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Abstract: Essential oils (EOs) of clary sage and black pepper induce changes in the
morphology of poly(lactic acid) (PLA) electrospun fibres. The chemical composition of the oils
is analysed by gas chromatography-mass spectrometry and Fourier-transform infrared spectroscopy;
while the evaporation rate of the EOs and their main chemical components is characterised by
Thermogravimetric Analysis. The addition of EOs generate thermodynamic instabilities during
the electrospinning process, leading to the formation of fibres with either wrinkled (for clary sage
oil) or nano-textured surfaces (for black pepper oil). The morphology of the PLA-EOs fibres is
investigated by Scanning Electron Microscopy. Together with a well-defined structure, the fibres
produced also possess antibacterial activity, as demonstrated by viability loss tests conducted on
E. coli and S. epidermidis. Bacteria inactivation efficiency of 76 and 100% is reported for the composite
PLA/essential oils electrospun mats. The composite mats produced are promising in the biomedical
field, where nanotopography offers physical cues to regulate cell behaviour, and the delivery of
therapeutic compounds (essential oils) limits microbial growth.

Keywords: electrospinning; phase separation; plant extracts; poly(lactic acid)

1. Introduction

Essential oils (EOs) are usually extracted from aromatic plants by steam distillation and they are
natural complex mixtures of many different low molecular weight compounds, such as terpenoids
and phenylpropanoids [1,2]. EOs are widely used in food preservation, agriculture and pharmaceutics,
due to their anti-bacterial, anti-fungal, anti-oxidation and anti-inflammation properties [3,4]. In recent
years, the encapsulation of essential oils into polymeric nanofibres produced by electrospinning has
gained increasing interests, because of the possibility of achieving a longer and more controlled release
of those bioactive agents if compared with other delivery methods [5].

Electrospinning is an electro-hydrodynamic process that allows the extrusion of polymer fibres
by the application of an electric force [6]. By adjusting the operational parameters and the rheological
properties of the material to be spun, fibres with desired size, chemistry and surface properties (fibres
decorated with pores, papillae or knots) can be produced. It has been demonstrated that electrospun
mats containing essential oils, such as cinnamon [7–9], tea tree [10], thyme [11] and lavender [12,13],
are promising as advanced wound dressings and smart food packaging systems. Rieger et al. have
demonstrated the electrospinning of cinnamon EO in a chitosan matrix, obtaining nanofibres with
an inactivation rate higher than 70% for bacteria responsible for skin infections (Escherichia coli and
Pseudomonas aeruginosa) [9]. T. Uyar and collaborators have proposed nanofibres that incorporate
cyclodextrin inclusions (CD-ICs) of volatile compounds from essential oils, such as linalool and
thymol, for their antibacterial efficiency against E. coli and Staphylococcus aureus [14,15]. Lavender
and Syzygium aromaticum (clove) oils have been encapsulated in polyacrylonitrile nanofibers [13,16].
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The composite fibres were cytocompatible (high viability of fibroblast cells) and effective against
Gram positive and Gram negative bacteria (E. coli, S. aureus, Bacillus subtilis and Klebsiella pneumonia).
Z. Karami et al. have produced electrospun poly(caprolactone) and poly(lactic acid) mats encapsulating
herbal thymol (from thyme EO) for the treatment of skin infections induced by E. coli and S. aureus [11].
In vivo studies on mice showed that the nanofibrous dressings promoted wound closure and enhanced
granulation tissue formation and re-epithelialization of the injured tissue. Those and other studies
have established that EOs impart bioactivity to electrospun fibres by making them, for example,
effective for the treatment of bacterial colonisation and skin inflammations, and for the inhibition of
oxidative processes [5]. However, the effects of EOs on the morphology of electrospun mats have not
yet been investigated.

Here, the role played by the chemical composition of clary sage and black pepper essential oils
on the topography of electrospun poly(lactic acid) fibres is discussed. Particular attention is given
to phase separation phenomena happening during the electrospinning process as a consequence of
the evaporation of the most volatile components of EOs and their poor miscibility with the polymer.
Morphological investigations of the electrospun mats are combined with chemical and thermal analysis
of the essential oils, in order to identify the chemicals mainly responsible for the structural changes
observed. Antibacterial tests using two model microorganisms confirm that the ability of both clary
sage and black pepper EOs to inhibit bacteria growth is not affected by the electrospinning process.

