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SYNOPSIS 

The influence of climate on the thermal performance of buildings and 

the traditional selection of suitable materials is assessed and analysed 

in the context of the Saudi Arabian climate. Techniques used to 

artificially generate conditions of thermal comfort for the occupants 

are defined along with suggestions for reducing the energy consumption 

in buildings. A review is given of methods used to calculate the 

thermal properties of building materials,· and comments made on the 

applicability of "steady state" and transient heat flow based calculations, 

when applied to materials likely to be used in Middle Eastern conditions. 

Theoretical models enabling the calculation of thermal conductivity for 

both homogeneous and composite materials are critically discussed. 

The measurement of the thermal conductivity of polymeric foam and 

building block composite laminates over a wide range of temperatures 

is described in the context of an adapted guarded hot plate apparatus, 

and theoretical models tested. A new, rapid, technique for determining 

the thermophysical characteristics of building materials is demonstrated. 
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PAR T : 1 

THE IMPORTANCE OF TRADI TIONAL BUILD! NG 

TECHNIQUES AND THERMAL COMFORT 
I 



1.1 Introduction 

In the developed countries, man's progress, and the growing 

mechanization and industrialization of society has resulted in most people 

spending by far the greater part 6f their lives in ~n artlfi~lal climate. 

This fact has caused an increased interest in the environmental conditions 

which should be.set, and with the techniques under our control today 

We have the chance of creating almost any indoor climate. ·It is important 

to provide the emerging and developing countries, whose progress has been 

affected'by their hot-humid or hot-dry cl imates, with adequate energy 

efficient systems, and appropriate building materials leading to greater 

indoor comfort. The aim of any engineer designing the services for an 

occupied space should be to enable the occupants of that space to pursue 

their normal activities in comfort. Thermal, acoustic and visual factors 

need to be considered as a whole and must be appropriate to the human 

activity, since the means of providing one component may influence the 

des i gn of another. Vent ililt i ng plant may need acoust i c treatment; acoust i c 

treatment of a building may influence the thermal properties, and so on. 

Man's dependance on thermal sur'roundings is the main reason for 

building houses, Native architecture around the world has often been of 

an energy conserving design with minimal environmental control. The thick 

walled clay houses in old parts of Central Saudi Ara~ia, the large wooden 

windows in the houses of Jeddah(l) West Saudi Arabia, (hot-humid area), 

the igloo of the Eskimos, and the high ceiling coupled with open courts of 

the Mediterranean villa(2) are but few examples •. If we considered the 

Middle East area, we can find several sorts of old traditional houses, 

according to the area and the local cl imate of that area. In the Southern 



. Middle East (Saudi Arabia and the Arabian Gulf States), the houses of the 

region 0,4) have flat roofs and open courtyards, with thick white washed 

brick or mud walls, small windows and high-cei I inged rooms. This leads to 

cool indoor conditions as a relief from the scorching desert conditions 

outside. In Southern Iran, lowland Iraq and the Gulf region, underground 

rooms ventilated naturally from wind towers are often constructed in houses 

to protect the Inhabitants from the fierce heat of summer. High rainfall 

has resulted in the construction of house types with pitched roofs in 

Western and Northern Turkey and along the Caspian Coast of Iran. In Iran 

such roofs a re thatched, whereas in Turkey thered-til ed roof so character-· 

istic of the Mediterranean region predominates. 

Modern buildings, now so prevalent in Middle Eastern Cities, with 

their extensive use of concrete, steel and glass, often do not appear to 

be designed with any particular climatic regime in mind. Occasionally 

one finds tower blocks with balconies which shade the. windows beneath· 

from the mid-day sun, but mostly the internal climate of these large 

buildings is controlled, at considerable expense, by sophisticated.air-

conditioning units. Indeed the buzz and whine of air-conditioners during 

summer is a new urban noise· characteristic of many Middle Eastern cities. 

In the large cities which are situated in dry inland locations, simple 

evaporative coolers have become tremendously popular over the last 20 

years. These work on the principle that as water evaporates, energy is 

given up from the air, producing a cooler temperature. Relative humidity 

is increased, however, and so these coolers can only be utilized successfully 

where summer humidities of less than 30% prevail. In Riyadh and Mecca (5) , 

there has been a tremendous Increase In the sale of these coolers, and 

there have been more than 7 manufacturers producing over 42,000 units every 



year for the last ten years, quite apart from the imported units. This 

is now beg i nn ing to gi ve rise to concern owi ng to the very large 

quantities of water being'consumed and to the maintenance, since dust 

and salt causes corrosion to the units. 

In this part, of the,thesis;traditional buildings In Saudi Arabia 

are classified. The use of traditional materials in these buildings Is 

described along with the present day difficulties in obtaining and using 

such materials, for construction., The older techniques of building houses 

are not practical today(4) because houses would take a long time to build 

and also they cost more money. The trend is to incorporate new building 

materials(6), with better insulation properties and to develop an artificial 

cl imate within them. This appl ies irrespective of whether buildings are 

for work, business, or leisure. It is for this reason that an investigation 

of new and more economical materials to replace the older ones is pursued 

in part 2 of this thesis. Also lessons should be learned from the functions 

of traditional buildings as they are useful in both thermal and ventilation 

design aspects, and influence the positioning and the thickness of the 

materials required. 

The aspects of thermal comfort and the traditional technology in 

building are considered very carefully and their importance·is indicated. 

Creating thermal comfort for a person is a primary purpose of many 

industries, including the building and insulation industry. This has an 

important role on' the construction of buildings, the choice of materials 

and thus on the whole building industry. Studies on thermal comfort with 

their measurement and prediction are reviewed and outlined. The 

genera I i zed' comfort equat Ions and charts for spec i fying comfortable 
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environments are presented. Thermal comfort in the U.K. is reviewed 

and compared with the limited number of studies in the Middle East. 

A more detailed review of thermal comfort and the factors influencing 

it is presented in Appendix C. This information is a very important 

tool in providing the engineer with the relevant knowledge as how to 

consIder using the new bui~1ingmaterials and advanced technology. in 

the best possible way. The outcome will be more energy efficient 

bui ldings and greater thermal comfort. 



1. 2. Therma I Comfort 

1.2.1. Definition of Thermal Comfort 

Thermal comfort analysis involves the study of the effects ,of 

surroundings such as the cl imate, I iving space, and clothing on our. 

thermal behaviour and feelings. Groups as well as individuals like to 

live and work in comfortable surroundings, without any heat stress or 

complaints. Comfort is a state of feeling, but has not any identifiable 

sense organ I ike the basic five senses summarized by many authors (7,8,9). 

This dichotomy was recognized in the ASHRAE comfort standard 55-56, 

where thermal .comfort is defined as "that state of mind which expresses 

satisfaction with the thermal environment,,(10). Most of the current 

predictive charts are based on comfort defined as a sensation "that is 

neither slightly warm or slightly cool". Most of the previous work has 

been limited to sedentary man, lightly clothed. This ASHRAE approach 

has proven sound since about 90% of man's indoor occupation and leisure 

time is spent at or near the sedentary activity level • 
• 

During physical activity, a change occurs in man's physiology. 

There is always some form of thermal regulation occurring during exercise 

within man's body. Judgements of temperature and comfort during 

activity have a basis different from those occurring during the sedentary 

condition. The same skin and body temperatures, if 'used as indices of 

• I l'k I f Id' d h .• (10) comfort, wll I e y prove a se urlng mo erate to eavyactlvlty • 

Thermal neutral ity for a person is defined as "the condition in 

" which the subject would prefer neither warmer nor cooler surroundings. 
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Thus thermal neutral i ty is a necessary condition for thermal comfort, 

but it need not to be a sufficient condition. 

Creating thermal comfort for a person is a primary purpose of the 

building and insulation industry as well as the heating air-conditioning 

industry. This has had a radical influence on the construction of 

buildings, the choice of materials etc., and thus on the whole building 

industry{l1) • 

1.2.2. Assessment of Thermal Comfort 

Thermal comfort can be best evaluated and explained.by considering 

three basic models: the physiological, sociological and the physical 

approaches. 

The physiological model is one which has to match the heat loss 

from a subject to the heat'generation or metabolic rate and achieves this 

while maintaining a constant body core temperature of 37°C and a skin 

temperature of 33°C and sweat rate appropriate to that activity level. 

(12) . 0 
In hot environments , where temperatures are> 33 C, sweating and 

evaporation must take place to offset heat gains, and to prevent any 

thermal stress or strain. If temperatures are very high, so that the 

body cannot overcome them naturally, external cool ing must take place to 

avoid the physiological strain. Heating and cooling systems are there-

fore convenient ways of helping the person to control his heat loss 

rather than actually warming him up or cooling him down. Responses of 

subjects can be predicted" for many combinations of environmental 

variables inside and outside the neutral state by using the ASHRAE(lO) 
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comfort chart shown in Figure 1.2.2. (1). 

The sociological mod,el Is one which depends mainly on the behavioural 

response of an individual to his environment and surroundings. This 

response depends on many variables such as customs, religious values, 

cultural constraints, social and economical conditions • 

. For this reason. it is difficult to fix one value for a comfortable 

constant thermal condition for all people, as in physiological model, 

but an allowance for flexibiltiy should prove more satisfactory. A 

des i gner who understands both the t rad i t iona I si tuat ions and· the life 

style of the people is more capable of providing them with the suitable 

solutions. 

The physical model is one which considers the heat exchange between 

a body as the thermal system and the surrounding environment in which 

six parameters at least(13) have been considered. The activity level 

and type of clothing are two parameters specific to the individual body, 

wherever the other four parameters are the properties of the surrounding 

environment. These are air-temperature, mean radiant temperature, 

relative humidity and air velocity. Equations(11) have been developed 

to describe thermal comfort, taking into consideration all thes·e parameters, 

which are fully explained and discussed in Appendix C. 

1.2.3. Studies on Thermal Comfort 

Many institutions and research centres have continuously supported 

active research programmes and field studies on thermal comfort for 

almost forty years. Observations have come from a wide variety of 
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cl imates and countries, ranging from extreme winters to extreme summers. 

Their main purposes are: to find· a way of describIng the thermal 

environment.whlch correlates well with human responses, thus enabling 

reliable predictions to be made, and to define the range of conditions 

found to be pleasant or tolerable by the population concerned. In a 
. (10) 

review article in 1961, Nevins showed that temperature criteria for 

thermal comfort have risen steadily since 1900, from (18 to 21 0 e) dry

bulb air-temperature (OBT) range to the (24 to 26°e) OBT in 1923 to 200 e 

ET in 1941. ET is defined' as an arbitrary ~ndex which combines into a 

single value the effect of temperature, humidity and air movement on the 

sensation of warmth or cold felt by the human body. The numerical value 

is the temperature of still, saturated air.which would induce an 

identical.sensation. The increasing trend in both effective temperature 

(ET) and OBT probably results from the year-round use of lighter weight 

clothing by both men and women, and from changing living patterns, diets 

and comfort expectations. Dry-bulb temperature (OBT) is the simplest 

practical index of cold and warmth under ordinary room conditions and 

is obtained with a dry-bulb thermometer. When humidity affects the 

efficiency of the body's temperature regulation by sweating, the 

significance of OBT is I iniited. The studtes of Koch, Jennings and 

Humphreys in 1960 showed that humidity had negligible effect on comfort 

until relative humidities of 60 percent and dry-bulb temperature of 

laoe were reached. Below these levels, dry-bulb temperature (OBT) alone 

was the governing factor. The comfort I imits selected for field applic-

ation have usually been expressed in terms of dry-bulb and wet-bulb 

temperatures. The original effective temperature ET scale is still used 

on a numerical basis in predicting 'extreme discomfort from high tempera

ture and humidity and man's heat tolerance while working at high humidities. 

B 



~----------------- --------------

1.2.3.1.Field-Study Methods: 

In field studies, the subjects continue their:normal every 

day activities In their. normal surroudnlngs; Such studies if 

carried out In different (summer or winter) environments can be 

very useful, If analysed properly. Estimates of the air-

temperature, the mean-radiant temperature, the relative humidity 

and the air velocity are made. Clothing is not controlled in 

field studies, but has often been described Item by Item and 

recorded. Methods of estimating the metabol ic rate have not often 

been recorded In the field studies of thermal comfort. Estimates 

of warmth are obtained by means of rating scales, which differ 

according to the climate and the study. The most commonly used 

have been the seven-category scales, such as the 'Bedford' scale(14) 

and the 'ASHRAE' scale(10). 

Table 1.2.3.1.-1 The 'Bedford' scale and the 'ASHRAE' scale of 

warmth 

The Bedford Scale The 'ASHRAE' Scale 

3 Much too warm 3 Hot 

2 Too warm 2 Warm 

Comfortab 1 y warm 1 SI ightly warm 

0 Comfortable 0 Neutral 

-1 Comfortab 1 y cool -1 SlighHy cool 

-2 Too cool -2 Cool 

-3 Much too cool -3 Cold 
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Two survey designs have been used. The 'longitudinal' considers 

a few subjects for providing repeated assessments of warmth over 

a long period,' so that their adjustments to changing conditions 

can be observed •. The 'transverse' design considers a large 

number of respondents who are asked to make only one assessment. 

1.2.3.2.Environmental Chamber Studies of Thermal Comfort 

Studies of thermal comfort can be done in environmental 

chambers with full control of all the variables. P.O. Fanger{l1) 

described the environmental chamber of the Technical University of 

Denmark, which was placed in operation in 1968. The chamber is 

2.8 m wide by 5.6 m long with a ceil ing height of 2.8 m. In the 

chamber all relevant combinations of air temperature, air humidity, 

mean radiant temperature and air velocity can be produced. 

Symmetric as well as asymmetric radiation fields can be produced . 
• 

All parameters are automatically recorded with a· digital system. 

In thermal comfort studies it is important that the 

assessment of the' thermal environment is not disturbed by 

discomfort arising from other environmental variables; which 

should be kept at a suitable neutral level. The average illumina-

tion level, 0.8 m above floor level, is 150 lux. The sound level 

is 45 dB (A), and the sound pressure level is 63 dB (lln). Dust 

concentration and odour level are kept suitably low by (a) the 

use of high efficiency dust filters and activated charcoal filters, 
.. -1 

and (b) keeping the air-change in the chamber at 40 hr • 

10 



1.2.3.2. (I) Experimental Subjects 

In environmental chamber studies, subjects should be in 

good health and· take part in the experiment only if they have had 

a full night's sleep prior to each exposure, are free from fever, 

and have eaten a normal meal about one hour before the start of 

the exposure. 

1.2.3.2.(2) Measurements 

The condition in the chamber is held constant during each 

specified period. The air-temperature can be mainta~;eed at 

different levels with the mean radiant temperature equal to the 

air-temperature. Air velocity and relative humidity are also 

considered and set at different levels. Clothing is controlled 

in general, and the thermal resistance is determined (the clo-value) 

• with full description of them item by item. For example the 

Kansas State University standard uniform (light clothing assembly) 

with a thermal resistance of 0.6 clo, comprised ~f cotton twill 

shirt and trousers, cotton under-shorts and cotton sweat socks 

(no shoes). The clo-values are measured on a thermal manikin 

(Seppanen et al 1972) at Kansas State University. 

1.2.3.2.(3) Physiological Measurements: 

The subjects wear a harness with 14 thermistors taped to 

the skin. The. thermlstors are distributed evenly over the body 

1.1 



surface as reported by Olesen et al (1972). Central body 

temperatures are registered every five minutes by means of 

a data recording system outside the chamber. Evaporative weight 

loss Is measured· by:weIghlng the subject Initially, afterc!: hour 

in the chamber, and at the end of the exposure. 

1.2.3.2. (4) Comfort 20ne: 

Throughout each exposure the subject Indicates his thermal 

comfort sensation on a dial voting apparatus, whenever appropriate. 

The apparatus is connected to an Indicator outside the chamber, 

and the ambient temperature (mean radiant temperature = air 

temperature) is adjusted to ensure that the subject's responses 

remain within the comfort zone marked on the dial; as· close to 

exact thermal neutrality as possible. 

12 



Figure:1.2.2.(1J 
(23 J 

The New ASHRAE Comfort Chart 
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1.2.4. The. New ASHRAE Comfort Chart 

I • 1 2 2·( ).( 10) h . 1 n FIg. . •• 1. . t e most recent app icable comfort envelope 

from the Kansas State University (KSU) - ASHRAE project is plotted on 

the coordinates of the ASHRAE psychrometric chart. The comfort zone 

recommended in ASHRAE Comfort Standard 55 - 66 is also drawn for 

comparison. The new ET .1 ines are drawn over the two comfort zones. 

Fig. 1.2.2:(1) applies generally to altitudes from sea level to 2100 m 

and to the most common special case for indoor thermal environments in 

which mean radiant temperature is nearly equal to dry-bulb air temperature 

and air velocity is less than 45 fpm (0.23 m/sec). For this case the 

thermal environment is well specified by the two variables shown: 

dry-bulb air temperatures and the humidity ratio. The KSU-ASHRAE Comfort 

envelope applies for occupants wearing clothing of 0.6 - 0.8 clo insulation 

and contrasts with the 0.8 - 1.0 clo values assumed in the ASHRAE Comfort 

Standard 55-66 .. For the KSU data, their activity is classified as 

sedentary (1 met). In Standard 55-66, office work (slightly higher than 

sedentary) was. the design activity. These small differences in level of 

activit~ and clothing insulation account for the 30 F (1.50 C) displacement 

of the KSU - ASHRAE envelop~ above the Standard 55"66 zone. A wide 

range of environmental applications are covered by the ASHRAE Comfort 

Standard 55-66. Offi ces, homes schools, shops .. theat res, and many 

others can be approximated well with these specifications. The 

Standard specifies an environmental range for Comfort based on available 

research data and the field judgements of that Standard's sub-committee 

members as of 1966. 



The des i gn data given In KSU envelope def i ne cond it ions wh i ch wi II 

maximize the thermal acceptability of the environment for a large 

group of adults, simllarlyclothed and active, and will minimize the 

fraction of potential complainers in the group o~cupylng the space. 

Variation among individuals is expected. Young children and the 

aged will require some additional adjustment. Children below 12 years. 

of age may require 1
0

F (O.SoC) red~ction in design temperature, and 

adults over 6D may require an increase of 10 F (D'.SoC). In place of the 

old effective temperature '(ET) lines, the new (ET)* loci are plotted 

in Fig. 1.2.2. (1). This chart is primarily useful in the usual comfort 

range for sedentary, lightly clothed people and secondarily at the 

higher temperatures where sedentary heat stress is involved. Although 

the ET* scale is derived on the basis ofa one hour exposure, previous 

data shows no changes of engineering importance in response due to longer 

exposures unless the limits of heat stress ET* > 900 F (320 C) are 

approached. 

The ET* lines show a moderate humidity effect on thermal 'comfort 

itself. Its effect on discomfort increases as both the thermal level of 

the environment and regulatory sweating increases. Man's total 

evaporative heat near the comfort range is only about 2S% of the total 

heat loss. As the thermal level increases, evaporation becomes a larger 

portion of the heat loss and accounts for 100 percent of the heat loss, 

as the environmental temperature equals and rises above skin temperature, 

of 3SoC(~r 9SoF). 

To summarize, the data in Fig. 1.2.2.(1) are useful for light 

clothing and for seated or sedentary activity. The ASHRAE Comfort 
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. Standard 55-66 appl ies, generally for average clothing and activity. 

The KSU-ASHRAE Comfort envelope is useful in evaluating the environment 

for I ightly clothed subjects, resting and working at desk. The most 

common I Y recommended des.' gn condi t ions for Comfort where the two zones 

overlap are therefore: 

Dry-bulb air temperature = mean radiant temperature:: 76°F (24.50 C) 

Relative humidity = 40 percent (20~60 range) 

Air velocity less than 45 fpm (0.23 m/sec) 

. (11) 1.2.5. The Fanger Comfort Equation 

Fanger's objective was to generalize the physiological basis of 

comfort so that for any activity comfort can be predicted analytically 

in terms of environmental parameters. His comfort equation is based • 

on a rationally derived heat balance equation for the passive state 

during thermal equilibrium and on the two experimental observations 

that during a stat of comfort (defined by a neutral temperature 

sensation) a unique relation exists between the level of activity 

described by metabol ism and both tsk skin temperature (for comfor·t) 

and E sweat secretion (for comfort). During a state of comfort, rsw 

his predictive equations for a comfortable tsk and E are: rsw 

= 35.7 - 0.0372 M In °c and W/m2 (A) 

E = rsw (M-58.2) in W/m2 
(B) 0.42 
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2 2 For sedentary conditions (1 met •. 58.2 W/m or 50 K ·cal/hr m ). the comfort 

values for \k and Ersw.are 93.2
0

F (3"oC) and zero respectively. 

During exercise (M .> 1 met).t k drops and E increases in accordance 
,.. ... s rsw 

with current observations on exerCising, clothed and unclothed subjects. 

The heat balance equation: , 

s = M [(1 - E) ~ 0.0023 (""- ~ P ) ~ 0.001" (3" - T )] a a 

- 2.2 (0.06 + 0.9" 'VJ ) h (P
sk 

- cP P) F 
. rsw c a a pcl 

at thermal equilibrium (S = 0) is essentially a function of the 

following form: 

f (M.W,clo,E,t k,MRT,t ,P ) 
s a a = 0 (c) 

When Equation A and B are substituted in Equation (C), the resulting 

equation would be Fanger's Comfort Equation and would be a new function: 

f' (M,W,Clo, v ,MRT,t and P ) 
a a = 0 

From a comfort equation so derived, It is possible to predict any 

combination of environemtnal factors (i.e., t , MRT, V ,p) ·that produce 
a a 

a "comfortable" environment for a clothed (clo) person performing any 

selected activiy (M and W). 

In the above equations the given terms are defined 

as follolJs; 

·Clo = Clo value 

E = Rate of total evaporative heat loss, caused by 

the evaporation of body fluids. 
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, 

,'f, 

E "~ Sweat Secretion. raw' 
, ' 

E = Mechanical Efficiency • 
.... 

, , 

.... ~.,/,::,:;;:;;,,;; .;,\.-~. ~ ,,:':,~, ~,' .. 
". c·'·" 

Fcl = Dimensionless factor which is 8 function of the 

f' pcl 

4J a 

insulation of ' the clothing worn. 

= Permeation Efficiency. , 
= Relative Humidity, as a fraction. 

h = Combined heat transfer coefficient, equal to the 

sum of the Radiation(hr ) and Mean Convective 

heat transfer coefficient (hc ). 
, 

M = Rate of Metabolism, and is proportional to man s 

oxygen consump~i~n. 

MRT = Mean Radiant Temperature. 

Pa = Saturated Vapour Pressure at the Ambient Air 

Temperature. 

Psk = Saturated Vapour Pressure at the Average Skin 

Temperature. 

S = Rate of heat storage, and is proportional to the 

,time rate of change in intrinsic body heat. 

ta = Ambient air temperature. 

to = The average of the Mean Radiant and Ambient air 

temperature weight~d by their respective heat 

transfer coefficients. 

tsk = Average Skin Temperature. 

,Y = Mechanical work accomplished. 

~rsw = Total Skin Wettedness • 

. V = Ambient Air Movement. 
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1.2.6. Thermal Comfort in Middle East 

In the Middle East'area, there have been a few field studies of 

thermal comfort on a very limited scale, but none of these studies 

have been conducted in Saudi Arabia, and It is evident that more 

research work is needed to give a complete understanding of the thermal. 

response in this vast area. Here are a few examples which can give a 

clear indication of the thermal comfort in certain parts of the Middle 

East. 

The first example is a study by Crocott In which he refers to the 

practical experience of Anglo-Iranlan Oil Company, who have installed 

large air cooling and air-conditioning systems in their staff accommoda-

tion and offices in the Gulf area, which .in summer time is actually one 

of the hottest geographical locations in the world. Crocott recommends 

an indoor air temperature around 26°C at relative humidity (RH) between 

25 and 60%. 

The second example is a field study and observation of subjects 

in both hot humid and hot dry conditions by Webb (1964). These 

observations have been analysed in detail by J. F. Nicol (15). The 

subjects were engaged in office work and the observations recorded 

were made in June-July 1962 in.Baghdad, Iraq, where the weather was. 

hot and dry. Clothing consisted of a light cotton shirt, lightweight 

trousers and light cotton undergarments, the subjects' homes were of 

modern design with walls of concrete blocks. At night the Iraqi 

supjects slept on the roof; four of them had fans, one had an 

evaporative cool ing device, one had both and two had neither, and for 

one subject there is no information. Details of night clothing were not 



obtained. The subjects made the environmental measurements themselves 

in their own homes, thr~ughout the day and· night. A total of 1284 

obserVClt ions were recorded. by, the nine subjects. The dayt ime mean 

temperature in Baghdad was 37°C. The air velocity on average was'about 

1 m/s, and Nicol showed that this provided a benefit approximately 

equivalent to a reduction of 30 C in the globe temperature. The neutral 
o ' 0 

temperature was 33 C, but It would have been equivalent to about 30 C 

if the air velocity had been only slight. 

In their survey of office workers in England, Humphreys 'and 

Nicol (1970)(16) found a mean air velocity of about 0.15 m/so 

lA fuller description of thermal comfort in the U.K. is given in Appendix 

C).Fanger's (1970) predictions show a comfort optimum of 26.5°C at this 

air velocity, as shown in figure 20, assuming a metabolic rate of 58 W/m2 

(50 k cal/m2 h) and a clothing insulation of 0.5 clo (approximately that 

for the Iraqi subjects). For the higher mean air velocity (1.0 m/s) 

o of the present results, Fanger predicts an optimum of 28.4 C. Fanger's 

method further predicts that 70% of the population would be uncomfortable 

at 32
0

C. Other theoretical models (Humphreys, 1970; Mclntyre, 1973) 

would also· estimate an,optimum temperature in the region of 28°c. 

These results show that acclimatized subjects can be comfortable at 

temperatures considered unacceptable in models developed for temperate 

regions. 

.I 
Fanger's pointed that although accl imatized persons 1 iving in 

the tropics can better endure hot environments and have become used to 

accepting the discomfort due to heat, this. seems to have only a si ight 

influence, if any, on the thermal environment which they will 

actually prefer if given a choice. In this respect manyof the office 
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workers in Jeddah and Riyadh(17), Saudi Arabia dur·ing the summer time 

where the o~tdoor mean temperatures exceed 400 C, and air velocities 

are very s1.ight felt discomfort,.but they expressed a full comfort as 

they' started working in the air-conditioned offices. The mean air-

o . 0 temperature was found to be In the range of 27 C to 30 C, yet most of 

them voted 'comfortably' cool , ·to 'comfortable' in the first two hours of 

work.' Their mean voting changed to the state of 'comfortable' to 

'comfortably warm' at the end. 

In hot cl imate one can say that the respondents prefer to have 

a sensation rather coOler then neutral. Also there is a deliberate 

and effective use of air movement by using hand fans and electrical 

fans, to achieve thermal comfort. One of the Roorkee (India) observers 

has provided the following description (Sharma, 1967). 

"The room Is full of warm air in the mornings. 

The windows are opened and the fans run at full 

speed to churn cool' air into the room. 

Within half or three-quarters of an hour the 

air is cool enough for work to begin. 

Conditions remain ,comfortable with fans runn-

ing throughout.the forenoon" • 

. The actual human response to a climatic regime is still very 

difficult to quantify with any accuracy, yet it is obviously of vital 

importance in a developing country when new industrial and urban 

development is being planned. Although some general works do exist, 

as yet little research appears to have been carried out on the thermal 
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comfort in the Middle East. Recently, interesting works (3) of a 

biomedical nature have appeared deal ing with Libya and Kuwait, which have 

attempted to access a 11 factors affect ing human 11 fe, incl ud ing local 

climate conditions. 

One of the simplest methods for outl inlng comfort conditions 

for humans in differing climatic regimes is the use of climographs. 

With these diagrams, monthly plots are made of relative humidity against 

~bUlb temperature: and they do permit at I east a rough classification 

of the major cities within the region in terms of their general 

suitability for human activity. From these graphs it can be seen 

that very few of the large cities possess what would be classified as 

an 'ideal' cl imate, except during only a few months per year. Indeed, 

some coastal stations, such as Bahrain, experience 'uncomfortable' 

conditions for most of the year, whilst interior stations, such as 

Tehran and Ankara, reveal marked extremes, with a raw winters and 

scorching summers. Only Shiraz possesses a climate which approximates 

the ideal climate range, and even here the temperatures of the summer 

months can sometimes produce uncomfortable. oonditions. 



1.3. Traditional (Primitive) Buildings in Saudi Arabia 

1.3.1. Introduction 

Most of the older buildings in many parts of Saudi Arabia 'and the 

rest of the Middle East were built in a locally traditional manner. These 

houses provided for centuries good internal comfort conditions to their 

occupants, wi thout the use of modern energy-consuming equ i pment such as 

air - conditioning, and materials such as steel and concrete. The primitive 

early architects and builders in that area exploited the limited materials 

availabie to them and worked them into a structural form that admirably 

met both the demands of the climate and the requirements of their particular 

culture. It is useful in the present context to' study and analyse the 

functions of these traditional houses, and their relation with the climatic 

conditions as well as knowing the building materials locally available in 

that area. 

Thus lessons learned from traditional technology may be blended 

with new techniques and new materials, reducing the total cost of modern 

construction with increased safety, internal comfort, and lower energy 

consumption. Ideally improvements should be achieved whilst keeping 

thetraditions, resources and the structure of the society intact. 



-------

1.3.2. Classification of Buildings 

In Saudi Arabia, where the area exceeds one million square miles, 

with both coastal areas, interior regions and mountainous regions, there 

are different types of primitive dwellings. They differ in accordance 

with the climatic conditions on the one hand, and according to the building 

materials locally available on the other. The following information was 

mostly obtained through the field surveys and personal experience. 

1.3.2.1.Coastal Buildings 

Along: the western coast of the country, where the climate 

is characterised by high temperatures and little rainfall(18)and 

where at the same time there is often high humidity due to the 

prevalence of offshore winds, traditional houses(1 ) are built 

of the white to grey coral stones available along the sides of 

the Red Sea. These houses maintain good internal comfort conditions 

throughout most of the year. They consist of at least two floors, 

so that in-the hot summer their occupants can use the lower floor 

rooms, as they are cooler. Hot air tends to flow upwards to the 

upper floor rooms. I'n the winter, the top floor rooms will be 

warmer, and hence most preferable to the occupants. These 

traditional houses (known as the Red Sea style) have elaborate 

balconies( 1 ,19) _ known as "roshan", pI. "rawasheen" enclosed with 

pierced timber screens on all exposed walls to allow through 

breezes as well as giving privacy and shade to the occupants. The 

other walls of such houses are thick to reduce heat penetration 

during the daylight hours, when the temperatures are very high, 

and are light coloured to reflect a large amount of the heat as 
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radiation. A good example of such primitive dwellings can still 

be found in Jeddah, the main port of Saudi Arabia on the Red Sea 

as shown In Figures 1 and 2. 

In small villages and less developed areas along the Red 

Sea, both temperatures and humidity are high. Here where there is 

intense solar radiation and where there is very little diurnal 

variation in temperature, the critical parameters of comfort are 

shade and ventilation (20). To reduce the heat-holding capacity 

of the walls and to maximise the air flow across the interior, 

primitive man in this area reduced the wall mass to a minimum. 

The roof thus became the dominant structural element in the form 

of a huge steeply sloping parasol, conical in shape, with a thatched 

roof, sitting on a cylinderically walled adope hut. The roofing 

materials employed were predominantly sticks with various plant 

fibres and vines for lashing them together, producing a roof of 

minimum mass to avoid heat build-up and subsequent radiation 

into the living space. Abu-Arish and Jizan(21) are good examples 

of an area where such structures may be found. 

In the Eastern Province, along the east coast of the 

Arabian Gulf, primitive houses are built of mud bricks and coral 

stones(l) and protected from the.intense heat, radiation and 

sand storms by surrounding the house with natural trees, mainly 

palm. Most of these houses were built with a central courtyard. 

This gave the occupants a cool refuge when the heat of the day 

penetrated the walls of the house. By moving from room to court-

yard to roof people were able to achieve optimum comfort conditions 

without mechanical cool ing( 4); 



1.3.2.2.Buildings of the Interior 

Another type of thermal regime, where the humidity is very 

low,'can be found in the interior and north of Saudi Arabia, 

where during summer, the day time temperatures are extremefy high 

coupled with uncomfortably low temper~tures late at night(1S,22). 

During winter the night temperatures are extremely low, with 

warm to cool days. Against such fluctutions, the desirable 

Insulation material would be one with a high heat capacity. Such 

a material would absorb solar radiation during the daylight hours 

and slowly re-radiate it during the night. Thus the diurnal 

temperature curve inside the building would be flattened out 

into a much more comfortable'profile, cooler in day time and 

warmer at night. Clay and Stone possess high heat capacities and 

since they are plentiful in many parts of Saudi Arabia, e.g. 

Riyadh, Medina, Tabouk, Hail and Qaseem, it is not surprising to 

find that primitive men around this'area built their homes out of 
• 

such materials. The primitive house of this area is built of 

baked mud bricks reinforced with plant fibres. The walls are 

very thick with a smooth mud plaster exterior, as shown in Figure 

(3) All roofs are flat, and are used for resting and 

sleeping during the comfortable summer nights when it seldom 

rains. The walls are load bearing and carry palm-trunk (or 

Athel-trunk) roof beams, which in turn support a mud slab rein-

forced with palm fronds. Door and window openings are high and 

reduced in size to hold down interior radiated heat and light 

levels which can be intense during the summer months. Most of 

such houses are painted or stuccoed white to reflect a maximum 

amount of radiant heat. 



Primitive houses of both Mecca and Medina are built 

with granite stones available in the area and also with hand_ 

made burnt clay bricks. They have very thick walls, and large 

wooden windows, to direct ventilation. as shown In Figures 

(4 and 5). Most of the houses have internal courts and small 

gardens. Alternatively, the house may be have ventilation 

openings to receive fresh air from the roof and that can be 

directed downward to the internal rooms on all floors. 
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1.3.3. Traditional Building Materials and Their Location 

Stones, sun-dried mud bricks, burnt clay bricks and wood are the 

basic traditional building materials; used In Saudi Arabia. The convnon 

factor in selecting any of these materials are: their cost, transportation, 

. the function of the buildI~g, the availability of an expert builder, and 

the sodal, economic and cultural conditions of the owner. The most 

important factors of all are the Influences of the climate and the local 

materials which come from the ground surface formations, in each region. 

In the Western region(23) the materials come from the coastal 

plains in the form of marine deposits(24) along the Red :Sea and are· cut as 

coral stones (Jeddah). To the east of these plains granite(25) and 

d i or i te stones were cut out of the Igneous and met a morph i c (26) rock 

formations. The clay deposits In the valleys of such areas were used for 

making hand made bricks burnt in primitive kilns. In· the Central and 

Northern regions(23), "Najd Plateau" the traditional materials were 

sun-dried mud bricks. Lime'stones were cleaved and cut easily from the 

well stratified sedimentary rocks and were used in many' houses of these 

regions. In the Eastern province along the Arabian Gulf, a form of 

coral rocks underl ies the.c~astal waters (27, 28, 29), exposed in some 

places and in others covered by sand and silt. Coral stones were cut and 

used with the silt as local materials. A detailed description of the 

above materials and their location is given in Appendix 'D'. 
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1.3.4. Materials of Construction 

1.3.4.1.Stone Construction 

Most of the traditional buildings of Jeddah, Mecca, 

Talf. Al-Qatif, Oqalr and to a lesser extent in houses of Riyadh, 

were built of various types of stones, according to the types of 

rocks in each area. Stones were used to build load - bearing 

walls, and partition walls. The thickness of such walls varies 

from 40 to 120 cm,accordlng to the height of the building, roof 

span. type of mortar used. the type of cut, and the durability 

of the stones. Mortars used.were sllty clay, loam enriched 

with lime, and semi-hydraulic lime, in which small size siliceous 

limestone was mixed with da1y and burnt together. Stones were 

cut and sawed manually, and roughly without standardization as 

shown in Figure 10, and sometimes collected near the building 

site, wi th many odd shapes and sizes. I n general any th i ck wa 11 , 

consisted of exteripr and interior parts with flat cut facing 

stones, and the centre part consisted of odd·shape stones. These 

stones had been fixed together. using mortars and wedge like stone 

chips at the inner Joints to give more stabil ity. In many high 

buildings, small trunks of wood were used horizontally between 

stones to stop vertical cracks from developing. as well as tie 

stones, whi,ch were placed across the wall depth. securing both 

exterior and interior parts of the wall in place. The thickness 

of walls was reduced in some cases by using reinforcing struts 

or columns of rubble stones fixed behind and within the wall at 

short spans of 60 to 120 cm. This system was used also to construct 

non-load bearing walls, where thin coral stones slabs were fixed 
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together and plastered as shown In Figure (7). 

In construction of doors, the Ilntels'used were stones 

cut to form an arch on top of the open court doors and In the 

case of windows horizontal wood lintels were used. The 

traditional houses which have nice-cut regular size stones 

were left unplastered externally, whenever walls of irregular 

size stones were usually covered with a layer of 2-4 cm silty 

clay or lime plaster as shown in Figures (8 and 9). All houses 

were plastered internally. 

1.3.4.2. Sun-dried Mud Brick Construction 

Traditional buildings of Central and Northern Saudi Arabia 

such as in Dariyah, Riyadh, Hail and in other smaller towns were 

built of earth soil, which was shaped into large size bricks. 

Earth or clay which is composed of extremely small particles of 
• 

complex alumino - silicates(25), is plentiful in these regions. 

The procedure was to dig a pit and collect the earth into a heap 

where water and straw were added to compose a wet and plastic mix. 

The mud was mixed throughly and left for a few days, and then more 

dry earth and straw was added to stabilize it. The stability of 

the mix was dependAnt mainly upon the proportions of the main 

ingredients of clay, sand, straw and water. Durability of the mix 

was increased by the straw distribution, which improved bond, and 

decreased thermal movements. Sand in the mix helped in reducing 

changes in volume of ,the mud bricks between ,the wet' and dry 

condition. The mud mix was casted into bricks in standardized 
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wooden moulds or casted manually into irregular mud blocks with 

flat top and bottoms. These were" left exposed to sun and air on 

top of a flat surface area covered with a thin layer"of grass 

and straw. The drying period ranged from 1 to 2 weeks according 

to the size of these bricks, and according to how often they 

turned over. The traditional houses were built nearby these sites, 

where stone rubble foundations were laid down, and then sun-dried 

mud bricks set on top of each other. 

The mortar used was soft mud with high clay content, and 

in semi-dry condition. Wall thickness varied from the base to 

the top according to the size of the house. An average thickness 

for a two-storey building was 80 - 100 cm at the base, and 30 - 50 

cm at the "roof level. Walls are usually plastered with 2 - 5 cm 

of thick mud - straw or mud - lime mixtures to protect the wall 

from rain penetration, and to give beauty to the house as shown 

in Figure (3). Special treatment was given to the construction 

of coloumns and opening sides, where stones and wood were used to 

reinforce "the walls. 

Earth was a I"so used to cover the roof, where a mi xture of 

mud mixed with lime, made a hard layer of 3 to 5 cm thick. This 

layer overlaid wooven mats and wooden roof, where the main palm 

beams or other imported beams supported smaller fronds laid 

diagonally. The roof maintained a small slope of 3 to 5 percent 

towards spouts to drain rainwater" quickly away from the wall 

sides. 
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1.3.4.3.Burnt Clay. Bricks Construction 

A large number of traditional buildings in Mecca, west 

pf Saudi Arabia, were built of burnt clay bricks. These bricks 

were used as walling materials, in building partition walls, 

roof parapets, load bearing walls and in some cases as roof 

slabs in the form of small arches and domes. The clay was 

selected and collected from the nearby valleys, placed in a 

shallow ditch, where water and tiny wood chips were added and 
. (30) . 

mixed thoroughly • This mixture which includes silt as well, 

was moved to an adjacent ditch, where the proper consistency 

was obtained. Wooden moulds of standardized size were used to 

give the clay bricks their shape. These moulds are quickly raised 

leaving the shaped bricks on a flat ground to dry primarily for a 

few days before being placed in covered kilns. Proper clay 

stacking, burning time, and heat control were improved by the 

brick makers in thatarea(30) through the years. Tiny wood chips 

helped in reducing brick weight, stopping cracks and improving 

the firing process. Brick colour was generally red, but other 

colour!: like yellow, blue and brown were produced, and were 

used in roof parapets giving multi colour patterns. These light 

weight bricks are good insulators where thermal conductivities 

of such types range from 0.20 to 0.50 W/mK , whenever common 

b • k (31) h .' d'·· f 5 W/ K rlc save an average con uctlvlty 0 1.1 m. 
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1.3.5.Functions of the Traditional Buildings 

Most of the traditional houses were built to provide their 

occupants with shelter and comfort. Since Saudi Arabia is located in 

"a tropiial area, astride the Tropic of Cancer, intense heat during 

the summer and cold nights during the winter are the main features of 

the Saudi climate. Climate, tradition and culture, have been reflected 

in the design and functions of the houses. Good house orientation, with 

narrow streets and alleys between, adequate wall thickness, suitable 

window openings, and flat roofs are but a few examples. Room design 

has achieved good ventilation by setting high ceilings, movable window 

shutters, cool ing wind towers, courtyards and terraces. 

These are the most important item~ in the design of the traditional 

buildings. Our aim is to explain them, and indicate their importance 

and drawbacks so that one can utilize the suitable functions together 

with the modern technical knowledge to achieve more accurate solutions 

and energy savings without,altering comfort levels. 

1.3.5.1.House Orientation and Location 

House o~lentation WaS very important in traditional houses, 

where maximum comfort WaS 

Red Sea such as in Jeddah 

the main objective. Houses along the 

(1 1 9) 
, and Yanbo were oriented towards 

the prevailing wind directions. These directions were north and 

west as shown in Figure 1, in which cooler air-breezes 

penetrated into living and bedrooms. In all locations north of 

the Equator, such as Saudi Arabia, southern walls are exposed to 

direct sun-rays all the day, whenever northern walls 
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are less exposed to the sun. There were minimum openings and 

sometimes no openings facing south in the hot-humid and hot

arid areas. House orientation for the courtyard house was not 

important, as no external windows were used. 

In rural areas and.oasis, houses were located between trees, 

and shrubs. Tall trees created natural shading(32) and protection 

against direct sun radiation, which reduced temperature effectively 

to more acceptable levels. 

1.3.5.2.Number of Floors 

Most of the traditional buildings in Saudi Arabia, and 

many parts of the Middle East were built of at least two to 

three floors. This created greater insulation and cooler 

environmentwithin the house structure. During summer days lower 

rooms were cooler, as hot air escaped to top floor rooms. In 

addition therewas a' heat build up by the roof mass. Hence lower 

floors rooms were used during the day, and roof was used for 

sleeping. In winter the same picture happened and cold air 

flowed downwards into the lower floors. Top floor . rooms were 

warmer and most utilized. Top floor and middle floor rooms 

in some cases were used for sleeping during winter. 
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1.3.5.3.Streets and Alleyways 

The old cities of the Middle East such as Jeddah, Mecca 

and Baghdad(33) were. characterised by thei r narrow streets and 

alleyways. Most .of them have been 'enclosed by a city wall and 

this has restricted the construction of wider streets. The 

main purpose for narrow streets was to allow buildings to 

provide shadefor each other. The narrow width of the·street 

together with the multi-story buildings and massive overhangs 

protected facades from long hours of exposure to the sun. 

. (34) Streets like alleys, half dark and full of turnings excluded 

wind and sandstorms, and created cooler climate in hot days. 

Straighter narrow streets increased wind speed, so that tempera-

ture was reduced and comfort increased. 

1.3.5.4.Wall Thickness 

Climate, type of wall constuction, either load bearing or 

non-load bearing, the number of floors, roof span and type of 

building materials influenced the thickness of traditional walls. 

Thickness varied from 40 to 120 cm as shown in Figure 11. 

Thick walls have a very high· heat holding capacity, which stops 

heat penetration into the house during mid-day hot hours. These 

·walls re-radiate the heat when temperatures drop, and keep 

adjacent rooms warmer, working as environmental regulators. 

In hot humid areas traditional walls were very light, and 

mainly of timber framing as that will reduce thermal storage, and 

allow ai r breezes to cool the house •. 
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1.3.5.5.Window Openings 

Most of the courtyard houses have a very limited number 

of small windows in the external walls. The size does not 

exceed 30 x 60 cm, and they are located towards the top of rooms. 

