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Abstract 
 
The PhD thesis investigated poly(lactic acid) nanocomposite in terms of water 

barrier properties and electrospinning. The thesis addresses two different but 

related topics. The first topic is improvement of the water vapour barrier 

properties of PLA films. The effect of montmorillonite clay and its alignment on 

water vapour permeability and the effect of crystallinity (introduced by annealing) 

on nanoclay alignment and barrier properties were investigated (Chapter 4). PLA 

nanocomposites containing 0 to 5 wt.% montmorillonite layered silicate were 

prepared. Both amorphous and semi-crystalline PLA nanocomposite films were 

obtained by compression moulding. Thermal properties of the samples were 

measured by DSC. The nanoclay dispersion was measured using TEM and 

WAXD. Water vapour transmission rates through the films were measured at 

38℃ and at a relative humidity of 90%. A new tortuous path model was developed 

to quantify the effect of crystallinity, nanoclay concentration and nanoclay 

alignment on water vapour permeability and showed a good fit with the 

experimental data from the annealed PLA nanocomposites.  

A further development of this topic was to use mechanical stretching to introduce 

orientation and molecular alignment to the PLA nanocomposite films. The effect 

of mechanical stretching on PLA nanocomposite in terms of nanoclay structure 

and water barrier properties were investigated (Chapter 5). Uniaxial stretching 

was applied to amorphous PLA nanocomposite sheets at 60 ℃ and a draw ratio 

of 3. Thermal properties of the stretched films were measured by DSC. Tg of the 

stretched films significantly increased with clay concentration due to the 

presence of nanoclay that reduced the mobility of the polymer chains and hence 

increased chain relaxation time. The nanoclay dispersion was measured using 

TEM and WAXD. Better delamination of the clay layers was obtained due to the 

drawing of the intercalated clay tactoids by uniaxial stretching. The stretched PLA 

nanocomposite films showed better water vapour permeability than the 

quenched PLA nanocomposite films.  

The second topic is to produce PLA nanocomposite fibres by a novel technique 

of electrospinning (Chapter 6). The aim is to investigate how nano-sized particles 

(i.e., montmorillonite clay and zinc oxide nanoparticles) affect PLA nanofibres in 
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terms of the morphology and properties. Two grades of PLA (4060D and 4032D) 

nanofibres containing 1, 3, and 5 wt.% montmorillonite clay were produced using 

electrospinning. The morphology of the nanofibres was investigated using SEM 

and the nanoclay structure in the nanofibres was measured using TEM. 

Continuous nanofibres with the existence of a few beads were obtained in both 

grades of PLA nanocomposite fibres. Thermal properties of the nanofibres were 

investigated using DSC. Both PLA grades showed a reduction in Tg with the 

addition of nanoclay. The crystallisable PLA / clay nanofibres showed the degree 

of crystallinity increased from 21% to 31% with clay content increasing from 0 to 

5 wt.%. The mechanical properties of PLA nanofibre mats were analysed by 

tensile tests. PLA nanofibres exhibited worse mechanical properties with the 

addition of nanoclay. 

The second part investigates the effect of ZnO nanoparticles on PLA nanofibres. 

PLA 4060D nanocomposite nanofibres containing 1, 3, 5, 7 and 9 wt.% ZnO were 

produced using electrospinning. The morphology of the nanofibres was 

investigated using SEM and the ZnO particle structure was measured using TEM. 

A good distribution of the ZnO particles was obtained with some nanoparticle 

agglomerates. Thermal properties of the nanofibres were investigated using DSC. 

The incorporation of ZnO enhanced the enthalpy relaxation of the polymer chains 

at the glass transition. The wetting properties of the nanofibre mats were 

evaluated by water contact angle measurement. Antimicrobial properties of the 

PLA / ZnO nanofibres were evaluated against E.coli bacterial at 37℃ . Zone 

inhibition was observed when ZnO content was above 5 wt.%. 
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1 Introduction 

1.1 Background 

Over the past decades, the development of synthetic petroleum-based polymers 

has brought economic development and great benefits to human lives. An 

increasing number of plastics are produced each year. Back in 1950, the annual 

production of plastics worldwide was only 1.5 million tons. Whilst this amount 

increased to 200 million tons in 2002 and 322 million tons in 2015 [3]. It is 

estimated that approximately 8% of the annual oil production is consumed in the 

plastics industry.  

Synthetic plastics are extensively used as packaging materials due to their low 

cost, good processability and good mechanical properties. Approximately 30% 

of the plastics are used for packaging applications, which is still expanding at a 

high rate of 12% per annum [4]. However, many plastic packaging products, e.g. 

for food, pharmaceuticals, cosmetics, detergents and chemicals, have a short 

service life [5]. After a limited time of use, plastic packaging has to be disposed. 

Only a limited amount of plastic waste can be recycled and reused. The majority 

of plastic waste is disposed of through landfill, which creates big issues for the 

environment since plastics are persistence in the environment. Nowadays, most 

commodity plastics used are conventional plastics that take decades to degrade. 

The environmental impact of plastic waste is increasing the need for alternative 

materials for short-term packaging and disposal applications. Therefore, bio-

based polymers are being developed as a replacement for petroleum based 

packaging plastics. Bio-based polymers are derived from renewable resources, 

e.g. corn, cane sugar and starch. They can be divided into two categories: 1) 

One is ‘biopolymers’, which are polymers produced by the metabolic process of 

the living cells. This type includes some carbohydrates (e.g. cellulose and starch) 

and some proteins (e.g. keratin); 2) The other category includes the polymers 

that are synthesised from biomass monomers, for example poly(lactic acid) 

(PLA). 

Most bio-based polymers are biodegradable, which means they can be 

hydrolysed followed by bacterial breakdown in the natural environment. Some 

synthetic plastics that are derived from petroleum are also biodegradable, such 

as polycaprolactone (PCL) and polyesteramide. But some bio-based polymers 
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like bio-derived polyethylene cannot be biodegraded. 

Poly(lactic acid) is one of the most commercially successful bio-plastics due to 

its good mechanical and barrier properties. Its  monomer, lactic acid, is derived 

from renewable sources, such as starch or maize sugar, through fermentation 

[6]. PLA is not only a biodegradable polymer, but also has good biocompatibility 

with the human body. Therefore, it has been extensively used in medical 

applications, such as wound healing, tissue engineering and drug delivery.  

PLA has good mechanical properties and transparency compared with other bio-

based polymers. Hence, it has been widely used for short life-time packaging 

products, such as food packaging and disposal items for catering. However, as 

a compostable polymer, PLA has poor water barrier properties compared with 

conventional thermoplastics. This is because PLA is a polar polymer and 

therefore has high water vapour solubility and hence high permeability. One way 

of addressing this problem is through the development of polymer / clay 

nanocomposites, which have been very successful in improving barrier 

properties [7].  

In this thesis, the water vapour barrier property of PLA / clay nanocomposite used 

for package applications was investigated. Meanwhile, electrospun PLA 

nanocomposite fibres used for medical applications and water filtration 

membranes have also been investigated.  
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1.2 Aims of the project 

This thesis addresses two different but related topics. The first topic is 

improvement of the water vapour barrier properties of PLA films. It is investigated 

how incorporation of montmorillonite clay and its alignment affect water vapour 

permeability (Chapter 4) and furthermore how crystallinity (introduced by 

annealing) affects nanoclay alignment and barrier properties. A new tortuous 

path model was developed to quantify the effect of crystallinity, nanoclay 

concentration and nanoclay alignment on water vapour permeability.  

A further development of this topic was to use mechanical stretching to introduce 

orientation and molecular alignment to the PLA nanocomposite films. The effect 

of mechanical stretching on PLA nanocomposite films in terms of nanoclay 

structure and water vapour barrier properties were further investigated (Chapter 

5). There are three objectives for this topic: 

1. Incorporate montmorillonite clay in PLA to improve the water barrier 

properties of PLA films. 

2. Investigate the combined effect of crystallinity and nanoclay in PLA films 

in terms of water barrier properties by annealing of PLA nanocomposite 

films. 

3. Investigate the effect of orientation of polymer chains and nanoclay 

alignment on water barrier properties of PLA nanocomposite sheets by 

using mechanical stretching. 

The second topic is to produce PLA nanocomposite fibres by a novel technique 

of electrospinning (Chapter 6). In this case, the aim is to investigate how nano-

sized particles (i.e., montmorillonite clay and zinc oxide nanoparticles) affect the 

morphology, thermal properties, water contact angle, antimicrobial properties 

and mechanical properties of PLA nanofibres. Three objectives of this topic are 

listed below: 

1. Select the optimum solvent system for PLA solution that is 

electrospinnable and accessible to continuous and uniform fibre 

morphology.  

2. Investigate the effect of incorporating montmorillonite clay in PLA 

nanofibres, in terms of fibre morphology, thermal behaviour and 
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mechanical properties. 

3. Investigate the effect of incorporating ZnO nanoparticles in PLA 

nanofibres, in terms of fibre morphology, thermal behaviour, antimicrobial 

properties and wettability. 
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1.3 List of publication 

1. B.Tan and N.L.Thomas, A review of the water barrier properties of 

polymer/clay and polymer/graphene nanocomposites. Journal of 

membrane science (2016), 514, 595-612 

Abstract:  

This paper reviews the literature on moisture barrier properties of polymer/clay 

and polymer/graphene-based nanocomposites. The various models proposed to 

predict the effects of nanofillers in reducing water vapour permeability through 

polymers are outlined. These models are based on a range of different factors 

such as; tortuosity, geometry, platelet stacking, orientation, polymer chain 

confinement and plasticisation. Published experimental studies of water vapour 

permeability in both polymer/clay and polymer/graphene nanocomposites are 

then reviewed. The extent to which the models are validated by the results of 

these studies is discussed, together with the degree to which the potential for 

water barrier improvement in polymer nanocomposites has been realised. 

2. B.Tan and N.L.Thomas, Tortuosity model to predict the combined effects 

of crystallinity and nanoclay on the water vapour permeability of polylactic 

acid, Applied Clay Science (2017), 141, 46-54 

Abstract:  

The combined effects of crystallinity and nanoclay fillers on the water vapour 

barrier properties of poly(lactic acid) (PLA) nanocomposites are investigated. 

Both amorphous and semi-crystalline PLA nanocomposites containing 0 to 5 wt.% 

montmorillonite layered silicate are prepared by melt compounding followed by 

compression moulding with two different thermal treatments: quenching and 

annealing. Thermal properties and morphology are investigated using differential 

scanning calorimetry (DSC), polarised light microscopy, transmission electron 

microscopy (TEM) and wide-angle X-ray diffraction (WAXD). It is confirmed that 

the nanocomposite structures are intercalated and the clay aspect ratio is 

measured to be 40 in both quenched and annealed samples. Water vapour 

transmission rates (WVTR) through the film samples are measured. A new 

tortuous path model is developed that fits the WVTR data and accounts for the 

effects of crystallinity as well as nanoclay aspect ratio, concentration and 

orientation.  
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2 Literature review 

2.1 Poly(lactic acid) 

2.1.1 Structure of PLA 

The monomer of PLA, lactic acid, is derived from a renewable source, such as 

starch and maize sugar, through dextrose fermentation [8]. Since lactic acid has 

an asymmetric carbon atom, it has two optically active configurations as shown 

in Figure 2.1. Commercial PLA is produced by ring-opening polymerisation of 

lactide, which is a cyclic dimer composed of two lactic acid units. Lactide has 

three optically isomeric forms: L-lactide (a dimer of L-lactic acid); D-lactide (a 

dimer of D-lactic acid) and meso-lactide (a dimer of L- and D-lactic acid), as 

shown in Figure 2.2. 

 

               

Figure 2.1 Chemical structure of L- (left) and D-(right) lactic acid [9] 

 

 

Figure 2.2 Chemical structures of LL-, DD- and meso-lactide (from left to right, 

respectively) [8] 

 

PLA is a crystallisable polymer. The crystallisability of PLA is dependent on the 

ratio of L-, D- and meso- lactide in the polymer backbone: higher crystallinities 

are obtained with more optically pure polymers with higher chain symmetry [5]. 

PLA has three configurations, i.e. poly(L-lactic acid), poly(D-lactic acid) and 

poly(L/D-lactic acid) (see Figure 2.3), in which PLLA and PDLA are crystalline 

polymers, whereas PDLLA is an amorphous polymer. 
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Figure 2.3 Three configurations of PLA [9] 
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2.1.2 Polymerisation of PLA 

There are three polymerisation methods that can be used to produce commercial 

high-molecular-weight PLA, as shown in Figure 2.4. They are 1) direct 

condensation from lactic acid, 2) ring-opening polymerisation of lactide and 3) 

azeotropic condensation polymerisation [6], [8], [9]. 

 

Figure 2.4 Methods of synthesis of PLA from lactic acids [8] 

Direct condensation of lactic acid is the cheapest polymerisation route. However, 

it is difficult to obtain high molecular weight PLA through direct condensation. 

Therefore, PLA produced by direct condensation polymerisation usually exhibits 

brittle and glassy properties, which are unsuitable for most commodity 

applications. Various esterification promoting additives and chain-extending 

agents, such as bis(trichloromethyl) carbonate, dicyclohexylcarbodiimide and 

carbonyl diimidazole, are used to increase the molecular weight of the final PLA 

product. The by-products derived from the esterification promoting additives 

must be neutralised or removed at the end of the polymerisation to obtain a highly 

purified final product. Since the esterification promoting additives are relatively 

expensive, some cheaper chain-extending agents may be used instead, even 

though the PLA produced with chain-extending agents is not as pure as that 

produce with esterification promoting additives [6]. 

Ring-opening polymerisation is the most popular method to produce commercial 

PLA. It was first applied to produce high-molecular-weight PLA in 1954 by 
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DuPoint [6]. A synthesis procedure currently used for commercial PLA is shown 

in Figure 2.5. Lactic acid (either D-, L- or meso-) is first produced by dextrose 

fermentation and then being extracted and pre-polymerised into an intermediate 

low molecular weight pre-polymer. The pre-polymer is then catalytically 

depolymerised under low pressure forming lactide, which is the cyclic dimer of 

lactic acid. High molecular weight PLA is polymerised through ring-opening 

polymerisation of lactide [9]. 

 

Figure 2.5 Current production process of ring-opening polymerisation of PLA [9] 

Azeotropic condensation polymerisation is used to produce high-molecular-

weight polymer without adding chain extending agents or additives. The general 

procedure of this method is as follow: firstly the lactic acid is distilled at reduced 

pressure for 2-3 hours at 130℃ to remove the majority of condensation water. 

Then catalyst and diphenyl ether are added and a tube packed with 3-Å 

molecular sieves is attached to the reaction vessel. The refluxing solvent returns 

to the vessel by way of the molecular sieves for an additional 30-40 hours at 

130℃  [10]. The polymer can be isolated for further purification. Although this 

polymerisation technique provide high-molecular-weight PLA, it is high-cost and 

results in considerable catalyst impurities, which will cause several problems, e.g. 

degradation, uncontrolled hydrolysis rates and catalyst toxicity, during further 

processing [9]. Therefore, this is not preferred by the majority of PLA 

manufactures.  
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2.1.3 Properties of PLA 

2.1.3.1 Thermal properties 

Thermal properties of PLA are dependent on factors such as molecular weight, 

chain regularity and processing history of the polymer [5]. The glass transition 

temperature (Tg) of PLA is mainly influenced by its molecular weight and chain 

regularity [8]. The relationship between Tg and molecular weight is represented 

by the Flory-Fox equation: 

Tg = Tg
∞ −

K

Mn̅̅ ̅̅ ̅
  ……………………………. (2.1) 

where Tg
∞ is the Tg at the infinite molecular weight; K is a constant representing 

the excess free volume of the end groups for the polymer chains; Mn
̅̅ ̅̅   is the 

number average molecular weight.  

The Tg
∞ and K values for PLLA and PDLLA are around 57-58℃ and 55000-73000, 

respectively [11]. The Tg value of PLA increases with the molecular weight and 

the chain regularity, i.e. PLA containing higher L-lactide shows higher Tg values 

(see Figure 2.6) [12]. 

 

Figure 2.6 Tg for PLA samples of different L/D ratios as a function of molecular 

weight [12] 

The glass transition behaviour of PLA is also influenced by the thermal history of 

the polymer. For example, PLA that has been quenched from the melting state 
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showed a tendency to undergo aging at ambient conditions for a couple of days 

[13], [14]. This phenomenon is known as ‘physical aging’. As a result, the polymer 

becomes more and more rigid when being stored below Tg, which causes 

embrittlement of the polymer. 

Cai et al. [15] investigated the effect of ‘physical aging’ on PLA by using DSC 

analysis. An endothermic peak was observed just above the glass transition 

temperature, which was associated with relaxation of non-equilibrium structure. 

The area of the endothermic peak was found to increase with the aging time, as 

shown in Figure 2.7 (A). This is because the chain relaxation tends toward the 

equilibrium state after being aged. They also showed the rate of ‘physical aging’ 

increased with the increase of aging temperature when it was in the range 

between room temperature and Tg. However, when the aging temperature was 

above Tg, the endothermic peak disappeared indicating that ‘physical aging’ did 

not occur when the temperature was higher than Tg (see Figure 2.7 (B)). 

 

Figure 2.7 Effect of aging temperature and time on thermal properties of PLA 

samples: (A) DSC scans of PLA aged at room temperature for different periods 

of time; (B) DSC scans of PLA aged at different temperatures for 24 hours [15] 

The ‘physical aging’ effect of PLLA is dependent not only on the aging 

temperature, but also on the molecular weight [13]. The extent of aging increases 

with the decrease of the molecular weight, since the increased chain ends can 

possess higher motional freedom than the internal chain segments.  
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2.1.3.2 Crystallisation behaviour 

2.1.3.2.1 Effect of optical purity on crystallinity 

PLA can be either amorphous or semi-crystalline depending on the 

stereochemistry of the polymer and its thermal history. The effect of chain 

stereoregularity on the crystallinity of PLA was investigated by Tsuji and Ikada 

[16], who observed that the crystallinity of the PLA increased with the increasing 

of its optical purity. When the optical purity became lower than 76%, the polymer 

could no longer crystallise. Sarasua et al. [17] also observed similar results and 

reported that PLA with an optical purity below 43% did not have crystallisability. 

Optical purity (OP) is a comparison of the optical rotation of a pure sample of 

unknown stereochemistry versus the optical rotation of a sample of pure 

enantiomer. It is proportional to the stereo-regularity of a polymer. OP can be 

calculated by means of the rotatory power [𝛼𝐿
25] from the following equation: 

𝑂𝑃 =
[𝛼𝐿

25]

[𝛼𝐿
25]0

× 100% ……………………………. (2.2) 

where [𝛼𝐿
25]0 is the rotatory power of the 100% optical pure PLLA [17]. 

Different thermal treatments of semi-crystalline PLA samples result in different 

crystallisation behaviours. As shown in Figure 2.8, the DSC curves of PLLA that 

had been water-quenched or air-cooled shows a clear exothermic cold crystalline 

peak at about 110 ℃. Whereas, PLLA that had been annealed at longer time did 

not exhibit a crystallisation peak in DSC, since the long-time annealed sample 

had a very high degree of crystallinity [18]. 
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Figure 2.8 DSC scans of melt crystallised PLLA sheet obtained by water-

quenching; air-annealing (cooled from 220℃ to room temperature in 5 min) and 

full-annealing (cooled from 220℃ to room temperature in 105 min) [18] 

 

Cooling rate of the annealing process has a significant effect on the size and 

morphology of the spherulite crystals, i.e. slow cooling results in large spherulite 

sizes and fast cooling results in small sized spherulites [8], [9], [19]. 
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2.1.3.2.2 Measurement of crystallinity by DSC 

The most common way to measure the degree of crystallinity is by using 

differential scanning calorimetry (DSC). Figure 2.9 shows a typical DSC scan of 

semi-crystalline polymers. 

 

Figure 2.9 A typical DSC trace for semi-crystalline polymers 

 

The degree of crystallinity can be calculated from the heat of fusion (∆Hm, the 

area of the melting peak) and heat of crystallisation (∆Hc, the area under the cold 

crystallisation peak): 

Crystallinity (%) =
∆Hm−∆Hc

93.1 J/g
× 100 ……………………………. (2.3) 

where 93.1 J/g is the heat of fusion for PLA with100% crystallinity [20]. 
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2.1.3.2.3 Crystallisation forms 

PLA has three forms of crystals (α, β, γ crystals) based on different crystallisation 

conditions. The most stable crystal modification is the α-crystal, which can be 

formed from melt, solution, or cold crystallisation of PLA under normal conditions. 

The structure of α-crystals is pseudo-orthorhombic with the chains in a 103 helical 

conformation, in which two chains interact in an orthorhombic unit cell [21]. β-

crystal modification was firstly found by Eling et al. [22] from melt-spun and 

solution-spun PLA fibres. The structure of the β-form crystal has a left-handed 31 

helical conformation [23], [24], which can be formed by stretching of α-crystals at 

high temperature and high drawing ratio [25], [26]. The γ  crystal is the most 

recently observed structure, which has two antiparallel helices packed in an 

orthorhombic unit-cell as firstly observed by Cartier et al. [27]. 

Recently, a new crystal modification, α′-form, was proposed by Zhang et al. [23], 

who produced crystalline PLLA at a relatively low crystallisation temperature 

(80℃). α′-crystal has a 103 helical chain conformation, like the α crystal, but has 

relatively loose lateral packing of the helical chains. It is found that the thermal 

stability of α′-crystal was not as good as that of α-crystal due to the larger lattice 

dimension and weaker interchain interaction [23], [28]. Pan et al. [29], [30] 

investigated the effect of the annealing period and temperature on the crystalline 

phase transition in PLLA and found that α′-crystals can transform into α-crystals 

via annealing process. During the phase transition, the molecular chain 

conformation readjusted and the unit cell packing changed to a more energically 

favourable state.  

The melting temperature (Tm) of PLA is related to the crystal forms of the polymer. 

An occurrence of a double melting peak has been observed in PLLA in many 

studies [25], [26], [29] [31]. The mechanism proposed to explain double melting 

is melt-recrystallisation. It suggests that the appearance of low-temperature and 

high-temperature endotherm peaks are attributed to the melting of the α-crystals 

that was formed at Tc and some crystals formed through the melt-recrystallisation, 

respectively. The main melting peak is the high-temperature peak (in the range 

of 173-178℃), which corresponds to the melting of α-crystals in PLLA. In addition, 

the melting behaviour is also related to the stereo-regularity of the polymer. Lim 

et al. [8] reported that the maximum practical obtainable Tm for stereochemically 
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pure PLA (either L or D) is around 180℃ with an enthalpy of 40-50 J/g. While the 

typical Tm values for PLLA is in the range of 173-178℃ [5].  

 

 

2.1.3.3 Rheological properties 

The rheological properties of PLA have a profound effect on its melt processing. 

PLA melts behave as pseudoplastic (shear thinning) fluid, i.e. the melt viscosity 

decreases significantly as the shear rate increases. The melt viscosity of PLA is 

dependent on the average molecular weight, crystallinity, the amount of 

plasticiser, shear rate, and processing temperature. The relation is commonly 

described by the power law model [32], as expressed below: 

η = m�̇�n−1   ……………………………. (2.4) 

where m is the consistency factor; �̇� is shear rate; 𝑛 is power law index (𝑛 > 1 

dilatant; 𝑛 = 1 Newtonian; 𝑛 < 1 pseudoplastic). 

The melt viscosities of both amorphous and semi-crystalline PLA have been 

studied by Fang and Hanna [32], who reported that semi-crystalline PLA 

exhibited higher shear viscosity than the amorphous PLA due to the difference in 

stereo-regularity of the molecular structure. For both types of PLA, the shear 

viscosities reduced with increasing processing temperature and shear rate.  

It has been reported that high molecular weight PLA (Mw ≈100,000 - 300,000 

Da) had melt viscosities between 500 and 1000 Pas, at shear rates of 10-50 s-1 

[6]. Cooper-White and Mackay [33] reported that low molecular weight PLA 

(Mw ≈40,000 Da) showed Newtonian fluid behaviour at typical shear rates of 

extrusion. They also proposed that the zero-shear viscosity (η0) of PLA melt was 

dependent on the molecular weight (𝑀𝑤) to the power law exponent (α) of 4.0 

instead of the theoretical value of 3.4, which exists for most polymer melts in the 

Mark-Houwink equation, as shown below: 

η = K(Mw)α   ………………(2.5) 

where η is viscosity, K is a constant depending on polymer type, Mw is molecular 

weight, α is the power law exponent. 

Dorgan and Williams [34] reported that η0 of linear PLLA was dependent on Mw 
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to α of 4.6, which is also higher than the theoretical value of 3.4. This is probably 

due to the steric hindrance effect, as a result of excessive coil expansion 

produced by possible chemical shift difference within and between isotactic PLLA 

polymer chains [33]. 

 

 

2.1.3.4 Processing of PLA 

The main conversion method for PLA is based on melt processing. PLA is a 

highly versatile thermoplastic, which can be made into different grades for a 

comprehensive range of applications. The processability of PLA is greatly 

influenced by various polymer properties, such as thermal stability, melting and 

crystallisation behaviour of the polymer [35].  

PLA can be melt processed in many ways depending on the specific demands 

on the final products. Conversion methods for processing PLA products include 

injection moulding, stretch blow moulding, film and sheet casting, thermoforming, 

and fibre spinning. Lim et al. [8] reviewed various processing technologies for 

PLA in detail. It is reported that the processing conditions, such as processing 

temperature, shear rate, residence time, and moisture content in the polymers 

and atmosphere, are crucial to the quality of the final end products in melt 

processing [35]. In addition, before processing PLA must be dried sufficiently to 

prevent excessive hydrolysis during melt processing since the polymer can 

absorb moisture during storage. 