2. Materials and Methods

2.1. Materials

Poly(lactic acid) (PLA 4060D, molecular weight of 120,000 g/mol, amorphous polymer with an
L-lactide content of around 88 wt%) was obtained from Nature Workds LLC. Clary sage essential oil
(extracts of Salvia sclarea) and black pepper essential oil (extracts of Piper nigrum) were obtained from
Umber Maitreya Natura (Bolzano, Italy). Acetone, α-pinene (C10H16, Mw = 136 g/mol), β-pinene
(C10H16, Mw = 136 g/mol), limonene (C10H16 Mw = 136 g/mol) and β-caryophyllene (C15H24 Mw

= 204 g/mol) were purchased from Sigma-Aldrich (Gillingham, United Kingdom). Escherichia coli
(E. coli, K12 DLB MG2 566, Gram-negative bacterium) and Staphylococcus epidermidis (S. epidermidis,
NCTC 1457, Gram-positive bacterium) were obtained from National Collection of Type Cultures
(NCTC, Salisbury, UK). Linalyl acetate (C12H20O2, Mw = 196 g/mol), Ringer’s solution, LB broth,
Miller (powder, BP1426-500) and LB agar (powder, BP1425-2) were purchased from Fisher Scientific
(Loughborough, UK).

2.2. Electrospinning Process

PLA solutions for electrospinning were prepared by dissolving the polymer in acetone at a
concentration of 14% w/v. Clary sage essential oil (CS-EO) or black pepper essential oil (BP-EO) were
then added to the PLA/acetone solutions. Concentration of 5.0, 7.5, 10.0 and 15.0% v/v of essential
oils were used. PLA solutions containing linalyl acetate, α-pinene, limonene or β-caryophyllene were
prepared by dissolving 14% w/v PLA in acetone and then adding 10% v/v of the chemical compound.

For the electrospinning process, a 1 mL syringe with a 23G needle was filled with the polymer
solutions prepared (PLA/acetone or PLA/acetone/EOs) and connected to a syringe pump (New Era
Pump System, NE-300, New York, NY, USA). The flow rate was set at 0.7 mL/h. The needle was
clamped to the positive electrode of a high voltage power supply (S1500032-0, Linari Engineering
s.r.l., Pisa, Italy), generating a voltage of 12 kV, while the ground electrode was connected to
an aluminium collector (air gap distance of 15 cm). All experiments were conducted in normal
environmental conditions.
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2.3. Morphological Investigations

The morphology of the electrospun fibres was analysed by Field Emission Gun Scanning Electron
Microscopy (FEGSEM, LEO 1530VP, LEO Elektronenmikroskopie GmbH, Oberkochen, Germany).
Prior to observation, the fibrous mats were cut into small pieces (0.3 cm × 0.3 cm), stuck on aluminium
stubs by carbon adhesive tapes and then coated using a palladium/gold sputter coater for 90 s
(Emitech SC7640 Sputter Coater, Polaron, Laughton, United Kingdom) to produce a conductive surface.
The average diameter of the fibres was determined by processing the FEGSEM images using ImageJ
(Version 1.52c, National Institute of Heath, Bethesda, MD, USA). Up to 60 fibres were analysed for
each type of sample.

2.4. Differential Scanning Calorimetry

The glass transition temperature (Tg) of the electrospun mats was investigated by differential
scanning calorimetry (DSC, TA Instruments Calorimetric Analyser, Elstree, UK) in the temperature
range between −20 ◦C and 100 ◦C. The samples (5 mg) were tested at a heating/cooling rate of
10 ◦C/min in three scans: heating, cooling and heating. The onset point of the temperature step change
of each sample from the second heating run was obtained as glass transition temperature.

2.5. Chemical Characterisation of the Essential Oils

The chemical composition of clary sage and black pepper essential oil was characterised by Gas
Chromatography-Mass Spectroscopy (GC-MS, Varian, Santa Clara, CA, USA). The essential oils were
diluted 25 times with ethyl acetate and analysed using a Hewlett Packard mass detector and a HP-5MS
column (length 30 m, inner diameter 0.25 mm, film thickness 0.25 µm). The injector, GC-MS interphase,
ion source and selective mass detector temperature were maintained at 250, 280, 250 and 150 ◦C.
The oven temperature for both oils was programmed as follows: 60 ◦C (1 min), 60–185 ◦C (1.5 ◦C/min),
185 ◦C (1 min), 185–275 ◦C (9 ◦C/min), 275 ◦C (2 min). Split injection was performed with helium
as carrier gas, with a flow rate of 1.1602 mL/min. The split ratio of the column was fixed at 40:1.
The pressure of the column was set at 9.4 psi. The components were identified by comparing the mass
spectra obtained with mass spectra of standards obtained with the same column.