This style was best known in the hot-dry regions as in Riyadh, 

Hail and Baghdad in Iraq(33). In hot-humid areas such as Qatif, 

Damman and Oqair, windows were much larger as air breezes and 

air movement were needed to assist in sweat evaporation which is 

made more difficult by the generally high ambient temperature and 

humidity.' In some cases these windows were shaded by a large 

wooden external screen, which was 50 - 70 cm away, and covered 

the total wall facade. Its main function was giving privacy, 

and shading the main windows from direct sun-rays. At the .same 

time hot air enclosed between it and the wall flows upward and 

away from the building, causing a draft. This will cool the 

rooms sheltered by this system. In Jeddah and Mecca, windows 

were very large, and occupied the entire width and height of at 

least one wall in a room. Sometimes these windows were 'projected 

outside the main wall line in shape of balconies called 

"rawasheen" as mentioned in 3.2.1., and are shown in Figures 

(12 and 13)· 

The light weight of these wooden windows, resulted in 

negligible thermal storage. These windows provided shad~,and 

allowed air movement to assist in sweat evaporation as well. 

The change in the direction of local winds between day and night 

is a feature most marked in the Mecca valleys and on the Jeddah 

sea coast. This feature had been fully exploited by the 
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orientation of openings across the breeze direction, and by 

selecting the freshest indoor and outdoor locations for sleeping, 

day time activity and rest; 

1.3.5.6.Flat Roofs 

All the traditional buidlings in Saudi Arabia and the 

southern parts of the Middle East were built ,with flat roofs. The 

roof was constructed of large wooden trunks 40 - 60 cm apart 

with smaller palm fronds laid diagonally above the amin beams, 

about 5 - 15 cm apart. This was covered with wooven mats, and 

5 - 15 cm layer of hard - dry mud, hardened with lime. The 

roof was designed in this way to support foot-traffic and 

sleeping during the night, as well insulating the lower rooms 

from mid-day hot temperatures. Every house has a staircase 

which leads onto the roof, with a small room for storing the 

sleeping mats. A parapet 1.50 - 2.00 metres high surrounded 

the roof and in many cases, this was built of bricks in the 

shape of screens to allow through ventilation across the roof 

surface. Roofs may be divided into two or more parts to 

accommodate one or more families living in the same house. 

1.3.5.7.Room Design 

Rooms in traditional houses were spacious, although the 

ceil ing beams had short spans. This was overcome by intermidiate 

coloumns, as shown in Figure (14). The height of the rooms 

was at least 3.50 metres, so that warm air could accumulate in 

the upper part. This air is replaced by cooler air at the 
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lower level through windows. 

Windows played an important rule in ventilation and 

shading control. This was obtained by the si iding movement of 

the windows vertically upward or downwards, so that warm air· 

I n the room can be extracted outs i de the bui 1 d ing. 

In large houses ventilation was obtained through cooling 

towers, and all internal rooms were located around this wind 

tower. The tower is projected above the roof level, and across 

the prevail ing wind direction, to catch ·every available breeze, 

and to conduct it downwards. This will cause draft and cool 

the concerned rooms, on the different floor levels. 

Top floor rooms were located beside a roof terrace called 

"Kharjah" which was used to cool them. Also this terrace was 

used as a place for rest in the late afternoons and early hours 

of the night. This system was known 
. (35) 

along the Red Sea coast • 

In the courtyard houses, rooms were located around the 

court. At night much of the heat gained by the courtyard during 

the day is lost to the sky by long-wave radiation, causing cooler 

environment to the surrounding rooms. 

38 



1.4 •. Conclusions and Consequences for Thermal Design 

Building design has always been dictated by climatic conditions. 

Western style buildings often demand curtain wall construction and large 
. . 

glazed areas as shown in Figures (15 and 16) to admit sufficient dayl ight· 

owing to the predominance.of overcast skies.· This style of buildings is 

not suited for the tropics where daytime temperatures are high and the 

sky generally clearer(36). Torpical buildings demand protection from 

the sun in summer to avoid thermal discomfort. 

In the design of buildings appropriate to a given climate,three 

distinct aspects have to be considered:-

a) the climate itself 

b) the indoor conditions preferred by the residents, and 

c) the achievement of those indoor conditions 

As indicated before, although the climate of Saudi Arabia is well 

defined, (37, 38) in Appendix B, the effect of the climatic elements on 

the thermal performance of structures in Saudi Arabia is not known, thus 

emphasising the need for basic research in the area along the lines being 

currently studied. The thermal performances of most building structures 

in Saudi Arabia, particularly heavy-weight structures, are not 

controlled by instantaneous values of the relevant outdoor elements, but 

on a combination of instantaneous values integrated on a time basis. 

The time-lag thermal responses of heavy-weight structures is mainly 

dependent upon the mass of the structure. Light-weight materials transmit 

solar heat with little time-lag. To reduce the effect of heat load 

from the sun(39), it is necessary to reduce the penetration of solar 
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radiation by shielding all the windows exposed directly to sunl ight as 

shown in Figures (17 and 18) and to minimise the exposure time to other 

structural elements of the house, such as the walls and roof. 

The roof is particularly important, because it receives solar 

radiation for the most of the day(40). This can be reduced for a short 

time by building a protective wall (parapet) at the edge of the roof, 

which shades it during early morning hours and during sunset time. 

At mid-day, the angle of incidence of the sun on the flat roof is very 

close to normal, and the roof is exposed to intense solar radiation 

especially during summer. One of the main thermal problems in roof 

design for Saudi Arabia involves controlling the penetration of solar 

radiation. This affects the temperature rise of the ceiling surface, 

which in turn affects the thermal comfort of the occupants. There are 

several solutions(41), but the choice of suitable roof covering material 

is most important and must be both economically and technically viable. 

In certain governmental buildings, white reflective ceramics have been 
• 

d • ". I (42) use as covering materia s • This method is very costly, and so 

for most domestic buildings in Saudi Arabia, white coloured cement 

tiles are adopted to cover the roofs, but there" is no legislation 

governing their use. Similarly light coloured paints or other reflecting 

materials such as expanded polystyrene, may 

absorption of solar radiation. It has been 

be used to reduce the 

founJ43) that the 

temperatures in rooms covered with such reflective materials are noticably 

lower than those without. Since all buildings have flat roofs, and these 

roofs are used by the people living in them, particular care is required 

over design, construction and maintenance as well as differentiating 

between hot-dry or hot~humid climates. (Once again very little useful 
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recorded information is available as to the effects of insulation in 

Saudi Arabia}. 

Similar to the roof, the walls are exposed to solar radiation. 

Walls facing east and west receive a good amount of radiation, but if 

the angle of incidence is small 

the intensity will be less than 

(early morning and late afternoon) 

(44 ) 
maximum • The walls on the north 

face receive comparatively little radiation and are much easier to 

shield in contrast to the walls on the south which require long overhangs 

to shelter them. Thus it is good practice to increase the openings on 

the north side of the house and reduce or eliminate them on the south 

as shown in Figure 19. 

For the reduction of heat transmission through windows numerous 

types of shading devices are now avai lable, but the choice of t.he most 

suitable method for overall performance requires careful consideration, 

taking into account the efficiency of the system in controll ing the entry 

of solar heat as well as the interference it may cause to interior 

dayl ighting .and natural ventilation. External sun protection by using 

wooden shutters is much more efficient than shades or bl inds used 

internally, since the sun's "radiation is obstructed before it enters 

the opening being shaded. It is however important that the shading device 

itself does not become heated unnecessarily as some of this heat may be 

transmitted into the building by conductance through the walls or by 

convection to the surrounding air which may flow into the building. 

To·reduce these deficiencies, the shading device should have a light-

coloured finish on the surfaces exposed to the sun· and its design should 

allow for free flow of air over all surfaces away from the window 

openings. Natural vegetation can· often be used effectively as it provides 
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easy high shading efficiencies. This practice should be encouraged, as 

it proved itself in some of the carefully designed houses of Saudi 

Arabia, as shown in Figures (20 and 21). Table 1.4.-1 illustrates the 

greater efficiency of the external shading devices over the internal 

types(34) • 

Thick walls have greater influence in reducing daily indoor 

temperature variations than thin walls and light-weight structures, but 

the extent of this control will depend on the degree of the variation 

in heating and cool ing effects of the outdoor environment. A 

combination of thin wall (light-weight) and thick wall construction may 

prove satisfactorY in certain cases. For instance, thick walls may be 

used in the east, west and south walls of a house when these walls 

cannot be shaded, while the north wall could be of light-weight 

construction with sufficient opening for through ventilation. 
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Table 1.4.-1 

Coeffi cient 

Coefficient 

o 

9 

19 

25 

29 

34 

38 

42 

45 

40-50 

53 

57 

60 

72 

75 

75-80 

85 

= 

Shading Effectiveness(34} 

100 % Transmission 

Clear window 

Inside dark roller, half drawn 

Inside dark roller, drawn; inside medium roller 

half drawn 

Inside dark blind, drawn 

Inside light roller, half drawn 

6 mm heat absorbing glass; inside medium blind drawn 

Inside medium roller, drawn 

Dark grey heavy drapes 

Inside white blind, drawn 

Tree performing light shade 

Light grey heavY,drapes 

Outside awning, two-thirds drawn 

Inside white roller, drawn; off-white heavy drapes 

Outside aluminium shading screen 

Outside canvas awning (dark or medium) 

Dense tree ,performing heavy shade' 

Outside white awning, drawn 
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1.5. Conclusions and Consequences for.Ventilation Design 

Air change and movement within buildings, or ventilation, is a vital 

aspect of design which must be considered. Acceptable electric light 

sources and electric fans etc. have not produced a situation where 

natural lighting and ventilation can be dispensed with although the 

former may be wasteful of energy: Two factors control natrual ventilation. 

One is the pressure variations due to wind. The other is the 'stack' 

effect which results from warm air in a building, rising and being displace 

by colder external air. In low buildings with small rooms it is easy to 

achieve acceptable levels of ventilation, and to control both wind and 

stack effects by means of windows with adjustable opening I ights, as in 

England. 

in Saudi Arabia, where the cl imate is more severe during the summer, 

both excessive temperature and dust cause problems in achieving adequate 

natural venti lation in many parts of the country, especially in the 

Eastern Province and 'the Central Zone. Thus the promotion and 

exploitation of natural venti lation needs careful design(45). In areas 

where both temperatures'and h~midity are very high as in Jeddah and 

Dammam, ventilation by natural means can be provided, if the ventilation 

criteria exist. The principal factors which govern venti lation rates in 

various circumstances and provide criteria for the performance of 

ventilation systems are, 

. a)- Air movement: . some degree of· air movement is essential. for 

feel ings of freshness and comfort. Desirable speeds vary 

with temperature and conditions. In domestic buildings and 

other similar situations a velocity of 0.10 - 0.33 m/s is 

44 



considered reasonable, but for temperatures over 300 C ~ velocity 

of 0.5 - 1.0 m/s is more acceptable. 

b) Relative humidity: it is usually considered that relative 

humidities between 30% and 70% are acceptable from the point of 

view of comfort and health and little effort is normally made to 

control humidity except in air conditioned buildings. 

Relative humidities are high along the coastal areas, as shown 

in Table B.7.-6 often to uncomfortable limits, so one of the 

best ways to improve comfort is to increase ventilation rates. 

Relative humidity In the Interior of Saudi Arabia however is very 

low Table B.7.-6 and humidifiers are often used. 

In houses along the coastal areas of Saudi Arabia, where both 

temperatures and humid ity are above the generally accepted comfort 

levels in summer, and in most occupied houses during sunlight hours, there 

will be a sensible solar heat gain and a gain (mostly of latent heat) 

from the occupants. These factors will increase both the temperature and 

humidity, making the conditions in the building even more uncomfortable 

than outside. The essential design aims are to make suitable allowance 
. . (45) 

for securing good air movement at living levels during hot weather 

and to provide high rates of air change. P.O. Fanger(ll) states that 

the necessary.temperature for comfort is independent of the air 

velocity because when it is low or approaching zero free convection 

-~~--·-then controls the convective heat transfer process,· and there is 

inflection for the comfort lines at 0.1 - 0.2 m/so He concludes that an 

increase in air velocity from 0.1 to 0.3 m/s must thus be compensated 

o for by an increase in temperature of 1.5 - 3 C. So if we considered a 
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person wearing light clothing (I cl = 0.5 clo, where Icl is the 

clothing index) and performing work with mdeium activity, relative 

humidity 50% and relative air velocity 0.1 m/s, he will be comfortable 

at an air temperature of 19.60 C. By maintaining the same conditions 

and only changing the air velocity to 0.5 m/s and 1.0 m/s respectively. 
. 0 0 

the comfort temperatures for the same person will be 22 and 23.4 C. 

Fanger's comfort diagrams can be applied within the temperate climate 

zones for adults, independent of the sex. For the tropical climates, 

where the mean air temperature is much higher than those in temperate. 

climates, higher air velocities will also promote an improved comfort 

level. It has been found In a study on climate and comfort in a humid 

tropical area(46) that the range of temperatures for a neutral assessment 

is 23.4 to 27.6°C and for a warm assessment 27.6 to 31.80 C. For most 

purposes the preferred temperature may be taken as the mid-point of the 

o neutral range, that is 25.5 C, and it increases a total of about 3.5 deg. 

C as the velocity of air past the body increases. It is interesting to 

note that, although higher. temperatures become tolerable as air movement 

increases, either naturally or artificially, the neutral range at the same 

time decreases. Thus, conditions for comfort become increasingly 

critical as air velocity increases. 

In the context of the coastal areas of Saudi Arabia it is important 

to consider window openings and balconies, and whether they have been 

directed towards the main wind directions in the early design stage of 

the house. From the climatic considerations the most preferable directions 

are towards the north and the sea, where sea breezes can reduce the 

temperature to a great extent, as shown in Figure 22 •. 
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In areas where dust storms exist, utilising the natural winds for 

air movement inside the houses is not advisable and more research should 

be done to solve the ventilation problems in sMuch circumstances. 

During clear days, natural ventilation can be used with adjustable louvres 

being adopted to control the direction of the airflow inside buildings. 

For high velocities in the living zone, inlets and outlets are required 

at low level, and the latter, in the case of louvres, should be set 

horizontally. If the external wind speed increases, then the' air can be 

diverted away from the living zone, so that its velocity drops before 

reaching the occupants. The greatest amount of general air movement 

. can be produced by changing the air flow direction within a room. This 

change will produce more turbulent mixing than when the flow pattern is 

strnight, which means that the whole room will benefit from increased air 

movement rather than only a ~mall part of it(34). 

In modern buildings there is an increasing number of cases where 

natural ventilation does n,et give satisfactory conditions and mechanical 

ventilation must be employed. The main situations which call for this 

type of ventilation may be tabulated(47) as follows 

1. Internal rooms 

2. Large closely populated rooms where distribution of natural 

ventilation would be inadequate (SS CP3 Chapter 1 (c) Ventilation, 

suggests all rooms occupied by more than 50 people) . 

. 3.. Rooms where the volume per occupant is too low for efficient· 

natural ventilation. (BS CP3 Chapter 1 (c) Ventilation, suggests 

under 3.5 m3 per person). 

4. In cases where specially close control of environment is required 

particularly in relation to relative humidity and dust particles 
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in the air. 

5. Where natural ventilation is impractical due to external 

atmospheric pollution or noise. 

6. In tall buildings where wind and stack effects would render 

natural ventilation impracticable. 

7. Where extraction ventilation (or an excess of extraction over 

input) may be required to deal with fumes or smells from 

cooking or other special processes. 

48 



Table 1.5.-1 Recommended minimum rates of fresh air supply to 

buildings for human habitation(47) 

Types of Bu i I d ings 

Assembly halls. 

Canteens 

Factories and Workshops 

Work rooms 

Lavatories and WC's 

Hospital Operating Theatres 

and X- ray Rooms 

Wards 

Houses and Flats 

Bathrooms and WC's 

Halls and passages 

Kitchens 

Li vi ng rooms and Bedrooms 

8.5 m3 per person 

11.5 m3 per person 

14 m3 per person 

Pantries and Larders 

Places of Entertainment 

Restaurants 

Schools 

Occup i ed Rooms 

(Classrooms, Laboratories, 

Practical Rooms etc. 

2.8 m 3 per person 

5.56m3 per person 
·8 3 .5 m per person 

14 m 3 per person 

Cloakrooms 

Corridors, Lavatories and WC's 

Recommended minimum rates of 

fresh air supply to buildings 

28 m3 per hour per person 

28 m3 per hour per person 

22.6 m3 per hour per person 

2 air changes per hour 

10 air changes per hour 

3 air changes per hour 

2 air changes per hour 

1 air change per hour 

56 m3 per hour 

20.5 m3 per hour per person 

18.5 m3 per hour per person 

12 m3 per hour per person 

2 air changes per hour 

28 m3per hour per person 

28 m3per hour per person 

. 42 m3 per hour per person 

28 m3 per hour per person 

20.5 m3 perhour·per person 

12 m3 per hour per person 

3 air changes per hour 

2 air changes per hour 

Source: British Standards Institution CP3 Chapter 1 (c) 
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PART: 2 

EXPERIMENTAL STUDY 

THE THERMAL PROPERTIES OF BUILDING BLOCKI .. 
POLYSTYRENE FOAM COMPOSITE LAMINATES 
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2.1. Introduction 

Regulations and Incentives have been introduced in most of the 

developed world(4B) to promote savings in energy consumption in many 

fields. This includes the developement of new building materials as well 

as the use of insulation materials with existing structures, and a fuller 

understanding of heat flow through these structures is required. Theories 

on the conduction of heat are outlined and discussed here in this thesis, 

since a substantial part of the total amount of heat exchanged between the 

interior and exterior of a building is transferred by conduction. Heat 

conduction in both homogeneous and composite materials is reviewed for the 

purpose of measuring their thermal conductivities. The materials tested 

are common as building and insulation materials. These are "Thermalite" 

(aerated sol id cement blocks) and "Styrofoam" 16 board insulation 

(extruded polystyrene). A guarded hot plate apparatus is used to determine 

the thermal conductivity of the above two homogeneous materials. For each 

material, two identical samples are tested, placed on either side of a 

• 
heating unit which is surrounded by a guard ring to ensure no net loss of 

heat from the heater edges. The heat flow through each sample is then 

half the energy flow to the heating unit. The temperature of the central 

hot,plate and the two cold plates is determined with thermocouples embedded 

in the surfaces of the plates. 

"Thermalite" and "Styrofoam" are combined in two layers,to form the 

composite material. It is suggested that such a composite will provide 

both the structural strength requi red (IIThermal ite") and the excellent 

insulation properties ("Styrofoam"). This is to replace the thick walls 

used in traditional houses, thus increasing the space and maintaining the 
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same comfort levels. The same guarded hot plate apparatus is used in 

conjunction with heat flow sensables to calculate the thermal conductivity 

of this composite material. The use of these sensables reduced the time 

required to obtain 'k' values". The rapidity and ease of obtaing these 

measurements should represent a substantial saving in research time for 

the investigation of the thermal properties of composites with varying 

secondary phase (foam) concentrations. 
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......... --------------------------------
2.2. Literature Review 

2.2.1. Historical 

Many problems In building research and building design 

require a complete understanding of .the heat-transfer processes 

which take place between a structure and the surrounding environ-

ment. Heat transfer is defined in the I iterature as the transmission 

of energy from one region to another as a result of a temperature 

difference between them. The modes of heat transfer are: radiation, 

conduction and convection. In most situations, heat energy flows, 

not only by one, but by several of.these modes acting simultaneously. 

When one mechanism dominates quantitatively, useful approximate 

solutions are obtained by neglecting all but the dominant mechanism. 

The heat-transfer at the external surface of a building is mainly 

by radiation and convection, whenever the heat flow through the 

walls and the roof is transferred mainly by conduction. 

, 
Radiation is the transport of energy from a material into 

the surrounding space by electromagnetic_waves, due to temperature 

gradient. The energy transmitted in this way is termed radiant 

heat. Its intensity depends on the temperature and the nature 

of the surface. The equation governing the radiant heat transfer 

is: 

q =F Q e: (T 4 _ T 4) 
I 2 

where 

q = heat transfer rate or heat flux; (Watts/m2) 

F = geometric form factor between the source and receiver 
. 2 

Q = Stefan-Boltzmann constant; (W/m S) 
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E = emmisslvity of the radiator (source) 

TI = . absolute temperature of the source 

T2 = absolute temperature of the receiver. 

Conduction Is a process by which heat flows within a medium 

(sol id, 1 iquid, or gaseous or between different mediums In di rect 

phys ical contact. The energy Is transmitted by di rect molecular 

communication without appreciable displacement of the molecules. 

Energy is also diffused through the material by these thermal 

commun i cat ions. 

If conduction occurs in a fluid in motion, the diffusion 

of thermal energy will be affected by the relative motion or the 

elastic impact within the fluid. Conduction processes affected 

by relative motion are called convection processes. Convection is 

most important as the mechanism of energy transfer bet .... een a solid 

surface and a gas, and is given by the following equation: 

q = h(Tl- T2) 

where 

q = the he~t transfer rate; (W/m2) 

h = the convective heat ransfer coefficient; (W/m2h) 
(T1 - T2) = the temperature difference between the surface 

and the gas 

In this review only the conductive heat transfer mode will 

be considered, since a substantial proportion of the total amount 

of heat exchanged between the interior and exterior of a .building 

is transferred by conduction. The subject of heat conduction in 

solids and its related mathematical theories was first developed 

53 

~ 



.more than one and half centuries ago. This is due principally to 

the French scientest Jean Baptise Joseph Fourier. (1768-1830) and 

was introduced by him In his book "Theorie analytique de: la 

chaleur,,(49). Others such as Lambert and Biot had developed some 

more or less correct ideas on the subject, but they did not explain 

it to the same degree, clarity and order as Fourier did. 

Fourier treated many cases of heat conduction in solids. 

His work was extended and applied to more complicated problems by 

Laplace and Poisson at the same early period. Host of the later 

workers in the subject such as Lame, Sir W. Thomson (Lord Kelvin), 

Riemann and many others did the same. Riemann in particular 

illustrated Fourier work in a very understandable and readable 

form (50) • 

From the fort i es to' the sevent i es of th i s century, many 

workers such as Carslaw and Ja,eger (51), Jakob(52) , Schneider(53) , 

Ozisil72~nd many others approached the mathematical solutions of 

heat conduction problems in an elegant way. 

The conduction of heat process had been classified in 

the literature as steady and unsteady states. The steady state 

means that the conditions of the material such as temperature and 

density at all points of the conduction region are independent of 

time. The unsteady state implies a change with time, usually only 

of the temperature, and it is devided into two types, periodic and i: 

transient. The periodic conduction happens as a result of 

temperature variations with time, such as the conduction of heat 

energy through building walls due to solar effects. The transient 

conduction takes place, when this variation is irregular and not 
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periodic. 

The solution of a conduction problem involves the 

functional dependence of temperature upon location in the conduction 

region and upon time in unsteady state circumstances. This means 

finding a temperature distribution which Is consistent with the 

boundary conditions and any specified conditions internal to:the 

region, such as rate of heat flow. 

The rate of heat conduction through a sol id material, is 

proportional to the temperature difference across the 'material 

and to the area perpendicular to heat flow and inversely propor-

tional to':the length of the path of heat flow between the two 

temperature levels. ' This relation was establ ished by Fourier and 

is analogous to the relation for the conduction of electricity, 

called Ohm's law. The constant of proportionality in Fourier's 

law, is called the therma'l conductivity "I(' and is a property of 

the conducting material and of' its state. Thermal conductivity is 

defined(54) as a property of a homogeneous body measured by the 

ratio of steady state heat flux (time rate of heat flow per unit 

area) to the temperature gradient (temperature difference per unit 

length of heat flow path) in the direction prependicular to the 

area. It is expressed (55) 
as the heat flow in watts per 5quare 

metre of surface area for a temperature difference of IOe per 

metre thickness. 

Thermal conductivity measurements prior to the Second World 

War, were mainly conducted by National Standards Laboratories, and 

some 1 imited number of centres at Universities or Government 

establishments. This trend changed from the early forties, when 
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more scientists and engineers of all disciplines were also 

involved. The reported differences in values of measured thermal 

conductivities of a particular material by an order of magnitude, 

necessitated unified standards and international conferences to 

discuss the matter. 

Some of the published standards, were revised several times. 

The most common for' the measurement of thermal conductivity of 

building and insulating materials in slab form are the British 

Standard 874: 1973 <.56) with its new ammendment, publ ished in 

1979(57), and the American Standard CI77-71, revised in 1976 as 

CI77-76(58) • 

Other test procedures and methods were applied in special 

and different cases, and refinements in this field were encouraged. 

Many workers helped with their ideas and contributions 

to develop understanding in the field of thermal conductivity.'Examples 
, (59) 

are Powell, who developed the Thermal Comparator methods, 

Ziebland and his work on the thermal transmission properties of 

polymer composites(60), Pratt's excellent survey of heat 

transmission' in low conductivity materials(61), Harmathy and his 

work on variable-state methods of measuring the thermal properties 

of solids(62), Woodside, Donaldson, Pratt and their work on edge 

heat loss analysis. The most authoritive and collective recent 

work on thermal conductivity is that of Tye(59,61). 

Other advancements and contributions to this field were 

discussed in the specialized meetings and conferences. The first 

conference for the measurement of thermal conductivity was held 
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at the Battelle Institute in'Columbus, Ohio In,1961. 

Other meetings took place in Canada, The United States 

of America, and Europe. The first International Conference on 

Thermal Conductivity was held at the National Physical Laboratory. 

Teddington, England, in 1964. Many other conferences have since been organiz-

ed to discuss and understand'all the fundamental principles of accur

ate temperature measurement, heat loss considerations, the progress 

in this field, and the thermal conductivities of any new materials. 

The following information should be given in case of any 

investigation concerning thermal conductivity: the material, its 

source, any fabrication treatments, chemical analysis, a 'detailed, 

microstructure or general form, density, porosity, grain size, 

pore size, diameter and length of fibres, homogeneity and preferred 

orientation. The method used should be explained in detail 

together with the error analysis, the experimental procedures and 

whether it differs or complies with the existing standards. 

A selection'of thermal-conductivity data and other' thermal 

properties is given in Appendix ( A -4 ); Thermal conductivity 

measurements were conducted for both homogeneous and composite 

materials in plane slab forms, and a literature review concerning 

the theories and measurements of thermal conductivities of 

materials will be revised in the following section. 
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2.2.2. Thermal Conductivity of Homogeneous Materials 

2.2.2.1.Definitions 

The literature on thermal conductivity'of homogeneous 

materials is large, and extensive, due to the wide range of these 

'materials. This includes metals, alloys, oxIdes, llq'uids, building 

materials and insulating materials. They have different testing methods 

and· several types apparatus to cover their wide range of thermal 
, . 

conductivities. The aim is to limit this review to the range of 

solid building and insulating materials,becauseoftheirimportance to the 

building industry and the cause of energy conservation. 

A homogeneous solid is defined as that material, when a point 

within it is heated, the heat spreads out equally well in all 

directions(51). That means the value of thermal conductivity is 

unaffected by variations in sample thickness or area withi~ the 

range of temperature normally used(54). Most of the heat insulating 

materials may be con?idered as homogeneous materials, even though they 

are mixtures of gases and sol id bodies. This is a val id statement if 

every geometrically indentical portion which contains gases and 

sol id bodies has the ·same apparent thermal conductivity(58). 

Cellular materials,' such as ~ork which is naturally occurring, 

foamed and expanded plastics are considered homogeneous. Cellular 

polystyrene thermal insulation is an organic foam composed principally 

of polymerized styrene resin processed to form a homogeneous rigid 

mass of cells(54). These cells are closed, and hence they are air 

and vapour-tight. Lightweight concretes combining structural 

strength with heat insulating properties are also produced in 

cellularform.They are compose of cement, sand and pulverised fuel 

ash with air-voids, and they are considered to be homogeneous. 
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2.2.2.2.Nomenclature: 

(/ 

/ 

a 

A 

c 

C 

k 

K 

L 

q 

q 

q 

R 

= ., the r.ma I diffusivity; 2 (m /$) 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

area, cross sectional area; 

. specific heat; (J!'IK) 

constant, thermal conductance ~'*;' (W/m
2

K) 

electric current flow rate; (Amp.) 

thermal conductivity; (W/~) 

thermal conductance; (W~K) 

thickness of the material; (m)· 

rate of heat flow; (W) or (J/S) 

2 rate of heat flow per unit area or heat flux; (W/m ) 

constant density of flux imposed at abscissa x = 0; 

rate of heat generation per unit volume; (W/m3) 

thermal resistance = 1/k; (S/W) 

Re = electrical resistance; (ohm) 

T j temperature at abscissa x, and at time t; ( K) (x; t 

Tc = constant temperature imposed at abscissa X = L; 

T = initial constant temperature o 

t = time; (5) 

u = overall unit conductance, or overall transmittance 

(W/m2 ~) 
x,y,z,= cartesian coordinates; 

r,e,z = cyl indrical coordinates; 

X = . distance, measured from the input face; (m) 

A = difference between values; 

n = coordinate in the direction of heat flow; 

= mass dens i ty; (fg/m3) 
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2.2.2.3. Theory 

Experience has shown that when different parts of a solid 

body are at di fferent temperatures, heat flows from the hotter 

to the colder portions by a process of electronic and atomic 

energy transfer known as "conduction". 

To prove this statement imagine two parallel planes, distance , 

X' apart, with area-A in an isotropic body and each at constant 

temperature as Tl and T2 • A quantity of heat Q will flow in time 

t, this will be given by 

Tl - T 
Q k 2 = 

x 

dQ = Tl - T 
k q = dt x 

The limiting value of 

ture gradient at any point. 

A t 

2 A 

aT 
or dx 

(I-H) 

• . • • • • • • • • • • • • • •• (2-H) 

is known as the tempera-

aT dx is negative in the direction of heat flow, and the 

rate of heat flow across an isothermal surface in a positive 

direction is 

q = _ k A aT 
dx 

and in terms of heat flux 

= .9. = _ k aT 
q A dx 

................ 

The general equation of heat flux across any surface is:-
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q = _ k aT 
dn ................ (5-H) 

Equations (l-H) and (5-H) are the fundamental hypothesis of heat 

conduction, which was prov~d by Fourier(49) and resulted in the 

general equation of conduction of heat or Fourler conduction 

equation:. 

+ + .............. 

The following mathematical derivation. and analysis has been given 

previously in several papers (63 to 67) using a notation somewhat 

different from the present one~ 

Consider a small cube element of edges 6x, 6yand 6z 

of an isotropic material subjected to a conduction process as 

shown in Figure 2.2.2. (1) 

z 

Figure 2.2.2.(1 J 

y 

I 
I 
I r-----

/ 
I 

- conduction 

region. 

f------------------------------ x 

Elementary cube in an isotropic medium subjected 

to a heat flow. 



Let T represents the temperature at the centre of the 

cube; then, since the temperature will be variable throughout the 

material, we could express its value on any face of the cube as 

being greater or less than T by a very small amount, which 

could be neglicted. 

Take the faces Ay Az, the magnitude of the very small 

amount of temperature is given as 

1 
2 

aT 
dx Ax 

because aT dx measures the change of temperature per unit length 

along ox, and! flx is the length from the centre of the element, 

to the faces fly flz. 

Hence, the temperature of the left and right hand faces 

fly flz will be 

= 

= 

1 
T - 2 

T + 1 
·2 

aT 
dx 

aT 
dx 

flx (6-H) 

flx (7-H) 

By using equation 3-H. q = k A ~~ and substituting the values 

of TL and TR we obtain. 

= 

= 

- k A 

a - k fly Az dx 
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for the flow of heat per second in the positive x direction 

through the left hand face 

- k A 

= - k Ay Az h (T + -} ~ Ax) (9-H) 

for the flow of heat per second in the positive x direction through 

the right_hand face. 

The net rate of gain in the element I::.x I::.y I::.z due to 

conduction in the x direction only can be obtained by subtracting 

the quantities ql - qR' hence 

qL -qR = -k t:.y I::.z h (T - -} ¥X t:.x) - [ -k Ay Az iz 

= k I::.x Ay I::.z 

(T +..!. aT Ax)] 2dx 

Similar relations are written for the other two pairs of faces in 

the y and z directions: 

t:.x I::.z and I::.z I::.x I::.y 
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The sum of the differences of these three pairs of relations 

represents the difference between the total in flow and total 

out flow of heat, or. the amount by which the heat of the element 

is being Increased per second, 

2 
/;x /;y /;z + /;x /;y /;z + k a T /;x 

a/ 
./;y /;z 

•••••••••••••••• (IQ-H) 

The amount by which the heat of the element is being 

increased per second is also equal to the product of its mass, 

specific heat, and the time rate of change of temperature: 

(p /;x /;y /;z) aT 
cCft .•••••••••••••• (I I-H) 

(IQ-H) must equal (ll-H), Hence, we may write 

and since 

aT 
cp Cft 

= a ,thermal diffusivity, hence 

· .............. . ( 12-H) 

Is Fourier conduction equation, which applies to three dimensional. 

unsteady-state conduction in an isotropic region of uniform 

thermal conductivity. 

If the conditions for equation (12-H) are .met and the 

conduction occurs in steady state, the time derivative is zero 

and hence, the result is laplace equation: 
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o 

ThIs can be written as 

.' .............. . (13-H) 

If the steady state homogeneous region of uniform thermal 

conductivity is subjected to a distributed source of energy. The 

strength of the generation process, q = q/AL, may vary over the 

region. The resulting equation is called Poisson's equation. 

a2
T 

+ dZ2 + * = 0 •••••••••••••• ;. (14-H) 

The above equations are in terms of a cartesian coordinate 

system. 

The temperature distribution, T (x,t)' within an infinite 

slab of thickness L, is given by the solution of the one dimensional 
. (51 ) 

equation of 1 inear heat flow with specified boundary conditions; 

a = o<x<L ••••••••••• (15-H) 

where a = k/ec is assumed to be independent of position, time and 

temperature. The boundary condition at the input face, x = 0 

ilT will be an input flux q = - k ax (4-H). 

The temperature of the output face wi 11 be held constant. 
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The temperature of the slab will be uniform and equal to the 

output face temperature at time zero. These boundary conditions 

can be written as; 

q(o,t) = -k 
dT(O,t) 

= 0 t < 0 (16-H) • •• 10 ••••••• 

dx 

dT 
q = -k (0, t) = qo t > 0 (0, t) ax 

T (L,t) = 0, t >, 0 · ......... . ( 17-H) 

T (x, t) = 0 t:s -0 · ......... . (lB-H) 

The solution for'the homogeneous single layer has been given by 

Carslaw and Jaeger(51) as; 

T (x, t) 

qo (L -X) 
= -=-~--k 

00 

1: 
n = 0 

'" 1: 
,exp[-(2 n + 1)2 ~2 

. 2 
a tl4 L ] cos (2 n + 1 h xl2L 

n=o 

................ (19-H) 

At the input face x = 0, and for large values of time the series 

can be truncated at one term to give; 

T (0, t) 

" L qo 
= -k-

~2 at) exp (- 2 J •••••••••• 
4 L 
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2.2.2.4.Theoretical Model 

For the experimental configuration given in Figure' 

2.4.3. (1), where the heat source for the Infinite slab (sample) 

is in contact with the slab and has heat capacity itself, the 

conditions.used in deriving equation (19-HI are not exactly 

fulfilled as it has been assumed that the heat flux comes from 

a source with no heat capacity. As the heat capacity of the 

electrically energised heater is an appreciable fraction of the 

heat capacity of the sample it is necessary to use a double 

cold plate 
" ", . ; ... : . ; '. . . .':'. . . . . ', .: .' .', .' . ' .. ' .' .... ', .: .: . ~ .', 

.... ' .... : ..... : .... ' . - .' .... hot plate 
'. ' ... '. -: ... ' ... '. :. ~. :. ~. : .. 

1---- (old plate 

two identical homogeneous samples 

Figure 2.2.2.(21 Basic experimental arrangements for testing 

homogeneous samples. 

layer infinite slab for a model (68). Figure 2.2.2. (3) represents 

the theoretical model which agrees with the experimental 

arrangements shown in Figure 2.4.3. (1). 
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I ~.' / 
! ...................... / T 
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...•.•... '2' •..•...... / L2 " ..................... -L l' .................... ' : . . . . . . . . . . . . . . . . . . . . '/ . . . . . . . . . . . . . . . . . . . . . 
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I '-t / ............ '. ' ........... '. '. ' ... ' ........ / . 

'

00 .. .'.' ........ .' •••• .'2·.·.'.'.·.'.·.'.·.'· l 
••..................• / 2 ...................... ~ 

'. . . . . . . . . . . . . . . . . . . . . . , . . . . .'. . . . . . . . . . . . . . . ., 
r .' L I ; . . . ; 

Tc 
Double layer 

Figure 2.2.2.( 3 I Theoretical model. 

I heatin g 
t unit 

! sample 

For an infinite slab composed of two layers, 1 and 2, each 

of uniform thickness, an additional pair of boundary conditions 

.are required, namely, the flux and temperature must be 

continuous at the interface. 

Temperatures Tl (x,t) in layer 1, and T2 (x, t) in layer 

2 represent the solution of equation(1SHI which can be written as; 
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(1=1,2) 

at abscissa x=L, f.(. ) - T 1 L,t - c 

(21-H) 

. dT 
= k2 

ClT 
(22-H) kl [ 1 (x,t) ] [ 2(x,t) 

] dX 
x = L, ax 

x = L, 

. dT 
k [ l(x,t} ] = <io (23-H) 1 dX ............... 

x=o 

at time t = 0, T - T - T 1 (x,o) - 2 (x,o) - 0 

The solution of equation (21-H) by means of Laplace 

transformations gives the value of Tl (L t) at .the interface 
~ '1 ' 

between the heating unit (1) and sample (2) Hence; 

+ 
m 
l; 

n = 1 
A (n) exp [ - p (n) • t] •• (24-H) 

in which 

+ T c 

Ti = temperature of the plate whose abscissa is x = Lt under 

constant conditions. 
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x cosJp(n) L 
at 2 

.SinJfl(n) L J 
a t t 

When T = 
c 

for fl(n), 
To' . the expression given by Halteman and Gerrish(6B) 

(nth solution of the equation) is; 

tanJfl(n)L. tanJfl(n) L = 
. at 2 at 1 

After a long enough period of time, T temperatures will be 

steady and we can find the value of Tt(Lt,t) using 

term in equation (24-H) with very little error. 

only the 1st 

Hence equation (24-H) becomes; 

............ (25-H) 

t ~ 't 
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2.2.2.5.Determination of Time (l' ): 

. let us consider the difference in temperatures between 

two moments in time t and (t + d). 

From equation (25-H); 

and 

= T - T 
, (l" t+d) , (l" t) 

= Log [ A (1) l e - Jl (,) d -1) ] - .B (1) t 

If d remains constant, the value of T can be determined when the , 

experimental curve log ~T'(t) in terms of'time becomes linear. 
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" " 2.2.2.6.Determination of the Thermai Conductivity k 

The representative curve of equation (25-H) which has 

) -B(l)t 
the form T(t) = TI + A(l • e should come as close as 

possible to the experimental curve T1 (L
1 
,t) = f (t) in which .. 

T. is known and in the case.of one homogeneous sample of 
I 

thickness L, Ti is the hot face temperature of the sample.The thermal 

conductivity"k" can then be determined by means of the formula; 

q . L 
o 

k = T.-T 
I c 

( reached Under const-ant cond!ti"ons.J. 
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2.2.3. Thermal Conductivity of Composite Materials 

2.2.3.1.Definltions 

I n the last decade the extent of use of compos i te mater i a Is 

. in the field of civil engineering increased tremendously. The 

most common materials are concrete, fibre reinforced resin, fibre 

reinfored cemet and glass fibre reinforced plastic (polyester) 

(g.r.p.) 

The term composite already indicates the presence of more 

than one constituent material. Concrete is one of the oldest 

known composite materials for construction. It consists of 

a non-homogeneous,anisotropic medium, composed of particles of 

aggregate held together by hydrated cement paste. The thermal 

conductivity (69) of concrete is defined as the average thermal 

conductivity of a region (large compared with the average aggregate 

particle interspacing) instead of at a single point. In ~eneral, 

. cJ:!-a composite material is composed of two constituents, matrix and 

fibres( 70). The fibres are embedded in the matrix. The matrix 

may be a resin (poly:ster or epoxide), a hardened cement paste 

(Portland or high alumina cement), a mortar or concrete, or a 

gypsum plaster. The fibre may be glass, steel wire, asbestos, 

polypropylene, nylon, etc. The contact between the matrix and 

fibres is establ ished by the controlled .appl ication of pressure 

and temperature during the moulding process. Insulating materials 

based on mineral fibres may be considered a special kind of 

composite in which the enclosed air represents the continuous 

matrix. This indicates that the matrix (air or gas) is in direct 
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contact with the fibrous solid, which differs from the other 

composites. 

Laminated layers are another form of composite. They 

have very wide range of applications in construction and insulation 

industry. As an example, polystyrene and polyurethane foams 

combined with other building materials produce composites that 

can function as water/vapour barriers as well as thermal insulants (71 ) 

The literature on thermal conduction phenomena in 

heterogeneous media is extensive lfargely because of the 

technological importance of one of its applications, viz thermal 

insulation. The process .of conduction in composites will be 

explained in the next section. 
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2.2.3.2.Nomenclature 

a ; . thermal diffusivity: 2 (m Is) 

A = area: (m2 ) 

f ; structural factor; 

. et> (D) ; fibre distribution (orientation .function); 

k ; thermal conductivity; (W/m K) 

q ; rate of heat flow; (W) 

q ; heat fl ux = q/A; (W/m2) 

R ; thermal resistance = Ilk; 

t ; time; 

T ; temperature: 

V ; volume; 

x,V ; dimensionless terms; 

Suff ices: 

c ; continuous phase; 

C ; compos i te; 

d ; d i scont i nuous phase.; 

F ; fibre re i nforcement ; 

l ; longitudi,~ (along fibre axis) 

M ; matrix; 

T ; transverse (norma 1 to fibre axis) 
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2.2~3.3.Theories of Conduction in Heterogeneous Systems 

The specific heat of a composite laminate is simply the 

volume weighted sum of the specific heats of the constituents. The 

determination of the, thermal conductivity of a composite k , from c 

those of its constituents is ,more complex, and can only be 

predicted accurately by a knowledge of the conductivities of the 

constituents and their geometrical arrangement. An exact mathematical 

treatment of a composite thermal conductivity would require knowledge 

of the position of each individual fibre or (secondary phase) in 

the matrix, cjJ (D). The respective volume concentration of the 

matrix (l-VF) and of the fibres (VF), as well as their respective 

conductivities (kM and kF). Therefore most models are simplified 

according to the following assumptions: 

a} The composite is an ideal and void-free material. 

b} The fibres (reinforcement) are evenly dispersed in the 

matrix. 

c} The fibres and matrix are thermally isotropic 

d} Thermal contact resistance between matrix and fibres 

is negl igibly"low. 

e} Twistl.ng of fibre bundles is ignored. 

A number of trials have been made to obtain equations 

that express k in terms of the conductivities of its constituent c 

materials and their fractional volumes. The simplest models for 

theoretical prediction represent the constituent materials as 

separat'e resi'stances in the form of slabs arranged either in series 

or in parallel to the direction of heat flux. The series 
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arrangement has the maximum resistance to heat flow, and hence 

the minimum thermal conductivity, given by: 

k = c 

in which VF is the volume fraction of the fibres (foam). The 

parallel arrangement has the minimum resistance to heat flow, 

and. the maximum conductivity. 

In practice, the value of thermal conductivity of a composite kc 

composed of two consituent materials (phases) lie somewhere between 

the extreme values predicted by equations (I_c) and 2_C). A number 

of formulae have been proposed to predict k values on the basis 
c 

of a simple model. 

The first model considers a cube of unit volume. This is 

shown in Figure 2.2.3. (1). The mathematical analys is of the model 

have been given by Zie'bland(60), and resulted in the following 

formula: 

K 
c = (3-c) 

in which 

k . 
M = Thermal conductiviy of the matrix. 

( l-V
F

) = Unit volume fraction of the matrix. 

kF = Thermal conductivity of the fibres. 

V
F = Unit volume fraction of the fibres. 
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Ziebland introduced the .dimensionless terms X and Y in which 

X = kM/kF (4-C) 

Y = kc/kF (5-C) 

which led to the general relationship 

Y = F[X ,VF, if> (D) ] (6-C) 

I n terms of X and Y, equat ions (I-C), (2-C) and (3-C) have been 

expressed respectively as follow: 

Y = X 
(7-C) 

which represents the weighted harmonic mean of the conductivity 

of constituent materials. 

and Y = 

which represents 

al so Y = 

the,weighted 
. (l-V

F
) 

X 

(8-c) 

arithmetic mean of kF and kM 

(9-C) 

represents the weight~d geometric mean of kF and kM 

Ziebland showed that an examination of equations (7-C) and (8-C) for 

the two extreme distributions of the matrix materials resulted in 

dY 
= 

dX 

dk 
c = (ID-C) 
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Heat Flow In-Series 

with the Fi bre 

Heat Flow Parallel to 

Fi lire Reinforcement 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 

Reinforcement and -----..1-... , ...... 
________ ,.,)_~l-

the Matrix 

Reinforcement Matrix 

, ...... ' 
~ 

Figure 2.2.3.(1) , Model (1 J 

/ 

Unit Cube Model of Heat Flow through a Composite Laminate( 60 J. 

and if this relationship satisfies the conditions for maximum and 

minimum conductivity, any conductivity relation for other fibre 

distribution cP (D) will satisfy it. 

