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Abstract:  

In this paper, a new model has been developed to predict the phase transformation 

behaviours from austenite to ferrite in Nb-containing low carbon steels. The new 

model is based on some previous work and incorporates the effects of Nb on phase 

transformation behaviours, in order to make it applicable for Nb-containing steels. 

Dissolved Nb atoms segregated at prior austenite grain boundaries increase the 

critical energy for ferrite nucleation, and thus the ferrite nucleation rate is decreased. 

Dissolved Nb atoms also apply a solute drag effect to the moving transformation 

interface, and the ferrite grain growth rate is also decreased. The overall 

transformation kinetics is then calculated according to the classic Johnson–Mehl–

Avrami–Kolmogorov (JMAK) theory. The new model predictions are quite consistent 

with experimental results for various steels during isothermal transformations or 

continuous cooling. 

Key words: niobium; transformation kinetics; nucleation rate; solute drag 
effect; low carbon steels 

 

1 Introduction  

Niobium is widely used as a micro-alloying element in steels as it can refine the grain 

size, which is beneficial for both strength and toughness, and provide precipitation 
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strengthening [1]. It has also been shown that Nb has a retardation effect on the 

transformation kinetics from austenite to ferrite, which is the most important phase 

transformation in many steel products [1-6]. It is quite beneficial for industry to utilise 

a metallurgical model to predict the transformation behaviour of Nb containing steels 

so that the heat treatment parameters can be optimised to increase the mechanical 

properties and reduce the cost with the minimum number of experimental trials [7]. It 

has been found that dissolved Nb atoms can delay both the nucleation rate and the 

grain growth rate during the transformation from austenite to ferrite [2]. There are 

currently many existing models for phase transformation kinetics predictions [4-10]. 

A metallurgical model which is developed by Parker and Bhadeshia [7-8], is one of 

the most complete phase transformation models for steels. From the model, the 

phase transformation kinetics is calculated step by step according to the temperature 

change or time increment, and at each step, the fraction of each phase is calculated. 

However, the effect of Nb is not considered in the model. In order to incorporate the 

effects of Nb on phase transformation kinetics from austenite to ferrite, the effect on 

both ferrite nucleation and grain growth should be considered. It is believed that 

dissolved Nb atoms in austenite can apply a solute drag effect during the 

transformation [2-4,6,11-14]. Although the solute drag effect caused by Mn has been 

studied for many years [15-19], the Nb induced solute drag effect still requires an 

accurate understanding and quantification. 

 

In the present paper, the effect of Nb on ferrite nucleation rate is quantified. The 

effect of Nb on ferrite grain growth rate is also discussed and quantified, and a Nb 

factor is incorporated to describe the delay effect of Nb on grain growth. A new 

model is developed by incorporating the effects of Nb on ferrite nucleation rate and 

grain growth rate into the Parker and Bhadeshia’s model, and the classic JMAK 

theory [20-22] is used to calculate the overall transformation kinetics. Dilatometer 

results of isothermal transformation and continuous cooling for different steels are 

utilised to verify the applicability of the new model. 
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2 Experimental procedure  

Four laboratory cast low carbon steels with the same base chemistry but different 

niobium contents were provided by Tata Steel, and their chemical compositions are 

listed in Table 1. Samples were cut into cylindrical shape with a length of 10 mm and 

a diameter of 5 mm for dilatometer testing. A dilatometer (DIL 805A/D) was utilised 

for heat treatments and recording transformation kinetics. ThermoCalc in conjunction 

with the TCFE v6 database was utilised for thermodynamic calculations, and to 

determine heat treatment temperatures. Heat treatment temperature profiles are 

shown in Figure 1 (a) and (b) for isothermal transformation and continuous cooling, 

respectively. Samples were heated to 1250°C for austenitisation and dissolution of 

pre-existing niobium precipitates and held at that temperature for different times to 

obtain an average prior austenite grain size of ~80 µm in steels 1-3 [4]. 

Austenitisation times were 5 seconds for Steel 1, 1 minute for Steel 2 and 5 minutes 

for Steel 3. Steel 4 was from a different batch of casts to Steels 1-3. It was not 

directly compared with Steels 1-3 for the transformation kinetics, but used as test 

samples with a different prior austenite grain size to validate the model. Steel 4 was 

held at 1250°C for 5 minutes resulting in an average prior austenite grain size of 

~60µm.  