Fourier Transform Infrared Spectroscopy (FTIR) analysis was carried out using Attenuated Total
Reflection Infrared (ATR-IR) technique (FTIR-8400S instrument, Shimadzu, Columbia, DC, USA).
The range of scan was 600–2500 cm−1 with 64 scans and resolution of 4 cm−1.

2.6. Thermogravimetric Analysis

The evaporation rate of the pure essential oils and their main components was analysed by
Thermogravimetric Analysis (TGA, TA Instruments Q5000IR, Elstree, UK). The mass loss of each
sample was recorded for 1200 min at a constant temperature of 30 ◦C.

2.7. Antibacterial Tests

The antibacterial properties of the electrospun mats were tested against two model
microorganisms, E. coli and S. epidermidis using AATCC Test method 100–2004 (viability loss) [17].
First, 2 bottles of LB broth solution (2.5 g LB broth powder was dissolved in 100 mL water) and 300 mL
molten LB agar (1.2 g LB agar powder was dissolved in 300 mL water) were prepared and sterilized
in autoclave at 121 ◦C for 15 min. After the temperature of the LB broth solution dropped to room
temperature, single bacteria culture of each test strain was transferred to the prepared LB broth using
sterilized inoculating loops. The bacteria culture in the broth solution was grown overnight at 37 ◦C in
a rotary shaker (Fisher Scientific, Loughborough, UK). The broth solutions with E. coli and S. epidermidis
bacterial cells were then diluted to 103 cells/mL and 104 cells/mL by sterilized Ringer’s solution,
respectively. The molten LB agar was poured into petri dishes and left at room temperature for 30 min
to set. 20 mg of electrospun fibrous mats (PLA, PLA/CS-EO and PLA/BP-EO mats) were cut into
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small pieces and placed at the bottom of glass jars. The jars were filled with 1.5 mL of bacteria dilution
(E. coli and S. epidermidis dilutions) in order to completely cover the electrospun samples. The jars
were thoroughly shaken. Next, 30 µL of liquid containing bacteria were taken from the jars, spread
onto the freshly prepared agar plates and incubated at 30 ◦C for 24 h (“0 h contact time” samples).
The jars with the remaining bacterial dilutions and the electrospun fibres were incubated at 30 ◦C for
24 h. After 24 h, 30 µL of the bacterial solution were spread onto the agar plates and incubated at 30 ◦C
for 24 h (“24 h contact time” samples). The colony-forming units (CFU) were counted for “0 h contact
time” and “24 h contact time” samples. The loss of bacteria viability was calculated according to:

loss o f viability (%) =
B − A

B
× 100%

where A is the number of bacteria recovered from the inoculated samples in the jar incubated for
24 h; B is the number of bacteria recovered from the inoculated samples in the jar immediately after
inoculation (at 0 h contact time). Each test was run in triplicates.

