH OTHERS NEIGHBOUR LISTS 

IF PAIR HAS NOT BEEN CONSIDERED BEFORE 

FIND NEXT NEIGHBOURING ATOM IN HOST 
CELL OR NEIGHBOURING CELL 

FIND NEXT ATOM IN CELL 

FIND NEXT NEIGHBOURING CELL 

Fig. 6.6.6. Flowchart of the neighbour list construction algorithm in the serial MD code. 
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neighbour list, a further modification was also made as a result of the fact that the pair 

potential for metal-Brenner interactions is performed in the loop over the metal atoms 
(see Fig. 6.6.3(a)). The neighbour lists for Brenner atoms have been amended to ignore 

any metal atoms within interaction range. The format of the new neighbour list routine 

is shown in Fig. 6.6.7. 

The modified neighbour list routine creates two arrays, NEBPNT() and NEBOTJR(). 

The NEBPNT array stores the number of neighbours each atom has within the interaction 

range and the additional skin thickness. For a system of N atoms, the NEBPNT array is 

dimensioned N+1. The first element of the array NEBPNT is assigned a dummy value of 

one. The second array element is then assigned the number of neighbours associated 

with atom number one, summed with the preceding element value. This process is then 

repeated for all remaining atoms in the system. Thus, the number of neighbours for any 

atom i is simply obtained by NEBPNT(i+i) - NEBPNT(i). If the neighbour list routine 

was parallelised with respect to the original loop over cells, then an additional pointer 

array would be required since element i in NEBPNT may not necessarily correspond to 

atom i, but the ith atom encountered during cell evaluation. This is the principle rea- 

son for parallelising the neighbour list routine with respect to the loop over atoms. The 

LOOP OVER ALL ATOMS 

LOOP OVER HOST AND ALL NEIGHBOURING CELLS 

LOOP OVER ATOMS IN NEIGHBOURING 
CELL OR HOST CELL 

IF WITHIN RADIUS THEN ADD ATOM 
TO NEIGHBOUR LIST 

FIND NEXT ATOM IN HOST CELL 
OR NEIGHBOURING CELL 

FIND NEXT NEIGHBOURING CELL 

START NEIGHBOUR LIST CONSTRUCTION 
FOR NEXT ATOM 

Fig. 6.6.7. Flowchart of the neighbour list construction algorithm in the serial MD code 

following functional decomposition. 
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NEBOUR array stores the neighbours for each atom. The dimension of NEBOUR is given as 
Nepecie 

NATMspecie X SPECIEaveneb (6.2.6.1) 
i 

where Nspec1e is the number of atom species in the system, NATMspec1e is the total number 

of atoms for a given specie and SPECIEavneb is the average number of neighbours per 

atom for the corresponding specie. The NEBPNT array serves as a pointer to the NEBOUR 

array. Hence, the neighbours of atom i can be accessed by looping over NEBOUR from 

element NEBPNT(i) to NEBPNT(i+i)-i. 

6.3 General MPI Programs and Basic Concepts 

There are a few essential integral parts that are common to every MPI program. The 

program and each subprogram must include the mpif. h file which contains the under- 

lying macros and definitions. Each call to a MPI function contains a list of arguments. 

In a Fortran program, each MPI function call contains the argument IERROR in its last 

argument, which lists the error code. The error code returns either MPI.. SUCCESS or an 

implementation-defined error. To establish the MPI environment, the function MPI_INIT 

is called. This must be done before any other calls to MPI functions can be made 

and only called once. Associated with all MPI communication is a communicator. In 

essence, communication is concerned with the flow of information between processes 

or tasks (the executable on a processor). The default communicator is MPI_COMM_WORLD 

which describes all the processes. Communicators can also be formed to contain specific 

groups of processes and therefore used for local communication. Any call to a MPI 

routine imposes a barrier which synchronises all of the processes. The general layout of 

a standard MPI program is given in the following code segment. 

PROGRAM name 

Variable definitions. 

"mpif. h" 

Establish MPI environment. 

CALL MPI_INIT(IERROR) 

Find out number of processes executing program 

and assign rank value. 

CALL MPI_COMM-RANK(MPI COMM_WORLD, RANK, IERROR) 

148 



CALL MPI_COMM-SIZE(MPI_COMM-WORLD, NPROC, IERROR) 

Main body of code. 

Terminate MPI environment. 

CALL MPI. FINALIZE(IERROR) 

END PROGRAM name 

Each process is identifiable by a rank value, which is determined by the MPI func- 

tion MPI_COMM. BANK. For a group of n processes, rank values are assigned from 0 to n-1 

and returned in the argument RANK. The number of processes is obtainable by the MPI 

function MPI_COMM-SIZE, which returns the value to the argument NPROC. Before the pro- 

gram finishes, the MPI environment must be finalised. This is achieved by the MPI 

routine MPI. _F'INALIZE which in essence completes any `unfinished business' left within 

the MPI environment. Each process must call MPI FINALIZE, after which no MPI calls 

are permitted. 

6.4 Message-Passing Operations 

6.4.1 Send and Receive Operations 

The most basic message-passing functions in MPI are the send and receive operations. 

When data transfer is required between two processes, one process executes a send oper- 

ation and the second process executes a receive operation. To communicate successfully 

the data, information about the message must be given. The Fortran binding for send 

and receive operations are 

MPI SEND(SBUFFER, COUNT, DATATYPE, DEST, TAG, COMM, IERROR) 

and 

MPI. RECV(RBUFFER, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR) 

The processes which are involved in the message-passing must both be constituents of 

the communicator COMM. The data in buffer SBUFFER of size COUNT and data type DATATYPE 

is sent to the process with rank DEST. The data is then received in the buffer RBUFFER 

from the process with rank SOURCE. The TAG is a user-specified integer which is used 

to differentiate between messages received from a single process. The argument STATUS 

returns information on the data that was received. An operation that involves all the 

processes in a communicator is known as a collective operation, which can be separated 
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into data movement and reduction operations. 

6.4.2 Data Movement 

In data movement, data is rearranged across the processes. Simple examples are the 

need to broadcast, gather or scatter data. In the preliminary development of the parallel 
MD code, only the broadcast and gather data movement operations are utilised. The 

routine for broadcasting data is MPIBCAST, which is illustrated in Fig. 6.6.8. The 

process from which the data is being broadcast is called the root or master process. 

The root process can be defined as any of the processes in the group, although it is 

typically defined by a rank value of 0. To use the MPI-BCAST routine, the size of data and 

data type must be specified, together with the communicator and the root process. All 

processes, including the root process, call the broadcast routine. The Fortran binding 

for the MPI BCAST routine is 

MPI. BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR) 

The routine will broadcast the data in BUFFER of size COUNT and data type DATATYPE on 

the root process ROOT to all processes in the communicator COMM. 

The gather operation has the opposite effect of a scatter operation, and is illustrated 

in Fig. 6.6.9. The essence of a gather routine is to send data from the ith process to 

the ith data location on the specified root process. The Fortran binding for the gather 

operation is 

MPI_GATHER(INBUFF, COUNT, DATATYPE, OUTBUFF, RECVCOUNT, RECVDATATYPE, 

ROOT, COMM, IERROR) 

The gather operation sends the data of data type DATATYPE and size COUNT on each 

DATA DATA 

PO A PO A 

BROADCAST 

pi P1 A 

P2 1-1 P2 A 

Fig. 6.6.8. Data motion for the MPIBCAST routine with process PO as root. Initially 

the data A is located on the root process. After the broadcast command, data A is 

replicated on all the processes. 
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DATA 
º 

DATA 
1 

PO A PO ABC 

GATHER 

P1 B P1 

P2 C P2 

Fig. 6.6.9. Data motion for the MPI_GATHER routine with process PO as root. After data 

movement the data from each process is assembled together on the root process, in 

sequential non-overlapping locations. 

process in the input buffer INBUFF to the output buffer OUTBUFF of the root process ROOT. 

The data is received as data type RECVDATATYPE and of size RECVCOUNT. The data is placed 

in non-overlapping locations in OUTBUFF, where the data from process i precedes the data 

from process i+1. The gather routine requires that all processes send the same size of 

data (usually COUNT = RECVCOUNT and DATATYPE = RECVDATATYPE). If the data gathered on 

the root process is required globally, then the broadcast routine could be implemented. 

However, MPI also provides a variant of the MPI_GATHER routine, called MPLALLGATHER, 

which effectively combines a gather and broadcast routine into one. For n processes its 

effect is also the same as if there were n calls to MPI_GATHER with a different root process 

each time. 

A common scenario is for the size of data to be gathered from each process to differ 

in size. For such instances MPI provides another gather variant, MPI. ALLGATHERV, whose 

DATA DATA 
0 

PO A PO ABC 

ALLGATHERV 

PI 13 P1 A 1B C 

P2 C P21 ABC 

Fig. 6.6.10. Data motion for the MPI . ALLGATHERV routine. Data on each process, which 

varies in size, is assembled together on all processes. The DISP array would have 0, A 

and A+B as its elements. Therefore, it offsets data A in the receive buffer by 0, data B 

by A and data C by A+B. 
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Fortran binding is 

MPI-ALLGATHERV(INBUFF, COUNT, DATATYPE, OUTBUFF, RECVCOUNT, DISP, 

RECVDATATYPE, ROOT, COMM, IERROR) 

The size of the data on each process is used to construct the array DISP, which contains 
the displacement of the data relative to the receive buffer on the root process. The gather 
routine then locates the data from the ith process and positions it in the receive buffer 

of the root process, where the location is given by the displacement in the ith element 
of DISP. The operation of the MPLALLGATHERV routine is illustrated in Fig. 6.6.10. 

6.4.3 Reduction Operations 

In reductive operations, data across all of the processes is collected together on a single 

process. The reduction operation is illustrated in Fig. 6.6.11. The Fortran binding for 

a reduction operation is 

MPI. REDUCE(INBUFF, OUTBUFF, COUNT, DATATYPE, OP, ROOT, 

COMM, ERROR) 

The reduction operation MPI REDUCE combines data values of data type DATATYPE and 

size COUNT in the input buffer INBUFF of each process with a specified operation op. 
Typical operations are summation (MPI. 

_SUM), product (MPI. 2ROD), minimum (MPI. MIN) 

and maximum (MPI. MAX). The combined values are then returned to the output buffer 

OUTBUFF of the root process ROOT. There is also a reduction variant, MPI . ALLREDUCE, which 

effectively combines together a broadcast statement and MPI-REDUCE routine. Using this 

reduction variant, the combined values on the output buffer on the root process are sent 

to the output buffer on every other process. 

DATA 
0 

PO A 

DATA 

PO ABC 

REDUCE 

P1 B 

P2 C 

P1 

P2 

Fig. 6.6.11. Data motion for the MPI_REDUCE routine with process PO as root. Initially 

data is declared on each process at different data locations. After reduction, the data 

on each process is combined together on the root process. 
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6.5 Decomposition Methods 

Partitioning the atoms across the processes is known as a decomposition. A number of 

conventional decomposition methods exist for parallel MD. The type of decomposition 

method utilised determines the form of communication used in the message passing (the 

two most common forms of communication are local and global). One decomposition 

approach is atom decomposition, where a partition of atoms is assigned to each process. 
This is a commonly used technique in MD simulations, see for example Plimpton [204]. 