Injection moulding is commonly used for the manufacture of articles, which are 

complex in shape and require high dimensional precision. However, injection 

moulded PLA articles are relatively brittle due to the rapid physical aging of the 

polymer [8]. Accordingly, increasing the crystallinity of the polymer can reduce 

the aging effect, since the ‘crosslinking’ effect of the crystalline domains can 

retard polymer chain mobility. In addition, process parameters, such as mould 

temperature, packing pressure, cooling rate and post-mould cooling treatment, 

have significant effect on the aging behaviour of PLA subsequent to injection 

moulding. Injection moulded amorphous PLA articles are usually intended for 

further processing, such as stretch blow moulding. 
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The injection stretch blow moulding (ISBM) technique provides biaxial oriented 

products with much improved physical and barrier properties compared with the 

injection moulding process. The molecular orientation induced during the ISBM 

process decreases the effect of aging by stabilising the polymer free volume. In 

addition, the crystallites produced during strain-induced crystallisation also 

reduce the aging effect, and thereby prevent brittleness of the product due to the 

crosslinking effect of the crystallites [8]. 

Cast film extrusion has been widely used to produce PLA sheets and films. The 

difference between a sheet and a film is in their stiffness and flexibility, which is 

dependent on the thicknesses (e.g. films are typically < 0.076 mm in thickness, 

while sheets are 0.25 mm or even thicker). In this technique, PLA melts are 

extruded through a die and quenched on cool polished chrome rollers, which is 

usually a three-roll stack. A horizontal roll stack configuration is preferred for PLA 

due to its low melt strength. The roller temperature is usually  between 25℃ and 

50℃ in order to avoid the condensation of lactide monomers and the slippage of 

the web on the rollers [36].  

Thermoforming is commonly used to produce PLA containers, such as 

disposable cups, single-use food trays and blister packaging. During the process, 

extruded PLA sheet is heated below its melting point and forced against the 

mould to form the shape into the final product. Then the product is removed off 

the mould before cooling. Before thermoforming, the extruded PLA sheets are 

relatively brittle at room temperature. However, orientation takes place during the 

thermoforming process, which can bring enhanced toughness to the final 

products. 

Commercial PLA fibres are produced by spinning from the melt or solution. Since 

the disposal of solvent is an environmental issue, the solution spinning technique 

is only really suitable for lab scale, whereas melt spinning technique is used for 

industrial scale-up. In the first stage of melt spinning, PLA is heated above its 

melting point and then extruded through the spinneret before cooling in air. In the 

second stage, the fibres undergo hot drawing. The filament is pulled down by a 

take-up roll to provide orientation, which is able to increase the tenacity and 

stiffness of the fibres. During the hot draw process, the degree of crystallinity of 

the fibres increases with spinning velocity. 
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It should be noticed that PLA can be thermally degraded during its melting 

processing. Thermal degradation of PLA is mainly caused by: (a) hydrolysis by 

trace amounts of water; (b) zipper-like depolymerisation; (c) oxidative, random 

main-chain scission; (d) intermolecular transesterification to monomer and 

oligomeric esters and (e) intramolecular transesterification resulting in the  

formation of monomer and oligomer lactides of low Mw [35]. Therefore, the 

temperature of the melting processing has to be strictly controlled. It is reported 

that when the temperature is above 200℃, PLA could be degraded through intra 

and intermolecular ester exchange, cis-elimation, radical and concerted non-

radical reactions [37].  

 

 

2.1.3.5 Mechanical properties 

Mechanical properties of PLA are dependent on the molecular weight, the degree 

of crystallinity, and the stereochemical composition of the polymer [9].  

It is reported that the impact strength and Vicat softening temperature of PLA 

increased with increasing molecular weight and crystallinity. Modulus and tensile 

strength of PLA reach the greatest values when the viscosity-average molecular 

weight of the polymer was higher than 55,000 g/mol [6]. Many researchers have 

studied the effects of stereochemistry and crystallinity on the mechanical 

properties of PLA [6], [9], [38]. Table 2.1 shows the mechanical properties of 

different types of PLA. It is observed that annealed PLLA had higher tensile 

strength than quenched PLLA due to the high stereo-regularity of the polymer 

chains. The annealed PLLA also exhibited a remarkable increase in impact 

resistance because of the crosslinking effects on the crystalline domains formed 

during annealing [6]. PDLLA, a fully amorphous polymer, exhibited the lowest 

values in tensile strength, modulus and impact resistance compared with PLLA 

samples, indicating that the stereo-regularity had significant effects on the 

mechanical properties of PLA [38]. 
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Table 2.1 Effects of stereochemistry and crystallinity on the mechanical 

properties of PLA [6], [9], [38] 

 

Quenched 

PLLA  

(Mw=66000) 

Annealed 

PLLA 

(Mw=66000) 

PDLLA 

(Mw=114000) 

Tensile strength (MPa) 59 66 44 

Elongation at break (%) 7.0 4.0 5.4 

Modulus of elasticity (MPa) 3750 4150 3900 

Yield strength (MPa) 70 70 53 

Flexural strength (MPa) 106 119 88 

Notched impact strength (J/m) 26 66 18 

Unnotched impact strength (J/m) 195 350 150 

Rockwell hardness  88 88 76 

Heat deflection temperature (℃) 55 61 50 

Vicat penetration (℃) 59 165 52 

 

Tensile strength and elastic modulus of poly(98%L-lactide) and poly(94%L-

lactide) films was determined by Auras et al. [9], who found that PLA with higher 

L-lactide content exhibited higher tensile strength. The tensile strength value for 

these PLA films was found to be similar to polystyrene (PS), but lower than 

polyethylene terephthalate (PET) under the same testing conditions as reported 

in the literature. 
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2.1.3.6 Degradation properties 

PLA is biodegradable in either aerobic or anaerobic environments. The 

degradability is dependent on the polymer itself and environmental conditions, 

such as the humidity, temperature, pH, and the absence of oxygen and carbon 

dioxide [5].  

The mechanism of PLA degradation has two stages. The first stage is a random 

scission of polymer main chains by hydrolysis reaction of the ester groups, which 

considerably reduces the molecular weight. In this stage, the degradability is 

driven by the hydrolysis and cleavage of the ester linkages in the polymer 

backbone, which is auto-catalysed by carboxylic acid end groups (see Figure 

2.10).  The hydrolysis reaction can be accelerated by adding acids, bases and 

the environmental conditions [9]. The second stage is the diffusion of low 

molecular weight PLA out of the bulk polymer. These short PLA chains are further 

decomposed by microorganisms, which produce carbon dioxide, water and 

humus [9]. 

 

Figure 2.10 A schematic of PLA hydrolysis reaction [1] 

 

Ray et al. [39], [40] studied the composting of PLA by testing the degradability of 

neat PLA in a homemade compost at 58 ± 2 ℃. They found that large PLA pieces 

were broken into smaller sizes within one month, after which a sharp weight loss 

took place. This result was attributed to a hydrolysis reaction during the 

degradation process.  
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2.2 Polymer/clay nanocomposites 

2.2.1 Structure and composition of montmorillonite clay 

Montmorillonite (MMT) is a layered silicate clay, which belongs to the 2:1 layered 

phyllosilicate family. Its crystal structure consists of an aluminium or magnesium 

hydroxide octahedral sheet, which is sandwiched between two silicon oxide 

tetrahedral sheets, as shown in Figure 2.11. The layer thickness of each platelet 

is nearly 1 nm and the space between two layers is less than 1 nm. The lateral 

dimension of these layers varies from 30 nm to several microns depending on 

the particular layered silicate [41], [42]. 

 

Figure 2.11 Crystal structure of montmorillonite clay [2] 

 

The stacking of the silicate layers causes a regular van der Waals gap between 

the layers, known as ‘interlayers’ or ‘galleries’. Isomorphic substitution of the 

tetrahedral or octahedral cation (e.g. the substitution of Al3+ with Mg2+ or Fe2+ 

with Li+) yields negative charges that are counterbalanced by alkali and alkaline-

earth cations situated inside of the galleries. The negative charges created by 

tetrahedral substitution are located on the surface of the silicate layers, which is 

more interactive with the polymer chains in comparison with octahedral 

substitution [2]. 
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2.2.2 Properties of montmorillonite clay 

Montmorillonite has been used as reinforcement for many polymers. There are 

two important characteristics for the clay: 1) the ability of the clay galleries to 

delaminate and 2) the possibility to modify their surface chemistry with organic 

and inorganic cations [2], [42]. These two characteristics are inter-related and 

influence the miscibility of layered silicate with the polymer matrix. 

The layered silicate contains hydrated Na+ and K+ ions, which are only 

compatible with hydrophilic polymers, for example poly(vinyl alcohol) and 

poly(ethylene oxide). To make the layered silicate miscible with other polymers, 

the hydrophilic silicate surface must be modified to organophilic, i.e. so-called 

organically modified layered silicate. This can be produced by ion exchange 

reactions with cationic surfactants that include primary, secondary, tertiary and 

quaternary alkylammonium or alkylphosphonium cations. The presence of 

alkylammonium or alkylphosphonium cations in the organosilicates can lower the 

surface energy of the inorganic reinforcement and improve the wetting 

characteristics of the polymer matrix, thus resulting in larger interlayer spacing 

between silicate layers. In addition, the functional groups of the alkylammonium 

or alkylphosphonium cations can react with the polymer matrix and strengthen 

the interface between the clay and the polymer matrix [42] [44]. 

Different commercial grades of organically modified montmorillonite have 

different surfactant coatings and hence different interplanar spacings. Cloisite 

20A is modified by dimethyl dehydrogenated tallow quaternary ammonium 

chloride at a loading of 95 meq/100 g and has a d-spacing of 2.42 nm. Whereas, 

Cloisite 25A is modified by dimethyl dehydrogenated tallow 2-ethylhexyl 

quaternary ammonium at a level of 95 meq/100 g, and its d-spacing is 1.86 nm. 

Cloisite 30B is modified by methyl tallow bis-2-hydroxyethyl quaternary 

ammonium chloride at a loading of 90 meq/100 g, and has d-spacing, 1.85 nm. 

Finally, Cloisite 93A is modified by methyl dehydrogenated tallow ammonium at 

90 meq/100 g loading, and has a d-spacing of 2.36 nm. The choice of grade has 

been found to affect permeability results [7]. 
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2.2.3 Montmorillonite clay reinforced polymer nanocomposites 

Polymer/clay nanocomposites are two phase systems, which consist of a 

polymeric matrix and nano-fillers dispersed in the matrix. The most frequently 

used inorganic fillers in polymer nanocomposites belong to a family of 2:1 

phyllosilicates, which have a sheet silicate structure. Montmorillonite, hectorite 

and vermiculite are amongst the most commonly used fillers in polymer-clay 

nanocomposites [42].  

The preparation of a nanocomposite requires good dispersion of the layered 

silicate in the polymer matrix at the nano-meter scale. The excellent performance 

of montmorillonite clay as a reinforcement in the matrix is determined by its high 

aspect ratio and the large surface area of the clay particles. Coating with 

surfactant, such as quaternary ammonium salts, helps to improve compatibility 

and hence provide a strong interfacial interaction between the clay and polymer 

chains, thus contributing to good reinforcement and good barrier properties [41], 

[45] [51].  

There are three types of morphologies for nanocomposites based on the degree 

of the clay dispersion: aggregated, intercalated and exfoliated (see Figure 2.12). 

In the aggregated structure, the clay tactoids are well distributed in the polymer 

matrix, but the single clay layers are not delaminated. In the intercalated structure, 

the clay tactoids are delaminated to some extent but remain ordered: thus 

polymer chains can diffuse into the galleries between them. In the exfoliated 

structure, the clay tactoids are completely broken apart into single layered 

platelets, which are homogeneously dispersed in the matrix. The exfoliated 

structure is often the most desirable state as it can provide excellent thermal and 

mechanical properties at very low clay contents [42]. However, most polymer 

nanocomposites are in a state between intercalated and exfoliated [2]. Due to 

the unique structure, polymer nanocomposites have been found to have 

advantages compared with the neat polymer matrix, such as improved 

mechanical properties and barrier properties. The development of polymer 

nanocomposites has become of great interest in packaging applications. 
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Figure 2.12 Schematic diagrams of three morphologies of polymer/clay 

nanocomposites 

 

 

2.2.4 Preparation of polymer/clay nanocomposites 

The main preparation methods for making films or sheets of polymer/clay 

nanocomposites are melt processing and solution casting. Melt processing is 

arguably the more practical and realistic process because it is the process 

suitable for commercial production of thermoplastic nanocomposites. The 

drawbacks of this technique are its dependence on the processing parameters 

(temperature, screw speed, etc.) and the necessity for favourable interactions 

between the clay and polymer. Also, many studies have shown that exfoliated 

nanocomposites are only achieved with MMT additions up to 5 wt.% [52]. The 

shear stress exerted during melt processing is advantageous in dispersing the 

clay tactoids but may be detrimental in breaking up the larger clay particles and 

thus reducing their aspect ratio. 

Solution casting is suitable in the laboratory when using small quantities of 

materials. However, it is challenging for industrial scale-up due to environmental 

pollution and cost issues associated with the handling and disposal of solvents. 

It also has the drawback of requiring a specific solvent to achieve intercalation or 

exfoliation.  For example, Giannakas et al. [53] produced PS nanocomposites by 

a solution casting method using different solvents ( CCl4 and CHCl3 ). They 

reported that samples prepared with CHCl3  showed an intercalated 

nanocomposite structure, whereas samples prepared with CCl4 were exfoliated. 

This was reflected in the barrier properties of the materials. At a clay content of 

10 wt.%, samples prepared from CCl4  showed a decrease in water vapour 
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permeability of 54%, whereas samples prepared from CHCl3  exhibited a 

reduction of 44% compared with pure PS samples. 

In a review paper by Tan and Thomas [7] it was found that on comparing the 

relative reductions in water permeability through polymer / clay nanocomposites 

prepared by the two different methods (melt processing and solution casting), it 

transpires that neither method gives significantly better results than the other one. 

A third preparation method is in-situ polymerisation. The layered silicate is 

swollen within the monomer liquid or a monomer solution before polymerisation 

is initiated. The onset of the reaction can cause polymer chains to grow within 

the clay gallery and therefore force intercalation or exfoliation to take place [42]. 

However, this process suffers from the disadvantage that a suitable monomer is 

not always available [54]. Only one study by Chien and Lin [55] used in-situ 

polymerisation to prepare  poly(vinyl acetate) / MMT nanocomposite film. In this 

case emulsion polymerisation followed by solution casting was used and resulted 

in a 90% reduction in permeability, albeit at a 10 wt.% clay addition level. The 

filler particles in this nanocomposite were found to have a very high aspect ratio. 

Some good results using in-situ polymerisation have also been reported in a 

recent review on gas barrier properties of polymer/clay nanocomposites [54]. Dai 

et al. [56] prepared epoxy resin / MMT Na+ nanocomposites by in-situ thermal 

ring-opening polymerisation and reported that the oxygen permeability reduced 

by 86% at a clay loading of 7 wt.%. Also, the CO2 permeability of PCL / Cloisite 

30B nanocomposites produced from in-situ polymerisation showed a reduction 

of 68.5% at a clay loading of only 3 wt.% [57]. 
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2.3 Barrier properties 

2.3.1 Barrier properties of polymer 

2.3.1.1 Theory, Definitions and units 

The fundamental principles describing the permeation of gases or vapours 

through polymer films have been discussed in numerous publications [58] [64]. 

Permeation across a polymer film or coating involves both solubilisation of the 

penetrant molecule into the polymer matrix and diffusion through it [58], [59]. 

Fick’s first and second laws describe diffusion in many polymer systems. They 

are given in equations (2.5) and (2.6) below:  

𝐽 = −𝐷(𝑐)
𝑑𝑐

𝑑𝑥
………………………………..(2.5)  

𝑑𝑐

𝑑𝑡
=

𝑑

𝑑𝑥
[𝐷(𝑐)

𝑑𝑐

𝑑𝑥
]…………………………….(2.6) 

Here, J represents the amount of penetrant moving through unit area per unit 

time (i.e. the flux), c is concentration, x is the direction of diffusion and D is the 

diffusion coefficient [58]. 

The flux can be described by equation (2.7), if there is a linear concentration 

gradient under steady state conditions. 

𝐽 = 𝐷
(𝑐1−𝑐2)

𝑙
………………………………..(2.7) 

Here, 𝑙  is the thickness of the film, and c1 and c2 represent the penetrant 

concentrations at the two film surfaces. However, rather than measuring 

concentration in the surfaces of the film, it is usually easier to measure the partial 

pressures of the vapour or gas on either side of the film. Hence flux is more often 

represented by equation (2.8). 

𝐽 = 𝑃
(𝑝1−𝑝2)

𝑙
………………………………..(2.8) 

Here, p1 and p2, are the vapour pressures on either side of the polymer film. P is 

the permeability coefficient, which is the rate per unit area at which gas or vapour 

moves through unit thickness of the film under a single unit of pressure difference 

[58], [59]. 

The concentration of gas or vapour in the polymer film surface is related to its 

vapour pressure in the gaseous state by means of the solubility coefficient (S), 
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as given in equation (2.9). 

𝑐 = 𝑆. 𝑝………………………………………..(2.9) 

A relationship is derived between the permeability coefficient (P), diffusion 

coefficient (D) and the solubility coefficient (S) by combining equations (2.7), (2.8) 

and (2.9): 

𝑃 = 𝐷. 𝑆………………………………………(2.10) 

This simple and well known equation shows that permeability is the product of 

diffusivity and solubility [58] [60]. Equation (2.10) provides a good basis for a 

conceptual understanding of the basic principles of permeability through polymer 

films. Once the penetrant molecule has adsorbed onto the surface of the polymer, 

it must dissolve in the polymer matrix and then diffuse down a concentration 

gradient through the film, before desorbing from the opposite surface. Either the 

diffusivity, D, or the solubility, S, may be the rate controlling process. Meares [60] 

first reported that the permeation of gases, such as CO2 and O2, through polymer 

films is usually dominated by the diffusion coefficient. However, it is found that 

the water permeability through polymer films is likely to be controlled by the 

solubility of water in the polymer [59]. Hence, highly polar polymers have poor 

water barrier properties because of the high solubility of water in these polymers. 

On the other hand, non-polar polymers, like polyethylene, have very good water 

barrier properties because water has a low solubility in hydrophobic polymers. 

The units of permeability require some consideration. As defined in equation (2.8), 

permeability has the following dimensions: 

𝑃 =
(𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑒𝑟𝑚𝑒𝑎𝑛𝑡) × (𝑓𝑖𝑙𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)

(𝑎𝑟𝑒𝑎) × (𝑡𝑖𝑚𝑒) × (𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑜𝑝 𝑎𝑐𝑟𝑜𝑠𝑠 𝑓𝑖𝑙𝑚)
 

This applies to the transport of most gases through most polymer films. However, 

for organic vapours and water, permeability can vary with both pressure drop and 

the thickness of the film. Hence, in these cases, data are usually expressed in 

terms of a transmission rate, Q, which has the dimensions: 

𝑄 =
(𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑒𝑟𝑚𝑒𝑎𝑛𝑡) × (𝑓𝑖𝑙𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)

(𝑎𝑟𝑒𝑎) × (𝑡𝑖𝑚𝑒)
 

It is important to quote both the test temperature and the vapour pressure applied 

[61]. 
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2.3.1.2 Factors affecting PLA barrier properties 

Polymer structures have significant effect on the barrier property of the polymer. 

As discussed in the previous section, non-polar polymers tend to have good 

barrier to water but poor gas barriers, whereas, polar polymers usually have 

excellent gas barrier but very sensitive to water [59]. 

It is generally agreed that the barrier properties of polymer membranes are 

related to crystallinity, as the impermeable crystallites act as barriers to the 

permeation path of gases and water vapour molecules [65] [67]. One of the 

earliest papers on this was by Michaels et al. [68], who studied diffusion of 

various gases in glassy and rubbery polyethylene terephthalate in the 

temperature range 25 to 130 ℃ . They found that below the glass transition 

temperature (Tg), diffusion was impeded by the presence of crystallites to an 

extent dependent on the reciprocal of the amorphous volume fraction. The effects 

of crystallisation polymorphism and crystallinity on the water vapour permeability 

for PLLA has been studied by Cocca et al. [28], who reported that the water 

vapour permeability changed slightly at low degrees of crystallinity but suddenly 

dropped dramatically when the crystallinity reached a certain range between 39% 

and 40%. This rapid decrease in water vapour permeability was attributed to the 

change of crystal conformation from α′ crystal to α crystal.  

Tsuji and Tsuruno [69] studied the effect of crystallinity on the barrier property of 

PLLA and reported that the water vapour permeability of PLLA films decreased 

rapidly by 43% with increasing the degree of crystallisation from 0 to 20 %. In 

another study of Tsuji et al. [66], the water vapour transmission rate (WVTR) of 

PLLA films was found monotonically decreased with the increase of crystallinity 

from 1-20%, and then became equilibrium as the crystallinity was above 30%. 

The dependence of WVTR on crystallinity was attributed to the restricted 

amorphous regions (corresponding to high crystallinity films), which provided 

higher resistance to water vapour comparing with the amorphous regions in low 

crystallinity films. Duan and Thomas [19] have modified the Nielsen equation to 

predict the water vapour permeability of semi-crystalline PLA films by assuming 

that the spherulites are impermeable spherical particles. In their study, a series 

of semi-crystalline PLA samples with crystallinity ranging from 0 to 50% was 

tested and the experimental results of water vapour permeability were found to 
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fit well with the modified Nielsen model in equation (2.11) (see Section 2.4.3). 

In addition, orientation of polymers has been reported to improve their barrier 

properties. Orientation of polymers by mechanical drawing can promote the 

chain organisation of both crystalline and amorphous phases and hence prevent 

the transport of permeant molecules through the polymer [70]. Lasoski and 

Cobbs [71] studied the role of orientation in water permeability of crystalline 

polyethylene terephthalate (PET) and reported that the crystalline PET 

decreased water vapour permeability after being uniaxially and biaxially 

stretched. Figure 2.13 shows the water permeability of orientated PET films 

versus film densities. The film density is dependent on the crystallinity of the PET 

samples. It is found that the differences between the permeabilities of oriented 

and unoriented samples at the same film densities are greatest at low degrees 

of crystallinity (10-15%, density of 1.33-1.35) and become gradually less as the 

degree of crystallinity increases. Until at 40-50% crystallinity (density of 1.38-

1.40), no significant differences in permeability value are observed between the 

orientated and unorientated samples. This indicates that orientation has effect 

on permeability only for polymers at low crystallinity. 

 

Figure 2.13 Water vapour permeability of oriented PET films versus film density 

(film thickness = 1 mil)   
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2.3.2 Barrier properties of polymer nanocomposites 

2.3.2.1 Modelling of Polymer Nanocomposite Permeability 

An important success of polymer / clay nanocomposites is the improvement in 

barrier properties that can be generated. At relatively low additions of nanoclay, 

it is possible to achieve quite dramatic reductions in permeability to both gases 

and water vapour. For example, in a study on polyimide-clay nanocomposites, 

Yano et al. [72] reported a decrease of 90% in water vapour permeability in a 

polyimide-mica composite with only 2 wt.% of added mica. These researchers 

demonstrated that the larger diameter of the filler particle, the better the 

improvement in permeability. 

Nielsen [73] first proposed a model for the permeability of filled polymer systems. 

The model is based on the premise that penetrant molecules have an increased 

diffusion path because of the presence of impermeable filler particles. Therefore 

this model is often referred to as the ‘tortuous path’ model, as shown in Figure 

2.14. The assumption is that the filler particles are rectangular platelets that are 

orientated perpendicular to the direction of diffusion. The Nielsen model is given 

in equation (2.11), in which P represents the permeability of the polymer 

composite, P0 represents the permeability of the unfilled polymer, L/D is the 

aspect ratio (length/thickness) of the filler particles and ∅ is the volume fraction 

of the filler. 

𝑃

𝑃0
=

1−∅

1+(
𝐿

2𝐷
)∅
……………………(2.11) 

Despite its simplicity, the Nielsen equation is remarkably successful in predicting 

the permeability reduction found in polymer / clay nanocomposite systems. For 

example, it gave accurate predictions of the effect of montmorillonite 

concentration on the water permeability in polyimide nanocomposites [74]. In a 

recent study, Duan et al. [75] showed that water vapour transmissions rates 

through films of poly(lactic acid) / montmorillonite nanocomposites fitted 

predictions from the Nielsen model. The Nielsen equation has also been used to 

model the effect of crystallinity on the water vapour permeability of poly(lactic 

acid) [19]. 
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Figure 2.14 Model for the path of a diffusing molecule through a polymer filled 

with circular or square plate fillers  

 

A review of the various models that have been proposed to predict the 

permeability of polymer-clay nanocomposites has been published by 

Choudalakis and Gotsis [2]. They also reviewed some experimental data on 

gaseous permeability in polymer nanoclay systems and the extent to which the 

models had been validated. A common factor of most of the models was that 

relative permeability depended on the aspect ratio, volume fraction and 

orientation of the filler particles. It was also noted that relative permeability was 

not dependent on the type of polymer or gas. The authors concluded that the 

Nielsen model is good at predicting permeability if the geometric parameters of 

the polymer-clay nanocomposites are known. 

In their review, Choudalakis and Gotsis [2] discussed a number of alternatives to 

the Nielsen model. Equation (2.12) is the model due to Cussler et al. [76], who 

considered the filler particles (described as flakes) to be arranged in discrete 

layers with narrow slits separating the particles within each layer. 

