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Abstract

Cadmium Telluride (CdTe) is an excellent material for low-cost, high effi-

ciency thin film solar cells. It is important to conduct research on how defects

are formed during the growth process, since defects lower the efficiency of so-

lar cells. In this work we use computer simulation to predict the growth of a

sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is

used to simulate the CdTe thin film growth on the (111) surfaces. The results

show that on the (111) surfaces the growth mechanisms on surfaces which are

terminated by Cd or Te are quite different, regardless of the deposition energy

(0.1∼10 eV). On the Te-terminated (111) surface the deposited clusters first

form a single mixed species layer, then the Te atoms in the mixed layer moved

up to form a new layer. Whilst on the Cd-terminated (111) surface the new

Cd and Te layers are formed at the same time. Such differences are probably

caused by stronger bonding between ad-atoms and surface atoms on the Te

layer than on the Cd layer.
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1 Introduction

In recent years, worldwide energy consumption has grown and this has given rise

to concerns over energy security, whilst energy supply has become a key problem

all around the world. While energy demand rises, reserves in coal, oil, natural

gas and other non-renewable resources, which are nowadays the main resources for

world energy supply, become smaller due to human consumption. [1] Also the usage

of traditional non-renewable resources produces large amount of greenhouse gases,

such as CO2 and N2O, which greatly effect the temperature of the Earth. [2] People

are seeking ways of using more environment-friendly and renewable resources, such

as sunlight, wind, tides, waves and geothermal heat for energy supply. Governments

have invested huge amount of money in renewable technologies all around the world,

and solar power is one of the most promising renewable energies.

In the UK, the renewables’ share of electricity generation was a record 19.4% in

2014 Q1, up 6.9 percentage points on the share in 2013 Q1 [3] and solar photovoltaics

(PVs) have an important role to play in this [4].

Solar PVs is now the third most important renewable energy source in terms of

globally installed capacity. In 2013, its capacity increased by 38 percent to a running

total of 139 GW worldwide [5]. By far, the most prevalent material for solar cells is

crystalline silicon. But thin film PVs devices have great potential and are a cheaper

technology than conventional Si based photovoltaic devices [6].

Cadmium Telluride (CdTe) is an excellent material for low-cost, high efficiency

thin film solar cells, and it is the only thin film photovoltaic technology to surpass

crystalline silicon PVs in the watt/cost measure and have promising efficiency [7, 8].

However the laboratory record efficiency of CdTe solar cells lags significantly behind

the theoretical maximum for the material. This discrepancy is often attributed to

defects such as grain boundaries and intra-grain dislocations [9]. Thus it is important
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to do research on how these defects are formed during the growth process and

therefore strategies for reducing them.

Atomistic simulation is widely used as an outstanding partner with experiment

in addressing problems in material sciences. By changing the parameters in the

simulations, we can simulate different experimental methods for producing thin film

cells, e.g. magnetron sputtering [10] and close space sublimation [11]. In this work,

we use computer simulation to gain understanding and predict the growth of the

sputter deposited thin film PVs as a function of the growth conditions.

Molecular dynamics (MD) is one of the atomistic simulation techniques used in

material sciences. In this method, an appropriate interatomic potential is chosen

to describe the atomic forces, and the motion of atoms can be simulated by solving

Newton’s equations of motion. One can model the dynamics by integrating the

equations of motion numerically. Resolving individual atomic vibrations requires a

time step of the order of femtoseconds (fs) to integrate of the equations of motion.

Therefore typical MD simulations can only reach the picosecond or nanosecond time

scale.

Many important processes that occur over longer time scales, such as defect

diffusion and recombination or thin film growth [12], cannot be simulated by MD.

The kinetic Monte Carlo (KMC) algorithm, one of the long time scale dynamics

techniques, is able to simulate these rare events. Different from MD, KMC doesn’t

simulate the atomic vibrations within a state. Instead, one transition is chosen from

a list of possible transition events, and then the system is advanced to a new state.

The clock is incremented in a way that is consistent with the average time for escape

from that state.