For a system of natm atoms and np processors (assume na, tm is a multiple integer of 

np), the most basic atom decomposition is to allocate natm / np atoms to each proces- 

sor. The atoms allocated to each process need not be spatially related. Each process 

then operates on the atoms that have been assigned to it, no matter where they are 
(or displace to) in the simulation domain. Clearly, the atom decomposition method is 

advantageous by its simplicity, but it suffers from the requirement to perform global 

communications of atom coordinates. This requirement is imperative since information 

of spatially neighbouring atoms may not necessarily reside on nearby processors. Thus, 

the atom decomposition method produces a replicated data model since each process 

requires access to the dynamics of all the atoms in the system. Therefore, atom decom- 

position can heavily constrain system size if available memory is limited. 

An alternative method is to assign a partition of physical space to the processors, 

which is known as spatial or domain decomposition. This approach has been utilised 

by numerous groups, for example see Nyland et al [205] or Srinivasan et al [206], and 

references therein. For np processors the computational box is simply divided into 

np domains (usually box shaped) and the atoms that reside in each domain are allo- 

cated to different processors. The spatial decomposition method is advantageous since 

it requires only local communication of coordinates for atoms that interact across the 

domain interfaces. Furthermore, the communication overhead decreases as the number 

of processors increases, since the surface area of each domain becomes smaller. This 

type of decomposition scheme generates a non-replicated data model, where memory is 

significantly reduced because each processor only stores data for a subset of the simula- 

tion volume. Thus, spatial decomposition is especially advantageous in situations where 

memory availability heavily constrains system size. However, this method is much more 

complicated to implement compared with atom decomposition. For example, in an in- 
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homogenous system, or where the system is irregular in shape, the decomposition may 

not be obvious. Furthermore, there is a continuous need to move atoms to different pro- 

cessors when atoms migrate across a domain and to resize the spatial domains to avoid 

imbalance due to high fluctuations in density. Thus, in the preliminary development of 

the parallel MD code for simulating nanoindentation, an atom decomposition scheme is 

used because it is simpler. 

6.6 Parallelisation Scheme 

The parallel MD code is written so that it can be run both in serial or in parallel. The 

flowchart in Fig. 6.6.12 illustrates the functioning of the code for parallel execution. 

All code associated with data input is buffered in a conditional statement such that 

at the beginning\of the simulation only the root process reads in data. The inputted 

data is then broadcast to all other processes using the MPI. BCAST routine. Similarly, 

only the root process performs data ouptut. The parallelisation of the force and energy 

calculations, together with the neighbour list routine and the load balancing method is 

discussed in the succeeding subsections. 

6.6.1 Adaptive Load Balancing 

In essence, the approach adopted for parallelisation is to distribute the work load in an 

equal fashion over the processors. This process is called load balancing. Efficient load 

balancing can make the difference between modest and maximum performance gains. 

Ideally, all processes will have an equal work load, as illustrated in Fig. 6.6.13(a). Since 

the load balance is equal on all processes, the execution time of tl is the minimum pos- 

sible. However, this scenario is rarely achievable since the work load cannot always be 

split evenly over the processes. If there is a load imbalance then some of the processes 

may finish operating on their set of data before others, and therefore they will become 

idle. This leads to a synchronisation cost, since surplus time will be spent waiting for 

remaining `overloaded' processes to finish their operations before communications can 

be performed. A representation of load imbalance is given in Fig. 6.6.13(b). Here, the 

load on process 0 exceeds the ideal by a certain quantity, while the load on process 3 is 

below the ideal by the same quantity. Hence, there is a synchronisation cost of At due 

to the imbalance. In reality, load distribution is determined in such a way to minimise 
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READ IN INPUT DATA ON ROOT PROCESS AND 
BROADCAST DATA TO ALL OTHER PROCESSES. 

NEIGHBOUR LIST CALCULATIONS. 
FOR 1st CALL SPLIT ATOMS EVENLY OVER PROCESSES AND 

CALCULATE NEIGHBOUR LISTS FOR ATOMS ALLOCATED TO PROCESS. 
PERFORM GLOBAL COMMUINCATIONS OF NEIGHBOUR LIST DATA. 

CALCULATE LOAD DISTRIBUTION FOR FORCE & 
ENERGY EVALUATION USING NEIGHBOUR LIST DATA. 

CALCULATE FORCES & ENERGY FOR ATOMS ALLOCATED TO PROCESS. 
PERFORM GLOBAL COMMUNICATIONS OF FORCE ARRAYS AND 

POTENTIAL ENERGY ARRAY IF DATA OUTPUT IS REQUIRED. 

INCREMENT TIME AND INTEGRATE POSITIONS OF ALL ATOMS. 

UPDATE NEIGHBOUR LISTS IF REQUIRED. 
SPLIT LOOP OVER ATOMS USING DATA FROM PREVIOUS NEIGHBOUR LIST AND 

EVALUATE NEIGHBOUR LISTS FOR ATOMS ALLOCATED TO PROCESS. 
PERFORM GLOBAL COMMUNICATIONS OF NEIGHBOUR LIST DATA. 

O 
U 

CALCULATE FORCES & ENERGY FOR ATOMS ALLOCATED TO PROCESS. 
PERFORM GLOBAL COMMUNICATIONS OF FORCE ARRAYS AND 

POTENTIAL ENERGY ARRAY IF DATA OUTPUT IS REQUIRED. 

I CALCULATE ACCELERATIONS OF ALL ATOMS AND 
INTEGRATE VELOCITIES. 

Fig. 6.6.12. Flowchart illustrating the functioning of the parallel MD program. 

At. 
The decomposition of atoms could distribute equal numbers of atoms to each pro- 

cess. However, the work load associated with the energy and force evaluations can be 

quantified in terms of the total number of neighbours. Hence, with a equal division of 

atoms each process may have different work load. Therefore, in the parallel MD code 

the number of neighbours of each atom is used to determine how to distribute the labour 

among the processes. The parallelisation of the energy and force calculations is achieved 

by splitting each loop over the atoms. If the loops start at point ATMSTRT and finish at 

ATMFNSH then the ideal load on each process is given by 

NEBPNT(ATMFNSH+1) - NEBPNT(ATMSTRT) 

NPROC 
6'6'6' 1 
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Fig. 6.6.13. (a) Ideal load balancing where the execution time tl is the minimum possible. 
(b) Imperfect load balancing which leads to a synchronisation cost of At on the minimum 

execution time tl due to the `overloaded' process. 

where NPROC is the number of processes. To determine the most efficient load distri- 

bution, the range of atoms having a total neighbour sum approximately equal to Eqn. 

6.6.6.1 is computed using the neighbour list data. Since the neighbour list is ordered 

by atom number, nothing is known about the spatial locality of the decomposition. 

However, since the substrate and indenter are generated from algorithms where atoms 

are constructed in an ordered fashion, most neighbouring atoms will reside on the same 

process. Using NEBPNT the array elements are looped over from ATMSTRT to ATMFNSH. 

When the neighbour sum is equal to or exceeds the value determined from Eqn. 6.6.6.1, 

the atom number incurred determines the load distribution for the first process. The 

process is then repeated to establish the load distribution for the next process and so 

forth, by nesting the loop over NEBPNT in a loop over the number of processes. The 

methodology for determining the load distribution for the energy and force calculations 

is summarised by the following code segment. 

Determine ideal load on processes. 

IDEAL_LOAD = INT( (NEBPNT(ATMFNSH+1) - NEBPNT(ATMSTRT)) / NPROC) 

Initialise limiting value in NEBPNT to find or surpass. 

NEBVALUE = IDEAL_LOAD + NEBPNT(ATMSTRT) 

Initialise loop over NEBPNT to start from ATMSTRT. 

LOOPSTRT = ATMSTRT 
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Loop over number of processes. 

DO I=1, NPROC 

Loop over NEBPNT. 

DO J= LOOPSTRT, ATMFNSH 

Check when total number of neighbours up to atom J is greater than 

or equal to limiting value. 

IF( NEBPNT(J) GE. NEBVALUE )EXIT 

ENDDO 

Store atom number where total neighbours is equal to or greater than 

limiting value. 

NATPROC(I) = J-1 

Determine new limiting value in NEBPNT to find or surpass. 

NEBVALUE = NEBPNT(J) + IDEAL LOAD 

Start loop over NEBPNT from last value of J. 

LOOPSTRT =J 

ENDDO 

The work load of a specific computation is not always known prior to execution and 

so the division of labour cannot be performed statically (i. e. fixed at compile time). 

For example, the work load of the neighbour list generator cannot be determined since 

the number of neighbours of each atom is initially unknown. Therefore, the division of 

labour has to be performed dynamically during process execution. For MD simulations 

with long-range forces, say the computation of the electrostatic energy for N charged 

atoms, load balancing is simple to achieve since atoms interact with all other atoms. 

However, simulations with short-range potentials, as used in this thesis, can develop load 

imbalance due to density variations and therefore ensue in performance degradation. 

At the beginning of each nanoindentation simulation, the tip and substrate are in a 

near equilibrium state and so neighbour list updates are minimal. After mechanical con- 

tact is made, the density of atoms will fluctuate and therefore the frequency of neighbour 

list updates increases with continued penetration. Clearly, as the neighbours of an atom 

change, the work load associated with that atom can also change. For example, during 

indentation an atom under compression will have an increased number of neighbours 

and thus a larger associated work load. If the work load distribution is only determined 

once, at the start of computation, then an inequality in the distribution will occur. It 
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is therefore important to implement an adaptive load balancing scheme to account for 

changes in work load as the simulation progresses. To accomplish this, the partition of 

atoms over the processes must be automatically performed during the simulation. 
Load balancing at every timestep would be wasteful since it would divert the com- 

puter resources away from the computation. Since the load balance is only subject to 

change when the neighbour lists have been updated, the load imbalance does not have 

to be checked every timestep. Therefore, whenever the neighbour lists are updated the 

load distribution is performed again. However, there is an overhead cost incurred with 

any load balancing scheme, due to the periodic calculations required to repartition the 

work load among the processes. Despite this, significant improvements in processor ef- 
ficiency can be achieved. A recent parallel MD study using spatial decomposition by 

Srinivasen et al [206] reported up to a 50% reduction in total computation time with 
dynamic load balancing. 

6.6.2 Energy and Force Evaluation 

Since the pairwise terms for all pair interactions are required in the Brenner potential, 

global communication of the arrays storing the pairwise terms could be made. However, 

preliminary results showed this was an inefficient approach, with the communications 

taking longer than the actual calculation and storage of the pairwise terms. To avoid 

global communications of the pairwise storage arrays, each process must ensure that 

it has access to all pairwise terms associated with the atoms allocated to it. If for 

each process the loop over the Brenner atoms in the potential calculation starts at 

BRENSTRT and finishes at BRENFNSH, then a list of atoms (BRENSTR) containing the 18t 

and 2°d neighbours of each atom from BRENSTRT to BRENFNSH can be produced. To 

avoid duplicate pairs being evaluated by the same process, the BRENSTR list preliminary 

contains each atom from BRENSTRT to BRENFNSH. Each atom from BRENSTRT to BRENFNSH 

is then looped over and the 1st and 2nd neighbours computed. If any neighbours reside 

on a different process, then they are added to the BRENSTR list if they have not yet been 

considered. Although this method renders a redundant need for global communications 

of pairwise terms, duplicate work will be incurred since some of the same pairwise terms 

will be required by different processes. Furthermore, there may be a risk of an imbalance 

across the processes for evaluation of the Brenner pairwise terms since the number of 

2nd neighbours is not considered in the load distribution scheme. 
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Before computation of the energy and forces, the respective array elements are all 

set to zero. Each process then loops over all the atoms assigned to it during the load 

balancing. Therefore, all processes only operate on the array elements corresponding to 

the assigned atoms and their neighbours. After the energy and force evaluations have 

been performed, global summing of the force arrays is made using the MPI reduction 

operation MPI ALLREDUCE. Each process then has access to the force on every atom and 

it can therefore integrate the equations of motion for all atoms. Since data output is 

only performed by the root process, the reduction operation MPI . REDUCE is used to sum 

the potential energy arrays across all processes together onto the root, whenever data 

output is required. 