𝑃

𝑃0
= (1 +

𝛼2∅2

1−∅
)

−1

 …………………….(2.12) 

In their paper, Cussler et al. [76] define α as the flake aspect ratio (d/a), where d 

is half the flake width and ‘a’ is the flake thickness. Hence α is half the aspect 

ratio (L/D) of the Nielsen model (note in the paper by Choudalakis and Gotsis [2], 

the term α is sometimes used for the aspect ratio L/D and sometimes for the half 

aspect ratio d/a, which may be a source of confusion). 

Another model is that due to Fredrickson and Bicerano [77]. The notation in this 
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this paper is similar to that of Cussler et al. [76] in that the aspect ratio, α, is 

defined as half the platelet width (which in this case is the platelet radius) divided 

by thickness. The Fredrickson-Bicerano model is given in equation (2.13), where 

𝑘 = 𝜋/ ln 𝛼, and 𝑎1 = (2 − √2)/4 and 𝑎2 = (2 + √2)/4. 

𝑃

𝑃0
=

1

4
(

1

1+𝑎1𝑘𝛼∅
+ 

1

1+𝑎2𝑘𝛼∅
)

2

 ………………. (2.13) 

A different approach was taken by Gusev and Lusti [78], who used a finite-

element based methodology to derive the model shown in equation (2.14). 

𝑃

𝑃0
= 𝑒𝑥𝑝 [− (

𝑥

𝑥0
)

𝛽

] ………..(2.14) 

In equation (2.14), 𝑥 = (
𝐿

𝐷
)∅ and 𝑥0 and β are constants that can be fitted to the 

experimental data. 

The models described above all assume that the filler particles are aligned at 

right angles to the diffusion direction. However, Bharadwaj [79] has described 

what would happen if the filler particles were oriented in different ways with 

respect to the diffusion direction. To do this, an order parameter, S, was inserted 

into the model. The order parameter is shown in equation (2.15), where θ is the 

angle between the diffusion direction and the normal to the filler particles. 

𝑆 =
1

2
〈3 cos2 𝜃 − 1〉 ………………(2.15) 

It is seen from equation (2.15) that when the filler particles are orientated 

perpendicular to the direction of diffusion (i.e. θ=0) then S=1, whereas if the filler 

particles are orientated parallel to the direction of diffusion (i.e. θ=π/2) then S=-

1/2. When there is random orientation, then S=0. 

The order parameter is inserted into the Nielsen equation to allow for orientation, 

as shown in equation (2.16). 

𝑃

𝑃0
=

1−∅

1+
𝐿.∅

2𝐷
(

2

3
)(𝑆+

1

2
)
 …………..(2.16) 

Bharadwaj [79] also considered the state of delamination of the filler particles. In 

considering the permeability of polymer/clay nanocomposites, it is usually 

assumed that the nanoclay particles are completely exfoliated. However, this 

may not be the case and under these circumstances, where aggregation of the 
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clay platelets occurs due to intercalation without complete exfoliation, then the 

tortuous path is correspondingly reduced. Nazarenko et al. [80] incorporated the 

effect of stacking into the Nielsen model, assuming that the stacked layers were 

aligned perpendicular to the diffusion direction.  

In their paper, Choudalakis and Gotsis [2] included a modified Nielsen equation 

to allow for stacking, as shown in equation (2.17), where N corresponds to the 

number of clay layers in the stack. 

𝑃

𝑃0
=

1−∅

1+
𝐿.∅

2𝐷𝑁

 ……………….(2.17) 

When the aggregates are randomly orientated equation (2.17) is converted to:  

𝑃

𝑃0
=

1−∅

1+
1

3
 

𝐿.∅

2𝐷𝑁

 ……………….(2.18) 

Combining equations (2.16) and (2.17) it is possible to come up with an 

expression that considers the effects of platelet stacking and orientation in 

addition to the aspect ratio and volume fraction [2]. That expression is given in 

equation (2.19). 

 
𝑃

𝑃0
=

1−∅

1+
𝐿.∅

3𝐷𝑁
(𝑆+

1

2
)
  ………………(2.19) 

Another development of the Nielsen equation is that due to Xu et al. [81], who 

investigated the effects of clay layers and polymer chain immobility on the barrier 

properties of polymer nanocomposites. In their model, there is a chain-segment 

immobility factor (𝜉) to allow for the effect of polymer chain confinement on barrier 

properties. This model is given in equation (2.20), where H is the separation gap 

between adjacent clay platelets. This model predicts a lower relative permeability 

at clay aspect ratios between 10 and 300 than predicted by other models [73], 

[77], [78], [82]. 

𝑃

𝑃0
=

(1−∅)/𝜉

1+
𝐿

2
(

𝐷

∅
)

1/2
(𝐷+𝐻)−3/2

  ………………(2.20) 

A further development of the Cussler-Aris model [76] is that due to Lape, Nuxoll 

and Cussler [83]. In the Cussler-Lape model, the particles are randomly 

dispersed with infinite length. The flake thickness D is constant and there is a 

discrete distribution of values of the flake width, 𝑤. The relative permeability is 

given by equation (2.21): 
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𝑃

𝑃0
=

1−∅

[1+(
2

3
(∅/𝐷 ∑ 𝑛𝑖𝑤𝑖𝑖 ) ∑ 𝑛𝑖𝑤𝑖

2)]𝑖

2  ………………(2.21) 

where 𝑛𝑖 is the number of flakes in a particular width category and 𝑤𝑖 is one-half 

of the intermediate flake width. 

Lu and Mai [84] have proposed a model to estimate the critical volume fraction 

of clay for minimum permeability in exfoliated nanocomposites. They suggested 

that in exfoliated nanocomposites the pathway of gas and liquid molecules is a 

self-avoiding random walk, due to the disordered distribution of exfoliated silicate 

platelets. The probability (𝑝 ) of a cell acting as a barrier to diffusion was 

determined via a ‘Kadanoff cell’ simulation. The critical volume fraction (∅c) of 

nanoclay for minimum permeability was obtained as a function of the probability 

(𝑝) and the geometric parameters of the clay, as given in equation (2.22), where 

S is the orientation parameter of nanoclay platelets as in the Bharadwaj model 

[79]. Values of 𝑝  were taken as 0.38 and 0.72 in two- and three-dimensional 

models respectively. 

∅𝑐 =
3

2𝑆+1
(𝐿/𝐷)−1𝑝  ………………(2.22) 

The prediction of the critical volume fraction was shown to fit with experimental 

data of some typical clays (e.g. hectorite, saponite, montmorillonite and mica) 

from the literature [74], [81], [85], [86]. 

A different geometric model was developed by Sorrentino et al. [87]. This model 

is given in equation (2.23), where 𝐷𝑐  and 𝐷𝑜  are the diffusion coefficients of 

polymer nanocomposite and neat polymer respectively; and 𝛽 =
𝑉𝑠𝐷𝑠

∅𝐷𝑜
−

𝑉𝑠+∅

∅
 , 

where 𝐷𝑠 and 𝑉𝑠 are the diffusion coefficient and volume fraction of the interface 

respectively. ∅, L, D and θ are as previously defined. 

𝐷𝑐

𝐷𝑜
=

(1+𝛽∅)

[(1−∅)+∅(
𝐿+2𝐷

𝐿 sin 𝜃+2𝐷 cos 𝜃
)

2
]
……………….(2.23) 

When compared with effective diffusivity generated using random walk 

simulations, fair agreement was found between predictions from the model and 

results of numerical simulations. In addition, there was good agreement between 

the model and experimental data of relative diffusivity of water vapour in 

exfoliated PCL nanocomposites [88], [89]. Compared with other models, this 
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model was claimed to be more suitable for describing diffusion behaviour in 

polymer nanocomposites with high aspect ratio fillers.   

Alexandre et al. [90] developed a model for water permeability through certain 

polymers in which water has appreciable solubility. They considered 

plasticisation effects of water as well as the possibility of adsorption of water 

vapour at the polymer/filler interface. This was shown to be relevant for the 

transport of water through polyamide12   based nanocomposite films, where it 

was found that at higher clay contents water permeability no longer decreased 

but started increasing [90].  

These authors modified the tortuosity models of Nielsen [73] and Bharadwaj [79] 

to  take into account not only tortuosity effects (i.e. aspect ratio, crystallinity, 

immobility factor, recovery parameter) but also a solubility factor and a 

plasticisation factor. Additionally, the model allows for a change in aspect ratio as 

a function of volume fraction. The model is expressed by equation (2.24). 

𝑃

𝑃𝑜
=

1−𝛽∅𝑖

𝜉(∅)[1+∅𝑖(1+
𝐿(∅)

3𝐷
)(

𝑉𝑚
𝑉𝑖

)−1]
[

1−𝑋𝑐
𝑛

1−𝑋𝑐
𝑜]2 [

𝛾𝑛
′

𝛾𝑚
′ ]𝜀  ………………(2.24) 

In this equation 𝛽  is the solubility factor; 𝜉(∅)  is the polymer chain-segment 

immobility; 𝑉𝑚 and 𝑉𝑖 are the velocity of the diffusing molecules in the polymer 

matrix and that in the interface zone respectively; 𝛾𝑛
′   and 𝛾𝑚

′   represent the 

plasticising effect on filled and unfilled polymer; 𝜀 is the adjustable parameter for 

the plasticising effect; 𝑋𝑐
𝑛 and 𝑋𝑐

𝑚 are the crystallinity of filled and unfilled polymer. 
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2.3.2.2 Factors affect the barrier properties of polymer nanocomposites 

As discussed in Section 2.3, water has a high solubility in polar polymers and so 

these polymers have poor water barrier properties, whereas non-polar polymers 

have good water barrier properties because of the low solubility of water in 

hydrophobic polymers. However, as discussed in a review paper by Tan and 

Thomas [7], the reduction in water permeability caused by the addition of clay 

nanofillers is largely independent of the polymer type: instead it depends mainly 

on the filler type, concentration and aspect ratio (exceptions to this are polymers, 

such as PA6 and PA12, which are susceptible to plasticisation effects by water 

[90]). A similar result has been reported by Choudalakis and Gotsis [2]. In their 

review of gaseous permeability through polymer nanoclay systems. They 

concluded that the reduction in permeability ‘seems to be independent of the 

nature of the polymer matrix and the gas species’, but depends on aspect ratio, 

volume fraction and orientation of the filler particles.  

Yano et al. [72] synthesized polyimide (PI) / clay nanocomposites from four clay 

minerals (montmorillonite, saponite, synthetic mica and hectorite). They 

observed that the improvement in water barrier properties depended on the 

diameter of the filler particles. Among all the clay minerals, mica was found to be 

the most effective clay: the water vapour permeability coefficient reduced by 90% 

with the addition of only 2 wt.% mica in polyimide nanocomposites. In a study on 

PA6-montmorillonite membranes prepared by melt blending, Picard et al. [91] 

carried out a detailed analysis of the clay dispersion using both TEM 

(transmission electron microscopy) and STEM (scanning transmission electron 

microscopy). They measured the average aspect ratio to be 20. From 

experimental results on water permeability, they then calculated the theoretical 

mean aspect ratio from the various models that gave the best fit to their data. 

The Nielsen model gave a value of 25.5, whereas a somewhat closer value of 

17.2 was predicted from the Cussler-Lape model. 

In terms of filler concentration, numerous studies have found that the optimum 

nanoclay content is around 5 wt.% or below. It is discussed by Nguyen and Baird 

[52] that exfoliated nanocomposites are mostly only achieved with 

montmorillonite concentrations up to 5 wt.%. Above this value, agglomeration 

takes place.  
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2.4 PLA nanocomposites 

2.4.1 Preparation of PLA nanocomposites 

PLA nanocomposites were first prepared by Ogata et al. [92] in 1997, who 

dissolved certain amounts of PLLA and dimethyl distearyl ammonium modified 

MMT in hot chloroform. However, the clay layers were not delaminated, in fact, 

they existed in the form of tactoids containing less than four silicate layers. This 

is probably because the clay content in their sample (10 wt.%) was too high to 

achieve intercalated dispersion. After the first approach, several people 

successfully produced delaminated layered silicate in PLA by solution casting. 

For example, Krikorian and Pochan [93] investigated the compatibility of three 

different kinds of organic modified silicate in PLLA using a solution film casting 

method, which presented well intercalated clay structures. McLauchlin and 

Thomas [94] also produced intercalated PLA / MMT nanocomposites by solution 

casting from chloroform. 

Melt compounding is another popular method for the production of PLA / clay 

nanocomposites. Ray et al. [42] produced PLA nanocomposites by melt 

compounding of PLA and octadecyl ammonium modified MMT at 190℃ followed 

by melt-extrusion of the mixture [95]. X-ray diffraction (XRD) and transmission 

electron microscopy (TEM) techniques were used to probe the clay structure and 

confirmed that the silicate layers were delaminated and randomly dispersed in 

the PLA matrix. Paul et al. [96] investigated the feasibility of PLA nanocomposite 

formation by using a melt intercalation technique. In their research, intercalated 

PLA nanocomposites were obtained and that was confirmed using XRD. Duan 

et al. [75] have successfully produced intercalated PLA nanocomposite films also 

using melt compounding followed by compression moulding. 
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2.4.2 Morphology 

Generally the morphology of PLA nanocomposite can be established using wide-

angle X-ray diffraction (WAXD) and TEM. WAXD is a convenient way to 

determine the interlayer spacing of the layered silicate. TEM observation 

provides a qualitative understanding of the internal structure and distribution of 

clay phases through direct visualisation. Figure 2.15 shows WAXD patterns and 

the corresponding TEM images of three morphologies in PLA nanocomposites: 

intercalated, intercalated and flocculated, and exfoliated by Ray et al. [42]. 

However, it is noticed that the ‘exfoliated’ TEM image (in Figure 2.15) does not 

unambiguously show complete delamination of the silicate layers. 

 

Figure 2.15 WAXD patterns and corresponding TEM images of three different 

morphologies of PLA nanocomposite [42] 
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Krikorian and Porchan [93] investigated the morphology of PLA nanocomposites 

modified by three kinds of montmorillonite clay. Their WAXD and TEM results 

(see Figures 2.16 - 2.18) showed that the characteristic peak of neat Cloisite 15A 

corresponded to an interlayer spacing of d(001)=3.2 nm, which was shifted to 3.8 

nm in the PLA nanocomposites. The intensity of this intercalated clay peak 

increased with the clay content. For the Cloisite 25A based nanocomposites, the 

characteristic peak of the neat organoclay corresponded to a interlayer spacing 

of d(001) = 2 nm, which was shifted to a higher angle representing a interlayer 

spacing of d(001) = 3.6 nm (see Figure 2.17.a). With respect to Cloisite 30B, 

there was no evidence for organoclay basal spacing peak among all the 

nanocomposite samples (Figure 2.18.a). This implies that all the samples have 

exfoliated morphology and the clay platelets were evenly distributed in the PLA 

matrix. The XRD result was supported by TEM in Figure 2.18.b, in which the 

silicate layers did not aggregate or form intercalated tactoids in the PLLA matrix. 

 

Figure 2.16 a. WAXD patterns for different compositions of neat PLLA and 

Cloisite 15A; b. TEM image of PLLA nanocomposite sample with 10 wt.% Closite 

15A [93] 
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Figure 2.17 a. WAXD patterns for different compositions of neat PLLA and 

Cloisite 25A; b. TEM image of PLLA nanocomposite sample with 10 wt.% Closite 

25A [93] 

 

Figure 2.18 a. WAXD patterns for different compositions of neat PLLA and 

Cloisite 30B; b. TEM image of PLLA nanocomposite sample with 10 wt.% Closite 

30B [93] 
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Rhim et al. [97] reported that the initial interlayer spacing of Cloisite 30B and 

Cloisite 20A were 1.86 nm and 2.41 nm, respectively. The XRD result for the PLA 

/ Cloisite 30B and PLA / Cloisite 20A showed that the d(001) peak of the clay was 

shifted to a lower angle, as indicated by an increase in the d-spacing to 3.14 nm 

and 3.24 nm, respectively. McLauchlin and Thomas [94] investigated two kinds 

of PLA nanocomposites containing cocamidopropylbetaine (CAB) and sodium 

montmorillonite (MMT), respectively. It was found that the interlayer spacing of 

MMT organoclay was 1.81 nm and this increased to 3.48 nm in the PLA 

nanocomposites.  The CAB had an interlayer spacing of 1.84 nm, which was 

expended to 4.09 nm in the nanocomposite. Duan and Thomas [75] recently 

reported that Cloisite 30B organoclay has an interlayer spacing of 1.8 nm and 

that increased to 3.4 nm in their intercalated PLA nanocomposites produce by 

melt compounding. 
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2.4.3 Oxygen and water vapour barrier properties 

The permeability to water vapour and gas is very important for packaging 

materials. Many researchers [95], [98] [101] have attempted to incorporate fillers, 

such as talc, montmorillonite clay, mica, in PLA to improve its gas barrier 

properties.  

Thellen et al. [98] incorporated MMT clay in PLA by melt processing and reported 

that the PLA nanocomposite showed an increase in the oxygen barrier by 15-

48%. The increase in barrier property is dependent on the amount of clay addition. 

Zenkiewicz and Richert [100] found that the oxygen gas permeability of PLA 

nanocomposites was reduced by 55% and the carbon dioxide permeability was 

reduced by 90%. Ray et al. [95], [99] measured the oxygen gas permeabilities of 

near exfoliated PLA nanocomposites containing 4, 7, 10 wt.% organically 

modified synthetic mica and 4, 5, 7 wt.% organically modified montmorillonite, 

respectively. It was found that the oxygen permeability of the PLA nanocomposite 

declined significantly with the filler loading. The permeability of the mica samples 

fitted the theoretical line based on the ‘Nielsen model’ with a given aspect ratio 

of 275 (see Figure 2.19). 

 

Figure 2.19 Oxygen permeability of PLA / montmorillonite nanocomposites (right), 

and PLA / synthetic mica nanocomposites (left) [95], [99] 

 

Picard et al. [101] predicted the effect of crystallinity on the oxygen barrier 

properties of semi-crystalline PLA nanocomposites using the Nielsen model (in 

the case of L=D), and found a good agreement between the theoretical and 

experimental permeability for the semi-crystalline PLA films. 



Page 62 of 199 
 

There are a limited number of studies on water vapour permeability of PLA 

nanocomposites. Thellen et al. [98] investigated moisture barrier properties of 

PLA nanocomposites containing 5 wt.% montmorillonite. It was reported that the 

PLA nanocomposites exhibit a 40-50% improvement in water vapour barrier, 

which they attributed to the diffusivity and the water vapour transmission rate of 

the sample being reduced by water clusters formed at the surface of the clay 

platelets. Zenkiewicz and Richert [100] investigated the influence of different 

types of montmorillonite, organic modifier and compatibiliser on the permeability 

of PLA nanocomposites. They found that the best result was a 60% improvement 

in water vapour barrier of a PLA nanocomposite containing 5 wt.% nanoclay. 

Rhim et al. [97] reported that the water vapour permeability of the nanocomposite 

varied significantly with different types of the nanoclay. The organically modified 

clay exhibited better water vapour barrier than the natural clay, since the former 

was more compatible with PLA. The sample containing 13 wt.%, organoclay 

showed a reduction in water vapour permeability by approximately 67%.  

Duan et al. [75] investigated poly(lactic acid) / MMT nanocomposites and found 

that the water vapour permeability data fitted well with the Nielsen model. In 

another study, Duan and Thomas [19] modified the Nielsen equation (2.11) to 

predict the water vapour permeability of semi-crystalline PLA films. They 

assumed the spherulites were impermeable spherical particles, hence, in 

equation (2.11) L=D and the volume fraction (∅𝐹) is replaced with the degree of 

crystallinity ( 𝑋𝑐), then the Nielsen model becomes: 

𝑃𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒

𝑃𝑎𝑚𝑜𝑟𝑝ℎ𝑜𝑢𝑠
=

1−𝑋𝑐

1+
1

2
𝑋𝑐
 ………………(2.25) 

The modified Nielsen model fitted very well with the water vapour permeability of 

the semi-crystalline PLA samples with crystallinity ranging from 0 to 50%. 
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2.4.4 Effect of uniaxial and biaxial stretching on PLA and PLA 

nanocomposites 

It is known that orientation can induce crystallisation in polymers. The properties 

of oriented PLA have been investigated by several workers [102] [107]. Kokturk 

at el. [106] reported that upon stretching, PLA films underwent rapid orientation 

in the amorphous region. Beyond a critical level of orientation the polymer sharply 

formed highly oriented β crystals. The degree of crystallisation increased during 

the stretching process. Yu et al. [107] reported that uniaxial stretching of semi-

crystalline PLA films significantly increased the crystallinity of the sample, which 

led to an increase in tensile strength, modulus and toughness. A similar result 

has been proposed by Xie et al. [103], who found that the crystallinity of PLA 

films increased with the draw ratio and that reached a maximum value when the 

samples were stretched to 3 times in length at 90℃ . 

Simultaneous biaxial stretching of PLA films in the rubbery state has been 

reported to have in-plane isotropy with poorly ordered crystalline regions, which 

was due to an insufficient number of chains being oriented in the same direction 

[102]. The crystallinity of simultaneous biaxial and uniaxial stretched PLA films 

are plotted against draw ratio in Figure 2.20. The degree of crystallisation showed 

an increase with increasing draw ratio. On the contrary, the cold crystallisation 

temperature of the stretched films was reduced with the increase of draw ratio, 

and nearly disappeared at a draw ratio of 4x4 [102], [104]. 

 

Figure 2.20 Crystallinity of simultaneous biaxial (left) and uniaxial (right) oriented 

PLA films as a function of draw ratio [102] 

In the sequential biaxial stretching mode, the crystallinity of the films increased 

in the first uniaxial stretching stage, followed by a drop and then increased during 
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the second stage of drawing in the transverse direction (TD) (see Figure 2.21). 

This phenomenon was because the extension in TD had destroyed the crystals 

produced by uniaxial stretching, and re-oriented the chains in the machine 

direction (MD). After the draw ratio in the TD (λTD) equalled that in the MD (λMD), 

sufficient numbers of chains were oriented forming crystals [102]. 

 

Figure 2.21 Crystallinity of sequential biaxial stretched PLA films as a function of 

draw ratio [102] 

A limited number of studies with respect to oriented PLA nanocomposites have 

been reported. Tabatabaei and Ajji [108], [109] investigated the effect of uniaxial 

and biaxial stretching on clay orientation and the extent of dispersion in PLA 

nanocomposites. The XRD patterns of the oriented PLA and PLA 

nanocomposites (containing 5 wt.% clay) are shown in Figure 2.22. It is found 

that upon biaxial stretching the peak (203) related to PLA crystallites was 

decreased, whereas, the peak related to the interlayer spacing of nanoclay 

remained in the oriented samples.  
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Figure 2.22 XRD patterns of uniaxially and biaxially oriented PLA and its 

nanocomposite films 

The incorporation of nanoclay slightly enhanced the orientation of the crystallite 

unit cells of orientated films. The alignment of crystallite unit cells was found to 

be dependent on both uniaxial and biaxial stretching. The orientation of clay 

platelets in the oriented films is illustrated in Figure 2.23.  

 

 

Figure 2.23 Schematic diagram of the orientation of clay tactoids with respect to 

the film axes, for (a) uniaxially and (b) biaxially stretched PLA nanocomposite 

films [109] 
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2.5 Orientation of polymers 

Orientation is commonly used in the packaging industry to improve the 

mechanical properties of the products [110]. The extent of chain orientation that 

is induced in amorphous polymers is dependent on the drawing temperature and 

the extensional strain rate. The appropriate drawing temperature is 

approximately 10℃ above the glass transition temperature [106], [109], [110]. 

For semi-crystalline polymers, after a certain draw ratio is reached, stress 

induced crystallisation occurs, which results in a highly oriented crystalline phase. 

Stress induced crystallisation can increase the mechanical properties. For 

example, the tensile strength of polypropylene has been increased more than 10 

times after orientation generated by cold drawing [111]. 

Three typical stretching modes are used in industrial film production (see Figure 

2.24): 

1. Uniaxial Constant Width (UCW) Stretching: the film is stretched in the MD 

while its width is constrained in the TD. 

2. Simultaneous Biaxial (SB) Stretching: the film is stretched in two 

perpendicular directions at the same ratio at the same time. 

3. Sequential Biaxial (SEQ) Stretching: the film is first stretched in the MD in 

the UCW mode, and subsequently stretched in the TD in the UCW mode at the 

same stretching rate 
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Figure 2.24 Schematic of stretching modes (MD=machine direction; 

TD=transversal direction) [102] 

 

Structure evolution of semi-crystalline PLA films during simultaneous biaxial and 

sequential biaxial stretching has been compared by Ou and Cakmak [102], who 

reported that simultaneous biaxial stretching always induces in-plane isotropy to 

the film, whereas the orientation in the sequential biaxial stretched film is more 

complicated. In the first stage (stretching in the MD), orientated crystallisation 

developed gradually in the MD while the transverse isotropy is maintained. In the 

second stage (stretching in the TD), the crystalline structure orientated in the MD 

is gradually destroyed forming a secondary population of orientated crystallites 

in the TD. As a result, the crystallite size in the MD is reduced. This destruction 

is caused by the splaying action under the transverse stretching [102]. 

