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ABSTRACT 

 

The short fatigue crack growth behaviour in a model cast aluminium piston alloy has been 

investigated. This has been achieved using a combination of fatigue crack replication 

methods at various intervals during fatigue testing and post-mortem analysis of crack 

profiles. Crack-microstructure interactions have been clearly delineated using a combination 

of optical microscopy, scanning electron microscopy and electron backscatter diffraction. 

Results show that intermetallic particles play a significant role in determining the crack path 

and growth rate of short fatigue cracks. It is observed that the growth of short cracks is often 

retarded or even arrested at intermetallic particles and grain boundaries. Crack deflection at 

intermetallics and grain boundaries is also frequently observed. These results have been 

compared with the long crack growth behaviour of the alloy. 

 

Keywords Cast aluminium; Fatigue; Micromechanisms of fracture; Piston alloys; Short 

fatigue cracks. 

 

NOMENCLATURE 

 

3D  Three dimensional 

a  Crack depth 

Al-Si  Aluminium Silicon 

Al0.7Si Al-4Cu-3Ni-0.7Si 

c  Surface crack length 

da/dN  Crack growth rate (metres per cycle) 

EBSD  Electron backscatter diffraction 

EDX  Energy dispersive X-ray analysis 

gbs  Grain boundaries 

HIP  Hot isostatic pressing 

Hipped  Hot isostatically pressed 

SDAS  Secondary dendrite arm spacing (µm) 

SEM  Scanning electron microscopy 

SRCT  Synchrotron X-ray microtomography 

Vf  Volume fraction (%) 

K  Stress intensity factor range (MPa·m
0.5

) 

Kth  Threshold stress intensity factor range (MPa·m
0.5

) 

  Stress (MPa) 

max  Maximum stress (MPa) 
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0.2  0.2% proof stress (MPa) 

  Strain 

L3  Particle mean intercept distance, (µm) 

  Mean free distance (µm) 

 

1. INTRODUCTION 

Al-Si alloys of eutectic or near eutectic composition are commonly used in automotive 

engine pistons mainly because of the requirement for high castability, low coefficient of 

thermal expansion and an optimum combination of other desirable properties such as wear 

resistance and thermal conductivity.
1-4

 The high temperature strength requirement for piston 

alloys is achieved by increased Cu, Mg and Ni contents in the alloy. Together with Si, these 

elements improve the strength of these alloys through a combination of solid solution, 

precipitation and particulate strengthening. Copper contents of between 1 to 4 wt.% are 

usually specified and form the -Al2Cu and also S-Al2CuMg strengthening phases by 

combining with Al and Mg. However, at peak piston service temperatures, these phases 

rapidly coarsen and form the non-coherent -Al2Cu and S-Al2CuMg phases with 

accompanying loss of strength and dimensional stability.
3,5,6

 It has been suggested
5
 that these 

strengthening phases can be stabilised by using a Cu/Mg ratio (by wt.%) of about 4 to 15 with 

Mg not being less than 0.5 wt.%. However, the addition of Ni at levels between 0.5 and 3 

wt.% forms various strengthening Ni-containing phases such as Al3Ni and Al3Ni2 that are 

exceptionally stable at high temperature.
5
 Increasing both Cu and Ni results in thermally 

stable AlCuNi type strengthening intermetallics (e.g. Al3(NiCu)2 and Al7Cu4Ni phases).
6,7

 

Nickel also combines with Fe to form FeNiAl type phases (e.g. Al9FeNi) that are also stable 

at high temperature and provide further strengthening.
5
 Moreover, the formation of Si 

precipitates in these alloys is also expected to provide additional strengthening.
8,9 

 

There has been a steady increase in engine performance accompanied with requirements for 

increased system efficiency, minimum weight and more stringent emission legislation.
10

 This 

has necessitated intensive research and development of new piston designs and materials that 

can withstand the increasingly harsh combination of thermo-mechanical fatigue (TMF) and 

high-cycle fatigue (HCF) loads.
2,10-14

 Recent investigations are looking at increasing the 

performance of piston alloys by further increasing the Cu and Ni contents and increasing the 

Si level above the eutectic although there are concerns about reductions in castability.
5
 The 

aim of these developments has been to achieve maximum performance at high temperatures 

of 350
o
C and above.

5
 A recent research reports indicate alloys with high levels of alloying 

elements such as Cu to 4-6 wt. % and Ni to 3.5 wt. %.
15,16

 Moreover, Chen
17

 has proposed 

that Si be increased to hypereutectic levels although other researchers suggest that Si be 

reduced to <1 wt. % due to observations that the large blocky primary Si particles in the 

eutectic or near-eutectic alloys are potent fatigue crack initiators.
18,19

 These low Si alloys are 

comparable to Al-Cu based alloys such as the 242 alloy that is also used in certain piston 

applications.
20

 Small additions of Ti, V and Zr have also been suggested to further improve 

high temperature strength.
2,5

 These elements form compounds of the Al3X type (X=Ti, V, Zr) 

which are stable and coherent with the -Al matrix and, as such, impart high temperature 

strength and creep properties.
21,22

 These particles also act as grain refiners for -Al primary 

dendrites.
2
 

 

Piston alloys have a complex three-dimensionally (3D) interconnected microstructure 

comprising of -Al primary dendrites, various types of intermetallics and Si particles (both 

primary and eutectic except for the low Si alloys).
23,24

 In addition to AlNi, AlNiCu, and 

http://onlinelibrary.wiley.com/doi/10.1111/ffe.12586/full
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AlFeNi phases discussed above, studies
1,17,25,26

 show that several other phases can occur such 

as Al7Cu2Fe, Al2Cu, -Al5FeSi, -AlFeMgSi, Mg2Si, -Al15(Fe,Mn)3Si2 and Al5Cu2Mg8Si6. 