Differentation of (3-C) with respect to X confirmed that' 

the condition expressed by (lO-C) had been fulfilled. 
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. AI so by substituting the limiting values of VF = I and 

VF = 0 in equation (3-C) the result is k = kF, and c 
k = kM respectively which .agrees very well wi th the c 

assumptions. 

The same equations (I-C), (2-C) and (3-C) have been used(6l) 

to predict the thermal conductivities of granular materials composed 

of two phases solid and fluid. The assumptions used in deriving 

them were the same as those used in deriving the first model for 

fibre reinforced composites. 

The second model considers a unit volume cube of laminate, 

composed of a matrix and fibre reinforcement. The analysis of 

this model was given by Knappe and Martinez _ Freire(74,75), 

by grouping the fibre reinforcement into.two prisms having square 

cross sections and corresponding to the warp and weft directions. 

The model is shown in Figure 2.2.3. (2). 

I 
I 

/---kc,L,b 

kc,L,a 

I 
I 
I 
I 

---+--- Matrix (resin) 

I 
}------- -------.-, ... .,- ___ :;...,L. ____ ---

, 
Fibre 

Reinforcement 

Figure 2,2.3,(2), Model (2) 

Unit Cube Model of Heat Flow through a Composite Laminate in which the 

Fibre Reinforcement are arranged to the Warp and Weft directions. 
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The- thermal conductivities of the composite were determined 

in three directions along a, band transversly by dividing the 

model into a series of prismatic_sections connected in parallel 

as resistances. The conductivity in the transverse direction is 

given by: 

ab 
kc = ---=~---

a+b --+ 
kF 

I-(a+b) 
kF 

+ (I-a) (I-b) kM 

+ 
b (I-a) 

I-b +--
kM 

+ a (I-b) 

I-a +--
kM 

(l1-C) 

where a andb are the sides of the square cross-section prisms in 

each direction. By equating the thermal conductivity of fibres 

to that of matrix, the validity of equation (II-C) have been 

proved, i.e. when kF = kM' kc = kM in the above equation. 

The third model has been introduced by Wyllie and Southwick(76) 
, 

for calculating the electrical conductivity of a medium of 

conductive particles saturated with a conducting electrolyte. 

the thermal conductivity of a composite model combining the series 

and parallel distributions and analogous to the above system was 

given by the following equation: 

k 
a kF kM 

+ b kF + c kM = 'c 
kF (I-d) +d kM 

( 12-C) 

where (a + b + c) = I , when kF = kM 

and (ad + b) = I - V F 

The quantities of a, b, c and d were calculated by assuming the 
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limiting values of kF and kW 

The fourth model·has been introduced by Maxwell for 

calculating the electrical conductivity of a composite, Eucken(77) 

applied it to the calculation of the thermal conductivity of a 

. granular material in which the fluid (air) forms the continuous 

phase •. This was given by 

k 
c = 

1+2 (I-VF) 

1-(I-VF) 

[(I-kF/kM) I (1+2 kF/kM» 

[(I-kF/kM) I (1+2 kF/kM)] 
(l3-C) 

in ·which kc' kF, and kM represent the thermal conductivities 

of the composite medium, the fluid phase (air) and solid (matrix) 

respectively, with VF the volume fraction of fluid (air), or 

porosity. Equation (13-C) have been applied to a cellular porous 

material by interchanging kF and kM' and putting VF = 1 - V F. 

The fifth mo~el was based on the results of Maxwell's 

dilute dispersion equation and was proposed by Lichteneker(78) to 

be valid for a two phase composite material of any geometry .. 

The re I at ion have bee'n gi ven by: 

. (14-C) 

in which f = a specific structural factor and is identical to q,(D) 

When f = 0, equation (I-C) the in-series solution result. 

. When f = co, equation (2-C) the in-parallel solution result. 
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2.3. Aims and Justification of the Present Work 

At this time, the cost of cooling down or heating up of homes, 

schools, factories and offices is rising steadily. This trend is 

most likely to continue as the energy available to us from the traditional 

sources, i.e. the fossil fuels is being rapidly exhausted, and what used 

to be called the easy 011 era(79) has elapsed. A great deal of effort has 

been made to remedy the situation and suggestions have been introduced and 

discussed in many recent publications (references 79 to 82), papers and 

"I I (83, 84) • 0 b
O 

.Id. of 0 0 • Th artc esconcernlng UI Ing or energy conservation. ey recomm-

ended active research to develop other alternative sources of energy such 

as solar power, to replace the fossil fuels and also to reduce the present 

o energy consumption by improving the features of thermal design of buildings, 

and naturally controlling their enclosed spaces. This requires introducing 

new thermal insulating materials and a better understanding of the thermal 

behaviour of a structure. 

• 
The scope for proper building design to withstand the severe climatic 

conditions of the Middle East, especially Saudi Arabia, has been discussed 

in detail in Part 1. This was described clearly by outl ining the many 

examples of traditional techniques employed in the proper selection of site, 

materials, space utilization and the type of construction which resulted 

in higher comfort levels. 

During the last three to four decades, two main factors have helped 

in creating the present unsuitable buildings in which none of the traditional 

techniques have been used. These are firstly the introduction of completely 

new building materials usch as concrete and cement blocks, coupled 

with imported western style construction. Houses have been built 

83 



with reinforced concrete skeletons' and with roof thicknesses not exceed

ing 0.12 to 0.15 m. Walls were non-load bearing with a minimal thickness 

and no insulation. The second factor·is the Introduction of air

conditioning equipment and refrigeration systems to maintain the comfort 

requirements. Hence the valuable aspects of the old traditional technology 

have been neglected and forgotten. 

Air-conditioning and heating equipment are energy consuming, and 

the evaporative (desert) coolers are water consuming, in an arid land. 

The traditional materials described in Partl, are unsuitable because of 

their expense and the longer time it takes to build with them. Some 

traditional solutions to thermal comfort such as compact houses with 

narrow streets and alley-ways are difficult to apply, since they restrict 

the free flow of modern transport· and services. 

The aims here are to find solutions to some of the above problems 

by investigating more suitable insulating materials~ The practical use 

of cellular plastic as an insulation material in conjunction with the present i 

cement block walls and concrete roofs is investigated. This is to replace 

the thick walls used in traditional houses, thus increasing the space and 

maintaining the same comfort levels. Methods of measuring thermal 

conductivities of both homogeneous and composite materials are investigated 

in the experimental study. 
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2.1t. Expe rimenta I Oeta i I 

2.It.l. Sample Preparation 

Three types of materials were used for thermal conductivity 

investigations, namely "Ther~alite" aerated cement blocks(85) , 

'extruded polystyrene "Styrofoam" insulation (86). and a 

combination of the two as a composite 'material. The diameter of the 

samples required for the thermal conductivIty measurement was' 152 mm. 
, , 

Two samples in all' were requi,red for each test. They were made to 

be identical geometrically and in the same physical state, and of 

such size as to completely cover the heating unit surfaces. Cold 

plates were designed to cover completely the other sides of the 

samples. The samples were made to meet conditions stated in the 

standard test ,methods BS 871t(56) and ASTM CI77-76(58), which 

includes the following: 

The portion of the sample over the test area must be 
• 

typical of the whole sample in every aspect. 

The remainder of the sample must not, on average, distort 

the heat flow in that part of the sample adjacent to the 

metering area. 

The sample must be free of low thermal resistance paths 

that create thermal short circuits between the test surfaces. 

The heat flux throught the samples must be directly 

proportional to the temperature difference across the 

samples. 

The surfaces of the test samples shall be made plane by 

appropriate means so that intimate contact between 
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the samples and the plates can be effected. 

"" " ". Thermalite samples were obtained from standard Thermalite 

sol id blocks which were about 440 x 215 mm and· 100 mm thick. This 

was done initially by cutt ing each block into two equal halves, 

across its longitudinal dimension using a band saw. Then each 

hal f was cut into two, three, or four si ices across the 100 mm 

thick side. Each slice was then planed roughly using a metal 

hand file, and.by rubbing surfaces with each another, until an 

approximate thicknesswas obtained. This was nearly 6 mm more 

than the actual thickness required. Using.a compass, a cricle 

whose diameter was 156 mm was drawn on each si ice, and a ci rcular 

plate was produced by cutting over the marked circle using a jig 

saw. 

The flatness of the sample surfaces is the most significant 

factor in the accuracy of measurement. This is because the samples 

should be in complete contact with the high conductivity heat.ing 

unit and cold plates over the entire surface area. If this is 

not ach i eved, air gaps between the samples· and the plates wi 11 give 

incorrect values of thermal conductivity, according to the extent 

and thickness of the air layers. 

The solution was to cut the surfaces and make them parallel 

by face-cutting in a lathe. The deviation from flatness should 

not exceed 0.2 mm(56) or 0.025% and the faces shall be parallel 

over the total surface area to within 1% of the sample thickness(58). 

The extent of the deviation across the full area was judged 

by.a straight edge and feeler gauge(57), and all the projecting 
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grqnules were removed. 

The rqtlo betWeen~the dimensions perpendiculqr qnd 

p~rqllel to the direction of heat flow should average 6 to 1(87), 

qnd for the purpose of th i s research a wi de range of rat ios were 

used as indicated In table 2.4.1.-1. In all, six different 

thicknesses were used; with maximum thickness of '41.6 mm and 

minimum of 16.8, mm. 

Extruded polystyrene samples were obtained from board sizes 

2438 x 600 mm for 20 mm thickness and 2438 x 622 mm for 50, 75 

,and 100 mm thicknesses. The commercial name for it is"Styrofoam" 

1 B permanent building insulation. Initially circles of 154 mm 

diameter were marked by a compass. Circular samples were cut 

easily using the jig saw, which produced circular plate samples 

of 152 mm diameter. The samples were not compressed,in any way so ' 

as to cause any air gaps or variations across the surface area, 

and the thickness was measured at six places by means of vernier 

call ipers reading to 0.01 mm and the mean recorded. Any 

samples with more than 0.15 mm variation in thickness were 

replaced. 

Three'different thicknesses of foam were used, and the 

thicker range of samples were excluded because of the difficulties 

in assembling them for the test. Samples used are shown in Table 

2.4.1.-1. 

Composite samples were obtained by us ing"Thermal ite" and 

extruded polystyrene samples. 
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In terms of the theoretical models described in Section 2.2.3.3. 

the "Thermal ite" samples were equivalent to the matrix and 

polystyrene foam samples were equivalent to the secondary phase or 

fibre content. The general conditions of 'sample preparation mentioned 

before were met. For the heat flow measurements, a 2-in (50 mm) 

square area was marked in the centre of the test samples. The 

square area was then engraved to a depth of 3.5 mm (using hand tools 

in the case of the "Thermal ite" sample~ A heat flow sensable was 

fixed in this engraved square area, using cement powder and 

"Sellotape" to prevent any air'bubbles, so that its surface was 

exactly at the same level as that of the sample. In the case of 

, the extruded polystyrene sample, the square groove was made by 

pressing a pre-heated (200 0 C) stainless steel 2-in (50 mm) square 

shaped plate into the sample for a very short time to cause an 

impression 3.5 mm deep. 'This enabled the heat flow sensable to be 

fitted without affecting the physical, characteristics of the sample. 

The sensable was alsq fixed in place with "Sellotape". The surface 

of the heat flow sensable in the "Thermalite" sample formed part 

of the interface of the composite laminate and no air gaps were 

permitted. The surface of the foam sample containing the heat flow 

sensable was in direct contact with the cold plate. The arrangement 

of the composite samples is shown in Figure 2.q.l. Several' 

combinations of "Thermal ite" (matrix or primary phase) and 

polystyrene (or secondary phase) were prepared and tested as 

indicated in Table 2.4.1.-1. The thickness of each sample was 

measured at six places by means of, Vernier callipers in the same 

way as for the other samples. 
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Table 2.4.1.-1. .indicates the three types of samples: 

. Thermalite ST, Extruded Polystyrene SP, and Composite SC, 

their numbers, thicknesses L, and ratio between the 

dimensions perpendicular and parallel to the direction 

of the heat f1 ow.R. 

Table 2.4.1-1. 

Sample Th i ckness, L Rat io , R. 

in m . Di a m eter I Thick ne ss 
.. Thermalite 

.. 
ST 1 ·4.16"x 10-2 

3.65 to 1 

ST 2 3.20 x 10-2 
4.75 to 1 

ST 3 2.60 x 10-2 
5.85 to 1 

ST 4 2.34 x 10-2 
6.50 to 1 

. 2.12 x 
. -2 

7.17 1 ST 5 10 to 

ST 6 1.68 x 10-2 
9.05 to 1 

ST6x2 2 x 1.68 x 10 -2 
4.52 to 1 

.. St~rofoam .. . . . 

SP 1 5.05 x 10-2 
3 to 1 

SP 2 2 x 2.07 x 10-2 
3.67 to 1 

SP 3 2.05 x 10-2 7.41 to 1 

.. (omEosi te Laminate" 
-2 SC 1 5.26 x 10 2.89 to 1 

SC 2 4.40 x 10-2 
3.45 to 1 

-0 .. ~-~--~---
. 1·_~··~SC·3 3.74 x 10 ~ 4.06 to 1 

SC 4 6.48 x 10-2 
2.35 to 1 
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Figure, 2.4.1 
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2.4.2 •. Sample Characterization 

Thermallte samples were taken from standard"Thermal ite" 

aerated concrete building blocks. The work face dimensions of each 

blockwere440 x 215.·mm and 100 mm thick. The basic ingredients of 

the blocks were cement, graded sand and pulverised fuel ash from power 

statio ns. During manufacture, a I urn in i urn powde r in sus pens i on,wa ter and a di s_ 

persing agent are added to the basic materials. They are thoroughly 

mixed and the mixture is then poured into moulds which vary in 

size between 0.77 and 3.5 m3, depending upon the factory. The 

moulds are partially filled and are then placed in rising and 

stiffening chambers. It is at this stage that the aluminium powder 

reacts with the free lime in the cement to release hydrogen which 

is quickly re~laced by air and which provides the aeration, 

resulting in a light micro-cellular structure. After cutting into 

various block sizes, the material is transported to high pressure 

steam autoclaves where it is cured, rendering the finished product 

physically and chemically stable. The total manufacturing and 

curing process takes approximately 24 hours. The properties of 

the blocks from which the samples were obtained by cutting were 

. (85) given by the manufacturer and are·listed In Table 2.4.2.-1 • 

The blocks were left for three months in the laboratory at an 

ambient temperature of 18 to 220 C. Samples were then prepared as pre_ 

viously described, and the thickness of each sample measured 

at six places by means of Vernier callipers reading to 0;01 mm, 

and the mean recorded, prior to the test. 

All samples were conditioned to a constant mass in a 

ventilated oven at o an average temperature of 20 C. Thei r mass 
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was determined both before and after the conditioning and the 

percentage loss was calculated. The samples were placed 

promptly in the apparatus,' and care was taken to prevent any 

loss of material or any mOisture gain. Proper insulatlon'such 

as loose-fill cork granules were placed In a box surrounding 

both the apparatus and samples to prevent heat losses from their 

outer edges and also to stop any moisture condensation on the cold 

plates. The mean ambient temperature during the test was recorded 

'for the purpose of correct ing the hot and cold face temperatures 

of the samples. The moisture content of the samples at' the time 

of the test was calculated as well as their dry density according 

to B.S: 874(56) and ASTM C 177 - 76 (58). This was done by 

measurements made at the end of the test under conditions of test_ 

temperature equilibrium and after drying the samples in an oven 

at 1100 C for 24 hours. The samples were then cooled in a desicc

ator over P2 OS' in a constant temperature room (20 ± O.SoC), 

and their dry density was calculated. 

All samples tested were subjected to 24 hours constant 

heat flux and measurements were taken every half an hour for 

the first four hours, then every hour for another eight hours, 

and a final reading after 24 hours. 

Extruded polystyrene samples were prepared as 

before from"Styrofoam"IB boar'd thermal insulation. This is a 

closed 

process 

cell polystyrene foam manufactured by an extrusion 
, (86) 

developed by the Dow Chemical Company • It is light 

blue in colour, and its physical and mechanical properties are 

given by the manufacturer and reproduced in Table 2.4.2.-2. 
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The thickness of each sample was measured at six 

places using Vern I er ca 111 pers read i ng to 0.01 mm, and the 

mean recorded. All samples were conditioned prior to the test to 

a constant mass. This was achieved by placing them In a ventilated' 
o . 

oven with an average temperature of 20 C for at least 16 hours. 

The percentage loss In mass was calculated, from the masses before 

and after conditioning. 

" u The same procedure was followed as incase of the Therma lite 

samples. Directly after' the end of the test, the 

moisture conten~ of the samples were determined.as well as their 

thickness at six points. 

Absolute dry density was difficult to determine, because 

the samples would melt when, in prolonged direct contact with high 

temperature heat sources (1100 C). The maximum recommended 

continuous temperature by the manufacturer is <7SoC). For this 

reason the heat fluxproduced by the heating unit, was kept to well 

below. this temperature. 

The same con~itioning methods were applied for the 

composite samples. Since the "steady state"condition was not 

reached quickly within the first six hours, the test was run for 

36 hour's. Ambient temperature was recorded during the test for 

the purpose of calculating accurately the hot and cold face 

temperatures of the composite samples. The interface temperature 

was measured by the built-in thermocouples incorporated with the 

heat flow sensables. 
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Table 2.4.2.-1; (SS) 

Physical and Mechanical Properties o('Thermalite"Standard Blocks, 

which compl ies with BS 2028;1364 : 1968 

Physical and Mechanical Properties Values 

Density (dry) 730 kg/m3 

Thermal coefficient of linear expn. 8.1 x 10-6 per °c 

Specific heat capacity 

Thermal conductivity (k value) 

. 

Measured 'k' value 

Compressive strength 

Combustibility 

Modulus of elasticity 

Vapour resistivity 

94 

1.05 KJ/kgoC (between 20 

to 100oC) 

0.21 W/mK at 3% moisture 

content by volume in 

accordance with BRE best fit I 

curve • 

0.184 W/mK at 3% moisture 

content by volume 

. 3.5 N/mm2 in acco rdance 

with BS 2028, 1364 : 1968,Pre[ast 

concrete blocks, Appendix C. 

Non-combustible (BS 476) 

2.8 x 103 N/mm2 

Mean = 56 MN s/gm . 



(86) Table 2.4.2.-2. 

Phys I ca I and Mechan I ca I Propert I es of "Styrofoam"l B 

Physical and Mechanical Properties 

. 

Density 

Thermal coefficient of linear 

expansion 

•• Thermal conductivity k value at 
o 10 C mean temperature 

Compress i ve st rength at 5% 

compression 

Water absorption 

Capillarity 

Water vapour permeability 

Fire rating 

95 

Value 

28 kg/m3 

-5 0 7.0 x 10 m/m C 

0.034 W/m f( 

2 0.25 MN/m 

O. 05% Vo I ume 

None 

7 micro 9 m/Nh 

Combustible, if subject to 

. 

an intense fire source, it 

may be burn rapidly, releasing 

dense smoke. So it should be 

covered with 13 mm plaster 

.. or plasterboard. 



· ........ -----------------------------------
2.4.3. Thermal Conductivity Measurements 

2.4.3.1.Apparatus 

2.4.3.1-1 General 

The genera I a rrangement of the equ i pment as a who le is 

shown schematically In Figures 2.4.3. (1) and 2.4.3. [2); It consisted 

of an experimental box r ontaining a pair of identical samples 

of such size as to completely cover the heating unit surfaces on 

both sides. These were held together by two cold plates kept at 

the same temperature by a constant temperature fluid, and with 

the same surface dimensions as that of the heating unit. Each 

face of the heating unit was fitted with thermocouples which 

set in grooves. The same number of thermocouples were permanently 

and similarly placed at corresponding positions in the facing 

cold plates. 

The experimental box was filled with loose-fill material 

to reduce heat losses from the outer edges of the heating unit and 

the specimens, and to prevent water condensation at the cold plates. 

The genera I design of the equ i pment was based on the gene ra I 

guide lines set out in the . (56 57) revised BS 874 ' and on ASTM, 

Standard method of test C 177-76(58). 

2.4.3.1.-2 Heating Unit: 

The heating unitwas a round plate consistingof a central 

section and a guard section. The central section consisted of a 

central heater and central surface plates. The guard section 
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consistroof a guard heater and guard surface plates. The 

surface plates were made of copper which has a high thernial 

conductivity. The working surfaces were smoothly finished to a 

true plane. The two faces of the heating unit were, substantially 

at the same uniform temperature. The heating unit had a gap 

of 2.5 mm between the central surface plates and the guard 

surface plates. 

The test area was calculated by taking measurements to 

the centres of the separations that surrounded the central heater. 

The resistance of the heating unit and both the central section 

and guard section are shown in Figures 2.4.3. (3), 2.4.3. (4) and 

2.4.3. (S) respectively. The overall dimensions of the heater 

are shown in Figure 2.4:3. (6). 

2.4.3.1.-3. Power Supply Unit 

The heating unit was heated by using a stabilized power 

supply unit. This unit could be operated as either a constant 

voltage or constant current supply, the mode being selected by 

a simple I ink. The·output ,level was monitored precisely on two 

large clear meters which were switched to read both voltage and 

current at the same time. Separate switching of the mains input 

and direct current (O.C.) output was provided enabl ing the supply 

to be adjusted in circuit and left in 'Itand-by" prior to 

supplying the load thus providing the best possible regulation 

without delay causedbyawarm-up period. Protection against over

load and short circuitwas by adjustable current limiting and 

adj ustab le over-voltage protect ion. The output of th i s un it was 
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as follows;' 

Vol tage, 

(urre nt 

o _ 30 ,Volts 

o _ 5 Amperes 

For dimensions and specification of this unit see 

Appendix A 

2.4.3.1.-4. Cooling Unit 

This consistro of two circular plates. The units (heat 

sinks)were fabricated from copper which has high thermal conductivity 

and were smoothly finished to a true plane. They had surface 

dimensions the same as those of the heating unit including the 

guard heater. Thermostated, refrigerated water (with anti-freeze) 

was circulated through a labyrinth of channels in each sink to 

maintain a uniform temperature lower than that of the heating 

unit. The water supply to both heat sinks came from a tank 

equipped wi'th a pump, so that the pressure of the water circulating 

through the apparatus was kept constant and a steady flow-rate 

was obta i ned. All air bubb I es were 'fl ushed out of the sinks by 

keeping the pump fully immersed under the water level inside the 

tank. The overall dimensions of the cold plates are shown' in 

Figure 2.4.3. (7). 
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2.4.3.1.-5. Sensable Heat Flow Sensors 

.( 88 ) 
The sensable was wafer-thin and generated Its own 

mi 11 i vo It outpu t 5 I gna I that was proportional to the amount of 

heat flowing through.the gauge at that time. It was sensitive to 

all types of heat transfer. The best operation of these 

instruments was obtained_when they were firmly attached to the 

surface under measurement. - For the experiment where convect i ve 

heat transfer measurementswere being made, itwas permissible to 

tape the instrument to the sample surface by means of"Sellotape" 

These inst ruments were ca I i brated and ass i gend a sensiti vi ty value 

in terms of millivolts/BTU/ft
2
-hr. Four units (each50mm xSOmm) 

• 

were located between the i dent i ca I compos i te samp I es and ·the heat 

flow was recorded using a precise heat flow digital sensimeter as 

shown in Figure 2.4.3. (2). 

2.4.3.1.-6. Measurement of Temperatures 

Thermocouples were used for the purpose of measuring 

temperatures, with connections arranged so that they were read 

as a differentially 'connected thermopile. These thermocouples 

were type T (copper-constantan) with three wire sizes(89), 

number 28 AWG (American Wi re Gauge) (90.) (0.321 mm) for the 

sensable heat flow sensors, number 24 SWG (0.559 mm) for the 

hot plate and number 16 SWG (1.62 mm) for both upper and 

lower cold plates. 

For measuring_the s~face tem~erature of the central 

section .of the heating unit, the central surface plates were 

99 



were provided with (6) thermocouples set in grooves. There were 

(4) thermocouples permanently and similarly installed at 

corresponding positions In each of the facing upper and· lower cold 

plates. Thermocoupleswere connected to a measuring system 

controlled by a selector switch to read between 1 and 1.4. 

The heat flow sensors with their built-in thermocouples 

were used to determi ne the temperatures between the compos i te 

materials. These thermocouples were also connected to another 

measuring system controlled by a selector switch reading from 

l' to 4'. Heat flow measurements were recorded at the same time 

by using a digital sensimeter which read directly in Watts/cm2. 

The reference junction of the thermocouples given at 

OoC( 91) was corrected for the recorded ambient temperature 

during the test. 
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FIGURE. 2.4.3.( 2) 
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FIGURE,2,4.3.(6 ) 
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FIGURE, 2.4.3.( 7 J 
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2.4.3.2.Testing Procedure 

(I) Testing Homogeneous Materials 

The sketch plan,' Figure 2.4.3. (1), indicates the 

experimental arrangements for the test. 

1.1 Preparation 

1.1.1. Prepare two Identical samples and ihsert each of them 

between the hot plate and cold plates. 

1.1.2. Fill the surrounding experimental box with loose-fi 11 

Insulating material, and cover. the box . 

1.1.3. Fill the cool ing tank with water and anti-freeze liquid 

(1:1) till the fluid level covers both the inlet and the 

outlet of the centrifugal pump . 

. 
1.1.4. Connect the'output of the '''Stabil izedConstant Power 

Suppl!' unit with the heating unit (hot plate) leads. 

1.1.5. Attach the "Main Selector Switch" leads to the binding 

pos ts of the "Standa rd Un i ve rsa I Sens i mete r", see Figure 

2.4.3.2. (1). 

1.1.6. Set the "Range Full Scale" dial to the mill ivolt input 

required for full scale meter reading (if full scale 

Is to read up to 5.00 mV, set dial at 5). 

1.1. 7. Turn' Function' pointer knob to "0" adjust setting. Turn 

the'O Adjust' knob for a zero reading on the indicator. 
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1.'1.8. Turn 'Function' pointer knob to "F.S!' adjust setting. 

Notes; , 

Turn the ',Full Scale Adjust' knob for a full scale 

reading on the Indicator. 

i. When the"Range Full Scale' knob Is changed always 

checkze'ro and ,full scale and adjust jf necessary. 

11. 'Full Scale,Adjust' should be adjusted once a day 

,md/or after each change in range sett jng. 
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1.2. Testing 

1.2.1. With the mains supply connected to the"Co6ling:Tank', 

"Ma ins" and "Coo ling" swi tches set to "On", both the 

pumP and the'refrigerator will start to circulate and 

cool the liquid in the tank and in the cooling plates. 

1.2.2. Wi:th the mains supply connected to the 'Stabilized Power 

Supply' unit. "Input" and "Output" switches set to 

"On" and the output 'Voltage Adjust' controls set to 

maximum, set the "Current limit" control to indicate the 

required current and reduce the 'Voltage' controls till 

the "limit'-~ (Red light) just illuminates. 

1.2.3. The ouput level can be monitored precisely on the two 

large clear meters which are switched to read both voltage 

and current at the same time. 

1.2.4. At regular 'intervals, select the point you want to measure 

at the "Main Selector Switch" by turning the knob indicator 

towards the number on the switch (1 to 14). In the 
• - . I I 

'Standard,Universal Sensimeter' turn Function pointer knob 

to "Read" and read the indicator directly in the engineering 

units you are using (millivolts). 

Each reading on the indicator corresponds to one selected 

point on the selector switch and gives the mill ivolts 

equivalent to temperatures on the cold and hot faces of 

the sample. 
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1.2.5. 'If 'Fu'nction' knob must be turned to "Reverse" to 

obtain a reading, this indicates reverse p.olarlty 

on the input terminals. 

1.2.6. After each set of' readings, record the room temperature, 

. and turn 'Function' pointer knob to off position. 

1.2.7. Run the test, following the same procedure each time 

1.2.8. Stop the test after 2~ hours (readings are constant, 

when reaching the steady-state condition). 
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.II Testing Composite Materials 

The sketch plan, Figure 2.4.3. (2), Indicates the 

experimental arrangements for the test. 

11.1 Preparation 

11.1.1 Prepare two identical composite samples, each. composed 

of two layers.· 

II.l.2. Insert two heat flow 'Sensables' for each composite 

sample, one between the layers, and the other between the 

cold plate and the sample. 

II.l.3. Follow the same steps 1.1.1. to 1.1.8. as for homogeneous 

samples. 

II.l.4. Attach the 'Sensables Switch' leads to the 'Receptacle' 

on the rear ,of digital Sensimeter unit, and the built-in 

thermocouples leads to another 'Universal Sensimeter' 

rI.l.5. Connect the unit to the mains (115 volts A.C., 60 Hz 

power, converted with and adaptor). 

tt.l.6. Turn the power "On" and allow about 30 minutes for warm up. 

11.1.7. Turn the 'Function' switch to '0 Adjust'. Adjust the '0' 

knob for a reading of 000 on the digital display. 

IL1.8. Determine the .mV output from the 'Sensable' at its full 

scale output (such as 445.18 mV at 500 BTU/Ft2-hr) 
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n~'1.9. Set the' Gauge Factor' knob to show I!!] 45 

H.1.10Turn the 'Function' switch to "F.S. ,Adj.", adjust the 

"F.S." knob for a 500 display on the digital display. 

,H. 2.,' Test ing 

11.2.1. Follow the same steps as in 1.2.1 to 1.2.6. 

H.2.2. Turn the 'Function' switch to "Read" In the 

'Digital'Senslmeter'. 

11.2.3. Turn the 'Sensable Selector Switch' knob indicator 

towards the wanted number on the switch (I' to 4') 

11.2.4. The digital display shall now show the measured 

2 ' 
heat, flux directly in BTU/ft -hr - from the desired. 

heat flow sensable. 

II.2.5. Follow steps 1.2.4. to 1.2.6. with the other 'Universal 

Sensimeter' to obtain the interfaces and cold plate 

temperatures. 

II.2.6. Run the test, folJowing the same procedure each time. 

11.2.7. Stop the test after 36 hours, readings should cover the 

first and last 12 hour periods. 
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2.5. Results of The Experimental Study 

2.5.1. Introduction 

The standard apparatus for the determination of thermal 

conductivity 'k' has been described in Part 2.4. The essential 

features of this apparatus are shown schematically in Figures 2.4.3. 

(6) and 2.4.3. (7). When a "steady state" temperature 

equil ibrium has been establ ished across the test samples, "k" 

may be calculated from the power· input to the test area, the area 

of the sample, the temperature difference between the hot and cold 

surfaces of the samples and their thickness. All the data has been 

recorded according to the Table HS for homogeneous materials, and 

Tables ICS and 2CS for composite materials, which are shown in 

Appendix AI. The formula from which the thermal conductivity is 

calculated has been derived in Part 2.2. assuming that one 

dimensional heat flow occurs between the test area and the cold 

plates. 

Errors due to heat losses at the edges of the samples and 

due to the temperature difference between the test. area and guard 

ring have been discussed by many authors such as Woodside (95), 

Pratt(96) and Siu(97). To eliminate errors arising from the 

temperature differences between the test area and guard ring, the 

guard ring was maintained at the same temperature as the test area 

so that no heat exchange could occur between the two. Another 

source of error (98) arises from measuring the temperature of the 

samples, Indirectly by using sensors built· :into the surfaces of 

both hot and cold plates. These errors were considered to be 
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negligible for the series of tests conducted. The greatest source 

of error for a given material involves the heat loss from the 

edges. This can be'determined by testing a few sets of samples 

of the same material,' identical except for thel r thickness. The 

true thermal conductivity of the samples can then be found using 

these measurements. The values of thermal conductivity obtained 

under constant conditions are stated in Figures 2.5.3.-- 1 to 

2.5.3.-- 14 and Flgures,2.5.4.-- 1 to 2.5.4.- 11. 

2.5.2. Operating Conditions 

The ambient temperature of the laboratory was recorded, and 

at time t = 0, the test was started by switching on the heating unit 

and the refrigerator. The variation in the temperatures on both the 

hot and cold sides of the sample was measured at regular intervals 

until a degree of stability was obtained. This was judged by the 
, . 

constant difference in temperatures across the sample thickness for 

at least three intervals {each interval is one hour}. The test was 

run for at least' 24 hours in case of homogeneous samples, and for 

36 hours in case of composite samples. Three identical tests were 

carried out on each sample to eliminate any single errors in 

temperature measurements. 

2.5.3. Results Obtained For Homogeneous Materials 

To determine the thermal conductivity of homogeneous 

materials, tests were carried out on two materials, "Thermalite" 
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and extruded polystyrene. Their normal dry room weights and 

conditioned weights were determined prior to the tests. Tests 

were carried out using various thicknesses and after the end of each 

test, their weights were determined. Also the oven-dry weight of 

each sample was determined after leaving them for 16 hours in an 

oven with a temp~rature range of 105 - II0oC. 

2.5.3.1 " Thermallte" Samples 

Seven different samples were used to obtain results of the 

thermal properties of "Thermalite" blocks. The samples were given 

identification letters and numbers according to their thicknesses and 

the imposed time rate of heat flow per unit area(heat flux) at the 

hot face. Table 2.5.3. - summa r i zes th I s data. I t shows the 

range of thickness, L, in metre and volume, V in m3 with the imposed 

heat flux for all the samples. The samples prior to each test were 

measured at six places by means of vernier callipers to 0.01 mm, and 

the mean thickness was recorded. The deviation from flatness was 

found to be less than 0.1 mm, and the faces were parallel over the 

total surface area to less than 1% of the sample thickness. This 

was conformed to the existing BS 874 and ASTM C177-76 standards. 

The samples were conditioned to a constant mass in a ventilated oven 

as explained in 2.4.2, and the mass loss during conditioning Mr in % 

was determined. This was found to be less than 0.125% by weight, 

and was calculated from the following relation: 

M = r 

.Hl~:M2 

M2 
x lOO 
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where Ml = Average mass of material in samples before conditioning 

M2 = Average mass of material in samples .after conditioning. 

The results for each· Individual sample are shown in Table 2.5.3. - 2. 

Samples were placed carefully in the apparatus, and care 

was taken to prevent any loss·of material or any moisture gain. 

This was achieved by surrounding the apparatus with external wooden 

box, filled with proper loose'~ fili cork granules as an insulation 

material. The box was covered·with an insulating asbestos -.cement 

board. The bulk densitles of.the conditioned samples as tested 

were calculated from the relation. 

v 

where V = Average sample volume, as tested in m3 

M2 = As defined before. 

The values are given in Table 2.5.3. - 4. and the mean bulk density 

was found to be 727.91 kg/m3 with a standard deviation for all the 

samples of + 1.769 kg/m3• The bulk density given by the 

manufacturers (85) in Table 2.4.2. - 1 is 730 kg/m3• This differs 

by a very small quantity of only 0.29% by weight and agrees very 

well with the calculated values. 

The test was started at time t = 0, and for each sample 

a suitable heat flux was chosen to obtain a temperature gradient 

o across Its faces not less than 15 C. Table HS was used to record 

all the information obtained from each test, such as the reference 
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temperature, the thermocouple readings of both the hot and cold 

faces of the samples, and the time interval. Other information 

including the power supply and current were monitored and recorded 

as well in the same Table. Readings from the test were obtained 

for the first 12 hours, and another two readings for the last 24 

hours, before stopping the test. For each heat flux, the test 

was repeated three times maintaining the same conditions. All the 

readings were then·cal!culated and the thermal conductivity of each 

test was determined. The results of these tests are shown in the 

Figures 2.5.3. (1) to 2.5.3.(7). Figure 2.5.3.(1) shows the 

results obtained 

sample is 4.16 x 

for sample ST 1, where the mean th i ckness of the 

-2 10 m. It shows the plot of thermal conductivity 

"k" in W/m K versus the corresponding time interval in hours for 

each of the three different heat fluxes as indicated in Table 2.5.3. 

- 1. A representative 'K' value was obtained after 6 hours for a heat 

2 flux of 405.0 W/m (I = 2.0 Amp.) This was 0.2287 W/m K. For a heat 

flux of. 227.3 W/m2 ,(I = 1.5 Amp.) 'K' was 0.2170 \~/mK reached after 

4.0 hours. The last 'k' value was obtained after 3.0 hours for a 

heat flux of 148.0 W/m2 (I = 1.2 Amp.) and its value was 0.2030 

W/m K. The variation in'k'values was due to heat losses from the 

sides of the samples as a result of the different temperature 

gradients' across the sample faces, and the difference between the 

mean temperature of the room during the test and the mean temperature 

of the samples. 

with sample ST 2 

Figure 2.5.3. (2) represents the results obtained 

-2 (L = 3.20 x 10 m). The required time to obtain 

, " the steady state conditions, with the relevant 'k' values are as 

follow: 
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4.0 hours, k 0.220 W/.m q 2 t = = K, = 405.0 W/m 

3.5 hours; k 0.200 W/m K, q 2 t = = = 227.3 W/m 

3.0 hours, k 0.186 W/m K, q 
. 2 

t = = = 148.0 W/m 

These results indicate that provided the same heat flux is used 

in the case of both samp 1 es .51 1 and ST 2, I K I va 1 ues differ 

by up to 8%. This Is due to the different thicknesses of the 

samples. 

Other samples gave different values of thermal conductivity 

and followed the same pattern of decreasing values with decreasing 

heat flux and thickness. The summary of the results is shown in 

Table 2.5.3. - 5 to 2.5.3. - 11. These show the thermal properties 

obtained at four different intervals 4, 6, 12 and 24 hours. Table 

2.5.3. -10 shows the values of the thermal properties of sample 

-2 ST 6 (L = 1.68 x 10 m), and Table 2.5.3. - 11 shows the same for 

sample ST6 x2 which consists of two ST6 samples in direct 

contact forming a sample with double the thickness. The'-

difference between their thermal conductivities increased from 7% 

in the case of higher heat flux (405.0 W/m2) to 11.5% in the case 

of the lower heat· flux (148.0 W/m2). 

The values of mass regain during the tests were obtained 

by weighing each sample after the test directly, and then drying 

them in an oven for 24 hours.at Il0oC. The samples were cooled. 

as explained in 2.4.2. and then re-weighed. The mass regain 

during the test Mw in % was calculated from the following relation 
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M 
M4 . .M3 · 

= x 100 w 
M3 

where 

M4 = Average mass of material in samples after the test. 

M3 = Average mass· of material In samples after drying 

and second conditioning. 

The mass regain for any sample during the test was not greater 

than 1% by weight. The results for each individual sample are 

shown in Table 2.5.3. - 3 .. 

2.5.3.2. "Styrofoam" (Extruded Polystyrene) Samples 

Three different samples were used to obtain values·of 

thermal properties on "Styrofoam" IB board insulation. The samples 

were given identifi'cation letters and numbers·according to their 

thicknesses and the imposed heat flux at the hot face. Table 

2.5.3. - 12 summarizes this data. It shows the range of thickness, 

L in metres, volume; v in m3 and the three imposed heat fluxes, 
. 2 

145.5, 99.2 and 63. 9 ~I/m respect i ve I y. The th i ckness of each 

sample was measured at six different places. The deviation from 

flatness was found to be less than 0.2 mm, and the faces were 

parallel over the total surface area to less than 1% of the sample 

thickness. This conforms to the existing standards: BS 874 and 

ASTM C177 - 76 as indicated before. The samples were conditioned 
. o· 

in a ventilated oven at 20 C for at least 16 hours and the % loss 

in mass Mr was calculated:· This was found to be less than 0.1% 
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by weight. The results for each individual sample are shown' in 

Table 2.5.3. - 13. 

Samples were. placed carefully in the. apparatus, and care 

was taken to prevent any extra pressure on them which might change 

their thickness. In all the tests, loose-fill cork granules were 

'used to Insulate both the samples and apparatus. The bulk 

densities of the conditioned samples as tested, were calculated 

as for the "Thermalite" samples, and are shown in Table 2.5.3.-15. 

Their densities were 29.35, 28.66 and 29.00 .kg/m3 for samples SP I, 

SP 2, SP 3 respectively. Their mean bulk density was found to 

be 29.00 kg/m3 with a standard deviation of ± 0.345 kg/m3• The 

bulk density given by the manufacturers (86) in Table 2.4.2 - 2 

is '28.0 kg/m3• This differs by a small quantity of 3.5% by 

weight from·the calculated values. The test was started at time 

t = 0, and for each of the three samples, a suitable heat flux was 

chosen to obtain a temperature gradient across their faces not 

less than 15
0

C. The maximum recommended continuous operating 
. (86) temperature set by the manufacturers is For th is reason, 

. 0 . 
the maximum temperature of the hot face was I imi ted to 60 C, so 

as not to cause any partlal melting of the samples. The experimental 

data is recorded in Table HS as before, and the thermal conductivities 

at the relevant intervals are calculated in the same Table. The 

results of the tests are shown in Figures 2.5.3. (8) to 2.5.3. (14). 

Figure 2.5.3. (8) shows the results obtained for .sample SP 1 - 5, 

where the mean th i ckness of the sample is 5.05 x 10-2 m. It 

shows the plot of thermal conductivity '11.'. inW/m K versus the 

corresponding time interval in hours for 24. hours, the total 
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duration of the test. The graph represents the average values 

of the three tests conducted using the same heat fl ux of 99.19 

2 W/m (I = 1.0 Amp.) A representative 'k' value was obtained 

after 6 hours, of 0.0778 W/ffi K. The average 'k' was 0.0745 , 
W/m K, which differs by 4.2% from the first value. Figure 2.5.3. 

(9) shows the results of the test on sample SPI-6 
-2 

(L = 5.05 x 10 m) 
. ·2· 

with a heat flux of 63.92 W/m (I = 0.80 Amp.). The "steady 

state" condition was reached after 6 hours, with a 'k' value of 

0.0695W/m K. The average 'k' was found to be 0.0670 W/m K, 

which is 3.6% lower than the first value. The difference in 

thermal conductivities between the two samples SPI-5 and'SPI-6 

is 10%, this is due to a difference of 10 deg. C between their 

mean temperatures. The mean temperature of sample SPI-5 was 

25.6°C and for sample SPI-6 was 15.60 C. The summary of the 

thermal properties of both samples at four different time intervals 

4, 6, 12 and 24 hours is shown in Table 2.5.3. - 16. Figures 

2.5.3. (10) and 2.5.3. (11) show the results obtained with samples 

SP2-5 and SP2-6 respectively. Their 
. -2 

thickness was 4.14 x 10 m. 

Sample SP2-5 with a heat flux of 99.19 W/m K reached the "steady 

. state"condition aft.er 6 hours, with a 'k' value of 0.0672 W/m K. 

The average 'k'. during the test was found to be 0.066 W/m K, 

which differs by 1:78% from the first value. The mean temperature 

of the test was 23.550 C. Sample SP2-6 with a heat flux of 63.92 

2 W/m , reached its"steady state"after 5.50 hours, with 'k' equal 

o to 0.0606 W/m K, and a mean temperature of 13.5 C. The difference 

in 'K' values between the two samples SP2-5 and SP2-6 was 8.2% 

due to a temperature difference b~tween their m~ans of 10.05
0

C. 

The thermal properties·of both samples are summarized in Table 
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2.5.3. - 17. Figures 2.5.3. (12) to 2.5.3. (15) show the results 

obtained with samples SP3-4, SP3-5 and SP3-6 with a heat flux 
2 . 

of 145.48, 99.19 amd 63.92 Wm respectively. The required time 

to obtain the "steady state"conditions, with the relevant .'k' values 

and the mean temperatures of these samples are as follow 

t = 6.0 hours, k = 0.0536 W/m K, 19.96°C 

t = 6.0 hours, k =. 0.0512 W/m K, 11.87°C 

t = 5.0 hours, k = 0.0485 W/m K, 6.24°C 

The difference between the values of thermal conductivity of the 

first two samples was 4.47%, and between the last two samples was 

5.27%, The summary of the last three sample results is shown in 

Table 2.5.3. - 18. By using the same heat flux for any of the 

three samples SPI-5, SP2-5 and SP3-5, values of 'k' decreased 

with decreasing thickness, coupled with decreasing mean temperatures. 

2.5.4 .. Results Obtained For Composite Materials 

Four different 'composite samples were used to obtain results 
, -

for thermal conductivities using a combination of "Thermal ite" 

blocks and "Styrofoam" (extruded polystyrene) board insulation. 