Physical properties of the PLA films can be enhanced by applying orientation of 

the polymer chains. A list of typical draw temperatures for PLA film extrusion 

processes in the MD and TD are shown in Table 2.2. 
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Table 2.2 Processing temperature profile for biaxial orientation PLA films (screw 

speed: 20-100rpm)  

Section Temperatures (℃) 

Feed throat 45 

Feed zone 180 

Compression section 190 

Metering section 200 

Adapter 200 

Die 200 

Machine direction draw 60-70 

Transverse direction draw 70-80 

Heat set oven 120-140 

 

  



Page 69 of 199 
 

2.6 Electrospinning of PLA  

2.6.1 Introduction to electrospinning  

Electrospinning is a broadly used technology for producing polymer nanofibres 

with diameters in the nanometer scale [112]. The process of electrospinning has 

gained much attention in the last decade due to its versatile spinning in a wide 

variety of polymeric type, ability to produce continuous fibres and control of fibre 

diameter in the submicron range, which is difficult to achieve by using standard 

mechanical fibre-spinning techniques [113], [114]. There is a wide range of 

polymers and polymer blends that are used in electrospinning and are able to 

form fine and uniform fibres within the submicron range [115]. With high surface-

to-volume ratio and possibly a porous structure, electrospun polymer fibres have 

shown extensive potential in a number of applications, such as nanocatalysis, 

tissue engineering scaffolds, protective clothing, filtration, pharmaceuticals, 

optical electronics, healthcare, biotechnology, and environmental engineering 

[116], [117].  

Another advantage of the electrospinning process is that it is a versatile and cost-

efficient method of producing multi-function and high-performance composite 

fibres by incorporating nanoparticles in the polymer solutions during the 

electrospinning process [118]. These additive and filler reinforced fibres can 

display superior mechanical behaviour and functional properties. Inorganic 

additives such as ZnO, TiO2, Ag2O, cellulose and carbon nanotubes have been 

incorporated into electrospun nanofibres to produce composite functional 

materials [119]. 

Electrospinning is a simple technique which utilises high electrostatic forces for 

fibre production. This process was first introduced by Formhals [120] in 1934. 

The work of Taylor [121] on electrically driven jets has laid the groundwork for 

electrospinning.  

Currently there are two standard electrospinning setups: vertical and horizontal, 

see Figure 2.25. Basically, an electrospinning system consists of three main 

components: a high voltage power supply, a spinneret and a ground collector 

(usually a metal plate or rotating mandrel). The electrospinning is carried out in 

a high voltage electric field between a needle tipped syringe that contains 
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polymer based solution and a metal collector for the deposition of nanofibres. 

When a high voltage is applied to a droplet of polymeric solution on the needle 

tip, the droplet is charged and forms a conical shape. As the electric force is 

higher than the surface tension of the solution, a liquid jet is generated from the 

droplet and spun on the collector [122].     

 

Figure 2.25 Schematic diagrams of set up of electrospinning apparatus (a) typical 

vertical set up and (b) horizontal set up of electrospinning apparatus [114] 

  



Page 71 of 199 
 

2.6.2 Effect of various parameters on electrospinning   

The quality of the electrospinning process is governed by many parameters, 

which are classified into solution parameters, process parameters and ambient 

parameters. Fibre morphology and diameter are significantly affected by solution 

parameters (solution viscosity, conductivity, polymer molecular weight and 

surface tension) and processing parameters (applied electric field, tip-to-collector 

distance, and feeding rate). For example, too low a polymer concentration and 

solution viscosity lead to droplets and beads in the fibres. Fine fibres can be 

achieved by increasing the voltage and tip to collector distance or reducing the 

feed rate during the electrospinning process. The optimum fibre quality can be 

obtained by manipulating these parameters. Ambient parameters, including the 

temperature and humidity of the surroundings, also play an important role in the 

final morphology of the electrospun fibres. It is reported that increasing the 

ambient temperature gives rise to the decrease of fibre diameter, whereas the 

increase in the humidity causes circular pores on the surface of fibres. Table 2.3 

summarises various parameters and their effects on the morphology of fibres 

produced by electrospinning. 
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Table 2.3 Summaries of electrospinning parameters and their effect of the fibre 

morphology [114], [117] 

Parameters Effect on fibre morphology 

Solution parameters 

Viscosity 

(polymer 

concentration) 

Low: cause generation of beads 

High: increase in fibre diameter, disappearance of beads 

Molecular weight High: reduce the number of beads and droplets 

Conductivity High: decrease fibre diameter 

Surface tension 
High: instability of jets (surface tension has no effect on 

fibre morphology) 

Processing parameters 

Applied voltage High: decrease fibre diameter 

Distance 

between tip and 

collector 

High: decrease fibre diameter 

Too low: cause beads generation 

Feed rate 
Low: decrease fibre diameter 

High: easy to cause beads generation 

Ambient parameters 

Temperature High: decrease fibre diameter 

Humidity High: cause circular pores on the fibre surface 
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2.6.3 Electrospinning of PLA based nanofibres 

PLA is a bio-based polymer that has been widely commercialised. Since PLA is 

not only compostable and derived from renewable resources but is also 

biocompatible, it has been of a great interest in biomedical applications such as 

tissue scaffolds and wound healing [123] [126]. 

Electrospinning has been utilised to prepare PLA based nanofibres and the effect 

of solution and processing parameters on fibre morphology has been 

investigated [123], [126] [129]. Yang et al. [129] dissolved PLLA in 

dichloromethane / DMF (70:30) at a concentration of 1% (w/w) and obtained a 

nanofibre scaffold with an average diameter of 272±77 nm. In another work of 

these authors [128], aligned PLLA fibrous scaffolds with an average diameter of 

300 nm were fabricated using electrospinning from PLLA with dichloromethane / 

DMF (70:30) solution. According to their results, the aligned PLLA nanofibres 

were more suitable than the random nanofibres as cell carrier in neural tissue 

engineering. Tsuji et al. [127] dissolved high molecular weight PLLA / PDLA (1:1) 

in chloroform at a concentration of 4 g dL-1. They collected stereocomplex 

nanofibres with diameters of 830-1400 and 400-970 nm at voltages of -12 and -

25 kV, respectively, (negative voltage was applied to the tip of the needle while 

the collecting drum was grounded). It was found that the crystallinity of the homo-

crystallites composed of either PLLA or PDLA decreased from 5% to 1%, 

whereas the stereocomplex nanofibres increased from 16 to 20%. This finding 

indicated that stereocomplex nanofibres with a small amount of homo-crystallites 

can be prepared using electrospinning, even when high-molecular-weight PLLA 

and PDLA are used. The orientation caused by high voltage (or electrically 

induced high shearing force) during electrospinning enhanced the formation and 

growth of stereocomplex crystallites, and thus suppresses the formation of 

homo-crystallites. In terms of the fibre morphology, the blend fibres exhibited 

smoother surfaces than that of the pure PLLA fibres, as shown in Figure 2.26. 
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Figure 2.26 SEM images of PLLA and PLLA/PDLA (1:1) blend fibres that were 

electrospun at applied voltages of -12 and -25 kV [127] 

 

Casasola et al. [130] prepared PLA solutions in various single solvent and binary-

solvent systems to investigate the effect of different solution properties on the 

fibre morphology and diameter. It was found that among all single solvents, only 

a PLA solution in acetone produced continuous nanofibres, as shown in Figure 

2.27. Binary solvent systems based on mixture of acetone and another solvent 

were able to produce nanofibres. Defect-free nanofibres were collected using 

solvent systems AC/DMF and AC/DMAc (see Figure 2.28). This result revealed 

that solvents with higher electrical conductivity resulted in less bead, defect-free 

nanofibres. In addition, the effect of polymer concentration and solvent ratio were 

also investigated. It was reported that polymer concentration played an important 

role in the nanofibre morphology: higher concentration of polymer produced more 

uniform and defect-free nanofibres with increased diameters. 
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Figure 2.27 Effect of single solvent systems on nanofibre morphology: scanning 

electron micrographs of PLA nanofibres from solutions of 10% (w/v) of PLA in: 

(a) acetone with nanofibre diameter distribution, (b) 1,4-dioxane, (c) 

tetrahydrofuran, (d) dichloromethane, (e) chloroform, (f) dimethylformamide and 

(g) dimethylacetamide [130] 
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Figure 2.28 Effect of binary-solvent systems on nanofibre morphology: scanning 

electron micrographs of PLA nanofibres with nanofibre diameter distribution from 

solutions of 10% (w/ v) of PLA in (a) acetone / 1,4-dioxane, (b) acetone / 

tetrahydrofuran, (c) acetone / dichloromethane, (d) acetone/chloroform, (e) 

acetone / dime-thylformamide and (f) acetone / dimethylacetamide [130] 

 

In another study, Casasola et al. [131] proposed a methodology for selection of 

solvent systems to produce PLA electrospinnable solutions that can form defect-

free nanofibres with narrow diameter distribution. The optimum solvent systems 

were selected firstly using a thermodynamic approach to select the most suitable 

solvent. The second step was to optimise the solution by adding a solvent with 

high dielectric constant, which can provide defect-free nanofibres with narrow 

diameter distribution. The last step was to choose the optimum polymer 
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concentration; i.e. defect-free nanofibres can be collected when polymer 

concentration was 2 or 2.5 times the chain entanglement concentration.   

 

 

2.6.4 Electrospinning of nanoclay composite fibres 

As discussed already in Section 2.2.1, montmorillonite is a layered silicate clay, 

which belongs to the 2:1 layered phyllosilicate family. Its crystal structure consists 

of an aluminium and magnesium hydroxide octahedral sheet, which is 

sandwiched between two silicon oxide tetrahedral sheets. The layer thickness of 

each platelet is nearly 1 nm and the spacing between two layers is less than 1 

nm [42].  

Montmorillonite has been widely used as reinforcement for polymers, due to its 

high aspect ratio and capability of surface modification with both organic and 

inorganic cations [2]. It has been reported that adding a small amount of MMT 

nanoclay can increase mechanical and physical properties of polymers such as 

strength, stiffness, UV-light resistance and thermal stability. For example, the 

incorporation of MMT (5.79 vol.%) in PLA scaffolds exhibited an increase in 

tensile modulus from 121.2 MPa for pure PLA scaffolds to 170.1 MPa for 

nanocomposite scaffolds [132].   

MMT has been proved as a highly efficient drug carrier for wound healing, 

treatment of stomach ulcers and intestinal problems, as it exhibits high drug 

loading capacity due to high surface area, mucoadhesive properties and 

nontoxicity [133]. Othman et al. [134] incorporated MMT and paracetamol in PLA 

nanoparticles as a drug carrier. Single layered clay silicates were included in the 

paracetamol nanocrystals that were well distributed in PLA matrix, as shown in 

Figure 2.29. They concluded that the incorporation of MMT improved both the 

drug encapsulation efficiency and increased the drug loading capacity in PLA 

nanoparticles.  
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Figure 2.29 TEM images of paracetamol (PCM)-loaded PLA and PCM-loaded 

PLA nanocomposite with 2 wt.% clay content [134] 

 

MMT has been widely incorporated into polymer nanofibres to enhance the 

mechanical and thermal properties. For example, nanocomposite fibres based 

on poly(e-caprolactone) (PCL) and organically modified montmorillonite were 

prepared by electrospinning from the intercalated nanocomposite solution. The 

fibrous PCL / MMT membrane showed enhanced stiffness without sacrificing 

polymer ductility due to the high aspect ratio of the nanoclay [135]. Electrospun 

composite fibres of poly(vinyl alcohol) (PVA), chitosan oligosaccharide and 

montmorillonite clay were fabricated by Park et al. [136], who found that the 

nanoclay concentration had an important role in the control of the nanofibre 

qualities. They reported that mechanical properties and thermal stability of the 

nanofibres were increased with the concentration of nanoclay. Yoon and 

Kelarakis [137] reported that the incorporation of organically modified Luccentite 

nanoclay dramatically modified the structure and morphology of the 

polyvinylidene fluoride (PVDF) electrospun nanofibres by reducing beads in the 

fibres and stabilising the formation of 𝛽 -crystallites from 𝛼 -spherulites of the 

polymer. Wang et al. [138] found that adding nanoclay enhanced molecular 

alignment of polymer chains in electrospun nanofibres, and hence improved 

optical and mechanical properties of the nanofibres. 

Only a few researchers have studied the electrospinning of PLA / nanoclay 

nanofibres. Badrinarayanan et al. [139] investigated the effect of nanoclay on the 

thermal behaviour of electrospun PLA and obtained well dispersed nanoclay 



Page 79 of 199 
 

structure as shown in Figure 2.30. They found that the incorporation of nanoclay 

(from 15 to 25 wt.%) reduced the degree of crystallinity and the Tg for both 

amorphous and semicrystalline PLA nanofibres.  

 

Figure 2.30 TEM images of PLA nanocomposite containing (a) 15.3 wt.% and (b) 

25 wt.% clay [139] 

 

Ayutthaya et al. [140] prepared clay incorporated keratin/PLA core-shell 

nanofibres via electrospinning. It was found that with the addition of 1-2 pph Na-

montmorillonite clay, the processability and the morphology of the nanofibres 

were improved. The nanoclay also acted as nucleating agent to keratin. Lee et 

al. [141] dissolved PLLA with 2, 3 and 5 phr montmorillonite in chloroform at a 

concentration of 0.1 g/ml and collected porous nanofibres scaffolds. The 

nanocomposite scaffolds exhibited increased strength and improved structural 

integrity during biodegradation. 
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2.6.5 Electrospinning of zinc oxide composite fibres 

Nano-sized zinc oxide (ZnO) is an attractive component for incorporation in 

fibrous materials for medical applications due to its antibacterial properties. ZnO 

nanoparticles have been incorporated in several biocompatible and 

biodegradable polymer nanofibres using electrospinning. For example, the 

electrospinning of a solution of sodium alginate (SA) and poly (vinyl alcohol) was 

carried out with ZnO nanoparticles with different concentrations to get 

SA/PVA/ZnO composite nanofibres. The presence of ZnO in the fibrous mats 

was found to improve the thermal stability and antibacterial activity against S. 

aureus and E. coli [142].  Anitha et al. [143] fabricated ZnO-embedded cellulose 

acetate fibrous membrane by electrospinning. The addition of ZnO contributed 

to a strong antibacterial activity against the S. aureus, E. coli and Citrobacter and 

changed the wettability on the surface of the membrane. Augustine et al. [144] 

prepared polycaprolactone (PCL)/ZnO non-woven membrane by electrospinning 

and found that the concentration of ZnO has a strong effect on the morphology 

of the fibre. The surfaces of the nanofibres became rougher with the addition of 

ZnO (see Figure 2.31). With high ZnO concentrations (5 wt.% and 6 wt.%) the 

PCL membrane effectively inhibited the growth of S. aureus and E. coli, as shown 

in Figure 2.32. The composite membrane also showed excellent fibroblast cell 

attachment, which is therefore appealing for tissue engineering applications.  

 

Figure 2.31 SEM image of PCL and PCL nanocomposite membrane with different 

ZnO nanoparticles [144] 
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Figure 2.32 Plates showing the antibacterial activity of the fabricated PCL 

membranes with different concentrations of ZnO nanoparticles against E. coli 

(plate (a)) and S. aureus (plate (b)). In both plates are (a) 2 wt.%, (b) 3 wt.%, (c) 

4 wt.%, (d) 5 wt.%, and (e) 6 wt.% ZnO nanoparticles, and PCL membrane alone 

(f) [144] 

 

Only a few researchers [145] [148] have reported the electrospinning of PLA / 

ZnO nanofibres. Rodríguez-Tobías et al. [146] investigated the morphology, 

mechanical and antibacterial properties of PLA / ZnO nanocomposite mats with 

ZnO concentrations from 0 to 5 wt.%. A good distribution of ZnO nanoparticles 

was obtained with some agglomerations in the PLA nanofibres, as shown in the 

SEM and elemental mapping images in Figure 2.33. Tensile strength and Young’s 

modulus were slightly increased with an optimal ZnO concentration of 3 wt.%. 

The composite nanofibres exhibited a growth inhibition of the Gram-negative E. 

coli and the Gram-positive S. aureus bacteria. 
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Figure 2.33 SEM images (left) and elemental mapping (right) of electrospun mats 

obtained by electrospinning of a PLA solution and electrospraying of nano-ZnO 

dispersed in MeOH at (a) 1, (b) 3, and (c) 5 wt.% with respect to PLA [146] 

 

Virovska et al. [148] fabricated PLA / ZnO non-woven nanofibres of two types: 

ZnO nanoparticles deposited on the surface of PLA fibres and ZnO nanoparticles 

in the bulk. Figure 2.34 shows the morphology of the two types of nanofibres. It 

was found that the type ZnO on-PLA exhibited higher photocatalytic activity and 

antimicrobial activity against S. aureus when compared with the type ZnO in-
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PLA. Therefore, the use of electrospinning and electrospraying for producing 

ZnO-on-PLA nanofibres was more efficient for preparation of hybrid materials 

with significant activities.  

 

Figure 2.34 morphology of the ZnO-on-PLA nanofibres: (A) SEM images (C) TEM 

images; and the ZnO-in-PLA nanofibres: (B) SEM images (D) TEM images [148] 
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3 Experimental 

3.1 Raw materials 

PLA 

Two grades of Polylactic Acid (IngeoTM Biopolymer 4060D and 4032D), supplied 

by NatureWorks LLC, were used as the composite matrix. Information about the 

PLA polymers is shown in Table 3.1, which was supplied by the manufacturer. 

Table 3.1 Information of PLA 4060D and PLA 4032D  

Raw materials State 
D 

content 
Tg / ℃ Tm / ℃ 

PLA 4060D Amorphous 1.4 wt.% 55-60 N/A 

PLA 4032D Semi-crystalline 12 wt.% 55-60 155-170 

Nanoclay 

The organoclay used was Cloisite® 30B, supplied by Southern Clay Products. It 

is a montmorillonite layered silicate which has been modified with an alkyl 

quaternary ammonium salt.  

Zinc oxide (ZnO)  

ZnO was used to improve antimicrobial activity of electrospun PLA nanofibres. It 

was supplied as a powder (99.5+%) by Fisher Scientific. The average particle 

size was measured to be ac. 100 nm. 

Acetone (AC) 

AC used as the solvent to prepare PLA solutions for electrospinning was 

purchased from Fisher Scientific. It was analysis grade (99.5+%): boiling point 

56℃, electrical conductivity 0.2 µS cm-1, dielectric constant 20.6, and solubility 

parameter 10 cal1/2 cm-3/2.  

Chloroform (CHL) 

CHL used as the second solvent to prepare PLA 4032D solutions for 

electrospinning was purchased from Sigma-Aldrich. It was analysis grade 

(99+%): boiling point 61℃ , electrical conductivity 1.0E-04 µS cm-1, dielectric 

constant 4.8, and solubility parameter 9.3 cal1/2 cm-3/2. 
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3.2 Sample preparation  

3.2.1 Pre-drying of PLA 

PLA easily absorbs water molecules from the air, which can cause degradation 

during later melt processing. Therefore, PLA granules were pre-dried in a 

vacuum oven for about 24 hours at 60℃  and 600 mbar to remove excess 

moisture from the material.  

3.2.2 Compounding (Haake Rheomix OS) 

The dried PLA was then melt compounded with organoclay in a counter-rotating 

mixer (Haake Rheomix OS) (see Figure 3.1). This procedure can promote 

dispersive and distributive mixing of the materials.  

 

 

Figure 3.1 Parts of Haake Rheomix OS 

The compounding of PLA and organoclay was carried out at 170℃ for 10 mins 

at a constant rotor speed of 60 rpm. The total sample weight for each batch was 

58 g. The mixing cavity was heated up to 170℃ before the rotors were started. 

Then materials were slowly added into the mixing cavity through a hopper on top 

of the cavity. A piston was dropped through the hopper into the feed point of the 
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mixing cavity to seal the system. After 10 mins mixing, the machine stopped 

automatically. The piston was raised and the cavity and rotors were taken apart. 

The mixed compound was then quickly removed from the cavity and the rotors 

using two stripping knives and left on a steel tray to cool before being collected 

in a sealed plastic bag for later use.  

For preparing PLA nanocomposite compounds, a masterbatch containing 20 wt.% 

organoclay and 80 wt.% PLA was first made. A certain amount of masterbatch 

was diluted with pure PLA granules in a second batch to produce further 

compositions ranging from 1 wt.% to 5 wt.% clay content. The formulations of the 

masterbatch and PLA nanocomposites are listed in Tables 3.2 and 3.3. 

 

Table 3.2 Masterbatch formulation 

 PLA (g) Cloisite® 30B (g) Total (g) 

Reference sample 58 0 58 

Masterbatch (20 wt.%) 46.4 11.6 58 

 

Table 3.3 Sample formulations  

 PLA (g) Masterbatch (g) Total (g) 

Reference sample 58 0 58 

1 wt.% Nanocomposite 55.1 2.9 58 

2 wt.% Nanocomposite 52.2 5.8 58 

3 wt.% Nanocomposite 49.3 8.7 58 

4 wt.% Nanocomposite 46.4 11.6 58 

5 wt.% Nanocomposite 43.5 14.5 58 

 

After the mixed compound had been collected, the machine was cleaned using 

HDPE as the cleaning agent and a range of brushes. 44.4 g HDPE was added 

into the cavity for 5 mins to dilute the residual PLA. The HDPE and the residual 

PLA were blended and removed. Then the cavity and the rotors were cleaned 

using different kinds of brushes. 
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3.2.3 Compression moulding 

3.2.3.1 Quenching process 

PLA nanocomposites sheets were compression moulded in a 20 ton hydraulic 

press (see Figure 3.2). Figure 3.3 shows two moulds that were used to produce 

different shape sheets: a 12x12 cm2 square mould was used to produce square 

sheets for the biaxial stretching test; a hexagonal mould was used to produce 

samples for the water vapour permeability test. The mould was place on a steel 

plate and the polymer resin was placed on the mould sandwiched between two 

PET films. As the temperature reached 180℃, the plate as well as the sample 

was placed in the press machine to soften the polymer resin for around 10 mins 

before the top plate was placed on top of the sample. The sample plate was then 

raised close to the upper platen of the machine. 5 mins were allowed for further 

heating of the sample. After which time, the sample was slowly pressed up to 15 

tons for 3 mins, followed by cold pressing of the sample in a different machine 

for 2 mins at 5 tons at room temperature.  

 

Figure 3.2 Compression moulding sample setup and hot press machine 
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Figure 3.3 Dimensions of the moulds 

 

3.2.3.2 Annealing process 

The quenched PLA nanocomposites sheets were annealed at 115 ℃ and 5 tons 

for 15 mins in a hot press machine. Then the sheet was quenched at room 

temperature for 2 mins in a cold machine at 5 tons.  

 

3.2.4 Uniaxial stretching 

A stretching test on the PLA nanocomposite films was carried out using a biaxial 

stretching machine. Figure 3.4 shows the main parts of the machine. 

 

Figure 3.4 Main parts of biaxial stretching machine 

Mould thickness: 0.7 mm Mould thickness: 1.9 mm 



Page 89 of 199 
 

A 12x12 cm2 sample sheet was placed in a slot in the stretching head, which was 

then adjusted to its onset position. Nitrogen gas pressure of 100 psi was applied 

to the grips of the crosshead to make sure all the grips had engaged the sample 

edges. Then the environmental cabinet was closed allowing the sample to be 

heated to the drawing temperature. As the temperature reached the set drawing 

temperature, the grip pressure was increased to 200 psi (i.e. 1.38 MPa), which 

was the recommend value for stretching PLA. After about 5 mins pre-heating, the 

crosshead started to move at a constant drawing speed and stopped 

automatically at the maximum displacement set previously. When the test was 

finished the air heater was switched off and the air discharge valve was opened 

to cool down the sample in the environmental cabinet for about 5 mins. After this 

the sample was taken out from the crosshead. The stretching parameters are 

listed in Table 3.4. 

Table 3.4 Stretching parameters of PLA nanocomposites 

 
Drawing 

temperature 

Drawing 

rate 
Draw ratio 

Gas 

pressure 

Uniaxial 

stretching 
60℃ 10 mm/min 3 X 1 1.38 MPa 

𝑃𝑆: crosshead displacement =  sample dimension × (draw ratio − 1) 

 

 

3.2.5 Electrospinning of PLA nanocomposite solution 

3.2.5.1 Preparations of PLA / clay solutions 

The electrospinning solutions were prepared by dissolving PLA in a single 

solvent (acetone or chloroform) or a binary-solvent system of acetone and 

chloroform (50/50 v/v) to obtain a 12.5% w/v PLA concentration. Two grades of 

PLA (4060D and 4032D) solutions were prepared separately. PLA 4060D can be 

dissolved in acetone at room temperature. However, the grade 4032D is only 

dissolved in chloroform at room temperature or in a binary-solvent of acetone 

and chloroform (50/50 v/v) at 45℃, since it is crystalline. 

The optimum solvent system for the two grades of PLA was selected for further 
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nanocomposite preparation according to the morphology of the electrospun 

nanofibres, which will be discussed in Section 6.1 in detail.  

For the preparation of all solutions, the solvents were added to a pre-weighed 

amount of polymer or polymer nanocomposite in a glass bottle. The polymer 

nanocomposites used were prepared from melt compounding (same processing 

as Section 3.2.2). This is to make sure the clay layered silicates were well 

dispersed in the polymer solution. The solutions were magnetically stirred for 5 

hours. The stirring temperature was dependent on the crystallinity of the polymer 

grade. For the 4060D solutions it was stirred at room temperature (23℃ ), 

whereas the 4032D solutions was stirred at 45℃ . For the preparation of the 

polymer nanocomposite solutions, the nanoclay at concentrations of 1, 3, and 5 

wt.% to PLA were dispersed in the solvent system in a sonic bath for 1 hour 

followed by magnetic stirring for 1 hour. Then PLA was added to the solution and 

magnetically stirred at room temperature for about 5 hours.   