3. Results and Discussion

Poly(lactic acid) fibres are widely used in biomedical, textile and food packaging sectors, due to their
biocompatibility, biodegradability and mechanical properties [18]. PLA electrospun mats can be easily
produced from acetone solutions with a polymer concentration ranging from 12.5% to 15.0% w/v [10,19,20].
For this work, a concentration of 14% w/v was selected, in order to obtain PLA fibres free from defects and
beads and with an average diameter of (1.1 ± 0.5) µm (Figure 1a). As shown in Figure 1b, the addition
of 10% v/v of clary sage essential oil to the PLA/acetone solution (PLA/CS-EO) resulted in highly
interconnected fibres with a wrinkled surface. The formation of junctions between fibres and the
inter-fibre bonding was attributed to the low glass transition temperature of the composite fibres
and to the chemical composition of clary sage EO (as it will be discussed later) [10]. DSC investigations
indicated a reduction of Tg. Values of Tg of (15 ± 3) ◦C and (52 ± 2) ◦C were measured for PLA/CS-EO and
PLA fibres, respectively (DSC graphs are shown in the Supplementary Data, Figure S1). This determined
fibre coalescence and fusion at the fibre-fibre junctions [21,22]. A change in glass transition temperature
was detected also for PLA fibres containing 10% v/v of black pepper essential oil (PLA/BP-EO), Tg of
(31 ± 3) ◦C, but no fusion between fibres was observed (DSC graphs are shown in the Supplementary
Data, Figure S1). PLA/BP-EO fibres were characterised by a cylindrical shape with average diameter
of (1.4 ± 0.2) µm (Figure 1c). The presence of black pepper EO was responsible for the emergence of
nano-pores and nano-features onto the surfaces of the fibres (Figure 1d). Each single PLA/BP-EO fibre
was covered with pores elongated along the main axis of the fibre, which is the direction of polymer
stretching during the electrospinning process. An average of (17 ± 3) pores per µm2 of fibre’s area was
measured. It was observed that the density of the surface nano-features varied with the amount of EO
used and that a concentration of 10% v/v of BP-EO was suitable to obtain a uniform distribution of
well-defined pores (Figure S2 of the Supplementary Data).

In order to discuss the role that the chemical composition of clary sage and black pepper EOs
played on the morphology of the fibres, GC-MS and FTIR analyses of the essential oils were conducted.
GC-MS was used to identify the main chemical components of each EO, since they can vary across
different regions of extraction. Figure 2a,b show the chromatograms and the assigned main constituents
of clary sage EO (Salvia sclarea) and black pepper EO (Piper nigrum), respectively. Linalool, terpineol
and linalyl acetate were detected for clary sage EO, with retention times of 13.68, 19.51 and 24.95 min,
respectively [23,24]. Intense peaks at retention times of 5.85, 7.28, 9.56 and 36.77 min were, instead,
identified for black pepper EO, corresponding to α-pinene, β-pinene, limonene and β-caryophyllene,
respectively [25,26]. The mass spectra of the main components of clary sage and black pepper EO are
shown in Figure S3. FTIR investigations confirmed that the clary sage EO used is indeed rich in linalyl
acetate, whose characteristic peaks are visible in Figure 2c: ν(C=O) at 1736 cm−1, ν(C=C) at 1645 cm−1

and ν(C–O) at 1236, 1172, 1109 and 1016 cm−1 [27,28]. The spectrum of black pepper EO has the bands
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characteristics of α-pinene, limonene and β-Caryophyllene (Figure 2d): ν(C=C), ω(CH2), ω(C–H) of
α-pinene at 1658, 886, 787 cm−1, respectively [29]; ν(C=C), δ(CH2) and ω(C–H) of limonene at 1644,
1437 and 885 cm−1, respectively [30,31]; ν(C=C), δ(CH2), δ(CH3) and ω(CH2) of β-Caryophyllene at
1635, 1447, 1369 and 885 cm−1, respectively [29,32].Materials 2018, 11, x FOR PEER REVIEW  5 of 11 
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Figure 2. (a) Chromatogram of clary sage EO, where 1: linalool, 2: terpineol, 3: linalyl acetate;
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(c) FTIR spectra of pure clary sage EO and linalyl acetate; (d) FTIR spectra of pure black pepper EO,
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The chemical compounds identified as main constituents of clary sage and black pepper EOs
possess different evaporation rates, which predominantly governed the morphology observed for
PLA/CS-EO and PLA/BP-EO fibres [33,34]. The isothermal TGA curves in Figure 3a show that
CS-EO had a linear evaporation profile, with a mass loss of circa 40% after 1200 min. A similar linear
behaviour was reported for linalyl acetate but with a weight loss of 90% after 1200 min (vapour
pressure of 0.005 mmHg at 20 ◦C). Instead, BP-EO exhibited a two-stage mass loss profile (Figure 3b):
50% weight was lost in the first 200 min; whereas a mass loss of circa 15% was recorded in the remaining
1000 min. The immediate evaporation of BP-EO was correlated to the presence of volatile components.
Both α-pinene and limonene evaporated completely in less than 200 min (vapour pressure of 4.5 and
3.3 mmHg at 20 ◦C, respectively). On the contrary, 70% of β-caryophyllene was still present after
1200 min (0.003 mmHg at 20 ◦C, respectively).

