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1 Introduction  

Polycrystalline yttrium aluminium garnet (YAG) has potential for a range of structural 

and functional applications as a result of its excellent physical, chemical and 

mechanical properties [1]. For example, with a suitable dopant on the yttrium site in 

the crystal structure, excellent optical properties can be achieved for laser and white 

LED applications [2,3]. The ceramic is also being researched for other uses such as 

a radar dome [4] and as a highly creep-resistant material at high temperatures [5]. 

With a cubic crystal structure, YAG does not suffer from birefringence when 

transparent; the latter may be achieved by either having a very large grain size, 

which leads to poor strength, or a very fine grain size that is smaller than the 

wavelength of visible light. In both cases the material must also be fully dense. To 

achieve ceramics with a fine enough grain size requires the use of nanopowders. 

There are numbers of different wet chemical methods to synthesis nanocrystalline 

YAG powders with high purity, but only a few yield highly enough quality powders. 

Routes such as sol-gel [6,7], co-precipitation [6,8],  and combustion synthesis [9,10],  

often produce single phase YAG powders, but with a high degree of agglomeration. 

The latter occurs during the drying and calcination stages, which are usually 
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essential to convert the precursors into crystalline powders. Therefore, a route is 

required in which crystallisation occurs whilst the nanoparticles are suspended in a 

liquid medium. Supercritical fluids offer such opportunities, for example, they have 

been used to crystallise metal-organic or inorganic precursors into metal oxides. This 

route also avoids the high temperature heat treatments usually required [11].  

Cabanas and co-workers [12] produced single phase YAG in supercritical ethanol 

and water mixtures using continuous synthesis. The solvent mixtures facilitated the 

crystallization of the precipitates obtained using ammonia solution at 385°C and 24 

MPa. Zhang et al. [13] reduced the processing conditions to 290°C and 10 MPa in a 

batch type reactor by using a 2:1 ethanol-water mixture, nitrate precursors and 

ammonium hydrogen carbonate as the precipitant. They obtained monodispersed, 

spherical particles with a mean size of ~60 nm. 

Inoue et al. [14] reported the solvothermal synthesis of YAG using organic 

precursors such as yttrium acetate and aluminium isopropoxide. They investigated 

ethylene glycol and 1, 4 butanediol as the solvent medium; the former resulted in 

amorphous YAG whilst the latter yielded phase-pure crystalline YAG consisting of 30 

nm agglomerates of 10 nm primary particles after achieving crystallisation by holding 

at 300°C and 5 MPa for two hours. The method was also successfully used by 

Kasuya et al. [15] and Nyman et al. [16] to produce well-crystallized, but 

agglomerated, YAG:Ce3+ nanophosphor powder by adding cerium (III) acetate to the 

reaction mixture. Kasuya et al. [17] further investigated the reaction rate and found 

that a holding time of less than one hour was insufficient to achieve crystallisation.  

Thus the major problem with the nano YAG powders produced to date has been the 

level of agglomeration present and the lack of control over it. The present work was 
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therefore undertaken with a view to avoiding or minimising this problem and different 

analytical methods were used to gain an insight into the formation mechanism and 

growth kinetics involved when 1, 4 butanediol was used as the solvent. 

2 Experimental  

The organic precursors used were 99.9% pure 0.6 M yttrium acetate hydrate 

(Y(CH3CO2)3.xH2O) and ≥98% pure 1 M aluminium isopropoxide (Al(OCH(CH3)2)3) 

both from Sigma Aldrich, Dorset, UK. These provided the source of Y3+ and Al3+ ions 

respectively. 99.9% pure 1 M 1, 4 butanediol, also from Sigma Aldrich, was used as 

the solvent medium. A conventional autoclave reactor from Prosense, Munich, 

Germany, rated to 400°C and 10 MPa (for safety reasons, 8.5 MPa was set as the 

maximum working limit) was used for the synthesis.  