6.6.3 Neighbour List Construction 

To construct the neighbour list for each atom, all atoms in the host and neighbouring 

cells are evaluated. Hence, the work load associated with the neighbour list generator 

can be defined by the total number of cell evaluations performed. Therefore, an ar- 

ray NCELLEVAL is introduced to store the number of cell evaluations associated with the 

neighbour list construction of each atom. For a system of N atoms, the NCELLEVAL array 

is dimensioned N+1. The first element of the array NCELLEVAL is assigned a dummy 

value of one. The second array element is then assigned the number cell evaluations 

associated with atom number one, summed with the preceding element value. This 

process is then repeated for all remaining atoms in the system. Thus, the number of 

cell evaluations for any atom i is simply obtained by NCELLEVAL(i+i) - NCELLEVAL(i). 

Load balancing the loop over the atoms in the neighbour list generator with respect 

to the work load requires the data from the NCELLEVAL array, which is only known after 

all the neighbour lists have been computed. Therefore, for the first call to the neighbour 

list routine the atoms are distributed equally among the processes. For subsequent calls, 

load balancing is performed in the same fashion as for the energy and force calculations, 

except using the data from the NCELLEVAL array generated during the preceding neigh- 

bour list construction. Although the loop over atoms is split using the old neighbour 

list data, it will still give a good decomposition since the difference between successive 

neighbour list updates is typically very small. 

After the neighbour list has been constructed, global communications are required. 

Since the NCELLEVAL array is only required to determine the load distribution for the 
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NEBPNT ELEMENT: 1 23456 7 8 9 10 

PROC 0: 1 59 15 00 0 0 0 0 

PROC 1: 0 0014 10 17 0 0 0 

PROC 2: 0 00000 1 5 10 18 

(a) 

NEBPNT ELEMENT: 1 2 3 4 5 6 7 8 9 10 

PROC 0: 1 5 9 14 14 14 14 14 14 14 

PROC 1: 0 0 0 1 4 10 16 16 16 16 

PROC 2: 0 0 0 0 0 0 1 5 10 18 

(b) 

Fig. 6.6.14. The NEBPNT array formed by three processes operating on three separate 

decompositions: (a) Before pre-processing; (b) After pre-processing. 

subsequent neighbour list construction, it is more efficient to reduce the array onto 

the root process only. The root process can then determine the load distribution and 

broadcast it to the other processes. For N atoms and NPROC processes, this saves 

broadcasting (NPROC -1) x (N + 1) at the expense of -- NRPOC2. Since the number 

of neighbours on each process is unknown before the construction of the neighbour lists, 

a pointer to the element in the NEBOUR array where each process should start, cannot 

be used. Hence, each process starts at the first element in the NEBOUR array. To collect 

together the NEBOUR array the MPI gather variant routine MPI. ALLGATHERV is utilised, as 

illustrated in Fig. 6.6.10. Before the NEBPNT array can be collected together using the re- 

duction operation MPI ALLREDUCE, some pre-processing is required. Consider the NEBPNT 

array shown in Fig. 6.6.14(a). Here, each process operates on the atoms allocated to it 

to produce the NEBPNT array. For each process (apart from the process which is assigned 

the last decomposition of atoms) the last element operated on coincides with the start 

of the decomposition of the next process. Therefore, one must be subtracted from this 

element and duplicated to all remaining elements hereafter, as shown in Fig. 6.6.14(b). 
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6.7 Performance Evaluation 

With the execution of serial code, performance can be determined by checking the 

numerics of data output. However, with parallel code there is an additional requirement 

to analyse the speed of execution. The efficiency of parallel applications is a function 

of both load balancing and scalability. Scalability can be defined as an estimation of 
how the computation of a particular problem varies with changes in both system size 

and the number of processes. A simple measure of how the computation will change 

with an increasing number of processes is speedup, which can be determined from timing 

profiles. For a fixed system size implementing n processes, a speedup factor (Sp) can be 

defined as 

_ 
Execution time with 1 process SP 

Execution time with n processes 
6.7.6.1 

In addition to analysing the performance of the program as a whole, timing profiles 

allow the efficiency of individual computations to be examined. This therefore allows 

specific areas of the code to be targeted with the need for further development. In the 

Table 6.2. Timing profile (in seconds) of the parallel MD code following a1 ps simulation 

with approximately 1.2 million atoms. 

Number of Processors 

248 16 32 64 

Finnis Potential' 

Brenner Pairwise Storage 

Brenner Potential 

Energy and Force 

Comms. 

Neighbour List 

Neighbour List Comms. 

12232.3 6095.6 3190.3 1543.2 806.0 411.7 

35.3 16.7 9.5 4.6 2.8 1.6 

467.9 231.0 114.3 56.0 27.9 14.4 

396.1 630.7 978.1 1450.6 2191.6 2936.8 

387.8 194.2 104.7 66.7 40.7 21.5 

67.5 76.9 98.7 118.6 146.9 163.8 

Average time per timestep 14.6 8.1 5.9 4.5 5.0 7.2 

Speedup over 1 processor 1.85 3.33 4.58 6.00 5.40 3.75 

aThis timing also includes evaluating Fe-C interactions. 
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parallel MD code, the efficiency of each parallelised subroutine is analysed by timing 

the computation using the UNIX operating system timing mechanism dtime 0. This 

routine simply returns the time since the last call to dtime () was made. Hence, the 

time interval for execution of the parallelised subroutines can be determined by calling 

dt ime 0 before and after each subroutine call. This profiling approach is limited in that 

it only provides information on where the program is spending time. Although it is not 

necessarily highly accurate, it is implemented at a very low cost and is sufficient enough 

to allow a suitable estimation of scalability. When more detailed profiling is required, 

MPI can be instrumented with logging routines which allow the sequence of events to 

be visually studied with time. 

Since parallel computers are typically used to solve problems with a small fixed size 
faster, or to permit the use of larger system sizes, it is crucial to analyse how the parallel 

MD code scales under both scenarios. The performance of the parallel MD code was 

primarily tested on a fixed system size with a Fe substrate. The indenter was configured 

from 30,369 atoms, and the substrate from 1,183,964 atoms. Simulations were run for 

1 ps using at first 1 processor (as serial) and then 2,4,8,16,32 and 64 processors. 

Although the simulation time is small, it is sufficient to determine the performance of 

each parallelised subroutine and the extent of the communications overhead. A timing 

profile illustrating the performance of the parallel MD code is given in Table 6.2. 

In all simulations the load-balancing is excellent, with the load on each process 

being between 98% - 102% of the ideal load. Furthermore, the load balancing is not 

costly to implement and only takes a fraction of the total CPU time. From Table 6.2 

the execution time of the parallelised subroutines approximately halves as the number 

of processes doubles. For ideal speedup with a fixed system size, the execution time is 

assumed to halve as the number of processors doubles. However, this is seldom achieved 

due to the difficulty in equally distributing work loads and the need for communications. 

The speedup over 2 and 4 processes is quite good, but deteriorates thereafter. There is no 

performance gain after 16 processes. As the number of processes increases, the execution 

time incurred during global communications also increases. At around 16 processors, 

the global communication time dominates and is greater than the time to execute the 

potentials/neighbour lists. However, it is the global communication of the force and 

potential energy arrays that is solely responsible for the impairment in performance, 

since this is incurred every timestep. Using 64 processors, the time to communicate the 
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Fig. 6.6.15. Global summing of a force/energy array operated upon by three different 

processes. The shaded region between A and B represent the atoms allocated to the 

host process. The remaining shaded regions denote atoms that are neighbours of some 

of the atoms between A and B and reside on a different process. The unshaded regions 

represent atoms which are not operated on by the host process, but are still involved in 

global summing. 

force and potential energy arrays is more than seven times that for the calculation of 

the potentials. 

The reason the scaling is poor for increasing number of processes is that the code 
becomes communication bound. Since each process only operates on selected atoms, 

there are some atoms that are not evaluated but still involved in global summing, as 
depicted in Fig. 6.6.15. As the number of processes increases, the fraction of atoms on 

each process that remain unoperated on also increases. Thus, a large percentage of the 

communication time involves summing and broadcasting the forces and potential energy 

of atoms that are not evaluated by a process in the potential calculations. To improve 

the scalability of the parallel MD code, the communications overhead incurred by the 

potential energy and force arrays needs to be considerably reduced. 

6.8 Performance Tuning 

When the neighbour list is updated and the load balancing is determined, the atoms 

allocated to each process remain the same until the neighbour list becomes updated. 

Therefore, each process only needs to acquire the total force acting on the atoms allo- 

cated to it, and any of their neighbours that reside on a different process. However, the 
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root process requires the total force acting on every atom in order to provide global data 

output. Thus, if each non-root process creates a list storing all the atoms allocated to 

it and any neighbours that may reside on another process, then these can be summed 

onto the root process and redistributed using send and recv MPI operations. 

If there are N atoms allocated to each non-root process then the first N elements of 
the stored atom list will correspond to the N atoms allocated to the process. The sub- 

sequent elements will correspond to atoms that are neighbours of some of the N atoms 

but reside on a different process. Before the forces for the stored atoms are sent to the 

root process, they are packed into an array. This is achieved using the MPI routine 

MPI_TYPE_INDEXED, whose Fortran binding is 

MPI_TYPE_INDEXED(NUMBER. DF-BLOCKS, ARRAY_OF. BLOCKLENGTHS, 

ARRAY-OF-DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR) 

The data in the packed array is sent to the root process as a series of blocks. Since 

the first N elements of the packed array correspond to sequential atoms, they can be 

sent as just one block of length N (it is less costly to send one block of length N than 

N unit blocks). The remaining elements of the packed array will not all correspond 

to consecutive atom numbers and therefore have to be sent as a collection of varying 

blocks lengths. Once the root process has received the forces of the atoms on non-root 

processes, it has to unpack the array in the receive buffer before the summation. The 

first two arguments of MPI-TYPE-INDEXED routine are the number of blocks to be sent and 

an array giving the length of each block. The third argument is an array containing the 

displacement of each block relative to the first element in the force arrays. The fourth 

and fifth arguments are the type of data to move and the new data type relating to the 

packed array, respectively. The code to sum all the forces onto the root process can be 

summarised by the following code segment. 

IF(RANK EQ. 0) THEN. 

Loop over all other processes. 

DO I=2, NPROC 

Receive force on stored atoms from non-root processes using MPI_RECV. 

Loop over stored list of atoms on non-root process. 

DO J= ATOMSTORE(I-1), ATOMSTORE(I)-1 

Unpack received force array. 

Sum force on root atom to force on received atom. 
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ENDDO 

ENDDO 

ELSE 

Create packed array of forces for stored atoms with MPI_TYPEINDEXED. 