The KMC algorithm requires a pre-determinate list of all possible diffusion

events, this is extremely difficult to do for thin film growth due to the complex

growth environment. We use a variation on the KMC method, the on-the-fly KMC

(OTF-KMC) [13], for CdTe thin film growth simulations in this work. The OTF-
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KMC algorithm aiming at find all low-lying saddles surround the states, starts

searches from randomly placed configurations, thus building a KMC catalogue on

the fly.

In this work, we simulated the growth processes of CdTe thin films on (111) CdTe

surfaces at the atomistic level. Effort are focused on the growth mechanisms ob-

served in the simulations and quality of produced film under different conditions. [14]

2 Methodology

Thin film growth consists of two processes: the deposition process – allowing clusters

be deposited onto the surface at time scale of picoseconds, and the diffusion pro-

cess – allowing the adatoms to diffuse around the surface at time scale varies from

nanoseconds to microseconds. In this work, we use MD to simulate the deposition

process and use the OTF-KMC to simulate the diffusion process. Combining those

two techniques, we are able to simulate the growth process which occur over time

scale of seconds.

In this work, the MD code we are using for the simulations is the LAMMPS pack-

age (Large-scale Atomic/Molecular Massively Parallel Simulator [15, 16]), an open

source code using classical MD. We use analytical bond-order potentials (BOPs) [17,

18] for the CdTe binary system [19, 20] as the interatomic potential. The BOPs are

based upon quantum-mechanical theories and can offer a more accurate description

of interatomic interactions compared to Tersoff [21] and Brenner [22] types of po-

tentials. The Tersoff and Brenner types of potentials only consider the σ bonding

with a second-moment approximation, while the BOP incorporating both σ and π

bondings with a more advanced four-moment approximation.

The OTF-KMC code used in this work is the LKMC (Loughborough on-the-

fly Kinetic Monte Carlo [23]), which implements an atomistic, multi time scale

technique incorporating MD and OTF-KMC. The implementation of OTF-KMC in-

cludes transition reuse, a superbasin method for dealing with the low barrier problem
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and an on-the-fly calculation of the Vineyard prefactor. The program also includes

an external event driver which can be used to perform particle depositions within

the KMC framework.

We model 6 double-layers of atoms, with a total 960 atoms for the (111) surfaces.

The bottom double-layer is fixed to avoid shifting of the whole lattice due to energetic

impacts, and the next double-layer is thermalised during the deposition process to

allow the impact energy to dissipate. Periodic boundary conditions are applied in

all directions barring the surface normal, and the free boundary condition is applied

in the direction of surface normal. The cluster is deposited from approximately

10 Å above the surface.

We have deposited CdxTey (x, y = 0, 1) clusters onto a perfect CdTe surface with

various conditions such as substrate, temperature, deposition energy and growth

rate. The deposited clusters are allowed to diffuse on the surface. With more and

more clusters deposited onto the surface new layers are formed and the CdTe thin

film grows.

The growth conditions vary for different experimental techniques. We model the

growth of CdTe thin films by magnetron sputtering deposition, which is a widely

used technique for CdTe thin film production. In sputtering room temperature

deposition is the most common, but elevated temperatures can be used to optimise

performance [24]. The temperature we used in the simulations is T = 350 K, all

particles are deposited normal to the surface.

Experimental results show that single phase CdTe can only support a maximum

excess of 0.004 at % of Cd or 0.013 at % of Te [25]. Experiments undertaken by

C. Ferekides et al. [26] also indicate that even if there is an excess of Cd, the produced

film will always be stoichiometric. In their experiments, while changing the ratio

Cd/Te in the vapour from 1.0 to 1.3, the ratio in the produced film is between 0.97

and 1.03. This means the ratio of Cd and Te in the vapour has little effect on the

stoichiometry of the produced film. For a start, we choose the CdTe molecules as
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the deposited cluster.

The CdTe impact energy for magnetron sputtering varies. An earlier study of

single molecule depositions by M. Yu et al. [27] show that the higher the energy

is, the more defects are formed. Therefore we use low deposition energies in our

simulations. We set up several simulations with various deposition energies of 0.1 eV,

1 eV and 10 eV per cluster.