Table 1 Experimental conditions investigated for synthesis of nano YAG 

Autogenous Conditions 

Volume of the precursor used in a 400 ml 

autoclave  

1, 4 butanediol   Yttrium 

acetate   

Aluminium 

isopropoxide  

270°C for 2 h and 2.0 MPa 176 ml 8.48 g 8.52 g 

280°C for 2 h and 6.0 MPa 176 ml 8.48 g 8.52 g 

300°C for 2 h and 8.5 MPa 176 ml 8.48 g 8.52 g 

300°C for 2 h and 7.0 MPa 213 ml 10.29 g 10.34 g 

300°C for 2 h and 6.0 MPa 249 ml 12.00 g 12.06 g 
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A stoichiometric ratio of 3Y to 5Al was prepared by mixing appropriate amounts of 

the two precursors, weighed to two decimal places, in the butanediol solvent, Table 

1. The mixture was placed in a 400 ml autoclave vessel and processed at different 

temperatures and autogenous pressures, see Table 1, the volume of the precursor 

adjusted to achieve the desired pressure. The resultant white suspension was 

centrifuged at 3500 rpm, washed three times using ethanol to remove the precursor 

residues, and then dried at 60°C for 24 hours before being ground using an agate 

pestle and mortar for at least 1 min. 

Fourier transform-infrared spectroscopy (FT-IR 8400S, Shimadzu, Maryland, USA) 

was performed to investigate the functional groups present in the suspensions 

obtained from the synthesis route before drying. A drop of the suspension was 

placed between two NaCl discs, forming a thin film, and the transmittance of the 

suspensions studied over the range 4000 – 400 cm-1. The degree of crystallinity and 

phase(s) present were determined using an X-ray diffractometer (Bruker D8, Bruker 

AXS GmbH, Karlsruhe, Germany) at a step size of 0.02° from 20° to 90° 2θ. The 

average crystallite size was calculated from the line broadening of (321), (400), 

(420), (422), (431) and (521) reflections using the Scherrer formula reported 

elsewhere [8,10].  

The morphology and the particle size of the powders were also determined using 

transmission electron microscopy, TEM (JEOL JEM 2000FX, JEOL Ltd. Tokyo, 

Japan). For this a 5 wt.% suspension of the powder dispersed in methanol using 3 

minutes of ultrasound (Soniprep 150-MSE ultrasonicator, MSE Scientific 

Instruments, Manchester, UK) was deposited on a carbon coated copper grid (Agar 

Scientific, Stansted, UK) and dried in an oven at 60°C for 15 minutes before loading 
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into a single tilt holder. The TEM was operated at 200 kV. A different TEM, operated 

in STEM mode (TechnaiF20, FEI, Hillsboro, OR, USA), was used to obtain the lattice 

fringes of the particles. Sample preparation was identical to that just described, but 

the sample was dried in UV light for 1 hour rather than in oven to avoid breaking the 

carbon film. This TEM was also operated at 200 kV and images were obtained using 

a CCD camera. 

The BET surface area, S, of the YAG nanoparticles was measured using an 

automated gas adsorption analyser (Tristar™ 3000 Micrometrics Instrument 

Corporation, Norcross, GA, USA). Equation 1 [18] was used to obtain the mean 

particle size from the surface area data. Comparison of the data from the TEM and 

BET provided an insight into the extent of agglomeration of the particles. 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (𝒅𝒅𝑩𝑩𝑩𝑩𝑩𝑩) = 𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔
𝝆𝝆×𝑺𝑺

        Eqn 1 

where, S is the specific surface area (m2 g-1) and 𝜌𝜌 is the theoretical density (4.55 g 

cc-1) of the material. 

After centrifuging the suspension at 5000 rpm for 10 mins (Heraeus Centrifuge, 

Osterode, Germany), the supernatant was analysed using gas chromatography 

mass spectroscopy, GC-MS (model HP-6890 with HP5973, mass selective detector, 

Hewlett Packard, Anaheim, USA). The GC-MS was also equipped with a flame 

ionisation detector, which was connected with a 30 m capillary column (DB-WAX 

J&W Scientific, Santa Clara, USA). Each sample was diluted with chloroform in a 

1:10 ratio and ~4 µl injected for each analysis. The temperature, for both the injector 

and the detector, was set at 300°C and held for 10 mins to desorb all the organics. 

Helium was used as a carrier gas at a continuous flow rate of 1.0 ml min-1. Data on 
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the chemical compounds present was identified based on the GC retention time on 

the column, the total time taken for each sample was 46.5 mins, and the matching of 

mass spectra with NIST standard reference databases such as Mainlib and Replib 

[19-21].  