Send array of forces for atoms in stored list to root using MPI-SEND. 

ENDIF 

The potential energy is summed together onto the root process in the same fashion 

as for the force arrays, whenever data output is required. Once the root process has 

summed all the forces, it needs to send back the forces for all atoms required by the 

non-root processes. This is because each non-root process only needs to integrate the 

equations of motion for the atoms stored in its list. The non-root processes do not need 

to unpack the forces received from the root, since the packed array in the receive buffer 

can be implemented in the integration algorithm. The root process integrates the equa- 

tions of motion for all atoms to ensure it can perform global data output when required. 

Although this creates an imbalance across the processes, it will cause a negligible im- 

pairment to performance since the integration routine accounts for an inconsequential 

amount of the total CPU time. After summation on the root process, the potential 

energy does not need to be sent back to non-root processes since it is only required for 

data output. The code to send the forces back from the root to the non-root processes 

is essentially the reverse of the previous code segment and can be summarised by the 

following code segment. 

IF(RANK EQ. 0) THEN. 

Loop over all other processes. 

DO I=2, NPROC 

Create packed array of forces for stored 

atoms on non-root process with MPI_TYPE_INDEXED. 

Send total force on stored atoms back to non-root 

processes using MPI. $END. 

ENDDO 

ELSE 

Receive total force on stored atoms from root using MPI. RECV. 

ENDIF 

The flowchart in Fig. 6.6.16 illustrates the functioning of the MD core for parallel 
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ALL PROCESSES INCREMENT TIME. 
IF ROOT PROCESS INTEGRATE POSITIONS OF ALL ATOMS. 

IF NON-ROOT PROCESS INTEGRATE POSITIONS OF ATOMS ALLOCATED AND 
NEIGHBOURS WHICH RESIDE ON A DIFFERENT PROCESS. 

ROOT PROCESS CHECKS IF A NEIGHBOUR LIST UPDATE IS REQUIRED. 
IF AN UPDATE IS REQUIRED ROOT PROCESS INFORMS NON-ROOT PROCESSES 

AND BROADCASTS POSITIONS OF ALL ATOMS. 
PERFORM GLOBAL COMMUNICATIONS OF NEIGHBOUR LIST DATA. 

ATOMS ARE REDISTRIBUTED ACROSS THE PROCESSES. 
ROOT PROCESS SENDS VELOCITIES AND ACCELERATIONS TO 

vII NON-ROOT PROCESSES TO ENABLE INTEGRATION. 

CALCULATE FORCES & ENERGY FOR ATOMS ALLOCATED TO PROCESS. 
EACH NON-ROOT PROCESS SENDS FORCES TO ROOT FOR GLOBAL SUMMING. 

POTENTIAL ENERGY IS ALSO SUMMED ON ROOT IF DATA OUTPUT IS REQUIRED. 
ROOT PROCESS SENDS FORCES OF ATOMS REQUIRED TO NON-ROOT PROCESSES. 

IF ROOT PROCESS CALCULATE ACCELERATIONS AND 
INTEGRATE VELOCITIES FOR ALL ATOMS. 

IF NON-ROOT PROCESS CALCULATION ACCELERATIONS AND INTEGRATE 
VELOCITIES OF ATOMS ALLOCATED AND NEIGHBOURS WHICH RESIDE 

ON A DIFFERENT PROCESSOR. 

Fig. 6.6.16. Flowchart illustrating the functioning of the parallel MD program following 

the performance tuning. 

execution following the performance tuning. Since only the root process integrates the 

equations of motion for all the atoms, only the root process checks the validity of the 

neighbour lists. If an update is required, it informs the non-root processes and broad- 

casts the positions of all atoms. When the atoms have been redistributed across the 

processes, the root process sends the velocity and acceleration of the atoms that are re- 

quired by the non-root processes in the integration algorithm. This is done in the same 

way the root process sends the forces back to the non-root processes in the previous 

code segment. 
A timing profile illustrating the performance of the parallel MD code following tun- 

ing is given in Table 6.3. There is a significant performance gain compared with the 

timings in Table 6.2, since the communications overhead for the force and potential 

energy arrays has been considerably reduced. The time to sum the forces and potential 

energy onto the root is approximately just as costly as the send/receive communications. 
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Table 6.3. Timing profile (in seconds) of the tuned parallel MD code following a1 ps 

simulation with approximately 1.2 million atoms. 

Number of Processors 

248 16 32 64 

Finnis Potentials 11336.5 5685.2 2854.9 1445.2 731.7 376.5 
Brenner Pairwise Storage 31.1 15.8 8.0 4.2 2.1 1.2 

Brenner Potential 454.6 224.6 110.6 54.6 27.0 14.0 

Energy and Force 92.0 132.4 175.8 274.8 305.8 492.0 

send/recv Comms. 

Energy and Force 95.9 150.0 188.5 248.3 325.1 491.5 

summation to root 

Neighbour List 374.2 190.1 106.3 60.7 32.6 18.1 

Neighbour List Comms. 62.1 77.4 95.7 115.4 140.4 156.7 

Average time per timestep 13.5 7.6 4.7 3.6 2.7 2.4 

Speedup over 1 processor 2.00 3.55 5.74 7.50 10.00 11.25 

aThis timing also includes evaluating Fe-C interactions. 

The communication time of the forces and potential energy arrays begins to dominate 

at around 32 processors when it becomes longer than the evaluation of the potentials. 

The scaling of the tuned code compared with the preliminary development is shown in 

Fig. 6.6.17. There is a performance gain with the tuned code in all cases. However, 

this decreases significantly with increasing processors. The performance gain at 64 pro- 

cessors compared with 32 processors is not of significant benefit in terms of the cost in 

CPU hours. 

Simulations of 1 ps were also performed with varying system size to determine scal- 

ability to larger number of atoms. An indenter with 30,369 atoms was used and varying 

substrate sizes to double the total system of approximately 0.125 million atoms on 4 

processors to 2.0 million atoms on 64 processors. The scalings obtained from these sim- 

ulations are given in Fig. 6.6.18 and show that the average time per timestep increases 

as both the system size and number of processors double. For ideal performance, the 

average time per timestep should be approximately the same as the system size doubles 
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with the number of processors. The discrepancy in Fig. 6.6.18 arises from the increase 

in the communications overhead for the force and potential energy arrays as the number 

of processors increases. 

Since the send and receive messages for the force and energy communications are 

only sent/received one at a time, this causes some processes to be temporarily idle and 

sit in a queue. This queue obviously becomes larger as the number of processes in- 

creases and this causes a bottleneck in the communications. Another contributor to the 

communications overhead is the amount of extra data sent and received to/from the 

root to avoid global summing the forces on all processes. Consider the spatial locality 

of substrate atoms following atom decomposition at t=0 ps depicted in Fig. 6.6.19. 

The atoms are numbered such that the decomposition corresponds to horizontal slabs. 

Since the potential energy and force for neighbours of a decomposition that reside on a 
different process are also evaluated by the host process, the number of these neighbours 

(say Nextra) heavily influences the communications overhead. If a process is allocated 

N atoms, then the percentage of Nextra relative to N can be as small as 5% for large 

N. However, as the number of processes increases, N decreases and the percentage of 
Nextra, relative to N can exceed 100 %. Thus, the initial surface area of the decomposi- 
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Fig. 6.6.17. (a) The change in the average time per timestep as the numbers of processors 

increases. (b) The speedup over one processor as the number of processors increases. 

The solid line corresponds to the parallel MD code after performance tuning. The dashed 

line denotes the preliminary parallel MD code. The results are from 1 Ps simulations 

with approximately 1.2 million atoms. 
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Fig. 6.6.18. The change in the average time per timestep as both the system size and 

number of processors doubles from approximately 0.125 million atoms on 4 processors 

to 2.0 million atoms on 64 processors. 

tion will have a significant impact on the communications overhead. As the indentation 

progresses, the spatial locality of the decomposition in Fig. 6.6.19 will become highly 

disordered and the cost of evaluating neighbours that are not on the host process will 

increase. However, this could be quickly overcome in part by applying pre-processing 
to form vertical slabs. Here, assuming each process has a large workload, the decompo- 

v 

PROCESSOR 0 

RcUT PROCESSOR I 
---_ - 

PROCESSOR 2 
- ------------------------------ 11 

---------- 

PROCESSOR 4 

Fig. 6.6.19. Hypothetical spatial locality of substrate atoms following atom decomposi- 

tion at t=0 ps. The potential energy and force for atoms within the distance ROUT from 

the edges of the decomposition are also determined by the same process. The thickness 

of RUT is usually equal to the cut-off distance of the interatomic potential (for C atoms 

described by the Brenner potential, the thickness must also account for 2nd neighbours 

of the atoms interacting across the domain interfaces). 
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sition will maintain most of its spatial locality throughout the indentation. 

Current simulations with the parallel MD code are constrained to systems of a 
few million atoms, using an optimum of approximately 16 processors (considering the 

speedup and cost in CPU hours). The speedup on 16 processors is reasonable, but it 

is still far from values for ideal scaling. This constraint will be primarily relaxed with 
improved scaling using a spatial decomposition scheme, where communication is local 

and not global. Simulating one million metal atoms with the EAM potential requires 

approximately 400 MB per processor. As the number of atoms pushes towards tens of 

millions then memory becomes a crucial factor and the replicated data model is insuf- 

ficient. This constraint will also be relaxed with spatial decomposition since data only 

needs to be local and not global, i. e. each process only needs to store data for the atoms 

which it operates on. 

6.9 Summary 

A parallel MD program has been developed using the MPI paradigm to allow the sim- 

ulation of greater atom numbers in a feasible time scale. A thorough revision of the 

sequential code to the Fortran 90 standard was made, incorporating many new features. 

A functional decomposition of the code was performed to produce a format suitable 

for parallelisation. Profiling the code identified potential energy and force evaluation, 

together with the construction of the neighbour lists as the areas which would return the 

largest performance gains when parallelised. The parallelisation scheme was based on 

atom decomposition, incorporating a dynamic load balancing algorithm that adaptively 

repartitioned the work load across the processes during the simulation. 

Performance evaluation showed that the parallel MD code scaled poorly as the num- 

ber of processes increased, since the communications overhead for the force and potential 

energy arrays became too dominant. This was attributed to globally summing all atoms 

that resided on a process, when only a fraction were operated on. As the number of 

processes increased, this fraction became smaller and smaller. Performance tuning was 

performed by only communicating the forces and potential energy to the root process 

for atoms that resided on the non-root processes and their neighbours. This resulted in 

better scaling to larger numbers of processors, enabling cost-effective simulations of over 

one million Fe atoms to be performed on 16 processors. However, scaling results showed 

170 



that the performance gain is limited as the number of processors increases since the 

code becomes communication bound. This was primarily attributed to the idle status 

of non-root processes whilst queuing to send/receive their data to/from the root. The 

performance of the parallel MD code has not been analysed for an all Brenner system, 

however, it would be expected to scale slightly better since the number of neighbours 
(including 2nd) is less compared with metals. Hence, the amount of data communicated 

to the root process will be less. Furthermore, the Brenner potential is more costly to 

implement than the EAM potential and therefore, the time to perform the force and 

energy communications with respect to the total execution time of the Brenner potential 

will be less. 
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Chapter 7 

Million Atom Simulations of Fe 

Nanoindentation 

7.1 Introduction 

In recent years, low cost parallel computers have revolutionised computational materials 

science by permitting significant improvements in cost effectiveness. Although a multi- 

tude of million atom MD simulations have been reported on in the literature, there have 

only been a small number of million atom MD studies of nanoindentation [207]-[208]. 