Typical deposition rates for sputtering are between 0.1 nm/s and 1 nm/s [24].

In our simulations, the deposition rate is set to be 10 double-layers/s (∼2 nm/s).

The chosen deposition rate is slightly higher than the experimental results because

we want to accelerate the simulations by depositing more frequently, thus get new

layers faster, as this represents the slowest deposition rate that allows us to deposit

a reasonable number of layers. In our simulations, there are 160 atoms per double-

layer on the (111) surfaces and the deposited clusters are CdTe molecules, thus the

rate for deposition is Rdepo = 800 s−1 for the CdTe clusters.

We simulate the growth of CdTe in the zinc-blende structure, the lowest energy

polymorph of CdTe, with a lattice constant of 6.83 Å, which is the optimal lattice

constant for the BOP. We have concentrated on modelling the commonly observed

(111) surfaces.

3 Results

In the laboratory, the CdTe layer is usually deposited on the CdS, which has the

structure of Wurtzite. The (111) surface of CdS has a hexagonal shape, which is

the same as zinc-blende structured (111) surfaces. The main difference between

Wurtzite and zinc-blende structures in the [111] direction is the stacking sequences.

As known that the stacking sequence of Wurtzite structure is AaBbAaBb, while

the stacking sequence of zinc-blende is AaBbCcAaBbCc. In other words, there are

“missing” layers in the Wurtzite (111) surfaces compare to the zinc-blende (111)

surfaces. Therefore in theory, the CdTe would grow on the (111) plane. However
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Figure 1 Unit cell of zinc-blende CdTe in [111] direction. Bigger red spheres
represent the Te atoms, and smaller green spheres the Cd atoms.

due to the lattice mismatch, there are other types of surface. Experimental results

show that (100) and (111) surfaces are the most commonly observed surfaces for

the CdTe layer. A unit cell of zinc-blende CdTe is shown in Figure 1. In the [111]

direction, the lattice consists of a Cd layer followed a Te layer (we call both layers

together a double-layer).

The results show that single CdTe clusters are quite mobile on both Cd- and

Te-terminated surfaces and they may diffuse hundreds or even thousands of KMC

steps before another deposition occurs. We, therefore, start the simulations with 3

deposited CdTe clusters on the Te-terminated (111) surfaces and 4 CdTe clusters

on the Cd-terminated (111) surfaces. The isolated CdTe clusters diffuse around and

join to become bigger clusters which are less mobile and another deposition is more

likely to occur. The OTF-KMC method is used to determine whether to perform a

diffusion or a deposition at each step. If a deposition event is selected, the algorithm

will switch to MD to perform a deposition.

The growth simulations are undertaken on Cd-terminated (111) surfaces and

Te-terminated (111) surfaces. On each surface, we set up several simulations with

deposition energies at 0.1 eV, 1 eV and 10 eV. Starting with several ad-atoms de-

posited on the surface, the OTF-KMC algorithm is used to determine whether to

perform a step of diffusion or deposition.
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Despite different deposition energies, all simulations show similar film growth

mechanisms for each kind of surface. The results show that single atoms and small

ad-atom clusters are highly mobile on the surface. Single Cd/Te atoms or small

CdTe clusters diffuse rapidly on the surface until they meet other clusters and form

a bigger cluster, which is less mobile. The diffusivity is significantly reduced when

the clusters contain at least 4 atoms, as we do not observe any movements involving

more than four atoms.

The Cd- and Te-terminated (111) surfaces have different ways of growth, and

will now be discussed separately.

3.1 Te-terminated (111) Surfaces

On the Te-terminated (111) surfaces, the deposited CdTe clusters usually stick on

the surface without dissociation, thus clusters of ad-atoms on the surface are sto-

ichiometric. When the CdTe clusters are deposited onto the surface, they usually

“lie down” on the Te-terminated (111) surfaces, where both the Cd and Te atoms

are at the same height. The top view and front view of a deposited cluster deposited

on the Te-terminated (111) surface are shown in Figure 2.