Materials 2018, 11, x FOR PEER REVIEW  6 of 11 

 

The chemical compounds identified as main constituents of clary sage and black pepper EOs 
possess different evaporation rates, which predominantly governed the morphology observed for 
PLA/CS-EO and PLA/BP-EO fibres [33,34]. The isothermal TGA curves in Figure 3a show that CS-EO 
had a linear evaporation profile, with a mass loss of circa 40% after 1200 min. A similar linear 
behaviour was reported for linalyl acetate but with a weight loss of 90% after 1200 min (vapour 
pressure of 0.005 mmHg at 20 °C). Instead, BP-EO exhibited a two-stage mass loss profile (Figure 3b): 
50% weight was lost in the first 200 min; whereas a mass loss of circa 15% was recorded in the 
remaining 1000 min. The immediate evaporation of BP-EO was correlated to the presence of volatile 
components. Both α-pinene and limonene evaporated completely in less than 200 min (vapour 
pressure of 4.5 and 3.3 mmHg at 20 °C, respectively). On the contrary, 70% of β-caryophyllene was 
still present after 1200 min (0.003 mmHg at 20 °C, respectively). 

 
Figure 3. TGA curves of (a) clary sage EO and linalyl acetate; (b) black pepper EO, α-pinene, limonene 
and β-caryophyllene. 

According to the TGA data, it is expected that, during the electrospinning process, BP-EO will 
evaporate more quickly than CS-EO, resulting in the formation of highly porous fibres. Studies in the 
literature have demonstrated that porosity can be generated onto polymer fibres by phase separation 
phenomena during electrospinning, which are associated with the use of high vapour pressure 
solvents [35–38]. Two mechanisms of phase separation are possible during fibres’ spinning: thermally 
and non-solvent induced phase separation. In the first situation, the fast evaporation of the solvent 
determines a temperature reduction of the ejected solution, resulting in polymer-rich and polymer-
lean regions. After the complete evaporation of the solvent, the polymer-lean domains will originate 

Figure 3. TGA curves of (a) clary sage EO and linalyl acetate; (b) black pepper EO, α-pinene, limonene
and β-caryophyllene.

According to the TGA data, it is expected that, during the electrospinning process, BP-EO will
evaporate more quickly than CS-EO, resulting in the formation of highly porous fibres. Studies
in the literature have demonstrated that porosity can be generated onto polymer fibres by phase
separation phenomena during electrospinning, which are associated with the use of high vapour
pressure solvents [35–38]. Two mechanisms of phase separation are possible during fibres’ spinning:
thermally and non-solvent induced phase separation. In the first situation, the fast evaporation of
the solvent determines a temperature reduction of the ejected solution, resulting in polymer-rich and
polymer-lean regions. After the complete evaporation of the solvent, the polymer-lean domains will
originate pores onto the surface of the fibre. Thermodynamic instabilities can also be induced by
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the addition of a non-solvent to the polymer solution, leading to the formation of polymer-rich and
solvent-rich regions.

By considering the Hansen solubility parameters of the chemicals used in this study, only acetone
could be regarded as a good solvent for PLA (Table S1 and Figure S4 of the Supplementary Data) [39].
The other compounds (clary sage EO, black pepper EO, linalyl acetate, α-pinene, limonene and
β-caryophyllene) were instead non-solvents for PLA. The insolubility of the polymer in the essential
oils, together with the diverse evaporation rates of the chemicals constituting the EOs, affected the
morphology of the PLA/CS-EO and PLA/BP-EO fibres produced. Fibres electrospun from PLA
acetone solutions containing 10% v/v of linalyl acetate, β-caryophillene, α-pinene and limonene
are shown in Figure 4a,b. The morphology of PLA/linalyl acetate and PLA/β-caryophillene mats
was very similar to that of PLA/CS-EO fibres (Figure 1b). The surface was either slightly wrinkled
(PLA/linalyl acetate) or smooth (PLA/β-caryophillene), and fusion occurred. This morphology can be
explained taking into account that, during electrospinning, the rapid evaporation of acetone and the
insolubility of PLA in linalyl acetate or β-caryophillene caused thermally- and non-solvent induced
phase separation, respectively. Polymer-rich and polymer-lean domains were formed but the slow
evaporation of the non-solvents, due to their low vapour pressure, resulted in the fibres being not
completely solid when they reached the collector [35]. Consequently, the fibres fused and connected to
one another. The effect of the glass transition temperature of the composite fibres was negligible in this
case, because Tg of around 45 ◦C was measured.
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PLA solution was 10% v/v.