Significant intermetallic clustering is often observed in some piston alloys.
6,13

 These 

intermetallics and particularly the large clusters can significantly reduce the alloys resistance 

to fatigue cracking.
15,27

 Mechanical property characterisation of some of these phases shows 

that they are significantly stiffer and harder than the -Al matrix
28

 and would therefore 

experience higher stresses during loading due to load partitioning. Like Si particles, these 

particles are likely to actively participate in fatigue crack initiation and propagation either via 

interface failure or fracture mechanisms depending on their size, shape and orientation 

relative to the loading direction.
15,29 

 

The fatigue performance of aluminium castings is determined by their resistance to the 

nucleation and growth of fatigue cracks. Either of the two stages can dominate depending on 

the loading conditions, microstructure and environment. Fatigue cracking in Al-Si castings 

involves competitive and often synergistic micromechanisms operating at different length 

scales as influenced by various structural features including defects such as porosity,
30-33

 

oxides,
33,34

 surface hollows
35,36

and corrosion pits.
37

 However, initiation at these features is 

expected to be preceded by intense localized slip banding.
38

 Local cyclic plastic strains are 

expected to be even higher at microstructural features such as Si particles, grain boundaries 

or intermetallic phases which may be located around or near the tips of these defects.
39,40

 

Fatigue crack initiation can also occur at individual or clusters of microstructural features 

such as eutectic Si particles,
34,40-43

 primary Si particles
15,19

 and various types of intermetallic 

compounds such as -Al5FeSi,
44

 -Al15(FeMn)3Si2,
45

 Al9FeNi,
14

 and Al3(NiCu)2.
 15,19

 

Initiation at these particles can occur either via interface debonding or particle fracture 

depending on the type of particle, its size, shape and orientation. This may also depend on the 

loading conditions and the strength of the Al matrix-particle interface (including the possible 

presence of precipitate free zones near the interface).
38,46

 Fatigue cracks have also been 

observed to initiate from persistent slip bands independent of any association with defects or 

particles.
45 

 

Short fatigue crack growth in cast Al-Si alloys is significantly sensitive to the local 

microstructure. It has been observed that short cracks retard and even arrest at microstructural 

barriers such as grain boundaries,
39,47-50

 eutectic and primary Si particles,
19,41

 intermetallic 

particles such as Al3(Ni,Cu)2
51

 or -Al5FeSi
44

 and at interdendritic triple points.
42

 

Furthermore, they have also been observed to grow at faster rates than long cracks at 

equivalent nominal ΔK values
19,45

 and even at below the nominal long crack threshold. In the 

more complex near eutectic Al-Si piston alloys, Joyce et al.
19

 have for example reported 

classical short fatigue crack behaviour in piston alloys that exhibited crack retardation and/or 

arrest at primary Si particles. Moreover, from their quantitative analysis of the Si particle 

sizes, they noted that the crack tended to sample a higher number of Si particles whose mean 

size was larger than that of the overall population.  

 

Moffat et al.
13,15,52

 recently investigated the model piston alloys shown in Table 1 and 

observed short crack growth behaviour with frequent retardation and arrest often associated 

with surface or subsurface intermetallic phases. Furthermore, crack growth was often 

observed to resume after the phases failed by fracture or debonding. In some cases, secondary 

cracks reinitiated ahead of the crack tip with intact particles bridging the crack wake before 

eventually failing as usually observed in fibre reinforced composites. The crack tips were 

therefore often discontinuous and basically diffuse regions of microdamage and intact 

ligaments. Significant crack deflections were also observed to occur due to crack interaction 

http://onlinelibrary.wiley.com/doi/10.1111/ffe.12586/full
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with second phases although this was not always obvious from two dimensional (2D) surface 

observations. The authors also observed that the short crack growth behaviour of the low Si 

alloy (Al0.7Si) was significantly influenced by porosity.
13

 Multiple crack formation at pores 

and subsequent short crack coalescence was common. Moreover, subsurface cracks 

associated with porosity were also observed in this alloy using high resolution synchrotron X-

ray microtomography (SRCT).
13

 Moffat and co-workers confirmed that lowering the level of 

Si in piston alloys reduces the role of Si particles in fatigue crack initiation. However, this is 

accompanied by increased porosity, which was observed to dominate the initiation and 

growth of short fatigue cracks particularly in the lowest Si alloy (Al0.7Si).  

Table 1 Compositions (in wt. %) of the model cast aluminium piston alloys. 