The samples each consisted of a layer of "Thermal ite" and a 

layer of extruded polystyrene of vartous thicknesses. They were 

given identification-letters and numbers according to,their 

thicknesses and the' imposed time rate·of'heat flow per unit area, 

at the hot hce.' Table 2.5.4. - 1 summarizes this data. It shows 

the range of thickness Lc' In metre, volume Vc' In m
3

: foam 
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thickness LF, and matrix thickness LM, and their volumes 

considering V = 1 unit. The imposed heat flux is also indicated . c 

at the same table. The·experimental arrangement Is shown in 

Figure 2.4.3. (2l.The weight of each sample was determined 

before and after the experiment in the same way as described above 

for homogeneous materials. These were found to be more or less 

the same without any significant variations. Heat flow "sensables" 

were placed between the layers and between the sample and the 

cold plates to record the rate of heat flow directly, as explained 

in 2.4.1. The thermocouples In the "Sensables" gave the interface 

temperatures between the I ayers of the compos i te s·ampl es. The 

total number of tests was eleven, each being repeated three times 

to confirm the results. The data for each test is ·recorded in 

Tables ICS and 2CS, shown in Appendix A. Each test started at time 

t = 0, and the ambient temperature was recorded. Other values 

such as the temperatures of the interface, cold and hot faces 

of the sample were evaluated after correction to the ambient 

temperature at the reference junction of the thermocouples. The 

power supply and current were monitored and recorded. Readings 

from the test were .obtained for the first and the last 12 hours, 

as each test was run for a period of 36 hours. All the readings 

were then calculated and the thermal conductivity of each sample 

was deterrnined. The results of these tests are shown in the 

Figures 2.5.4. (1) to 2.5.4. (11). 

Figures 2.5.4 •. (1) to 2.5.4. (3) show the results of the 

three sets of tests carried out on one composite sample Se! 
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consisting of .two layers; extruded polystyrene (LF = 0.0206 m) 

and "ThermaJite" (LM =·0.0320 m). The overall thickness of 

the sample Lc = 0.0526. m. The "Thermal ite" layer was In contact 

with the heating unit. Each test was conducted for a period of 

36 hours. Readings were obtained each half an hour for the 

first four hours, then each hour for the next,,8 hours. After 24 

hours from the start of the test, readings were obtained .again 

each hour to the end of the test (36.G hours). Figure 2.5.4. (1) 

shows' 'k' values as a funtion·of time t, for sample SC1-11, with 

an imposed heat flux of 143.83 W/m2 as Indicated in Table 2.5.4.-1 

The continuous line represents the average 'k' values obtained 

from three tests using the equation 

k = A 

q L c 

where the composite sample was considered to be one material, and 

kA was the overall (bulk) thermal conductivity of the composite 

sample. The discontinuous line represents the average 'k' values 

obtained from the same three tests by using equation (5-c) where 

the thermal conductivities of both the "Thermal ite" kM and the 

extruded polystyrene kF were considered. kc was given by: 

k = c 

in which the heat flux was across the surfaces of the two layers 

of material in~series. The mean kA was found to be 0.123 W/mK, 

whenever the mean kWas 0.1273 W/m K. The difference between . c 
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these two means is - 3.45%. The results obtained for sample 

SCl-4 are shown In Table 2.5.4. - 6. Figure 2.5.4. (2), and 

Table 2.5.4.-7 show",the results obtained for sample'SCl-5 with 

, 2 ' 
an imposed heat flux of 99.19 W/m. The mean kA was 0.1156 W/m K, 

and kc was found to be 0.11'71 W/m K. The difference between kA 

and k is - 1.25%. Figure 2.5.4. (3) and Table 2.5.4. - 8 show c 

the results obtained for sample SCl-6 with an imposed heat flux 

2 
of 63.92 W/m. The mean kAand kc were found to be 0.1034 W/m K 

and 0.1012 W/m K respectively. The average values of kA at each 

interval are indicated by the circles and the contl:nuous line. 

The average values of k are indicated by the squares and the c 

discontinuous line. The difference between them after 24 hours 

to the end of the test is found to be + 2.14%. Table 2.5.4 - 2 

summarizes the results for samples SCl-4, SC1-5, and SCl-6, at the 

indicated int~rvals. The ambient temperatures during,the tests 

o 0 ranged from 20.20 C to 22.0 C. Average temperatures with thermal 

conductivities of both the matrix ("Thermalite") and the foam 

"Styrofoam" (extruded polystyrene) are also indicated. 

Figures 2.5.4. (4) to 2.5.4. (6) show the thermal 

conductivity values as a function of time for the composite'samples 

SC2~3, SC2-4 and SC2-5 respectively. The samples consisted of 

two layers, extruded polystyrene (LF = 0.0206 m) and "Thermal ite" 

(LM = 0.0234 m). The overall thickness of the sample was Lc= 

0.044 m. Each test WaS conducted for a period of 30 hours, and 

the results are tabulated In 2.5.4. - 9 to 2.5.4. - 11. The 

following mean values of thermal conductivities with the % difference 

are obtalned'for the period 24, - 30 hours; all 'k' values are in 
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Wfm K; 

SC2-3, kA = 0.1149,. kc = 0.-1174, - 2.12%. 

SC2-4, kA = 0.1044, kc = 0.·1077, - 3.20% 

SC2-5, kA = 0.1024.: kc = O.:1053~ - 2.83% 

Table 2.5.4. - 3 shows the summary of the results obtained with 

the above samples SC2 •. Figure 2.5.4. (7) to 2.5.4. (9) show the 

resul ts obta i ned for the compos i te sampl es SC3-4, SC3-5 and SC3-6 

respectively. The thickness of the extruded polystyrene layer 

was 0.026 m and the "Thermal ite" layer was. 0.0168 m. The heat 

flux for each sample is shown in Table 2.5.4. - 1. kA and':k
c 

were calculated as explained before and are represented by the 

continuous and discontinuous lines respectively. The results are 

also tabulated in Tables 2.5.4. - 12 to 2.5.4. - 14. The following 

mean values of thermal conductivities with the % difference are 

obtained for the 24 - 30 hours period, all 'k' values are in 

Wfm K; 

SC3-4, kA = 0.0907, k c = 0.0924, - 1.87% 

SC3-5, kA = 0.0876" k c = 0.0898, - 2.53% 

SC3-6, kA = 0.0787, k = 0.0757, + 3.90% c 

Table 2.5.4. shows the summary of the results obtained at the 

selected intervals for the above samples SC3. 

Figures 2.5.4. (10) and 2.5.4. (11) show the results 

of thermal conductivities of samples sc4-5 and SC4-6 as a function 

of time. The thickness of the extruded polystyrene layer was 

0.0414 m and the "Thermalite" layer was 0.0234 m. The tests were 
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conducted for 36 hours. The mean 'k' values for both samples 

for the period 24~30 hours ,are found to be as follows; all 'k' 

values are given In W/m K;' 

SC4-5: kA = 0.1060, 

SC4-6: kA = 0.0947, 

kc = 0.1036, 

k- 0.0919, c 

+2.28% 

+3.02% 

The above values are calculated and shown in Tables 2.5.4. -15 

and 2.5.4. - 16. The summary of the results at the selected 

intervals is shown in Table 2.5.4. - 5. 

Figures 2.5.4. (1) 'to 2.5.4.(11) show' the heat flux 

in W/m2 as a function of time for the composite samples SCI-4 to 

SC4-6 respectively. lhese values were obtained from the heat flow 

sensables described in 2.4.3.1. - 5. The thermal conductivity 

at any interval was calculated simply from the relation: 

k = c 

where q was the heat flux value at that interval, and was obtained 

by using the digital'sensimeter. k was calculated for all the c 

samples and the results are tabulated with the other results in 

Tables 2.5.4. - 6 to 2.5.4. - 16. It is noticable that the values 

of thermal conductivities obtained by the heat flow "Sensables" 

do not vary as greatly as the other values. The difference 

between the steady state values of 'kA' and the values of kc are 

as high as 30% CTable 2.5.4. - 15) for the higher mean temperatures 

of the samples. These differences'are less for the lower mean 

temperatures. The following values are obtained from the above 
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tables for a m~an sample temperature of 21.75 t 1.50 C, with 

the volume of matrix VM' decreasing 

Sample 

SCI-4 

SC2-4 

SC3-4 

VM 

0.608 

0.532 

0.449 

,ki\' ,\i'(m; ~ k 

0'.1230' 

0.1044 

0.0907 .. 

c' W/m K .. Di ffetence; % 

0.0978 20.50 

0.0870 16.63 

0.0794 12.41 

It is clear that the overall thermal conductivities of 

the composite samples obtained by the "steady state" equation are 

higher than those obtained by the heat flow sensables, due to 

the heat loss from the edges of the samples:· The values of k 
c 

are more consistent and do not vary by more than 4% for each sample, 

even though the mean tempera'tures of the samples varied by more 

than 200 C. Tables 2.5.4. - 6 to 2.5.4. - 16 show all the results 

obtained from the three different methods to predict the thermal 

conductivity of the composite samples. 
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2.6. Dl'si::uss ion of Resul ts 

2.6.1. General 

The guarded:hot plate used for the measurement of , the 

thermal conductivity of "Therinalite" and extruded polystyrene 

samples as homogeneous materials has been designed and operated 

according to the standard specifications laid down by the 

British Standard Institution '(1973) and the American Society for' 

Testing Materials (1976). The test was carried out on both 

homogeneous and compos I te samples. A compos i te o'r layered 

sample is defined In article 4.5.1. (ASTM CI77-76) as ,that 

sample, which if sliced parallel to 'the faces, has one or more 

slices witha significantly different apparent thermal conductivity 

The ASTM C177-76 only covers the testing of homogeneous materials, 

but here the same apparatus has been used in conjunction with the 

heat flow sensables to test composite samples in two layers. The 

overall thermal conductivities of the samples have been measured 

and calculated empirically and compared with the results obtained 

by calculating the theoretical composite thermal conductivities 

from the unit cube model of rn-series heat flux through a layered 

composite material explained in' section 2.2.3.3. Also by using 

the heat flow sensables,the heat flux through these composites 

has been obtained accurately and the thermal conductivity 

calculated and compared with the other two methods of arriving 

• • at a value of k. ,The accuracy of these measurements depends'on 

the accuracy of the apparatus, the flatness of the samples,the 

temperatures and the he<lt flow measurements. The thickness of 

the sample plays an important role in the accuracy of the 
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measurements as it influences the edge heat losses. Samples· 

with several thicknesses have been tested and the results 

compared and contrasted. 

2.6.2. Accuracy of The Measurements 

In the last two decades, it has become apparent that the 

"Guarded Hot-plate Method" for the measurement of the thermal 

conductivities of materials, does not give "k" values of samples 

to the required accuracy. A comparison of the measured thermal 

. conductivity of dlfferent.samples of the same product can show 

variations of up to several percent. Tests on concrete blocks 

using the "Plain Hot-plate Apparatus" can show variations in 'k' 

values of up to 80%(87). This has led the British Standard 

Institution to revise its existing standard BS 874: 1973(56) 

and an ammendment was published on 31 August 1979(57). It has 

been agreed that more attention should be given to the preparation 

and conditioning of the samples coupled with the use of more 

suitable' test equipment which should cover the range of values 

to be determined •. 

2.6.2.1.Sample Preparation 

The diameter of the samples required for the thermal 

. conductivity measurement was 152 mm. Two samples were required 

for each test; They were assumed to be identical, homogeneous 

and of constant thickness over the entire area of the heating unit. 
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In the preparation of these samples the flatness of the surfaces 

was the most Important factor affecting the accuracy of measurements 

Both B.S. 874 and ASTM 177 .... 76 I imlt the deviation in flatness 

to less than 0.2 mm, or the faces are to be made flat to within 

0.025 % and parallel over the total surface areauo within 1% 

of the sample mean thickness. Samples were prepared as described 

in 2.4.1. according to these standards, and the extent of their 

deviation -:-from flatness across the full area was Judged by a 

straight edge and feeler gauge .. The thickness was determined by 

means of Vernier callipers reading to 0.01 mm. The deviation 

from fl atness for all the "Therma Ii te" sampl es was found to be 

less than 0.1 mm, and in the case of extruded polystyrene samples 

it was less than 0.2 mm. This was achieved by cutting the sample 

surfaces and edges using a precise lathe. , The reason for keeping 

et'" the smaple surfaces flat and parallel was due to the fact that 

each surface should be .isothermal and in intimate contact with 

the heating and cooling units, in order to satisfy the fundamental 

hypothesis of heat conduction(49) in solids given by equation (I-H) 

and (5-H) explained in section 2.2.2.3. In a review by laming(99) , 

it. is explained that'two surfaces 'in contact' only touch at a 

number of scattered points where the total area in fact is very 

much less than the nominal area of contact. If the surfaces 'are 

metallic, and if there is a heat flux across the 'contact' much 

of it will flow through these small metallic bridges. Some, 

however, will cross the gap between the relatively large areas 

not in contact. In the first case, resistance arises from the 

constriction of the flow lines on either of the contact points, 

and there is no temperature discontinuity at the contact itself. 
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In the second case, the resistance is due to the fluid fil m (air 

or water) between the surfaces, and is strictly proportional to 

the dIfference between fluid and metal reslstlvlties since It 

arises from replacement of metal (sol id) by fluid. The total 

thermal conductance per· unit area of nominal contact may therefore 

be written 

+ 

where: C is the metallic or solid path conductance. s 

.and Cf is the parallel conductance through the interface film. 

Thermal conductance is defined by the equation 

Conductance C = .9.... = w 
LIT K 

Conductance/unit area.= .:::..cL.
AlIT 

LIT is the contact temperature drop. 

= 
.§ 

LIT 

w = 

The thickness of the fluid film (air or water) depends on the 

overall flatness of the sample and plate surfaces. If this is not 

reduced, there will be a tendency to measure a temperature 

difference across the sample which is too large by a factor which 

depends on the thickness of this film·at the point of measurement 

and on the position of the thermocouple with respect to the 

surfaces nominally in contact. If the surfaces of the heating .. 
unit, cool ing units and samples are flat to 0.2 mm, there could 

be a fluid film (qir layer) 0,4 mm thick over much of the area 

between the 'contacting' .surfaces, It was found in similar 

investigatlons(87) that non- flatness introd~ces a systematic 
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error, which always produces a low value of thermal conductivity • 

. The magnitude of.the discrepancy increases as the conductivity 

Increases and will also' increase as the sample thickness is 

reduced. The magnitude of these errors could be as high as 9% 

for a 50 mm thick sample flat to 0.20 mm which has an average 

true 'k' value of 0.20. W/m K, and where both the heating and 

colll ing units are also flat to 0.20 mm. The errors here were 

reduced to less than 1% in the case of "Thermalite" samples, 

and to less than 2% in the case of 15tyrofoam" (extruded polyst-

yrene) and composite samples. This was achieved by the careful 

preparation of the sacoples and repeating the test on' three samples 

each time. In Figures 2.5.3. (1) to 2.5.3. (14) for. the 

homogeneous samples and in Figures 2.5.4. (1) to 2.5.4. (11) 

for the composite samples, the variations between all the points 

for any test after reaching the steady' state condition are 

minimal. 

2.6.2.2.The Apparatus and Measurement of Data 

This was explained in detail in 2.4.3. The precision 

attained was due to the working surfaces of both the heating and 

cooling units which were smoothly finished to a true plane. 

The maximum departure of the surface from a plane did not exceed 

0.02%. The units were constructed from copper which has high 

thermal conductivity. It has been found by many authors including 

Donaldson (98) that the errors for a copper plate are, in all 

instances; smaller than those for an aluminium plate. Hence, 
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from the design point of view, copper was the better material. 

The two faces of the heati,ng unit were substantially at the 

same uniform temperature, as can be,judged by'the output of 

the evenly distributed thermocouples. The heating unit had a 

gap of 2~5 mm between the central surface plates and the guard 

su'rface plates. The error due to any temperature di fferences 

across this gap was greatly reduced by balancing the temperature 

between the two parts. The thickness of the heating unit was 

11.15 mm, which is less than 1/13 th of its overall diameter. 

This was achieved by the use of close windings which helped in 

obtaining a uniform, temperature as mentioned above, and' assisted 

in the reduction of the errors. The cold plates were kept at the 

same uniform temperature by circulating a refrigerated fluid which 

consisted of ~al volumes of water and anti-freeze liquid. All air 

bubbles were flushed out of the cooling units by keeping the pump 

inlet and outlet fully immersed under the fluid level. During each 

test the temperatures of both the lower and upper cold plates were 

found to be exactly the same, so any errors which could have arisen 

from this were insignificant. 

Errors in q, rate of heat flow, arise from changes in mains 

supply and component temperature change, due to ambient 

temperature change or internal temperature change. These errors 

were estimated at 0.06%. The observed' error or parallax error 

made in reading the position of the pointer with reference to, the 

scale was estimated to be 1.25%. The digital sensimeter and 

universal sensimeter were accurate to 0.2% full scale and errors 

due to observation were approximately 0.7%. The other errors 

136 



were in the measurement of ' the thickness of the samples and 

their diameter which was measured to the nearest 0.1 mm, ,which 

represented an error'of·0.6% in the thickness or 0.15% in the 

area. Combining thse'errors,bythe square root of the sum of 

the squares of the·errors.the overall error in 'k' is,1.6% due 

to the both Apparatus and measurements. 

2.6.3. Homogeneous 'Materials:· 

The most familiar method of measuring the thermal 

conductivity of homogeneous insulating materials in the "steady 

state" condition is the "Guarded-Hot Plate Method". The apparatus 

and testing procedure have been discussed in 2.4.3. The difficulties 

of this method are due to the extended time it takes to reach the 

"steady state" condition and the heat losses from the sample 

edges. To discuss the first difficulty consider the assumptions 

used in deriving equation (4-H). The equation was derived by 

considering two parallel planes, distance x-apart, with area A, 

in an isotropic body and each at constant temperature T, and T2. 

A quantity of heat will flow in time t, and that was given by 

Q k 
T, -T2 A t = 

x 

and dQ = k 
.. T1 - :.T 2 

A q = Tt x 

and .9. = k ~T2YT1l 
A x 

hence 

q = k dT (4-H) - dx 
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dT 
where - dX is the temperature gradient in the direction of 

heat flow. 

The general equation of conduction of heat was derived in 2.2.2.3. 

dT 
Tt = (12-H) . 

It applies to three dimensional un-steady state conduction in an 

isotropic region of uniform thermal conductivity. The above 

equation can be written as 

IT = -a 
dT 
Tt 

In the steady-state, the time derivative is zero, and hence, the 

result is Laplace equation 

IT = 0 (13-H) 

Using the same assumptions for deriving equation (4-H) assume that 

the two parallel planes are the surfaces' of a flat plate, thickness 

L, with the edges insulated. The plate has a uniform and constant 

temperature throughout, say zero degrees. 

At t,ime t = 0, the temperature of face I (x = 0), or 

the input face is rClised to Tl , whenever the output face (x = L) 

is kept at the zero temperature. The temperature distribution, 

T (x,t)within the above jllClte is given by the solution of the one 

dimensional equCltion(sn of I inear heat flow with specified 

boundary conditions, hence equation (12-H) can be.wrltten as 

follows: 
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T(x,t) = 0 o<x<L t ~ 0 

o < X < L t > 0 

At the output face, 

T(L,t) = 0 x = L 

And at the input face, there is a heat flux due to T
1

, which 

is given by equation (4-H) , hence 

q = -k 
dT(O,t) 

= 0 dX x =-0, t < 0 

q = -k 
dT(O,t) 

= 1i. dX x = 0, t > 0 

. The plate (sample) will get to the steady state when 

t- = and ClT = 0 dt 

and the steady state solution will be given by 

Tl 

L 
(s) 

(IS-H) 

The complete solution for the homogeneous single layer has been 

given by Carslqw and Jqeger (51) as indicated in equation (19-H). 

This equation can be rewritten in terms of Cio at the input face 

(x = 0) where T = T]; hence, 
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kT, 
(R) 

8L .. (.exp [- (2n+1)2 ·l at 1 
L -"2 ut.· ......... 4L2 ) 

11 n=o 
( 2 n + 1)2 . 

.. 
Aftep a long enough time, the infinte sum ~ can be replaced 

n=o 
by Its first term with a very small error, depending on the 

accuracy required, hence 

L [, - !..2 
11 

.kT, . 

. 2 
exp ( - 11 a~ n 

4 L 

(R) 

Suppose the experimental error is 2%; then the difference between 

(S) and (R) will be as follow: 

8 
-;2 exp ( -

·2 
IT at) 
4 L 2 

0.02 

The steady state wi 11 be reached when t -'- T 

.or 

where'a' is the thermal diffusivity of the sample and is given by 

the following relation 

The:thermal diffusivities <1re calculated for both the "Thermalite" 

and "Styrofoam" (extruded polystyrene) fromthei r mean densities 
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and specific heats, and the results are as follow: 

_ .. _: _. _0:.:.1.:.:8:...:4~· __ . - 5 
"Thermalite" samples,'a == 0.024x10 . 

728~0 x ·(1.05x103) . 

"Styrofoam samples; a = 
0;04 

29.0 x (0.3x4186.8) 

The time required to get to the steady state for each sample Is 

calculated and shown in Table·2.6.3. - 1. This table also 

includes the time obtained from Figures 2.5.3. (1)' to 2.5.3. (14) 

The second difficulty in obtaining the thermal" conductivity 

of homogeneous materials is due to the affect of heat loss from 

the edges .of the samples. The thickness of the sample with its 

mean temperature controls the level of these losses, and consequently 

the magnitude of the errors in the measured thermal conductivities. 

Tt is noted that the sample thickness shall be not greater than 

one-fifth of the length for materials which have dry densities 

less than 1800 kg/m3 according to the revised BS 874(57). This 

is recommended for the 300 mm square guarded hot plate and plain 

,hot plate apparatus; which differs from the circular plates used 

for this study •. Also it is recommended in ASTM C177-76(58) that 

in order to limit the heat losses from the outer edges of samples 

the ambient temperature,: T surrounding the apparatus should be a 

adjusted such that 

T 
... 

T -m a 0.1 :s 
Tl -T2 
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where Tm is the mean temperature of the samples, Tm = (T1+T2)/2, 

and -11 and T2 are the temperatures of the hot and cold plates, 

respectively. The i>ercen~age error associated·.with !:this limit 

was not given. This necessitated testing many samples with 

different thicknesses, and varying the mean temperatures to 

find the optimum thickness for the apparatus at hand. Seven. 

different th I cknesses were used for "Thermal i te" samples, and 

the results are shown in Figures 2;5.3. (1) to 2.5~3. (7). 

These results are grouped in Figures 2.6.3. (1) to 2.6.3. (4) 

in which the thermal conductivities of all samples are plotted 

versus the corresponding time intervals for the given heat flux." 

In these graphs, itis clear that the 'k' values for samples 

ST3, ST5 and ST6 are close to each other. The ratios of 

diameter to thickness for these samples are (5.85:1), (7.17:1), 

and (9.05:1) respectively. Figure 2.6.3. (1) shows that 'k' 

values for ST3-1, ST5-1 and ST6-1 are 0.2102, 0.2089 and 0.2089 

respectively. Their mean 'k' value is 0.2093 \I/m K, with a 

standard deviation of 6.00075. Figure 2.6.3. (2). shows 'k' 

va I ues for ST5-2, ST3-2, and ST6-2, the ir mean' k' va I ue is 

0.199 \I/m K with a·standard deviation of 0.00253,Figure. 2.6.3. (3) 

shows for the same samples a mean'k'value of 0.1854 \I/m K with 
T - T 

S.O: = 0.00398. If the relation S=(Tm _ Ta) ~ 0.1 
1 2 

given by ASTM is considered,'k'obtained for ST5-1 (S = 0.0898) 

and ST6-1 ( E; = -0.0113) is 0.2089 \I/m K. 
, , 

Also k values obtained 

for 5T4-2 ( ~ = -0.0628), ST5-2 ( s = -0.1403timd S13-2 

(S = -0.0147) are 0.2040,.0.2020 and 0.1980 \I/m K respectively. 
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Analysing these values as shown In Table 2.6.3. -2 and Figure 

2.6.3. (5), the following thermal conductivity values are 

obtained for each·sample·provlding s = 0 (T = T ) m a 
ST3: k = 0.2019,ST4: k .; 0.2072, ST5: k = 0.2062, and 

ST6: k = 0.2071 W/mK. This indicates that for samples with 

their thicknesses less. than one-sixth the diameter and their 

mean temperatures equivalent to the ambient temperatures, 

thermal conductivity values are accurate with Insignificant heat 

losses. The average thermal conductivity obtained for "Thermal ite" 

samples according to this criteria is found to be 0.2056 W/m K 

with a standard deviation of 0.0025. Considering S = -0.1, 

the mean thermal conductivity is 0.2017 W/m K with a standard 

deviation of 0.0025. The difference between these two values 

is 1.89% which agrees very well with the accuracy of the apparatus 

I t is clear that the heat losses from the edges of samples STl, 

ST2 and ST6 x 2 is quite high, and the differences from the true 

'k' value ( S = 0,) are 7.34%, 5.47% and 5.47% respectively. 

In case of ( 5 = -0.1) the differences are: 7.39%,5.12% and 

5.52% respectively. 

The low values of 'k' obtained for samples shown in 

Figures 2.6.3. (3) and 2.6.3. (4) are probably due to the 

formation of a frost film layer between the sample surfaces and 

the cold plates, as described in 2.6.2.1. The mean 'k' value 

for samples ST3-3, ST6-3 and ST5-3 is 0.1854 with S.D. = 0.004. 

This Is 9.82% and 8.08% less than the true 'k' value for ~ =0 

and s :-0.1 . respectively • 
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The:thermal conductance 'C' of a "Thermal I te" block 
. k . 

100 mm· thick Is obtained from the relation C~ It 

hence 

.and 

2· 
C = 2.056 Wm K 

C = 2:017 W/m2K 

( ~ = 0) 

( ~ = -0.1) 

The thermal conductance values are calculated for all the 

"Thermallte" samples as shown in Table 2.6.3.-3. The correlat ion 

coefficient and the slope are calculated for each sample. The 

relation between the thermal 'conductance and the mean temperature 

is found to be linear and decreases with increasing thickness 

as shown in Figure 2.6.3. (6). The values of thermal conductance 

for mean temperatures of 40, 20, 10, and OOC are obtained from 

the above figure, and are plotted versus sample thicknesses. 

This is shown in Figure 2.6.3. (7). 

The results obtained from the "Thermal ite" samples dictated 

the use of samples which had a thickness to diameter ratio less 

than 1 to 6. Three different thicknesses were used in the case 

of the extruded polystyrene samples. One of them was within the 

above· ratio (Lld = 1 to 7.41), two were greater than this ratio. 

The reason for this was to find the effect due to heat losses 

from the edges of the samples .. Figures 2.5.3. (8) to 2.5.3. (14) 

show the values of thermal conductivity plotted against the time 

intervals during the tests. The variations between 'k' values 

in the first period before reaching the 'steady state' condition 

were due to the different initial conditions of the tests. 

These were kept as similar to each other as possible. The 'k' 

values in these plsits are calc~lated from th~"steady state"solution 

k = .. "qL' so the values obta I ned· before reach i rig the 
A(T l-T 2) 
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· .. 

"steady state" are. not the true va lues. When repeat ing the 

test three times uslng.the.same heat flux, all.the values of 

'k' obtainedafter:reachl.rlg the "steady stateWcondltlon were 

more or less the same.' Figures 2.5.3. (12) to 2.5.3. ,(14) 

represent results for samples SP3-4, SP3-5 and SP3-6, these 

results are plotted: In Figure 2.6.3. (8). The 'k' values 

obtained for ,the above samples, are 0.0530, 0.0510, and 0.0483 

W/m K respectlvely~ 'k'.values for samples SPl-5 and SPI-6 are 

0.0755 and 0.0674 Wlm K. 'k' values for samples SP2-5 and SP2-6 

are 0.0667 and 0.0612 Wlm K respectivley. It is clear that 

each thickness of the material has a different thermal 

conductivity, and the lower 'k' values are obtained with the 

minimum thickness (L = 0.0205 m). According to ASTM CI77-76, 

to restrict the edge heat losses the following relation should 

be met: 

= 
Tm ~. Ta 

TI - T2 
0.1 

Thermal conductivity values are calculated for several' E; , 

values, to analyse the results on the same bases. These 

calculations are shown in Table 2.6.3.-4. The true 'k' value 
T- T 

for sample SP3 IsO. 0532 W/m'K when E; = m a = 0, and the 
TI - T2 . 

true 'k' = 0.0522 W/mK (E; = -0.1). Sample SPI (L = 0.0505 m) 

has a 'k' value of 0.0729 W/mK (E; = 0) which is considered to be 

apparent because of the extreme thickness, and k = 0.0682 W/mK 

( E; = -o.l). These are 27.02% and 23.46% higher than the true 

values. Sample SP2 '(L =' 0.0414 m) has apparent 'k' values 

of 0.0664 W/mK (E; = 0) and 0.0636 W/mK ( E; = -0.1). 
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They are 19.88% and 17.92%. higher than the true values. 

Figure 2.6.3. (9) shows ,the. relation between ,the thermal 
. Tm' ,-Ta 

conductivity and the ratio .~ = ....:.:::......_-=-. The slope of 
T - T2 

SP3 I s found to be' 0.00954" wh i ch 1 Is Sma lIer than the' other 

sClmples. Thee thermal conductances of thesamples.are calculated 

and the correlation coefficient between each sample and its mean 

temperClture Is found. These'are shown in Table 2.6.3.-5. The 

relCltion between the thermal conductance and the mean temperature 

Is found to be linear and decreases with increasing thickness as 

shown in Figure 2.6.3. (10). The values of thermal conductance 

of extruded polystyrene samples for mean temperatures of 40, 25 

10 and oOe are obtained from Figure 2.6.3. (10) and are plotted 

against the sample thicknesses. This is shown in Figure 2.6.3.' (11). 

The thermal conductance 'e' of an extruded polystyrene 

board insulation, 50 mm thick is obtained from the true 'k' value 

as 

e 

e 
= 
= 

1.064 W/m2K (5 = 0.0) 

1. 044 W/m2K (E; = - 0.1) 

and for 100 mm thick'board, the values are as follow: 

e 

e 

= 0.532 W/m2K 

= 0.522. W/m2K 
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Table 2.6.3-1. 

Sample L, 

No. m 

ST1- 0.0416 

ST2- 0.0320 

ST3- 0.0260 

ST4- 0.0234 

ST5- 0.0212 

ST6- 0.0168 

ST6x2- 0.0336 

SP1- 0.0505 

SP2- 0.0414 

SP3-' 0.0205 
I , 

Comparison . between the time required to 

reach the steady-state, and·time obtained 

during the test for both "Thermallte" samples 

ST, and "Styrofoam" (extruded polystyrene) 

samples 

Time to reach the steady state, , t ~ T 

Calcul-
ated Experimental values (' k I time t) values vs. 

hr.~mln. - -1 -2 , -3 -4 

3-00 - - 6-00 4-00 3-00 

1~47 - - 4-00 3~30 3-00 

1-10 - 4.,.00 4~00 3-00 2-30 

0-57 4-00 - 3-00 - -
0-47 - 3-30 3.,.30 3-30 -
0-30 - 2-30 2-00 2-00 -
0,..58 - 6.,.30 5.,.30 3-00 3-00 

, 

-4 -5 -6 

2-00 - 6-00 6-00 

1-21 - 6-00 ,5-30 

0-20. 6-00 6-00 5-00 
, 
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Figure 2.6.3.(1) Thermal 

I = 2.50 Amp. 
i:i = 637.19 lJ/m2 

-- ----ST6x2-1 

L. Tm. 
m °c 

0.0336 41.89 
0.0260 35.79 
0.0212 28.35 
0.0168 21.92 

k. 
IJ/m K 
Ci~2248 
0.2102 
0.2089 
0.2089 

ST3-1 
ST5-1 
ST6-1 

T -T m a 
T -T 
0.2316 
0.1677 
0.0898 
-0.0113 

Time in hours 
t 

8 " 9 10 11 12 14, 

Conductivity Vs. Time of Test , , 
for Thermalite Samples in the 

, , 
Steady State. 
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I = 2.0 Amp. 
q = 405.05 lJ/m2 

--------------- ST1-2 1 

2. 

---====~=======~_====== ST6x2~ 
ST2- 2

1 

~~=~====_:_._:_:. __ :_=._:_.: __ :._:_: __ ;:._:._.=_.=_._._=~._-._. __ ~;. ~i~:~: 
. ST3-2. 

ST6-2 
~~--.-----.-----.-~~----~ 

3 4 5 . 6 7. __ 8 9 10 11 12 14 

figure 2.6.3.(2) Thermal Conductivity Vs. Time of Test 
• It' . 

for Thermalite Samples in the Steady State. 
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'k' in IJ/mK 

0,30 

0,29 
Curve L, T '. 

m,,' k, 
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. ST6x2-3 0.0336 10.82 0.2106 -0.2966 

ST2-3 .0.0320 12.25 0.2007 -0.3152 
·0,26 ST3-3 0.0260 9.72 0.1887 -0.3974 

, ST6-3 0.0168 5.17 0.1866 -0.8104 
0,25 ST5-3 0.0212 6.68 0.1810 -0.5925 
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I = 1.50 Amp. 
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figure 2.6.3.(3) Thermal . " 

for Thermalite Samples 

Conductivity, Vs. Time of Test , , 
in the S~eady State • 
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figure 2.6.3~(4) Thermal Conductivity. Vs. Time of Test , , 
for Thermalite Samples 

, . , 
in the Steady State • 
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T - T· 
Table 2.6.3. - 2 Calculation of the Relation ~ = m a 

Sample T , m 

No. °c 

STl-2 33.23 
STl-3 . 17.22 
STI-4 9.89 

ST2-2 25.31 
ST2-3 12.25 
ST2-4 7.89 

ST3-1 35.79 
ST3-2 21.70 
ST3-3 9.72 
ST3-4 5.82 

ST4 47.70 
ST4-2 20.47 

ST5-1 28.35 
ST5-2 16.80 
ST5-3 6.68 

ST6-1 21.92 
ST6-2 13.63 
ST6-3 5.17 

ST6x 
2-1 41.89 
ST6x 
2-2 24.58 
ST6x 
2-3 10.82 
ST6x -2-4 5.55 

T 1 - T2 

and its relation·wlth The Thermal Conductivity 

of "Thermallte" Samples. 

Ta' T I' . T2, T -T k, Correlation 'k' Obtained m a for the 
°c °c °c T l-T2 W/m K and (s lope) ·given points 

23.40 71.13 -4.66 0.1297 0.2274 0.9998 0.0 = 0.2219 
23.50 29.11 -4.67 -0.1434 0.2158 (0.0410) -0.1 = 0.2178 
23.20 25.09 -5.30 -0.4380 0.2041 -1.0= o. 1809 

23.00 55.22 -4.61 0.0386 0.2200 0.9975 0.0 = 0.217 5 
23.70 30.41 -5.91 -0.3152 0.2007 (0.0489) -0.1 = 0.2126 
23.60 20.22 -4.43 -0.6373 0.1870 -1.0 = 0.1685 

22.40 75.70 -4.12 0.1677 0.2102 0.9864 0.0= 0.2019 
22.50 48.85 -5.45 -0.0147 0.1980 (0.0355) - 0.1 = 0.1983 
22.20 25.42 -5.98 -0.3974 0.1887 -1.0 = o. 1664 
22.60 16.89 -5.25 -0.7580 0.1751 

23.00 97.,25 -1. 78 0.2494 0.2204 1.00 0.0 = 0.2072 
23.50 44.58 -3.63 -0.0628 0.2040 (0.0525) -0.1 = 0.2020 

-1 .0 = 0.1547 
22.50 60.92 -4.21 0.0898 0.2089 0.9952 0.0 = 0.2062 
22.70 37.83 -4.23 -0.1403 0.2020 (0.0417) -0.1 = 0.2021 
22.50 20.0~ -6.66 -0.5925 0.1810 -1.0 = 0.1645 

22.50 47.60 -3.75 -0.0113 0.2089 0.9707 0.0 = 0.2071 
22.50 30.92 -3.65 -0.2566 0.1973 (0.02644) -0.1 = 0.02044 
21.80 15.44 -5.08 -0.8104 0.1866 . -1 .0 = 0.1806 

19.70 89.80 -6.02 0.2316 0.2248 0.9682 0.0= 0.2175 

19.90 56.04 -6.87 0.0744 0.2210 (0.0401) -0.1 = 0.2135 

21.60 28.99 -7.35 -0.2966 0.2106 -1.0 = 0.1774 

19.90 18.47 -7.36 -0.5555 0.1918 .. 

. 

. 
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Slope = 0.03708 

Intercept = 0.21105 , 
Y = (0.0371)X + 0.211 

k = 0.0371 T -T m a + 0.211 

T1-T2 

= mean temp. of sample. 
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= hot face temp.' 
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ST 2-
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figure 2.6.3.(5) Thermal Conductivity Vs. the ~ ratio of , , , , 
Thermalite Samples in the Steady State obtained from 

Table 2.6.3-2. 
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'Table 2.6.3. - 3. Therma I Conductance of "Thermal I teil Samples wl th 

the Correlation and Slope obtained for each sample 

, 

5ample T • Mean Thermal Correlation "C" obta I ned 
om k. Conductance' and(slope) for the 

No. C .k given T W/m K C = L' 
, W/m2 K 

, , 

5Tl-2 33.23 0.22'74 5.4663 0.9772 ' 40 = 5.643 
5T2-3 17.22 0.2158 5.1875 (0.02.29) 20 = 5.184 
5T2-4 9.89 0.2.041 4.9062. 0 = 4.72.55 

, 

5T2-2 2.5.31 0.2.200 6.875 0.9833 40 = 7·72.7 
5T2-3 12.2.5 0.2007 6.2.718 (0.0562) 20 = 6.603 
5T2-4 7.89 0.1870 5.8437 , 0 = 5.478 

5T3-1 ' 35.79 0.2.102 8.0846 0.9625 40 = 8.3072 
513-2. 2.1.70 0.1980 7.6154 (0.0407) 20 = 7.494 
5T3-3 9.72 0.1887 7.2577 0 = 6.681 
ST3-4' 5.82 O. 1751 6.7346 

ST4 47.70 0.2204 9.4188 1.00 40 = 9.221 
514-2 20.47 0.2040 8.7180 (0.02.57) 20 = 8.706 

0 = 8.191 
ST5-1 2.8.35 0.2.089 9.8540 0.9486 40 = 10.669 
ST5-2. 16.80 0.2020 9.5283 (0.05998) 20 = 9.470 
5T5-3 6.68 0.1810 8.5377 0 = 8.270 

ST6-1 21.92. 0.2.089' 12..4345 0.9996 40 =13.8557 
5T6-2 13.63 0.1973 11.7440 (0.07923) 20 =12.271 
5T6-3 5.17 0.1866 11.1071 0 =10.6864 

, 

5T6x 
2-1 41. 89 ' 0.2.248 6.6905 0.8700 ,40. = 6.765 
5T6x 
2-2 24.58 0.2210 6.5774 (0.02355) 20 = 6.294 
5T6x 
2-3 10.82 0.2.106 6.2.678 0 = 5.82.3 
5T6x 
2-4 5.55 0.1918 5.7083 

All Correlation Coefficient =0.1022 40 = 8.1395 
Samples 30 = 7.959· 

Slope =(0.01802) 2.0 = 7.779 
10 = 7.599 

Intercept = 7.4188 0 = 7.4188 
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figure 2.6.3.(6) Thermal Conductivity Vs. Time of Test 
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for Styrofoam Samples SP3 in the Steady State • 
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TClble 2.6.3. - 4 CalculCltion of the Relation ~ = 

of IStyrofoClJT)" (extruded 

Sample· Tm' T Cl • T 1 • T2 ' 

No. °c °c °c °c 

. 

SPI-5. 25.44 21.80 58.56 -7.68 

SPI-6:. 15.86 21.50 39.90 -8; 16 

SP2-5 23.69 23.10 54.82 -7;42 

SP2-6 . 14.04 22.20 36.20 -8.11 

. 

SP3-4 20.34 21.20 48.50 "7.81 

SP3-5 12.22 21.70 32.31 -7.86 

SP3-6 6.80 21.00 20.76 -7.15 

. 

T - T m a 

TI - T2 
and its Relation with The Thermal Conductivity 

polystyrene) samples 

.T ;;.T k k 'k' obtClined 
m Cl • x =---1 

Tl - T2 W/m K 0.053 for the 

. given point 

0.0549 0.0755 +42.45 +0.1 .0'.0776 
0.0 0.072~ 

-0.1173 ·0.0674 +27.17 -0.1 0.0682 
-0.5 0.0494 

. . . 
. - slope .• 0.047 

0.0095 0.0667 +25.85 +0;;1 0.0693 
0.0 0.0664 . 

-0.1842 0.0612 +15.47 -0;1 0.0636 
-0;5 0.0522 
slope 0.028tJ 

-0.0153 
. 

0.0530 0 +0.1 0.0541 
0.0 0.0532 

-0.2360 0.0510 -3.77 -0; 1 0.0522 

-0.5088 0.0483 -8.86 -0.5 0.0484 
corre I at I on 0.09997 
slope 0.00954 

<X) 

'" ~ 
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Table 2.6.3. - 5 Thermal Conductance of "Styrofoam" (extruded polystyrene) 

Samples, with the correlation coefficient and slope 

obtained for each,sample. 

Sample Tm' Mean Thermal 

No. °c k, Conductance 

Wlm K 
' k 

C='[' 

W/m2 K 

SP1-S 25.44 ' 0.0755 1.4950 

SPI-6 15.86 0.0674 1.3346 

, 

SP2-5 23.69 0.0667 1. 611 

SP2-6 14.04 0.0612 1.4783 
, 

, , 

SP3-4 20.34 0.0530 2.5853 

SP3-5 12.22 0.0510 . 2.4878 

SP3-6 6.80 0.0483 2.3561 

Correlation Coefficient 

All Samples Slope 

Intercept 

160 

Corre I at Ion' 

and 

(slope) 

1.00 

(0.01674) 

1.00 

(0.01376) 

0.97995 

(0.01654) 

-0.3993 

-0.0326 

2.459 

'C' Obtained 

for the 

given T, 

40 = 1. 7388 

20 = 1:4039 

o = 1.0690 

40 = 1.8355 

20 = 1.5603 

0= 1. 2851 

40 = 2.9210 

20 = 2.5902 

o = 2.2594 

40 = 1.1526 

20 = 1.806 

0= 2.459 
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2.6.4. Composite Materials 

The most common method which covers the measurement of 

thermal conductance and thermal transmittance of composite 

materials ,(panels) Is the guarded hot box method. This method 

. is covered in detail by the American Standard ASTM C 236 -66 (100) •. 

The construction of such an apparatus is very costly and complicated. 

The only test apparatus constructed in compliance with ASTM C236 

in. the U.K. is that of the Agrement Board (101). It can measure 

the U-values of wall, roof and floor constructions of sizes up to 

3 m by 3.5 m by 0.5 m thick. The experimental sample under. 

investigation is composed of two layers, involving "Thermalite" 

block and extruded polystyrene board insulation. It is assumed 

that the two layers are in intimate contact with no air layers, 

as these would affect the experimental results. The apparatus 

used for testing these composite laminates was the guarded hot 

plate used for obtaining the thermal conductivity of the homogen-

eous component mater i a Is. The on I y d i ffer'ence was the use of 

heat flow "Sensables" which gave a direct· readout in units of 

heat flow. The samples used were obtained from the same batch 

of materials used in the testing of homogeneous materials described 

in the previous sections. 

Figures 2.5.4. (1) to 2.5.4. (11) show the values of 

thermal conductivities plotted against the time intervals for the 

four combinations of "Therl1l<11 ite" and extruded polystyrene. The 

circles represent the aver:age of threev~lu~s of Ok;" calculated 
. ..... ... q .Lt ··, . 

by' the steaily state equation kA= the result 
A(T! - T2) 

163 

! 

.1 

I 

I 



is the overall value of thermal conductivity of the composite. 

The squares represent the average of three values calculated 

by using the model· developed in section 2.2:3.3. In thisnxidel 

(originally developed for fibre reinforced composItes) of unit 

volume, the total volume of reinforcement (foam) is concentrated 

Into a single layer, and the matrix arranged into another layer 

adjacent to the first one. Both layers are arranged In series 

with respect to the direction of heat flow. The total resistance 

R of the composite will be the highest using this arrangement, 

and is calculated from the relation 

R = 

or k = c 

I 

k c 
= + 

I - V F 

The fibre reinforcement is considered to be replaced in this 

instance by the "Styrofoam" (extruded polystyrene) layer, and 

the matrix is consi.dered to be the "Thermal ite layer. The" 

thermal conductivity values were found to be in full agreement 

wi th t hose ca l.cul ated us i ng the "steady state" equat ion.· The 

difference between these values is ~ 3.5%. The reason for 

these differences is due to the difference between the temperatures 

of the cold plates and the temperatures obtained from thethermo

couples embedded into the cold faces of the samples. The four 

combinations of Sql1)ples hqve different thicknesses and di'fferent 

volumes of fibre (extruded· polystyrene). These are shown In 
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Table 2.5.4. (1)., The minimum thickness is attained for 

sample SC3, where L =, 0.0374 m arid the maximum thickness Is c 

attained for sample SC4, where L = 0.0648 m. It Is expected c 

that the edge heat ,losses for the above samples are excessive, 

as the most suitable thickness should not exceed one-sixth the 

diameter of the heating unit (d = 0.152m). However, the prepar-

atlon of very thin layers of samples is not practical and can not 

be representative as the hea~ flow should pass many granules 

of the material.' By analysing the resul ts, It is seen that the 

values'of both kA and kc decrease with decreasing heat flux and 

the mean temperatures of the samples. Also as the thickness 

(or volume) of extruded polystyrene in the composi.tesample 

increases, the overall thermal conductivity decreases. The 

thermal conductivity values of "Thermal ite" kM' and extruded 

polystyrene kF used in calculating kc are much higher than those 

obtained by testing them as homogeneous materials, except when 

the mean tmperature'of the "Thermal ite" is near the ambient 

temperature during the test. One reason is that the temperature 

gradient across the "Thermal ite" sample is less than 150 C and 

the temperature gradient ac'ross the extruded polystyrene is 

very high. 