PLA/α-pinene (Figure 4d) and PLA/limonene electrospun fibres (Figure 4d) showed surface
features recalling those of PLA/BP-EO fibres (Figure 1d), with well-defined and elongated pores
uniformly distributed onto their surface. Here, the proposed mechanism of pore formation still
includes phase separation events due to rapid evaporation of acetone and non-solubility of PLA in
α-pinene and limonene. However, for those mats, the evaporation of the non-solvents transformed
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the polymer-lean regions in surface pores and significantly increased the concentration of polymer in
the ejected filaments [37,40]. The restrained mobility of the polymer chains in the polymer-lean phase
prevented the pores from closure. In addition, the stretching of the polymer jet by the electric force
caused the elongation of the nano-features.

Since linalyl acetate is the main constituent of clary sage EO, it can be assumed that it played
a crucial role in defining the morphology of the PLA/CS-EO mats. For PLA/BP-EO fibres, instead,
α-pinene and limonene contributed to the surface porosity much more than β-caryophillene, probably
due to their abundance in BP-EO.

The investigations conducted have demonstrated that the complex chemical composition of
essential oils can be used to control the morphology of electrospun PLA mats, and nano-textured
fibres can be produced by selecting oils rich in volatile compounds, like black pepper EO. Despite the
evaporation of some chemical constituents of EOs during electrospinning, both the oils retained their
antibacterial activity, as demonstrated by antibacterial tests on two model microorganisms: E. coli and
S. epidermidis. As shown in Figure 5a, after 24 h of incubation at 30 ◦C, a high number of colony-forming
units (CFU) of E. coli and S. epidermidis were found for PLA fibrous mats without any essential oils.
On the contrary, a limited number of E. coli colonies and no colonies of S. epidermidis (clear agar gel
plate) were detected for PLA/CS-EO mats. No growth of E. coli and S. epidermidis was visible (clear agar
gel plates) for PLA/BP-EO fibres. The calculated loss of bacteria viability confirmed that neat PLA
mats did not possess antibacterial properties, with inactivation activity of 0% for both microorganisms.
Instead, PLA/CS-EO mats were characterised by inactivation activity of 76% for E. coli and 100% for
S. epidermidis (Figure 5b). PLA/BP-EO fibres were highly effective against both bacteria with viability
losses of 100%. The limited inactivation efficiency of clary sage EO against E. coli can be explained
by taking into consideration that Gram-negative bacteria (E. coli) are less susceptible to the action
of essential oils than Gram-positive ones (S. epidermidis). The cell wall of Gram-negative bacteria is
characterized by an outer membrane that is formed by diverse proteins and lipopolysaccharides [41].
While small hydrophilic solute can permeate the outer membrane, the diffusion of hydrophobic
compounds is limited [4,42]. The structure of the cell wall of Gram-positive bacteria, instead, allows
hydrophobic molecules to diffuse inside the cells and affect the action of enzymes and proteins.
They can cause disruption of the cell wall with leakage of ions, reduction of membrane potential,
depletion of proton gradient and disruption of adenosine triphosphate, eventually resulting in the
death of the microorganism [4,41,42].
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4. Conclusions

Previous studies have established that essential oils impart antibacterial, anti-inflammatory or
anti-oxidant properties to electrospun fibres. In this work, medicinal essential oils are used not only
to induce bioactivity in electrospun fibres but also to control their structure and surface morphology.
Essential oils of clary sage and black pepper have been selected, combined with PLA and processed by
electrospinning. The inclusion of essential oils resulted in changes in the chemical, thermal and surface
properties of the electrospun fibres, as demonstrated by FT-IR, DSC and SEM investigations. It was
demonstrated that during the electrospinning of ternary blends of PLA/acetone/non-solvents (CS-EO,
BP-EO and their main components), thermodynamic instabilities and phase separation events were
generated with the consequent formation of fibres characterised by wrinkled surfaces or nano-pores.
The resulting composite fibres, which also exhibited antibacterial properties, have potential biomedical
applications as dressings that are able to prevent bacteria colonisation of wounds and promote skin
regeneration. Particularly, the nano-topography created on the surface of the PLA/BP-EO fibres is
attractive to the development of scaffolds that provide both physical and chemical cues for skin repair.
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