 

After austenitisation at 1250°C, some samples were then fast cooled to isothermal 

transformation temperatures of 750°C, 725°C, 700°C, 675°C and 650°C, and held 

for 15 minutes, before being quenched to room temperature. Additional samples 

were fast cooled to 900°C from 1250°C, to avoid precipitation of any Nb in the 

austenite before transformation, and then continuously cooled to room temperature 

at a constant cooling rate from 0.1°C/s to 100°C/s. The dilatometer data and final 

microstructures were analysed to obtain the fraction transformed versus temperature 

or time curves. Full details of the dilatometry results and microstructural analysis 

were described in a previous paper [4]. 

Table 1: Chemical compositions of steels (wt. %) 
Steel C Nb N Si Mn Al Fe 

1 0.110 <0.001 0.006 0.23 0.99 0.034 Bal 
2 0.105 0.009 0.006 0.23 1.00 0.030 Bal 
3 0.105 0.028 0.006 0.23 0.99 0.031 Bal 
4 0.096 0.045 0.005 0.23 1.01 0.029 Bal 
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(a) 

 

 
(b) 

Figure 1: Temperature profiles for (a) isothermal transformation, and (b) continuous cooling. 

 

3 Nucleation rate 

Heterogeneous nucleation, which commonly occurs in phase transformations of 

steels, happens at high energy sites e.g. defects, interface, or impurities. In the case 

of low carbon steels, prior austenite grain boundaries are favoured sites for the 

heterogeneous nucleation of proeutectoid ferrite. For ferrite nucleation from austenite, 

the reduction in austenite grain boundary interfacial energy depends on the 

nucleation sites, i.e. grain faces, grain edges, and grain corners [7, 23]. Nucleation at 

  

Austenitisation 1250ºC, 5 s 
to 5 minutes 

Isothermal transformation, 
15 minutes 

  
100ºC/s 

Austenitisation 1250ºC, 5 s 
to 5 minutes 
 

  
Continuous cooling 

900ºC 
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each type of site results in a different interfacial energy change, and thus the 

probability of nucleation is also varied. However, the number densities of the grain 

boundary sites are also different. Therefore, the nucleation rate at each grain 

boundary site should be calculated separately. The allotriomorphic ferrite grain 

boundary nucleation rate per unit area is [7-9]: 

                                                  𝐼𝐼𝑏𝑏
𝑗𝑗 =

𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

𝑛𝑛𝑠𝑠
𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 �−

�𝐾𝐾2
𝑗𝑗𝐺𝐺∗ + 𝑄𝑄�
𝑘𝑘𝐵𝐵𝑇𝑇

�                                   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 1 

where j denotes grain faces, grain edges or grain corners (f, e, or c), 𝑛𝑛𝑠𝑠
𝑗𝑗 is a site 

factor about the density of active nucleation sites per unit area of grain boundary, Q 

is the activation energy for self-diffusion of iron, with a typical value of 240 kJ/mol, G* 

is the critical energy for nucleation, kB is the Boltzmann constant, h is the Planck 

constant, 𝐾𝐾2
𝑗𝑗 is a shape factor related to the austenite/ferrite interfacial energy per 

unit area, and T is the absolute temperature. The site factor 𝑛𝑛𝑠𝑠
𝑗𝑗 can be described as 

[7,24] : 

                                                                            𝑛𝑛𝑠𝑠
𝑓𝑓 =

𝐾𝐾1
2𝛿𝛿2

                                               𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 2(𝐸𝐸) 

                                                                            𝑛𝑛𝑠𝑠𝑒𝑒 =
𝐾𝐾1

2𝛿𝛿𝑑𝑑𝛾𝛾
                                            𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 2(𝑏𝑏) 

                                                                             𝑛𝑛𝑠𝑠𝑐𝑐 =
𝐾𝐾1

2𝑑𝑑𝛾𝛾2
                                              𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 2(𝑐𝑐) 

where 𝛿𝛿 is atomic spacing, taken as 0.25 nm, 𝑑𝑑𝛾𝛾 is the average prior austenite grain 

size, and 𝐾𝐾1 is a factor to describe the fraction of the active nucleation sites. There 

are a large number of potential nucleation sites on the grain boundary but only a 

small fraction of them will actually be activated. In this work, 𝐾𝐾1  is chosen as 