 

 

3.2.5.2 Preparations of PLA / ZnO solutions 

The electrospinning solutions were prepared by dissolving PLA 4060D in acetone 

to obtain a 12.5 % w/v PLA concentration. For the preparation of the PLA / 

nanoparticle solutions, the ZnO powders (at concentrations of 1, 3, 5, 7 and 9 

wt.% to PLA) were dispersed in acetone in a sonic bath for 1 hour and then 

magnetically stirred for 1 hour. Then PLA was added to the solution and 

magnetically stirred at room temperature for about 5 hours.   

 

 

3.2.5.3 Electrospinning process 

The electrospinning experiment was carried out with a spraybase electrospinning 

instrument by Profector Life Sciences Ltd. as shown in Figure 3.5. During the 

experiment, a high voltage supply was used to generate an electric field of 20 kV 

between a collector and a needle, which was set up vertically to the collector and 

connected to a plastic syringe by a polyethylene capillary tube. A pump system 

was used to feed a constant rate of solution (1 ml/h) through the needle. The 
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solution droplet at the tip of the needle was charged and drawn to produce 

nanofibres, which were randomly sprayed onto the collector. A camera was 

located inside the chamber to observe the spinning process at the tip of the 

needle. The process parameters are listed in Table 3.5. 

 

 

Figure 3.5 The spraybase electrospray instrument 

 

Table 3.5 Process parameter of electrospinning 

Fire 

composition 

Solvent 

type 

Temperature 

of mixing 

Flow 

rate 
Voltage 

Needle to 

collector 

distance 

PLA 

4060D/clay 
AC 

Room 

temperature 

1 

ml/min 
20 kV 10 cm 

PLA 

4032D/clay 
AC/CHL 45 ℃ 

1 

ml/min 
20 kV 10 cm 

PLA 

4060D/ZnO 
AC 

Room 

temperature 

1 

ml/min 
20 kV 10 cm 

 

Collector  

Needle 

Camera 

Pump 

Voltage 
control 
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3.3 Characterisation  

3.3.1 Differential scanning calorimetry (DSC)  

The thermal properties of PLA nanocomposite were investigated using 

differential scanning calorimetry (DSC). The measurement was carried out using 

a TA DSC Q200 calorimeter fitted with a TA refrigerated cooling system. Sample 

pieces of approximately 10-15 mg were cut and encapsulated in aluminium pans, 

covered with aluminium lids, and sealed using a crimper. A reference pan was 

loaded with a sample pan into the cell of the equipment, which was sealed in a 

nitrogen atmosphere at a gas purging rate of 50 ml/min during the test. The 

samples were heated from 20℃ to 200℃ at a heating rate of 10 ℃/min. Five 

individual samples were tested for each formulation. Then data was analysed 

using the TA universal analysis software. 

The amount of overall crystallinity was calculated from the following equation: 

% 𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦 = [
∆𝐻𝑚−∆𝐻𝑐

93.1×𝑤
] × 100%………………(3.1) 

Where, ∆𝐻𝑚  is the measured heat of fusion; ∆𝐻𝑐  is the enthalpy of cold 

crystallisation; 93.1(J/g) is the enthalpy of fusion for 100% crystalline PLA; and 

𝑤 is the weight fraction of PLA in PLA nanocomposites. 

 

 

3.3.2 Water vapour transmission rate test 

Water vapour transmission rate is actually the flux, which is the amount of water 

(Q) diffusing across unit area (A) in unit time (t).  

𝑊𝑉𝑇𝑅 = 𝑄/𝐴𝑡 ………………(3.2) 

Water vapour permeability P is given by 

𝑃 = 𝑊𝑉𝑇𝑅 
𝑙

∆𝑝
 ………………(3.3) 

where 𝑙 is the film thickness; ∆𝑝 is pressures difference of water vapour on either 

side of the film. 

WVTR of various sample sheets was measured using a MOCON Permatran-

W@398 operated with permeability system software. The machine has two 
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separate cells in each side, so two samples can be tested at the same time. The 

test setup parameters are listed in Table 3.6. The main parts of the sample 

insertion system are illustrated in Figure 3.6. 

 

Table 3.6 MOCON WVTR test setup parameters 

Temperature setpoint 37.8 ℃ 

Barometric pressure 760 mmHg 

Relative humidity (RH) 90% 

Compensate RH to 100% 

Ambient temperature 23 ℃ 

Sample area 50 cm2 

Test range 5% RH 

Dry side setpoint 10% RH 

Nitrogen gas flow rate 0.5 L/min 

 

 

 

Figure 3.6 Main parts of sample insertion system of MOCON 
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The sample was cut out into a 9x9 cm2 square. The average thickness of the 

sample sheet was measured using a digital micrometer and inputted into the 

permeability system software. Since the thicknesses of the samples are different, 

the WVTR value is normalised to a film of 25 𝜇𝑚 or 1 mil (1/1000 inch) thickness, 

with the same unit as raw WVTR, given by: 

𝑊𝑉𝑇𝑅 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑) = 𝑊𝑉𝑅𝑇(𝑟𝑎𝑤) ×
𝑙

25
 ………………(3.4) 

Figure 3.6 shows parts of the sample insertion system. An appropriate silicon 

sealant was lightly greased on the rim edge of the cells where sample was to be 

mounted. After the samples were properly placed the cells were closed and the 

test was started. The data was calibrated using a ‘Certified Yellow Film’ standard 

with a WVTR of 23.53 gm/m2/day at 37.8℃. The WVTR value collected from the 

machine is normalised WVTR. 

 

 

3.3.3 Wide angle X-ray diffraction (WAXD)  

Wide-angle X-ray diffraction was used to investigate the extent of dispersion and 

delamination of the organoclay in the PLA nanocomposite samples. WAXD 

traces of pure PLA, organoclay and PLA nanocomposite samples were collected 

on a Brucker D8 Diffractometer using the 𝐶𝑢 − 𝐾𝛼 radiation (𝜆 = 1.542 𝑛𝑚). The 

diffractometer was controlled using Diffract Plus XRD Commander and WAXD 

data was analysed using EVA software. A piece of sample sheet (about 2 x 2 cm2) 

was laid flat on a plastic block. A piece of plasticine was stuck between the 

sample and the block to adjust the sample surface to the same level as the 

reference plane of the instrument. Samples were scanned in the angular region 

(2𝜃) of 1°-10°. 
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3.3.4 Birefringence  

Birefringence measurements were carried out using a Leica microscope 

equipped with a tilting compensator B (measurement range from 1-5𝜆 orders) 

and compensator K (30 𝜆  orders). 

 

Figure 3.7 Parts of cold stage microtome and a sample being cut on it. 

 

The birefringence sample was prepared on a cold stage microtome operated with 

glass knife. Figure 3.7 shows parts of the cold stage microtome and a sample 

being cut on it. A piece of sample (around 3mm x 10mm) was cut off and placed 

straight to the cutting direction on the brass block of the microtome. A drop of 

water was put on the sample and frozen on the stage by giving a quick blast 

(about 3-4 seconds) of liquid CO2. This is to make sure the sample was held 

steady on the stage. More drops of water were added onto the sample and left 

to be frozen until the sample was fully covered in ice. The height of the stage was 

then adjusted to align the ice just below the knife blade before cutting. The 
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thickness of the microtomed cross-section was set by rotating the smooth round 

knob (usually 10 𝜇𝑚 for birefringence samples). Sample slices were cut off and 

left on the glass knife, which were collected using tweezers and dried using a 

piece of filter paper. Then the sample was mounted in an appropriate liquid on a 

glass slide and covered by a coverslip for observation.  

The orientation of the sample was determined using a polarised optical 

microscope. The sample slide was observed using a 10x magnification objective 

lens and a 546 nm filter. The sample was moved into the extinction position by 

rotating the object stage. Then the object stage was rotated by 45° to find the 

diagonal position for the object (in which the maximum brightness of the object 

can be obtained). A tilting compensator B was inserted into the tube slot and tilted 

by rotating the drum on the compensator in two directions. When the object 

turned back (extinguished), the tilting angles ( 𝑖′ 𝑎𝑛𝑑 𝑖′′) can be read from a scale 

on the compensator knob. Therefore, the value of 2𝑖 = 𝑖′ + 𝑖′′ can be calculated, 

which was used to evaluate the phase difference (Γ) of the object from a given 

table in the instructions of the compensator. Then the birefringence of the object 

can be calculated from the following equation:  

∆𝑛 =
Γ

𝑑
 ………………(3.5) 

where Γ is the phase difference; 𝑑 is the thickness of the sample, which was 10 

𝜇𝑚 in this case. 
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3.3.5 Transmission electron microscopy  (TEM) 

TEM samples were prepared on a Cambridge Instruments ultra-microtome fitted 

with a diamond edge blade. The melt compounded sample pellet was firstly 

sharpened into a pencil-like point and then mounted on the ultra-microtome to 

shave off thin slices (~ 100 nm thick), as shown in Figure 3.8. A reservoir of de-

ionised water was used to contain the sliced off sample pieces, which were then 

scooped onto a copper mesh and left on an absorbent paper to dry before being 

observed.  

 

Figure 3.8 Cutting of TEM samples 

 

TEM observation was carried out a JEOL, JEM-2000FX electron microscope 

operated at an accelerating voltage of 100kV. PLA nanocomposite samples were 

observed at various magnifications of 25, 40, 100, 200 and 400 thousand times. 

Image J photograph software was used to measure the aspect ratios of the clay 

platelets from TEM images. 
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3.3.6 Scanning electron microscopy (SEM) 

The surface morphology of electrospun PLA based nanofibres was evaluated 

using a Carl Zeis (Leo) 1530VP field emission gun scanning electron microscope 

(FEGSEM). Samples for SEM were coated using a gold/palladium sputter for 1 

min (SC7604, Emitech). The average diameter of the nanofibres was measured 

on the SEM images using image softwares (ImageJ and IBM SPSS Statistics).  

 

 

3.3.7 Tensile testing of electrospun mats 

The mechanical properties of PLA nanofibre mats were analysed by tensile tests 

following the ISO257-2-5A specification. For the sample preparation, PLA 

nanofibre mats were firstly peeled off from the foil as shown in Figure 3.9. The 

nanofibre mats for tensile test should be electrospun for about 4 hrs at a rate of 

1ml/hr, as to obtain thick and consistent nanofibre mats. The average thickness 

of the mats was about 0.09 mm. Then the nanofibre mats were cut into tensile 

bar specimens using cutting equipment (Ray-Ran RR/PCP). The profile of the 

specimens was Dumbbell shaped ISO 257-2-5A. For each PLA solution 3 tensile 

specimens were cut for tensile testing.   

 

Figure 3.9 PLA nanofibre mats peeled off 
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Tensile testing on PLA nanofibres was carried on an INSTRON 5944 Micro Tester. 

During the test, PLA nanofibre specimens were clamped between two rubbery 

clamps. A load force of 2 kN was used. The tensile speed was firstly 2 mm/min 

until the load was up to 0.1N, and then changed to 3 mm/min until the sample 

was broken. Tensile strength, Young’s modulus and elongation at break of PLA 

nanofibres were calculated from each test. 

 

 

3.3.8 Antibacterial testing of electrospun mats 

Bacterial cultures of E. coli   K12 (Wild Type) were prepared in 100 ml Lysogeny 

Broth (LB), which were inoculated and incubated at 37 °C for 24 hrs in an 

autoclave. Then LB Agar Petri plates were seeded with 1 ml of the incubated 

bacterial culture (prepared according to manufacturer’s instructions). 

Electrospun PLA / ZnO fibre mats were folded and pressed into discs and placed 

onto the incubated Agar Petri plates to have further incubation at 37°C for 24 h. 

Then clear zones of inhibition were observed and the diameter of the inhibition 

zone was measured.  
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4 Effect of clay on the water barrier property of PLA nanocomposites  

4.1 Effect of clay concentration on quenched PLA nanocomposites 

4.1.1 DSC of quenched PLA nanocomposites  

The DSC first heating scans for PLA4060D and PLA nanocomposites of various 

clay concentrations are displayed in Figure 4.1. The step change at 56℃ relates 

to the glass transition temperature (Tg) of the polymer. An endothermic peak is 

observed just after the glass transition temperature. This is associated with 

relaxation of non-equilibrium structure. It was observed that as the clay 

concentration increased the endothermic peak tended to decrease in intensity, 

which suggested that the nanoclay had a confining effect on polymer chain 

relaxation. However, the glass transition temperature (see Table 4.1) decreased 

slightly as the nanoclay content increased in the PLA nanocomposites. This 

phenomenon may be due to a plasticising effect of the nanoclay surfactant that 

enhanced the glass transition process. A decrease in Tg for PLA nanocomposites 

has also been reported in some previous studies [149] [151]. 

 

Figure 4.1 DSC curves of pure PLA4060D and its nanocomposites containing 1-

5 wt.% clay contents 
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Table 4.1 DSC data for all samples 

Sample Tg 

Quenched PLA 56±1 ℃ 

Quenched PLA+1wt.%nanoclay 55±1 ℃ 

Quenched PLA+2wt.%nanoclay 52±1 ℃ 

Quenched PLA+3wt.%nanoclay 53±1 ℃ 

Quenched PLA+4wt.%nanoclay 51±1 ℃ 

Quenched PLA+5wt.%nanoclay 52±1 ℃ 

 

 

4.1.2 TEM of quenched PLA nanocomposites 

The transmission electron micrographs of PLA nanocomposites containing 1, 2 

and 3 wt.% clay at different magnifications are shown in Figure 4.2. From the low 

magnification images, it is observed that the clay particles are aligned and evenly 

distributed in the PLA matrix. The alignment of the clay particles took place during 

the polymer melt compounding, and remained in the same direction as the 

polymer melt flow after cooling. The intercalated structures of the nanoclay are 

shown in the high magnification images. It is also observed that single layered 

silicates are delaminated in the PLA matrix.  

A micrograph of a 3 wt.%  nanoclay sample at 200k magnification is shown in 

Figure 4.3, in which the intercalated clay structure can be clearly seen. A 

micrograph of a 1 wt.%  nanoclay sample at 200k magnification, as shown in 

Figure 4.4, clearly presents exfoliated single layered clay platelets in the polymer 

matrix. A more detailed view of the delamination structure of clay platelets is 

given in Figure 4.5 and Figure 4.6, which are 400K magnification TEM images of 

a 1 wt.% and a 3 wt. % nanoclay sample. In these micrographs, the dark lines 

are the edges of exfoliated single layered clay platelets. 

The length and thickness of the clay platelets are able to be measured from the 

TEM micrographs using Image J software. More than 200 clay platelets were 

measured from 7 high magnification micrographs with different clay content. The 
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average length and thickness of the clay platelets was found to be 90 ± 15 nm 

and 2.1±0.5 nm, respectively. Hence, the average aspect ratio (length/thickness) 

of the organoclay within PLA matrix was approximately 40. 

 

Figure 4.2 TEM images of PLA nanocomposites containing 1, 2, 3 wt. % clay at 

40k, 100k and 200k magnifications 
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Figure 4.3 Transmission electron micrograph of PLA nanocomposite with 3 wt.% 

clay at 200K magnification 

 

Figure 4.4 Transmission electron micrograph of PLA nanocomposite with 1 wt.% 

clay at 200K magnification 



Page 104 of 199 
 

 

Figure 4.5 Transmission electron micrograph of PLA nanocomposite with 1 wt.% 

clay at 400K magnification 

 

Figure 4.6 Transmission electron micrograph of PLA nanocomposite with 3 wt. % 

clay at 400K magnification 
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4.1.3 WAXD of quenched PLA nanocomposites 

WAXD traces for Cloisite 30B organoclay, PLA and PLA nanocomposite 

containing 3 wt.% clay are shown in Figure 4.7.  In the trace of the nanoclay, the 

peak at 2𝜃 = 4.8° corresponds to a clay interlayer spacing (𝑑001) of 1.8 nm. In the 

PLA nanocomposite, the peak shifted to 2.7° corresponding to an interlayer 

spacing of 3.3 nm. This result indicates that the layered platelet had been ex and 

widened within the PLA matrix, which means that an intercalated structure has 

been produced. The XRD result is consistent with TEM observations on the 

nanocomposites samples. 

 

Figure 4.7 WAXD traces of organoclay, PLA and PLA nanocomposite 

The XRD result is in agreement with some other published WAXD data for PLA 

nanocomposites. McLauchlin and Thomas [152] have reported that Cloisite 30B 

clay has an interplanar spacing of 1.8 nm, which increased to 3.5 nm in the 

intercalated PLA nanocomposites produced by solvent casting. Rhim et al. [97] 

found that the interlayer distance of Cloisite 30B was 1.86 nm, while that for PLA 

/ Cloisite 30B nanocomposite was increased to 3.14 nm. Thellen et al. [98] 

reported that the interlayer spacing in montmorillonite layered silicate was 

increased from 1.8 to 3.2 nm in PLA nanocomposite produced by blow film 

extrusion. Duan et al. [75] reported that the interlayer spacing of Cloisite 30B 

nanoclay was increased from 1.84 nm to 3.4 nm after melt compounding with 

PLA. 
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4.1.4 Water vapour permeability results 

Water vapour transmission rate (WVTR) data for the PLA and PLA 

nanocomposite sheets is plotted as a function of weight % nanoclay, as shown 

in Figure 4.8. Five individual samples were measured for each data point. The 

results show a significant decrease with increasing clay content and level off at 

clay content of 5 wt.%. The sample with 5 wt.% nanoclay addition shows the 

lowest permeability, which was reduced by about 37% compared with the neat 

PLA. The results of WVTR are listed in Table 4.2. 

 

 

Figure 4.8 Water vapour permeabilities of neat PLA and PLA nanocomposites 
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Table 4.2 Water vapour transmission rate of quenched PLA nanocomposites 

Sample WVTR (gm-mil/[m²-day]) 

Quenched PLA 180 ± 3 

Quenched PLA+1wt.%nanoclay 165 ± 3 

Quenched PLA+2wt.%nanoclay 147 ± 2 

Quenched PLA+3wt.%nanoclay 134 ± 3 

Quenched PLA+4wt.%nanoclay 118 ± 1 

Quenched PLA+5wt.%nanoclay 112 ± 3 

 

 

Interpretation by tortuous path models 

Since the samples are amorphous PLA, the reduction in water vapour 

permeability originates from the incorporation of nanoclay. As it is discussed in 

Section 2.3, the mechanism by which the barrier properties of polymer 

nanocomposites are improved is by a so-called ‘tortuous path’ effect, which was 

first proposed by Nielsen [73]. In the model, the diffusion path length of gas or 

water vapour molecules is dramatically increased due to obstacles created by 

nanofiller particles.  

In the present study, the Nielsen equation was used to calculate the theoretical 

permeability of PLA nanocomposite given that the aspect ratio (L/D) is 40, as 

shown below: 

𝑃𝐹

𝑃𝑢
=

∅𝑃

1+(𝐿/2𝐷)∅𝐹
 ……………………(4.1)  

where L/D=40; 𝑃𝐹 is the theoretical permeability of PLA nanocomposite 

𝑃𝑢 is the permeability of neat PLA, which was found to be 180 gm - mil / [ m² - 

day; ∅𝑃 and ∅𝐹 are the volume fractions of the PLA matrix and nanoclay, which 

can be obtained by knowing that the density of PLA is 1.24 g/cm3 and the density 

of nanoclay is 1.98 g/cm3; 

To fit our experimental data with the Nielsen model, the weight fraction of 

nanoclay should be converted to volume fraction since it is required in the Nielsen 
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equation.  

∅𝐹 =
𝑊𝐹/𝜌𝐹

𝑊𝐹/𝜌𝐹 + 𝑊𝑃/𝜌𝑃
 

Where 𝑊𝐹 and 𝑊𝑃 are the weight fraction of the nanoclay and PLA; 𝜌𝐹 and 𝜌𝑃 

are the densities of nanoclay and PLA.  

Take a sample with 1 wt.% nanoclay for example, the volume fraction of the 

nanoclay is: 

∅𝐹 =  
1% 1.98⁄

1% 1.98⁄ + 99% 1.24⁄
= 0.6% 

The weight to volume fraction conversion for samples containing 1-5 wt.% clay 

is shown in Table 4.3. 

 

Table 4.3 Weight fraction to volume fraction conversion 

Weight fraction Volume fraction 

1 wt.% 0.6 vol% 

2 wt.% 1.3 vol% 

3 wt.% 1.9 vol% 

4 wt.% 2.6 vol% 

5 wt.% 3.2 vol% 

 

A plot of the permeability versus volume fraction of clay content is shown in 

Figure 4.9, in which the Nielsen theoretical permeability is compared with the 

experimental data. It is found that the predicted line of the Nielsen permeability 

lay just below the experimental data points, which indicates that the experimental 

data fit the ‘Nielsen theory’ well. This result is in agreement with the work of Duan 

et al. [75], who first fitted the permeability of the polymer nanocomposites with 

the Nielsen model. 

 



Page 109 of 199 
 

 

Figure 4.9 Water vapour permeabilities of PLA and PLA nanocomposites in 

comparison with Nielsen theoretical values 

The difference between the experimental and predicted data is probably due to 

the clay platelets not being 100% exfoliated and not orientated perpendicularly 

to the diffusion direction. Therefore, in the next section annealing was introduced 

to the PLA sheets to obtain crystallinity in order to improve the barrier property of 

PLA nanocomposites. 
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4.2 Effect of annealing on PLA nanocomposites 

4.2.1 DSC of annealed PLA nanocomposites 

Figure 4.10 shows the DSC first heating scan for the crystallisable PLA, grade 

4032D, that had been annealed. The glass transition temperature is 57 ℃ and 

the melting point is 170 ℃ . There is a small peak at about 162 ℃ merging into 

the main melting peak. The occurrence of such a double melting peak in PLA has 

been previously reported [25], [26], [29] [31], [101]. One explanation of double 

melting is associated with melt-recrystallisation, which suggests that the high-

temperature endotherm can be attributed to the melting of original crystals and 

the low-temperature endotherms are due to crystals formed through 

recrystallisation due to cold crystallisation. Sometimes double melting peaks can 

be associated with different crystalline forms. For example, Sawai et al. [26] 

obtained both 𝛼 crystal and 𝛽 crystals in uniaxially orientated PLLA and found 

double melting peaks in the DSC scan. The main melting peak corresponded to 

the melting of 𝛼  crystals, whereas the lower temperature peak, at about 10℃ 

below the main peak, was due to the melting of orientated 𝛽 crystal phases. In 

other cases the double peak is due to disordered crystallites. Pan et al. [29], [30] 

observed double melting in PLLA and attributed it to the formation of a disordered 

𝛼 ,  crystal phase. They proposed that the high temperature melting peak 

corresponded to melting of the 𝛼 phase, which is the ordered crystalline form, 

whereas the lower peak corresponded to melting of the disordered 𝛼 , phase. 



Page 111 of 199 
 

 

Figure 4.10 DSC heating scan for the annealed PLA 4032D 

 

Annealed PLA nanocomposites were found to exhibit different melting 

behaviours from the annealed neat PLA. Figures 4.11 - 4.13 show DSC heating 

scans of the annealed PLA nanocomposites with 1, 3 and 5 wt.% nanoclay. 

Although, the glass transition temperature and the melting point are still at 57℃ 

and 170℃, respectively, the lower melting peak has virtually disappeared as the 

clay loading increased up to 5 wt.%, showing that the nanoclay has promoted 

formation of the more stable 𝛼 crystal phase during annealing.  

Table 4.4 Summarises the DSC result of samples with various clay 

concentrations. It is seen that the crystallinity of annealed PLA nanocomposites 

was about 30%. The clay concentration had no effect on the extent of crystallinity 

of the annealed samples. 
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Figure 4.11 DSC heating scan for the annealed PLA 4032D nanocomposite with 

1 wt.% nanoclay  

 

Figure 4.12 DSC heating scan for the annealed PLA 4032D nanocomposite with 

3 wt.% nanoclay  
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Figure 4.13 DSC heating scan for the annealed PLA 4032D nanocomposite with 

5 wt.% nanoclay  

Table 4.4 DSC data for all samples 

Sample  Tg Tm Crystallinity  

Quenched PLA 56±1 ℃ ---- 0% 

Quenched PLA+1wt.%nanoclay 55±1 ℃ ---- 0% 

Quenched PLA+2wt.%nanoclay 52±1 ℃ ---- 0% 

Quenched PLA+3wt.%nanoclay 53±1 ℃ ---- 0% 

Quenched PLA+4wt.%nanoclay 51±1 ℃ ---- 0% 

Quenched PLA+5wt.%nanoclay 52±1 ℃ ---- 0% 

Annealed PLA 57±1 ℃ 170±1 ℃ 30±1% 

Annealed PLA+1wt.%nanoclay 56±1 ℃ 170±1 ℃ 32±1% 

Annealed PLA+2wt.%nanoclay 56±1 ℃ 169±1 ℃ 31±1% 

Annealed PLA+3wt.%nanoclay 57±1 ℃ 169±1 ℃ 32±1% 

Annealed PLA+4wt.%nanoclay 56±1 ℃ 170±1 ℃ 31±1% 

Annealed PLA+5wt.%nanoclay 56±1 ℃ 170±1 ℃ 30±1% 
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4.2.2 Optical microscopy results of annealed PLA nanocomposites  

The crystalline morphology of a semi-crystalline PLA 4032D film produced by 

annealing at 115 ℃ for 15 min was investigated in a hot stage and the crystallite 

morphology was observed between crossed polars in a Leica® DM LM binocular 

transmitted light microscope. Figure 4.14 shows a series of micrographs of the 

sample taken at different temperatures in the hot stage microscope when heated 

at a rate of 10℃ per minute. The change in the crystallite morphology can be 

interpreted in relation to the DSC scan in Figure 4.10. Some coarser spherulites 

in a background of tiny crystallites are observed at 115 ℃  during the heating 

process. As the temperature reaches 160 ℃, some small crystallites begin to blur, 

whereas some large crystallites grow. When the temperature reaches the melting 

point, 166-168 ℃, the small crystallites blur into the dark background, whereas 

the large crystallites still exist. At 170 ℃ the image becomes completely dark, 

indicating that all the crystallites have melted. 
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Figure 4.14 Annealed PLA 4032D viewed in hot stage polarised optical 

microscope when heated at 115 ℃ and 168 ℃ and 170 ℃ 
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4.2.3 XRD results of annealed PLA nanocomposites  

Figure 4.15 shows the comparison between the WAXD traces of a quenched and 

an annealed PLA nanocomposites with 3 wt.% nanoclay. It is found that the 2𝜃 

peak associated with the clay interlayer structure is still at 2.7° after annealing, 

giving a clay interlayer spacing of 3.3 nm in the samples. This result indicates 

that the dispersion of clay platelets did not change during annealing. 