Alloy Si  Cu  Ni  Mg  Fe  Mn  Ti  Zr  V  P  

Al12.5Si 

Al7Si
1 

Al0.7Si  

12.45 

6.9 

0.67 

3.93 

3.89 

3.91 

2.78 

3.0 

2.99 

0.67 

0.62 

0.80 

0.44 

0.22 

0.21 

0.03 

0.03 

0.05 

0.01 

0.01 

0.01 

0.05 

0.05 

0.01 

0.04 

0.05 

0.01 

0.005 

0.005 

0.005 
1
This alloy was investigated with and without modification with ~0.015 wt. % Sr. 

 

In this work, the low Si alloy was subjected to hot isostatic pressing (hipped) to reduce 

porosity to levels that no longer control fatigue failure. This allowed the characterization of 

the effect of microstructure features on the initiation and growth of short cracks. In this paper, 

we discuss the results obtained on the short crack behaviour of the hipped Al0.7Si alloy. In 

particular, a detailed discussion on the effect of grain boundaries (gbs) on the short crack 

growth behaviour of this alloy is presented. The influence of gbs in retarding and arresting 

short cracks is well known for the simpler A356 type alloys.
39,47

 To the authors’ knowledge, 

there is no report in the open literature that delineates the effect of gbs on the short crack 

growth behavior of these more complex multi-component piston alloys. The fatigue crack 

initiation behaviour of the hipped Al0.7Si and Sr-modified Al7Si alloys is presented in 

Mbuya et al.
27

 Moreover, details of the short crack growth behaviour of the hipped Sr-

modified Al7Si alloy is reported elsewhere.
53

 

 

2. EXPERIMENTS 

2.1 Materials 

 

The low Si alloy under investigation was supplied as unfinished pistons (Fig. 1) in the hipped 

and unhipped conditions. Figure 1 (a) shows the piston casting mould configuration used by 

the manufacturer to ensure laminar and quiet melt flow conditions during filling
54

. During 

mould filling, the melt has to pass through a ceramic foam filter before being fed into the die 

cavity from the bottom. As a result, the melt fills the mould with a slow frontal laminar 

flow from the bottom while keeping the melt surface undisturbed. This casting process 

with a  ceramic filter and bottom ingate results in a cast structure that is consistently low 

in oxide inclusions.
54 

 The hipped pistons were supplied after being subjected to a hipping 

and heat treatment procedure involving holding at 490
o
C and 100 MPa for 4 h, solution 

treatment at 480
o
C for 2 h, a water quench and finally ageing for 8 h at 230

o
C. The unhipped 

pistons were supplied after aging at 230
o
C for 8 h.  

 

The microstructure of the hipped and unhipped versions of this alloy has been characterized 

in detail as documented by Moffat
13

 and Mbuya
55

. In summary, a JEOL JSM 6500F scanning 

electron microscope (SEM) fitted with an Oxford Inca 300 energy dispersive X-ray suite 

(EDX) was used to identify the phases in the alloys. Quantification of secondary dendrite arm 

spacing (SDAS), porosity and secondary phases was carried out using 3D SRCT imaging as 

well as standard 2D stereological methods described by Underwood.
56

 Both optical and 

http://onlinelibrary.wiley.com/doi/10.1111/ffe.12586/full
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electron microscopy were used to obtain micrographs for quantitative stereology and 

measurements were carried out using ImageJ, which is an open source image processing 

software available at https://imagej.nih.gov/ij/.  

 

 

Figure 1 (a) The die cavity and filling system geometry for piston casting and (b) a photograph of a typical 

unfinished piston as supplied by the manufacturer. 

 

2.2 Fatigue testing and analysis 

 

The detailed procedure for specimen preparation, short fatigue crack growth testing and 

analysis is provided in Mbuya.
 55

 However, a summary is provided here for completeness. 

Tests were performed using 12x12x80 mm plain bend bar specimens sectioned from the 

piston crown and overaged at 260˚C for 100 h before polishing the top surface to facilitate 

accurate monitoring of crack initiation and crack-microstructure interactions. The tests were 

carried out at room temperature using a four point bend loading geometry with a span of 15 

mm on a servohydraulic Instron 8502 machine at a load ratio of 0.1 using a 15 Hz sinusoidal 

waveform. With this loading condition, the near-surface tensile region of the specimens was 

plastically deformed (i.e., above the 0.2% proof stress (0.2)) although the bulk of the 

specimen remained elastic. Finite element (FE) calculations were therefore carried out in 

ABAQUS to determine the stress and strain distributions at the region of maximum bending 

moment. The maximum top surface stresses were also confirmed by comparing actual strains 

on the specimen surface (obtained via strain gauges) with the corresponding stress on the 

tensile stress-strain curve.  

 

The initiation and growth of fatigue cracks was monitored by periodically interrupting the 

test and taking acetate replicas of the polished tensile top surface of the specimens at the 

region of maximum stress. This procedure involves softening the surface of a small piece of 

cellulose acetate with acetone, which is then gently pressed onto the specimen surface and 

allowed to dry for a few minutes. The acetate replica forms a permanent record of the surface 

topography of the polished specimen surface, including the crack mouth. This is then 

analysed in an optical microscope. This method of crack monitoring is discussed in detail by 

Swain
57

 amongst other crack monitoring techniques described in the same volume.  