1.0 × 10−9, 𝐾𝐾2
𝑓𝑓 is 0.1, 𝐾𝐾2𝑒𝑒  is 0.01, and 𝐾𝐾2𝑐𝑐 is 0.001, in order to fit with experimental 

results but they are comparable with other published literature values [7,8]. The 

overall nucleation rate is: 

                                                                   𝐼𝐼𝑏𝑏 = 𝐼𝐼𝑏𝑏
𝑓𝑓 + 𝐼𝐼𝑏𝑏𝑒𝑒 + 𝐼𝐼𝑏𝑏𝑐𝑐                                                  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 3 

 

If the strain energy caused by nucleation is ignored, the critical energy for nucleation 

can be expressed as [7,8,25-27]: 

                                                                            𝐺𝐺∗ =
𝜎𝜎𝛾𝛾𝛾𝛾3

∆𝐺𝐺𝑉𝑉2
                                                     𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 4 



6 

where ∆𝐺𝐺𝑉𝑉  is the free energy change per unit volume for ferrite nucleation from 

supersaturated austenite, and 𝜎𝜎𝛾𝛾𝛾𝛾 is the austenite/ferrite nucleus interfacial energy 

per unit area, which is assumed not to vary with interfacial orientation or alloy 

chemistry. 

 

Many experimental results reported that dissolved Nb atoms have a retardation 

effect on transformation start point [1-4,27]. The presence of dissolved Nb atoms can 

decrease the nucleation rate. If all Nb atoms are in solid solution at the beginning of 

the phase transformation, they are likely to be present at higher concentrations at 

prior austenite grain boundaries, as schematically shown in Figure 2 (a). From the 

classic solute drag theory [17,18], there is a solute-boundary interaction energy 𝐸𝐸0′  if 

many dissolved atoms are segregated at a boundary, as shown in Figure 2 (b). It is 

reasonable to assume the solute-boundary interaction energy increases the critical 

energy for ferrite nucleation [2,27,28]. As a result, the ferrite nucleation rate is 

decreased due to the presence of dissolved Nb atoms. The effect of dissolved Nb 

atoms on the nucleation rate can be expressed by adding a ‘Nb factor’, 𝐸𝐸𝑁𝑁𝑏𝑏, to the 

classic nucleation rate equation which is shown in Equation 1, and thus the modified 

nucleation rate used in this research can be expressed in the following equation: 

                                            𝐼𝐼𝑏𝑏
𝑗𝑗 =

𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

𝑛𝑛𝑠𝑠
𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 �−

�𝐾𝐾2
𝑗𝑗[𝐺𝐺∗ + 𝐸𝐸𝑁𝑁𝑏𝑏] + 𝑄𝑄�

𝑘𝑘𝐵𝐵𝑇𝑇
�                           𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 5 

where 𝐸𝐸𝑁𝑁𝑏𝑏 is the Nb factor which influences the critical energy for ferrite nucleation. 

From classic solute drag theory [17,18], the solute-boundary interaction energy 

𝐸𝐸0′~𝑘𝑘𝐵𝐵𝑇𝑇 , therefore, the Nb effect on the critical energy for ferrite nucleation is 

proposed in this work as: 

                                                                           𝐸𝐸𝑁𝑁𝑏𝑏 =
𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇
𝐾𝐾2
𝑗𝑗 𝐶𝐶𝑁𝑁𝑏𝑏                                         𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 6 

where CNb is the Nb content in weight percent, and α = -75 is a constant fitted with 

experimental results. 

 

If the effect of Nb on the nucleation rate is not considered, the calculated nucleation 

rates using Equation 1 for steels 1-3 during isothermal holding at 750°C are shown in 

Figure 3 (a). It can be seen that steel 3 with a higher Nb content even has the slightly 

faster nucleation rate than steels 1 and 2, because Nb also has an effect on 
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thermodynamic properties of steels. The nucleation rate decreases with time 

because the free energy for the transformation ∆𝐺𝐺𝑉𝑉 becomes less with the formation 

of ferrite. However, if the effect of Nb on nucleation rate is incorporated, i.e. 