In a recent investigation, Walsh et al [207] reported on 10 million atom simulations of 

nanoindentation of Si3Ni4. Indentations up to 100 A were made, which resulted in the 

formation of cracks, voids and local pressure-induced amorphization under the indenter 

apex. Using thousands of processors on massively parallel machines, Vashishta et al 

[208] performed nanoindentation simulations using semiconductor materials configured 

from up to one billion atoms. 

This chapter presents parallel MD simulations of single crystal Fe indentation, em- 

ploying three different surfaces and over one million atoms. Mechanisms of material 

transport and indentation-induced dislocations are studied, together with the preferred 

crystallographic directions for pile-up. Comparisons are made with experimental results 

from single crystals, presented in two companion papers [209]-[210]. A small number 

of other research groups have examined pile-up formation and dislocation emission for 

metals by MD. For example, during indentation of Au {111} Kelchner et al [211] and 

Zimmerman et al [212] observed complex dislocations that evolved to intercept the sur- 

face. Experimentally, dislocations have also been studied in detail for Au [213], Cu 
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[214] and Ni [215]. However, there are few direct comparisons in the literature between 

simulation and experiment for single metal crystals. The simulation results in this chap- 
ter highly reproduce experimental observations for pile-up formation in the bcc work 

material. The simulations were run on dual processor Macs and multi-processor SGI 

machines in Sydney, Australia and also at Manchester University. 

7.2 Adding Curvature to the Indenter Tip 

The ability to simulate over one million atoms in an efficient way allows the use of a much 

larger indenter to penetrate to increased depths. To generate a more realistic indenter, 

the tip can be computationally rounded to give a defined radius of curvature. Consider 

a cube-cornered pyramid surrounded by a hemisphere as illustrated in Fig. 7.7.1(a). 

The pyramid is positioned in the centre of the hemisphere such that the three corners 

intersect the hemisphere at a certain radial distance. The radius of the hemisphere (rheas, ) 

is given by , where ao is the pyramidal edge side length. The height of the indenter 

(hind) is given by a and therefore the sphere completely encompasses the pyramid. Fig. 

7.7.1(b) illustrates a vertical cross-section through the pyramid, denoted by AB in Fig. 

7.7.1(a). The angle of the edge AC with the horizontal plane is denoted by 01, which 

�ry and centre is equal to arctan ý717 ý. Now consider positioning a sphere with radius rc 

o, such that the vertex of two adjacent pyramidal planes (i. e. AC in Fig. 7.7.1(b)) is 

tangential to the sphere. This imposes a constraint such that the maximum radius of 

curvature is ao. The surface of the tip is illustrated by the path pl to p2. The distances 

hi and h2 are computed from 

hl = r�uI.,, cos (c52) tan (01) (7.2.7.1) 

h2 = r,,, I.,, sin (q2) (7.2.7.2) 

and together, define the height at which the sphere must be positioned for tangential 

intersection with the adjoining pyramidal planes. Furthermore, hl denotes the critical 

cut-off distance below which surface is described by the equation of the sphere. 

To generate a rounded pyramidal tip with a radius of curvature rcun, the indenter 

is first constructed as detailed in Section 4.2, Chapter 4. The values hl and h2 are 

computed from Eqn. 7.2.7.1 and Eqn. 7.2.7.2 respectively, to position the sphere for 
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Fig. 7.7.1. (a) Plan view of a sphere encompassing a cube-cornered pyramid of side length 

ao with tip positioned at C. (b) Schematic representation of a vertical cross-section of 

the pyramid along a vertex of two adjacent planes, illustrating the method for applying 

curvature to the apex. 

a given radius of curvature. Any atoms that are located within a distance hl from 

the apex and reside outside the region encompassed by the sphere are then physically 

removed. Following the addition of tip curvature, the indenter is equilibrated in the 

same manner as before. 

7.3 Simulation Details 

A pyramidal indenter with a radius of curvature 100 A is used, as illustrated in Fig. 

7.7.2. The structure has a height of approximately h= 63 A with an edge side length 

of a= 162 A, and is configured from 64,373 atoms, with 5,184 atoms forming the fixed 

top layers. Each substrate has approximate dimensions 300 Ax 300 Ax 150 A and 

is generated from just over 1.1 million atoms. The {110}, {100} and {111} substrates 

are configured from 74,106 and 183 atomic layers respectively. The vertical edges and 

bottom two layers of the substrate are held fixed, while all remaining atoms are damped. 

At the beginning of each simulation, the indenter apex is sited 4A above the middle of 

the substrate surface and the maximum displacement of the constrained indenter atoms, 
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V I 
Fig. 7.7.2. Plan view of the large indenter used in the million atom Fe simulations, with 

a radius of curvature of 100 A. 

rma.. is set to 44 A. Tests with different indentation periods were performed and the 

speed reduced until very similar force-depth curves were produced. This resulted in a 

period of 90 ps being used, giving an average indentation speed of 98 ms-1. The classical 
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Fig. 7.7.3. Nearest neighbour directions in the {110} plane. The solid arrows represent 

the in-plane (111) directions and the dashed arrows denote the out-of-plane (111) direc- 

tions. (b), (c) Plan views of the indenter rotation with respect to the atomic structure 

of the { 110} substrate for: (b) o= 00 ; (c) o= 300. Unshaded and shaded circles denote 

1st and 2°d layer atoms respectively. In (b) the indenter side BC is adjacent to the out- 

of-plane (111) direction, with the normal to the remaining sides aligned by 5.26° from 

the in-plane (111) direction. In (c) the normal to the indenter side AC is aligned by 

35.26° from the in-plane (111) direction with the remaining sides aligned from 24.74°. 
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Fig. 7.7.4. (a) Nearest neighbour directions in the {100} plane. The dashed arrows 

denote the out-of-plane (111) directions. (b), (c) Plan views of the indenter rotation 

with respect to the atomic structure of the {100} substrate for: (b) = 0°; (c) _ 

45°. Unshaded and shaded circles denote 1st and 2nd layer atoms respectively. In (b) 

the indenter side AC is parallel to (100) with the normal to the remaining sides aligned 

15° from the out-of-plane (111) direction. In (c) the indenter side AC is adjacent to the 

out-of-plane (111) direction with the normal to the remaining sides aligned 30° from the 

out-of-plane (111) direction. 
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Fig. 7.7.5. (a) Nearest neighbour directions in t he { 111 } plane. The dashed arrows 

denote the out-of-plane (111) directions. (b). (c) Plan views of the indenter rotation 

with respect to the atomic structure of the {I1 I} substrate for: (b) (» 0°; (c) (, h 

30°. Large and small unshaded circles denote 1" and 3''d layer atones respectively, while 

shaded circles represent 2°d layer atoms. The normal of each indenter siele is aligned to 

out-of-plane (111) directions in (b) and anis-aligned by 30° in (c). 
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equations of motion for all atoms are integrated with a constant timestep of 1.0 fs. 
Two different rotations of the indenter are considered for all three substrates to reflect 

the crystal symmetry of the substrate with respect to the three-fold symmetry of the in- 

denter. The rotations are defined by 0, as shown in Fig. 7.7.3 - Fig. 7.7.5 together with 
the compact (111) directions for the three crystal surfaces studied. Only the {110} sur- 
face contains both in-plane and out-of-plane (111) directions. Neither the {100} or {111} 

surfaces contain in-plane (111) directions. For comparison with experimental results for 

conical indentation in one of the companion papers [209], an additional simulation with 
Fe {110} is performed with the paraboloidal interface (as described in Chapter 3), where 

a radius of curvature of 25 A is used. Since the deformation that occurs in metal crystals 

is anisotropic, deformation induced with the axisymmetric paraboloid interface should 

reflect the substrate crystal structure. 

7.4 Simulation Results and Discussion 

7.4.1 Fe {110} Substrate 

The surface image in Fig. 7.7.6(a) clearly reflects the two-fold crystal symmetry of the 

work material. For small indentation depths, the pile-up is observed to occur prefer- 

entially along the four in-plane (111) directions. As the pile-up increases, the hillocks 

merge together along the out-of-plane (111) direction. Thus, for larger indentation 

depths the pile-up will appear as two separate hillocks, extending along the out-of-plane 

(111) directions. For indentation with the pyramidal indenter in Fig. 7.7.6(b) and (c), 

the indenter asymmetry is reflected. In Fig. 7.7.6(b) the pile-up is greatest along the 

side of the indent adjacent to the out-of-plane (111) directions (i. e. side BC in Fig. 

7.7.3(b)), where it extends to 5-6 layers in height. Here, the normal to the side of the 

indent is in the direction of the nearest neighbours and so pile-up occurs preferentially. 

Along the remaining sides of the indent the pile-up is considerably less at only 1-2 layers. 

This is because the normal of the indent sides is mis-aligned from the nearest neighbour 

directions. The image in Fig. 7.7.6(c) clearly shows preferential pile-up of 3 layers along 

the sides left and right of the indent (i. e. sides AB and BC in Fig. 7.7.3(c)). The 

remaining side of the indent is parallel with the out-of-plane (111) directions and shows 

a much smaller pile-up yield of only 1 layer. This occurs since the normal of the indent 
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(a) 

(b) 

((') 

Fig. 7.7.6. The surface of the Fe {110} substrate following indentation by: (a) Paraboloid 

interface; (b) Pyramidal tip with 0 0°; (c) Pyramidal tip with = 30°. Atoms are 

coloured according to their vertical position from the undisturbed surface. 
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sides AB and BC in Fig. 7.7.3(c) is closer to the nearest neighbour directions compared 
with the normal to side AC. 

A 'pop-in' is shown close-up in the force-depth curve in Fig. 7.7.7(a) over the inden- 
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Fig. 7.7.7. Region of the force-depth curve from indentation of H'e {I 10 } wit }i t he 

paraboloid interface showing a pop-Mover the approximate dept 11 range 17.5 A- 19). 0 

A. Substrate atoms and the interface profile before (b) and after (c) the emission of ý, 

dislocation loop in the (111) direction, corresponding to the arrows in (a). Atoms are 

shown in the energy range -4.0 eV to -4.2 eV (93 `/% - 98 % of the Fe cohesive energy) 

and shaded on their vertical position from the undisturbed surface. The outermost blue 

shaded atoms simply denote the edge of the subst rate. 
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(c) 
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(d) 

Fig. 7.7.8. Dislocations in Fe {110} at: (a), (b) t= 18 ps with =: = 0°; (c) t 45 ps with 

0= 30°; (d) t= 45 ps with 0= 30°. In (a) and (b) the atoms are shaded on energy. For 

(c) and (d) atoms are shown in the energy range -4.0 eV to -4.2 eV (93 `/ - 98 `% of the 

Fe cohesive energy) and shaded on their vertical position from the rrndist urhed sttrfarr e. 