Bigger clusters are less mobile, and they usually form a zig-zag chain like shape

on the surface. These zig-zag clusters are, again, “lying down” on the surface. A

top view and front view of zig-zag chains observed in the simulations are shown in

Figure 3.

Due to the structure of CdTe lattice, the new CdTe surface layers should grow

in pairs in [111] direction, i.e. a new layer of Cd and a new layer of Te should

be formed together (we call both layers together a double-layer). However, on the

Te-terminated (111) surfaces, initially when there are not enough ad-atoms on the

surface, all deposited ad-atoms are “lying down” on the surfaces, i.e. we have a

mixed layer containing both Cd and Te atoms. We observe zig-zag chains of bigger

size on the surface, e.g. the highlighted cluster in Figure 4a. Later when the
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Figure 2 Top view (left) and front view (right) of a CdTe cluster deposited
on the Te-terminated (111) surface. The deposited cluster “lies down” on the
surface, i.e. both atoms are at the same height. The Te atom sit directly
on the surface Te atom, and the Cd atom sits in the hollow site. Graphs
are coloured by height. Bigger spheres represent the Te atoms, and smaller
spheres the Cd atoms.

Figure 3 Top view (left) and front view (right) of zig-zag chain shape clusters
on the Te-terminated (111) surface. All ad-atoms in the cluster “lie down” on
the surface, i.e. they are at the same height. Graphs are coloured by height.
Bigger spheres represent the Te atoms, and smaller spheres the Cd atoms.
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(a) A system with 42 ad-atoms on the Te-
terminated (111) surface. All ad-atoms
stay in the same layer. A cluster of zig-
zag shape is highlighted.

(b) A system with 95 ad-atoms on the Te-
terminated (111) surface. The second new
layer starts to be formed.

Figure 4 Front (upper) and top (lower) views of systems without (left) and
with (right) the second layer formed on the Te-terminated (111) surface. The
deposited ad-atoms initially “lying down” on the surface. Later with more ad-
atoms are deposited on the surface, bigger clusters would push Te/Cd atoms
out of the initial layer to form a new layer. Graphs are coloured by height.
Bigger spheres represent the Te atoms, and smaller spheres the Cd atoms.

deposited clusters become bigger, a novel mechanism of second layer formation has

been observed where the Te atoms move out of the first new layer to form another

new layer. These atoms are highly mobile when they move to this new layer and

they dominate the dynamics of the system. Figure 4 shows a front and top views of

systems without and with the second layer formed. The mechanism of second layer

formation will be discussed later.

Since all simulations are undertaken at the same temperature, and the deposition

energy is not high enough to damage the original surface, the diffusions of ad-atoms

on the surface are quite similar. The main differences among simulations with differ-

ent deposition energies are observed during the deposition process. Low deposition
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Figure 5 Deposited cluster with high energy penetrates the surface and cre-
ate interstitials below the surface layers. Graph is coloured by height with
highlighting the interstitials below the surface. The Te atom penetrates the
Te-terminated surface with deposition energy of 10 eV, and creates intersti-
tials ∼8 Å below the original surface layer. Bigger spheres represent the Te
atoms, and smaller spheres the Cd atoms.

energies (0.1 eV and 1 eV) give no significant differences on the depositions. The

deposited clusters perform soft landing on the surfaces. However with the higher

deposition energy (10 eV), we observe that the deposited cluster may penetrate the

surface, and create interstitials below the surface layers. Figure 5 highlights the

interstitials created due to the higher deposition energy. The penetrated Te atom

creates a Te dimer, and the dimer rotates from time to time during the simulation

process.

Figure 6 shows the CdTe thin film growth on Te-terminated (111) surface after

83 ms of real time. The temperature is 350 K and the deposition energy is 1 eV.

There are point defects created on the original surface due to the energetic impacts.