3 Results and Discussion 

3.1 Powder characteristics  

The XRD patterns, Figure 1, revealed that single phase YAG, exactly matching the 

33-0040 JCPDS YAG reference, was achieved using all the temperatures 

investigated, 270°C – 300°C, and their respective autogenous pressures. The 

primary differences between the different samples were the degree of crystallinity 

(see the peak intensities) and the crystallite sizes (21.7 nm to 22.4 nm, see table 2) 

calculated using the Scherer’s line broadening method, which increased with 

increasing temperature and pressure as expected. No intermediate phases, such as 

YAH, YAM or YAP, were observed in any of the samples prepared. These results 

suggest that the use of highly reactive 1, 4 butanediol caused crystallisation into the 

YAG structure under conditions well below those required for supercriticality of the 

solvent (~454°C and 6.2 MPa) [22]. This suggests that the organic precursors 

underwent complete dissolution and crystallised into single phase YAG, within the 

detection limit of XRD.  
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Figure 1 XRD patterns of solvothermal nano YAG powders obtained using 1, 4 

butanediol under the conditions indicated. 

3.2 Formation mechanism  

The key to the formation of the YAG particles and their growth kinetics can be 

attributed to the transformation of 1, 4 butanediol during the reaction. It has been 

reported that it transforms into tetrahydrofuron when the temperature and pressure 

exceed 250°C and 18 MPa [24]. In the present case, where the temperature 

exceeded the critical value but the pressure did not, the functional groups from the 

precursors were suspected to have reacted with the butanediol derivatives, possibly 

leading to a different reaction pathway (see GC-MS data) compared with the normal 

tetrahydrofuron transformation.  
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Figure 2 : FT-IR spectroscopy of the precursor sol compared with the suspension 

processed under conditions indicated and the assignment of the peaks, after 

[16,25]. 

The FT-IR spectra and with the corresponding peak assignments for the precursor 

sol, a mixture of YAG precursors and 1, 4 butanediol solvent, along with the as-

synthesised YAG suspensions processed at 270°C & 2 MPa for 2 h and 300°C & 8.5 

MPa for 2 h, are shown in Figure 3. It is clear from the spectra that the peaks 

corresponding to the hydroxyl vibration, ν(OH), from the 1, 4 butanediol and 

aluminium isopropoxides overlapped at around ~3296 cm-1. This peak, labelled 1, 

became broader after processing, which could be attributed to the dehydration of 

OH- ions from the 1, 4 butanediol [25]. The doublet peaks obtained near ~2936 cm-1 

(2 & 3) and ~1450 cm-1 (7 & 8), the characteristic peaks of 1, 4 butanediol, are the 

symmetric and asymmetric modes of stretching and bending vibrations of (CH2), 

respectively [16]. These peaks were obtained in all the spectra suggesting that the 

Peak no Peak 
position Description 

1 ~3296 ν(OH) 

2 ~2936 νs(CH2) 

3 ~2868 νas(CH2) 

4 ~1725 νs(C=O) 

5 ~1650 νas(C=O) 

6 ~1580 ν(C=O) 

7 ~1460 δs(CH2) 

8 ~1430 δas(CH2) 
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carbon chain was not broken, whilst the OH- ions on either side of the butanediol 

(OH-CH2-CH2-CH2-OH) were dehydrated. 

 

Figure 3 : GC-MS results of the as-synthesised suspension obtained after 

processing the precursor at 270°C and 2 MPa for 2 h; (a) the GC spectra; (b), (c) 

and (d) are the respective MS spectra of the peaks obtained at retention times of 

16.18, 16.53 and 19.55 mins, respectively. 

The peak in the precursor sol at ~1580 cm-1 (6) is the stretching vibration of the 

ν(C=O) molecule from the yttrium acetate [16]; it has been shifted into a doublet (4 & 

5) as symmetric and asymmetric vibrations from ~1725 - 1650 cm-1 in the as-

synthesised YAG suspensions. This suggests that the acetate group has been 

cleaved from the yttrium acetate and formed a new chemical compound. Since 

identification of the compound could provide valuable information about the chemical 

reaction leading to the formation of YAG nanoparticles, GC-MS was undertaken. 
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Figure 4 : GC-MS results of  (a) the as-synthesised suspension obtained after 

processing the precursor at 300°C and 8.5 MPa for 2 h. The GC spectra (b), (c) 

and (d) are the respective MS spectra of the peaks obtained at retention times of 

16.97, 17.97, and 19.55 mins, respectively. 