Figures 2.5.4. (i) to 2.5.4. (ll) show the values of the 

rate of heat flow per unit area, q plotted against the time 

intervals during the test. These values are obtained from the 

heat flow sensables directly in the units of the heat flux. The 

measured q values correspond with the heat Input across the layered 

samples, and the heat losses from the edges'wlll not effect 
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the results as the.heat flow "Sensables" will record the net 

heat flow passIng ,the samples. The, thermal conductivity values 

of both the "Thermal ite'" kM and the extruded polystyrene kF 

samples in the composite combinations are calculated usi.ng the 

heat flux values'obtained'from the heat flow sensables, as shown 

in Table 2.6.4. -' I'The mean kM is 0.21163 W/m K, this is 

2.84% higher than the true 'k' value (0.2056 W/m K). The mean 

kF is 0.05165 W/m K, this i5:2.91% lower than the true 'k' value 

(0.0532 W/m K). These results are considered accurate enough 

considering the overall accuracy of the apparatus. 

The thermal conductivities of the composite samples kc 

'are calculated using the values of heat flux q. The results 

are shown' in Tables 2.5.4. - 6 to 2.5.4. - 16. It is clear 

that the values of kA and kc of the samples before reaching 

the "steady state" conditions, will be too high, as the relations 

for kA and kc are ~ased on the steady conditions. Comparing 

the results of the samples, in the "steady state", k , kA and k c c 

agree very well with each other for the lower range of heat 

flow. Table 2.5.4.·-17 shows the % difference between the 

measured thermal conductivity values. The lower difference is 

obtained when the sample thickness is a minimum as indicated 

in the case of samples SC3-4, SC3-5 and SC3-6' (Lc = O.0374,m). 

These are 12.41%, 6.68%, and-O.24%, lower than kA values. 
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The difference between kA and kc is maximum for samples SC4-5 

and SC4-6. These differences are 29.73% and 24.52%.respectlvley. 

The reason for this Is due to the large thickness of these 

samples (Lc = 0.0648 m) •. The % difference between the maximum 

heat flux. q and the imposed heat flux q/A Is also shown in 

Table 2.5.4. -17. These values Increase when the thicknesses 

of samples increases or their mean temperatures Increase. The 

values of kc shown in the above table represent the true values 

for the composites without any effect due to the edge heat 

losses. The mean k values for samples SC1, SC2, SC3 and SC4 c 

are 0.0967 (S.0.=0.0014), 0.0885 (S.O.= 0.0014),0.0800 (S.O.= 

0.00149) and 0.0730 W/m K (S.O. = 0.002) respectively. These 

values are plotted against the extruded polystyrene (fibre) 

content in the composite, as shown in Figure 2.6.4. (1). Mean kA 

and k values are plotted on the same figure, but as their values c 

are scattered, it is difficult to fit any curve through them. 

The value of thermal conductivity for: any composite sample can 

be estimated without· any significant error from the plot of kc ' 

If thi s curve is extrapolated at both ends, for VF = 1 '. the 

composite contains only extruded polystyrene and kF = 0.049 

. W/m K. When VF = 0, the composite contains only "Thermal ite", 

and kM~0.20 W/m K. 
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-----------------------:---------------_ .. 

Three theoretical approaches, kc = Vrkr~{1~Vr}kr 

{we.ighted arithmetic m. ean}, k .. = k {1-Vr }.k -Vr {weighted c JII .. r 

ge~metric'~e~·n)·~~n(rkc = kM· kr {weIghted 
Vf kr +{1-Vr }kM ~ 

harmonic mean} are also plotted on the same graph. The 
. , 

values of the thermal conductivities, kc are shown in 

Table 2.6.4-2. It is evident from the graph that the 

weighted harmonic mean approach correlates well with the 

bulk thermal conductivity values calculated from 
.. L 

k = q. c , using data from the heat flo", sensables. c T1-T2 
The other two approaches do not give any correlation. 

The reason for this is that the harmonic mean approach 

is the best analogy for the experimental arrangement of 

the samples, in which the. two component materials were 

connected in series with the hot and cold plates to 

form a laminate. 
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Table 2.6.4. -1 

, . 

I Sample No. 

sCl-4 

SCl-5 

SCl-6 

SC2-3 

SC2-4 

SC2-5 

SC3-4 

SC3-5 

. SC3-6 

, SC4-5 

SC4-6 

Mean 

Standa rd 
Deviation 

Variance 

. 

Thermal conductivi'tles of "Thermal ite" kM 

,and "Styrofoam" (extruded polystyrene) kF 

for, the shown compos ites. 

. . 

k . kF M ' . 

W/m K' W/m K 

0.2309 ' 0.05026 

0.2500 . 0.04842 

0.1659 0.05139 

. 

0.2016 0.05485 

0.1992 0.05500 

0.1932 0.05690 

0.2309 0.04979 

0.2397 0.05203 
, 

0.1374 0.05182 

0.2530 0.0 SOO 

0.2263 0.04772 

0.21163 0.05165 

0.0362 0.00288 
. 

0.001192 
. -6 

7.6 x 10 
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• 

SC2 

kC 

kC 

~C 

0,5 

= 

= 
= 

;, 

vfkf + (1-Vf ) kM (Weighted arithmetic mean) .. 
k (1-vd k Vf (Weighted geometric mean) 
M f 

kM kf (iJeighted harmonic mean) 
V f KI'I+ ( 1- V f) Kf 

• Mean kC = ,il Lc (Heat F;lux from 
T1-T2 Sensables) 

kA = 
q Lc (Heat flux from ' Power 

A(T1~T2) . Supply) 
x Mean 

• Mean kC = Eqn.(1-C) (Based on kA data) 

x • 

Mean values were obtained tor the range 
of temperatures shown in Table 2.5.4-17. 

: 
where kM = 0.2056 W/m K 

kf = 0.0532 W/m K 

r 
Content of Extruded Polystyrene(as a v,oiume fraction SC3 SC4 

0,6 0,7 o,a 0,9 1,0 



Table 2.6.4. - 2 Thermal c,:>nductivities of Composite Samples 'kc', in 

WJIl) K cC!lc~lC!te~:froll) the three'equatlons, (1-C), (2-C) 

and'O-C} for:the'glvenFoam Volume'fraction shown in 

column {4}. 

-,-

Sample 

No. 

SC1 

SC2 

SC3 

SC4 

Foam Thermal Conductivities, k , Wlm K , c 
Sample Volume 
Thickness , Fract ion 
L , m c VF VF Eqn. (H) Eqn. (2-C) Eqn. (3'"C)I' 

" 

0;00 0.2056 0.2056 0.2056 

0.0526 0.392 ' 0.10 0; 1598 0.19036 0.1796 
0.25 o. 1198 0.1675 0.1466 

0.0440 0.468 0.35 0.1027 0.1522 O. 1281 
0.50 0.0845 0.1294 0.1046 

0.0374 0.551 0.65 0.0718 0.1065 0.0854 
0.75 0.0653 0.0913 0.0746 

0.0648 0.639 0.90 0.0575 0.0684 0.0609 

• 1.00 0.0532 0.0532 0.0532 

Equation (I-C) .k 
kM kF 

= c 
VF kM +(I-VF) kF 

k = VF kF + (I-VF) kM c 
Equat ion (2-C) 

k = k (I-VF) k VF c M F 
Equat ion (3-C) 

Where: Thermal conductivity of Thermal ite = 0.2056 Wlm K. 

Thermal conductivity of Styrofoam, = 0.0532 Wlm K. 
For sample mean temperatures = room temperature. 
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2.7. Conclusions 

1. The thermal conductivities of "Styrofoam" IB (extruded polystyrene 

foam) and "Theraml ite" (aerated cement bulldlng',block) and 

composite combinations of the two may only be successfully 

measured using a guarded hot plate type of apparatus providing a 

whole series of precautions are taken includIng: 

a. extreme care with sample preparation., geometry and 

conditioning and, 

b. ensuring sample thickness is less than one sixth of sample 

diameter (to reduce ~dge heat loss) 

c. heat flux is measured directly by heat flow sensables 

{in the case of composite samples).etc. 

2. If the composite laminate is considered theoretically as an 

Uin-series" network of resistances the apparant bulk composite 

thermal conductivity may be described by the equation 

where 

k = c 

k = c 

kM = 

kF = 

VF = 

thermal conductivity of composite 

thermal conductivity of "The rma 1 i te" 

thermal conductivity of "5tyrofoam" 

volume fraction of "5tyrofoam" in total compos ite. 

The equation effectively. describes the weighted harmonic mean of 

the component thermal conductivities. The k value generated by c ' 

the equation at differenLvolume fractions· correlates well with 
, , 

directly measured values of ' the bulk (overall) composite thermal 
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conductivities providi,ng in all cases the heat·fluxdata·from heat 

. flow sensables'areused; If the data from the sensables are 

not used, then'k value·stlll'correlates very well with the bulk 
·c 

thermal conductivity but both values are not accurate and do not 

fit the weighted harmonic mean graph. 
'. . 

3. Two alternative theoretical approaches for establ ishing 'k/ 

Involving the weighted arithmetic mean and the weighted geometric 

mean of component 'k' values have been found less effective than 

using the weighted harmonic mean described above. This is because 

the composite sample was arranged as a laminate of its component 

mat'erials and as such, only satisfied the in~series net of 

resistances assumed in the theoretical model, whenever the other 

two approaches did not satisfy the,'experimental arrangements. 

4. The theoretical time to reach the "~teady ~ state" condition 

can be calculated .from the complete solution of the homogeneous 
• 

si~gle layer given by Cars law and Jaeger. This was found to be' 

very much lower than the experimental time because it was assumed 

theoretically by Jaeger that the cold face temperature was zero. 

This was 'difficult to attain practically without waiting a long 

time before starting the test. 

5. Both the bulk composite thermal conductivities and the thermal 

conductivities of its components may be predicted whilst the 

apparatus Is in a non "steady-state" mode providinl:fheat' flUx 

data is provided by heat flow sensables. Also; provided this 

condition is met the accuracy of the results appear less 

dependent on overall sample thickness and subsequent energy loss 

through edge effects. 
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2..8. ,Suggest ions for Further Work 

1. The new approach of measuring, therina I conduct i vi ties' I n non 

"steady state'" conditions should be used' to'lnvestlgate new 

composite materials' in the field of civil engineerIng. 

'2.. The t'hermal behaviour of the existing walls and roofs of some 

houses may be investigated under extreme climatic conditions. 

3. Field studies are required to investigate some polymeric 

composites and cellular plastics and their effectiveness 

in reducing heat flow. 

4. An environmental chamber is required to study the effect of 

extreme climates, such as intense heat, high or low humidities 

and rain penetration on selected number of composites. 

5. Studies on the effect of transient heat conduction: in composite 

structures,should be,made and compared with steady state values 

using the above chamber. 
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figure 1: Traditional houses in Jeddah, with windows 

and balconies facing west to capture sea breezes. 

figure 2: Traditional houses in the background, with white 

washed walls and many windows. 
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.Figure 3: Sun-dried, mud-brick house in Riyadh, wit h 

only a few windows facing to the outside. 

Figure 4: 

Traditional houses in 

Mecca, with thick walls 

a nd la rg e windows. 
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.Figure 5: Traditional houses in Mecca, with thick 

granite walls. 

Figure 6: Part of a traditional house in Jeddah, built 

with coral stones. 

-- - - - - - - - - - - - - - - - - --- - - -
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Figure 7: Inside of an external wall, where 

coral slabs are used and fixed with 

loam plaster, D~een - East Coast of 

Saudi Arabia . 
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Figure 8: House built with irregular coral stones and 

plastered with clay and lime, Eastern Part of 

Saudi Arabia. 

Figure 9 : 

Close up showing the 

irregular stone wall 

structure of the above 

house. 
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Figure 10: House built with stones, some wel l cut and 

some irregular l aid at random, Mecca. 

figure 11: 

Part of a thick wall 

in a demolished 

traditional house, 

Mecca. 

194 



Figure 12 : 

Large windows projected 

outside the wall line 

to catch air from thre e 

directions, Mecca . 

Figure 13: 

Three-storey house in 

Mecca , with large 

windows on all sides . 
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-Figure 14: Internal column -to the right- to support 

the long roof span. 

'---- - - - - - - - - - ---- - -
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Figure 15: Building with large, glazed facade facing 

south, Jeddah. 

Figure 16: 

A western style building 

with all glazed facades, 

Riy a dh. 
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figure 17: 

Windows protected from 

mid-day sun by concrete 

shades and balconies, 

Jeddah. 

figure 18: Windows and rooms protected from the sun with 

balconies and overhangs, Jeddah. 
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Figure 19: House with windows and balconies facing both 

No rth and West, with few windo ws facing South, 
Jeddah. 
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.Figure 20: Natural trees used to shade windows, Jeddah. 

Figure 21: Natural trees used to protect a house -to the 

left- from the sun, and another house painted 

white to reflect radiation. 
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--------------......... 

"Figure 22: Windows facing North and West to catch sea 

breezes , Jeddah . 
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Table 2.5.3,-1 Thermaljte samples, range of thickness, L in metre and volume, 

v In m3, with heat'flux, ij in W/m2 during test., 

Av. Sample Av. Sample Samples tested for 1 (Amp. ) 

Sample Thickness Volume 

No. as tested, as tested 3.0 A 2.5 A ' 2.0,A 1.5A 1.2 A 

m m3 - 1 - 2 - 3 - 4 

938.22 637.19 405.05 227.32 147.96 

ST 1 4.16 10-2 -4 STl 2 STl 3 STl 4 x 7.549 x 10 - - - - -
ST 2 3.20 x 10-2 -4 

3 - 4 5.807 x 10 - - S:r2 - 2, ST2 - , ST2 . 
ST 3 2.60 x 10-2 -4 STj - 2 ST3 - ST3 - 4 4.718 x 10 - ST3 - I 3 

ST 4 2;34 x 10-2 -4 ST4 ST4 -4.246 x_ 10 - 2 - -
ST 5 2.12 x 10-2 -4 

ST5 - 2 ST5 - 3 3.847 x 10 - ST5 - I 

ST 6 -2 ' -4 
ST6 - ST6 - ' ST6 -I. 68 x 10 3.048 x 10 - I 2 3 

ST 6 x 2 -2 -4 ST6x2-1 ST6x2-2 ST6x2-3 ST6x2-4 1.68x2xl0 6.097 x 10 -

Note. Heat flux, is the time rate, of heat flow per unit area, W/m2 q,= * ' and for each s~mple 

ij m 1A' Also, the time rate of heat flow q = I V, (Watts) 

I 

No. 

ij 

' , 

co 
fTI 
N 



Table 2.5.3. - 2 Mass Loss of Thermqllte Samples During Conditioning 

. 

" 
Mass of Material in Samples· Mass Loss ,Mr 

... 
Mr = Ml - M2 

x Sample Before conditioning, Ml After conditioning, M2 M2 
I in Kg in Kg 

100 

No. during conditl oning 
-Top Sample Bottom Sample Average Top Sample Bottom Sample Average % 

. 

All STl 0.54971 0.54999 0.54985 0.54950 0.54970 0.54960 0.045 

All ST2 0.42210 0.42240 0.42225 0.42200 0.42225 0.42212 0.031 

All ST3 0.34255 0.34241 0.34248 0.34247 0.34223 0.34235 0.038 

All ST4 0.30950 0.30935 0.30942 0.30934 0.30910 0.30922 0.064 

All ST5 0.28000 0.27953 0.27976 0.27976 .0.27909 0.27942 0.122 . 
All ST6 0.22232 0.22318 0.22275 0.22217 0;22308 0.22262 . 0.058 

All ST6x2 0.44480 0.44572 0.44526 0.44454 0.44547 0.44500 0.058 



Table 2.5.3. - 3 

Sample 'After 

No. 
Top Sample 

. 

All STl 0.55167 

All ST2 0.42350 

All S13 0.34360 

All ST4 0.31010 

All ST5 0.28105 

All ST6 0.22354 

All s::r6x2 0.44615 

Mass Regain of Thermalite Samples During Test 

Mass of Material in Samples 

the test. M4 After second conditioning. M3 

in Kg in Kg 

Bottom Sample 'Average Top Sample Bottom Sample Average 

-
0.55090' 0.55128 0.54870 0.54875 0.54873 

0.42342 0.42346 0.42095 0.42115 0.42105 

0.34349 0.34355 0.34120 0.34130 0.34125 

0.31003 0.31006 0.30871 0.30860 0.30865 

0.28098 0.28102 0.21855 0.27861 0.27858 

0.22431 0.22392 0.22175 0.22260 0.22217 

0.44720 0.44667 0.44395 0.44505 0.44450 

Mass rega i n I 
Mw M4 - M3 x 

M3 

during test 

% 

0.46 

0.54 

0.67 
. 

0.45 

0.87 

0.78 

0.49 

o 
~ 
N 

100 



Table 2.5.3. - It' Measurement. of Bulk Densities of the 

conditioned samples as tested (Thermalite Samples) 

Desnlty of the 
.' Average Sample Average Sample conditioned sample 

Sample . Th i ckness as vol ume', as as tested 

No. tested, L, tested, v K2 3 

m3 e. = i/(Kg/m ) 
m 

ST 1 It.16 x 10 -2 7.5lt9 x 10 -4 728.0lt 

ST 2 3.20 l( 10~2 . -4 
.' 726.91 5.807 x 10 

SI 3 2.60 x 10-2 -4 4.718 x 10 . 725.62 

STlt 2.34 x 10 -2 4.2lt6 x 10 -4 728.26 

ST 5 2.12 x 10-2 . 3.8lt7 x 10 
-4 

726.33 

ST 6 1.68 x 10 -2 3.0lt8 x 10 -4 730.38 

ST6x2 
. -2 

1. 68x2xl 0 6.097 x 10 -4 729.86 
, 

Standard deviation of calculated density = t 1.769. 

mean 

Standard error of the mean = S.D om 

= 727.91 Kg/m3 

= + 1.769 = + 

Vi 
0.668 . 

. 

241 



Table 2.5.3. -5 Summary of Thermal Properties of Thermalite 
. -2 ) Samples ST 1 (L = 4.16 x 10 m, Taken from figure 2.5.3. (1) 

f' 

Time Room Average Sample Temperature Thermal Thermal Thermal Thermal 
Sample from Tempera- °c Conductivity Resistivity .Resistance Conductan 

k. 1 L . k 
No. start ture, r = k' R = -, C = I' 

Hot Cold Gradient k . 
hr. °c surface surface K/m mean W/mK Km/W Km2

/w Wim2K 

ce 

, 
. 

4 23.2 70.04 -2.33 8305.77 33.85 0.2381 4.200 0.1747 5.723 
6 23.'3 70.94 -4.41 8377.40 33.26 0.2287 4.372 0.1818 5.497 

STl-2 12 23.3 71.38 -4.93 8400.48 33.22 0.2259 4.426 0.1841 5.430 
I .. 2,00 24 - 23.2 70.87 -5.03 8390.62 32.92 0.2220 4.504 0.1873 5.336 -
V = 7.35 

4 23.4 +41.64 -2.07 7616.82 19.78 0.2169 4.610 0.1918 5.214 
6 23.5 +39.26 -4.41 7615.86 17.42 0.2171 4.606 0.1916 5.218 

STl-3 12 23.5 +38.05 -5.71 7618.03 16.17. 0.2166 4.617 0.1920 5.206 

I = 1.5A 24 23.5 36.86 -7.55 7633.65 14.65 0.2135 4.683 0.1948 5.132 
V = 5.50 

.. 4 22.7 -26.68 -3.90 7301.20 11.39 0.2030 4.926 0.2049 4.880 
6 23.2 25.70 -4.93 7302.40 10.38 0.2026 4.936 0.2053 4.870 

STl-4 12 23.5 24.00 -6.50 7299.28 8.75 0.2034 4.916 0.2045 4.889 
1= 1.20 24 23.0 24.15 -6.30 7298.07 8.92 0.2021 4.947 0.2058 4.859 
V =4.475 -



Table 2.5.3. - 6 Summary of Thermql Properties of Thermalite 

. Samples ST 2 (L = 3.20 x 10-2in), Taken from Figure 2.5.3.(2) 
. . . . 

''rime Room Average Sample Temperature Thermal Thermal Thermal Thermal .1 

Sample from Tempera- °c Conductivity Resistivity Resistance Conductan 
1 . L k 

start ture k , r = k' R = k . C = I' 
No. °c Hot Cold Gradient 

Km2/w W/m2K hr. surface surface K/m mean W/mK Km/W 

ce 

.. . 

4 23.0 56.37 -3. 10 10394.37 26.63 0.2199 4.547 0.1455 6.872 

6 23.0 55.23 -4.41 10399.69 25.41 0.2193 4.560 0.1459 6.853 

ST2-2 12 23.2 54.76 -5.44 10417.19 24.66 0.2173 4.602 0.1472 6.790 

I = 2.00 24 23.0 54.50 -5.50 10410.93 24.50 0.2160 4.629 0.1481 6.751 
Va 7.35 

4 23.8 32.27 -4.15 9674.06 14.06 0.2002 4.995 0.1598 6.256 

6 23.5 30.34 -5.71 9662.50 12.31 0.2023 4.943 0.1582 (>.322 

ST2-3 12 24.0 29.36 I -7.00 9672.18 11.18- 0.2005 4.987 0.1596 6.265 

I = 1.50 24 23.8 29.21 -7.30 9676.87 10.95 0.1993· 5.019 0.1606 6.226 
V = 5.50 .. 

4 23.8 21.75 -3.64 9328.28 9.05 0.1859 5.379 -0.1720 5.809 , -

6 23.5 19.52 -4.93 9300.0 7.29 0.1930 5.181 0.1660 ·6.031 , 
ST2-4 12 24.0 

. 
18.00 -6.23 9293.12 5.88 0.1948 5.133 p.1642 6.087 

I = 1.2 
I 

24 23.8 18.12 -6.15 -9294.37 5.98 0.1951 5.126 0.1640 6.096 
V - 4.475 

. -

; 



'Table 2.5.3. - 7 Summary of Thermal Properties of Thermal ite 

Samples ST 3 (L = 2.60 x 10-2m), Taken from Figure 2.5.3. (3) 
, 

Time, Room AVElrage Sample Temperature Thermal Thermal Therma I Therma I J 
'Sample "from Tempera °c Conductivity Resistivity Resistance Conductan 

1 ' L k start ture •. k, r = k' R= -, c= I' No. k 
, ' hr. °c Hot Cold Gradient W/moK Km2;W W/m2K 

surface surface K/m mean Km/W 

4 22.20 76.31 -3.10 ' 13560.0 36.60 0.2091 4.782 O. 1243 8.042 
6 22.30 75.64 -4.15 13574.61 35.74 0.2082 4.803 o. 1248 8.007 

, 

ST3-1 12 22.50 75.64 -4.66 13594.23 35.49 0.2068 4.835 o. 1257 7.954 
24 22.00 75.00 -4.92 13579.61 35.04 0.2078 4.812 O. 1251 7.992 

, 

4 " 22.50 ' 50.81 -2.59 12559.61 24.11 O. 1991 5.022 o. 1306 7.657 
6 22.50 49.18 -4.93 ' 12586.92 22.12 0.1964 5.092 0.1324 7.554 

ST3-2 12 22.50 48.47 -6.76 12630.0 20.85 0.1924 5.197 O. 1351 7.400 
24 22.30 48.30 -6.87 12627.7 20.71 0.1910 5.238 O. 1362 7.342 

, 



Table 2.5.3. - 7 

Time Room 
I· " 

Sample from Tempera':' 

start ture, 
. No •. hr. °c 

/ 4 22.40 

6 22.30 
ST3-3 

12 22.40 

24 22.30 

4 22.70 
6 22.70 

ST3-4 
12 22.70 

24 22.50 

Summary of Thermal Properties of Thermallte 
-2 Samples ST 3 (L = 2.60 x 10 m), Taken from Figure 

Average Sample Temperature Thermal Thermal 

°c Conductivity Res I st Ivl ty 

Hot Gradient k, 1 
Cold r = k' 

surface surface oK/m mean W/moK Km/W 

27.00 ":4.15 11703.85 11.42 O. 1902 5.257 

25.00 -6.50 11717.31 9.25 O. 1881 5.316 

24.00 -7.55 11719.23 8.22 0.1878 5.325 

24.00 -7.67 11723.84 8.16 O. 1866 5.358 

17.52 . -4.66 11358.85 6.43 0 .• 1748 5.721 

16.28 -5.44 11341. 15 5.42 0.1785 5.602 

17.20 -5.10 11363.46 6.05 0.1725 . 5.796 

16.50 -5.25 11342.31 5.62 0.1768 5.654 

"';hermal Thermal I 
Resistance . Conductan ce 

L 
R = k' 

k 
C = I 

Km2;W W/m2K 

0.1367 7.316 
0.1382 7.234 
0.1384 7.223 

0.1393 7.178 

0.1487 6.723 
0.1456 6.865 

0.1507 I 6.635 

0.1469 6.802 



Table 2.5.3. - 8 Summary of Therro~1 Properties of Thermalite 

Samples ST 4 (L= 2.34 x 10-2 m),· Taken from Figure 2.5.3. (4) 

"Time Room Average Sample Temperature Thermal Thermal 
. 

Sample from· . Tempera °c Conduc t I v i ty Resistivity 
start ture. 

. 

k. 1 
No. r = k' 

hr; Hot Cold ~radient 
°c ~urface surface K/m mean W/moK Km/W 

. 

4 23.00 99.00 0.00· 15903.84 49.50 0.2192 4.562 

ST4 6 23.00 97.50 -1.50 15903.84 48.00 0.2192 4.562 

1=3.0 10 23.00 97.00 -2.05 15905.98 47.47 0.2216 4.511 
v- amp 24 23.00 96.70 -2.50 15912.39 47.10 0.2213 4.518 

4 23.50 48.00 0.00 13724.36 24.00 0.2014 4.965 

ST4-2 6 23.50 45.65 -2.60 13735.04 21.52 0.2004 4.990 

I =2.0 12 23.50 43.50 -4.66 13731.19 19.42 0.2006' 4.985 
24 23.00 42.35 ';'7.29 13794.44 17.53 0.1948 5.133 

--'- .. 
. 

Thermal 
Resistance 

R = f' 
Km2/W 

0.1067 
0.1067 
0.1056 
0.1057 

0.1162 

0.1167 
0.1166 

0.1201 

Thermal 

'" ...t 
N 

Conductanc 
k 

C = I 
W/m2K 

9.367 
9.367 
9.472 

9.457 

8.607 
8.564 

8.572 

8.325 

e 



Table 2.5.3. - 9 Summary of Thermal Properties of Thermallte 
-2 ' 

Samples ST 5 (L = 2.12 x 10 m), Taken from Figure 2.5.3. (5) 

" 
Time Room Average Sample Temperature, Thermal Thermal Thermal Thermal J 

Sample from Tempera- CondLic t I v i ty Resistivity Resistance Conductan 
start ture °c k, 1 

R = f' kl . r = k' C = -, 
No. L 

hr. °c Hot Cold Gradient 
surface surface K/m mean W/moK Km/W Km2/w W/m2 K . 

ce 

, 

4 22.50 60.29 -4.41 15936.32 27.94 0.2093 4.778 0.1013 9.872 
6 22.50 60.75 -4.15 15945.75 28.30 0.2086 4.794 

. 

0.1016 9.839 
ST5-1 12 22.50 61.43 -4.15 15977.83 28.64 0.2065 4.842 0.1026 9.740 

24 22.00 61.66 -4.67 16013.21 28.49 0.2041 4.899 0.1038 9.627 
. , . 

4 22.80 39.26 -2.59 14858.49 18.33 0.2057 4.861 0.1031 9.703 
6 22.70 38.00 -3.90 . 14860.85 17.05 0.2054 4.868 0.1032 9.688 

ST5-2 12 22.80 37.33 -4.92 14877.36 16.20 0.2031' 4.909 0.1041 9.608 
24 22.80 37.00 -4.97 14864.15 16.01 0.2046 4.887 0.1036 9.651 

. 

4 22.50 , 23.47 -3.90 14175.47 9.78 0.1765 5.665 0.1201 8.325 
. 

6 22.30 20.00 -6.50 14134.43 6.75 0.1823 5.485 0.1163 8.599 
ST5-3 12 22.70 18.52 -8.08 14139. 15 5.22 0.1816 5.507 0.1167 8.566 . 

24 21.70 18.00 -8.60 14139.15 4.70 0.1816 5.507 o. 1167 8.566' 

. . 



Table 2.5.3. - 10 Summary of Thermal Properties of Thermal ite . 

Samples ST 6 (L = 1.68 x 10-2 m)", Taken from Figure 2.5.3. (6) 

'"Time Room Average Sample Temperature Thermal Thermal Thermal Thermal J 
Sample from' Tempera- °c Conductivity Resistivity Res istance Conductan 

start' 
. 

k, 
. 

r = ~, . 'R= f . C = kl 
No. ture I' 

I hr. °c 
Hot. Cold Gradient I· mean , W/moK Km2/w W/m2K 'surface ~unface K/m Km/W 

, I 

ce 

4 22.50 47.51 -3.63 19302.97 21.94 0.2098 4.766 0.0800 12.488 

6 22.50 47. SI -3.90 19319.05 21.80 0.2087 4.791 0.0805 12.423 

ST6-1 12 22.50 48.05 -3.60 19333.33 22.22 0.2072 4.825 0.0810 12.336 

24 22.50 47.20 -4.30 19324.40 21.45 0.2078 4.811 0.0808 12.372 
. . 

4 22.70 31.31 -2.84 18291.66 14.23 0.1997 5.007 0.0841 11.887 

6 22.50 29.85 . -4.92 18328.57 12.46 0.1962 5.097 0.0856 11.678 

ST6-2 12 22.40 29.36 -5.49 18330.95 11.95 0.1959 5.104 0.0857 11.661 

24 2).20 27.41 -7.29 18324.40 10.06 o. 1966 5.086 0.0854 11.702 
.. . 

4 21.70 19.27 -2.07 17529.16 8.60 0.1794 5.574 0.0936 . 10.678 

6 21.50 15.52 -5.18 17491.07 5.17 0.1849 5.408 0.0908 11.006 
. 

ST6-3 12 22.00 13.26 -7.00 17464.88 3.13 0.1889 5.294 0.OB89 11.244 

24 21.50 13.50 -7.55 17511.90 2.98 0.1818 5.500 0.0924 10.821 



Table 2.5.3. - 11 

I' 

Time 

'Sample from 

No. start 

. hr. 

4 
6 

ST6x2-1 12 
.. 

1= 2.5A 24 

4 

6 

ST6x2-2 12 
. 

24 

Summary of Thermal Properties of Thermalite 
Samples ST 6 x 2 (L = 1.68 x 2 x 10-2m). Taken from Fogure 2.5..3. (7) 

Room Average Sample Temperature Thermal Thermal Thermal 

Tempera- °c Conductivity Resistivity Res istance 
1 L 

ture k r=j( R = j( 
°c Hot Cold Grad i en t 

Km2/W 'Surface surface K/m mean W/mK Km/W 

19.50 87.75 -4.67 10880.06 41.54 0.2335 4.282 o. 1439 

19.50 89.50 -6.23 10978.57 41.63 0.2254 4.436 . 0.1491 

19.70 89.93 -6.23 10991. 37 41.85 0.2244 4.456 0.1497 

19~50 89.70 -6.50 10992.56 41.60 0.2225 4.493 0.1509 

19.50 56.37 -5.18 9961.31 25.59 0.2232 4.480 0.1505 

20.00 56,60 -5.71 9983.93 25.44 0.2204 4.537 0.1524 

20.00 55.91 -7.55 10018.15 24.18 0.2164 4.621 0.1553 

19.00 55.22 -8.34 10021.13 . 23.44 0.2161 4.627 0.1555 

'" ..:t 
N 

Thermal 

Conductan 
_ . k 

C - L 
W/m2K 

6.949 
6.708 
6.678 

6.623 

6.642 

6.559 
6.440 

6.431 

ce' 



Table 2.5.3. - 11 

I' 

. Time 

Sample . from 
Start 

No. hr. ' 

. 

4 
6 

ST6x2-3 12 
" 

24 

4 
6 

ST6x2-4 12 
24 

. 

Summary of Thermal Properties of Thermalite 
-2 Samples ST 6 x 2 (L = 1.68 x 2 x 10 m). Taken from Figure 2.5.3. (7) 

Il.oom Average Sample Temperature Thermal Thermal Thermal , 
Tempera- °c Conductivity Resistivity Resistance 

k. 1 L ture, r = k' R = -, k 
°c Hot Cold 'Grad i ent 

Km2/w surface surface K/m mean W/mK Km/W 

21.50 29.61 -6.76 9211.90 11.42 0.2105 4.750 0.1596 
21.50 28.87 -7.29 9205.65 10.79 0.2117 4.724 0.1587 
21.80 28.87 -7.55 9213.39 10.66 0.2102 4.757 0.1598 
19.80 28.14 -9.39 9246.43 9.37 0.2040 4.902 0.1647 

. . . . 

20.00 I· 
22.24 -3.89 8907.14 9.17 0.1896 5.2743 0.1772 

19.80 19.00 -7.03 8904.16 5.98 0.1904 5.2520 0.1764 
19.80 15.78 -9.66 8886.61 3.06 0.1948 5.1335 0.1725 
19.80 15.70. . -9.92 8891.96 2.89 o. 1940 5.1534 0.1731 

. 

CO> 
III 

. '" 

Thermal 
Conductanc 

k 
C = I 

W/m2K 

6.265 
6.300 

6.256 

6.071 

5.643 
5.667 

5.797 
5.775 

e 



Table 2.5.3. - 12 Extruded Polystyrene, (styrofoam 16) samples, 

range of thickness, L in metre, volume, v in m3, and heat flux, q 

in W/m2 during tests. 

.,. 

Av. Sample Av. Sample Samples tested for, I (Amp) 

Sample . Thi ckness volume 

No. as tested as tested 1.20 1.00. 0.80 I 

m m3 
4.40 3.60 2.90 V 

145.48 99.19 63.92 i.i 
-4 -5 -6 No. 

SP 1 5.05 xl0 -2 9.163xl0 -4 SPI-5 SPI-6 SPl 

SP 2 2.07x2xl0 -2 7.512xl0 -4 SP2-5 SP2-6 SP2 

-2 (4.14xl0 ) 

SP3 2.05xl0 -2 3.720xl0 
-4 SP3-4 SP3-5 SP3-6 SP3 

/ 

251 



Table 2.5.3. - 13 Mass Loss of Extruded Polystyrene Samples During Conditioning 

Mass of 

Sample 

Before conditioning, Ml 
No. in Kg , 

Top Sample Bottom Sample 

All SP 1 26.72 x 10-3 27.10 x 10-3 

All SP 2 21.41 x 10-3 -3 21.67 x 10 . 

All SP 3 10.74 x 10-3 10.86 x 10-3 . 

Material in 

Average 

26.91 x 10-3 

21.54 x 10-3 

10.80 x 10-3 

Samples 

After cond it i on i ng, M2 

Top Sample 

26.70 x 10-3 

21. 40 x 10-3 

10 .. 73 x 10-3 

( 

C\ 

in Kg, 

Bottom Sample 

27.08 x 10-3 

21.67 x 10-3 

10.86 x 10-3 

) 

Average 

26.89 x 10-3 

21.53 x 10-3 

10.79 x 10-3 

N 
." 
N 

I 
Mass loss, M 

M
1

_M2 ··I. 
Mr>- x100 , 

M2 , 

duri ng con-

d It i ani ng % 

0.074 

0.046 . 

0.092 



Table 2.5.3. 14 Mass Regain of Extruded Polystyrene Samples During Test 

Mass of Material in Samples 
. 

Sample After the test, M4 After second conditioning 
Kg M

3
, Kg 

No. 

Top Sample Bottom Sample Average Top Sample Bottom Samp.1e 

26.76 x 10-3 10-3 26.94 x 10-3 26.68 x 10-3 27.05 x 10-3 
All SP 1 27.13 x 

All SP 2 21.45 x 10-3 21; 73 x 10-3 21 .59 x 10-3 2-1.37 x 10-3. 21.64 x 10-3 

All. SP 3 . 10.76 x 10-3 -3 10.88 x 10 . 10.82 x 10-3 10.72 x 10-3 10.84 x 10 -3 

. . 

Average 

26.86x 10-3 

21. 51 x 10-3 

;0.78 x 10-3 

rn 
IJ"I 
N 

Mass regain 

M -M 4 3 Mw: xl0 
M3 

during 

test % 

0.30% 

0.37% 

0.37% 

o 



Table 2.5.3.- 15 Measurement of Bulk DensIties of The 

Conditioned Samples As Tested (Extruded Polystyrene) • 

. 

. Density of the 
Average Sample conilitioned 

Sample volume, v sample as tested 
No. in (m3) 

. M2 
e=- (Kg/m3) 

v. 

SP 1 9.163 x 10-4 
29.35 

SP 2 7.512 -4 x 10 . 28.66 

SP 3 3.720 x 10-4 
29.00 

Standard deviation of the calculated density =,+ 0.345 

mean = 29.00 Kgim3 

Standard error of the mean S.D =--
{ii 

+ 0,345 
13" = ± 0.199 

254 



T<lble 2.5.3. -16 

,. 

Time 
Sample from 

No. Start, 
hr. 

4 
. 6 

SPI-5 12 

24 

4 

SPl-6 
6 

12 
24 

. 

Summ<lry of Thermal Properties of Extruded 

Polystyrene samples SP 1 (L = 5.05 x 10-2m). Taken from Figures 

2.5.3. (8) and 2.5.3.(9) 

. Room ·Average Sample Temperature, . Therma I Thermal 
Tempera_ °c ~onductlv.lty Resistivity 

1 ture, . k, r = k' 
Hot Cold Gradient 

°C· surface surface K/m mean W/mK Km/W 

22.00 52.52 ~6.05 6568.71 23.23 0.0854 11. 709 
21.80 56.83 . -7.29 6678.61 24.77 0.0778 12.853 . 

21.80 60.29 -8.08 6762. n 26.10 0.0731 13.679 

21.50 60.29 . t8.60 6773.07 25.85 0.0726 13.774 

. 
21.75 36.94 -5.36 6246.53 15:79 0.0765 13.072 

21.63 39.10 -7.46 6330.89 15.82 0.0695 14.388 
21.30 40.69 -8.87 6390.29 15.91 0.0653 15.314 
21.35 39.50 -9.30 6375.25 15.10 0.0663 15.083 

. , 
. 

Thermal 
Resistance 

L 
R = k' 

Km2/w 
, 

0.5913 
0.6491 

0.6908 

0.6956 

0.6601 

0.7266 

0.7733 
0.7617 

LI'I 
LI'I 

'" 

Thermal J 
Conductan ce 

kl 
C =r' 

W/m2K 

1 .6911 
1.5406 

1.4475 

1.4376 

1. 5148 

1.3762 
1.2930 
1. 3128 

·1 



Table 2.5.3. - 17 

. " 

Time Room 

Summary of Thermal· Properties of Extruded· 

Polystyrene samples SP 2 (L = 2.07 x 2 x 10-2 m). Taken from Flg~res 2.5.3. (10) 
and 2.5.~. (11) 

Average Sample Temperature, Thermal Thermal Thermal 
. 

Therma I J 
Resistance Sample from Tempera:- °c Conductivity Resistivity Conductan~ 

k 
r = ~. R=.h, Start ture, k, k c= I' 

No. hr. °c Hot Cold Gradient 
Km2;W W/m2K . surface surface K/m mean W/mK Km/W 

. 

4 22.90 50.72 -4.93 7942.03 22.89 0.0740 13.513 0.5594 1.787 
6 23.16 54.44 -6.77 8076.33 23.83 0.0672 14.881 0.6161 1.623 

SP2-5 12 23.00 55.20 -8.08 8126.32 23.56 0.0663 15.078 0.6242 1.602 

24 22.73 55.06 -8.51 8133.33 23.27 0.0647 15.456 0.6398 1.563 

. 

4 22.35 35.16 -5.19 7572.46 14.98 0.0658 15.197 0.6291 1.589 
6 22.20 36.40 -7.35 7654.59 14:52 0.0606. 16.502 0.6832 1.464 

SP2-6 12 22.20 36.00 :'8.87 7681.64 13.56 0.0619 16.157 0.6689 1.495 
24 21.35 34.72 -9.92 7676.09 12.40 0.0594 16.835 0.6969 1.435 

I . . 

e 



Table 2.5.3. - 18 Summary of Thermal .Properties of Extruded le 
. -2 

Polystyrene samples SP 3 (L " 2.05 x 10 m). Taken from Figures 2.5.3. (12) to 2.5.3. (14) 
. . 

Time Room Average Sample Temperature Thermal Thermal Thermal Thermal 1 
" 

Sample from Tempera- °c Conductivity Resistivity Res I stance Conductan 
Start, , k • 

'. I 
R = {Z, k ture r = -, C = -. k . L 

No. hr. °c Hot Cold Gradient W/m K Km/W Km2/w 2 
surface ·surface '_ K/m mean , ,W/m K 

ce 

. 

4 21.70 47.53 -4.92 15882.92 21.30 0.0570 17.544 0.3596 2.7805 
6 21.80 49.00 -6.76 16044.39 21.21 0.0536 18.656 0.3824 2.614 

SP3-4 12 20.50 48.00 -8.87 16098.53 19.56 0.0525 19.047 0.3905 2.561 
24 2) 130. 47.30 -8.87 16064.39 19.21 0.0532 18.797 0.3853 2.595 

-
4 21.90 31.78 -5.97 15165.85 12.90 0.0542 18.450 0.3782 2.644 

, 6 21.90 32.59 -7.37 15273.66 12.61 0.0512 19.531 0.4004 2.497 
SP3-5 12 21.55 32.03 -8.35 15294.14 11.84 0.0507' 19.724 0.4043 2.473 

24 21.35 31.18 -8.86 15277.56 11. 16 0.0511 19.569 0.4012 2.492 
. 

4 21.55 21.75 -5.71 14663.90 8.02 0. 0485 20.618 0.4227 2.366 
6 21.50 21.25 -6.50 14678.05 7.37 0.0486 20.576 0.4218 2.371 

SP3-6 12 20.50 20.27 -7.81 14694.14 6.23 0.0480 20.833 0.4271 2.341 
24 21. 10 19.00 -8.73 14677.07 5.13 0.0468 21. 367 . 0.4380 2.283 



Table 2.5.4. - I 

Av. Sample 

Sample Thickness, 
as tested, 

No. Lc ' 
m 

-2 
SC 1 5.26x10 

SC 2 4.40xl0 -2 

SC 3 3.74xl0 -2 

SC 4 6.48xl0 -2 

, 
Composite samples, range of thickness, L, in metre, volume of fibre (VF) , volume 

of matrix (VM), and the total volume in m3• Also the imposed heat flu~, q,in W/m2 

during tests 

, 
Av. Sample Fibre Matrix VF= VM= Samples tested for, I 
Volume,. as (foam) (Therma- 1.50A 1.20A. 1. OOA. 0.80A. 
as tested, Thickness I iter. LF LM 

5.80V 4.35V. 3.60v. 2.90V. 
LF ' Thickness LC re 239.72 143.83 99.19 63.92 

m3 LM'm m - 3 . - 4 - 5 - 6 

9.545xl0 -4 ' -2 2.06xl0 
I' '-2 

3.20xl0 0.392 0.608 SCI-4 SCI-5 SCI-6 

7.984xl0 -4 2.06xl0 -2 2.34xl0 -2 IU68 0.532 SC2-3 SC2-4 SC2-5 

-4 6.787xl0 . 2.06xl0 -2 1.68xl0 -2 0.551 0.449 SC3-4 SC3-5 SC3-6 

'11. 758xl 0 -4 4.14xl0 -2 . -2 
·2.34xl0 0.639 0.361 SC4-5 SC4-6 

(Amp.) 

I 

V 
q 
No. 

co 
VI 
N 



Table 2.5.4. - 2. 