 

Three specimens were tested for the hipped alloy at different max of 197 MPa (~152% 0.2), 

176 MPa (~135% 0.2) and 168 MPa (~129% 0.2). The specimen loaded at max =168 MPa 

was interrupted after 353000 cycles while the other two were tested to failure after 142967 

and 30657 cycles at maximum stresses of 176 and 197 MPa, respectively. Moreover a repeat 

test was carried out for the unhipped alloy at max =138 MPa (~110% 0.2). (Note that the 

ceramic filter filling system

feeder

piston 
casting

skirt gudgeon pin boss

(b) feeder

ingate

(a)

ingate

crown
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stress and strain values for this repeat test were estimated using the strain gauging method). 

This test was carried out to assess the repeatability of the results reported by Moffat
13

 and 

therefore provide sufficient confidence for comparison with the results obtained for the 

hipped alloy investigated in this work. This test was interrupted at 35000 cycles. Table 2 

shows all the short crack testing parameters for the hipped and unhipped specimens, 

including the test carried out in the previous study by Moffat.
13

 Optical images of the cracks 

on the acetate replicas at various stages of the fatigue loading history were taken and crack 

length measurements carried out using ImageJ. The crack growth data was then analysed 

using the secant method to obtain the growth rates (da/dN) at corresponding ∆K values 

calculated using the solution recommended by Scott and Thorpe.
58

 SRCT analysis of a 

secondary crack at ∆K = 2.5 MPam indicated an a/c ratio of 0.8 for the hipped alloy. The 

differences in the computed values of ∆K (for all corresponding measured crack lengths) 

using a/c ratios of 1 and 0.8 was evaluated and found to be insignificant (4%). The crack 

shape was therefore approximated to be semi-circular (a/c = 1) to allow comparison with 

previous work by Moffat.
13

 The crack-microstructure interactions were investigated using 

optical and scanning electron microscopy coupled with phase analysis and grain boundary 

mapping using EDX and EBSD.
 

 
Table 2 Short fatigue crack growth loading conditions and cycles to failure. 

Alloy (& Specimen No.) max (MPa) ~Ni  Nf ~Ni/Nf (%) 

HIP Al0.7Si (1) 168 <1000 353000 (interrupted) <1% 

HIP Al0.7Si (2) 176 <1000 142967 <1% 

HIP Al0.7Si (3) 197 <1000 30567 <3% 

Al0.7Si (repeat test) 138 <1000 35000 (interrupted) <3% 

Al0.7Si (ref.
13

) 132 2000 67580   3% 

 

3. RESULTS 

3.1 Microstructure 

 

The phases identified in the hipped alloy using SEM/EDX were Al3Ni, Al3(NiCu)2, 

Al5Cu2Mg8Si6, and oxides as shown in Figure 2. The Al9FeNi phase was also identified in 

other micrographs.
55

 An additional interesting observation in relation to oxide particles is the 

presence of small particles (bright spots) attached to some of them as shown in Figure 2 (a). It 

is suggested that these particles are Al2Cu phases that find the oxide as a favourable substrate 

for their nucleation and growth.
59

 However, due to their small size, the identity of these 

phases can only be confirmed via TEM studies, which was not carried out in the current 

study. 

 

Chen
17

 has used thermodynamic modelling and EBSD combined with EDX to predict and 

identify the various phases in the unhipped version of this alloy. The phases predicted to 

occur using non-equilibrium Scheil simulations include Al3Ni, Al3Ni2, Al9FeNi, -

Al5Cu2Mg8Si6 and Al2Cu in significant proportions and Al7Cu4Ni, Al7Cu2Fe, -AlFeMnSi as 

well as Si but in small quantities. Based on these calculations, some Si particles would 

therefore be expected in the microstructure of this alloy, albeit in small proportions. The 

Al3Ni2 phase is also referred to as Al3(NiCu)2 because it contains Cu in almost similar atomic 

proportions to Ni. It is however difficult to differentiate between this phase and Al7Cu4Ni 

because of their very similar crystal structure.
17

 Chen noted that most of the phases predicted 

were observed in the unhipped microstructure except for Si, Al2Cu and Al7Cu2Fe. It is 

http://onlinelibrary.wiley.com/doi/10.1111/ffe.12586/full
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therefore expected that these same phases should still be present in the alloy even after 

hipping although Mg2Si particles may dissolve due to the high hipping and subsequent 

solution treatment temperatures (i.e., 490
o
C & 480

o
C). Previous reports

60,61 
indicate that 

Mg2Si phases dissolve rapidly (within 1 h) during the solution treatment stage of the common 

A356-type alloys at temperatures of 540
o
C. Considering the amount of Mg in the alloy (0.8 

wt.%) and the dendrite cell size (30.2 ± 3.6 m), both of which influence the dissolution 

rates, it would be expected that the Mg2Si particles in this alloy could have dissolved after 

holding it at the high hipping and solution temperatures (i.e., 490
o
C for 4 h & 480

o
C for 2 h).  

 

 

Figure 2 Backscattered SEM images showing the microstructure of the hipped Al0.7Si alloy.  