The spectra obtained for the suspension processed at 270°C and 2 MPa for 2 h 

showed a small amount of 2-furan methanol (2-FM) at 19.55 min and the major 

peaks corresponding to 1, 4 butanediol at 16.18 and 16.53 min, Figure 4. The 

compounds were identified based on the GC retention time on the column and the 

computer matching of mass spectra results of the respective peaks with standards 

[19]. This suggested that the dehydration had been initiated but was not significant. 

The dehydrated 1, 4 butanediol then reacted with the terminal alcohol groups from 

the aluminium isopropoxide to form the 2-FM, Figure 4d.  

When the butanediol and the precursor mixture was subjected to 300°C and 8.5 MPa 

for 2 h, the result was 2 FM, 1, 4 diacetoxybutane (1, 4 DAB) and 1, 4 butanediol 
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with these occurring at 19.55, 17.97 and 16.97 min, respectively, Figure 5. The 

partially dehydrated 1, 4 butanediol will have reacted with the terminal acetate 

groups from the yttrium acetate and undergone esterification to form the 1, 4 DAB 

[26], a reaction that will have influenced the crystallisation and growth kinetics of the 

nanoparticles. Figure 6 shows the proposed reaction mechanism. It is believed that a 

parallel, catalytic chemical reaction took place between the precursors and the 

solvent. The XRD results showed that the organic precursors reacted to form YAG 

nanoparticles, whilst the GC-MS revealed that the 1, 4 butanediol reacted with the 

chemical species of acetate and alcohol to form 1, 4 DAB and 2-FM. It has been 

reported that metal oxides act as catalysts to dehydrate alcohols and diols into 

olefins and unsaturated alcohols, respectively, and that the rate of the reaction 

depends on the size of the oxide particles being used [27]. These catalytic reactions 

are often promoted by both structure-sensitive and structure-insensitive reactions 

and most of the metal oxides underwent the structure-sensitive reaction [28]. 

Therefore, chemical reaction and particle growth are interdependent in these 

processes; one influences the other significantly. For instance, Wang et al. [29] 

witnessed particle growth under hydrothermal conditions along a preferential 

orientation for ceria nanoparticles. They concluded that the coordinated uncapped 

particles matched with their lattice planes with similar Miller indices and grew into 

large particles by minimizing their interfacial energies. Meanwhile, Igarashi et al. [30] 

investigated the dehydration of 1, 4 butanediol into unsaturated alcohols using CeO2 

catalysts with different particle sizes. They observed that the catalytic performance in 

the cyclisation of butanediol into tetrahydrofuran and γ-butyrolactone was greatly 

influenced by the size of the ceria particles. These studies suggest that particle 
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growth occurs at the preferential lattice planes and particle size is very sensitive to 

changes in chemical kinetics during solvothermal reactions. 

 

Figure 5 Proposed reaction mechanism underpinning solvothermal synthesis of YAG 

using 1, 4 butanediol 

3.2.1 Particle growth kinetics 

To gain an insight into the particle growth kinetics and the extent of agglomeration 

under different synthesis conditions, the numerical values of the particle size 

calculated from the XRD spectra and the specific surface area from BET have been 

compared with the particle sizes estimated using TEM, see table 2. It is clear that the 

crystallite sizes (DXRD) of the nano YAG powders from all the conditions used were 

relatively lower than the values estimated from the BET and TEM data. This is due to 

the fact that the Scherer equation doesn’t take account of instrument broadening 

errors and the XRD only measures average volume of the coherent/uniform regions 

where the particles are highly crystalline [23], whereas the BET and TEM techniques 



13 
 

use surface area and 2 dimensional information for the size and shape of the 

particles, respectively. 