 

Figure 4.15 WAXD traces of quenched and annealed PLA nanocomposites with 

3 wt.% nanoclay  

 

 

4.2.4 TEM results of annealed PLA nanocomposites  

The transmission electron micrographs of the quenched and annealed PLA 

nanocomposites containing 1 wt.% clay at low and high magnifications are 

shown in Figure 4.16. As discussed in Section 4.1, the quenched samples 

showed good alignment of the clay layers as seen in the low magnification 

images (Figure 4.2). The alignment of the clay particles took place during 

polymer melt compounding, and remains in the same direction as the polymer 

melt flow after cooling. The higher magnification image shows intercalated 

structures of the nanoclay. It is observed that the single layered silicates were 
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also delaminated in the PLA matrix.  

However, for the annealed samples, the clay layers are randomly aligned in the 

low magnification image and well dispersed single layered clay platelets can be 

observed in the high magnification image. Compared with the XRD result in 

Figure 4.15, it is concluded that the crystallisation process did not affect the 

dispersion state of the nanoclay but has changed the alignment of the nanoclay 

particles. 

 

Figure 4.16 TEM images of quenched and annealed PLA nanocomposites 

Quenched  Annealed   

Annealed   

Annealed   

Quenched  

Quenched  
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containing 1 wt. % clay at 60k , 100k and 200k magnifications 

The transmission electron micrographs a 1 wt.% nanoclay sample at 400k 

magnification are shown in Figure 4.17 and Figure 4.18, in which intercalated 

clay structure can be clearly observed. In these micrographs, the dark lines are 

the edges of the single layered silicate. The length and thickness of clay platelets 

after annealing were measured from the TEM micrographs using Image J® 

software. More than 200 clay platelets were measured from 7 high magnification 

micrographs. The average length and thickness of the clay platelets in the 

annealed nanocomposite were found to be 155 ±  35 nm and 3.8 ±  1.6 nm, 

therefore, the aspect ratio of the nanoclay was about 41, which is similar to the 

value measure on the quenched nanocomposite samples. 

 

 

Figure 4.17 TEM images of annealed PLA nanocomposite with 1 wt.% clay at 

400k magnifications 

50 nm 



Page 119 of 199 
 

 

Figure 4.18 TEM images of annealed PLA nanocomposite with 1 wt.% clay at 

400k magnifications 
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4.2.5 Water vapour permeability results 

4.2.5.1 Interpretation by tortuous path models 

Water vapour transmission rate (WVTR) data for quenched and annealed PLA 

nanocomposite sheets was measured through the PLA sheets processed from 

the amorphous PLA, 4060D, and the crystallisable PLA, 4032D, respectively. The 

experimental data is shown in Table 4.5. Five individual samples were measured 

for each data point. It is clearly seen that the measured water vapour permeability 

data for the annealed samples is much lower than that of the quenched samples 

due to the crystallinity of the annealed PLA nanocomposite. 

 

Table 4.5 Results of water vapour transmission rate of annealed and quenched 

PLA nanocomposites  

Sample  Crystallinity 
WVTR (gm-mil/[m²-

day]) 

Quenched PLA 4060D 0% 180 ± 3 

Quenched PLA 4060D +1wt.%nanoclay 0% 165 ± 3 

Quenched PLA 4060D +2wt.%nanoclay 0% 147 ± 2 

Quenched PLA 4060D +3wt.%nanoclay 0% 134 ± 3 

Quenched PLA 4060D +4wt.%nanoclay 0% 118 ± 1 

Quenched PLA 4060D +5wt.%nanoclay 0% 112 ± 3 

Annealed PLA 4032D 30±1% 111 ± 2 

Annealed PLA 4032D +1wt.%nanoclay 32±1% 108 ± 6 

Annealed PLA 4032D +2wt.%nanoclay 31±1% 107 ± 3 

Annealed PLA 4032D +3wt.%nanoclay 32±1% 87 ± 2 

Annealed PLA 4032D +4wt.%nanoclay 31±1% 86 ± 2 

Annealed PLA 4032D +5wt.%nanoclay 30±1% 88 ± 1 
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The WVTR data of the quenched PLA nanocomposites is discussed in Section 

4.2.5. Water vapour permeability significantly decreased with increasing clay 

content and tended to level off at a clay content of 5 wt.%. A prediction line from 

the Nielsen model was plotted in same figure and fitted very well with the 

experimental data.  

Figure 4.19 shows the plot of WVTR data for the annealed PLA nanocomposite 

samples as a function of wt.% nanoclay. A theoretical line predicted from the 

Nielsen model is plotted in the same graph. It is found that all the experimental 

data is higher than the theoretical line and the reduction of permeability does not 

fit the Nielsen model. This is thought to be due to the effect of annealing on 

increasing crystallinity but also changing the alignment of the clay particles. 

 

Figure 4.19 Water vapour permeabilities of annealed PLA and PLA 

nanocomposites in comparison with Nielsen theoretical values  

 

According to the TEM images in Figure 4.16, the clay layers became more 

randomly oriented after annealing. Therefore, a model, due to Bharadwaj [79], 

that takes into account the orientation of the particles, was applied to the 
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annealed data. Unlike the Nielsen model, which assumes the filler particles are 

aligned at right angles to the diffusion direction, this model allows for the filler 

particles to be oriented in different directions. In this model there is an orientation 

factor, S, included in the tortuosity factor. The orientation factor is shown in 

equation (4.2), where θ is the angle between the perfect diffusion direction and 

the normal to the filler particles. 

𝑆 =
1

2
〈3 cos2 𝜃 − 1〉 ………………(4.2) 

It is seen from equation (4.2) that when the filler particles are orientated 

perpendicular to the direction of diffusion (i.e. θ=0) then S=1 and the equation 

becomes the same as the Nielsen model. However, if the filler particles are 

orientated parallel to the direction of diffusion (i.e. θ=π/2) then S=-1/2. When 

there is random orientation, then S=0. 

The order parameter is inserted into the Nielsen equation to allow for orientation 

[79], as shown in equation (4.3)  

𝑃𝐹

𝑃0
=

1−∅𝐹

1+
𝐿.∅𝐹
2𝐷

(
2

3
)(𝑆+

1

2
)
 …………..(4.3) 

This model is fitted to the WVTR data from the annealed samples in Figure 4.20 

The best fit between the experimental data and the predicted line was found with 

a regression coefficient, R2, of 0.8 when S = 0.15, which indicates that the 

orientation of the clay particles was in a nearly random state. 
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Figure 4.20 Water vapour permeabilities of annealed PLA and PLA 

nanocomposites in comparison with theoretical values predicted from the 

Bharadwaj model 
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4.2.5.2 Building a new tortuous model and interpretation 

In the Nielsen model, the tortuosity factor is the maximum possible value given 

by  

τ = 1 + (L/2D)∅F …………..(4.4) 

In the case of a crystalline polymer, the spherical crystals are assumed to be 

impermeable fillers with the same L and D. Exchanging the volume fraction of 

fillers for the fraction of crystallinity Xc , the tortuosity factor is given by 

τ = 1 +
1

2
𝑋𝑐 …………..(4.5) 

Then the Nielsen equation is modified to give equation (4.6), in which Pc is the 

permeability of the semi-crystalline polymer, P0  is the permeability of the 

amorphous polymer, and 𝑋𝑐 is the fractional degree of crystallinity [19]. 

𝑃𝑐

𝑃0
=

1−𝑋𝑐

1+
1

2
𝑋𝑐
………………(4.6) 

In the present study, the permeability of the annealed PLA (PC+0%clay) can be 

predicted by using equation (4.6) with a known crystallinity of Xc = 0.3  (Table 4.4) 

and P0 = 180 gm − mil/[m² − day], therefore, it becomes 

𝑃𝐶+0%𝑐𝑙𝑎𝑦 = 𝑃0 ∗ (
1−𝑋𝑐

1+
1

2
𝑋𝑐

)………………(4.7) 

This gives a value of 110 g - mil / [m2   day], which is in good agreement with 

the measured value of 111 g - mil / [m2   day]. 

As discussed previously, the model of Bharadwaj (equation (4.3)) has been fitted 

well with the experimental data of annealed PLA nanocomposites (see Figure 

4.20). Therefore the permeability of the annealed PLA nanocomposites 

containing 0 to 5wt.% nanoclay can be expressed as following: 

𝑃𝐶+𝑛%𝑐𝑙𝑎𝑦 = 𝑃𝐶+0%𝑐𝑙𝑎𝑦 ∗ (
1−∅𝐹

1+
𝐿∅𝐹
2𝐷

(
2

3
)(𝑆+

1

2
)
)………………(4.8) 

By inserting equation (4.7) into equation (4.8), the theoretical permeability of 

semi-crystalline polymer nanocomposites becomes 

𝑃𝐶+𝑛%𝑐𝑙𝑎𝑦 = 𝑃0 ∗ (
1−𝑋𝑐

1+
1

2
𝑋𝑐

) ∗ (
1−∅𝐹

1+
𝐿∅𝐹
2𝐷

(
2

3
)(𝑆+

1

2
)
)………………(4.9) 
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Permeability predicted from equation (4.9) was plotted together with the 

experimental data from the semi-crystalline PLA nanocomposites, as shown in 

Figure 4.21. When S = 0.15, the experimental data gives a reasonable fit to the 

predicted line with R2 = 0.8. This confirms that the new model fits the 

experimental data well as the model of Bharadwaj, showing that the new tortuous 

path model gives a good prediction of the combined effect of crystallinity and 

nanoclay on water vapour permeability of polymer films.  

 

 

Figure 4.21 Water vapour permeabilities of annealed PLA nanocomposites in 

comparison with theoretical value predicted from the new model, equation (4.9)  

 

More details of the interpretation of the new model can be found in a recent 

journal article [153]. 
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4.3 Summary 

1. PLA nanocomposites containing 0 to 5 wt.% montmorillonite layered 

silicate were prepared by melt compounding followed by compression 

moulding with two different thermal treatments (i.e. quenching and 

annealing). Both amorphous and semi-crystalline PLA nanocomposite 

samples were obtained.  

2. Thermal properties of the samples were measured by DSC. The 

crystallinity of the annealed PLA and PLA nanocomposites was 30%. The 

morphology of crystallites was observed by polarised optical microscopy.  

3. The nanoclay structure was measured using TEM and WAXD. It was 

confirmed that the nanocomposite structures were intercalated and the 

clay aspect ratio was about 40 in both quenched and annealed samples. 

The clay layers were aligned in the same direction in the quenched 

samples. However, there was random orientation in the annealed samples 

due to the crystallisation process.  

4. Water vapour transmission rates through the film samples were measured 

at 38℃ and at a relative humidity of 90%. It was found that the measured 

values of WVTR of the quenched PLA nanocomposites decreased 

consistently with clay concentration and the data showed a good fit with 

the Nielsen model. The measured WVTR data of the annealed PLA 

nanocomposites fitted the model of Bharadwaj when the clay orientation 

was assumed to be nearly random.   

5. A new tortuous model was built based on the models of Nielsen and 

Bharadwaj to predict the combined effects of crystallinity and nano-filler 

on the water vapour transmission rates through the polymer films. The 

new model showed a good fit with the experimental data from the 

annealed PLA nanocomposites. 
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5 Uniaxial stretching of PLA nanocomposites  

5.1 Uniaxial stretching of neat PLA sheets 

Before processing to stretch the PLA nanocomposite sheets, the optimum 

stretching temperature for each grade of PLA was determined by uniaxial 

stretching of the neat PLA 4060D sheets at four different temperatures (60, 65, 

70 and 75℃). The lowest stretching temperature was selected at 60℃, which 

was 5℃ above the Tg of the PLA 4060D. The sheets were stretched to 3 times 

the original length at a crosshead speed of 10 mm/min. The optimum drawing 

temperature was determined depending on the quality of the stretched samples. 

To understand how well the sheet was stretched, equally spaced dots were 

drawn on the 12x12 cm2 sheets before stretching (see Figure 5.1). The dots are 

used to determine the quality of the deformation in each area of the sheets after 

stretching. For example, in Figure 5.1, at a stretch temperature of 60℃ , the 

sample was uniformly deformed, since the majority of the dots are evenly 

distributed. When the temperature was increased to 75℃, the deformation of the 

sample was not uniform as the dots in the same line are shifted from each other. 

 

 

Figure 5.1 Photos of an unstretched PLA sheet and two uniaxially stretched PLA 

sheets 
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The curves of drawing force versus displacement for the process of uniaxial 

stretching are plotted in Figure 5.2. It is observed that the initial force applied at 

60℃ was much higher than that at 75℃, which is because, above Tg, as the 

temperature increases the chain segment motion allows polymer chains to align 

more easily during stretching. Therefore, lower force is needed to align the 

polymer chains at higher temperature. 

 

 

Figure 5.2 Force versus displacement curve at 60℃  and 75℃   uniaxially 

stretching on PLA sheets 

 

In addition, the shapes of the curves are quite different: the 60℃ curve exhibited 

a yield point at 340 N, after which it levelled out at about 285 N; whereas, the 

75℃ curve increased at the beginning until reaching equilibrium at about 170 N. 

This result implies that as the drawing temperature increases, the behaviour of 

the polymer is changed from ductile (60℃) to rubbery (75℃). 
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5.1.1 Birefringence test on uniaxially stretched PLA films 

In-plane birefringence (∆𝑛𝑥𝑧 and ∆𝑛𝑥𝑦) of the uniaxially stretched samples was 

measured using a Leica microscope equipped with the tilting compensator B 

(measurement range from 1-5 𝜆  orders) and compensator K (30 𝜆  orders). 

Figure 5.3 shows a diagram of the dimensions of a stretched sample. 

 

 

Figure 5.3 A diagram of the dimensions of a stretched sheet (MD=machine 

direction; TD=transversal direction; ND= normal direction of the sample) 

 

Table 5.1 shows the birefringence values of samples that had been stretched at 

various temperatures. The trend of the birefringence versus drawing temperature 

is presented in Figure 5.4 (x=MD; y=TD; z=ND). It is not surprising that the 

unstretched normal sample exhibits no birefringence in both directions. 

 

Table 5.1 Birefringence for drawn PLA at different temperatures 

Drawing 

temperature 
∆𝒏𝒙𝒛 × 𝟏𝟎−𝟑 ∆𝒏𝒙𝒚 × 𝟏𝟎−𝟑 

60℃ 9.7 ± 2 8.4± 2.3 

65℃ 8.4 ± 2.4 4.7± 2.9 

70℃ 7.3 ± 0.6 3.2± 2.5 

75℃ 4.3 ± 0.8 1.2± 1.8 
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Figure 5.4 Birefringence of PLA sheets stretched at different temperatures 

 

For the drawn samples, both ∆𝑛𝑥𝑦 and ∆𝑛𝑥𝑧 show a decrease with the increase 

of drawing temperature. High birefringence represents high orientation for the 

sample. Therefore, this result suggests that the sample stretched at 60℃ exhibits 

the highest degree of chain orientation. 

As expected, the birefringence ∆𝑛𝑥𝑧  is found to be higher than ∆𝑛𝑥𝑦  for all 

stretching temperatures indicating that the refractive index in TD (𝑛𝑦) is higher 

than that in ND (𝑛𝑧 ), since  ∆𝑛𝑥𝑦 = 𝑛𝑥 − 𝑛𝑦  and ∆𝑛𝑥𝑧 = 𝑛𝑥 − 𝑛𝑧 . This result 

suggests that a high level of chain orientation was developed in the machine 

direction. A small amount of orientation was generated in the transverse direction, 

since the width of the sample in TD is constrained during stretching. 

The birefringence result is similar to published birefringence data by Ou and 

Cakmak [105], who found that the in-plane birefringences for 3x1 uniaxially 

stretched PLA at a stretching temperature of 70℃  is  ∆𝑛𝑥𝑧 = 9 × 10−3. 
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5.1.2 DSC results of uniaxially stretched PLA films 

DSC heating scans for the PLA sheets stretched at various drawing temperatures 

are displayed in Figure 5.5. The step change at the glass transition temperature 

was increased after stretching, probably because the alignment of the polymer 

chains had induced an increase of the relaxation time distribution for the polymer. 

A widened enthalpy relaxation peak next to the glass transition was noticed in 

the stretched samples, which was quite different from the normal quenched 

sample (Figure 4.1). This is probably because in the stretched films polymer 

chains were highly orientated, which needs more relaxation time during glass 

transition. A similar phenomenon has been found in the DSC results of biaxial 

drawn PLA films by Delpouve et al. [154], who reported that a wide glass 

transition step was founded in the biaxial drawn PLA films as the structural 

heterogeneities of polymer chains induced a widening of the relaxation time 

distribution. Since the grade 4060D is amorphous the curves do not show cold 

crystallisation or melting peaks. 

 

Figure 5.5 DSC heating scans for normal PLA and four stretched PLA samples 

at various drawing temperatures 
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The Tg values for stretched PLA samples are shown in Table 5.2. A plot of Tg as 

a function of drawing temperature is illustrated in Figure 5.6. The horizontal line 

represents the Tg value of the unstretched PLA. Three samples were tested for 

each data point. The samples stretched at 60℃ exhibited a shift in Tg to about 

3℃  higher than the unstretched (normal PLA) samples. While the other samples 

drawn at 65, 70 and 75℃  showed the same value of Tg as the normal PLA 

samples. The shift in Tg for the 60℃ stretched samples was probably due to the 

polymer chains being highly orientated, which required more energy for 

relaxation. This result correlates with the birefringence result showing that the 

samples stretched at 60℃  had the highest degree of orientation. A similar 

phenomenon has been reported by Tsai et al. [155], who investigated thermal 

properties of biaxially stretched PLA and attributed the increase in Tg to limited 

polymer chain motion in the stretched film due to the alignment and packing of 

polymer molecules. 

 

Table 5.2 Tg values of the stretched PLA sheets 

Sample Tg (℃) 

60℃ stretched PLA 59±1 

65℃ stretched PLA 59±1 

70℃ stretched PLA 57±1 

75℃ stretched PLA 55±1 

Unstretched PLA 56±1 
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Figure 5.6 Tg of the stretched PLA samples as a function of drawing temperature 
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5.1.4 XRD of uniaxially stretched PLA films 

The wide-angle X-ray diffraction (WAXD) traces of the unstretched (normal) PLA 

and the stretched PLA sheets are presented in Figure 5.7. A very broad diffraction 

peak at 2𝜃=16° corresponds to the orientated amorphous phase in the polymer. 

Comparing with the normal PLA, this peak in the traces of the stretched samples 

is sharper and higher according to the drawing temperature. All stretched 

samples exhibited diffraction peaks at 2𝜃= 26° and 29°, which could correspond 

to some crystalline phase formed by stretching. However grade 4060D PLA is 

amorphous and the peaks at 26° and 29° are too sharp to be due to crystalline 

phase. 

WAXD data for stretched crystalline PLA showing similar 2𝜃 values has been 

published. For example, Xie et al. [103] investigated the strain-induced 

crystallinity of stretched PLA at 80, 90 and 120 ℃ and found that the XRD traces 

of all the samples showed a diffraction peak at 29°, which corresponded to the α 

crystal form of PLA. Another study showed a diffraction peak at 2𝜃=30°, however, 

this reflection was reported to correspond to the 𝛽 crystal form of orientated PLA 

[26]. There is no report on an XRD refection peak at 26° for PLA films in the 

literature.  

 

Figure 5.7 WAXD traces for normal PLA and stretched PLA at various drawing 

temperatures 

16° 
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5.1.5 Water vapour permeability results  

The water vapour transmission rate data for all the stretched samples are shown 

in Table 5.3. Three to four samples were tested for each data point. It is found 

that the average thickness of the stretched samples was ca. 0.28 mm with 

different standard deviations that increased with the drawing temperature. This 

reveals that the samples tended to become uneven as the drawing temperature 

increased since the polymer chains are more flowable at higher temperature. The 

uniformity of the stretched sample is significant to the water barrier properties of 

the sample. As the drawing temperature increase the permeability value tends to 

become higher with increased deviations. For example, the sample stretched at 

75℃  showed high WVTR value of 261 gm-mil/[ m² - day ] with a standard 

deviation of 111. The samples drawn at a temperature of 60 ℃ showed the most 

stable and best barrier behaviour compared with those drawn at other drawing 

temperatures (note that the WVTR data shown in Table 5.3 are already 

normalised for sample thickness). 

Table 5.3 WVTR data for stretched PLA 

Drawing temperature Sample thickness (mm) 
Mean (gm - mil / 

[ m² - day ]) 

60 ℃ 

0.27 ± 0.02 

209±19 

0.29 ± 0.01 

65 ℃ 

0.28 ± 0.01 

214±26 

0.29 ± 0.02 

70 ℃ 

0.29 ± 0.05 

210±29 

0.29 ± 0.04 

75 ℃ 

0.27 ± 0.9 

261±111 

0.27 ± 0.08 

Normal PLA 4060D 0.60 ± 0.01 180 ± 3 
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The plot of WVTR as a function of drawing temperature is shown in Figure 5.8. 

The red dashed line represents the WVTR value of the unstretched normal PLA 

samples, which is much lower than the value points of the stretched samples due 

to the thickness of the normal samples being 2-3 times of the stretched ones. 

However, it is noteworthy that, the difference in thickness has been already taken 

into account in the WVTR measurement assuming a linear inverse relationship, 

as discussed in Section 3.3.2. The reduction in water vapour permeability of the 

stretched films indicates that there are other factors accounting for the WVTR 

measurement.  

One possibility is that there may be some invisible air bubbles or defects in the 

sample that were expanded along with the stretching of the samples, hence 

resulting in poor barrier properties of the samples. Another factor is that polymer 

films that have been stretched tend to bend and have an uneven surface, 

especially for the thin films. Therefore, after stretching PLA films were more likely 

to be bent and exhibited less uniformity. This is also crucial to the WVTR result, 

because samples of less uniformity tend to have worse barrier properties in the 

WVTR test because they are more difficult to seal. 

 

Figure 5.8 WVTR data for stretched PLA versus drawing temperature 
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To minimise these effects, it was necessary to keep the thickness constant for all 

the samples in the WVTR test. The amorphous PLA sheets for uniaxial stretching 

were prepared to be three times thicker than the normal quenched sheets using 

a deep mould (see Section 3.2.3.1) during compression moulding. After being 

uniaxially stretched at a 3x1 draw ratio, the samples showed similar thickness 

(ca. 0.6 ± 0.01 mm) compared with the normal quenched samples. Water vapour 

permeability of the PLA films at different thickness are shown in Table 5.4.  The 

stretched PLA with higher thickness showed a much lower average WVTR with 

a smaller deviation compared with that of the low thickness sample. The WVTR 

value of the stretched PLA samples was 177 ±  1 gm-mil/[m²-day], which is 

similar to that of the quenched PLA with the same thickness.  

 

Table 5.4 WVTR of stretched PLA in different thickness compared with the 

quenched PLA 

Sample  
Sample 

thickness (mm) 

WVTR (gm-

mil/[m²-day]) 

Stretched PLA4060D at 60 ℃ 0.28 ± 0.01 209±19 

 Stretched PLA4060D at 60 ℃ 0.60 ± 0.01 177 ± 1 

Quenched PLA4060D 0.60 ± 0.01 180 ± 3 

 

In summary, the optimum drawing temperature was 60℃ . In the sample 

preparation, the amorphous PLA sheets for uniaxial stretching need to be 

prepared three times thicker than the normal quenched ones during compression 

moulding.  
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5.2 Effect of mechanical stretching on PLA nanocomposites  

5.2.1 DSC of uniaxially stretched PLA nanocomposites  

PLA nanocomposites with clay content from 1 to 5 wt.% were uniaxially stretched 

at 60 ℃ . Thermal properties of the stretched PLA nanocomposites were 

measured by DSC and the DSC heating scans for the samples are shown in 

Figure 5.9. The step change at the glass transition temperature, at 60℃, of the 

pure stretched PLA sample was widened and became more undulating. This is 

due to the alignment of the polymer chains induced by stretching, which causes 

an increase in the relaxation time of the polymer chains. It is found that with the 

presence of nanoclay, the undulating step change at Tg was smooth, similar to 

the unstretched PLA DSC curve in Figure 5.5.  As the clay loading increased to 

3 wt.% the enthalpy relaxation peak after the step at Tg became sharp. The clay 

particles were aligned with the polymer chain orientation playing a confining role 

in polymer chain relaxation. As a result, the enthalpy relaxation peak became 

sharper and smooth with the increase of clay loading. Since the grade 4060D is 

amorphous the curves do not show cold crystallisation or melting peaks. 