 

SRCT results shown in Table 3 indicate that hipping does not significantly affect the volume 

fraction (Vf) of intemetallic phases in this alloy, which is  9.7 ± 1.6 % as compared to 12.1 ± 

2.2 % for the unhipped alloy. The Vf values are within the standard deviations of each 

although the hipped alloy has a slightly lower value. Image analysis of backscattered SEM 

images using ImageJ resulted in a Vf of 10.5  3.0 which makes it difficult to ascertain 

whether hipping imparted any change in the intermetallic structure. It is however possible 

that the small amounts of Mg2Si particles reported to be present in this alloy could explain the 

slightly higher value of Vf in the unhipped version. Such particles would be expected to 

dissolve in the hipped alloy as already discussed. Furthermore, Scheil simulations by Chen
17

 

suggest a possible presence of Al2Cu phases in this alloy. Moreover, Al5Cu2Mg8Si6 phases 

are confirmed to be present (see Fig. 2(b)). Both these phases are expected to undergo limited 

dissolution during the hipping and solution treatment stages.
62,63

 It is possible that a 

combination of these factors could have resulted in a slight reduction in the volume fraction 

of intermetallic phases in the hipped alloy. 

Table 3 Comparison of quantitative stereological data of the unhipped and hipped Al0.7Si alloys. 

 Unhipped Alloy Hipped Alloy 

Volume fraction of intermetallics, Vf (%) 12.1 ± 2.2 9.7 ± 1.6 

Mean free distance,  (µm) 24.9 ± 6 25.8 ± 1.9 

Particle mean intercept distance, L3 (µm) 3.4 ± 0.8 3.4 ± 0.6 

Dendrite arm size, SDAS (µm) 37.3 ± 10 37.8 ± 4.1 

Vol. fraction of porosity (%) 0.26 0.03 

Maximum porous region size (µm) 536 52 

 

The SDAS is not expected to change during hipping since it is mainly a function of cooling 

rate. This is confirmed by the SDAS value of 37.8 ± 4.1 m for the hipped alloy that is 

oxides

oxides

Al3(NiCu)2

Al3Ni

Al3(NiCu)2

Al5Cu2Mg8Si6

oxide

Al3(NiCu)2

possible Al2Cu 
particles

(b)(a)
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remarkably close to 37.3 ± 10 m for the unhipped alloy. It is however clear that hipping 

significantly reduces both the volume fraction of porosity and the size of the largest pores or 

porous region, which is particularly important in fatigue failure. 

 

3.2 Short crack growth data 

 

The fatigue crack growth data for the hipped and unhipped alloys is presented in Figure 3a. 

Note that several cracks were analysed for each specimen and one colour has been assigned 

to the trend lines of all cracks from any given specimen. The data indicates significant scatter 

in the short crack growth for both the hipped and unhipped alloy, which includes frequent 

crack growth retardations and even arrest. The figure also shows that the short crack growth 

rate is generally much higher than the corresponding long crack growth rate for any given 

value of ∆K. Moreover, the short cracks grow even at ∆K values far below the corresponding 

∆Kth for long cracks. 

 

 

Figure 3(a) Short fatigue crack growth data for the hipped and unhipped Al0.7Si alloy compared with the 

corresponding long crack growth data. (b) Comparison of repeat test data from the current study to previous 

results by Moffat
13

 for unhipped Al0.7Si. Note that one colour has been assigned to the trend lines of all cracks 

from any given specimen. The stress levels associated with each specimen are: max = 132 MPa in Moffat’s test 

for unhipped Al0.7Si (in black), max = 138 MPa for the repeat test for unhipped Al0.7Si (in red), max = 168 

MPa for HIP Al0.7Si_1 (in purple), max = 176 MPa for HIP Al0.7Si_2 (in blue) and max = 197 MPa for HIP 

Al0.7Si_3 (in green). 

 

To delineate other short crack growth trends for this alloy, the data in Figure 3a has been split 

into several figures. Figure 3b shows a comparison of Moffat’s
13

 short crack data with results 

obtained from the repeat test conducted during the current study for the unhipped version of 

this alloy. It can be seen that the data compares quite well even with the significant scatter 

observed in both. The only major difference discernible is the slight shift of the lower bound 

crack growth rates in the repeat test to higher values. The occasional complete crack arrest 

observed in the previous work was not observed in the repeat test but frequent crack growth 

retardation events are observed in both. The difference in the lower bound growth rates could 

be attributed to the slightly higher maximum stress used in the repeat test. Similar stress 

effects have previously been observed by Caton et al.
45

 in a 319-type cast alloy. More distinct 

stress effects on short crack growth were observed in the results obtained from the three tests 

conducted at different stress levels in the hipped version of the alloy as shown in Figure 4a. 

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1 10

Al0.7Si [ref. 13]
Al0.7Si - Repeat test

Al0.7Si_Long crack [ref. 13]

HIP Al0.7Si_Long crack
HIP Al0.7Si_1-crack1

HIP Al0.7Si_1-crack2
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The figure shows that the crack growth rates are generally shifted to higher values with 

increase in max from 168 MPa to 176 MPa and subsequently to 197 MPa. Moreover, 

although complete crack arrest events are observed at the lowest stress, only crack growth 

retardations are observed in the higher stressed specimens. 