Table 2 Comparison of the YAG particle sizes estimated using different techniques 

Conditions  DXRD / nm DBET / nm DTEM / nm BET surface 
area / m2g-1 

270°C / 2h @ 2.0 MPa  21.7 ± 2.2 27.8 ± 0.4 7 ± 1 (27 ± 3)* 46.8 ± 1 

280°C / 2h @ 6.0 MPa  24.7 ± 0.7 28.0 ± 0.3 28 ± 3 44.1 ± 1 

300°C / 2h @ 8.5 MPa  22.4 ± 0.7 27.9 ± 0.4 27 ± 3 46.7 ± 1  

*agglomerate size measured from TEM 

However under the synthesis conditions of 270°C and 2 MPa, Figure 2 a, the primary 

particle size determined from TEM was about 7 ± 1 nm, but the morphology clearly 

reveals that the primary particles were agglomerated into ~27 nm clusters.. On the 

other hand, the particle sizes calculated from XRD and BET analyses suggest that 

both the techniques considering the clusters as individual particles; this is because 

the former cannot distinguish the boundaries in the clusters [31], whilst in the BET 

technique the nitrogen cannot permeate further into the clusters to classify the 

primary particles seen through TEM [32]. At 280°C the autogenous pressure 

increased to 6 MPa and the resultant primary particles were coarser, ~28 nm, with 

an irregular structure and, in some instances, clusters were noticed from TEM, 

Figure 2b. This effect has also been supplemented by the XRD and BET results. On 

further increase in temperature to 300°C, the autogenous pressure increased to 8.5 

MPa and homogenous spherical nanoparticles were formed also measuring ~27 nm 

from TEM, Figure 2c. The latter particles had a surface area of about 46.7 ± 1 m2g-1, 

yielding a calculated BET particle size from equation 1 of ~27 nm and the calculated 
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DXRD was about 22.4. Further, the DBET matches the ~27 nm diameter obtained from 

the TEM study surprisingly well and supports the DTEM data that the particles 

obtained using solvothermal process exhibited relatively little agglomeration. 

 

Figure 6 : TEM images of solvothermal nanoYAG powders obtained using 1, 4 

butanediol under the conditions (a) 270°C / 2 h @ 2 MPa (b) 280°C / 2 h @ 6 MPa 

and (c) 300°C / 2 h @ 8.5 MPa 

To understand the growth kinetics further, different volumes of precursors, see Table 

1, with same stoichiometry were processed in the autoclave to achieve different 

pressures at 300°C; all the particles obtained showed similar morphology, Figure 7. 

Although most of the particles were similar in size after synthesising at 300°C and 6 

MPa, some clusters of finer 7 ± 1 nm particles were still present; arrows indicate 

these in Figure 7a. Less evidence of these particles was observed when the 

pressure was 7 MPa or higher and the particles formed were very homogenous in 

both size and morphology. This is in accordance with the particle morphologies of 

Cerium doped YAG synthesised by Nyman [16] and Kasuya [15] using the same 
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precursors as in the present work, except dopant. Kasuya used 220°C for 4 - 14 

days (no mention of the autogenous pressure) whilst Nyman used at 300°C for 4 h 

and an autogenous pressure of 5.5 MPa. Regardless of the temperature and time, 

both their results showed ~ 27 nm clusters of 7 ± 1 nm primary particles and clearly 

revealed that the particle growth kinetics were enhanced by pressure. The current 

STEM analysis supports this result. 

 

Figure 7 Effect of pressure on ST-nYAG particles at 300°C for 2 h (a) 6 MPa, (b) 7 

MPa and (c) 8.5 MPa. Arrows in (a) show the presence of small particles mentioned 

in the text. 

A proposed particle growth mechanism is illustrated in Figure 8 & 9 based on the 

STEM results. The nanoparticles synthesised at 270°C and 2 MPa for 2 h were 

agglomerated by oriented attachment (OA), a process that causes neighbouring 

particles to assemble in order to share a common crystallographic orientation. This 

yields facile coalescence [33-35], Figure 8a. The parallel lattice fringe spaces were 

about 0.49 nm apart, Figure 9, a value that is closely associated with {112} facets of 

the (211) atomic planes of YAG [36,37]. These planes exhibit high surface energy 

compared to the other low-index planes of YAG [37,38]. Qin et al. [37] suggested a 

growth mechanism based on the crystallographic orientation of YAG particles, they 

thought that the particle growth kinetics occurred via a self-assembled, Ostwald 
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ripening process at different calcination temperatures. They found that the fine YAG 

particles coalesced into coarser particles by reducing their total interfacial energy 

along the <112> crystallographic direction of the {112} planes. Very similar behaviour 

was observed here, suggesting that the {112} facets are the active site favouring 

particle growth for YAG. Having said this, the low diffraction intensity in the XRD data 

implies that the degree of crystallinity is relatively weak. 