Two incomplete new double-layers are formed. In the first new double-layer, most

Te atoms still at the same height as Cd atoms. However in the regions where

the second new double-layer is formed, Te atoms in the first new double-layer are



3 RESULTS 12

Figure 6 The result of CdTe thin film growth simulation on Te-terminated
(111) surface after 83 ms of real time. The deposition energy is 1 eV. A front
view (upper left) and a top view (lower left) of the surface and new double-
layers are presented on the left. Three graphs on the right shows the second
new double-layer, first new double-layer and the original surface double-layer,
respectively. There are 155 ad-atoms on the surface. The circled region in the
front view (upper left) of the lattice indicates point defects created due to the
energetic impacts. The first new double-layer is incomplete while the second
new double-layer starts to form. Most Te atoms in the first new double-layer
have the same height as Cd atoms. Graphs are coloured by height. Green
and red cubes represent Cd and Te vacancies, respectively. Bigger spheres
represent the Te atoms, and smaller spheres the Cd atoms.
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generally higher than Cd atoms. This indicates that the Te atoms in the first new

double-layer will move to their correct heights when the second new double-layer

starts to form above them.

Figure 4a shows all deposited clusters stay in the same layer. When a cluster

of size 4 or more atoms formed, there is a novel mechanism where the Te atoms

move out of the first layer and form a new layer above it. Figure 7 illustrates a

typical process by which this occurs, two CdTe clusters diffuse to be adjacent to

each other, first three images, and then as indicated by the red shading the two Te

atoms diffuse to form a second new layer. This process has a timescale of the order

of 200 ps, which is considerably faster than the rate of deposition. The Te atoms

are “pushed” onto the second new layer are very mobile as shown in Figure 8. The

barrier is lower than most of other transitions, and the corresponding time is much

shorter than most of second layer formation transitions and cluster diffusions. Even

when the second layer is formed, if there are not enough Cd atoms in the first layer

to “support” them, Te atoms in the second layer can also “drop back” to the first

layer. And of course the back-to-first-layer Te atoms can be “pushed” again to the

second layer. Figure 9 shows an example of these mechanisms, the mechanisms for

the formation and dissolution of the second layer have very similar timescales.

We noticed that, by combining transitions shown in Figure 7 and Figure 9a, the

shape of deposited cluster can be changed from zig-zag chain to square shape. We

also observe other more complex mechanisms which transform the deposited clusters

to other shapes, such as zig-zag chains and hexagons. These indicate that the shape

of deposited clusters could be changed.

3.2 Cd-terminated (111) Surfaces

The growth mechanism on the Cd-terminated (111) surfaces is different from the

Te-terminated ones. One main difference is that the deposited CdTe clusters can

dissociate on impacts, thus there are isolated single Cd/Te atoms on the surface
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Figure 7 Mechanism of second layer formation in a cluster of 4 atoms. When
two CdTe clusters meet each other, the Te atoms in the middle could be
“pushed” out of the first layer to form a new layer. Graphs are coloured by
height. Bigger spheres represent the Te atoms, and smaller spheres the Cd
atoms. Arrows in the graphs indicate the movement of atoms. The corre-
sponding barriers and event time are given below the graphs.

Figure 8 Te atoms in the second new layer are very mobile. Graphs are
coloured by height. Bigger spheres represent the Te atoms, and smaller spheres
the Cd atoms. Arrows in the graphs indicate the movement of atoms.
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(a) Two Te atoms in the second layer are “pulled” back to the first layer.

(b) Two Te atoms in the first layer are “pushed” onto the second layer.

Figure 9 An example of Te atoms diffusing between first and second new
layers. Graphs are coloured by height. Bigger spheres represent the Te atoms,
and smaller spheres the Cd atoms. Arrows in the graphs indicate the move-
ment of atoms.
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Figure 10 Top view (left) and front view (right) of a small CdTe cluster
deposited on the Cd-terminated (111) surface. The deposited clusters “stand
up” on the surface, i.e. Cd and Te atoms are at different heights. There are
two positions for a single CdTe cluster sits on the surface: (cluster on the left)
the CdTe cluster sits vertically in the hollow site; (cluster on the right) Te
atom sits directly above the surface Cd atoms, and Cd atom in the cluster
sits in the hollow site with a higher position. Graphs are coloured by height.
Bigger spheres represent the Te atoms, and smaller spheres the Cd atoms.

and the clusters of ad-atoms can be non-stoichiometric. Another main difference is

that the CdTe clusters deposited on the Cd-terminated (111) surfaces “stand up”,

i.e. the Cd and Te atoms are at different heights as shown in Figure 10. The new

double-layer is formed immediately, no second layer formation is needed.