 

The results presented in Figure 3a indicate that hipping improves the resistance to crack 

growth since the tests on unhipped specimens were carried out at much lower stresses (see 

Table 2) and yet they exhibit generally higher growth rates. Moreover, the hipped crack 

growth data in Figure 4a shows a certain level of periodicity in crack growth retardation 

which is not clearly apparent in the unhipped data presented in Figure 3b. This periodicity is 

shown more clearly in Figure 4b in which a few selected curves are presented. What is of 

most interest is that this periodicity is observed at both tips of the crack analysed for the 

specimen loaded at max = 168 MPa. More details on this are provided in Section 3.3. 

 

 

Figure 4 (a) Short fatigue crack growth data for hipped alloy showing the effect of applied stress. max =168 

MPa, 176 MPa and 197 MPa for HIP Al0.7Si_1, HIP Al0.7Si_2 and HIP Al0.7Si_3 specimens respectively. (b) 

Selected short fatigue crack growth data for the hipped alloy showing periodicity in crack growth retardations. 

 

3.3 Micromechanisms of short crack growth 

 

Most fatigue cracks observed in the hipped alloys were found to initiate early (<1000 cycles) 

from either cracked or debonded intermetallic particles except for one case in which a fatigue 

crack was seen to initiate from a small pore as shown in Figure 5d. This particular specimen 

was tested at max= 197 MPa and exhibited significant crack coalescence. Final failure was 

due to the coalescence of at least 4 major cracks. For the hipped alloy specimen loaded at 

max=168 MPa, one major crack was thought to have initiated from a debonded intermetallic 

particle when observed under an optical microscope and SEM as shown in Figure 6. 

However, EBSD analysis indicated that this crack actually originated from a combined 

particle debonding and grain boundary decohesion as indicated in Figure 6e. Figure 7 shows 

that the propagation of one tip (tip A) of this crack is both transgranular and intergranular 

(Fig. 7c) with significant interaction with intermetallics as shown in Figures 7a & b. It seems 

that when the crack appears to be interdendritic in Figure 7a & b, it is actually mostly 

intergranular as shown by the EBSD grain boundary map in Figure 7c. The loading cycles at 

selected stages of crack growth are indicated along the crack profile in units of 1000 cycles. It 
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can be seen that most of the fatigue life is consumed during the early stages of crack growth. 

Note that crack retardation events can be identified in this figure and are seen to be mainly 

associated with grain boundaries and intermetallics during the early stages of crack growth 

(for example, compare 7a & c at about 235000 to 265000 loading cycles). 

 

Figure 5 Acetate replica images showing multiple crack initiation sites for the hipped specimen loaded at the 

highest max (197 MPa). Crack initiation was mainly from intermetallics except one case where a crack initiated 

from a small pore as shown in (d). 

 

 

Figure 6 Formation and early growth of a short fatigue crack in the specimen loaded at max=168 MPa. Replica 

images are shown in (a) to (c), an SEM image is shown in (d) and an EBSD grain boundary map in (e). 

 

To explore the crack growth retardation periodicity observed for this crack, the growth rate of 

individual tips was calculated and presented in terms of the corresponding loading cycles as 

well as K as shown in Figure 8. By comparing the retardation events observed in this figure 

with the corresponding locations in Figure 7, it can be seen that these are mainly associated 

with crack interaction with grain boundaries. The interaction of tip B of the same crack with 

intermetallics and grain boundaries was also investigated and is shown in Figure 9. Crack 

growth is again observed to be both intergranular and transgranular. However, in this case, 
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interdendritic crack growth within individual grains can be observed. By comparing Figure 9 

with Figure 10, it can be seen that most retardation events (and therefore the periodicity in 

growth rates noted in section 3.2) are associated with grain boundaries or intermetallics 

which are co-located with grain boundaries.  

 

 

Figure 7 Interaction of crack tip A with intermetallics (a & b) and grain boundaries (c) for the specimen tested at 

max=168 MPa.  

 

A close examination of the nature of interaction of the short cracks with intermetallics shows 

that the cracks tend to propagate along the particle/Al matrix interface. However, propagation 

through fractured particles is also frequently observed but this tends to be at the locations 

where the particles are either adjoining each other (possibly particle/particle debonding) or 

where the particle thickness is small (at least on the surface) and aligned normal to the crack 

plane. This is clearly shown in the representative higher magnification SEM image shown in 

11a. The image was taken along crack tip B from a location with K values starting from ~3 

MPam at its left hand side. 

 

The micromechanisms of short crack growth for the unhipped alloy repeat specimen was 

significantly controlled by porosity and exhibited multiple coalescence events due to multiple 

fatigue crack initiation at pores along the crack profile. In some cases, as many as 7 cracks 

could be observed to coalesce during crack growth. There were also several cases of crack-

pore interactions with microcracks emanating from the sharp corners of the pores especially 

if these corners were oriented towards the nominal crack growth direction (i.e. perpendicular 
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to the loading direction). However, there were occasional events in which cracks could still 

be seen originating from the sharp corners of pores which were oriented parallel to the 

loading direction. The short cracks were also observed to be both interdendritic and 

intradendritic but with a higher propensity for interdendritic crack growth and along 

particle/Al matrix interfaces. The optical image in Figure 11b provides typical examples of 

some of these observations. EBSD analysis was not carried out for this specimen; it is 

therefore difficult to ascertain the effect of grain boundaries especially on the pore-crack 

interactions or the overall crack-microstructure behaviour.  