In (a), arrows mark the intersection of dislocation loops with the surface. hi ((--, ) all(l 

(d), arrows mark the direction of motion for the dislocation loops along 1 he in plane 

(111) directions. The outermost blue shaded atoms simply denote t he stibst rate edge. 
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tation range -- 17.5 A- 19.0 A for indentation with the paraboloid interface. The images 
in Fig. 7.7.7(b) and (c) show that this coincides with the emission of a dislocation loop 

from underneath the tip 1. To study the structures of dislocations, the potential energy 

of atoms between 93% - 98% of the Fe cohesive energy is filtered. However, this method 
is somewhat limited in that it may also include regions of elastically deformed material 
in addition to defects. As the indentation progresses, more dislocation loops are emit- 

ted. These are shown in Fig. 7.7.8 and Fig. 7.7.9 for indentation with the pyramidal 

indenter. Some of the dislocation loops emitted intersect the surface, as marked by the 

arrows in Fig. 7.7.8(a), and transport material away from the indent along the in-plane 

(111) directions. The intersection with the surface introduces a stacking fault, as shown 

in the encompassed region in Fig. 7.7.8(b), and appears as a `bump'. Plan views of 

the dislocation loops are shown in Fig. 7.7.8(c) and (d), where the arrows denote the 

direction of motion for the loops 2. Interestingly, there is broad reflection symmetry 

for the dislocation loops occurring about the out-of-plane (111) directions for ¢= 0° 

and adjacent to the out-of-plane (111) directions for 0= 30°. For the {111} and {100} 

faces, dislocations will not be observed propagating across the surface, since the (111) 

directions are only out-of-plane and not in-plane. 

Side views of the dislocations in the work material are shown in Fig. 7.7.9, at the 

maximum indentation depth. Arrow 1 in Fig. 7.7.9(a) shows a large slip occurs in the 

close packed out-of-plane {111} direction. Note that this only occurs with 0= 0°, where 

one side of the indenter is adjacent to the out-of-plane (111) directions. Arrow 2 shows 

a cluster of atoms surrounding a lattice vacancy induced by plastic deformation. As the 

indentation depth increases, the dislocation loops propagate far away from the indent. 

Some of the loops intersect the fixed underside layers of the work piece and become 

'buckled', as marked by the arrow in Fig. 7.7.9(b). In reality when dislocations inter- 

sect a grain boundary or defect they may continue to propagate in different directions. 

In addition to the in-plane (111) directions, dislocation loops also propagate along the 

out-of-plane (111) directions. The dislocations moving in the out-of-plane (111) direc- 

tions can cross-slip, when the (110) planes intersect along the (111) directions. When 

the stress in the work material is relaxed as the tip is withdrawn, the dislocation loops 

retract, as shown by the images in Fig. 7.7.9(c) and (d). As the dislocation loops along 
An animated movie of this is on the CD in the Appendix 

2An animated movie of this is on the CD in the Appendix 
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Fig. 7.7.9. Dislocations in the Fe {110} crystal for: (a) 0= 00 at t, 45 ps; (b) (/) : 30 

at t= 45 ps; (c) 0= 0° at t= 90 ps; (d) 0= 30° at t= 90 ps. Atoms are shown iti 

the energy range -4.0 eV to -4.2 eV (93 %- 98 %, of the Fe cohesive energy) and shaded 

on their vertical position from the undisturbed surface. The outermost blue shaded 

atoms simply denote the edge of the substrate. Arrows 1 and 2 in (a) mark a region 

of slip and a deformation induced lattice vacancy, respectively. The arrow in (b) marks 

the `buckling' of a dislocation loop after intersecting the fixed underside layers of the 

substrate. 
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(a) (b) 

Fig. 7.7.10. The coordination of an Fe atom (shaded green) in a densified region around 

the indent for { 110} at: (a) 45 ps; (b) 90 ps. The nearest neighbours of the green atom 

are coloured blue, and all other atoms shaded red. Note that at the halfway stage in 

(a) the green shaded atom and its nearest neighbours tend towards a fcc configuration. 

In all images, the nearest neighbour cut-off distance is assumed to be 2.60 A. 

the out-of-plane (111) directions move back towards the indent, the cross-slip forces 

material up onto the surface, causing most of the pile-up to occur during the unloading 

stage rather than the loading stage. This occurs as a series of sequential displacements 

rather than as a continuous flow. 

It is well known that indentation can induce phase transformations within a material 

specimen [216]. To determine the extent of any phase transformations, the climige in 

the coordination of the Fe atoms during the indentation was analysed. As the indenter 

penetrates the work piece, atoms are compressed which ensues in increased coordina- 

tion and densification around the indentation region. Atoms with a high coordination 

number of 12 at the halfway stage were examined to determine if a phase change occurs 

in the densified regions. Fig. 7.7.10(a) shows that some of the atoms tend towards a fcc 

configuration. However, this is only a temporary change as the atoms are arranged in a 

bcc configuration at the conclusion of the indentation. as shown in Fig. 7.7.10(h). Iýur 

larger indentation depths. the greater compression inay induce permanent phase t raus- 

formations in a fcc configuration. For further information on crystallographic phase 

transformations in metals, the reader is referred to Porter [216]. 
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7.4.2 Fe {100} Substrate 

For the { 100} surface, preferential pile-up should occur along the in-plane (110) azimuths 

(i. e. the out-of-plane (111) directions). The surface topography for Fe {100} is shown in 

Fig. 7.7.11 3. Following indentation with 0= 0°, Fig. 7.7.11(a) shows preferential pile- 

up occurs along the sides left and right of the indent, with peak heights of 13.2 A and 

15.8 A respectively. The normal to these sides is mis-aligned from the (110) azimuths 

by 15°. Along the uppermost edge there is very little pile-up since the mis-alignment 

of the normal to the close packed (110) azimuths is much larger at 45°. Following 

indentation with 0= 45°, Fig. 7.7.11(b) clearly shows preferential pile-up along the 

3Auiinated movies of this are on the CD in the Appendix 

(a) 

(I)) 

Fig. 7.7.11. The surface of the Fe {100} substrate following pyramidal indentation with: 

(a) 0= 0°; (b) q) 45°. Atoms are coloured according to their vertical position from 

the undisturbed surface. 
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Fig. 7.7.12. Dislocations in the Fe {100} crystal for 0= 0° at t= 33.75 ps. Atoms are 

shown in the energy range -4.0 eV to -4.2 eV (93 %- 98 % of the Fe cohesive energy) 

and shaded on their vertical position from the undisturbed surface. The outermost blue 

shaded atoms simply denote the edge of the substrate. The arrows mark dislocation 

loops which have cross-slipped. 

side of the indent whose normal is aligned exactly along the (110) azimuth. Here. the 

pile-up height is much larger compared with 0= 0° at 24.9 A. There is also significant 

pile-up along the remaining two sides where the normal to the sides is mis-aligned fron i 
(110) azimuths by 30°. 

The dislocation loops formed in the Fe {100} work material propagate in the out- 

of-plane (111) directions. All of the tip-induced dislocation loops can contribute to 

the piling-up of material. The high symmetry of the out-of-plane (111) directions in 

the {100} surface means that it is easier for cross-slip to occur and so the pile-up 

yield is considerably larger compared with {110} (approximately three times larger). 

Furthermore, for the {110} surface the in-plane (111) directions transport material away 

from the indent, which further reduces the pile-up yield. For {100} the cross-slip occurs 

readily during both loading and unloading of the indenter, with most of the pile-up 

forming during the loading stage. Fig. 7.7.12 shows where cross-slip for two dislocation 

loops has occurred, since the atoms do not lie in a plane. 
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7.4.3 Fe {111} Substrate 

The hexagonal arrangement of the Fe { 111 } surface exhibits three-fold symmetry such 

that for each rotation of the indenter, the normal to each indent side is aligned along 

the same crystallographic direction. Therefore, for each rotation the pile-up distribution 

along the indent sides should be more symmetric than for the other surfaces studied. 

For indentation with 0= 0°, the normal to each side of the indent is aligned exactly 

along the out-of-plane {111} direction. However, the surface topography shown in Fig. 

7.7.13(a) and (b) shows a larger pile-up along one side of the indent compared with 

the remaining sides 4. This appears to be purely statistical behaviour and for larger 

4An aniiiiated movie of this is on the CD in the Appendix 

(a) 

ýa : ýS 
$+ý n''J a 

": i 

(b) 

Fig. 7.7.13. The surface of the Fe { 111} substrate following pyramidal indent at ion wit fº: 

(a) 0= 0°; (b) o= 30°. Atoms are coloured according to their vertical posit ion from 

the undisturbed surface. 
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(a) (b) 

Fig. 7.7.14. Dislocations in the Fe 11111 crystal with 6= 30° at: (a) t= 45 ps; (b) t 

= 90 ps. Atoms are shown in the energy range -4.0 eV to -4.2 eV (93 %- 98 % of the 

Fe cohesive energy) and shaded on their vertical position from the undisturbed surface. 

The outermost blue shaded atoms simply denote the edge of the substrate. 

indentation depths, the pile-up should appear more symmetric. An obvious difference 

compared with {110} and {100} is that for {111} the pile-up is much more spread out, 

over the surface. Following indentation with 0= 30°. Fig. 7.7.13(b) shows the pile-up 

is even more spread out over the surface compared with Fig. 7.7.13(a). Tip-induced 

dislocation loops are shown in Fig. 7.7.14 for indentation with 0= 300. Like the pile- 

up on the surface, the dislocation loops are also spread further out around the indent 

Table 7.1. Nearest neighbour in layer distances and layer spacing for t he three studied 

surfaces of Fe, where a is the lattice constant. 

Surface Orientation 

{loo} {llo} {I1I} 
Nearest Neighbour in Layer a 2a 2a 

Layer Separation 2f if 
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(a) 

......... ............................................ 

((j) 

(b) 

(d) 

Fig. 7.7.15. The coordination of Fe atoms during indentation for: (a) Fe { 100} wit Ii q 

45°att=45ps; (b)Fe {111}with 6,0° at t= I5ps; (c)Fe{100}with, ) 15"att 

90 ps; (d) Fe {111} with 0 _= 0° at t- 90 ps. The red shaded atoliºs have a CUOrdlnatloll 

of 9, blue shaded atoms a coordination of 10, yellow shaded atoms a coordinat ion of l1 

and the green shaded atoms a coordination of 12. The outermost blue shaded atoms 

simply denote the edge of the substrate. In all images, the nearest neighbour cut-off 

distance is assumed to be 2.60 A. 
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compared with the {110} and {100} surfaces. 

Table 7.1 shows that the {111} surface is the most closely packed in the vertical di- 

rection, compared with {100} and {110}. Also, the {111} surface has the largest nearest 

neighbour spacing within the layer. Fig. 7.7.15 shows the densification of the {100} and 

the {111} substrates during indentation process. In Fig. 7.7.15(a) indentation of the 

{100} surface induces a high pile-up yield, with relatively little densification around the 

indent at maximum indentation. By contrast in Fig. 7.7.15(b), indentation of the {111} 

surface produces high densification around the indent, with comparatively little pile-up. 

Therefore, for the {111} surface the close packing of layers in the indentation direction, 

causes atoms to be preferentially displaced within the layer where the atom spacing is 

larger. This gives a much smaller pile-up yield compared with the {100} surface. As 

the indenter is withdrawn from the {100} work material, Fig. 7.7.15(c) shows there is 

no significant density change induced by the indentation as the compression of atoms 

relax and the coordination reduces. However, with the {111} substrate, the extraction 

of the tip in Fig. 7.7.15(d) shows there is substantial permanent densification around 

the indent. 