Equations 5 and 6 are applied, the modified nucleation rates for steels 1-3 can be 

calculated and have been plotted in Figure 3 (b). Steel 3 with a high Nb content has 

a much slower nucleation rate than steels 1 and 2. The modified nucleation rates at 

the beginning of an isothermal transformation as a function of temperature between 

675°C and 750°C for steels 1-3 have been calculated and plotted in Figure 4 (a). 

Steel 3 with a higher Nb content always has the lowest nucleation rate, and steel 1 

always has the highest nucleation rate. After incorporation of the Nb effect, the 

critical energy for nucleation has been changed to (𝐺𝐺∗ + 𝐸𝐸𝑁𝑁𝑏𝑏), and the corresponding 

curves of the modified critical energy for nucleation at the beginning of an isothermal 

transformation as a function of temperature for steels 1-3 are plotted in Figure 4 (b). 

The presence of dissolved Nb atoms increases the critical energy for nucleation, and 

thus steel 3, containing 0.028 wt. % Nb, requires a greater driving force for ferrite 

nucleation than steels 1 and 2. 

 

  
(a) (b) 

Figure 2: Schematic diagrams of (a) Nb concentration profile across an interface, and 
(b) chemical potential profile across the interface. 

 

  

N
b 

co
nc

en
tra

tio
n 

0 Distance Distance 

C
he

m
ic

al
 p

ot
en

tia
l 

0 

𝐸𝐸0′  



8 

  
(a) (b) 

Figure 3: Calculated ferrite nucleation rate as a function of holding time at 750°C for 
steels 1-3 (a) using the pre-existing model developed by Parker without the 
incorporation of the Nb factor, and (b) using the new model with the effect of Nb being 
taken into account (Equations 5 and 6). 

 

  
(a) (b) 

Figure 4: (a) Calculated ferrite nucleation rate, and (b) calculated critical energy for 
ferrite nucleation, as a function of temperature for steels 1-3 at the beginning of an 
isothermal transformation using the new model with the effect of Nb being taken into 
account (Equations 5 and 6). 
 

4 Grain growth 

For a typical transformation from austenite to allotriomorphic ferrite, carbon is 

partitioned ahead of the transformation front into untransformed austenite. In the 

case of paraequilibrium, the ferrite growth rate can be considered to be controlled by 

the diffusion of carbon. The carbon diffusion profile across the transformation 

interface can be schematically illustrated as shown in Figure 5. According to Parker 

[7], the velocity of the interface movement can be expressed as [7,23]: 

                                                             
𝑑𝑑𝑑𝑑
𝑑𝑑𝐸𝐸

=
𝐷𝐷𝐶𝐶

(𝑒𝑒𝛾𝛾𝛾𝛾 − 𝑒𝑒𝛾𝛾𝛾𝛾)
(𝑒𝑒𝛾𝛾𝛾𝛾 − �̅�𝑒)2

2𝑑𝑑(�̅�𝑒 − 𝑒𝑒𝛾𝛾𝛾𝛾)
                            𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 7 

0.0E+00

4.0E+05

8.0E+05

1.2E+06

1.6E+06

0 50 100 150 200

N
uc

le
at

io
n 

ra
te

 (m
2 s

-1
) 

Time (s) 

Steel 1

Steel 2

Steel 3

0.0E+00

4.0E+05

8.0E+05

1.2E+06

1.6E+06

0 50 100 150 200

N
uc

le
at

io
n 

ra
te

 (m
2 s

-1
) 

Time (s) 

Steel 1
Steel 2
Steel 3

660

690

720

750

780

1.0E+05 1.0E+06 1.0E+07 1.0E+08

Te
m

pe
ra

tu
re

 (°
C

) 

Nucleation rate (m2s-1) 

Steel 1

Steel 2

Steel 3

660

690

720

750

780

0 2 4 6 8

Te
m

pe
ra

tu
re

(°
C

) 

(G*+ENb) * 1.0E+19 (J)  

Steel 1

Steel 2

Steel 3



9 

where 𝐷𝐷𝐶𝐶 is the carbon diffusivity in austenite, 𝑒𝑒𝛾𝛾𝛾𝛾 is the mole fraction of carbon in 

austenite in equilibrium with ferrite, 𝑒𝑒𝛾𝛾𝛾𝛾  is the mole fraction of carbon in ferrite in 

equilibrium with austenite, �̅�𝑒 is the mole fraction of carbon in the bulk austenite, z is 

distance moved by the interface, and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the moving rate of the interface. It is well 

known that allotriomorphic ferrite has a parabolic growth rate, and the growth rate is 

slowed down with increasing transformation time, because the distance for carbon 

atoms diffusion becomes longer. The parabolic growth of ferrite grains can be 

mathematically expressed as [23]: 