 

 

Figure 8 Short crack retardation and arrest events of tip A vs. the corresponding loading cycles in (a) as 

identified using replicas (shown in Figure 7) and the corresponding K in (b). 

 

4. DISCUSSION 

The short fatigue crack growth data for both hipped and unhipped alloys show classical short 

crack behaviour which has been the subject of extensive research since it was first reported 

by Pearson.
64

 The explanations advanced for this behaviour are mainly centred on the 

invalidity of K as a suitable parameter to characterise short crack growth, absence of crack 

closure and microstructural effects. One significant observation in this work, which is not 

often reported, is the influence of the applied stress on the short crack growth behaviour. 

Figure 4a does indeed show increased crack growth rates with increase in the applied stress. 

This is not expected if the growth rates are characterised in terms of K. However, the use of 

K to characterise crack growth does implicitly assume small-scale yielding such that the 

size of the plastic zone at the crack tip is small with respect to the overall crack length
65

. This 

assumption is mostly violated in short cracks
66

 and the extent of this violation depends on the 

applied stress and the yield strength of the material,
45

 which affect the plastic zone size. 

Moreover, loading conditions used in this work result in a plastically deformed layer near the 

surface of the specimens right from the first loading cycle. This stress dependent global and 

local crack tip plasticity has been suggested to result in accelerated growth of short 

cracks
45,67,68

 and can be the cause of the stress dependent results observed in this work for this 

alloy system.  
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Figure 9 Interaction of tip B of the short crack, shown in Figure 6, with intermetallics and grain boundaries. 

 

The stress dependence of small crack growth has been previously reported by Caton et al.
45

 in 

a 319-type alloy which varied depending on the heat treatment condition and SDAS. 
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Moreover, Plumtree and co-workers
42,69

 have also reported higher short crack growth rates 

with increased strain amplitude in a squeeze-cast and extruded Al-1.4% Cu-1.2% Mg-1.4% 

Si-T6 alloy
69

 and in a squeeze-cast A356-T6 type alloy.
42

 Plumtree and Schafer
42

 indeed 

observed that at high applied strains ( = 1%), cracks grew at faster rates than those at low 

strains ( = 0.36%). Moreover, growth retardation was observed only for cracks at low 

strains, which is consistent with the observations in Figures 3b and 4a where crack arrest 

events disappear at higher applied stresses. 

 

 

Figure 10 Short crack retardation and arrest events of tip B vs. the corresponding loading cycles in (a) as 

identified using replicas and shown in Figure 9 and the corresponding K in (b). 

 

 

Figure 11 (a) SEM image of a section of crack in Figure 9(b)) showing its interaction with intermetallic particles 

(K~3 MPam at the left hand side of the image). (b) A typical example of short crack interaction with porosity 

in the repeat test of the unhipped alloy. 

 

Figure 3a shows that hipping improves the short crack growth resistance of this alloy as 

reported in Section 3.2. The improved short crack growth behaviour in the hipped alloy can 

be understood when reviewing the significant crack-pore interactions in the unhipped version 

as observed in the current study and previous work.
13

 Pore-induced crack growth 

micromechanisms in this alloy have been discussed in detail by Moffat
13

 and in a recent 

article by Mbuya et al.
70

 on the effect of hipping on long fatigue cracks. The unhipped alloy 

has an extensive network of crack-like shrinkage pores throughout its microstructure even 
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though the overall pore volume fraction is not that high. These pores are shown to be 

irregularly shaped with sharp curvature radii using 3D SRCT.
70

 Microcrack formation at 

these sharp corners is therefore easy due to the high local strains. Indeed, multiple crack 

initiation from pores was observed in the unhipped alloy both in the current work and in the 

previous work by Moffat
13

. These microcracks eventually coalesce and therefore the overall 

crack growth rate is expected to be much faster. Moreover, interaction of each individual 

crack tips with pores was also observed to be quite frequent as illustrated in Figure 11b. It is 

believed that microcracks are likely to form ahead of the crack tip at the sharp edges of such 

pores especially if favourably oriented normal to the loading direction.
71,72

 The advancing 

crack tip may then be attracted to and accelerated by these microcracks at pores. These 

processes are much more likely to occur in short cracks than in long cracks and have indeed 

been inferred from the replica records and the final crack profiles. 

 

Intermetallic particles are also observed to frequently interact with the short cracks in the 

unhipped alloy but their influence on the overall crack growth behaviour is mostly 

overshadowed by the influence of pores. However, intermetallics do play a role in 

determining the local crack growth behaviour at locations remote from pores. Moreover, it is 

expected that microcrack formation from pores is facilitated by the presence of intermetallics 

around the pore which serve to raise the local stresses and strains further.
39,40

 Figure 11b does 

indeed show some cases of particle debonding next to pores. 