I· 

,Time Room 
Sample from Tempera-

No. start ture 
hr. °c 

6 2';50 
12 22.00 

sCI-4 24 21.70 

1 = 1.20 30 22.00 

Amp 36 21.70 

6 21. 50 . 
12 21.20 

SCI-5 . 24 21.00 

1 = 1.0 30 21.50 . 
Amp 36 21.50 

6 20.50 
12 20.50 

SCI-6 24 . 20.20 

30 20.50 

36 20.70 
. 

Summary of Thermal 
-2 L ~ 2 06 x 10 F . m, 

, -2 
Conductivity of Composite Samples SCl (L = 5.26 x 10 m) 

. -2 c , 
V ~ 0 392 L = 3 20 x 10 m V = 0 608 F . , M . , M . 

Average Sample Temperatures kM kF k = 
,. 

Matrix °c Foam q L 

Hot face 1 nter-face Mean 1 nter-face Cold face Mean A(T1-T2) 
(T 1) T. T. (T2) 

I I 
.. , 

46.12 33.00 39.56 33.00 -7.15 12.92 0.3571 0.0739 ,0.1:386 

50.81 39.02 44.91 39.02 -10.18 14.42 0.3913 ~.0603 0.1224 

52.44 39.38 45.91 39.38 -6.89 16.24 0.3533 0.0642 0.1226 
'. 

52.90 39.26 46.08 39.26 -7.29 15.98 0.3383 p.0638 0.1233 

52.67 39.02 45.84 39.02 . -7.55 ' 15.73 0.3380 0.0637 0.1232 

34.45 25.45 29.95 25.45 -7.81 8.82 0.3536 0.0616 0.1237 

35.90 27.05 31.47 27.05 -10.71 8.17 0.3595 0.0542 0.1148 

36.14 27.65 31.89 27.65 -9.52 9.06 0.3748 0.0551 0.1135 

35.66 26.68 31. 17 26.68 -8.87 8.90 0.3543 0.0576 0.1161 

35.66 26.68 31. 17 26.68 -9.39 '8.64 0.3543 0.0568 0.1161 

25.45 17.03 21.24 17.03 -8.34 4.34 0.2435 0.0520 0.1021 

24.00 13.50 18.75 13.50 -12.57 0.46 0.1953 
, 
0.0506 0.0986 

22.25 13.25 17.75 13.25 -10.71 1.27 0.2278 0.0551 0.1022 

22.25 13.72 17.98 13.72 -10.71 1.50 0.2152 0.0540 0.1047 

22.50 12.00 17.25 12.00 -12.57 -0.28 0.1953 0.0537 0.1015 
. 

kC = 
kM kF 
VFKM + 
(l-vF)kF 

0.1426 
0.1245 
0.1281 

0.1263 
0.1261 

0.1241 
0.1124 
0.1148 , 

, 

0.11.77 
, 

, 

, 

0.1164 

0.0999 
0.0923 
0.1025 
0.1015 
0.0962 



Table 2.5.4. -.3. Summary of ,Thermal Conductivity of Composite Samples SC 2 (Lc = 4.40 x 10-
2

m) 

-2 -2 LF = 2.06 x 10. m, VF = 0.468 LM = 2.34 x 10 m, VM = 0.532 

,. 

Time Room Average Sample Temperatures kM kF k = 

Sample from Tempera- °c q L 
-start ture Matrix Foam 

No. hr. Hot face Inter-face Mean lnter"'face Cold-face Mean 
A(T1-T2) 

°c (T ) T, T. (T2) 
1 I 

6 22.00 75.00 57.50 66.25 57.50 -4.15 26.67 0.2979 0.0794 0.1295 

12 21.70 80.50 62.50 71.50 62.50 -6.23 28.13 0.3062.', 0.0714 o. 1184 

SC2-3 24 20.75 82.00 64.10 73.05 64.10 -7.81 28.14 0.3096 0.0680 o. 1134 

I = 1.5 30 22.00 82.50 63.40 72.95 63.40 -6.23 28.58 0.2885 0.0705 O. 1154 

V = 5.80 36 

. 6 22.50 51. 30 39.50 45.4 39.50 
. 

-4.41 . ,17.54 0.2950 0.0706 0.1153 

12 22.00 54.00 41.64 47.82 41.64 -6.50 17.57 0.2651 0.0650 O. 1061 

SC2-4 24 20.80 55.00 42.81 48.90 42.81 -6.23 18.29 0.2855 0.0614 0.1020 

I = 1. 20 30 22.00 54.00 40.69 47.34 40.69 -4.41 18.14 0.2615 0.0672 0.1061 

V = 4.35 36 
• 

6 . 21.80 37.10 28.39 32.74 . 28.39 -5.18 11.60 0.2811 0.0642 O. 1061 

12 22.00 37.80 29.12 33.46 29.12 -6.50 11. 31 0.2785 0.0606 0.1014 

SC2-5 24 21.50 36.85 28.63 32.74 28.63 -7.55 10.54 0.2984 0.0595 0.1000 

I = 1.00 30 22.20 37.10 27.90 32.50 27.90 -6.23 10.83 0.2627 0.0633 0.1035 

V=3.60 36 . 

. 

k 
C 

kM 

= 

<:> 

"" N 

kF 
VFkM+ 

I 
I 

I 

I 

I 

! 

(l-V)k,1 
F F 

, 

, 

, 

I 

0.1302 
0.1206 

0.1162 

0.1178 

0.1186 
O. 1086 
0.1055 
O. 1091 

I 

o • 1088 I 

I 

0.1038 

0.1036 
. 0.1062 



. Table 2.5.4. -4 Summllry of Thermal Conductivity of Composite Sllmples SC 3 (LC = 3.74 
-2· -2 

LF = 2.06 x 10 rn, VF = 0.551. LM = 1.68 x 10 m, VM = 0.449 

,. 
. 

Time Room 
0 Average Sample Temperatures, C. 

. 
kM 

Sample from Tempera- Matr i x Foam 
No. start ture 

hr. °c 'Hot face Inter-face Mean Inter-face Cold face Mean 
(T 1) T .. , T. (T2 ) I I 

6 21.00 48.00 40.45 44.22 40.45 -6.12 17.16 0.3208 

12 21.00 50.35 45.18 47.76 45.18 -9.65 . 17.16 0.4685 

SC3-4 24 20.30 49.42 43.40 46.41 43.40 :-9.00 17.20 0.4024 

I = 1.2 30 20.50 49.42 43.16 46.29 43.16 -8.60 17.28 0.3869 

Amp. ,36 21.00 49.88 ·43.88 46.88 43.88 -8.73 17.57 0.4037 

6 21.00 33.73 28.99 31.36 28.99 - -6.63 11. 18 0.3524 

12 21.30 34.45 30.82 . 32.63 30.82 -9.39 10.71 0.4602 

SC3-5 24 21. 30 . 33.97 29.00 31.48 29.00 -8.47 10.26 0.3361 

I = 1. 00 30 22.00 33.97 29.24 31.60 29.24 -7.29 10.97 0.3532· 

Amp. 36 21. 70 33.97 29.48 31. 72 29.48 -7.42 11.03 0.3721 

6 21.60 21.75 15.27 18.51 15.27 -9.00 3.13 0.1661 

12 21.80 22.00 16.14 19.07 16.14 -9.92 3. 11 0.1837 

SC3-6 24 21.50 21.25 15.40 18.32 15.40 -9.91 2.74 o. 1840 

I = 0.80 30 21.70 21.25 15.52 18.38 15.52 -10.31 2.60 o. 1879 

Amp. 36 21.70 21.25 14.27 17.76 14.27 -11. 25 1.51 O. 1542 

-2 x 10 m) 

kF k= 

q L 

A(T1-T2) 

0.0637 0.0966 

0.0541 . 0.0898 

0.0566 0.0905 . 

0.0574 0.0908 

0.0564 0.0909 

0.0575 0.0912 , 
0.0509 0.0869 
0.0546 0.0857 
0.0561 0.0890 
i 

0.0555 0.0879 

0.0544 0.0818 
I 

0.0507 0.0804 , 
?0521 0.0782 

o .0511 0.0795 
0.0517 0.0795 

k C= 

kM kF 
VFK M + 

1(I-vF)kF 

0.0996 
0.0898 
0.0923 
0.0930 
0.0920 

0.0922 
0.0848 
0.0876 
0.0902 
0.0899 

0.0780 
0.0751 

. 0 .0769 

0.0760 
0.0737 



Table 2.5.4. - 5 Summary of Thermal Conductivity of Composite Samples SC 4 (L = 6.48 x 10-2m) 
-2 '-2 c, 

LF = 4.14 x 10 m, VF = 0.639 LM= 2.34 x 10 m, VM = 0.361 

~ 

, 

Time ' Room Average Sample Temperatures 
kM k k = kc= 

from Tempera °c F 
kM kF Matrix Foam 

Sample start ture q L 
VFKM+ 

hr. °c Hot face Inter-'face Mean i'nter-face Cold face Mean 
A(Tl-T2) (I-VF)k No. (T1 ) T, T. (T2) 

I 
F 

6 20.50 42.81 37.45 40.13 37,45 -10.18 13.63 o .4341 0.0864 0.1253 0.1215 
12 20.50 49.65 45.D9 4"}.37 45.09 -12.97 16.06 0.5103 0.0709 0.1063 o. 1029 

SC4-5 24 20.50 50.81 46.59 48.70 46.59 -11.11 17.74 0.5514 0.0713 0.1056 o. 1039 
I = 1. 00 30 20.70 51.00 46.83 48.91 46.83 -11. 25 17.79 0.5580 0.0709 0.1067 0.1035 
Amp. 36 21.00 52.90 49.17 51.03 49.17 -13.37 17.90 0.6238 0.0658 0.1030 0.0972 

. 

6 21.00 33.24 30.70 31. 97 30.70 -8.73 10.98 0.5904 0.0673 0.1031 0.0989 
, 

12 21. 00 34.00 31. 78 32.89 31.78 -11. 78 10.00 0.6755 0.0609 0.0962 0.0906 
SC4-6 24 20.00 33.73 31.07 32.40 31.07 -11.92 9.57 0.5637 0.0617 0.0934 0.0909 
I = 0.80 30 20.20 33.73 30.22 31.97 30.22 -11. 78 9.22 0.4272 0.0631 0.0940 0.0911 
Amp. 36 20.50 34.21 30.82 32.51 30.82 -13.37 8.72 0.4423 0.0600 0.0918 0.0872 

, 



Table 2.5.4. - 6. Results obtained for Composite Sample S(1-4 with 

Lc = 0.0526 m. VF = 0.392 

. .. - .. 

Time. Heat Flow T I ' T2 , . . Tl-T2, k = . kA= k = 
•. WI 2 

.. c c 
hr. °c °c o( .. L q Lc kif· . kF q, m . q c 

t 
Tl-T2 A(Tl-;Ti)· VFkM+(1-VF)kF . . . 

1 53.30 26.68 -3.10 29.78 0.0941 0.2547 0.2595 

H 62: 76 30.10 1-4. 15 34.25 0.0964 0.2214 0.2270 
2 70.65 33.49 -4.92 38.41 0.0967 0.1974 0.2005 

2! 76.97 36.14 -6.00 42.14 0.0961 0.1799 0.1874 

3 . 82.02 38.29 -6.50 44.79 0.0963 0.1693 0.1733 

3! 85.17 40.00 -6.76 46.76 0.0958 0.1622 0.1667 
4 . 89.90 41.40 -7.29 48.69 0.0971 0.1557 0.1595 

5 95.59 44.00 -7.81 51.81 0.0970 0.1463 0.1501 
6 98.58 46.12 -8.60 ·54.72 0.0947 0.1386 0.1426 

7 100.63 47.76 -8.87 56.63 0.0935 0.1339 o. 1343 
8 105.67 49.42 -9.39 58.81 0.0945 0.1289 o. 1293 

9 106.94 51.05 -10.44 61.49 0.0914 0.1233 0.1235 
10 . 108.83 50.81 -9.13 59.94 0.0955 0.1265 0.1245 

11 109.30 52.00 -9.92 61.92 0.0928 0.1224 0.1245 
12 , 
24 114.50 52.44 -9.39 61.83 0.0974 0.1226 0.1281 

25 114.66 52.67 -9.13 61.80 0.0976 0.1227 0.12]4 

26 114.50 52.44 -9.39 61.83 0.0974 0.1226 0.1272 

27 114.50 52.67 -.8.87 61.54 0.0978 0.1232 0.1269 
28 114.50 52.67 -8.87 61.54 0.0978 0.1232 0.12]0 

29 115.05 52.44 -8.87 61. 31 0.0987 0.1237 0.1281 

30 114.50 52.90 -8.60 61.50 0.0979 0.1233 0.1263 

24 Mean k 0.0978 0.12304 0.1273 
to standard Deviation (SD.) 0.00044 0.00042 0.00065 

30 Variance 2xl0- 7 2xl0-7 4xl0-7 

% Difference from kA +20.51 0 -3.45 
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Table 2.5.4. -7 

. 

frime. Heat Flow 

hr. •. W/ 2 q. m 

. 

1 46.69 

H 54.42 
2 60.88 
2, 65.30 

3 . 68.45 
3, ·70.98 
4 74.13 
5 77.29 
6 78.86 

7 80.75 
8 80.91 

9 81.86 
10 81.86 
11 81.86 
12 82.96 
24 83.44 
25 83.60 
26 83.60 

27 83.60 
28 83.60 
29 83.60 
30 83.60 

Per i od 
24 
to. 

30 

Results obtained for Composite Sample SCI-5 

with Lc = 0.0526 m. VF = 0.392 
.--,-

T 1 • T2 • T l-T 2 • k = kA= c 

°c °c °c .. L qL q c c 
T1-T2 A(T1-T2) 

. 

24.71 +0.50 24.21 0.1014 0.2160 
26.44 -1.55 27.99 0.1022 0.1868 
28.63 -2.84 31.47 0.1017 0.1662 
29.61 -4.41 34.02 0.1010 0.1537 
30.83· -5.18 36.01 . 0.1000 0.1452 
31. 31 -6.00 37.31 0.1001 0.1402 
32.02 -6.50 38.52 0.1012 0.1358 
33.24 -7.55 40.79 . 0.0997 o. 1282 
34.45 . -7.81 42.26 0.0982 0.1237 
35.66 -8.87 44.53· 0.0954 0.1174 
36.14 -9.13 45.27 0.0940 o. 1155 
35.90 -9.65 45.55 0.0945 o. 1148 
35.66 • -9.13 44.79 0.0961 0.1167 
36.14 -9.13 45.27 0.0951 0.1155 
35.90 -9.65 45.55 0.0958 0.1148 
36.14 -9.92 46.06 0.0953 0.1135 
35.66 -9.39 li5.05 0.0976 0.1161 , 
35.66 -9.39 45.05 0.0976 0.1161 
35.66 -9.65 45.31 0.0970 o. 1154 
35.66 -9.39 45.05 0.0976 0.1161 
35.66 -9.39 45.05 0.0976 0.1161 
35.66 -9.39 45.05 0.0976 0.1161 

Mean k 0.0972 0.1156 
S.D. 0.00086 0.00097 
Variance 6xl0-7 8xl0-7 

% Difference from kA +15.95 0 
.. 

k = 'c 

kM kF 
VFkM+{I-VF)kF 

0.2121 
0.1872 
0.1651 
0.1571 
0.1456 
0.1436 
o. 1360 
0.1310 
0.1241 
0.1206 

0.1152 
0.1117 
0.1130 
0.1118 

O. 1124 
O. 1148 

0.1163 
0.1184 

0.1170 
0.1177 
0.1177 
0.1177 

0.1171 
0.001205 
1.2xl0 -6 

-1.254 
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Table 2.5.4. - 8. Results obtained for Composite Sample SCI-6 

wIth L' = 0.0526 m, VF = 0.392 c . 

Time, Heat Flow T 1 ' T2, TfT2• k = kA= 
•• W/ 2 . c 

hr. °c °c . C ., L q L q, m q c c 
Tl -T2 A{Tl-T2) 

, 

-
-

1 40.69 23.72 +4.10 19.62 0.1091 0.171 8 

H 47.63 24.71 +1.79 22.92 0.1093 0.1471 
2 51.57 25.70 0.00 25·70 0.1055 0.1311 
2! 55.67 25.95 -2.07 28.02 0.1045 0.1203 

3 58.04 25.70 -3.63 . 29·33 0.1041 0.1149 

3! 59.93 26.19 4.92 31. 11 0.1013 0.1083 
4 60.88 25.70 -5.71 31. 41 0.1019 0.1073 
5 I· .. 61.82 25.95 -6.76 32.71 0.0994 0.1030 
6 62.77 25.45 ., 7.55 33.00 0.1000 0.1021 

7 62.46 24.95 -8.60 33.55 0.0979 0.1005 
8 62.46 . 24.71 -9.13 33.84 0.0971 0.0996 

9 62.77 24.95 -9.65 34.60 0.0954 0.0974 
10 62.1'4 24.71 -10.18 34.89 0.0937 0.0966 
11 60.41 '24.00 • -9.92 33.92 0.0937 0.0994 
12 60.72 24.00 -10.18 34.18 0.0934 0.0986 
24 59.46 22.25 -10.71 32.96 0.0949 . 0.1022 
25 59.46 22.25 -10.71 32.96 0.0949 0.1022 
26 58.82 22.50 -10.44 32.94 0.0939 0.1023 
27 58.82 22.25 -10.18 32.43 0.0954 0.1039 
28 58.82 22.25 -10.18 32.43 0.0954 0.1039 
29 58.36 22.25 -9·92 32.17 0.0954 0.1047 

30 58.36 22.25 -9.92 32.17 0.0954 0.1047 

period Mean k 0.0950 0.1034 . 

24 5.0. 0.00056 0.00115 
to Variance 3xl0-7 1. lxl 0 -6 

30 % Difference from +8.094 0 
k '. 
A 

k = c 
kM kF 
VFkM+U-VF)kF 

0.1677 
0.1441 
0.1276 
0.1162 
o. 1140 

0.1076 
0.1058 
0.1008 

0.0999 
0.0999 
0.0967 
0.918 
0.0905 
0.0950 
0.0923 
0.1025 
0.1015 
0.1016 
0.1015 
0.1025 

0.0994 
0.1015 

'0.1012 
0.00131 
1.5xl0-6 

+2.137 
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Table 2.5.4. - 9. 

Time Heat Flow 
hr. ~.W/m2 

. 

1 72.55 

H 91.48 
2 108.04 

2t 121. 45 

3 132.49 

3t 139.59 
4 142.74 

5 151.42 
6 160.09 

7 169.08 
8 170.35 . 

9 174.13 
10 176.65 

11 179.81 
12 179.81 
24 183.59 
25 180.44 
26 181. 39 
27 181. 39 
28 181. 39 
29 181. 39 

30 181 .39 

Pe'r i od . 

24 
to 
30 

Results obtained for Composite Sample SC2-3 

with Lc = 0.0440 m, VF = 0.468 

T 1 • T2 • Tl-T2 • k = kA= k = c c 
°c °c °c .. L q L kM -; kF q c c· 

Tl -T2 A1'T7-T2) VFkM(1-V
F
) 

, 

42.58 +5.13 37.45 0.0852 0.2767 0.3209 
53.60 +1.75 51.85 0.0776 0.1998 0.2486 

55.68 +0.25 55.43 0.0857 0.1869 0.1982 
61.20 -1.29 62.49 0.0855 '0.1658 0.1802 
64.16 -2.60 66.76 0.0873 0.1552 0.1656 
68.69 -3.37 72.06 . 0.0852 0.1440 0.1529 
69.82 -3.90 73.72 0.0852 0.1405 0.1449 

71.38 -5.45 76.83 0.0867 0.1348 0.1353 
74.00 -6.00 80.00 0.0880 0.1295 0.13017 . 
77.90 -6.23 84.13 0.0884 0.1232 0.1270 

79.90 -6.50 86.40 0.0867 0.1198 0.1232 

79.90 -6.76 86.66 0.0884 0.1195 o. 1228 

80.29 -7.00 87.29 0.0890 0.1187 0.1218 

80.51 -7.00 87.51 0.0904 0.1184 0.1206 
80.51 -7.00 87.51 0.0904 0.1184 0.1210 

. 81.90 -9.40 91.30 0.0885 0.1134 0.1162 

82.28 -7.82 90.10 0.0881 0.1150 0.1162 
82.28 '-7.82 90.10 0.0886 0.1150 0.1179 
82.28 -7.82 90.10 0.0886 0.1150 0.1179 
82.50 -7.29 89.79 0.0889 0.1154 0.1179 
82.50 -7.29 89.79 0.0889 0.1154 0.1178 

82.50 -7.29 89.79 0.0889 o. 1154 0.1178 
. ' . 

Mean k 0.0886 0.1149 ' 0.1174' 

S.D. 0.0002 0.00071 0.00081 

Variance -8 -7 7.4xl0 4.3xl0 5.6xl0-7 

% Difference from kA 
... +22.88 0 -2.12 

. 

kF 
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Table 2.5.4. - 10. Results obtained. for Composite 5ample 5C2-4 

with Lc = 0.0440 m, . VF = 0.468 

. . 

k = Time Heat Flow T1, T2 , T l-T 2 ' kA= k = 
q,W/m2 .. 

c c 
hr. °c °c °c ., L q L kM kF q c c 

- I T1-T2 A{Tl-T2) VFkM+(l-VF)kF 

. 

1 62.30 34.00 3.30 30.70 0.0893 0.2133 0.2253 
H 76.65 37.60 0.75 136.85 0.0915 0.1975 0.1862 
2 85.32 40.20 -1.30 41.50 0.0905 0.1700 0.1649 
2t 91.48 42.50 -2.60 45.10 0.0892 0.1520 0.1513 
3 97.80 44.50 -3.35 47.85 0.0899 0.1415 0.1447 
3t 102.83 45.90 -4.10 50.00 0.0905 0.1320 0.1357 
4 105.36 47.50 -4.40 51.90 0.0893 0.1270 0.1300 
5 112.45 49.90 -4.66 54.56 0.0907 O. 1194 0.1217 
6 116.09 51.30 -5.40 56.70 0.0901 . 0.1153 O. 1186 
7 118.29 52.40 -5.40 57.80 0.0900 0.1132 0.1146 
8 119.24 52.90 -6.00 58.90 o 0891 0.1112 O. 1132 
9 121.13 52.90 -7.00 59.90 0.0890 0.1092 0.1132 

10 122.08 54.00 -6.00 60.00 0.0895 0.1092 0.1106 
11 123.34 1 54.30 -6.20 60.50 0.0897 0.1082 0.1095 
12 123.24 54.00 -7.30 61.30 0.0885 O. 1061 O. 1086 
24 123.24 55.00 -8.90 63.90 0.0849 O. 1020 0.1055 
25 124.61 54.60 -8.60 63.20 0.0867 0.1030 0.1062 
26 124.61 54.30 "8.60 62.90 0.0872 0.1050 0.1072 
27 123.24 54.00 -8.00 62.00 0.0874 0.1051 0.1087 
28 123.24 54.00 -8.00 62.00 0.0874 0.1051 . 0.1087 
29 123.24 54.00 -8.00 62.00 0.0874 0.1055 0.1089 
30 123.24 54.00 -7.50 61.50 0.0882 0.1061 0.1091 

. 

Period Mean k 0.087 O. 1044 0.1077 
24 5. o. 0.00104 0.00146 . 0.00145 
to Variance 9.2xl0-7 1 • 8x 10 -6 t;8xl0-6 

30 % Difference from kA +16.63 0 -3.21 
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Table 2.5.4. - 11. 

Time, Heat Flow, 
hr. .. W/ 2 q, m 

1 55.20 

H 62.93 
2 66.40 

2t 74.29 

3 79.18 

3t 81.86 
4 84.38 

5 86.44 
6 88.48 

7 90.85 
8 89.27 

9 91.48 
10 91.48 
11 91.48 
12 91..48 
21t 91.17 
25 91. 61t 
26 88.96 

27 90.53 
28 91.17 
29 90.38 
30 90.53 

Period 

24 

to 

30 

Resul ts obtained for Composite 

with Lc = 0.0440 m, VF = 

T 1 ' T2 ' T l-T 2 ' k = c 
°c °c °c .. L 

q c --

Sample SC2-5 
0.468 

kA= k = c 
q L c ~~ kF 

I 

I 

1 

T -T . 1 2 A(Tl-T2) VFkM+(I-VF)kF . 

. I' 

28.15 +3.60 24.55 0.0989 0.19i5 0.2016 
29.90 +1.30 28.60 0.0968 0.1620 0.1722 
32.00 -0.25 32.25 0.0906 0.1435 0.1491 
33.25 -1.80 35.05 . 0.0932 0.1305 0.1367 
35.00 -2.33 37.33 0.0933 0.1214 0.1271 
35.50 -3.10 38.60 0.0933 0.1173 . 0.1218 
36.15 -3.90 40.05 0.0927 0.1132 0.1173 
36.85 . -5.00 41.85 0.0909 0.1081 O. 1123 
37.10 -5.70 42.80 . 0.0909 . 0.1061 0.1088 
37.30 -6.00 43.30 0.0923 0.1065 0.1070 
37.30 -6.80 44.10 . 0.0891 O. 1050 0.1050 
37.80 44.80 

, 

-7.00 0.0898 0.1040 0.1032 
I 

37.80 -7.00 41t.80 0.0898 0.1035 0.1038 I 

37.80 • -7.00 4lj.80 0.0898 o. \ 0 35 0.1032 I 

37.80 -7.00 44.80 0.0898 0.1040 0.1038 
36.85 -8.60 45.45 0.0883 0.1030 0.1036 
36.85 -7.90 44.75 0.0901 0.1035 0.10lt8 
36.85 -7.30 "It.15 0.0886 0.1029 0.1049 

. 

37.10 -7.00 44.10 0.0903 0.1030 0.1054 
37.30 -7.00 41t.l0 0.0903 0.1030 0.1063 1 

37.10 -6.80 43.90 0.0906 O. 1035 0.1062 
37.10 -6.80 It3.90 1.0.0907 0.1035 0.1062 

Mean k 0.0898 0.1024 0.1053 
S. D. 0.00098 0.00128 0.00099 
Variance -7 -6 8.16xl0 1.4Ixl0. 8.45xl0-7 

% Difference from kA +12.26 0 -2.83 
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Table 2.5.4. - 12 •. Resul ts obtained. for Compos Ite Sample SC3-4 

with Le = 0.0374 m, VF " 0.551 

Time Heat Flow T l' T2, T ,-T2 ' k = kA" . k = 
.. W/ 2 . e e 

hr. °c Cc °c .. L q L kM,kF q,. m q··:e e 
T1-T2 An1-T2l ilFkti{ l-VFl kF 

.. 
. 

1 65.93 30.10 +3.59 26.51 0.0930 0.2034 0.1996 
. 

I! 78.86 34.00 +1.28 32.72 . 0.0901 0.1648 0.1650 
2 89.27 37.33 -0.25 37.58 0.0888 0.1435 0.1436 
2! 96.22. 39.74 -1.55 41.29 0.0871 0.1306 0.1306 

3 103.15 43.05 -4.15 47.20 0.0817 O. 1142 0.1162 
3! 106;94 44.00. -5.18 49.18 0.0813 0.1096 0.1129 
4 111. 04 45.42 -5.71 51. 13 0.0812 0.1054 0.1079 
5 

. 

116.41 46.59 -7.03 53.62 0.0812 0.1005· 0.1040 
6 1.19.87 48.00 -7.81 55.81 0.0803 0.0966 0.0996 

7 123.03 48.71 -8.34 57.05 0.0806 0.0945 0.0977 
8 123.35 49.65 -8.60 58.25 0.0792 0.0926 0.0948 
9 124.29 50.35 -9.65 60.00 0.0775 0.0898 0.0906 
10 123.66 50.58 -9.39 59.97 0.0771 0.0899 0.0895 
11 124.60 50.35. -9.39 59.74 0.0780 0.0902 0.0903 
12 124.92 50.35 -9.65 60.00 0.0778 0.0898 0.0898 
24 126.18 49.42 1-10 •18 59.60 0.0792 0.0905 0.0923 
25 126.18 49.42 -10.18 59.60 0.0792 0.0905 0.0920 
26 126.18 49.42 -10.18 59.60 0.0792 0;0905 0.0927 
27 126.81 49.6·5 -9.65 59.30 0.0799 0.0909 0.0920 
28 126.18 49.65 -9.65 59.30 0.0796 0.0909 0.0920 
29 126.18 49.42 -9.92 59.34 0.0795 0.0908 0.0930 
30 126.18 49.42 -9.92 59.34 0.0795 0.0908 0.0930 

Period Mean k 0.0794 0.0907 0.0924 
24 C;.D 0.00026 0~00019 0~00046 

to Var i anee 5.9xl0 -8 3.14xl0-8 2xl0-7 

30 % 0 i ffe rence from kA +12.41 0 -1.87 
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I 

Table 2.5.4. - 13 Results obtained for Composite Sample S(3-5 . 
wl th L = 0.0374 m, VF = 0.551 c 

. 

Time. Heat Flow T 1 ' T2 ' T l-T 2 ' k = kA= k = c c 
Ci, W/m2 °c °c °c - L q L kM kF hr. q c c 

T1-T2 A(T
1

';'T
2
) VF kM+(I-VF)k 

..,. 
. 

1 54.59 23.72 +0.77 22.95 0.0889 0.1620 0.1593 
It 66.57 27.17 -0.50 27.67 0.0899 0.1344 0.1315 
2 72.39 28.63 -2.07 30.70 0.0882 0.1211 0.1183 

H 78.07 30.10 . -3.10 33.20 0.0879 0.1120 0.1095 
3 80.60 30.58 -4.41 34.99 0.0862 0.1063 0.1059 

3! 83.60 31.78 -5.18 36.96 0.0846 0.1006 0.0999 
4 86.43 32.27 -5.45 37.72 0.0857 0.0986 0.0979 
5 89.59 33.00 -6.23 39.23 0.0854 0.0948 0.0942 
6 91.95 33.73 -7.03 40.76 0.0844 0.0912 0.0922 

7 92.27 33.97 -7.29 41.26 0.0836 0.0901 0.0885 
8 93.06 33.97 -7.55 . 41.52 0.0838 0.0895 0.0879 
9 93.37 34.21 -8.34 42.55 0.0821 0.0874 0.0855 

10 93.06 34.45 -8.34 42.79 0.0813 0.0869 0.0848 
11 93.06 34.45· -8.34 42.79 0.0813 0.0869 0.0848 
12 93.06 34.45 -8.34 42.79 0.0813 0.0869 0.0848 
24 93.37 33.97 -9.39 43.36 0.0805 0.0857 0.0876 

I 25 92.75 33.97 -8.34 42.31 0.0820 0.0879 0.0901 
26 92.75 33.97 . -8.87 42.84 0.0810 0.0868 0.0902 
27 92.75 33.97 -8.34 42.31 0.0820 0.0879 0.0901 
28 92.59 34.21 -8.08 42.29 0.0819 0.0879 0.0905 
29 92.59 23.97 -7.81 41.78 0.0829 0.0890 0.0902 
30 92.59 33.97 -8.34 42.31 0.818 0.0879 0.0899 

Period Mean k 0.0817 - 0.0876- 0.0898' 
. 24 S.O. 0.00077 0.00104 0.00099 
to Variance 5xl0-7 9xl0 -7 8xl0-7 

30 %Oiference from kA +6.68 o . -2.53 
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Table 2.5.4.- 14 Results obtained 'for Composite Sample S(3-6 
with L = 0.0374 m, . VF = 0.551 e 

.. 
. 

Time, . I· Heat Flow T I ' T2 ' T1-T2, k = kA= k = e e 
:. W! 2 °c °c 0 

., L 
q Le kM kF hr. q, m I C q c 

T1-T2 A(T1-T2) VFkM+(I-VF)kF 

1 47.32 18.03 -3.89 21.92 0.0807 0.1093 0.1093 
It 52.05 19.03 -4.92 23.95 0.0813 0.1000 0.0990 
2 56.00 20.03 -5.45 25.48 0.0822 0.0940 0.0936 
2t 57.57 20.75 -5.71 26.46 0.0814 0.0906 0.0847 
3 58.99 21.25 -6.23 27.48 0.0803 0.08]2 0.0824 
3t 59.46 21.50 -6.50 28.00 0.0794 0.0856 0.0790 
4 61.51 2 1.50 -6.76 28.26 0.0814 0.0848 0.0792 

i 

5 63.72 21.75 -7.55 29.30 0.0813 0.0818 0.0776 , 

6 63.41 21.75 -7.55 29.30 0.0809 0.0818 0.0780 
7 63.88 22.00 -7.81 29.81 0.0802 0.0804 0.0751 
8 64.04 22.24 -8.34 30.58 0.0783 0.0784 0.0765 
9 64.04 22.24 -8.34 30.58 0.0783 0.0784 0.0765 

10 64.04 22.24 -8.34 30.58 0.0783 0.0784 0.0765 
I I 64.04 22.24 -8.34 

• 
30.58 0.0783 0.0784 0.0765 

12 64.04 22.24 -8.34 30.58 0.0783 0.0784 0.0765 
24 64.35 21.25 -9.39 30:64 0.0785 0.0782 0.0769 
25 64.35 21.25 -9.39 30.64 0.0785 0.0782 0.0769 
26 64.35 21. 00 . -9.39 30.39 0.0792 0.0788 0.0756 
27 64.19 21.00 -9.39 30.39 0.0790 0.0788 0.0734 
28 64.19 21.00 -9.39 30.39 0.0790 0.0788 0.0756 
29 64.04 21.25 -9. 13 30.38 0.0788 0.0789 0.0753 
30 64.04 21.25 -8.87 30.12 0.0795 0.0795 0.0760 

. 
1 period Mean k 0.0789 0.0787 0.0757 

24 s.o. 0.OOQ36 0.00045 0.00118 
to Variance lxl0 -7 2xl0-7 0.12xl0-J 

1
30 % Di fference from kA -0.24 0 +3.90 
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Table 2.5.4. - 15 Results obtained for Composite Sample SC4 -5 

with Lc = 0.0648 m,· VF = 0.639 

Time, . Heat Flow T 1 ' T2 ' Tl-T2, k = kA = k = 
~,w/m2 

.c ., c 
hr. QC . °c QC Cl L q Lc kM kF c 

Tl-T2 A{Tl-T2) VFkM+(l-VF)krl. 

1 40.06 26.92 +0.50 26.42 0.0982 0.2439 0.2315 
H 43.05 29.36 -2.99 32·35 0.0862 0.1992 0.1987 
2 46.53 32.00 -3.89 35.89 0.0840 0,1795 0.1734 
2! 47.95 34.21 -4.92 39.13 0.0794 0.1646 0.1591 
3 50.47 36.14 -6.23 42.37 0.0772 0.1521 0.1426 
3! 52.84 37.57 -7.00 44.57 0.0768 0.1445 0.1387 
4 55.21 38.78 -7.55 46.33 0.0772 0.1391 0.1363 
5 58.36 40.93 -8.08 49.01 0.0772 0.1315 0.1267 
6 60.25 42.81 -8.60 51.41 0.0759 0.1253 0.1215 
7 62.30 44.71 -9.13 53.84 0.0750 0.1197 o. 1165 
8 63.41 45.42 ':"9.65 55.07 0.0746 O. 1170 0.1123 
9 64.67 47.53 -10.18 57.71 0.0726 0.1116 0.1075 

10 64.67 48.24 -10.44 , 58.68 0.0714 0.1098 0.1057 
11 64.98 48.47 -10.71 59.18 0.0711 0.1088 0.1038 
12 65.93 49.65 -11. 00 60.65 0.0705 0.1062 0.1029 
24 69.40 50.81 -10.18 60.99 0.0737 0.1056 0.1039 
25 69.71 50.81 -10.18 60.99 0.0741 0.1056 0.1040 
26 69.86 50.81 -10.18 60.99 0.0742 0.1056 0.1033 
27 69.71 50.81 -9.92 60.73 0.0744 0.1061 0.1038 
28 70.66 50.81 -9.92 60.73 0.0754 0.1061 0.1037 
29 69.71 50.81 -9.65 60.46 0.0747 0.1065 0.1031 
30 70.03 51.00 -9.39 60.39 0.0751 0.1067 0.1035 

period Mean k 0.0745 0.1060 0.1036 
24 s. D. 0.00059 0.00045 0.00033 
to Variance 3xl0-7 2xl0- 7 0.93xl0-7 

30 % Difference from kA +29.73 0 +2.28 
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16 b' df Co R Table 2.5. - es u ts 0 ta I ne or . mpos it S I sc4 6 e amp e -
with L = 0.0648 m, VF = 0.639 , 

C 

, , 

Time. Heat. Flow T 1 ' T2 • T1 -T 2 ' k = k" k = C A 'c 

hr. Ci,W/m2 I °C" QC °c - L q L kM kF q C C 

T1-T2 A(Tl-T2) VFkM+(I-VF)kF 
, ' 

1 26.03 25.45 +8.46 16.99 0.0993 0.2444 0.2320 
I H 31.86 27.17 +5.13 22.04 0.0936 0.1884 0.1769 

2 35.01 28.39 +2.31 26.08 0.0870 0.1592 ' 0.1516 
i 

2;: 37.54 29.36 +0.25 29.11 0.0836 0.1426 0.1357 I , 

3 39.43 29.85 -1.81 31.66 0.0807 0.1312 0.1240 

I 

3;: 41.64 31.07 -2.84 33.91 0.0796 0.1224 0.1169 
4 43.21 31.54 -3.89 35.43 0.0790 0.1172 0.1109 
5 46.05 32.51 -5.71 38.22 0.0781 0.1086 0.J046 
6 47.00 33.24 -7.03 40.27 0.0756 0.1031 0.0989 
7 47.32 33.73 -7.55 41.28 0.0743 0.1006 0.0953 
8 47.32 34.69 -8.34 43.03 0.0713 0.0965 0.0908 
9' 47.32 34.45 -8.60 43.05 0.07122 0.0964 0.0887 
10 48.27 34.21 ' -8.87 43.08 0.0726 0.0964 0.0907 
11 48.58 34.93 -9.39 44.32 0.0710 0.0937 0.0859 
12 48.27 34.00 -9.13 43.13' 0.0725 0.0962 0.0906 
24 45.58 33.73 -10.71 44.44 0.0708 0.0934 0.0909 
25 48.27 33.48 -10.18 43.66 0.0716 0.0951 0.0922 

I 26 48.43 33.48 -10.18 43.66 0.0718 0.0951 0.0925 
27 48.27 33.24 -10.44 43.68 0.0716 0.0950 0.0921 
28 48.58 33.48 -9.92 43.40 0.0725 0.0956 0.0923 
29 48.27 33.00 -10.71 43.71 0.0715 0.0950 0.0921 
30 48.27 33.73 -10.44 44.17 0.0708 o 0940 0.0911 

Period Mean k 0.0715 0.0947 0.0919 
24 to S. D. 0.00059 0.00076 0.00062 
30 Variance 3xl0-7 5xl0-7 3xl0-7 

% Difference from kA +24.52 0 +3.02 
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Table 2 5 4 - 17 Values of Thermal conductivities of composite . . . 
samples and the % difference between them. 

-
.. . 

% Diff 
.. 

Mean of the period 24 - 30 hours erence 
.. 

Com- Over k mea % Diff k. based of Ma~ ij c . c 
posite all kA '" sured erence on from the 

Sample Mean q L from fro~ kA '" kA data . imposed 
c 

kM kF No. Temp kA-kc x100 Heat Fl ux 
A (rl..,T2) Heat k = 

c VFkM+(1-VFlkF 
°c flow q kA (q/A-g) 

- q L Diff % q/A x100 
k = c c-- from .r1-T, 

~A 

SCl-4 22.50 0.12304 0.0978 +20.50 0.1273 -3.45 +20.32 

SCl-5 13.50 0.1156 0.0972 +15.95 0.1171 -1.25 +15.72 

SCl-6 5.80 0.1034 0.0951 :+8.09 0.1012 +2.14 +7.70 
. 

SC2-3 37.25 o. 1149 0.0886 +22.88 0.1.174 -2.12 +23.42 

SC2-4 23.00 0.1044 0.0870 +16.63 0.1077 -3.21 +13.78 

SC2-5 14.75 0.1024 , 0.0898 +12.26 0.1053 -2.83 +8.25 

SC3-4 20.25 0.0907 0.0794 +12.41 0.0924 -1.87 +12.19 

SC3-5 13.45 0.0876 0.0817 +6.68 0.0898 -2.53 +6.49 

SC3-6 6.45 0.0787 . ·0.0789 -0.24 0.0757 +3.90 -0.19 

SC4-5 21.00 O. 1060 0.0745 +29.73 0.1036 . +2.28 +29.73 

SC4-6 12.00 0.09474 0.0715 +24.52 0.0947 +3.02 +24.12 

. 
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Appendix A-1 
[102) 

SI [Systeme International d'Unites) Units 

l:8ase units 

Clu anti ty Name 

length metre 
mass kilogram 
time second 
electric current ampere 
thermodynamic temperature kelvin 
amount of substance· mole 
luminous intensity candela 

U: Supplementary units 

. 

o.uantity Name 

plane angle radian 
solid angle steradi an 

Ul: Derived units 

Symbol· Notes 

m I 

kg 
s 
A 
K .. 

mol 
cd 

Symbol Notes 

rad 
sr 

Derived units are expressed algebrClically in terms of base units and/or supplemen

tClry units,Clnd some of them hClve special no.mes g·sym.Cls listed here, 

Quantity NClme Symbol 
Expressed in terms 

. of SI units I,II,orII 

frequency hertz Hz 1 Hz = 1 s· 
force newton N 1 N = 1 kg·m/s· 
pressure, stress pascal Pa 1 Pa =1N/m" 

. energy, quantity of heat joule J 1J=1N·m 
power watt W 1 W= 1J/s 
qUClntity of electricity coulomb . C 1C=1A's 
electric potential, vol t V 1V=1J/C 
tension 
electric resistance ohm .n. 1!l.= 1V/A 
electric conductance siemens S 1 S = 1..n.-' 

1 



Appendix A-2 

Conversion Factors 

Table ( 1 1 Thermal Conductivity 

W W cal kg.cal Btu . Btu. in. -- --
m.1< . cm. K s.cm·K h'm'. K hift·o F h·ft~·oF 

1 W/m.K = 1,000 1.000xl0-~ 2.388xl0-3 
0.8598 0.5778 6.933 

1 W/cm.K = 100.0 1.000 0.2388 85.98 57.78 693.3 

1 calls. cm. K = 418.7 4.187 1.000 360.0 241.9 2903.0 

-~ . .3 . 

1 kg.cal/h.m.K = 1.163 1.163xl0 2.778xl0 1.000 0.6720 8.064 
. 

1 Btu/h. ft.oF 
_. 

3 
= 1.731 1.731xl0 4.134xl er 1.488 1.000 12.00 

1 Btu~n/h.tf:oF= 1.442xl0-'1> 3.445xl0-4 -. 0.1442 0.1240 8.333><10 1.000 

Tnble ( 2 ) Thermal Conductnnce 

. 

W W cal kg·cal Btu 

m'· K cm'· K s· cm'· K h·m'· K h·ft,·of 

1 W/m~'K = 1.000 1.000xl0- 4 2.388><10- 5 0.8598 0.1761 

. 2-
1.000xl0'l 1.000 0.2388 8598. 176" lW/cm ·K = 

1 calls,cnf·K = 4.187 ><10 4 4.187 1.000 3.600><104 7373. 

1 kg· cnllh·n?- K = 1.163 1.163><10- 4 2.778><10-5 1.000 0.2048 

. 20 
1 Btu/h·ff·· F = 5.618 5.678x10-'I 1.35-6x 1 0- 4 4.882 1.000 

. 
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Appendix A-3 

Converting thermocouple voltages into their equivalent measured temperatures. 

Copper I copper - nickel thermocouples. Type T 

Temperature: E.M.F . Reference junction at 0 degrees Celsius. 

.Temperatures in degrees Celsius (IPTS-681 e.m.f. in microvolts. 

Temp. e.m.f. Temp. 

0 0 0 
_1 _ 39 1 
_2 _77 2 
_3 _116 3 
_4 _154 4 
_5 _193 5 
_6 _231 6 
_7 _269 7 
~8 _ 307 8 
_9 _ 345 9 

_10 _383 10 
_11 _ 421 11 
_12 ' _458 12 
~13 _496 13 
_14 _534 14 
_15 _ 571 15 
_16 .608 16 
_17 _ 646 17 
_18 _ 683 18 
_19 _720 19 
_20 _757 20 
_ 21 _794 21 
_22 _ 830 22 
_23 _ 867 23 
_24 _ 903 24 
_25 _ 940 I 25 
_26 _ 976 

e.m.f. Temp. e.m.f. Temp. e.m.f. Temp. e.m.f. 