                                                                                  𝑑𝑑 = 𝛼𝛼1𝐸𝐸
1
2                                                𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 8 

where 𝛼𝛼1  is the one-dimensional parabolic rate constant, and thus 𝛼𝛼1  can be 

calculated from [7]: 

                                                              𝛼𝛼1 = �
𝐷𝐷𝐶𝐶(𝑒𝑒𝛾𝛾𝛾𝛾 − �̅�𝑒)2

2(𝑒𝑒𝛾𝛾𝛾𝛾 − 𝑒𝑒𝛾𝛾𝛾𝛾)(�̅�𝑒 − 𝑒𝑒𝛾𝛾𝛾𝛾)
�

1
2

                         𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 9 

 
Figure 5: Schematic diagram illustrating the carbon diffusion profile across a moving 
austenite/ferrite interface with a rate of 𝒅𝒅𝒅𝒅

𝒅𝒅𝒅𝒅
. Carbon atoms partition from the shaded 

area A to the shaded area B [7]. 
 

Dissolved Nb atoms can apply a solute drag effect on transformation fronts to delay 

interface mobility. Since the ferrite growth rate is assumed to be controlled by carbon 

diffusion, the solute drag effect caused by dissolved Nb atoms can be considered as 

an increment in activation energy for carbon diffusion.  
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                                 𝐷𝐷𝐶𝐶 = 𝐷𝐷0 × 𝑒𝑒�−
𝑄𝑄𝐶𝐶+𝑄𝑄𝑁𝑁𝑁𝑁,𝑇𝑇

𝑅𝑅𝑅𝑅 � = 𝐷𝐷0 × exp �−
𝑄𝑄𝐶𝐶
𝑅𝑅𝑇𝑇

� × 𝑓𝑓(𝑁𝑁𝑏𝑏,𝑇𝑇)        𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 10 

where 𝐷𝐷0 is the pre-exponent factor, 𝑄𝑄𝐶𝐶 is the activation energy for carbon diffusion 

without the effect of Nb, 𝑄𝑄𝑁𝑁𝑏𝑏,𝑅𝑅 is the extra activation energy applied by dissolved Nb 

atoms, R is the gas constant, and T is the temperature (K). In this equation, the Nb 

solute drag factor can be expressed as  

𝑓𝑓(𝑁𝑁𝑏𝑏,𝑇𝑇) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐶𝐶𝑁𝑁𝑏𝑏𝑛𝑛
(a3T3 + a2T2 + a1T)

RT
� 

                                                                                                                                                  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 11 

where a1, a2,a3, and n are all fitting constants, and CNb is the Nb content in weight 

percent. All the constants have been determined by fitting to the isothermal 

transformation kinetics derived from dilatometer results at 750°C, 725°C, 700°C and 

675°C for steels 2 and 3 [4] as shown in Table 2. Calculated values of the Nb solute 

drag factor as a function of temperature for steels 2 and 3 are plotted in Figure 6. It 

can be seen that it is a C shape curve like typical TTT curves, and steel 3 with a 

higher Nb content always has a lower value than steel 2. A lower value of the Nb 

solute drag factor indicates a stronger delay effect on grain growth (Equation 11). 

From Figure 6, the solute drag factor firstly becomes stronger with decreasing 

temperature towards the nose of the curve, but it then becomes weaker with a 

further decrease in temperature. This is because the solute drag effect varies with 

interface mobility, and the phase transformation mechanism has a trend to transfer 

from reconstructive mode to displacive mode with decreasing temperature. 