 

Pore-induced short crack micromechanisms have not been observed in the hipped alloy but 

crack-particle interactions are indeed quite common as is the case even for the unhipped 

alloy. In all cases, the crack is seen to propagate in the interdendritic regions as well as within 

the primary Al dendrites (intradendritic). This is consistent with previous observations.
13

 

However, observations suggest that interdendritic crack growth is preferred in both the 

hipped and unhipped versions of the alloy as shown in Figures 7, 9 and 11a. The suggestion 

by Moffat
13

 that the cracks may have a propensity for intradendritic crack growth when 

remote from pores is not consistent with observations in the hipped alloy where porosity 

effects do not apply. Moreover, another key observation not reported previously for this alloy 

is that cracks preferentially propagate through the intermetallic/Al interfaces whenever they 

encounter such particles. This was also observed to occur in the hipped version of the 6.9 

wt.% Si alloy shown in Table 1.
53

 Although propagation through fractured particles is also 

observed, this is less frequent and mostly confined to thin favourably oriented particles 

(parallel to the loading direction). This result is consistent with observations of a precipitate 

free zone around intermetallic particles observed in aluminium alloys as discussed by 

Starink.
46

 The presence of a precipitate free zone means that the region around these particles 

is softer than the bulk Al matrix. Coupled with higher local stresses due to load transfer 

effects of the intermetallics, interface failure is expected to preferentially occur. Particle 

fracture can and will indeed occur in cases where the particle size and orientation are 

favourable for efficient load transfer as discussed in detail by Starink.
46 

 

The role of grain boundaries must however be considered when interpreting crack-

microstructure interactions and their impact on growth rates. Figures 7 and 9 do indeed show 

that most of what may be considered from simple optical and SEM to be interdendritic crack 

growth is in fact along grain boundaries. As such, the interface decohesion along 

intermetallic particles located at the grain boundaries could also be augmented by the 

precipitate free zones often observed at the grain boundary as previously reported by 

Mulvihill and Beevers.
73

 This also suggests that cracks are likely to preferentially propagate 

along grain boundaries since they provide a weaker path. The exception is when cracking in 
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the Al matrix is facilitated by, for example, slip band formation due to accumulation of 

localised plastic strain within the grain that may be intensified by the presence of 

intermetallics.  

 

A crack will therefore be expected to retard or arrest at a grain boundary as it is forced to 

deflect and grow along the boundary. It will continue to grow in this manner until conditions 

are favourable for it to enter into a new grain or it is unfavourable for it to continue along the 

boundary. The latter case is possible if it encounters a grain boundary triple point. This is 

consistent with observations in Figures 7 to 10, which show that crack growth retardations 

occur when the crack interacts with a grain boundary. Similar grain boundary crack growth 

retardations have previously been reported by Mulvihill and Beevers
73

 for an Al-4.5%Cu 

alloy. Several other researchers
39,47

 have observed similar grain boundary effects on the short 

crack growth behaviour in less microstructurally complex A356 type alloys. 

 

Crack growth retardation and arrest events are also observed at intermetallic particles in the 

hipped alloy. Crack retardation at particles may be partly associated with forced deflections 

as the crack seeks to propagate through the weak interfaces and as such will depend on the 

particle size and orientation relative to the plane of the crack tip. Intact (uncracked) particles 

oriented normal to the crack plane are expected to be effective barriers and the crack will be 

forced to deflect sharply in order to bypass the particle or continue to be arrested until the 

particle eventually fails. On the other hand, particles ahead of the crack tip which are oriented 

parallel to the crack plane are expected to offer least resistance along their interface. 

However, previously failed particles (debonded or fractured) situated ahead of the crack tip 

will naturally provide the weakest path. Some of these possible crack-particle interactions are 

discussed in detail in reference.
13

 Whether a particle acts as an effective barrier or a weak 

path ultimately depends on its load carrying capacity which depends on its size and 

orientation and whether it is already cracked or debonded by the time the crack interacts with 

it. 

 

5. CONCLUSIONS 

The influence of intermetallic phases and grain boundaries on the short fatigue crack growth 

behavior of a hipped cast Al-4Cu-3Ni-0.7Si piston alloy was investigated. The following 

conclusions can be drawn from the results obtained in this work: 

1. Hipping resulted in improved fatigue crack growth resistance which is attributed to 

the absence of pore-induced crack growth acceleration.  

2. Short fatigue crack growth was frequently observed to retard at intermetallic particles 

and grain boundaries in the hipped Al0.7Si alloy. Crack retardation at particles can be 

associated with the size and orientation of particles. Large uncracked particles 

oriented normal to the crack plane are effective barriers at which the crack will be 

forced to deflect sharply in order to bypass it or continue to be arrested until the 

particle eventually fails.  

3. The short crack growth was observed to be interdendritic and intradendritic as well as 

intergranular and transgranular in the hipped Al0.7Si alloy. However, there was a 

higher propensity for interdendritic and intergranular crack growth in this alloy.  

4. Finally, short cracks were observed to grow preferentially along the particle/Al 

interface whenever they encountered such particles. This is attributed to the higher 

local stresses due to load transfer effects and the presence of a precipitate free zone 

around intermetallic particles observed in aluminium alloys thus weakening the 

interface. Short crack propagation through fractured particles was also observed but 
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this was less frequent and mostly confined to thin particles oriented parallel to the 

loading direction.  
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