0 
39 26 1032 50 2035 73 3042 
78 27 '1073 51 2078 74 3087 

117 28 1114 52 2121 75 3131 
156 29 1155 53 2164 76 3176 
195 30 1196 54 2207 77 3221 
234 31 1237 55 2250 78 3266 
273 32 1279 56 2294 79 3312 
312 33 1320 57 2337 80 3357 
351 34 1361 58 2380 81 3402 
391 35 1403 59 2424 82 3447 
430 36 1444 60 2467 83 3493 
470 37 1486 61 2511 84 3538 
510 38 1528 62 2555 85 3584 
549 39 1569 63 2599 86 3630 
589 40 1611 64 2643 87 3676 

629 
, 

41 ' 1653 65 2687 88 3721 
669 42 1695 66 2731 8.9 3767 
709 43 1738 ·67 2775 90 3813 
749 44 1780 ' 68 2819 91 3859 
789 45 ' 1822 69 2864 92 3906 
830 46 1865 70 2908 93 3952 
870 47 1907 71 2953 94 3998 
911 48 1950 72 2997 
951 49 1992 
992 

( 91) 
For complete tables refer to B.S.4937-5 

Temp. e. m.f. 

95 4044 
96 4091 
97 4137 
98 4184 
99 4231 

100 4277 
101 4324 
102 4371 
103 4418 
104 4465 
105 4512 
106 4559 
107 4607 
108 4654 
109 4701 

110 4749 
111 4796 
112 4844 
113 4891 
114 4939 
115 4987 

'3 



Reference (cold I junction correction figures 

For use with Temperature I E.H.F. table. 

Thermocouples are type T 

temperature e.m.f. Temperature 
o C microvolts °c 

10 390 '21 

11 430 22 
. 

. 

12 470 23 
. 

. 

13 510 24 

14 550 25 

15 590 26 

1 6 630 27 
. 

. 

1 7 670 • 28 

18 71 0 2 9 

1 9 750 30 

.. 
20 790 

e, m. f. 

microvolts 

830 

870 

910 

950 

990 

1030 

1070 

11 10 

1160 

120 0 

. . (911 
. For complete fIgures refer to B.S. 4937-5 (1974 I 
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Appendix A"4 

Material 

-Metals: 
2Aluminum 
2 - --

- Copper, pure 
2 Iron,pure 
3Iron ,cast 
3 - - -
Steel,mild 

2r ~n 
2 Zinc 

I 

-Alloys: 
2 ' 

Brass,70%Cu, 

30%Zn. 
2 - % Bronze,75 Cu, 

25%Sn. 
2 --
Constantan, 

60%Cu,40%Ni. 
2Steel,mild ,1%( 

-Structural and 
heat-resistant: 

Stones: 
4Basal t 
4Basalt - -

4Granite 

4Granite 
2 -

- Limestone,dry 

4Limestone 

4Limestone 
4 Marble 

Thermal conductivity k, Specific heat 6, Bulk 

density ,and Thermal diffusivity of some 

Metals, Alloys, and Nonmetals. 

t, k, c, e, 0,;'105 

°c IJ/moK J/KgOK 3-
Kg/m m2/s 

0;100 202.4;205.9 870.85 2707 8.595 
0;100 387.5;377.1 381.00 8940 11.408 
0; 100 61.9; 63.3 435.42 7865 1.806 
0; 100 50.2; 48.4 
0;100 62.3; 57.1 

0;100 62.3; 58.8 226.08 7305 3.768 
0; 100 _ 112.5;110.7 381.00 7145 4.129 

0;100 96.9;103.8 8520 2.942 
, 

385.18 

0 26.0 343.32 8650 0.8775 

0;100 21.5; 22.1 _ 418.68 - 8922 0.5678 
0; 100 45.8i 45.0 460.55 7850 1.2650 

• 
-

0-100 1.28-2.77 858.18m 2707 
- , 
100 1.76 1088.57m 3204 

-- 3.11-4.15 849.92m 
2500-

• •••• -3000 
48.9 1.26-2.60 1046.70 2530-2640 
21.1 0.69 921.10 1682 0.0438 

100-300 1.26-1.33 908.53m 2560 
0 2.21 • •••••• • • • • .' ...... , 
• ••••• 1.28-3.37_ 2707 • • • • • • 879.23m 

4Sandstone,humid 20 1.68 • ••••• 2258 •••••• 
4Sandstone,dry 20 1.30 

. 
728.50m 2242 

5 0.86 Shale • • • • • • • ••••• 
5Travertine-

I 
• • • • • • 1.04 • ••••• 

5 

! 

I 

I 

, 

i 

I 



Appendix A -4 ( Continued) 

.. '. '. . 

tl, 
. 

• • 
Material k, c, e, a, x10 

DC . IJ/moK J/KgOK Kg/m3 m2/s 

, 
-

Concrete,Plasters: 
2Concrete.stone 1 21 .1 0.93 837.36 2306 0.0490 

2Concrete,10%H20 21.1 • 1.21 • ••••• 2242 0.0645 
4 20 1.28 883. 41 t 2274 Concrete • ••••• 
4Concrete,full set 20 0.76 1130.43m 2178 • ••••• 
5Concrete.cinder 

, 

aggregate 23.9 0.71 • • • • • • • 1554 • ••••• 
. 5 . 

. 

Cement,mortar . . ' .. 1.73 • ••••• 1842 • • • • • • 
5Gypsum,plaster 

. 

21.1 0.48 • • • • • • 1120 • ••••• 
5Lime-cement.plaster •••• 1.16 • ••••• 1762 • ••••• 
1 . I 0.47 Plaster, metal lath 21.1 • ••••• • ••• • ••••• 
1Plaster.wood 

, 
lath 21.1 0.28 , . • • • • • • • • • • • • • • • • 

8ricks: 
4Hand formed,dry 25 0.40 741.06m 1566 • ••••• 4 '.' . 

Machine made,dry 50 0.48 921.10 m 1620 • ••••• 
1Building,common 20 0.69 • • • • • • • ••• • ••••• 
1Building.face • • • 1.31 · .. . . . . • ••• • • • • • • 
4Brickwork,old.dry 

• 
20 0.41 • ••••• 1842 . • • • • • • 

4Brickwork,old,dry 47.2 0.45 • ••••• 1842 • • • • • • 
4 11 11 11 .new,humid 10 1.40 1960 • • • • • • • ••••• 
4 

11 " ",4!months old 10 0.97 1762 • • • • • • • ••••• 
2Brick,fir~-clay . 200 1.00 837.36 2307 0.0516 

2Brick,masonry. 21.1 0.66 837.36 1700 0.0465 

2Brick,zirconia 200 1.45 • • • • • • 4870 • ••••• 
2Chrome brick 200 1.42 • • • • • • 3940 • ••••• 
4 . 

95%5i02 50 1.16 1356.52m 1874 Silica &1122.06m • ••••• 
. 

4Silica brick 11 11 200 0.66 7B2.93m 1650 • • • • • • 
1Magnesite 

& 795.49m 
brick 204.4 3. B1 • ••••• • •••• . • ••••• 

1 11 11 " " 11 11 648.9 2.77 • ••••• • ••• • ••••• 
1 11 11 " 11 11 11 1204.4 1.90 • ••••• • ••• • ••••• 

I 

6 



-:-

AE!E!endix A-4 (Continued) 
.. ' -' 

t, k, • 
Material c, p, 0,,,10 

DC 
, IJ/in°K J/KgOK Kg/m3 m2/s 

-
Soil: 
2Soil ,dry ,21.1 0.35 1842.19 • • • • 0.0258 
2Soil ,IJet 21.1 2.60 • •••••• • ••• 0.0774 
2Sand ,dry 20 0.35 • •••••• 1520 . • ••••• 

, 2Sand ,10% H2 O 20 1.04 • • • • • • • 1600 • • • • • • 
4Soil ,dry 20 0.52 837. 36t 1340-

1906 • • • • • • 
4Soil ,loamy, 

fresh . 0 2.32 • • • • • • • 2018 • ••••• 
4Sandy ground 20 1.07 • •••••• • ••• • ••••• 
Glass: 
2 ' 
Glass,window 21.1 0.78 837.36 2723 0.0335 

50rdinary,soda-

lime-silica 48.9 0.97 • •••••• 2515 • ••••• 
5 48.9 1.21 Opaque,coloured • • • • • • • • ••• • ••••• 
5pyrex 48.9 1.09 • • • • • • • 2226 • • • • • • 

I Woods: 

Hardwoods: 
5Elm 

• 

I • ••• 0.14 • •••••• 528.6 ." ..... 
I, ' 5Mahogany • • • • 0.13 • • • • • • • 544.6 • ••••• 

20ak ~ to grain 21.1 0.21 2386.47 816.9 0.0106 
'2 ' Oak II to grain ;21.1 0.35 2386.47 816.9 0.0178 

Softwoods: 
48alsa 0 0.055 • • • • • • • 200.2 • ••••• 
4Salsa 50 0.076 • •••••• 200.i • • • • • • 50 

fir 0.140 496.6 Oouglas • • • • • • • • • • • • ••••• 
5Fir • ••• 0.118 • •••••• 400.4 • ••••• , 

,2Pine ~, to grain 21.1 0.104 2805.15 496.6 0.0075 
2 ' 

Pine 11 -to grain 21.1 0.24 2805;15' '496.6 " 0.0173' 

5Spruce, • • • • 0.104- • •••••• ••••• • ••••• 
0.121 . 

, 

. . 
-' 

7 
, ' 



Appendix A-4 (Continued) 

" 

Material 

-Insulating 
"2Asbestos 

2Asbestos 

5Asbestos 

material: 

cement 
semi~comp.B5 690 

5 . . 
Asbestos cement 
fully comp.BS4036 
5'" Asbestos.board, 

corrugated 
5Asbestos paper, 

corrugated 
5 . 
Board,glass-fiber 

5 " Ivegetable- " 
5Boar~,wood-fiber 
2Cork 

5Corkboard 
·2 .. • 
. Cotton, fabr1c 

o 
200 

• • • • 
" 

• • • • 

43.9 

65.6 

26.7 

26.7 

26.7 
30 

26.7 

93.3 

20iatomaceous 

powdered 
earth, 

37.8 
2 n 11 11 11 If It 11 11 148.9 
2Glass wool, fine .37.8 
2Glass wool,packed 37.8 

" 

5· d Gypsum boar 
2Hair felt 

2Kaolin insulating 

21.1 
37.8 

200 
2 " ". " " firebrick760 
4 I. Kapok 20 

0.15 

0.208 

0.37 

0.65 

0.069 

0.064 
0.038 

0.048 

0.050 

0.043 

0.038 
0.079 

0.052 

0.062 
0.054 

0.038 

0.208 
0.047 

0.086 
0.19 
0.035-
0.040-

" 

c, (', 

J/KgOK Kg/m3 

1046.70 

• • • • • • • 

• •••••• 

576.6 

576.6 

1522 

- " 

" 

0.0258 

0.0258 

•••••• 

• •••••• 1698min • ••••• 

• •••••• 

• • • • • • • 
• • • • • • • 

• •••••• 
• •••••• 
167.47 

• •••••• 
• • • • • • • 

879.23 

• •••••• 
• • • • • • • 
• • • • • • • 
• • • • • • • 
• • • • • • • 

• • • • • • • 
• • • • • • • 

320.4 

272.3 
176.2 

235.5 

251.5 

160.2 

110.5 

• • • • • 

224.2 

224.2 
24.0 

96.1 

929.0 

131.3 

304.3 
304.3 

,150.6 

•••••• 

• • • • • • 
• ••••• 

• ••••• 
• • • • • • 
0.0155 

• ••••• 
• ••••• 

0.0258 

• ••••• 
• ••••• 

• ••••• 
• • • • • • 

• ••••• 

• ••••• 
• ••••• · .. " ... ~ 

285% magnesia 0 0.055 ••••••• 272.3 • ••••• 
285% magnesia 93.3 0.064 ••••••• 272.3...... I 

2Rockwool -6.7 0.029. ••••••• 128.1 •••••• 

~ __ 2_R_O_C __ k_W~O_O_I~ __________ L-_9_3_._3 __ L-_0 __ ._0_5_2 __ L-_. __ ._._._._. __ • __ ~ __ 1_2_8_. __ 1-L_. __ ·_·_·_._·~1 
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Appendix A - 4 (Continued) 

Material 

. 

5Vermiculite 
3Yood shavings 

4Yool 
4Yool 
6 . 

Expanded polysty-

rene 
6Foamed polyure

thane 
6Aerated concrete 

,6Aerated concrete, 
high density 

6Compressed straw 
6Foamed slag concr 

-ete 
Miscellaneous 
4Asphalt 
4Chalk . 
5 . 
Felt,wool 

2 Ice 
4Leather,sole 
4paraffin 

2Rubber 

4Rubber,hard 

4Rubber,soft 

5Sawdust,dry 

5Vaseline 

matr 

. 

65.6 

23.9 

o 
30 . 

• ••• 

• ••• 
• • • • 

• • • • 
• ••• 

• ••• 

20 

• ••• 
• • • • 
o 

30 

?2.8 
o 

25-
50 
30 

20 

20 

0.078 
·0.059 

0.038 

0.042 

0.035; 
0.033 

0.024; 
0.039 
0.084-
0.180 

0.650 

0.101 

0.22-
0.51 

0.76 
0.94; 
0.92 
0.052 

2.21 

0.16 

0.26 
0.15 

0.16 

0.17 

0.069 

0.18 

• •••••• 
• •••••• 
1360.71m-
1720.77m • •••••• 

· ...... ' 
•• • • • • • 
• •••••• 

• • • • • • • 
• •••••• 

• •••••• 

921. 10 t 
879.23m 

• •••••• 
1925.93 

1494. 69 t 

• •••••• 
2009.66 

1419.32 

• • • • • • • 
• • • • • • • 
• • • • • • • 

. 

144.2 

• •••• 
136.1 

40.1 

16.0; 
24.0 

24.0; 
40.0 

320 -. 
700 

1602 

365 

961 -
1682 

2114 
1794; 
2595 
• • • • • 

913.0 
1000 

920 

1200 

1190 

1100 

214.6 

• • • • • • 

• ••••• 
•••••• 

• ••••• 

• ••••• 

• ••••• 
• ••••• 

• • • • • • 
• ••••• 

• ••••• 

• ••••• 

• ••••• 
• ••••• 
0.1239 

• • • • • • 

• ••••• 
0.0062 

• ••••• 

• ••••• 

• ••••• 
• ••••• 

Notes: i- Superscripts fi~ures 1 to 6 denote references 
(73 and 63 to 67). 

ii- For Metals and Alloys taken from reference (63), 
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Appendix A-4 (Notes continued) 

-
the values of c, f, and a were determined at DOe. 

iii- The subscript·. t refers. to the true specific heat 

. at the temperature: t i and the subscrip~ m 
refers to the mean s~ecific heat. . 

iv- The bulk density is the weight of 1m3 of ~he 
material in a state t~at is fou~d in practice, 
and thus including the volume of its pores. 

v- All the values have been converted to SI units. 

10 



. -z k= g,L , 
. 

Date: . Sample: No. of Run: I: Amp. V: Volts L: .10 m 
Ant-T,) 

.Time, 
" 

Temperature,oC., . . 

Ref. J. Correction . 
. e.m.f. in'Millivolts' 

5 
CII .... 6 
Cl 7 . . 

a: 
8 . ..... 

0 9 ::t: 
.. 10 . 

Av. e.m.f. . 
. 

Hot Face e.m.f. 

Hot Face Temp.°C.oT1 
. 

III 1 .... 
L- Cl 2 ·111 a: )I -0 'C 3 . 

-' -0 
u 4 
III 11 . .... 

c.. Cl 
12 III a: , . 

c. . 
C. 'C 13 
::> -0 u 14 . 

Av. Cold Face e.m.f. 

(old Face e.m.f. . . . 

Cold Face Temp~c.,T2 
. . 

lT1 - T2 ) , . ° c., I 

. 
... 

. . . 0 

'k, WI m. C., • " -
" 

" 



, 
Table: 1CSI 

Date : 
. 

" 

Time : 

Temperature, o C., 
Ref. J. Correction, Millivolts, 

Point No. S 

" 6 .. 
7 .... .. 

d a: " 8 

15 .. 9 
:I: .. 10 

Av. e.m. f. , Millivolts. 

Hot Face e. m. f .• Millivolts, 

Hot Face Temp., ·C .• T1 ' .. Point No. 1 .... 
"- c .. 2 .. a: 
~ .. 3 0 "0 
-' 0 4 u .. .. 

" 1 1 .... 
d 

"- "- " 12 .. 
Co "0 .. 13 
Co 0 :;) u " 14 

Av. Cold Face e.m,f., 

Cold Face e.m.f .• Millivolts, 

Cold Face Temp .• 'C •• T2 • 

I T1 - T 2 J , 0 C •• 

• • W 1 m°C., k Composite, 
. . 

Sample : 

No. of Run : ' . 
Le = k = 1= Amp. 

V= Volts. 

. 

.. 

. 

. 

. 
. 

. 

et, Lc 
AfT,T2J 

. 

, 

. 

-

. 
. 

. 

: . 

, 

. 

·c . 

. 

. 

. 

N ... 

I 

: 
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Sample : 
No. of Run: 
I = Amp. 
V = . Volts. 

L [
........... ..... ::)--L

F c :-:-:'-:'---~-:-:-:--.J- L, 

[ 
_::. __ ::._: ::. ___ :_ M 

Lc .......... . ........ . 

Table: 2CS'/ 

Date: 

. 

Time, 
. 

~T~e~m~p~e~r~a~t~u~r~e~,·~C~'~'~-+ ____ ~ ____ +-__ ~ ____ -+ ____ 4-____ }-__ -4 ____ -+----4-----}----4-----t~--+_----~--_+----_i1 
Ret J. Cor recti 0 n, mV, 

-III 
E u 
0 .... ... ., . .... 

~ 
Hot Face Temp:C., T1, 

" :c .... 
" " Cl I-

Cold Face Temp. ·C., T2., 
'k' Composite,W/moC., .. 

c. 0. 
0 E 
I- 0 

III 

Interface e.m.f.@ <1t) 
Corrected e. m.f., mV, 
Interface Temp., ·C., 
Interface e. m.f.@ Q) E .. 

'0 'CL 
..... E Corrected .e.m.f., mV, 
'b 0 
Cl Vl Interface Temp.,·c., 
Av. Interface Temp. :C, T®.I4l. 

.. 
c.o. 
o E 
1-. " 

. 111 

E .. 
o a. 

kM' W/m·C., 

(old Face e.m.f. @<D 
Corrected e.m.f., mY. 
Cold Face Temo.,·C., 
Cold Face e.m.f. is ® 

...... E Corrected e.m. f.~mVJ 
~ " 
Cl III Cold Face Temp., ·C., 
Av. Cold Face Temp./C.. T(1).(1) 

. 

. 

. 

.. I _ .... :_. __ ,._. ~, __ ~.,~ .. ",'<._._,_.", .... _. :~_ ... ~._. __ .,-..• _., __ ._ .. ··_r·" _ .'.' . ..•.• _. ~ .............. " ........ _ •... I 



Appendix B 

8 - The Cl imate of Middle. East" (Saudi Arabia) 

6-1; Introduction 

During the last Ice Age, which "ended some 15,000 years ago, Arabia 

is known to have enjoyed a more temperate climate, with greater rainfall 

than at present. Much of the desert was then grassland, and the great 

wadi systems 

runoff from 

still seen in Arabia testify to the eroding power of the 

• " 136) 
the highlands • Experts now generally agree that the 

climate changes at the end of the Ice Age resulted in a weather pattern 

that has altered little to this day. 

The region is characterised by extremely arid summers, and a winter-

spring maximum of precipitation. Continental effects are so marked in the 

centre of the main land mass."of Arabia, and the precipitation is so low 

that population is confined to oases or thinly scattered as nomadic groups, 

except in the ma i n c it ies, where the human act i vi ties depend on the "" 

religious, political, commercial and the new industrial centreJ103~ 

8-2. Topography 

Th h f S d • A b· (3.21) b d ·b d • . I e topograp y 0 au I ra la , can e escrl e In a slmp e 

way. To the east of the Red Sea, the highest land in this zone is found 

at the south western corner of the Arabian Peninsula. Here in Yemen 

altitudes of more than 3,700 m are attained. Highland also occurs along 

the whole of. the western. part of Arabia, with the gerJeral "level of the 

land declining to the north and east. In central Saudi Arabia, character

istic of the relief are a series of westward facing escarpments, in arc-

like form around the main highland of the west coast. The low land belt 

of the region stretches from northern I raq to the coast of the Indian 

15 
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Ocean In Oman. It continues as an attenuated zone along the western shore 

of the Arabian Gulf to b~oaden into an extensive plain in south eastern 

Arabia. Inthis latter zone the largest sand area in the World, the Rub 

AI-Khal i, is situated, here some of the dunes are more than 200 m in 

height(371. At the eastern-most tip of Arabia, a belt of uplands,'called 

Gebel AI-Akhdar ('Green Mountain') reach a maximum height of more than 

3,000 m. 

8'3. Deserts in Middle East 

8-3.1. General Circulation 

No desert area is completely rainless, though in extreme 

cases, several years 'may be elapse between individual storms. The 

subtropical anticyclones undergo only minor seasonal variations so 

hd I'bl' '1 (381 b 'fll' t e esert cores are la e to remain rain ess , ut rain a IS 

apt to increase and become more seasonal towards the poleward and 

equatorial limits •• 

Rainfall within desert regions normally results from dis-

turbances arising outside the true desert areas. For instance; 

upper cold pools and troughs from the middle latitudes bring rain-

fall to the poteward margins of the deserts; similarly, disturbances 

forming near the equator can bring rainfall to the equatorward 

margins. As middle latitude troughs are most intense and nearest 

to the equator In winter, the poleward margins of the deserts 

usually experience a winter rainfall maximum. The equatorial 

trough': tends to move north-south with the sun; in contrast to the 

poleward margins, the equatorial limits of the desert areas normally 

experience summer rainfall maximums. It is therefore possible to 

16 



recognize two distinct rainfall regimes in desert areas. 

S·3.2. ,The Topographical Effect 

It is clear from the atmospheric moisture balance ~del(36) 

which is shown in Figure (S/1), that where topographical factors 

are added to those caused by the general 'circulation, the aridity 

is greatly increased and in these areas the most severe desert 

'conditions in the world can be found. 

r 

A----I f---A - rA 

I---EC rE 

Figure (B/1 ): The hydrological cycle In the atmosphere over a small 

( . ,)(36) land area After Drozdov and Grlgoreva 

rainfall: r = rA + rE 

rA: moisture advected Into the area 

rE! moisture evaporated 

Et: local evapotranspiration 

E = t rE + C (advected out of'the area) 

" 
17 



The rainfall must either flow out of the unit area as 

rivers or ocean currents, or be used in the local evapotransplrat-

ion. 

It has been noted that in the tropics the moisture 

available for rain formation is trapped in a shallow layer below 

. an inversion. The depth of this moist layer varies, but It is 

usually between 1 km and 2 km. If a mountain barrier projects 

through the moist layer, itwlll Interrupt the surface flow and 

the surfa·ce moist layer will not penetrate behind the mountain 

range. Even if the mountains do not completely block the moist 

layer, the reduction in moisture advection to the lee of the range 

can still be substantial. 

Dryness can be increased by subsidence of alr.from near the 

inversion down the lee slopes of the range, and for this reason 

mountain-enclosed inland basins are often extremely arid. Rub 

AI_Khall(18,21) (Empty Quarter), which is the immense sand body in 

southern part of Saudi Arabia, is a good example. 

··B·3.3. Definition of Aridity 

Angstrom (1936) expressed aridity In terms of a relation

ship between precipitation (p) and evapotranspiration (Et)' 

I • d art 
= 

However, since temperature is an approximate measure of the energy 

available for evapotranspiration through net radiation and sensible 

heat advect ion, indexes us i ng I t have proved useful for the descri p

tion of climates on a world scale. 

18 



8-4. Climate Classification 

Climate maybe described as the average condition of the atmosphere 

over a long period of time. The most popular and widely used systems of 

classification are based on the work of Koppen, although there have been 

numerous minor changes and revisions since the original system was devised. 

"The climate types described below represent one of these revisions (Koppen

Trewartha)(401. Where the cl imate of Saudi Arabia occur in two main types 

of this classification, as follows: 

8-4.t. (B)Dry 

(B W) Arid (Desert) 

Potential evaporation averages greater than precipitation 

throughout the year. 

Exact boundaries of climate determined by temperature -

precipitation formula. 

Approximately 0 - 380 mm of annual rainfall in low latitudes 

and 0 - 250 mm in mid - latitudes. 

h (hot and K (cold) subtypes distinguished by KOppen as 

separated by average annual temperature of t8°C. 

(B S) - S~mi arid "(Steppe) 

Potential evaporation averages greater than precipitation 

as in BW. 
,'-" 

Potential evaporation and climate boundary determination 

as in BW. 

Approximately 380 - 760 mm of annual rainfall in low lati

tudes and 250 - 500 mm in mid -" latitudes. 

h (hot and K (cold) subtypes distinguished as in BW. 
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B-4.2.(F)Undlfferentiated Highlands ,. 

A variety of climates found in a limited number of areas 

due to variation In slope, altitude, and exposure. 

- If tropical, these climates identified fairly readily. 

( 211 
Due to· the latitudinal extent of Saudi Arabia from 

approximately 16°N to 32oN, it has varied physical conditions, with 

two different latitudinal zones, namely the North Tropical Zone 

and the Sub-Tropical Zone. The North Tropical zone extends between 

lOoN to 2SoN astride the Tropic of Cancer, where the sun takes a 

path close to the zenith at one solstice and is appreciably lower 

at the opposite solstice. Thus a marked seasonal cycle exists, 

but is combined with a potentially large total insoluation. The 

Sub-Tropical Zone which extends from latitude belt 2SoN to 3S
o

N, 

is characterised by medium seasonal contracts in ·insoluation. 

Throughout Arabia SW (arid) climate predominate. 5S (semi-

arid) climates occur in the extreme northern part of Saudi Arabia. 

Th • h .. f h I' (321 h h· h d e main c aracterlstlcs 0 t ese c Imates are t e Ig ay 

temperatures, low night temperatures, ·Iow ·humidity ... Iow precipitation 

and little air movement except for iocal thermal, winds and dust 

storms. In locations, where sea and desert meet, diunnalvariations 

are iess and humidity very high, with land and sea breezes caused 

by the differential heating and cooling of land and sea. 

Part of the Saudi region, however, does possess mountainous 

regions which do not fit easily into a climatic classification 

owing to the very large changes which can occur over relatively 

shor.t distances. 
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B-S_ Weather Systems 

--

B-S.l. Air Masses 

, (16 36) 
Saudi Arabia comes under the influence of five air masses ' 

at different tlmesof the year. During the summer months, there Is 

relatively little air movement throughout the area, and a (continen-' 

tal tropical air mass) which is very hot and dry prevails. A very 

different situation occurs in winter when air masses from four 

major source areas can enter the region as the result of cyclonl,c 

activity. 

The (maritime polar air-mass), originating over the'North 

Atlantic, contains large amounts of moisture andprovdles most of 

'the precipitation experienced throughout the Middle East. With the 

passage of a depression (continental polar air-mass) is drawn into 

northern and eastern parts of saudi Arabia from eastern Europe and 

Siberia •. This is very cold and dry and with its progression across 
• 

the area, temperatures can drop rapidly. Associated wlth'the warm 

sectors of cyclones is (continental tropical air) from North Africa, 

or (maritime tropical ,air-mass) from the Red Sea, the Arabian Gulf 

and the Indian Ocean. The former is hot, even in winter, and very 

dry, while the latter is warm and moist. The relative penetration 

of these two air-masses into the area depends to a large degree on 

the form and stage of development of the cyclone, together with the 

path of its movement. 

During the winter months It is sometimes possible to dis 

'~tinguish a fifth air-mass to which the term (mediterranean air -

mass) it is sometimes given. This is normally (maritime polar) air 

originating over the North Atlantic, which has been stationary over 
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the Mediterranean Sea for a considerable period. 

In general It Is considerably milder than the maritime 

polar air, but. It is equally as moist since water vapour is added 

to it during its sojourn over the Mediterranean. With the passage 

of a cyclone, this air is drawn into the general circulation system 

and can penetrate eastwards to the Arabian Gulf region. 

8-5.2. Cyclonic Disturbance 
, 

The weather patterns of the Middle East and Saudi Arabia 

can best be explained by reference to the ,succession of cyclones 

which pass over the area. Cyclones are wave disturbances generated 

along the polar front,separating polar and tropical air-masses. 

They develop over the North Atl antic and especially the Mediterran

ean Sea, and travel. over the Middle East. 

Three types of cyclonic disturbance have been recognized in 

the region: 

1. Shallow waves moving rapidly in the upper troposhere, which 

cross the area along. a west-east corridor between southern Turkey 

and northern Saudi Arabia. Rain associated with these distu'rbances 

reaches a maximum during the winter months, and falls mainly in the 

northern parts of Saudi Arabia, Lebanon, Syria and Jordan. 

2. Stationary cyclones: created by cold troughs in the upper 

atmosphere in certain regions, and moves very slowly through the 

Mediterranean eastward, where they draw in moist air from the 

Arabian Gulf region and cause precipitation. along the I ineof 

Zagros Mountains and north·,- ,western parts of Iranian Plateau •. 
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Maximum precipitation associated with these systems occurs during 

spring. 

3. . Khamsln Type Cyclones: or(ginates over the northern Sahara 

and moves eastwards over the southern part of the Middle East and 

Saudi Arabia.' Occasionally they come 'into contact with a cold upper 

air trough and under' such conditions can give rise to appreciable 

rainfall amounts. 

B-6. Rainfall 

The seasonal distribution of precipitation in the Middle. East -, 

reflects the passage of winter cyclones. Winter precipitation maxima 

predominate almost everywhere with the exception of parts of the southern 

. coastlands of Arabia where summer monsoon conditions often penetrate. 

The monsoons of the Indian Ocean account for relatively abundant rains of 

about 200 -' 350 mm a year in the As i r Mounta i ns (21) as in Khami s - Musha i t 

south wes t of Saud i Arab i a'. 

In the northern half of the peninsula periodic rai!1s are brought by 

the systems of low atmospheric pressure that move in from the Mediterran-

ean basin. Those rains are scattered. however and may be almost completely 

lacking in some years. The unpredictable and local nature of the rainfall 

• (381 is a characteristic of most desert regions . The rains in the Eastern 

Province of Saudi Arabia usually start in November or December and end 

in May,' as-·indicated·-for Dhahran in Table 8_,6_2.(104-1061. Parts.oLthe 

great sand masS of the "Rub AI-Khal i" have been known to be without rain 

for ten years at'a time. When rain does fall in the country it is likely 

to come In torrential downpours. causing flash floods which do considerable 

damage to homes and cultivated fields .. As an example the amount of rain-. . 
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(1 Bl 
fall in Jeddah - was 173.0 mm extended over 11 days in May 1968 (Table ' 

8-6-1.) of which 88.0 mm fell in 24 hours as indicated In Table 6-6~2. 

Almost all rainfall that actually occurs is associated with 

thunder showers produced by low-pressure areas from the eastern 

Mediteranean that move accross the northern parts of the country during 

the winter period, and by the Incursion of tropical maritime air caused 

by the northward extension of the Sudan- low-pressure trough during the 

spring and early summer period. Summer rains or showers are common over 

the Inter-tropical Convergence Zone; 

6-7. - Radiation and Temperature 

The intense heat of the summer months is probably the best known 

feature of the Saudi Arabian Climate. Temperaturesin the Shade frequently 

exceed 46°c (1150 F) over much of the Arabian peninsula, (see Tables 6-7-1. 

to 8-7-5. (1B,104-106) Furthermore, the summer is longer than in more 

temperate regions~107). The dryness of the interior makes the hef more 

durable, but along the coasts the humidity is high, particularly_at night 

as in Jeddah, Jizan and Dhahran, where the average maximum relative humidity 

exceeds 80%, as is showl1 . .ln· Table 8-7-6. (104-106), and hence the heat in 

these areas is less endurable. 

Riyadh (240 42' N, 46 44' E)(1081, has a typical continental 

desert location, the soil is dry" and the average annual rainfall is 

minimum. Most of the available net radiation is used in heating the air, 

leading to extremely high temperatures (39) • At Riyadh, summer afternoon 

temperatures regularly exceed 38°e (May to September) and temperatures 

above 46°C have been recorded on a number of occasions. Medina (240 33' N, 

390 43 E) has an average annual rainfall below 50 mm, with extremely high 

.- ~~mperatures during-the summer. 
24 



The highest values of the diurnal temperature range are 

experienced In desert locations, where the soil Is generally dry and the 

atmosphere contains little water vapour. The very high temperatures occur 

because nearly all the net radiation is available for heating the-air 
. . (109) 

and soil. The low vapour content of the air allows relatively large 

long wave. radiaion losses from the surface, leading to low temperatures 

at night. Net radiation values in the poleward regions of the subtropical 

deserts undergo large seasonal variations, and lead to large seasonal 

variations in temperature. 

The high summer temperatures at Riyadh, Tabouk, Hail and Qaseem 

in Saudi .Arabia are famil iar, but in January and February, the night 

o temperatures can fall as low as 0 C.· Indeed, large areas of Central and 

North Saudi Arabia have recorded absolute minimum temperatures of -SoC 

or below, indicating that frost is not unknown. 

In coastal regions· diurnal temperature ranges tend to be smaller 

than in the interior stations, as shown in Table B-7-R. and on the tables 

in references, (22,110 and 111). 
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Table B-7-R. 

Ref. Table July temperatures at stations In The Middle East, with· mean 

daily temperature greater than 300 C .. 
. 

Coastal Stations· Average . Dai.1y Mean .. Abso lute 

Max. Min. da i Iy Max. Min. 

°c °c 
range 

°c °c °c 

T-l Jeddah (Saud i Arabia) 37.2 26.1 11: 1 42.2 21.1 

B-7-3. Jizan ( 11 11 ) 36.2 29.8 6;~ 38.5 23.7 

B -7-5. Yanbo ( 11 11 ) 36.1 26.3 9.B 38.5 21.2 

T-3 Bahrain(Bahrain) 37.2 29;5 7/7 .. 44.5 23.9. 

T-7 . Kuwa i t Ci ty (Kuwa i t) 39.5 30.0 9.5 47.8 25.6 

. 
Interior Stations 

T-2 . Riyadh (Saudi Arabia) 41.7 25.5 16.2 45.0 19.5 
• 

B-7-4. Ha i I ( 11 11 ) 37.7 23.4 14.3 40.9 18.9 

B~7-4. Tabouk ( 11 11 ) 38.5 24.1 14.4 42.6 21.3 

T-5 Baghdad (I raq) 43.3 .. 24.5 18.8 49.7 16.7 

T-ll Aswan (Egypt) 41.1 26.1 15.0 51.1 21.1 

. 

The highest annual values of global solar radiation occur over the 

Tropics of Cancer and Capricorn, in the high pressure eOf the 

northern and southern hemispheres. The highest annual totals however 

appear to be recorded in North East Africa and Saudi Arabia (39). The 

clear skies of the subtropics not only allow large amounts of radiation 
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to penetrate through the atmosphere to the earth's surface, but also lead _. 

to low values of diffuse radiation which can fall to 10 - 15% of the 

global radiation in the subtropical sunvner. Maximum values of net 

radiation are recorded at about 200 Nand 200 S over the sea, and unlike 

the global radiation, values over .. the sea, are always higher than those 

over land. 

This is because of differences in albedo and terrestrial radiation. 

Sea surface albedos are normally less than those of land surfaces. 

Despite the large global radiation values in the deserts the outgoing 

terrestrial radiation is high, so the net radiation over land remains low. 

During January the radiation balance is low over the northern hemisphere, 

and increases southwards where it reashes a maximum near the Tropic of 

Capricorn. In July, the features in the northern and southern hemispheres 

are reversed, and the maximum values are recorded over the sea in the 

region of the Tropic of Cancer. 

Global radiation over Saudi 

-1 in the north to 100 K cal year 

r.::. -2 Arabia ranges from 200 K cal\cm 
. ' "----) 

-2 -1. cm year In the south. The net 

radiation in January ranges 

south, and in July(36,39l,it· 

from 2-4 K cal cm-2 month -1 from north to 

-2 -1 ranges from 12-10 K cal cm month • In 

December, January and February, temperatures drop below freezing in 

central and northernArabia, snow and ice are common In the highest places 

like Khamls-Mushait and AI-Sodah, both in the Asir high mountains. 
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B-8. Winds 

(18) . The winds of Saudi Arabia vary greatly. ,being affected by the 

surrounding seas. In the Eastern Province the prevai I ing wind comes from. 

the north-northwest. This wind known as the ShamaI137', frequently whips 

up sandstorms in its path, but it cools the land somewhat, with average 

speed'ranges from 5-15 knots per hour (1 knot = 2.132 km) . reaching a 

maximum of around 50 knots per hour. In the Arabian Gulf,the south 

wind, the Kaws, is potentially dangerous to shipping because of the fierce 

storms it stirs up without'warning. On the equatorward side of the sub

tropical highs there are generally easterly winds, and where these 

originate over land-masses, they are extremely dry. This dryness is 

carried over the oceans to leeward of the land-masses. 

In Riyadh the prevailing wind comes from the north, north-east 

during summer, and varies greatly in the rest of the year. whenever in 

Jeddah the prevaiJ Ing wind comes from the north to north-west most of the 

year. Both of Medina and Taif are exposed to easterly winds most of the 

year. The prevailing wind in Khamis-Mushait, south east of Saudi Arabia 

is mainly south-westerly(18). 

6-9. Sand and Dust Storms 

A special weather phenomenon that affects chiefly the Eastern 

Province is the blowing dust or dust-storms with strong north westerly 

winds called "The Shamals". These are predominant during the late spring 

and early summer, reaching a peak in June when it is common to have 23 

days out of 30 with blowing dust and strong winds(37), particularly in 

the afternoon. These sand or dust storms are caused by east. 
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ward moving low pressure zones meeting colder air over the ·north and _. 

eastern part of the country. They are rare in other regions of the· 

Kingdom, chiefly due to lack of sandy terrain. 
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Table: 8-6-1 Amount of Rainfall and Number of Rainy Days in Year 

According to Meteorological Stations,Saudi Arabia. 

Period: 1966 - 1973. 

1\ 
RIYADH JEDDAH DHAHRAN HAIL ~EDINA JIZAN KHAMIS- TAIf CS MUSHAIT 

Yea mm d mm d mm d mm d mm d mm d mm d mm 

1966 14 6 66 12 40 21 73 7 26 9 257 10 -- -- 155 

1967 216 32 .34 8 33 17 61 12 4 2 24 -- 247 34 126 

1968 107 27 173 11 92 32 107 18 72 14 22 2 268 37 453 

1969 173 27 129 6 174 18 192 16 83 5 4 2 343 32 29 

1970 15' 9 68 5 4 4 27 10 14 4 15 12 216 40 109 

1971 132 16 106 7 47 11 56 18 104 9 14 8 174 25 260 

1972 230 36 104 5 77 18 134 30 40 1 1 9 5 97 33 213 

1973 69 14 27 7 14 7 58 12 1 2 59 7 164 27 105 

Aver 120 88 60 89 43 51 216 181 
. 

. 

Notes: Rainfalls are measured in millimeters by ordinary 

raingauges installed near the thermometer screens. 

d 
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Table: B~6-2 Maximum Rainfall during 24 Hours (mm) 1968 A. D. 

Saudi Arabia, and Number of Occurrences of Rain 

in Different Months for 4 Years : 1968-1970-

-1971 and 1973 

~y RIYAD~ JEDDAH DHAHRA1N HAIL MEDINA JIZAN KHAMIS-
MUSHAIT TAIF 

Ne No mm . No No No No No No Month mm .mm mm mm mm mm mm 

Jan. -- 2 -- 3 T 4 -- 2 -- 3 -- 2 4.0 4 -- 2 

Feb. 4.7 1 -- 2 25.2 4 2.0 4 -- - 11.0 3 65.6 2 2.0 2 

Mar. 1.6 3 -- - 2.B 4 -- - -- 1 -- 2 2.5 3 -- 2 

Apr. 16.0 4 2~0 3 2.3 3 6.0 3 13.0 4 -- 1 24.0 3 31.0 4 
'. 

May 10.B 2 BB.O 2 T :3 11.4 2 8.0 3 -- 1 21.0 4 20.0 4 

June -- - -- - -- - -- - 2.0 1 -- - 8.0 2 5.0 2 

July -- 1 -- - -- - -- - -- - -- 2 8.4 4 -- 2 

Aug. -- - -- - -- - -- - -- - -- 2 4.0 4 8.0 3 

Sep. -- - -- 1 -- - -- - -- - -- 1 -- 2 -- 2 
.. 

Oct. -- - -- - -- - 40.0 1 -- - -- 2 . -- 1 -- 1 

Nov. 4.5 1 16.0 3 15.1 2 11.0 4 16.0 2 -- 3 11.2 :3 9.4 3 

Dec. 3.5 4 40~0 4 2.6 :3 -- :3 2.0 4 -- 3 -- 3 -- 2 
• 

Notes: No. = Number of. 'occurrences of rain in different months. 
," ~ 

T = Trace. 

-
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Table: B-7; 1 Maximum and Minimum Temperatures in The Main 
Meteorological Stations,Saudi Arabia. 

I~ 
RIYADH (0624m) JEDDAH (DD17m) 

Month, . 
Period (1968-1973) Peri~d (1968-1973) 

; 

24 42N .46 44E 21 30N ,39 12E 

1 2 3 4 , 1 2 3 4 

January ,20.3 7.5 27.1 1.9 27.9 19.3 32.3 1.4.8 

February 23.7 10.0 31.5 ' 3.9 29.1 18.4 32.7 15.2 

March 28.5 14.1 35.9 1.6 30.9 21.0 35.6 17.2 

April 32.6 18.4 38.2 12.9 34.0 23.5 38.9 18.8 
. 

May 38.2 23.7 42.8 18.1 34.7 23.5 40.8 18.1 

June 40.8 24.3 43.7 21.6 35.7 25.0 41.8 21.9 

July 42.3 26.3 44.4 23.6 37.3 26.9 40.5 23.8 
. 

August 42.4 26~ 1 45.2 23.9 36.6 26.9 39.7 23.8 

September 38.6 22.9 42.6 19.6 35.4 25.9 40.9 22.6 

October . 33.7 17.5 37.4 13.6 34.4 23.0 39.5 20.0 

November ' 28.0 13.1 33.4 8.6 32.1 22.4 35.2 18.7 

December 21.8 8.7 28.9 2.6 29.2 19.7 32.2 15.0 

Year 46.0 -1.0 48.2 11.4 

No.of Year 4 4 

Notes: Thermometers are installed i~ ventilated screens at 
a height ofi.25m above the ground, except at Jeddah, 

Medina, and Riyadh where heights are from 4.0 to 5.0m. 

All readings are taken in the shade and in degrees 

Celsius. 
Column 1 = Average maximum temperature in the month. 

Column 2 = Average minimum temperature in the month. 

Column 3 = Absolute maximum temperature in the mo'nth. 

Column 4 = Absolute minimum temperature in the month. 
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DHAHRAN(0022m) MEDINA (0646m) 

. . Period (1968-1973) , 'Period, (1968-1973) 
. , 

Month 26 '16N 50 10E 24 33N 39 43E 

1 2 3 4 1 2 3 4 .' 

January 20.5 9.9 25.0 . 4.8 23 .. 0 11.2 29.6 6.0 

February 22~8 10.5 30.1 5.8 27.4 14.5 33.0 8.6 

March 26~8 15.7 33.8 9.3 ' 31.2 17.8 36.6 12.3 

April . 30.2 18.3 40.5 13.4 34.0 19.7 39.1 15.0 

May 37.4 24.4 42.8 18.3 38.6 24.1 4D.7 18.3 

June 39.8 27.1 44.0 22.3 42.3 28.3 44.5 23.3 

July 42.1 28.8 46.1 25.6 42.0 28.6 43.0 24.5 

August 41.3 28.0 45.2 23.4 42.5 .28.9 45.7 25.4 

September 39.1 24.7 43.9. 20.5 42.0 27.9 44.5 23.5 

October 25.3 19.8 39.4 16.0 36.8 21.4 38.9 18.9 

November 28.7 16.5 33.8 12.6 28.9 17.7 34.5 15.0 

December 22.6 12.1 27.8 .5.3 24.4 13.1 20.3 8.7 

Year 48.3 1.4 46.0 1.0 

No.of Year 4 4 
. ' . . 