 

Figure 5.9 DSC curves of 3x1 stretched PLA4060D and its nanocomposites at 

60 ℃ 
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The Tg values of the stretched PLA nanocomposites are compared with normal 

PLA nanocomposite as shown in Table 5.5. Also, the effect of clay content on Tg 

values for stretched and normal quenched PLA nanocomposite samples is 

shown in Figure 5.10. Compared with the normal samples, the stretched samples 

showed similar Tg values at clay content of 1 wt.%, around 55-56℃. However, at 

high clay content, of 2, 3, 4, and 5 wt.%, Tg of the stretched samples significantly 

increased to around 60± 1 ℃ , which indicates that the mobility of stretched 

polymer chains is reduced with higher clay content. This founding corresponds 

to the DSC curves in Figure 5.9, in which sharp enthalpy relaxation peaks after 

the Tg step change can be clearly observed in the stretched samples with 3, 4, 

and 5 wt.% clay. This founding is well explained by an observation noted during 

the uniaxial stretching: samples containing higher clay content were more difficult 

to be stretched.  

Table 5.5 DSC results of stretched PLA 4060D nanocomposites in comparison 

with unstretched PLA 4060D nanocomposites 

Sample Tg 

Quenched PLA4060D 56±1℃ 

Quenched PLA4060D +1wt.%nanoclay 55±1℃ 

Quenched PLA4060D +2wt.%nanoclay 52±1 ℃ 

Quenched PLA4060D +3wt.%nanoclay 53±1 ℃ 

Quenched PLA4060D +4wt.%nanoclay 51±1 ℃ 

Quenched PLA4060D +5wt.%nanoclay 52±1 ℃ 

 Stretched PLA4060D 55±1℃ 

Stretched PLA4060D+1wt.%nanoclay 56±1℃ 

Stretched PLA4060D+2wt.%nanoclay 60±1℃ 

Stretched PLA4060D+3wt.%nanoclay 60±1℃ 

Stretched PLA4060D+4wt.%nanoclay 60±1℃ 

Stretched PLA4060D+5wt.%nanoclay 60±1℃ 

 



Page 140 of 199 
 

 

Figure 5.10 Tg trend of PLA nanocomposite against clay content for both 

stretched samples and normal quenched samples 

 

 

 

5.2.2 TEM of uniaxially stretched PLA nanocomposites 

Transmission electron micrographs of normal quenched and stretched PLA 

nanocomposite samples containing 1 wt.% nanoclay are shown in Figure 5.11. 

In the quenched film, the clay layers are mostly aligned and well dispersed in the 

nanocomposite. An alignment of the clay structure was obtained during melt 

compounding and remained in the same direction as the polymer melt flow after 

compression moulding.  

In the uniaxially stretched film, the clay particles are found to align more uniformly 

in the vertical direction, and the clay platelets are more exfoliated in the matrix, 

implying that a better delamination of the clay layers were obtained during 

uniaxially stretching.  
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Figure 5.11 TEM images of quenched and stretched PLA nanocomposites 

containing 1 wt. % clay at 25k, 100k and 200k magnifications 

A diagram of how the nanoclay structure was changed during uniaxially 

stretching is shown in Figure 5.12.  

Quenched Uniaxially stretched   

Quenched Uniaxially stretched   

Quenched Uniaxially stretched   
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Figure 5.12 Schematic diagram of how intercalated clay tactoids is drawn during 

uniaxially stretching 

 

A better observation of the stretching induced delamination on the clay layers 

can be seen in Figure 5.13, which is a TEM image of a stretched PLA 

nanocomposites containing 1 wt.% clay at 200k magnification. The length and 

thickness of the clay layers were measured from the images of the uniaxially 

stretched samples using Image J® software. More than 100 clay platelets were 

measured from 5 high magnification micrographs. The average length and 

thickness of the clay platelets in the stretched nanocomposite were found to be 

105 ±  29 nm and 2.1 ±  0.9 nm, respectively. Therefore, the aspect ratio 

(length/thickness) of the nanoclay in the uniaxially stretched samples was 

approximately 48, which is higher than the measured aspect ratio of quenched 

PLA nanocomposite samples. This is because the intercalated clay tactoids were 

sheared by the drawing force during the uniaxially stretching making the clay 

tactoids look longer and thinner in the TEM images, hence resulting in a higher 

aspect ratio value.  
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Figure 5.13 TEM images of a stretched PLA nanocomposites containing 1 wt.% 

clay at 200k magnification 
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5.2.3 XRD of uniaxially stretched PLA nanocomposites 

Figure 5.14 shows WAXD traces of a normal quenched sample and a uniaxially 

stretched PLA nanocomposite samples containing 3 wt.% nanoclay. The peak at 

2.7° in the normal PLA corresponds to a clay interlayer spacing (𝑑001) of 3.3 nm, 

showing that the clay structure in the normal nanocomposite sample was 

intercalated. A broad diffraction peak at 2𝜃=16° represents the amorphous phase 

of PLA. Whereas, in terms of the stretched sample, the peak at 2𝜃=16° sharpen, 

corresponding to the orientated polymer chains in the stretched sample. The 

peak at 2.7° in the normal PLA nanocomposite has slightly shifted to 2.5°, 

corresponding to a 𝑑001 of 3.5 nm. This means the clay galleries had been further 

delaminated along with the uniaxial stretching on the polymer chains. This result 

agrees with the TEM observation that the intercalated clay galleries were shifted 

and delaminated during uniaxially stretching. The widened interlayer spacing of 

nanoclay in the stretched nanocomposite films can be observed in the TEM 

micrographs (Figure 5.11). 

 

Figure 5.14 WAXD traces of quenched and uniaxially stretched PLA 

nanocomposites with 3 wt.% nanoclay 
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5.2.4 Water vapour permeability results 

Water vapour transmission rate (WVTR) data of the stretched PLA 

nanocomposites are shown in Table 5.6. The WVTR values of the quenched and 

uniaxially stretched PLA nanocomposites are plotted as a function of wt.% 

nanoclay in Figure 5.15. It is found that the measured value of WVTR of pure 

PLA samples that were quenched and stretched are similar, which indicates that 

orientation of the PLA chains has no significant effect on the water barrier 

properties. However, the WVTR values for the uniaxially stretched 

nanocomposite films are significantly lower than those quenched, which is 

ascribed to the change of clay structure.  

Table 5.6 WVTR result of uniaxially stretched PLA nanocomposite in comparison 

with quenched PLA nanocomposites 

Sample  WVTR (gm-mil/[m²-day]) 

Quenched PLA4060D 180 ± 3 

Quenched PLA4060D + 1wt.%nanoclay 165 ± 3 

Quenched PLA4060D + 2wt.%nanoclay 147 ± 2 

Quenched PLA4060D + 3wt.%nanoclay 134 ± 3 

Quenched PLA4060D + 4wt.%nanoclay 118 ± 1 

Quenched PLA4060D + 5wt.%nanoclay 112 ± 3 

 Stretched PLA4060D 177 ± 1 

Stretched PLA4060D + 1wt.%nanoclay 145 ± 6 

Stretched PLA4060D + 2wt.%nanoclay 129 ± 5 

Stretched PLA4060D + 3wt.%nanoclay 125 ± 7 

Stretched PLA4060D + 4wt.%nanoclay 106 ± 8 

Stretched PLA4060D + 5wt.%nanoclay 111 ± 3 
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Figure 5.15 Water vapour permeabilities of uniaxially stretched PLA 

nanocomposites in comparison with quenched PLA nanocomposites 

 

According to the TEM observation, the clay aspect ratio for the nanocomposite 

films was increased to 48 after uniaxial stretching. A plot of the predicted 

permeability from the Nielsen model (see Section 2.3.2, here L/D = 48) is shown 

in Figure 5.16. The Nielsen model was found to fit well with the experimental data 

of the stretched nanocomposite except the sample with 5 wt.% nanoclay, which 

shows no difference from the quenched sample with the same clay content. It is 

concluded that stretching has enhanced the barrier property of the 

nanocomposite by increasing the clay tortuosity (due to drawing force applied on 

the intercalated tactoids during uniaxially stretching) within the samples. The fact 

that the 5 wt.% clay samples did not change water permeability after being 

stretched is because of clay agglomeration in the samples. When the clay layers 

are agglomerated the clay galleries cannot be further delaminated during 

mechanical stretching. Therefore, the samples with 5 wt.% clay did not show any 

improvement in the water barrier properties. 
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Figure 5.16 Water vapour permeabilities of quenched and uniaxially stretched 

PLA nanocomposites in comparison with Nielsen theoretical values (when 

L/D=48) 
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5.3 Summary 

1. Uniaxial stretching at 60 ℃ and a draw ratio of 3 was applied to quenched 

PLA 4060D sheets using a BASE stretching machine. The stretching 

temperature was found to have a significant effect on the quality of the 

products. The optimum drawing temperature was selected from tests on 

samples in the range of temperature from 60℃  to 75℃  using various 

characterisation techniques. The results of birefringence test showed that 

the degree of orientation in the stretched PLA films reduced with the 

increase in drawing temperature. The DSC results showed that only the 

samples stretched at 60℃ exhibited an increase in Tg by 4℃ due to the 

polymer chains being highly orientated, which requires more energy for 

chain relaxation. PLA films that had been stretched at 60℃  showed the 

most stable and best water barrier properties compared with the other 

samples. Therefore, the optimum stretching temperature for the PLA 

nanocomposite sheets was chosen as 60 ℃. 

2. The thickness of the samples was found to be very sensitive in the WVTR 

test due to defects and air bubbles in the sample and the non-uniformity of 

the sample. To keep the thickness consistent, the sheets for uniaxial 

stretching were prepared to be three times thicker than the normal 

quenched samples during compression moulding. 

3. Thermal properties of the uniaxially stretched PLA nanocomposite samples 

were measured by DSC. The Tg values did not change after stretching at 

low clay content. However, as the clay content increased the Tg value of 

the stretched films significantly increased by 5 ℃. This indicates that the 

appearance of nanoclay has reduced the polymer chains mobility and 

therefore increased chain relaxation time at Tg. 

4. The nanoclay structure was measured using TEM and WAXD. It was found 

that a better delamination of the clay layers were obtained during uniaxial 

stretching. The clay aspect ratio in the uniaxially stretched samples was 

approximately 48. The WAXD analysis confirmed that the clay interlayer 

spacing had been increased during uniaxial stretching by 0.2 nm. This was 

attributed to the intercalated clay tactoids being drawn and sheared during 
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uniaxially stretching, thus the distance between the clay layers was 

increased.  

5. Water vapour transmission rates through the stretched nanocomposite 

films were measured to be lower than values for the quenched 

nanocomposite. The WVTR data of the stretched PLA nanocomposites 

decreased consistently with clay concentration except the sample with 5 

wt.% nanoclay, which increased to the same value as the quenched sample 

with 5 wt.% clay presumably due to the agglomeration of the nanoclay in 

the sample. The WVTR data of the stretched nanocomposite showed a 

good fit to the Nielsen model.  
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6 Electrospinning of PLA based nanofibres 

6.1 Electrospinning of PLA - Selecting the optimum solvent system 

Two grades of PLA were separately dissolved in single solvent (acetone or 

chloroform) and binary-solvent systems of acetone and chloroform (50/50 v/v) to 

obtain a 12.5% w/v PLA concentration. The concentration was selected 

according to the work of Casasola et al. [130], who reported that defect-free PLA 

nanofibres can be collected from a PLA/acetone solution when the polymer 

concentration is above 12.5% w/v. As the polymer concentration increases more 

chain entanglements are obtained, hence leading to an increase of the 

viscoelastic force, which will counterbalance the Coulombic stretching force and 

therefore results in fewer beads [130].  

Details of the preparation method are given in Section 3.2.5. The optimum 

solvent system for the two grades of PLA was selected according to the 

morphology of the electrospun nanofibres. Table 6.1 shows the composition of 

the PLA solutions. Electro-spinning was carried out in a spray-base electrospray 

instrument manufactured by Profector Life Sciences Ltd. A flow rate of 1 ml/h and 

a voltage of 20 kV were used as described in Section 3.2.5.3.  

 

Table 6.1 Composition of two grades of PLA solutions with different solvent 

systems 

PLA grade Solvent system 
PLA concentration in 

solution (g/ml) 

PLA 4060D 

AC 12.5 

CHL 12.5 

AC/CHL (50/50 v/v) 12.5 

PLA 4032D 

AC Undissolved 

CHL 12.5 

AC/CHL (50/50 v/v) 12.5 

AC (acetone); CHL(chloroform) 
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The SEM images of amorphous PLA (grade 4060D) electrospun fibres from AC, 

CHL, and AC/CHL solvent systems and crystallisable PLA (grade 4032D) from 

CHL and AC/CHL solvent systems are shown in Figure 6.1. It is obvious that for 

PLA 4060D, only AC provides sufficient quantity of non-beaded fibres, whereas 

the other two solvent systems (CHL and AC/CHL) were found to produce 

nanofibres with bead-string morphologies. This is due to the conductivity and the 

dielectric constant of acetone being much higher than that of chloroform (see 

Section 3.1). As the solution conductivity of the solvent (CHL) is increased by 

adding another solvent with higher dielectric constant (e.g. AC), more charges 

are created on the jet surface, which would enhance the stability of the charged 

jet and help the jet flow because of a strong Coulomb repulsion force to overcome 

the surface tension. Hence, on increasing the high dielectric constant of the 

solvent, defect-free fibres are produced by electrospinning [130], [131].  

Since the crystallisable PLA did not dissolve in acetone, only CHL and AC/CHL 

solvents were used to produce electrospun nanofibres. The AC/CHL solvent 

system was found to produce smooth and defect-free nanofibres, whereas the 

CHL single solvent produced fibres with bead-string morphology. Therefore, it is 

concluded that the optimum solvent systems for electrospinning PLA 4060D and 

PLA 4032D are AC and AC/CHL, respectively. 
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Figure 6.1 SEM images of PLA nanofibres from solutions of 12.5% (w/v) 

amorphous PLA (grade 4060D) in acetone, chloroform, and acetone/chloroform 

and crystallisable PLA (grade 4032D) in chloroform, and acetone/chloroform 

solvent systems 
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6.2 Electrospinning of PLA / clay nanofibres 

6.2.1 Morphology of PLA / clay nanofibres (SEM and diameter distribution) 

PLA 4060D nanocomposite nanofibres containing 1, 3, and 5 wt.% 

montmorillonite clay were electrospun from acetone solution at 12.5% w/v 

concentration; and PLA 4032D nanocomposite nanofibres containing 1, 3, and 5 

wt.% montmorillonite clay were electrospun from AC/CHL (50/50 v/v) solution at 

12.5% w/v concentration. Details of the preparation method are given in Section 

3.2.5.1. 

The SEM images and nanofibre diameter distribution of amorphous and 

crystallisable PLA / clay nanofibres are shown in Figure 6.2 and Figure 6.3, 

respectively. Continuous and smooth nanofibres were obtained from all the 

samples. Only a few beads were collected in the nanocomposite fibrous mats, 

which is due to the viscosity of the polymer nanocomposite solutions being lower 

than that of the pure polymer solution at the same concentration.  

 

4060D/AC 

(a) 
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4060D+1wt.%clay/AC 

(b) 

4060D+3wt.%clay/AC 

(c) 
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Figure 6.2 SEM images of PLA 4060D/clay nanofibres containing (a) 0 wt.%, (b) 

1 wt.%, (c) 3 wt.% and (d) 5 wt.% nanoclay 

 

4060D+5wt.%clay/AC 

(d) 

4032D/AC+CHL 

(a) 
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4032D+1wt.%clay/AC/CHL 

(b) 

4032D+3wt.%clay/AC/CHL 

(c) 
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 Figure 6.3 SEM images of PLA 4032D/clay nanofibres containing (a) 0 wt.%, (b) 

1 wt.%, (c) 3 wt.% and (d) 5 wt.% nanoclay 

 

The diameter of the nanofibres was measured using Image J® software and the 

diameter distribution was analysed using IBM SPSS Statistics 22.0. Table 6.2 

shows the average diameter of the nanocomposite fibres containing various clay 

concentrations. The effect of clay concentration on the diameter of the nanofibres 

is also presented in Figure 6.4.  

 

Table 6.2 Nanofibre diameter of PLA and PLA/clay nanocomposite fibres 

Sample  PLA 4060D PLA 4032D 

Neat PLA nanofibres 856 ± 512 nm 850 ± 314 nm 

1 wt.% clay 723 ± 308 nm 298 ± 91 nm 

3 wt.% clay 421 ± 153 nm 220 ± 105 nm 

5 wt.% clay 664 ± 147 nm 562 ± 127 nm 

 

4032D+5wt.%clay/AC/CHL 

(d) 
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Figure 6.4 Average diameters of PLA/clay nanofibres as a function of clay 

concentration 

 

It is found that for the PLA 4060D samples, the fibre diameter greatly reduced 

with the increase of nanoclay concentration from 1 to 3 wt.%. At 3 wt.% clay 

loading, the average diameter was 421± 152 nm, which was the half of the pure 

PLA nanofibres. It is also noticed that more uniform nanofibres with lower 

standard deviation of diameter from the mean value were produced with the 

increase of clay content. These results occur because on adding inorganic clay 

to the polymer the electrical conductivity and viscosity of the polymer solution 

increased, which gives rise to production of finer fibres with fewer beads and 

narrower fibre size distributions [156][135]. However, as the clay concentration 

reached 5 wt.%, the nanofibre diameter increased to 664±147 nm, probably due 

to the agglomeration of the clay platelets.  

These results are consistent with the observation of Touny et al. [157], who 

reported that the average diameter of electrospun PLA nanofibre significantly 

reduced on the addition of 2.5 wt.% inorganic clay (Halloysite), and then 

increased with more loadings of nanoclay from 5 to 15 wt.% content.  

The average diameter of crystalline PLA nanofibres was 850±314 nm, which is 
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similar to the diameter of the amorphous nanofibres. Nanocomposite fibres with 

low clay concentrations exhibited much finer and more homogenous average 

diameter with reduced standard deviation. Especially at 3 wt.% clay the average 

nanofibre diameter was 219± 105 nm. However the diameter of nanofibres 

increased when 5 wt.% clay was incorporated in the fibres, which gave an 

average diameter of 562±127 nm. The increase of the nanofibre diameter with 

high nanoclay loading was attributed to the aggregated silicate clay layers in the 

fibres. It is noteworthy that the average diameter of crystalline PLA nanofibres 

was much lower compared with the amorphous nanocomposite, which reveals 

that the nanofibres became much finer and more uniform due to the combined 

effect of crystallinity and clay. 

 

 

6.2.2 TEM of PLA / clay nanofibres 

TEM images of PLA 4060D / clay nanofibres are shown in Figure 6.5, which 

shows the dispersion state of clay layers in PLA nanofibres. It is clearly seen that 

the nanoclay platelets are aligned in the spinning direction of the nanofibres. 

Single layered clay platelets can been seen in 1 wt.% and 3 wt.% clay samples. 

Aggregated clay structures are observed in the sample with 5 wt.% clay, which 

corresponds to the increased average diameter of this sample. The dimensions 

of the dispersed nanoclay platelets was measured using Image J® software. 

Length and thickness of the nanoclay were 260 ±  90 nm and 5  ±  2 nm, 

respectively. Therefore, the aspect ratio the nanoclay in the PLA nanofibres was 

about 52, which is higher compared with the aspect ratio measured from melt 

produced PLA nanocomposite films (Chapter 4), because the nanoclay structure 

was more dispersed after being dissolved and sonic stirred in the polymer 

solution.  
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Figure 6.5 TEM images of PLA4060D / MMT nanofibres with different clay 

contents 
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6.2.3 DSC results of PLA / clay nanofibres 

DSC scan curves of the amorphous PLA and PLA / montmorillonite clay 

nanofibres are shown in Figure 6.6. The step change at 58 ℃  is the glass 

transition temperature. It is found that the incorporation of nanoclay did not affect 

the glass transition temperature (see Table 6.3). The sharp peak following the 

glass transition temperature is associated with chain relaxation. However, it is 

noticed that the significant enthalpy relaxation peak only occurred in the sample 

with 1 wt.% nanoclay, whereas for the neat PLA fibres and PLA with 3 and 5 wt.% 

clay fibres the enthalpy relaxation peak is minimal in the DSC scan curves. Since 

grade 4060D is amorphous the curves do not show cold crystallisation or melting 

peaks. 

 

Figure 6.6 DSC scans of amorphous PLA and PLA/MMT nanofibres containing 

1, 3, and 5 wt.% MMT 

Figure 6.7 shows DSC curves of the crystallisable grade of PLA and PLA/MMT 

nanofibres. The step change caused by the glass transition was at around 60℃ 

for the neat PLA and PLA with 1 and 3 wt.% MMT nanofibres.  In the case of PLA 

with 5 wt.% MMT, the glass transition temperature reduced to 56℃ (see Table 

6.3). A minimal enthalpy relaxation peak accompanying the glass transition step 
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was observed in the curves for all samples. This result was also found by 

Badrinarayanan et al. [139], who investigated the effect of nanoclay on the 

thermal behaviour of electrospun PLA and found that the incorporation of 

nanoclay (from 15 to 25 wt.%) reduced the degree of crystallinity and the Tg for 

both amorphous and semicrystalline PLA nanofibres.  In a study of PLLA / clay 

scaffolds by Lee et al. [132], the decrease in Tg value was attributed to enhanced 

PLLA chain mobility due to the presence of the MMT nanoparticles. 

  

Figure 6.7 DSC scans of semi-crystalline PLA and PLA / clay nanofibres 

containing 1, 3, and 5 wt.% clay 

A cold crystallisation exothermic peak occurred in the range 82-89℃, showing 

that the electrospun nanofibres had not completely crystallised during the 

electrospinning process. Comparing with the melt produced PLA films (Table 4.4), 

the Tc range of electrospun PLA nanofibres is generally slightly lower, probably 

due to a different crystal modification ( 𝛽 -crystal) being formed during 

electrospinning.  

It is noticed that the cold crystallisation temperatures, Tc, of all the PLA / clay 

samples were lower than that of the pure PLA (Table 6,3). This result may be due 

to the nanoclay being aligned in the spinning direction, thus enhancing the 

formation of PLA crystals. The nano-sized clay layers provide a large surface 
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area due to their high aspect ratio (ca. 50). As the clay aligned in the flow direction, 

the particles may have acted as effective nucleating sites for PLA, which 

facilitated the PLA crystallisation process. Conclusively, Tc is decreased with the 

addition of clay [132].  

Table 6.3 DSC result for electrospun PLA and PLA / clay nanofibres 

Sample  Tg (℃) Tc (℃) Tm (℃) Crystallinity % 

Neat PLA4060D 58 ±1 ----- ----- 0 

PLA4060D+1 

wt.% clay 
57 ±1 ----- ----- 0 

PLA4060D+3 

wt.% clay 
56 ±1 ----- ----- 0 

PLA4060D+5 

wt.% clay 
57 ±1 ----- ----- 0 

Neat PLA4032D 61 ±1 89 ±1 168±1 21 ±1 

PLA4032D+1 

wt.% clay 
59 ±1 82±1 167±1 29±1 

PLA4032D+3 

wt.% clay 
60 ±1 86±1 168±1 29±1 

PLA4032D+5 

wt.% clay 
56 ±1 84±1 167 ±1 31±1 

 

A melting endothermic peak was observed at 168℃ , before which a small 

exothermic peak at 151 ± 1  ℃  was found in all PLA 4032D samples, 

corresponding to a change of crystal morphology before melting. Pure PLA 

samples had a crystallinity of 21 ±1 % obtained from the electrospinning process. 

The degree of crystallinity increased up to 31±1 % as the nanoclay concentration 

increased to 5 wt.% in the electrospun PLA nanofibres. The increase in the 

crystallinity is attributed to the nanoclay acting as a nucleating agent in the 

system, thus the crystallinity increased with the addition of clay. This result is 

consistent with a study of PLA / Halloysite (HNT) nanofibres by Touny et al. [157], 
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who found that the degree of crystallinity of neat PLA nanofibres was increased 

from 14% to 25% by the incorporation of 10 wt.% HNT due to the nucleating 

effect of the nanoclay particles. 

 

 

6.2.4 Mechanical properties of PLA / clay nanofibres 

The mechanical properties of PLA nanofibres were analysed by tensile tests 

following the ISO257-2-5A specification. Five to six specimens of 0.09 ± 0.03 mm 

thickness were investigated for each sample concentration. Figure 6.8 shows 

stress-strain curves of PLA 4060D based nanofibre mats containing 0, 1, 3, and 

5 wt.% clay concentrations. Figure 6.9 shows the stress-strain curves of PLA 

4032D nanofibres containing 3 wt.% clay. All the nanofibre samples exhibited 

ductile-brittle mechanical properties. Since the nanofibre mats were porous, the 

tensile curves are variable.  

 

Figure 6.8 Strain - stress curves of PLA 4060D and its nanocomposite mats 
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Figure 6.9 Strain - stress curves of PLA 4032D / 3wt.% clay nanocomposite mats 

The tensile strength, Young’s modulus and elongation at break values of the 

measured nanofibres are shown in Table 6.4 and the trends of the tensile 

properties of the amorphous nanofibres are plotted as a function of clay 

concentration in Figure 6.10. It is noticed that tensile strength of the nanofibres 

was increased with adding 1 wt.% clay, but then decreased with further addition 

of clay concentration. At 5 wt.% clay loading, the tensile strength was 0.8±0.2 

MPa, which was lower than the pure PLA nanofibres. The addition of 5 wt.% 

nanoclay had reduced the Young’s modulus and the elongation at break by 62% 

and 69% respectively compared with the neat nanofibres. The tensile test results 

lead to the conclusion that adding nanoclay of 3 wt.% or more had made the 

nanofibre more brittle and weaker.   