 

The overall transformation kinetics can be calculated using the classic Johnson-

Mehl-Avrami-Kolmogorov (JMAK) theory [20-22]. For a parabolic growth of disc-

shaped ferrite particles, the extent of transformation can then be calculated by [7-9]: 

εα = 1 − exp �−𝑆𝑆𝑣𝑣𝛼𝛼1𝐸𝐸
1
2 � �1 − exp [−

𝜋𝜋
2
𝐼𝐼𝑏𝑏η𝛾𝛾2𝛼𝛼12𝐸𝐸2(1 − 𝜙𝜙4)]�

1

0
𝑑𝑑𝜙𝜙� 

                                                                                                                                                 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 12 

                                                                               𝜙𝜙 =
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where y is the distance between the interaction area of a particle with a parallel 

plane to the austenite grain boundary, 𝑆𝑆𝑣𝑣 is the grain boundary surface area per unit 
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volume, calculated as 2/dγ, and ηα  is the aspect ratio (radius to thickness) of a 

particle, taken as 3 for a disc of ferrite nucleated on an austenite grain boundary [7,8]. 

 

Table 2: Values of the fitting factors for the Nb solute drag factor 
Fitting factor a1 a2 a3 n 

Value -1.39*104 28.4 -0.014 0.5 

 

 

Figure 6: The relationship between f(Nb,T) and temperatures for steels 2 and 3 in the 
new model which contains the modified factor for the influence of Nb taking into 
account temperature and Nb concentration. 
 

5 Validation of the model 

The new model was used to predict isothermal transformation kinetics at 750°C and 

700°C for steels 1-4, as shown in Figure 7 (a) and (b). Very good agreement 

between the model and experimental data was obtained. Although the new model 

was proposed based on the isothermal transformation kinetics for steels 2 and 3, it 

also successfully predicted the isothermal transformation kinetics for steel 4 with a 

higher Nb content. In addition, the new model predictions, the predictions from the 

original model without the Nb effects, and the experimental results for continuous 

cooling kinetics for steels 1 and 3 at different cooling rates are compared in Figure 8. 

For the Nb free steel 1, both the new model predictions and the original model 

predictions have good consistency with the experimental results. For the Nb 

containing steel 3, the new model predictions have much better accuracy than the 

original model, especially for the 50% transformation temperature. These successful 

predictions on the continuous cooling transformation data, which were not used to 

tune the model, validate and indicate the accuracy of the new model. 
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(a) (b) 

Figure 7: Comparisons between new model predictions and experimental data for 
steels 1, 2, 3 and 4 isothermal transformations at (a) 750°C, and (b) 700°C. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8: Comparisons of transformation kinetics during continuous cooling between 
experimental results from the dilatometer and the modelling predictions: (a) T0.1% for 
steel 1, (b) T0.1% for steel 3, (c) T5% for steel 1, (d) T5% for steel 3, (e) T50% for steel 
1, and (f) T50% for steel 3. 
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In order to further prove the accuracy of the new model, it was also used to predict 

the isothermal transformation start times for some other steels with Nb contents of 0 

wt. %, 0.011 wt. %, and 0.05 wt. %, respectively. The transformation start points of 

these steels have been experimentally determined by Tata Steel using dilatometry a 

few years ago [29], and they are compared with the new model predictions, as 

shown in Figure 9. It can be found that the predicted TTT diagrams using the new 

model are generally consistent with the trend of the experimental results. From all 

these comparisons, the new model has been validated and shown to be an accurate 

model to predict the transformation kinetics for these types of low alloy Nb containing 

steels, and the modification of the nucleation rate and the grain growth rate 

calculations appears to be successful. 

 

  
(a) (b) 

 

 

(c)  

Figure 9: TTT diagrams of the new model predictions and Tata Steel previous results [29] for 
(a) a Nb free steel, (b) a steel with 0.011 wt. % Nb, and (c) a steel with 0.05 wt. % Nb. 
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6 Conclusions 

This paper presents the incorporation of the effects of Nb into a phase 

transformation model together with the validation of the new model. It is well known 

that the presence of Nb causes a retardation effect on transformation kinetics. The 

effects of Nb on transformation kinetics can be attributed to the effect on nucleation 

rate and the effect on grain growth rate. Segregation of dissolved Nb atoms at prior 

austenite grain boundaries increases the critical energy for ferrite nucleation, and 

thus the nucleation rate is reduced. The solute drag effect of Nb on the ferrite grain 

growth rate can be considered as an increment in the activation energy for carbon 

diffusion. After incorporation of the Nb effects, the new model predictions were quite 

consistent with experimental results for different Nb containing steels isothermally 

transformed at various temperatures, and also continuously cooled at different 

cooling rates. Therefore, the new model is proved to be successful for transformation 

kinetics prediction for Nb containing steels. 
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