 

Figure 8 YAG growth mechanism: STEM images (top) and XRD (middle) with a 

schematic of particles (bottom) obtained under three different conditions (a) 

270°C and 2 MPa for 2 h, (b) 280°C and 6 MPa for 2 h and (b) 300°C and 8.5 

MPa for 2 h 

When the synthesis conditions were increased to 280°C and 6 MPa for 2 h, the XRD 

result showed a substantial increase in the intensity of the data, Figure 8b, which 

implies that the degree of crystallinity was improved significantly. The STEM image 

displayed two different (hkl) planes, (211) and (420), which suggests that the 
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agglomerated particles with (211) planes underwent internal structural 

rearrangement of yttrium and aluminium atoms (0.23 nm and 0.18 nm radii, 

respectively [39]) due to atomic diffusion and therefore forming particles with a (420) 

plane arrangement.  

   

Figure 9 Top, Lattice fringes of (211) and (420) planes obtained at high magnification 

using STEM and below, schematic illustration of atomic rearrangement. Particles 

obtained at (a) 270°C and 2 MPa for 2 h and (b) 300°C and 8.5 MPa for 2 h 

The schematic shown in Figure 9 illustrates the atomic rearrangement by lattice 

distortion and expansion. The distortion is usually due to invariant lattice shear 

caused by bilateral tilting and rotation of atoms [40], which could have happened due 

to the use of higher pressure. This result in cationic displacements [41] within the 

planes caused by interstitial and substitution mechanisms, which will have influenced 

lattice expansion. Both these effects will have increased the coordination number of 

the atoms in the crystal lattice plane, which was accompanied by a decrease in the 
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fringe spacing to 0.26 nm, Figure 9. The increase in diffraction intensity in the XRD 

data mentioned earlier could therefore be due to the formation of YAG particles with 

dominant (420) planes, which is the characteristic plane for single phase YAG. 

However, it has been noted that once the (420) planes were formed, they will have 

created a lattice mismatch between the particles with (211) planes and hence 

retarded further particle growth. Wang et al. [29] stated that the crystals with different 

lattices tend to rotate to minimise the interface strain. This suggests that the particles 

with (420) planes could have rotated and minimised their interfacial strain rather than 

agglomerating when they contacted particles based on a (211) arrangement. This 

suggested that the particles with (420) planes were not involved in a self-assembled 

process to form a planar interface between the particles and therefore did not assist 

an Ostwald ripening process for particle growth. 

Raising the synthesis conditions further to 300°C and 8.5 MPa for 2 h led to only a 

slight increase, ~4%, in the diffraction intensity of the YAG powder, Figure 8c. The 

STEM image displayed only particles with (420) planes and 0.26 nm fringe spacing, 

which suggests that the particles with (211) planes observed under the previous 

conditions were completely crystallised into single phase YAG particles. This implies 

that the structural rearrangement within the planes had reached a saturation limit 

and the particles with (420) planes were not self-assembling for facile coalescence. 

This, in turn, suggests that the surface energy of the (420) plane is not adequate to 

form necking between the adjacent particles under this condition; the arrows in 

Figure 8c indicate a clear particle-particle interface.  
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4 Conclusions  

When 1, 4 butanediol was used as the solvent medium for solvothermal synthesis at 

300°C and 8.5 MPa for 2 h with organic precursors, the XRD data showed that single 

phase YAG was obtained and TEM images revealed spherical and homogenous 

particle morphology, with a primary particle size of about ~27 nm. The BET 

measurements indicated a surface area of about 46.7 ± 1 m2g-1, which gave a 

calculated particle size that matched well with the TEM results. This suggested that 

there was little or no necking between adjacent particles and little agglomeration. 

The results also suggested that the particle growth kinetics occurred via a self-

assembled Ostwald ripening process, with 7 ± 1 nm aggregates formed at 270°C, 2 

MPa for 2 h coalescing into ~27 nm particles by reducing their total interfacial energy 

along the <112> crystallographic direction of the (211) planes. The coalesced 

particles will have undergone internal rearrangement of the atoms within the planes, 

transforming them into (420) planes. Once this has occurred, the (420) planes did 

not coalesce further since their surface energy was insufficient to form necks 

between the adjacent particles. Hence, the approach was successful in producing 

highly crystalline YAG powders of ~27 nm in size with relatively little agglomeration 

compared to other synthesis routes described in the literature. 
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