7.4.4 Force-depth Curve Analysis 

The force-depth curves following indentation of Fe {110} with 0= 0° and 0= 30° are 

shown in Fig. 7.7.16 and are independent of indenter orientation. Indentation with 

the paraboloid interface resulted in a similar force-depth curve, except that, the maxi- 
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-t- -T ---r-- ý-- -f- --_ rt 

15 20 

Indentation depth (A) 

Fig. 7.7.16. Force-depth curves from the simulations of indentation into the re {110} 

crystal. The bold solid line corresponds to indentation with = 0° and the remaining 

line denotes indentation with 0= 30°. 
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mum indentation depth was slightly greater due to tip compression with the pyramidal 
indenter. Very similar curves are obtained for the {100} and {111} surfaces using the 

cube-cornered indenter. The maximum force exerted on the atomisitc tip was 1331 eV/A 
for {100}, 1313 eV/A for {111} and 1274 eV/A for {110}. The employment of over one 

million atoms using the parallel MD code should allow for a more realistic determination 

of mechanical properties, compared with the system sizes for Fe and Ag in Chapter 5, 

since the finite-size effects have been partially alleviated. The nanohardness of the work 

pieces is calculated to be 3.25 GPa, 3.23 GPa and 3.14 GPa for {100}, {111} and {110} 

respectively. Therefore, the small indentation depths used here reflect only a very small 

difference in nanohardness across the three different surfaces. The calculated Young's 

modulus is around 50% higher than in experiments (see next section), however, this is 

subject to large errors due to the difficulty in determining the gradient of the unloading 

force-depth curve. 

7.5 Experimental Results and Discussion 

7.5.1 Fe {110} Substrate 

All experiments were performed using the Hysitron Nanoindenter Triboscope [152]. The 

sample preparation for the single crystals is discussed in the companion papers [209)- 

[210]. Experiments were performed on single crystal Fe {110} using both a spherocone 

(cone of 90° apex angle ending in a spherical cap of approximately 400 nm radius) and a 

cube-cornered indenter (with a radius of curvature of 120 nm). Fig. 7.7.17(a) presents a 

SFM image of the sample following indentation with the spherocone and clearly exhibits 

two-fold symmetry. The line AB is aligned parallel to the out-of-plane (111) directions, 

as depicted in Fig. 7.7.3(a), and dissects the centre of the two pile-ups. This is in good 

agreement with the simulation image in Fig. 7.7.6(a), which shows pile-ups along the 

in-plane (111) directions merge together for larger depths to give the appearance of two 

single' hillocks propagating along the out-of-plane (111) directions. The cube-cornered 

indenter is then aligned along the line AB, as shown by the red triangle in Fig. 7.7.17(a). 

The image in Fig. 7.7.17(b) shows the indented area following indentation with the 

pyramidal indenter using this orientation. Reflection symmetry is found about the line 

AB, with preferential piling-up occurring along the side of the triangle perpendicular to 
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(a) 

LI 

(h) 

((ý) (d) 

Fig. 7.7.17. SFM images of the indented area in the Fe {110} sample. All images are I 

pm x1 pm in size. The directions of maximum stress are marked by the arrows. The line 

AB is aligned along the out-of-plane (111) directions and the line 'D is perpendicular to 

AB. The dark regions correspond to the indentation hole and the light regions represent 

the induced pile-up. (a) Indentation with a spherocone showing two symmetric pile-ups; 

(b) The asymmetric pile-up in the case of a pyramidal indenter with reflect ion symmetry 

about the line AB; (c) Rotation of the crystal by 30° showing reflection symmetry about 

CD; (d) Rotation of the crystal by 60° showing the same nanotopography as in (b). 
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Fig. 7.7.18. Three-dimensional representation of the Fe { 110} surface in Fig. 7.7.17(b), 

showing the difference in pile-up height along the three sides of the indent. 

AB (side 1) which corresponds to the two pile-ups in Fig. 7.7.17(a). This orientation 

corresponds to Fig. 7.7.6(b) in the simulations and compares favourably. The direction 

of maximum stress is perpendicular to the indenter side, as marked by the arrows in 

Fig. 7.7.17(b)-(c). The volume of the pile-ups aligned along sides 2 and 3 of the indent 

in Fig. 7.7.17(b) are measured to be the same as the hillock along side 1. The height of 

the hillock along side 1 is 82 nm, whereas along the remaining sides the pile-up height 

is much less at 39 nm and 43 nm. 

By rotating the sample by 30° and using a higher force than in Fig. 7.7.17(b), Fig. 

7.7.17(c) shows reflection symmetry about the line CD. Side 2 of the indent is aligned 

parallel to AB and shows a smaller hillock compared with those along sides 1 and 3. This 

compares to Fig. 7.7.6(c) where pile-up is smallest along the side of the indent parallel 

to the out-of-plane (111) directions and occurs preferentially along the two remaining 

sides. The height of the hillock along side 3 is approximately 102 nm, conipared with 

91 nm and 86 nm for side 1 and side 2 respectively. When the sample is rotated by 60° 

in Fig. 7.7.17(d) the same nanotopography behaviour is observed as in Fig. 7.7.17(b). 

A three-dimensional representation of the hillocks in Fig. 7.7.17(b) is shown in Fig. 

7.7.18, illustrating the difference if the pile-up height along each side of the indent. 

Fig. 7.7.19 shows how the pile-up changes with increasing load. For very small loads 

up to 0.1 mN, no pile-ups can be imaged using the SFM. and the indenter cross-section 

is almost axially symmetric. As the load increases to 0.2m: ß Fig. 7.7.19(h) shows two 

symmetric pile-ups occur depicting the surface crystal structure, as observed with the 

spherocone in Fig. 7.7.17(a). In Fig. 7.7.19(c) at a load of 0.4 mid, the pyramidal 
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Fig. 7.7.19. SFM images showing the change in pile-up with increrisiiig load for Fe { 110}. 

(a) 0.1mN; (b) 0.2 mN; (c) 0.4 mN; (d) 6 inN. Note that in (a) no pile-ups are observable 

and the indenter cross-section is almost axially symmetric. 

structure of the indenter becomes apparent and asymmetries begin to appear. With an 

increased load of 6 mN in Fig. 7.7.19(d) the full characteristic asymmetric pyramidal 

form is again seen. 

7.5.2 Fe {100} Substrate 

SFMI irrvages of indents into the { 100} face of Fe are shown in Fig. 7.7.20. There are two 

large pile-ups in Fig. 7.7.20(a). with much less pile-up occurring along t he remaining side 
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Fig. 7.7.20. SF\I images of pile-up (listri}, utiun suitI �- I vv1100 1 surface after ii if lvvit , tti�iº 

with a iiºaxiiºniiii force of 1 iii\. Image size: (a) 1{iui l pin: (h) I. 2. pin 1.2.5pin 

of the indent. Ilc"º, c"c". the normal to the two sides with large pile-ups Will l, c" ý"c"rý (lo)S" t� 

the (110) azi, ººutii. There will he it large ºuis-aligt, uu"º, t hetwc"c"n lit, - (110) azitnutIi , uul 

the ºu, r, ººal to the side With little pile-up. The two large hillocks have heights of . 1.1 ººuº 

and 35 11111. whilst the smallest hillock iý, �Iv ., 11111 in height. The pile-up distribulion 

is ý"c rtý Similar to the sitººttlrºt iuºº result, f�r Fe {l0()} iºº Fig. 7.7.11(a). When lit(- -,; ººnl, l, " 

is rotated by there is it significant c"l,; uige in t lu" pile-lip , list ril�ºt iº, n. , t., shown Ill 

Fig. 7.7.20(I, ). There i, º, uw one large hillock along one side of t he indent wit It it livight 

of' . }'. l 11111, with two , ºualler hillocks of height 22 º, ºu and 26 11111 �c c uº riº, k ; ºlº, tºE; the 

r111º,., iuiº, g sides. This pile-up (list ril, ut ion is ;, n;, l�p 
,,, u, to that ill the sitºº, ºl, ºt i"º, 1111.1);, 

in Fig. 7.7.11(11). 

7.5.3 Fe {111} Stihst. rate 

ý} \1 iut;, ý, 1 tI{111}f. u", " �f }, t, "11�\ti tl Itl I ts;. ... :' 11�llý, tý ln}; Itlý i, IIt . ºI t�1, \clt 1, 

it force c'f 2111\ (not(- tlli-s fait is 11111(11 larger than that 11s4 1 will, tlt, { 1111} ., r (lINº} 

sainples). 'I'll(, pile-ii l> is Inure symmetric ("c, ntI)arc(l \\"itII tIlc" {1 IU} nd { 11Nº} ýIIII: 1,,: ".. 

The height of t he 11iIc"-tll, arminci t lIP t III-PP sicIrs 4t lIP no]vut wies 5r) Inn. 25IIIn ,, 11,1 SS 
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Fig. 7.7.21. SFM image of pile-up distribution on the Fe {111} surface after indentation 

with a niaxirnurn force of 2 inN. Image size 3/cin x 3111n. 

is much more spread out compared with the other surfaces, which agrees qualitatively 

with the simulations. Other nanoindentations performed on the 11111 surface show 

that the pile-up adjacent to the indenter sides appears very similar irrespective of the 

orientation. 

7.5.4 Force-depth Curve Analysis 

The force-depth curve from indentation of the Fe {110} crystal with a loading force of 

6 mN is shown in Fig. 7.7.22(a). When the loading force is reduced to 0.1 mN, Fig. 

7.7.22(b) shows the curve is not sii>ooth and exhibits multiple 'pop-ins' nmi-kcd by the 

letters A and B in the diagram, where the force remains constant will> increased indeii- 

tation depth. The calculated nanohardness from the force-depth curves is 4.75 G1'a 

for Fig. 7.7.17(a) and 2.25 GPa for Fig. 7.7.17(b). The Young's modulus, increases from 

around 220 GPa to 300 GPa. The variation in nanohardness as a fnii("tion of iii(lent gat ion 

depth is shown in Fig. 7.7.22(c) for Fe {110} amd Fe {100}. For suutall cmitm-1 depths 

(less than 200 nm) the nanohardness is similar betweeii the two faces and decreaises wit 11 

increased contact. After a contact depth of around 200 nisi, the nauol>ýir(Iuess starts to 

reach a constant value, and the difference in nanohardness between the two smi, I)Ies 

becomes apparent. The nanohardness extracted frone the sinnih>ted force-debt Ii tui'ves 

are smaller than experimental values of between 6 GPa -8 GP,, for sm11a1ll 1116uitat lout 

depths (< 50 inn), and are more similar to values for deeper indeiitattout dept Its. 
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Fig. 7.7.22. (a), (b) Experimental force-depth curves for; (a) 6 mN loading force and (b) 

0.1 mN loading force. (c) Experimental curves showing the variation in nanohardness 

as a function of the indentation depth for Fe {110} and Fe {100}. 

7.6 Summary 

Million atom parallel MD simulations have been performed on the {110}, {100} and 

{111} surface of bcc Fe to study dislocation mechanisms and preferred crystallographic 

directions for hillock formation. The three different crystal orientations studied show 

a diverse distribution of the tip-induced nanotopography. Thus, the nanoindentation 

technique could be used for orientation mapping. This is particularly important for 

polycrystals, where the surface orientation of individual grains is not known. In both 

simulations and experiment, the pile-up reflected the crystal symmetry of the surface. 
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In each case, the pile-up is greatest when the normal of an indenter side is adjacent to 

the compact (111) directions. When the normal of an indenter side is mis-aligned from 

the (111) direction the pile-up yield decreases. In all cases, the pile-up is greatest along 

the middle of the indent side, where the maximum stress occurs. Along the corners of 

the indent, the pile-up is suppressed. 