Similarly, once a big cluster with more than 4 atoms formed, there is usually

no movement for the cluster. However, unlike zig-zag shape clusters on the Te-

terminated (111) surfaces, the ad-atom clusters on the Cd-terminated (111) surfaces

are usually in straight line shape in the top view as shown in Figure 11.

The growth mechanism on the Cd-terminated (111) surface is simpler than on

the Te-terminated ones. During the simulation, small clusters diffuse around the

surface and join other clusters to form a bigger one. The ad-atom-clusters usually

form (curved) line shape chains, bigger clusters could form either long line shape

chains or double line chains as Figure 12 shows. In the simulations, double line

chains are observed more often than long single line chains.

The thin film growth processes on (111) Te- and Cd-terminated surfaces both in-
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Figure 11 Top view (left) and front view (right) of straight line shape clusters
on the Cd-terminated (111) surface. Cd and Te atoms in the cluster are at
different heights. Graphs are coloured by height. Bigger spheres represent the
Te atoms, and smaller spheres the Cd atoms.

Figure 12 Clusters on the Cd-terminated (111) surfaces form line shape
chains. Left: single line chain. Right: double line chain. Graphs are coloured
by height. Bigger spheres represent the Te atoms, and smaller spheres the Cd
atoms.
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volve ad-atom-cluster diffusions. We calculated the barriers of a single CdTe cluster

diffusion on (111) Te- and Cd-terminated surfaces respectively. When a single CdTe

cluster diffuse around the (111) Te-terminated surface, the barriers are ranging from

0.13 eV [7 ps] to 0.41 eV [80 ns] and the most common barriers are around 0.3 eV

[2 ns]. However on the (111) Cd-terminated surface, the single CdTe cluster diffu-

sions have much smaller barriers which are ranging from 0.05 eV [0.5 ps] to 0.3 eV

[2 ns]. This is probably because the CdTe cluster on the Te-terminated surface “lies

down” on the surface. Both Cd and Te atoms are very close to the surface atoms

and form bonds. While the single CdTe cluster “stands up” on the Cd-terminated

surface and only Te atom forms a bond to the surface atoms. It is much easier to

break one bond rather than two, thus barriers for single CdTe cluster diffuse around

the (111) Cd-terminated surface are much smaller than ones on the Te-terminated

surface. This means that the diffusions of small CdTe clusters occur more rapidly

on the (111) Cd-terminated surfaces than Te-terminated ones. We even observe

the diffusions of a 4-atom-cluster on the (111) Cd-terminated surfaces as shown in

Figure 13. The barriers of these transitions are even lower than ones for a single

CdTe cluster. This probably because of the structure of 4-atom-cluster where two

Cd atoms sit directly above the Te atoms, far away from the surface, therefore the

diffusions of this 4-atom-cluster would be similar to the diffusions of a 2-Te-cluster.

The formation of line chains on the CdTe (111) Cd-terminated surface is similar

to the growth of ZnO [28]. As Figure 14 shows that, when a single CdTe cluster

diffuse near to other cluster, a longer line shape cluster is formed by attaching the

single CdTe cluster to the end of other cluster. Alternately, a “Y” shape cluster is

formed by attaching the single CdTe cluster to the middle of other cluster. In most

cases, a double line shape cluster is formed by attaching both Cd and Te atoms in

the CdTe cluster to the other cluster as the last graph in Figure 14 shows.

Figure 15 shows the simulation result of CdTe thin film growth on the Cd-

terminated (111) surface after 53 ms of real time. The temperature is 350 K and
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Figure 13 A 4-atom-CdTe cluster diffuses on the Cd-terminated (111) sur-
face. Graphs are coloured by height. Bigger spheres represent the Te atoms
and smaller spheres the Cd atoms. Arrows in the graphs indicate the move-
ments of atoms. Square brackets give the corresponding event time of the
transition.

the deposition energy is 10 eV. We get two incomplete double-layers. There are no

defects on the original surface double-layer. The possible defects created during the

impacts are recovered due to rapidly diffusions of deposited clusters.