It is interesting to note that crystallinity, even as high as 29%, did not enhance 

the mechanical properties of the PLA 4032D nanofibres. The tensile strength and 

Young’s modulus of the PLA 4032D / 3 wt.% clay nanofibres are only 1.1±0.2 

MPa and 31 ± 10 MPa, respectively, which are the same as the values for the 

PLA 4060D / 3 wt.% clay nanofibres. The elongation at break of the crystalline 

nanocomposite sample is lower than that of the amorphous nanofibres at same 

clay concentration, probably due to the presence of crystallites in the fibres.  
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Table 6.4 Mechanical properties of PLA and PLA/clay nanofibre mats obtained 

from electrospinning  

Sample  
Tensile 

strength / MPa 

Young’s 

modulus / MPa 

Elongation at 

break / % 

PLA 4060D 1.5±0.3 47 ± 11 55± 9 

PLA 4060D +1 

wt.% clay 
2.2±0.9 34± 16 48 ± 12 

PLA 4060D +3 

wt.% clay 
1.6±0.4 26± 8 36± 3 

PLA 4060D +5 

wt.% clay 
0.8±0.2 18± 5 17± 2 

 

PLA 4032D+3 

wt.% clay 
1.1±0.2 31 ± 10 21± 3 
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(b)  

(c)  

Figure 6.10 Tensile properties of amorphous PLA/clay nanofibre mats as a 

function of clay concentration (a) tensile strength (b) Young’s modulus (c) 

Elongation at break 

 

This result does not agree with the research by Shi et al. [158], who studied the 

mechanical properties of PLA / cellulose fibres produced by electrospinning. 

They found that the PLA nanocomposite mats gave excellent mechanical 

properties at cellulose content below 5wt.%. The tensile strength and Young’s 

modulus of the PLA nanocomposite mats with 5wt.% cellulose increased by 
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about 5 and 22 fold (i.e., 6.3 and 125.6 MPa) comparing with the neat PLA 

nanofibre mats. The improvement of the mechanical properties was ascribed to 

the reinforcement of cellulose, increased crystallinity of PLA matrix and more 

uniform and finer fibre morphology. In the case of PLLA / clay scaffold, Lee et al. 

[132] investigated the mechanical properties of the PLLA nanocomposite 

scaffolds produced by salt / leaching gas foaming method and found that the 

modulus of the composite fibres were increased by the presence of clay particles. 

In their case, the exfoliated clay particles acted as a mechanical reinforcement 

of the polymer chains in the scaffold.  

In our case, the reason of poor mechanical properties of PLA / clay nanofibres 

could that be the size of montmorillonite clay particles was too large to reinforce 

PLA nanofibres. Nanofillers with small size (i.e. diameter less than 100 nm) would 

be better a choice to enhance the mechanical properties PLA nanofibres. 
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6.2.5 Summary of PLA / clay nanofibres 

1. Two grades of PLA were dissolved in a single solvent (acetone or chloroform) 

and binary-solvent systems of acetone and chloroform (50/50 v/v) to obtain a 

12.5% w/v PLA concentration. Electrospinning was carried out in a spray-base 

electrospray instrument (Profector Life Sciences Ltd.) using a flow rate of 1 

ml/h and a voltage of 20 kV. The optimum solvent systems for electrospinning 

PLA 4060D and PLA 4032D are AC and AC/CHL, respectively, from which 

continuous and non-beaded nanofibres were collected. 

2. PLA nanocomposite nanofibres containing 1, 3, and 5 wt.% montmorillonite 

clay were produced from the optimum solution at 12.5% w/v concentration 

using electrospinning.  

3. The morphology of the nanofibres was investigated using SEM. Continuous 

nanofibres with the existence of a few beads were obtained. The diameter of 

the nanofibres was measured using Image J® and the diameter distribution 

was analysed using IBM SPSS Statistics 22.0. For both of the grades, the fibre 

diameter firstly reduced with the increase of nanoclay loading when the clay 

content is below 3 wt.%, then tended to increase as the clay content increased 

to 5 wt.%.  The average diameters of the crystallisable PLA (grade 4032D) / 

clay nanofibres are lower than those of the respective amorphous PLA (grade 

4060D) / clay nanofibres. 

4. The nanoclay structure in the nanofibres was investigated using TEM. The 

nanoclay platelets were fully exfoliated and aligned in the flow direction of 

drawn force. The aspect ratio of the nanoclay in the PLA nanofibres was 

measured to be about 52. 

5. Thermal properties of the nanofibres were investigated using DSC. In both of 

the two grades of PLA nanofibres, Tg decreased with the addition of nanoclay. 

The crystallisable PLA / clay nanofibres had a degree of crystallinity in the 

range 21% - 31%. The crystallinity increased with clay content. The 

crystallisation temperature range of electrospun PLA fibres (82 - 89℃) is much 

lower than that of melting produced PLA films, probably due to the formation 

of 𝛽-crystal during electrospinning.   

6. The mechanical properties of PLA nanofibres were analysed by tensile tests 

following the ISO257-2-5A specification. All the nanofibre samples exhibited 
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ductile-brittle mechanical properties. The addition of nanoclay in excess of 1 

wt.% reduced mechanical properties of the PLA nanofibres. 
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6.3 Electrospun PLA / ZnO nanofibres 

6.3.1 Preparation and morphology of PLA / ZnO nanofibres  

PLA 4060D nanocomposite nanofibres containing 1, 3, 5, 7 and 9 wt.% zinc oxide 

(ZnO) were electrospun from acetone solution at 12.5% w/v concentration. The 

preparation method is described in detail in Section 3.2.5.2. 

The SEM images of the surface morphology of PLA / ZnO nanofibres are shown 

in Figure 6.11. It is noticed that the surface roughness is significantly affected by 

the ZnO concentration. The neat PLA nanofibres are smooth with some pores on 

the surface. However, with the incorporation of ZnO nanoparticles, the nanofibres 

turned to become a ‘ridged’ and porous surface (as shown in the 1 wt.% SEM 

images). As more ZnO nanoparticles are added, more ‘ridged’ nanofibres are 

formed. At the concentration of ZnO above 5 wt.%, some clusters of ZnO 

particles are aggregated and emerge on the surface of the PLA nanofibres.  

Figure 6.12 shows backscattered electron microscopy images of PLA 

nanocomposite fibres with 5 wt.% ZnO that gives a representation of the particle 

distribution. The white regions in Figure 6.12 indicate ZnO nanoparticles. It is 

found that a good distribution of the ZnO particle was obtained through out the 

electrospun nanofibres, accompanied by some nanoparticle agglomerations.  
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(a) 

4060D 

(b) 

4060D+1wt.%ZnO 
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(C) 

4060D+3wt.%ZnO 

4060D+5wt.%ZnO 

(d) 
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Figure 6.11 SEM images of (a) PLA and PLA/ZnO nanofibres containing (b) 1 

wt.%, (c) 3 wt.%, (d) 5 wt.%, (e) 7 wt.%, (f) 9 wt.%  ZnO 

 

4060D+7wt.%ZnO 

(e) 

(f) 

4060D+9wt.%ZnO 
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Figure 6.12 SEM images of PLA/ZnO nanofibres containing 5 wt.% ZnO at 

different magnifications using backscattered electrons 

 

Table 6.5 shows the average diameter of nanocomposite fibres containing 

various clay concentrations and the effect of ZnO concentration on the diameter 

of the nanofibres is presented in Figure 6.13. The average diameter of pure PLA 

nanofibres was 856 ± 512 nm. However, unlike the nanoclay, as 1 wt.% ZnO was 

incorporated the average fibre diameter increased to 2119 nm with a large 

standard deviation of 1005. This could be due to the large size of the ZnO 

particles and the porous structure of the nanofibres in the nanocomposite 

samples. With further addition of ZnO, the average diameter reduced 

continuously to 906 ± 668 nm for the 9 wt.% ZnO  nanofibres, which was still 

higher than that of pure PLA nanofibres.  
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Table 6.5 Nanofibre diameter of PLA/ZnO nanocomposite mats 

Fibre composition  Nanofibre diameter 

Neat PLA nanofibres 856 ± 512 nm 

PLA + 1 wt.% ZnO 2119 ± 1005 nm 

PLA + 3 wt.% ZnO 1332 ± 597 nm 

PLA + 5 wt.% ZnO 1059 ± 589 nm 

PLA + 7 wt.% ZnO 912 ± 503 nm 

PLA + 9 wt.% ZnO 906 ± 668 nm 

 

 

Figure 6.13 Average diameters of PLA/ZnO nanofibres as a function of ZnO 

concentration 

Rodríguez-Tobías et al. [146] also obtained porous PLA / ZnO nanofibre 

continuous nanofibres by electrospinning from PLA, ZnO and 2,2,2-

trifluoroethanol solution. The PLA / ZnO nanofibres showed a uniform 

morphology with an average porosity about 55%. However, the diameter of their 

nanocomposite fibres was consistent with ZnO content, giving an average value 

of 810, 700, 710 and 790 nm with standard deviation of 200-400 nm for the 

nanofibres with 0, 1, 3 and 5 wt.% ZnO.  
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6.3.2 TEM of PLA / ZnO nanofibres 

TEM images of PLA / ZnO nanofibres with 1, 3, 5 wt.% ZnO concentrations are 

shown in Figure 6.14, where single and aggregated ZnO particles can be 

observed. Some aggregation and clusters of ZnO particles were observed in the 

samples containing 1 wt.% ZnO, which resulted in high nanofibre diameter to the 

nanocomposite mats. The diameter of the dispersed ZnO nano-particles was 

measured to be 95 ± 50 nm using Image J® software.  

 

Figure 6.14 TEM images of PLA/ZnO nanofibres containing 1, 3, 5 wt.% ZnO 

1wt.% ZnO 

1wt.% ZnO 1wt.% ZnO 

3wt.% ZnO 

5wt.% ZnO 

3wt.% ZnO 

5wt.% ZnO 
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6.3.3 DSC result of PLA / ZnO nanofibres 

Thermal properties of PLA / ZnO nanofibres were investigated using DSC. The 

heat scan curves of PLA and PLA nanocomposite nanofibres are shown in Figure 

6.15. The step change at 58℃ is related to the glass transition temperature. The 

sharp peak next to the glass transition temperature is associated with polymer 

chain relaxation. The measured values of Tg are shown in Table 6.6. Unlike 

nanoclay, the incorporation of ZnO in PLA nanofibres did not affect the Tg value 

of the polymer. However, it is noteworthy that the area under the enthalpy 

relaxation peak became larger with the addition of ZnO. This indicates that the 

addition of ZnO particles has enhanced the relaxation of the polymer chains. 

Since the polymer is amorphous the curves do not show any crystallisation or 

melting peaks.  

 

Figure 6.15 DSC scans of PLA / ZnO nanofibres containing 1 to 9 wt.% ZnO 
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Table 6.6 DSC result of electrospun PLA / ZnO nanofibres 

Sample Tg (℃) 

Pure PLA 58 ± 1 

PLA + 1 wt.% ZnO 59 ± 1 

PLA + 3 wt.% ZnO 59 ± 1 

PLA + 5 wt.% ZnO 58 ± 1 

PLA + 7 wt.% ZnO 59 ± 1 

PLA + 9 wt.% ZnO 58 ±1 

 

 

6.3.4 Wettability of PLA / ZnO nanofibres 

The wetting properties of the fibrous mats were evaluated by water contact angle 

measurement.  Figure 7.16 shows the contact angle of a water droplet on the 

fibrous mats containing ZnO at various concentrations. Since PLA is a 

hydrophobic polymer, the measured contact angle for the pure PLA fibrous mat 

was found to be 133 ± 2°. In the case of the hybrid fibrous mats containing 1 

wt.%, 5 wt.% and 9 wt.% ZnO, the measured contact angle was 131 ± 2°, 130 ± 

3°, and 134 ± 3°, respectively. Hence, the incorporation of ZnO nanoparticles did 

not affect the wettability of PLA nanofibres.  

 

 

Figure 6.16 Water droplet contact angle on the surface of PLA fibrous mats 

containing 0, 5, and 9 wt.% ZnO nanoparticles 
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6.3.5 Antimicrobial properties of PLA / ZnO nanofibres 

Antimicrobial properties of a pure PLA fibrous mat and the ZnO impregnated 

mats were evaluated against E.coli bacteria at 37℃ . The pure PLA fibrous mat 

was used as a control. Figure 6.17 shows inhibition zone results of a neat PLA 

mat and a PLA composite mat with 9 wt.% ZnO, respectively. An inhibition zone 

around the composite mat can be clearly seen.  

a)  b)  

Figure 6.17 Antimicrobial test of electrospun PLA fibrous mats containing (a) 0 

wt.% and (b) 9 wt.% ZnO nanoparticles 

 

The antibacterial activity result of the nanofibres of various ZnO concentrations 

is shown in Figure 6.18. It is found that the neat PLA fibres and the fibres with 

ZnO concentration of 1 and 3 wt.% exhibited no activity against the E.coli bacteria 

since there was no zone inhibitions around the fibre mats. In the 5 wt.% ZnO 

sample, the area around the sample mat was slightly clear, which shows a light 

inhibiting effect on bacteria, even though no evidently clear zone inhibition is 

present. The antimicrobial activity was clearly evident with the 7 wt.% and 9 wt.% 

of ZnO concentrations, which showed an inhibition zone diameter of 17 ± 1 mm 

and 21 ± 1mm, respectively. It is because at low ZnO concentrations the particles 

were trapped in the PLA nanofibres, thus, no ZnO particles were directly in 

contact with the agar. As the concentration of ZnO reached 5 wt.%, the particles 

were exposed on the fibre surface and an inhibition zone appeared around the 

fibrous mats. The measured diameter of the inhibition zone is shown in Table 6.7. 
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Figure 6.18 Image of bacterial zone inhibition of PLA/ZnO fibrous mats against 

E.coli 

 

Table 6.7 Diameter of bacterial zone inhibition  

Sample Inhibition zone diameter / mm 

Pure PLA 15 

PLA + 1 wt.% ZnO 15 

PLA + 3 wt.% ZnO 15 

PLA + 5 wt.% ZnO >15  

PLA + 7 wt.% ZnO 17±1 

PLA + 9 wt.% ZnO 21±1 

 

Similarly, in a study of electrospun PCL / ZnO non-woven membrane, the 

composite fibrous membrane showed effective inhibiting growth for S. aureus 

and E. coli when the ZnO concentration above 5 wt.% [144].  
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6.3.6 Summary of PLA/ZnO nanofibres 

1. PLA 4060D nanocomposite nanofibres containing 1, 3, 5, 7 and 9 wt.% 

ZnO were electrospun from acetone solution at 12.5% w/v concentration 

using electrospinning.  

2. The morphology of the nanofibres was investigated using SEM. The 

addition of ZnO has increased the roughness and porosity of the 

nanofibres’ surface. The diameter of the nanofibres was measured using 

Image J® and the diameter distribution was analysed using IBM SPSS 

Statistics 22.0. It is noted that the nanofibre diameter increased with the 

addition of ZnO particles due to the large size of the ZnO particles and the 

porous structure of the nanofibres. 

3. ZnO particle structure was measured using TEM. A good distribution of 

the ZnO particle was obtained with some nanoparticles agglomerates. 

The dispersed ZnO nanoparticles showed an average diameter of 95 ± 

50 nm. 

4. Thermal properties of the nanofibres were investigated using DSC. The 

incorporation of ZnO did not change the Tg value of the polymer, but 

enhanced the enthalpy relaxation of the polymer chains at the glass 

transition.  

5. The wetting properties of the fibrous mats were evaluated by water 

contact angle measurement. PLA nanocomposite mats exhibited 

hydrophobic properties. The incorporation of ZnO nanoparticles did not 

affect the wettability of PLA nanofibres. 

6. Antimicrobial properties of a pure PLA fibrous mat and the ZnO 

impregnated mats were evaluated against E.coli bacterial at 37℃ . Zone 

inhibition was observed when ZnO content was above 5 wt.%.   
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7 Conclusions 

In Chapter 4, the effects of incorporating nanoclay and crystallinity (by annealing) 

on the nanoclay structure and water barrier properties of PLA films were 

investigated. PLA nanocomposites containing 0 to 5 wt.% montmorillonite 

layered silicate were prepared. Both amorphous and semi-crystalline PLA 

nanocomposite samples were obtained by compression moulding with different 

thermal treatments, i.e. quenching and annealing, respectively. Thermal 

properties of the samples were measured by DSC. The crystallinity of the 

annealed PLA and PLA nanocomposites was found to be about 30%. The 

morphology of crystallites was also observed using polarised optical microscopy. 

The nanoclay structure was measured using TEM and WAXD. The 

nanocomposite structures in both quenched and annealed films were 

intercalated and the clay aspect ratio was measured to be 40. The clay layers 

were aligned in the same direction in the quenched samples, whereas they were 

random orientated in the annealed samples due to annealing.  

Water vapour transmission rates through the film samples were measured using 

a MOCON Permatran-W@398. It was found that the WVTR value of the 

quenched PLA nanocomposites decreased consistently with clay concentration 

and this data showed a good fit with the Nielsen model. The measured WVTR 

value of the annealed PLA nanocomposites fitted the model of Bharadwaj 

assuming the clay orientation was nearly random.  A new tortuous model was 

built based on the models of Nielsen and Bharadwaj to predict the combined 

effects of crystallinity and nano-filler on the water vapour transmission rates 

through the polymer films. The new model showed a good fit with the 

experimental data from the annealed PLA nanocomposites. 

Chapter 5 gives results of how mechanical stretching affects water barrier 

properties of PLA nanocomposite films. Uniaxial stretching was applied to 

quenched PLA 4060D sheets at a draw ratio of 3 using a BASE stretching 

machine. Since stretching temperature has a significant effect on the quality of 

the products, the optimum drawing temperature (in the range of 60℃ to 75℃) 

was selected in the first step. Results of birefringence showed that the degree of 

orientation in the stretched PLA films reduced with the increasing drawing 

temperature. DSC results suggested that only the sample stretched at 60℃ 
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exhibited an increase in Tg by 4℃ , due to the polymer chains being highly 

orientated, with requires more energy for chain relaxation. In the end, PLA films 

that had been stretched at 60℃ showed the most stable and best water barrier 

properties compared with the other samples. Therefore, the optimum stretching 

temperature for the PLA nanocomposite sheets was selected to be 60℃.  

On the other hand, the WVTR results were very sensitive to the thickness of the 

tested samples due to the defects and air bubbles in the samples and their 

uniformity. To keep the thickness consistent, the nanocomposite sheets for 

uniaxial stretching were prepared three times thicker than the normal quenched 

ones during compression moulding. Thermal properties were measured by DSC. 

It was found that the Tg values of the stretched films did not change at low clay 

content. However, as the clay content increased the Tg value of the stretched 

films significantly increased by 5℃ . This indicates that the appearance of 

nanoclay has resisted the polymer chain relaxation. The nanoclay structure was 

measured using TEM and WAXD. Better delamination of the clay layers was 

obtained by shearing the intercalated clay tactoids during uniaxial stretching. The 

clay aspect ratio in the uniaxially stretched samples was measured to be 48. The 

WAXD analysis confirmed that the clay interlayer spacing had been increased 

during uniaxial stretching by 0.2 nm. WVTR values of the stretched 

nanocomposite films were slightly lower than those of the quenched 

nanocomposite films. The WVTR values of the stretched PLA nanocomposites 

decreased consistently with clay concentration, except the sample with 5 wt.% 

nanoclay, which had the same value as the quenched sample with 5 wt.% clay. 

This was due to agglomeration of the nanoclay at high clay content. The WVTR 

data of the stretched nanocomposite showed a good fit with the Nielsen model. 

Chapter 6 investigates fibrous PLA nanocomposite mats produced from PLA 

solutions using electrospinning. To prepare polymer solutions, two grades of PLA 

(4060D and 4032D) were dissolved in acetone, chloroform, and binary-solvent 

systems of acetone and chloroform (50/50 v/v), respectively, to obtain a 12.5% 

w/v PLA concentration. Electrospinning was carried out in a spray-base 

electrospray instrument by Profector Life Sciences Ltd. using a flow rate of 1 ml/h 

and a voltage of 20 kV. The optimum solvent systems for electrospinning PLA 

4060D and PLA 4032D were found to be AC and AC / CHL, respectively, from 
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which continuous and non-beaded nanofibres were collected. 

A further study on nanoclay incorporated PLA nanofibres was shown in Chapter 

6.1. Electrospinning is a novel technique in polymer nanocomposite. Nobody has 

investigated PLA / montmorillonite nanofibres produced using electrospinning. In 

this research, PLA nanofibres containing 1, 3, and 5 wt.% montmorillonite clay 

were produced from the optimum solution at 12.5% w/v concentration using 

electrospinning. The morphology of the nanofibres was investigated using SEM. 

Continuous nanofibres with the existence of a few beads were observed in both 

grades of PLA nanocomposite fibres. The diameter of the nanofibres was 

measured using Image J® software and the diameter distribution was analysed 

using IBM SPSS Statistics 22.0. For both PLA grades, the fibre diameter 

decreased with increasing nanoclay loading until the clay content was below 3 

wt.%, then increased as the clay content increased to 5 wt.%. The average 

diameters of the crystallisable PLA (grade 4032D) / clay nanofibres were lower 

than those of the amorphous PLA (grade 4060D) / clay nanofibres. The nanoclay 

structure in the nanofibres was measured using TEM. The nanoclay platelets 

were fully exfoliated and aligned to the flow direction of drawn force. The aspect 

ratio the nanoclay in the PLA nanofibres was about 52. Thermal properties of the 

nanofibres were investigated using DSC. Both PLA grades showed a reduction 

in Tg with the addition of nanoclay. The crystallisable PLA / clay nanofibres 

showed the degree of crystallinity increased with clay content from 21% to 31%. 

The crystallisation temperature of electrospun PLA fibres is much lower than that 

of melting produced PLA films, probably due to the formation of 𝛽-crystal during 

electrospinning.  The mechanical properties of PLA nanofibres were analysed by 

tensile tests following the ISO257-2-5A specification. All the nanofibre samples 

exhibited ductile-brittle mechanical properties. The addition of nanoclay has 

reduced mechanical properties of the PLA nanofibres.  

ZnO has been introduced in polymer fibres for medical and water treatment 

applications due to its anti-bacteria property. The effect of ZnO nanoparticles on 

PLA nanofibres was investigated in Chapter 6.2. PLA 4060D nanocomposite 

nanofibres containing 1, 3, 5, 7 and 9 wt.% ZnO were electrospun from acetone 

solution at 12.5% w/v concentration. The morphology of the nanofibres was 

investigated using SEM. The addition of ZnO enhanced the roughness and 
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porosity of the nanofibres’ surface. The diameter of the nanofibres was measured 

using Image J® software and the diameter distribution was analysed using IBM 

SPSS Statistics 22.0. It is noted that the nanofibre diameter increased with the 

addition of ZnO particles due to the large size of the ZnO particles and the porous 

structure of the nanofibres. The particle structure in the nanofibres was measured 

using TEM. A good distribution of the ZnO particle was obtained with the some 

nanoparticle agglomerates. The dispersed ZnO nano-particles showed an 

average diameter of 95 ±  50 nm. Thermal properties of the nanofibres were 

investigated using DSC. The incorporation of ZnO did not change the Tg value 

of the polymer, but enhanced the enthalpy relaxation of the polymer chains at the 

glass transition. The wetting properties of the fibrous mats were evaluated by 

water contact angle measurement. PLA nanocomposite mats exhibited 

hydrophobic property. The incorporation of ZnO nanoparticles did not affect the 

wettability of PLA nanofibres. Antimicrobial properties of a pure PLA fibrous mat 

and the ZnO impregnated mats were evaluated against E.coli bacterial at 37℃. 

Zone inhibition was observed when ZnO content was above 5 wt.%.   
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8 Further work 

 

The following further work is suggested. 

1. Incorporate mechanical stretching on crystallisable PLLA and investigate the 

effect of stretching induced crystallinity on water barrier property of PLLA. 

Mechanical stretching induces a certain degree of crystallinity in PLLA, which 

can significant improve barrier property of the polymer. As we know, the 

crystal modification of stretching induced crystals, 𝛽 -crystal, is unlike 𝛼 -

crystal that is produced from annealing. It is worth to study the effect of 

different crystal forms on barrier property of PLA membrane films. 

2. Repeat tensile test on electrospun PLA 4032D / clay nanofibre mats. Since 

the nanofibre mats are porous, the results of tensile test in the present thesis 

are very variable.  

3. Incorporate paracetamol in PLA / clay nanofibres and investigate the 

optimum clay concentration as drug carrier in PLA nanofibres. PLA 

nanofibres can be used in wound healing and other medical applications 

because of its good biocompatibility. Nanoclay has been proved as being a 

good drug carrier in PLA matrix. Therefore, it is necessary to investigate the 

optimum composition of drug-loaded PLA / clay composite solution for 

electrospinning.  

4. Investigate mechanical properties of PLA / ZnO nanofibre mats. The size of 

ZnO particles is smaller than the nanoclay. Hence, the incorporation of ZnO 

nanoparticles could enhance the mechanical properties of PLA nanofibres. 

To obtain a good dispersion of ZnO nano-particles surfactant (e.g. sodium di-

2-ethylhexyl-sulfosuccinate) and dispersant (e.g. ethylene glycol) can be 

used in solution preparation.  
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