Whisker Mitigation Strategies for Pb-Free Electronics

M.A. Ashworth and G.D. Wilcox

SMART Group

Advances in Electronics Assembly Technology Seminar

16th June 2015

Outline of presentation

- Background on tin whiskers
- Introduction to WHISKERMIT
- Tin deposits on Cu and brass
- Electrochemical oxidation
- Conformal coatings
- Summary

Background – tin whiskers

- Crystalline growths from a metal surface (e.g. Sn, Zn and Cd)
- Uncertain incubation period before growth
- A few micrometres in diameter and up to several millimetres in length
- Various growth morphologies possible
- Whisker related problems increasing due to environmental legislation, device miniaturisation, lower voltages and harsher environments

Documented electronic failures due to tin whiskers

NASA: "More than 50 Electronic Failures due to Whisker Growth from 1946-2006"

Galaxy satellite Military failures Heart pacemaker recall Nuclear power plant

Documented Incidents: Only 10% of Failures known to NASA

Images: www.google.co.uk [Accessed June 2014]. L. Panashchenko, "The Art of Metal Whisker Appreciation: A Practical Guide for Electronics Professionals", NASA Goddard, 2012.

Tin whisker research at Loughborough University

Effect of process variables: Sn deposits on Cu

~ 2 years after deposition

Effect of elevated temperature on intermetallic formation

University

Effect of process variables: Sn deposits on brass

Increased deposit thickness

Increased deposition current density

29 months after deposition

Effect of deposition current density on whisker growth

Effect of deposition current density on whisker growth

University

Sn deposits on brass: whisker mechanism

5 μm tin deposit on brass, electroplated at **10 mAcm**⁻² FIB analysis ~29 months after tin deposition

Zn map of deposit — surface

For tin deposits on brass, whisker growth is primarily driven by zinc oxide formation at the deposit surface rather than intermetallic growth at the Sn-brass interface

Tin deposit on brass: Zn present in tin whisker?

'Bulk' analysis: SEM/EDX mapping

Surface analysis: Auger electron spectroscopy

University

Sn deposit on brass: effect of elevated temperature

Exposure of Sn deposits on brass generally results in a considerable increase in whisker growth Also samples where <u>no</u> whisker growth has Zn oxide occurred! Intermetallic growth in Sn Intermetallic 5µm growth in brass?

Effect of electroplating parameters

- For both Sn deposits on Cu and Sn deposits on brass, whisker growth is reduced at higher deposition current densities and increased deposit thicknesses
- Current results only applicable for the specific Sn electroplating bath
 under investigation
- Significant variation in whisker growth may be observed on nominally identical samples
- Although whisker growth is strongly influenced by electroplating parameters, their control cannot be relied upon to successfully mitigate whisker growth

 additional control measures are required

Whisker growth for tin deposition on silver

- Ag has been considered as a potential underlayer material to mitigate whisker growth for tin deposits on copper
- Sn deposits on silver sheet whisker much more rapidly than equivalent deposits on copper
- Recent results have also demonstrated increased whisker growth for Sn deposits on Cu with an <u>electroplated</u> Ag barrier layer
- According to Crandall ¹: "Sn on Ag is a remarkable whisker producer!" and "holds our internal lab record for prodigious whisker growth"

¹ E. R. Crandall, Factors Governing Tin Whisker Growth, PhD thesis, Auburn University, 2012

The role of the surface oxide in whisker growth

- In 1994, Tu proposed his "cracked oxide theory" 1
 - whisker growth occurs at certain weak spots on the surface where the oxide has been broken
 - In the absence of an oxide no whisker growth would occur
- Later adding ² …
 - "if the surface oxide is very thick, it will physically block the growth of any hillocks and whiskers"
- Can we mitigate whisker growth by increasing the thickness of the surface oxide??

¹ Physical Review B 49, 2030, 1994

² Proceedings of the IEEE Electronic Components and Technology Conference, 2002 p1194–1200

SnCu deposits on Cu: Electrochemical oxidation at 1.2V

2 μm Sn-Cu on Cu deposited at 10 mAcm⁻²

Test coupons to investigate whisker growth

- To more fully investigate the effect of oxidation potential samples have been electrochemically oxidised in a potassium carbonate-bicarbonate bath at -0.66V, -0.5 V, -0.4V, 0 V and 1.2 V (all vs. SCE).
- Regions with both 30 and 60 mC cm⁻² charge passed
- Whisker growth evaluated using optical microscopy after ~ 2 months storage at room temperature

Whisker density after ~ 2 months storage

Effect of oxidation time: whisker growth

FIB/XPS analysis of SnCu deposits on Cu: ~2 years storage

University

Sn deposits on brass: whisker growth

SEM/FIB analysis of 2 μ m Sn deposits on brass		Number of whiskers on electrochemically	
Native air formed oxide	Oxidised at 1.2 V vs. SCE	(Sample area = 4cm ²)	
		Oxidation potential (V vs SCE)	Average number of whiskers per sample
<u>20µт</u>	20μm	1.2 V	6 ± 2
Zn oxide	Nor and the second seco	1.6 V	2.5 ± 2
2µm	<u>2μm</u>	2.0 V	3 ± 2

FIB/XPS analysis of Sn deposits on brass: ~30 months storage

Whisker mitigation mechanism(s)

- For Sn(Cu) deposits on Cu, IMC formation appears unaffected by electrochemical oxidation and therefore whisker mitigation must simply derived from the increased thickness of the oxide layer
- Although whisker density is greatly reduced long filament whiskers are still produced from electrochemically oxidised SnCu deposits
- Electrochemical oxidation does not reduce the driving force for tin whisker growth (*intermetallic formation*)
- For Sn deposits on brass, electrochemical oxidation reduces whisker growth by preventing the formation of Zn oxide at the deposit surface
- Reduced IMC formation in electrochemically oxidised samples may also be an influence

WHISKERMIT: Conformal coating trials

- Evaluation of commercial urethane, acrylic, silicone and UV cure coatings
- Samples cured both at room temperature and in the oven
- Model coating materials (UV cure) prepared with tailored properties (flexible to rigid)
- Evaluated using tin deposits on brass substrates

Effect of physical properties on whisker growth

- Original WHISKERMIT project demonstrated correlation between coating modulus and whisker growth/penetration
- Develop conformal coatings that are specifically designed to prevent whisker growth

Penetrating whisker 'flattened' by interaction with stiff coating

WHISKERMIT 2

Improving the whisker mitigation properties of polymeric conformal coatings

- Whiskers do not always do what you expect!
- Whisker morphology and density may be modified by control of deposition parameters
- Greatly increased whisker growth for tin deposits on brass
- Silver may not be an ideal barrier layer material
- Electrochemical oxidation has the potential to mitigate whisker growth
- Conformal coatings optimised to mitigate whisker growth are required

Any questions?