4 Summary and Conclusions

We performed simulations of CdTe thin film growth on the (111) Cd- and Te-

terminated surfaces with various of deposition energies from 0.1 eV to 10 eV at

room temperature. The results show that, on the (111) Te-terminated surfaces, the

deposited CdTe clusters “lie down” on the surface, i.e. both Cd and Te atoms are

at the same height and they stay in the same layer. The deposited clusters usually

in a zig-zag chain shape. In clusters of 4 or more atoms, the Te atoms could move

out of the initial layer to form a new layer, therefore forms a double-layer. The

atoms being “pushed” to the second layer are so mobile that they may dominate
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Figure 14 Formation of chains on the Cd-terminated (111) surfaces. U: A
single CdTe cluster diffuses to join the end of a chain, and a longer chain is
formed. Lower: A single CdTe cluster diffuses near to an end of a chain, and a
“Y” shape cluster is formed by attaching the single CdTe cluster to the middle
of line chain. Graphs are coloured by height. Bigger spheres represent the Te
atoms, and smaller spheres the Cd atoms. Arrows in the graphs indicate the
movements of atoms. Square brackets give the corresponding event time of
the transition.
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Figure 15 The result of CdTe thin film growth simulation on Cd-terminated
(111) surface after 83 ms of real time. The deposition energy is 10 eV. A front
view (upper left) and a top view (lower left) of the surface and new double-
layers are presented on the left. Three graphs on the right shows the second
new double-layer, first new double-layer and the original surface double-layer,
respectively. There are 145 ad-atoms on the surface. The first new double-
layer is incomplete while the second new double-layer starts to form. Graphs
are coloured by height. Green and red cubes represent Cd and Te vacancies,
respectively. Bigger spheres represent the Te atoms, and smaller spheres the
Cd atoms.
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the simulations. Such atoms in the second layer could also “drop” back to the first

layer. The simulation results show that atoms above the double-layer is also helpful

to “keep” Te atoms in the first double-layer at their correct heights.

On the (111) Cd-terminated surfaces, the deposited CdTe clusters “stand up”

on the surface, i.e. Cd and Te atoms are at different heights as expected. The

new double-layers are formed with the depositions. Diffusions on the (111) Cd-

terminated surfaces are more rapidly than on Te-terminated surfaces. We also ob-

serve the dissociation of CdTe clusters, which is not seen on the (111) Te-terminated

surfaces. Clusters are usually in (double) line chain shapes.

The deposited CdTe cluster usually stick together on the (111) Te-terminated

surfaces, while they might dissociate on the Cd-terminated surfaces. Thus the clus-

ters on the (111) Te-terminated surfaces are stoichiometric, but they can be non-

stoichiometric on the (111) Cd-terminated surfaces. After the same real time of

simulations, there are fewer atoms in the final lattice for the growth simulations on

(111) Cd-terminated surface than on Te-terminated surface. This indicates that the

growth rate on the Cd-terminated surfaces is lower than the one on Te-terminated

surfaces.

Although with deposition energy 10 eV there is a Te atom penetrate the surface

and creates interstitials, the CdTe surface is soon recovered within a few KMC steps.

We conclude that at room temperature, there is no significant differences on the

growth mechanisms with different deposition energy ranging 0.1∼10 eV. However

the species of surface atoms matters. The Te layers “attract” deposited clusters

more than Cd layers, which causing the differences of growth mechanisms on two

surfaces. On the Te-terminated surface, a mixed species layer is formed first, then Te

atoms move out of the initial layer to form a new layer and a double-layer is formed.

On the Cd-terminated surface, the double-layer is formed immediately after the

deposition. Diffusions on the (111) Cd-terminated surfaces are more rapidly than

on Te-terminated surfaces.
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This work has provided an excellent insight into the CdTe thin film growth with

different conditions. It provided a precise understanding of the process during the

thin film growth. Specific transitions of the growth mechanisms are studied on each

surface to understand how the thin film growths.
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