In the simulations, indentation of the {111} surface yielded the smallest pile-up, 

since the atoms are close packed in the vertical direction, and atoms are preferentially 

displaced within the layer where the atomic spacing is generous. This leads to a size- 

able volume of permanent densification surrounding the indent. The simulation and 

experimental images show that the pile-up is more spread out over the {111} surface. 

Indentation of the {110} and {100} surfaces produces more asymmetry in the pile-up 

compared with {111}, showing distinct preferred crystallographic directions for hillock 

formation. It is argued [210] that dislocation loops propagating along the out-of-plane 

(111) directions can cross-slip and this can cause piling-up. Since the {100} surface is 

more symmetric compared with {110} (it contains more out-of-plane (111) directions), 

cross-slip can occur more easily on the {100} surface. Furthermore, the {110} surface 

contains four in-plane (111) directions which transport material away from the indent. 

These factors combined give a larger pile-up yield on {100} compared with the {110} 

surface. 

The simulations showed that `pop-ins' in the force-depth curves coincide with the 

emission of dislocation loops around the indent, which propagated along the close packed 

directions. Each of the three different surfaces show unique dislocations due to the 

alignment of the slip planes relative to the surface. On intersection with the surface 

the dislocation loops can produce a stacking fault and give the appearance of a `bump' 

on the surface. The experimental force-depth curves also revealed `pop-ins', when the 

indentation force was reduced to the order of tenths of mN. Simulations with {110} also 

showed how the compression of atoms around the indent can impart phase transforma- 

tions tending towards a fee configuration. This was only a temporary change, as the 

compression relaxed during tip extraction and the atoms returned to a bee configura- 

tion. 

In the simulations, the different crystal structures were not generally reflected in 

the force-depth curves or nanohardness values. Only a 3% variation in nanohardness 

was observed across the three faces, suggesting that each surface exhibits similar me- 
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chanical properties over small indentation depths. The extracted nanohardness values 

compared favourably to experimental values for large contact depths (> 200 nm). How- 

ever, the experimental results showed the nanohardness increased as the contact depth 

was reduced. At contact depths of less than 50nm the nanohardness was similar, re- 

gardless of the surface orientation. When the contact depth increased, the difference in 

nanohardness between the surfaces became apparent. The Young's modulus extracted 

from the simulated force-depth curves was about 50% higher than experimental values, 

which stems from the difficulty in estimating the gradient of the unloading curve and 

the small indentation depth. 

The million atom simulations have helped to partially alleviate the finite-size ef- 

fects. Comparisons with the simulations using Fe in Chapter 5 with approximately 

40,000 atoms show less edge effects occur. However, in the simulations presented in this 

chapter, the indentation to the maximum depth (approximately 27% of the substrate 

thickness) still ensues in interactions with the fixed underside layers of the substrate. 

Ideally, the experimental rule of thumb should be used, where indentation is performed 

up to about one tenth of the film thickness to minimise the influence of the underly- 

ing substrate. The use of over one million atoms has permitted increased indentation 

depths, which is crucial to generate a significant pile-up yield to conclude preferential 

crystallographic directions for hillock formation. For example, the maximum pile-up 

yield for Fe {100} in the million atom simulation is 5508, compared with only 137 in the 

40,000 atom simulation. The use of over one million atoms also yields different values 

for nanohardness. In the preliminary 40,000 atom simulation, the nanohardness for the 

{100} face was calculated to be 7.4 GPa compared with 3.25 GPa in the million atom 

simulation. 
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Chapter 8 

Conclusions and Future Work 

Classical MD simulations have been performed to study the elastic-plastic deformation 

behaviour of carbon materials and both bcc Fe and fcc Ag during nanometre-sized in- 

dentations. The indenter was preliminary described by a non-deformable interface with 

pyramidal and axisymmetric geometries. An atomistic description of a 90° pyramidal 

indenter was also used to study deformation of the tip, adhesive tip-substrate interac- 

tions and atom transfer, together with damage after adhesive rupture and mechanisms 

of tip-induced structural transformations and surface nanotopography. The MD sim- 

ulations showed interesting yielding phenomena over the range of work materials and 

surface orientations studied. Diverse deformation behaviour ranged from simple elastic 

behaviour with graphite, to complex plastic deformation with metals where dislocations 

and pile-up propagate along certain crystallographic planes. The limiting factor in com- 

parison between the MD simulations and experimental observations is the length scales 

accessible to each. Despite this, the MD simulations correlated well with experiment 

by qualitatively modelling the deformation behaviour of the test specimens. Thus, in 

conclusion MD simulations combined with experiment provide a unique insight into 

nanoindentation. 

Quantitative agreement between experimental results and the preliminary MD sim- 

ulations could not be found. This stemmed primarily from the finite-size effects in the 

simulation model, which were imposed by constraints in available computer power. The 

use of parallel computers, simulating over one million atoms helped to alleviate the 

finite-size effects and produced results that agreed even better with experiment. The 

Brenner potential used to describe the interactions within the indenter was not fitted to 

the elastic constants and will therefore contribute partially to quantitative discrepan- 
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cies. There are other factors in the MD simulations that limit the physically meaningful 
interpretation of the numerics. For example, with the exception of a-C, the substrates 

are modelled as `ideal' solids, i. e. defect-free and atomically flat. In reality surfaces 

are seldom atomically flat, containing a multitude of impurities, like oxides, and there- 

fore contact occurs at many asperities. The time scales used in the simulations may 

have averted some kinetic processes from occurring. Furthermore, the simulations were 

performed at zero temperature which may have precluded thermally-activated processes 

developing. A recent theoretical study by Lu et al [217] reported on the nanoindentation 

of Al at different temperatures and found dislocation motion was heavily influenced by 

the temperature. In addition, experiments with quasi crystals have shown that temper- 

ature can heavily influence nanohardness [218]-[219]. 

The parallel MD code developed for simulating nanoindentation has recently been 

adapted to investigate friction on the atomic scale. First simulations of scratching the 

Ag {100} surface with a diamond indenter have been performed [220]. The method 

of displacing the tip during both indentation and scratching has been developed using 

Fig. 8.8.1. Schematic representation of the spring indenter displacement. The indenter 

is attached to two springs in the vertical (indentation) and horizontal (scratching) direc- 

tions. The springs are attached to support blocks A and B, and have spring constants 

Kx and Ky respectively. 
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the method implemented by Shimuzu et al [87] and is illustrated in Fig. 8.8.1. "l'liis 

proposed model allows the influence of the spring constant used experimentally in Hic 

cantilever to be considered. Springs with constants R -x lip are attached frone the 

indenter to the supports A and B respectively, in both the indeiitatiou and scratcliiug 

directions. During indentation, support B moves at a constant speed and support A 

moves with respect to the indenter, and vice versa for scratcliiiig. Tlie in< orl)oraat ion 

of the spring and support A during scratching allows the stick-slip pheuoiueua to he 

investigated [86]-[87]. Since the elastic energy is stored during iiideiit at ion, this model 

combined with the parallel MID code may allow the catastrophic breaking of graapliitc 

layers to be simulated. This is of particular interest since this large-scale (let orm at io n 

phenomena has been observed experünentally by Richter ct al [12.1]. bait laus yet to> be 

modelled by MD. 

The parallel MD code is currently being developed using a sl>at iail (1011W!!! dec(ml- 

position. By implementing a spatial decomposition. the scala}, ility of the parallel NI I) 
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Fig. 8.8.2. (a) Schematic repre ent, ation of iº Si ºººtºlc SI)ItIII (1c("oIIIImsitH)ºº of tIºfý (. Oººº 
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code can be improved because the communications overhead and memory usage are 
rapidly reduced since only local communication and local data storage is required. Data 

arrays for positions, velocities, forces etc., are made local together with the neighbour 
lists. Consider the simple spatial decomposition depicted in Fig. 8.8.2(a), where the 

computational box is divided into vertical slabs, and each domain is assigned to a dif- 

ferent processor. The communication scheme is illustrated in Fig. 8.8.2(b), where each 

processor only communicates interactions across the neighbouring domains. When an 

atom migrates across the domain interface it needs to be removed from the list of atoms 

in the source domain and added to the list of atoms in the new domain. Therefore, 

there is a frequent need to check which domain an atom resides within. In the paral- 

lel MD code, a cubic spatial decomposition scheme has been implemented, where each 

processor has 26 domain boundaries. Since the indenter is irregular in shape, the cubic 

spatial decomposition will produce a load imbalance. Therefore, the interface model of 

the indenter has been preliminary utilised. For the substrate, load balancing has ini- 

tially been neglected since it is not trivial to perform. Such a scheme will inevitably be 

complex and so performance could be maximised by redistributing the work load only 

when the efficiency of any processor falls below a minimum threshold value. In the fu- 

ture, parallelisation of the MD non-core could also be considered. For example, if online 

visualisation is required then execution time of the non-core becomes more significant 

and non-core parallelisation is justifiable. 

Improved scaling with the spatial decomposition scheme will allow even greater atom 

numbers to be utilised, which will enable larger-scale indentation phenomena, like frac- 

ture for example, to be studied. Also, the indentation size effect could be addressed by 

employing greater indentation depths to provide further insight into this phenomena. 
With the emergence of computers with higher processing capability and memory, billion 

atom simulations will soon become feasible. Advances with massively parallel machines 

may enable trillion atom simulations to be performed [221]. Coupled with more realistic 
interatomic potentials, MD simulations will allow for more favourable comparison with 

experimental observations and also analytical models derived from classical continuum 
theory. As parallel architectures become more available and more powerful, the use of 

ab-initio simulations, and other quantum mechanical methods, will also be inevitably 

applied to larger and larger systems. 
There is now a wealth of experimental nanoindentation information, encompassing 
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a wide range of materials. Since only covalent and metallic materials have been in- 

vestigated in this thesis, many other materials, such as ionic crystals and ceramics, 

need to be examined by MD to provide increased insight. Different crystal structures 

and surface grains also remain to be probed since crystal orientation and geometry can 

exhibit diverse deformation behaviour. Metallic materials with hexagonal-close-packed 

(hcp) crystal structure exhibit dominant slip planes [222] and will provide an interest- 

ing comparison to the dislocation and pile-up behaviour of bee and fcc metals. Future 

work with metals could also include an attractive term in the potential describing the 

tip-substrate interactions to study aspects interfacial bonding, such as `jump-to-contact' 

and `connective neck' formation and rupture, and the influence they have on mechanisms 

of deformation. In the immediate future, million atom simulations with low index faces 

of Ag are planned, to compare with the results presented in the preceding chapter with 

bcc Fe. 

In addition to friction, there are numerous other areas of nanotribology that the 

nanoindentation model could be developed for and applied to. For example, experimen- 

talists sometimes use repeated indentation in order to remove adsorbates present on the 

surface of a specimen [223]. Furthermore, in many micromachines repetitive contact 

between interfaces occurs. Hence, the nanoindentation model could be extended to in- 

vestigate wear properties of materials through repetitive contact and how deformation 

from cyclic loading may differ from that induced from single indentations. Another area 

of nanotribology is the fabrication of nanometre tolerance components [224]. Simula- 

tions could therefore use the diamond tip to `cut' the substrate and investigate wear 

properties. 
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Appendix A 

Animated Movies 

The CD contains selected animated movies of the nanoindentation process. 
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