Notes: As for Table: 8.-7-1 
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Table: B-7-3 Maximum and Minimum Temperatures in The Main 

Meteorological Stations, Saudi Arabia. 

l~ 
. TAIF (1471m) JIZAN (0005m) 

Period (1968-1973) Period (1968-1973) 

Month 21 29N 40 32E 16 S2N" 4235E' 

1 2 3 4 1. 2 3 4 

January 21.5 . 7.5 26.1 2.3 29~1 22.1 30.6 18.8 

February 23.9 9.2 27.9 5.2 29.6 22.4 31.2 20.6 

March 26.6 12.0 30.4 8.2 32.3 24.0 33.3 21.9 

April 28.4 14.7 31.3 11.1 34.3 25.9 36.9 23.5 

May 31.7 17.3 34.7 12.4 36.2 28.1 38.6 25.5 

June 34.6 20.5 37.1 17.0 36.4 28.9 38.1 25.5 

July 33.6 21.1 36.4 17.2. .. 36.2 29.8 38.5 23.7 

August. 34.8 22.3 35.8 20.2 36.4 30.2 38.4 26.9 

September 33.0 19.8 36.1 16.1 36.3 28.5 38.2 26.1 

October 29.4 14.1 31.6 11.2 35.5 26.0 37.8 22.8 

November 25.6 11.3 28.6 9.2 32.5 23.9 35.5 21.9 

December 21.09 8.3 25.9 2.9 29.7 20.4 31.8 18.6 

Year .. ,38.9 -1.0 39.4 14.8 

No.of Yearl 4 4 

Notes: As for Table: B~~ 

. I 

. 
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Table: B -7-4 Maximum ,and -l'ii n imum -Temp era turesdn. Th e.,Main.-

Meteorological Stations,Saudi Ar~bia. ' • 
, 

~ 
TA80UK (0771m) HAIL (0992m) 

• 

Period"(1968-1973) Period (1968-1973) 

28 22N 36 35E ' , 27 31N ' 41 44E , 

1 2 3 4 1 
, 

2 3 4 

January 17.5 4.6 26.6 -1.2 16.8 3.5 24.1 -2.7 

February 21.4 5.4 28.9 2.1 20.0 6.0 28.3 2.1 

March 25.2 7.0 34.1 2.2 24.0 9.4 32.5 2.2 

April 28.7 11.7 37.1 5.9 27.5 13.7 35.0 7.0 

, -
May 34.9 17 ~6, 39.5 12.1 33.3 19.0 38.1 12.6 

June 36.9 21.4 40.0 18.1 36.3 20.9 39.8 16.2 

July 38.5 24.1 42.6 21.3 37.7 23.4 40.9 18.9 
, 

August 37.7 22.8 40.5 20.3 38.0 21.4 41.4 18.4 

September 36.7 18.6 39.7 16.0 36.4 19.4 41.1 13.9 

October 32.0 13.7 36.2 9.7 30.5 13.5 35.5 7.3 

November 23.3 7.6 28.2 2.0 23.5 9.4 29.2 5.5 

December 18.6 3.9 26.8 -0.1 17.3 5.6 25.1 -1.8 

,Year 44.6 -5.2 46.2 '-6.0 

No.of YearE 4 4 

Notes: As for Table: 6~7-1 
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Table: B-7-5 Maximum and Minimum Temperatures in The Main· 

Meteorological St~tions,Saudi Arabia. 
. 

~ 
YANBO (0006m) KHAMIS~MUSHAIT(2060m) 

. . .. 

. . 
PerIod (1968-1973) Perio'd (1968-1973) 

Month I 24 07N 38 03E 18 18N 42 48E 

1 2 3 4 1 2 3 4 

January 27.5 13.1 33.4,. 6.5 19.7 7.2 24.0 1.8 
. 

-
February 27.5 14.3 32.1 .- 6.6 

-
21.7 9.3 25.6 5.9 

March . 29.1 16.9 35.0 11.1 23.8 11.5 26.9 8.2 

April 31.1 19.9 38.4 15.3 24.5 13.0 27~ 1 9.1 

May 33.5 23.9 37.7 19.5 26.2 15.1 30.4 12.3 

June 35.0 24.4 42.0 .22.4 30.2 16.6 31.8 14.0 

July 36.1 26.3 38.5 21.2 28.8 17.0 32.3 14.8 

August 35.8 24.9 39.1 19.4 31.7 17.2 32.1 14.9 

September 35.9 -24.5 41.5 19.8 31.2 15.4 30.8 11.9 . 

October 34.3 23.1 38.3 17.8 24.5 11.4 27.1 8.6 

November 30.8 18.9 34.1 14.3 22.7 8.3 24.7 5.9 
-

December 28.0 15.2 33.0 9.9 20.4 7.3 24.7 3.8 

Year 44.6 5.4 33.6 -3.6 

No.of Year 4 4 

Notes: As for Table: 8-7-1 

" 
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Table:B+6 Average Maximum and Average Minimum Relative 

Humidity According to Meteorological Stations " 

in Saudi Arabia. 
". . 

i"S RIYADH JEDDAH DHAHRA~ HAIL MEDINA JIZAN KHAMIS- TAlf 

Mont 

MUSHAIT 
'. 

R.H.% R.H.% R.H.% R.H.% R.H.% R.H.% R.H.% R.H.% 

Jan. 52 21 76 39 93 43 66 32 57:25 B7:5B 76 29,' B3 .32 

feb. 45 16 B2 46 B6 41 60 2B 46 22 B4 57 90 57 76 20 

Mar. 45 15 77 39 79 24 45 20 36 14 B1 57 BB 31 61 19 

Apr. 63 22 7B 3B 79 19 39 17 34 14 75 4B B6 39 57 1B 

May 39 11 69 39 64 21 32 11 27 10 72 45 B7 32 55 17 . 
June 20 B B6 47 53 15 26 10 19 7 BO 50 71 17 33 B 

·July 15 7 B3 40. ,59 23 25 10 23 B 75 53 77 22 33 14 

Aug. 15 5 B5 49 93 24 22 9 26 B 79 57 74 17 30 12 

Sept. 20 B 91 56 90 26 25 10 25 9 B6 60 5B 15 49 12 

·Oct. 26 12 90 41 93 2B 34 11 27 9 B1 49 60 15 57 11 

Nov •. 51 20 B2 43 BO 31 60 29 45 20 75 51 B3 32 B1 26 

Dec. 60 25 B3 43 89 42 70 37 51 23 B1 52 BB 31 B6 32 

Year 3B 14 B2 43 BO 2B 42 19 35 14 BO 53 7B 2B 5B 1 B , 

Notes: The values of relative humidity (R.H.%) tabulated are· 

the average va~ues taken over a period of 4 years 

between 196~:- 1973. 
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Table T-1 
I' 

Temperature 

JEDDAH Average Average Average I daily of' of' 
Period Max. Min.· highest lowest 

S 
°c °c each each 

0\ 1941-46 month month I 
0 . °c °c \0 

J':iI 
\28.9 18.9 32.2 13.3 January - February \28.9 18.3 33.9 12.8 0 

.-i March \29.5 19.5 36.1 14.5 0 
0\ April 32.8 21.1 37.8 15.0 
C'"\ 

Z May 35.0 23.3 39.5 18.3 - June 36.1 23.9 42.2 20.5 <Xl 
C\I July 37.2 26.1 40.0 22.2 
0 37.2 26.7 40.5 23.3 .-i August 
C\I 

~ September 35.6 25.0 39.5 22.2 
October 35.0 22.8 38.9 20.5 

~ November 32.8 21.7 36.7 18.3 
December 30.0 19.5 33.3 15.0 

Year 33.3 22.8. 43.3 11.1 

No. of' 5 
Years 

5 5 5 

.. 

Relative. 
Humidity 

. 

Average of' 
Absolute observa tions 

Max. Min at 
°c °c 0800 1400 

% % 
. 

33.3 9.5 58 54 
35.0 11.1 52 52 
38.3 12.8 52 52 
40.0 12.2 52 56 

42.2 12.8 51 55 
47.2 19·5 56 55 
42.2 21.1 55. 50 
42.2 22-.8 59 51 ." 

42.2 21.1 65 61 
40.5 20.0 60 61 
40.5 17.2 55 59 
33.9 10.0 55 54 

47.2 9.5 56 55 

5 5 5 5 

, 

co 

'" 

. :precipitation 

. Average , 
Average Maximum No. of' 
monthly f'a11 days. 

fall in 24 h with 1mm 
mm mm or more 

5.1 12.7 0.8 
< 2.5 2.5 0.3 
< 2.5 2.5 0.3 
< 2.5 2;5 0.5 

< 2.5 < 2.5 0 
0.0 0.0 0 

< 2.5 < 2.5 0 
< 2.5 < 2.5 0 

< 2.5 < 2.5 0 
< 2.5 < 2.5 0 

25.4 56.0 2 
30.5· 139.7 1 

.. 
63.5 139·7 5 

5 5 5 . 
. 



Table T-2 . 
I' . . 

Temperature Relative Precipitation Humidity 
RIYADH 

Average Average Average Average o:f Average 
daily o:f o:f Absolute observations Average Maximum No .. o:f 

El Period Max •. Min. highest lowest Max. Min at monthly :fall days 

°c °c each. each °c °c 0500 1600 :fall in 24h with 1.riun 
.-t 1.941.-45 month month mm mm or more 
0\ . % % U"\ °c °c . 

• 
r:iI 
~ January 21..1. 7.8 28.9 0.0 30.0 ':'7.2 70 44 2.5 5.1. 1. Cl! 
..:t February 22.8 8.9 32.2 2.8 32.8 -1..7 63 37 . 20.3 58.3 1. 
0 March 27.8 1.3·3 35.5 5.0 38.3 0.6 65 36 22.9 61..0 .. 3 
\0 Apri1. 31..7 1.7.8 38.3 8.9 40.0 .2.2 64 34 25.4 50.8 4 ..:t 

z 
41..7 May . 37.8 22.2 1.7.2 43.3 1.5.0 51. . 31. 1.0.2 1.7.8 1. 

~ 

0\ June 41..7 25.0 44.5 21..1. 45.0 1.9.5 .. 47 31. < 2.5 < 2.5 .0 
C'"I Ju1.y· 41..7 25.5 44.5 20.5 45.0 1.9.5 33· 1.9 0.0 0.0 0 
o· August 41..7 23.9 43.3 20.0 45.5 1.6 :7 35 " 1.9 < 2.5 < 2.5 2.5 ..:t 
Cl! 

S September 38.9 22.2 42.2 1.7.8 43.9 1.7.2 42 24 0.0 0.0 0 
October 34.5 1.6.1. 37·2 1.1.. 7 38.3 1.0.0 47 25 0.0 .. 0.0 0 

~ November 28.9 1.2.8 33·3 7.8 34.5 1..7 60 33 < 2.5 < 2.5 0 
H December 21..1. 9.5 27.2 2.8 ·30.6 0.0 75 52 . < 2.5 <; 2.5 0 ~ 

Year .... ' 32.2 1.7.2 44.5 -1..7 45.0 -7.2 . 
. '. .54 32 81..3 

No. of' 3 :3 3 '3 . 3 3 
. 

3 3 3 3 3 
Years . 

. 

. 
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Table T-3 
" . 

Relative 
C' 

Temperature Humidity Precipitation 

BAHRAIN Average Average Average Average of' Average· 
daily of' of' Absolute observations Average Maximum No. of' 

a highest lowest Max. Min at monthly f'all days Period Max. Min. 
f'all in 24 h with Imm \0' 

1928-43 °c °c each each °c °c 0130 1530 
month month mm mm or more - .. % % r.l . °c °c .. 

0 
C'"\ 

January 20.0 13.9 26.1 8.9 29.5 5.0 85 71 7.6 30·5 1 0 February 22.1 15.0 28.9 10.6 34.5 7.2 83 70 17.8 33.0 2 0 
11'\ March . 23.9 17.2 32.7 12.2 35.0 10.6 80 70 12.7 25.4 1 - April 28.9 22.1 36.7 16.1 40.6 13·3 75 66 7.6 38.1 1 Z . 

May 33.3 '25.6 39.5 22.1 42.2 18.9 71 ~~ < 2·5 5.1 .< 2.5 Cl! . 
.-i June 35.6 27.8 40.0 23.9 43.9 22.1 69 0.0 0.0 o , 
0 July 37.2 29.5 42.2 26.1 44.5 23.9 69 . 67 0.0 0.0 0 \0 

August 37.8 29.5 42.2 26.1 45.0 23.9 74 ,:, 65 0.0 0.0 0 Cl! , 

~ September 35.6 27.2 40.0 23·3 44.5 22.7 75 64 0.0 0.0 0 

~ October 32.2 23.9 36.1 20.6 39.5 18.9 80 66 0.0 0.0 0 
November 27.8 20.6 32.8 16.7 36.1 14.5 80 70 17.8 70.6 1 

~ December 22.7 15.6 27.8 11.7 31.1 8.9 85 7.7 . 17.8 43.2 2 

Year 29.5 22.2 
. 

43.3 8.3 45.0 5.0 77 68 B2.3 70.6 8 

No. of' 16 16 16 16 16 16 16 9 16 16 16 Years 
--

. , 

,' .. '- I 
I 

',-., :-'. 
"-; 

• I 



.Table T-5 
I' . . 

Temperature Relative Precipitation Humidity BAGHDAD 
Average Average Average Average of Average 

El daily of' of Absolute observations Average Maximum No. of 
~ Period Max .. Min. highest lowest Max. Min 

060tf1500 
monthly fall . days 

C'"\ 
1888-1918 each each °c °c fall in 24 h with 1mm . °c °c month month mm nun or more 

r.1 . 19:37-1952 " % % °c °c . -~ . 

Cl! 
15.6 :3.9 20.0 -7.8 84 22.8 :35.6 4 January -1.7 25.0 51 0 

February 17.8 5.6 2:3.:3 1.1 :30.0 -5.0 78 42 25.4 :3:3.0 :3 ~ 
~ March 21.7 8.9 28.9 4.5 :32.2 -2.8 7:3 :36 27.9 55.9 4 .. April 29.5 1:3.9 :3:3.9 10.0 40.0 2.8 64 :34 12·7 20.:3 :3 :z; 

-0 May . :36.1 19.5 40.0 14.5 44.5 10.6 47 . 19 < 2·5 15.2 1 Cl! June :38.:3 .22.8 44.5 20.6 48.:3 14.5 :34 1:3 < 2.5 < 2.5 0 
0 July 4:3.:3 24.5 46.7 22.8 49.7 16 .. 7 :32' 12 < 2.5 < 2.5 0 C'"\ . 

C'"\ August 4:3.:3 24.5 47.2 22.2 48.9 17.8 :3:3 " 1:3 < 2.5 < 2.5 0 , 
~ September 40.0 21.1 44.5 17.2 46.7 10.6 :38 15 . < 2.5 < 2.5 b 
~ October :3:3.:3 16.1 :38.9 12.2 41.7 :3.9 49 22 . < 2·5 15.2 1 
-0: November 25.0 10.6 :30.0 4.5 :34.5 -1.7 70 :39 . I 20.:3 :35.6 :3 
~ December 17.8 5.6 .21.7 0.6 26.1 -6.7 84 52' 25.4 :3:3 • 0 5 

Year :30.6 15.0 . 49.7 -7.8 57 ,29 1:39.7 55.9 24 

No. of 15 15 25 25 . 15 15 15 15 15 ·15 15 
Y~ars . . 

' .......................•. , ••• 



·Tab1e T-7 
I' 

Temperature 
El KUWAIT 

. 0 CITY Average Average Average 

· daily of' of' 
11'\ highest lowest Period Max. Min. · °c °c each each ril 1908-53 month month - °c °c 0 
0 
0 
<Xl 

January 16.1 9·5 21.7 4.5 ..::r 
• February 18.3 10.6 22.8 6.7 

Z March 22.2 15.0 28.3 9.5 - April 28.3 20.0 35.6 14.5 
.-i . 
Cl! 
0 

34.5 25.0 40.6 18.9 0\ May . 
Cl! JW1e 36.7 27.8 42.8 25.0 
>;. July 39.5 30.0 45.0 26.7 
~ August 40.0 30.0 45.0 28.9 
0 

~ September 37.8 27.2 43.3 25.6 

~ 
October 32.8 22.8 38.3 18.3 
November 25.0 16.7 31.7 11.7 

~ December 18.3 11.7 . 23.9 8.9 

Year 29.5 20.6 46.1 3.3 

No. of' 14 . 15 13 
. 

12 I Years 

Relative 
Humidity 

Average of' 
Absolute observations 

Max. Min at 
°c °c 0530 1430 . % % 

-'-

27 .8 0.55 77 61 
25.6 2.2 68 61 
32.2 4.5 72 61 
39.5 12.2 67 55 

I . . , 
\ 

42.8 1:5.6 . 67 55 
·48.3 22.2 62 49 
47.8 25.9 45 . 41 
46.1 20.0 I 50 46 .;. , 

47.2 19.5 52 ·51 
40.6 13.9 64 60 
37.8 6.1 66 59 
26.1 2.2 76 65 

48.3 0·55 64 55 

16 . 16 2 3 

. 

Precipitation 

Average Maximum 
monthly f'all 

f'a11 in 24 h 
mm mm 

22.9 25.4 
22.9 43.2 
28.0 38.1 

5.1 12.7 

<2.5 7.6 
0.0 0.0 
0.0 0.0 
0.0 0.0 

0.0 0.0 
2.5 25.4 

15.3 55.9 
28.0 30.5 

129.5 55.9 

10 10 

Average 
No. of' 

days 
with 1mm 
or more 

2 
2 
2 

0.9 

0.3 
0 
0 
0 

0 
< 0.1 

1 
3 

11 

10 

. . . 

• 

. 
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Table T-ll 

" 

Relative 
I 

A 
Temperature Humidity Precipitation 

ASWAN . 
Average Average Average Average of' Average a daily of' of' ' Absolute observations Average Maximum No. of' 

0 Period Max. Min. highest lowest Max. Min at monthly f'al1 days 
· each each 0800 1400 f'all in 24 h with Imm 0 1901-45 °c °c °c °c .-I month month. mm mm or more 

.-I . % % . °c °c • 
1'4 

- January 23.3 10.0 31.7 5.6 37.8 3.3 52 29 <2.5 < 2.5 < 0.1 
'" February 25.6 11.1 34.5 6.1 38.9 1.7 46 22 <2·5 < 2.5 < 0.1. ..... 
0 March' 30.6 14.5 40,0 8.9 43.3 . 6.1 36 17 <2.5 < 2.5 < 0.1 
(\j April 35.6 18.9 43.9 13.3 46.1 9.5 29 15 <2.5 2.5 0.1 
'" . · Z May . 39.5 23.3 46.1 17.2 47.8 11.1 29 15 <2·5 5.1 0.5 

41.7 25.6 47.2 50.6 26 
. - June 21.7 20.0 16 < 2·5 <; 2.5 0 

(\j July 41.1 26.1 46.1 23.3 51.1 21.1 31- 16 0.0 0.0 0 0 

0 August 41.1 26.1 45.6 23.3 48.9 19".5 34 .:. 18 0.0 0.0 0 
.or , 
(\j September 39.5 23.9 44.5 20.6 47.2 17.2 37 19 0.0 0.0 0 

(~ october 36.7 21.7 42.8 17.2 . 44.5 13.9 40 21 < 2.5 ." 5.1 0.1 
November 30.6 16.7 38~3 11.6 41.7 6.1 46 26 < 2.5 <2.5 0.1 

Ul December 25.0 11. 7 32.8 6.1 37:2 4.5 50 31 ' < 2.5 <2.5 < 0.1 ..: -

Year 34.519.5 48.3 5.0 51.1 1.7 38 20 < 2.5 5.1 20.3 

No. o:f, I 46 46 20 20 20 20 21 20 11 11 11 Years " . '. 
I 

.. 



Appendix C 

C -1 Physiological Comfort 

C-l.1. General 

The average human body is most efficient at a core tem-

f 37°C. perature 0 Compared with the natural fluctuations of 

air-temperature, the human body is comfortable within only a 

narrow thermal range. Beyond an internal body temperature of 

26-400 C irreversible deterioration often results, although 

recovery has been recorded from falls as low as laoC and rises 

as high as 43.5°C. In practice, bodily comfort is experienced on 

the more sensitive areas of "the skin surface, which is naturally 

2-5 deg. C cooler than the core temperature, and usually lies 

between 31 and 350 C. Outside these limits, the body adjusts the 

rate of heat production or loss "in various ways. Thus, at a skin 

o temperature of around 30 C, shivering occurs in an attempt to 

generate more heat, whereas sweating is employed as the main cooling 

mechanism at high levels of heat and humidity. The relative 

importance of the various heat transfer processes differs markedly 

according to the prevai 1 ing cl imaticconditions (112). For example 

in a temperate "~l imate a resting individual clothed normal.ly 

loses about 60 percent of bodily heat production by radiation. 

When the ambient temperature reaches 320 C, the radiative heat loss 

may drop to zero. 

(-1.2 .. Bodily Adaptation 

Physiological reactions to the atmospheric environment(112) 

are further complicated by differences in tolerance exhibited by 

individuals or certain ethnic groups and by adaptation achieved 
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through prolonged accl imatization. Bodily adaptation to tropical ,. 

conditions occurs· with a progressive increase in the sweat rate •. 

although Portig (1968) has claimed that the purely climatic stress 

associated with the humid tropics is less than is often believed. 

In the desert areas and during the dry season, additional stresses 

are imposed by the large diurnal range of temperatures and the 

considerable differences in net radiation received by insolated 

and shadowed parts of the body, and the dyring power of the air is 

also marked. It is probable that the largest solar radiation 

intensities on earth occur in high, arid sub-tropical mountains 

during summer. 

(-1.3. Bod i1 Y Di scomfort Measurement (ET) 

The degree of bodily discomfort arising from excessive heat 

is usually measured by one or more of the many biometeorological 

tempe~ature indices which have been specially derived for the pur

pose. One of the most cOnlnon indices is that of effective tempera

ture (ET) which was introduced by Houghton and Yaglou (19~:n (113) 

and may be defined as . the temperature of still air saturated with 

water vapour in which subjects experience a subjectively equivalent 

sensation of comfort. In a series of controlled experiments, over 

90 percent of the test subjects found an ET of 25.60 C too warm for 

comfort whereas only about 10 percent considered an ET of 22.20 C 

to be uncomfortable. 

The concept of effective temperature can be used to 

illustrate some of the geographical variations of human comfort 

within the tropics, bearing in mind that the "comfort zone" for 
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acclimatized persons living in low latitudes is normally taken. " 

as 18.9 - 22.4°e ET. Stephenson (1963) (112) has demonstrated that 

although forced ventilation by fans or other means is incapable 

of providing 'comfortable' conditions during the April-June period 

130 km north of the equator at Singapore, the ET only rarely exceeds 

29.4oe and outdoor sports can be safely indulged in throughout the 

year. This contrasts markedly with conditions at Bahrain (Middle 

East). latitude 26°N, where the ET is some 3 deg e higher than at 

Singapore during the least comfortable part of the year. Forced 

ventilation is inadequate to deal with conditions during the greater 

part of the summer and excessive exercise could prove dangerous 

at times between July and September but especially in August, which 

had a mean monthly ET of 28°e over the 1962-66 period (Watt, 1967). 

In complete contrast, a temperature station, like London (Britain), 

experiences cold rather than warm discomfort' and, despite the fact 

that ET values may occasionally rise to become similar to those in 

tropics, forced ventilation can' easily restore comfortable conditions 

(Foord, 1968). 
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=.(_-=.2:.... :...Ph:':'YL:s:..:i:.:o:..:l.=0E.g.:..i c:::a::.;I:.....:.Mo=d.:.e.:..l.:..: _--=c.:.o:..:n.:.t:...:ro:.l:...:l:..:e:.:d:.....:.l.:.o:.ss=-(not body heat i ng) 

C-2.1. General 

Body chemistry oxidises, foodstuffs to produce energy to 

ma,intain body temperature, for the muscular movements of the 

heart and lungs, for the per.formance of external work and for the 

various synthesising processes such as protein and hormone build-

up in the tissues. This oxidation is metabolism. Two necessary 

though insufficient physiological conditions for long term thermal 

comfort are: 

'1. The body temperat~re needs to be correctly controlled. 

This temperature varies from person to person by over 10C and 

there is a further daily variation of l~oC from a maximum in the 

mid-evening to a minimum in the early hours of the morning. 

2. The heat loss must match the metabolic rate so that there 

is no net heat loss.or gain over the day. 

-' 

This temperature regulation is achieved through two control 

systems, on e peripheral and one central. The peripheral mechanism 
..•.. 

involves the skin 'temperature sensors and through reflex action 

can control regional heat loss of, for example, hands. This 

mechanism usually compensates for rapid and small changes in the 

environmental temperature. The central mechanism involves a very 
• 

sensitive (O.l Q C)'blood temperature sensor within'the, brain which-

control~ sweating for high temperature and instigates shivering in 

cold conditions. Small adjustments in heat loss are achieved by 

altering the blood flow pattern under the skin. To dissipate heat, 

the blood flow is Incre'ased through dilated blood vessels just 
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under the skin. This is the 'flushed' state. To conserve heat., -' 

the outer. blood vessels constrict and increase the effective 

insulation of the subcutaneous tissue to give the pale 'go0ge 

pimple' state. Other further small adjustments in more severe 

cold are made by shivering and hence generating heat within the 

muscles to counter the loss. In overheating, some two million 

sweat glands can provide evaporative cooling. Sweating of hands 

and feet can readily be induced by anxiety and emotional stress 

and is not 

regulating 

normally considered an important part of the heat 

mechanism(114). Heat generation is closely associated 

with physical activity. 

Table (-2\IJ Relation between body activity and total 

heat production(l1S) 

Degree of activity 

.. 
Seated at rest 

Light work 

Walking slowly 

Light bench work 

Medium work - dancing 

Heavy work 

Total heat production 
(adult male) 

.J~ (W) 

115 

140 

160 

235 

265 

440 

Le 

.Typical cumulative values over a day for an office worker would be 

10.8 MJ, of which 7.92 MJ would be basal metabol ism, 1.44 MJ would 
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" be simple home activities such as sitting, dressing and 'was'hing, -' 

and a further 1.44 MJ would be used in normal office duties. 

(-2.2., Body Heat Losses 

The human body maintains a balance with its environment 

through minor physiological changes (i.e.) by increasing or 

decreasing the flow of blood to the skin. 

Body heat losses are primarily by: 

- convection 

- radiation 

- evaporat ion 

conduction 

(about 40%) 

(about 40%) 

(about 20%) 

(usually very little) 

The relative importance of the three factors, convection, 

radiation and evaporation varies according to the room temperature. 

~ (Z11 
Eva'porative cool ing has itself three components:' 

- insensible perspiration 

- lung exhalation 
" ~. 

-sweating 

The insensible perspiration is not related to the sweat 

glands but passes through the skin by diffusion and osmosis and is 

very little affected by the ambient water vapour pressure (i.e. 

room humidity). The moisture content lost due to breathing is 

influenced to a small extent by the room humidity, but the total 

non-sweating evaporative loss dissipates approximately 0.45 KWh 

over the day. Sweating can produce a substantially larger cooling 

effect but Is sensitive to room relative humidity, particularly 
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the high values of relative humidity which Inhibit evaporation, J' 

Sweating Is closely related to skin temperature and usually starts 

almost simultaneously over the whole skin at a skin temperature of 

34.50 C. While the body core temperature remains at a consistent 

level, there are a range of normal preferred skin temperatures for 

the various parts of the body. The peripheral parts of the body 

prefer a cooler temperature. When the body loses heat faster than 

the metabol ic rate the I imbs cool fi rst (114) 

A study by P.D. Fanger (11) of (American male and female 

college-age persons at different activity levels) showed that the 

sensation of thermal comfort was closely connected with mean skin 

temperature and with sweat rate. 

A regression analysis of the data, for persons in thermal 

comfort, gives the following functional dependency between skin 

temperature and activity level (internal heat production per unit 

surface area) and between sweat secretion and activity level. 

Skin temperature tsk =, 35.7 - 0.032 'i-H __ 
AD 

u 

Sweat secretion E rsw = 0.42 AD 
u 

- 50) ( k callhr) 

where 

H = 

AD = 
u 

H/AO = 
u 

(1 k cal= 4.1868 k J) 

the internal heat production in the human body 

OuSois area (the surface area of the nude body 

(m2) 

Internal heat production per unit body surface 

area. 

" 
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It can be seen that for constant comfort, the mean ski~· '" 

temperature decreases with increas.ing activity 

{for H/Aou= ·50 K"8 m
2

, t sk is 34°c, for H/Aou = 150 K call 

2 -. 0 hr m , tsklS 31 C}. The sweat secretion at thermal comfort is 

zero for sedentary activity {H/AO ~ 50 K callhr m2}. At higher 
u 

activities moderate sweat secretions are necessary for thermal 

comfort {environments so cold that sweat secretion is completely 

suppressed would be felt much too cool for persons in acthiity}. 

It has often been claimed earlier that it was a condition for 

thermal comfort that .the mean skin temperature was 33-34°C, and 

that sweating did not occur. The present results show that this is 

approximately true only for sedentary persons. At higher activities 

the skin temperature necessary for comfort falls, and moderate 

sweating takes place{11}. 
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(-3. Physical Model of Thermal Comfort -' 

Th h • 1 d 1 h • (13) f< < h • fl b d e p YSlca mo e as SIX actors t at In uences 0 y < 

heat loss, these are: 

- Air <Temperature 

- Radiation (mean radiant temperature) 

- Air motion (relative air velocity) < 

Relative Humidity (water vapour pressure in ambient air) 

Activity level (heat production in the body) 

- Thermal resistance ofl the clothing (clo-value) < 

The above six variables are the most important variables 

which influence the condition of thermal comfort, here we have 

to take every variable, and discuss it in detail. 

Personal factors affecting thermal comfort~ 

(-3.1. Activity Level: 

It is important to know the energy expended during<the 

course of routine physical activitives, since body heat production 

increases in proport'ion to exerCise intensity. 

The type of activities chosen are those which one ,performs 

steadily rather than intermittently. The highest energy level one 

can maintain <for any continuous length of time is approximately 50% 

of his maximal capacity to utilize oxygen (maximum energy capacity). 

Although heart rate is not a factor in the heat, balance equation, 

it is closely correlated with metabolic rate. For a normal mature 

man, heart rate rises rapidly from a value of 70 to 90 beats per 

minute (bpm) during rest to 120 to 140 bpm at 5 mets of exercise, 
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and finally more slowly to a 

10 mets, {one met Is defined 

maximal value of 180 to 200 bpm at 

2 2 2 as 58.2 w/m (J/S m ), 50 K call (m ) 

(hr), or 18.4 Btu/hr. The met unit represents the average heat 

produced by a sedentary man). Maximal heart rate decreases progres-

sively with age and reaches a value about 150 bpm at age 60. The 

heart rates for women and preadolescent children tend to be about 

10 percent higher than,for men over this range. Heart rate may 

thus be used as a rough index of metabol ic energy cost, if the 

direct measurement of oxygen consumption is impossible. A normal 

healthy man has a maximum energy capacity of approximately 12 mets 

at 20 years of age. This maximum drops to approximately 7 mets 

at 70 years of age. Women tend to have maximum levels about 30 

percent lower than these va lues. Long di stance· runners and tra i ned 

athletes have a maximum as high as 20 mets; an overall average 

for untrained person at 35 years of age can be considered as 10 

mets. 

Activities performed continuously above the 5 mets level 

by an untrained 35 year old man may· prove exhausting and uncomfor

table for him(10). 
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Table (-3.(1) Metabolic Rate at Different Typical .Activities (10) 

Activity 

RESTING Sleeping 
Reclining 
Seated, quiet 
Standing, relaxed 

WALKING On the level mph Km/hr 
2 = 3.2 
3 = 4.8 
4 = 6.4 

(1 K m/hr =_1_ m/s) 
3,6 

MISCELLANEOUS) 
OCCUPATIONS ). Carpentry: 

Machine sawing, table 
Sawing by hand 
Planning by hand 

. Foundry work: Using a pneumatic 
hammer 
Tend i ng furnaces 

General Laboratory work 

Machine work: Light (e.g., 
electrical industry) 
Heavy (e.g., steel 
work 

Vehicle driving: Car 

DOMESTI C WORK) 
WOMEN ) 

OFFICE WORK 

Heavy vehicle 

House cleaning 
Cooking· 

Typing 
Misc. office work 
Drafting 

LEISURE ACTIVITIES: 
Stream fishing 
Calisthenics exercise 
Dancing, social 
Tennis, singles 
Squash, singles 
Basketball, half court, 

i nteramora I 
Wrestling - competitive or 

intensive 
Golf, swinging and walking 

Metabo I i cRate 
in mets units 

0.7 
0.8 
1.0 = 
1.2 

2.0 = 
2.6 
3.8 

1.8-
4.0 
5.6 -

3.0 -
5.0 -

1.4 -

2.0 

50 K cal/m\hr 
(58.2 J/S m ) 

2 100 K cal/m 2hr 
(116.4 J/S m ) 

2.2 
4.8 
6.4 

3.4 
7.0 

1.8 

2.4 

3.5 - 4.5 

1.5 
3.2 

2.0 - 3.4 
1.6 - 2.0 

1.2 - 1.4 
1.1 - 1.3 
1.1 - 1. 3 

1.2 - 2.0 
3.0 - 4.0 
2.4 - 4.4 
3.6 - 4.6 
5.0 - 7.2 

5.0 - 7.6 

7.0 - 8.i 
1.4 - 2.6 
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f '2 2 2' 
, One met is defined as 58.2 w/m (J/S m ), 50 K call (m ) (hr)" 

or 18.4 Btu/(ft2) (hr). For an average size man, the met unit 

corresponds approximately to 90 K call hr, ,lOO watts (J/S) , or 

400 Btu/hr. 

For many of the exercises chosen in Table (-3.(1). the 

calculated mechanical efficiency (E) as defined by engineers, is 

at or near zero. The exercise physiologists sometimes define 
-:--
efficiency as the ratio W/(M-44), where 44 is the basal metabolic 

'rate in w/m2 (J/S m2), M is the metabol ic rate, W is the external' 

mechanical power., For walking 3.2 to 6.4 K m/hr on a 5% grade 

man's mechanical efficiency (E) is approximately 10%; on a 15 to 

25% grade, the efficiency rises to about 20%. Man's best mechan-

ical efficiencies 20-22% occur with leg exercises tlilat involves 

lifting body weight. 

For the design of air-conditioning equipment useful for 

the upper limits for comfort and health, the more conservative 

estimate when the efficiency factor (E) is considered zero, 

The energy costs (metabolic rates) for resting positions, 

tend to lower with age (2% per decade). For heavier, exercise the 

question is man's ability to do work, as judged, by his maximal 

energy capaclty and the relation of his,work task intensity to his 

capacity. 

The relationship between grade of physical effort, 

ventilation rate, and oxygen consumption for an average size man 

is shown in Table (-3.12). 
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Table [-3.(2). Classification of Physical Effort 

(fro steady state work) (10) 

Classiflca., 
tion 

Very light 

Light· 

Moderate 

Heavy 

Very Heavy 

Unduly Heavy 

Exhaust ing 

Vent i la
tion 
volume 
.Ilters 
per 
minute 

10 

10-20 

20-35 

35-50 

50-65 

65-85 

85+ 

Oxygen Metabolic 
Con sump- Rate met 
tion 
I i ters 
per 
minute 

0.5 

0.5-1.0 

1.0-1.5 

1.5-2.0 

2.0-2.5 

2.5-3.0 

3.0+ 

1.6 

1.6-3.2 

3.3-5.Q 

5.0-6.7 

6.7-8.3 

8.3-10.0 

10.0+ 

Heart Rate, 
(bpm) for 
normal 
subjects 

80 

80-100 

100-120 

120~140 

140-160 . 

160-180 

180 

The energy released by the oxidation processes in the human 

body per unit time (metabolic rate M) is sometimes partly conver-

ted to external mechanical power W; but is mainly converted to 

internal body heat,H, 

so that M = H + W (K cal/hr) 

I ntroducing the foIl owi ng def i nit i on of externa I rnechan i ca I 

efficiency 

W 
11=-=E" M 

into the above equation 

gives H = M (1 - 11) (K cal/hr) . 

or expressed per unit body surface area: 

(1 -11) 
2 (11) 

(K cal/hr m ) 
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------
. (-3.2. Thermal Resistance of the Clothing (Clo-value) 

Clo~hing is an important factor contributing to human 

response. It is controlled in climate chambers, but it is not 

controlled In field studies, but has often been recorded. The 

record may be as little as a description of the normal manner of 

dress, or as detailed as an item by item account obtained from the 

respondent at the same time as his assessment of the thermal environ

ment.· As an example; in.a study by webb(15) about subjects in 

Roorkee (near New Delhi), Northern India and in Baghdad, Iraq, 

he described their clothes as they were consisted of a light 

cotton shirt, lightweight trousers and light cotton undergarments. 

At night, the Indian subjects wore a cotton vest and cotton pyjamas, 

They had a sheet and a pillow, and were protected by a mosquito 

net. Details of night clothing were not obtained from the Iraqi 

subjects. They did not use mosquito nets. Another study by 

E. R. Ballantyne and J. W. Spencer (46) of thermal comfort in a 

humid tropical area (Port Moresby, Papua and New Guinea) give 

description of subjects typical clothing worn· throughout the year 

as it is shorts and ,shirt for men, often.with long socks and shoes, 

and lightweight dresses for women, usually without stockings. 

The usefulness of the record of clothing is twofold; it 

gives insight into the way people have adjusted to the prevai 1 ing 

temperatures and, if the thermal insulation of the ensemble is 

estimated, a theoretical prediction of the respondent's thermal 

state can be made from a comfort equation. 

The unit. of clothing insulation is the 'clo', originally 

chosen .such that one 'clo' would r.epresent the amount of 
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----------------------------........... .. 
I' o clothing needed for sedentary work at 21 C. 

~s a surface-to-surface resistance of 0.155 

the,insulation value of the material alone. 

It is now defined 

2 0 m c/w.This is 

Female clothes are usually fashion-sensitive and there-

~Lf fore change ~PidIY. Clothing design and fit, together with 

fabric,flexibility, have a strong influence on the additional 

ventilation loss which body movement can create, e.g. a bellows 

action. 

The moisture permeabil ity and absorption characteristics 

of the clothes fabric become important in hot conditions. The type 

and colour of the outer clothes can have an important influence 

on the radiant energy interchange with room or heater. 

The thermal resistance of a given textile system depends 

first and foremost on the thickness and porostiy of the individual 

textile layers. For all ordinary texti le materialsinterided for 

clothing, the variation in porosity"is, however, so moderate that 

the thickness is the most important property which determines the 

conductive resistance of the !.indivdual textile layer. The type .' , 

of textile fibre (wool, cotton, silk, rayon, nylon, glass) does 

not,seem to be of great significance. 

Changes in humidity content of the textile caused by 

variations in the airhumidityhave only a small influence on the 

conductive resistance. On the other hand, if the textile becomes 

really "wet", i.e. if the air between the fibre and the yarn is 

replaced by water, the conductive resistance will of course be 

reduced considerably. 
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Apart from the conductive resistance of the textile itself, 

the layers of air between the textile layers are also of importance, 

and it thus follows:that the tailoring and fit have a certain 

influence on the clo-value. For very loosely hanging clothing 

a certain ventilation of the air layers can occur, arising from a 

"chimney effect". For high al r velocities the dynamic pressure of 

the air current can create an air stream through the clothing, 

depending on the permeability of the clothing material. This 

ventilation heat loss could be treated together with Icl ' i.e., 

the Icl values could be measured for different clothing ensembles 

as a function of the velocity. However, for the low velocities 

usually encountered in indoor environments, it may normally be 

assumed that this ventilation heat loss is negligible. 

Gagge et al (116). introduced the term Icl as a dimensionless 

expression for the total thermal resistance from the skin to the 

outer-surface of the clothed body. Icl is defined by 

(Clo) 

where Rcl = the total- heat transfer resistance from skin to outer 

surface of the clothed body (m2 hr °;7K cal). 

Another term is used, "tog", introduced by Peirce and 

R 
. (117) 
ees 

1 "tog" = 0.100 °c m2/w = 0.116 °c m2 hr/K cal 

= 0.645 Clo 
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The dry heat transfer from skin to the outer surface of -the 

clothed body can hereafter be expressed by the following formula: 

t '. sk 

0.18-1 I _ c 

(K cal/hr) 

The magnitude of Icl for a certain clothing ensemble is 

rather difficult to measure. For example it is not sufficient to 

measure the conductive resistance of each textile layer, analogous 

to the measuring of conductive resistances for building materials. 

In order to obtain resonably accurate measurements it is 

necessary to usea heated manikin in I ife size which is garbed in 

the whole actual clothing ensemble(textile system). As heated 

manikins including the necessary electronic equipment are expensive 

to produce, only very few examples are to be found in operation, 

most of them being in connection with military and aeronautical 

,applications. Unfortunately, therefore, there exist in the litera-

ture, clo-values for relatively few clothing ensembles. Some of 

these clo-values are listed in'TableC-3.(3),which furthermore 

compr i ses va I ues for the f I factor (rat io of the surface area of 
- c 

the clothed body to the-nude body). 

60 



------------------------......... .. 
Table (-3.(3) Data for Different Clothing Ensembles (11) 

Nude 
Shorts 

Clothing Ensemble 

Typical Tropical Clothing Ensembles: 
Shorts, open-neck shirt with short 
sleeves, light socks and sandals 

Apollo Constant Wear Garment 
(astronauts): Light cotton under
garment with short sleeves and ankle 
1 ength 1 egs, cotton socks 

Light summer Clothing: 
Long lightweight trousers, open 
neck shirt with short sleeves 

Light Working Ensemble: Athletic 
shorts, woollen socks, cotton work 
shirt (open neck), and work trousers, 
shi rt tai lout 

U.S. Army "Fatigues", Man's: 
Lightweight underwear, cotton shirt 

. and' trousers, cushion sole socks 
and combat boots 

Combat Tropical Uniform: Same 
general components, as .U.S. Army 
fatigues but with shirt and trousers 
of cloth, wind resistant, popl in 

Typical Business suit 

Typical Business suit + cotton coat 

Light Outdoor Sprotswear: cotton 
shirt, trousers, T-shirt, shorts, 
socks, shoes, and. single ply 
poplin (cotton and dacron) Jacket 

Heavy Traditional European Business 
suit: cotton underwear with long 
legs and sleeves, shirt, woollen 
socks, shoes, suit including 
trousers, jacket and vest 

U.S. Army Standard Cold-Wet Uniform: 
Cotton-wool undershirt and drawers, 
wool and nylon flannel shirt, wind 
resistant, water repellent trousers 
and field coat, cloth mohair and 
wool coat 1 iner and wool socks 

Heavy Wool Pile Ensemble: (Polar 
weather suit) 

o 
O. 1 

0.3 - 0.4 

0.35 

0.5 

0.6 

0.7 

0.8 
1.0 
1.5 

0.9 

1.5 

1.5 - 2.0 

3 - 4 

Ref. (11) Table 2, P.O. Fanger, Thermal Comfort 

1.0 
1.0 

1.05 

1.05 

1.1 

1.1 

1.1 

1.1 

1.15 
1. 15 

1.15 

1.15-1.2 

1.3 -: 1.4 

1.3 - 1.5 
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The clo-values given in Table (-3,(3), refer to the clothing 

ensemble Itself. If. a person sits In an upholstered chair or lies 

on a divan, the effective clo-value will be greater than the clo

value for a standing person.ln the same clothing ensemble, and 

, therefore allowances must be made for certain additions to the 

values given In the table. 

The vapour diffusion resistance of ordinary clothing is 

mostly relatively low, and all the sweat secreted by persons In 

thermal comfort will therefore normally evaporate. 
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Variables that Influence the Condition of Thermal Comfort 

Co 3.3 Air Temperature-

Temperature is defined as the thermal state of matter 

with reference to its tendency to communicate heat to matter in 

contact with It. If no heat flows upon contact, there is no 

difference in temperature. The air temperature has long been 

used as a convenient measure of warmth, but there are cases where 

it Is_ unsatisfactory, misleading and not easy to measure accurately 

unless a sling or aspirated and shielded thermometer is used. 

For example, air temperature is inadequate when there is a combina

tion of extreme temperature and high air speed, when-there is a 

strong interchange of either radiant or convective heat between 

people and their environment or when the environment is warm- enough 

to cause perspiration. 

The comfort range for an Individual wearing normal clothing 

is approximately 90 C e.g. (18.5 - 27.50 C) without jackets. This 

covers the descriptions 'comfortably cool', 'comfortable' and 

'comfortably warm'. However, since individuals vary, the acceptable 

range for a group of people will be narrower than this. 

Fanger (11) introduced a statistical approach to comfort. 

in general sedentary people wearing standard clothing require 30 C 

rise.jn their ambient environment to alter their vote .from say 

'comfortable' to 'comfortably warm'. For a group of people the 

standard deviation in comfort votes is 0.8 vote for a constant 

temperature. Experiments with people wearing normal clothes but 

without jackets or pullovers confirmed these res.ults. 
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Vertical Temperature Gradients 

Comfort guides recolll11ended higher air temperature at foot 

level than head level.· The preferrredpattern of skin temperatures 

are as follows: 

Head . 34°C, T k 3" SOC run 't. , Forearms 31°C, 

Calves 

The opinion may accurately reflect the clothing distribution 

of. women or may be a restatement of the fact that if people are 

cold it is noticed first in the feet. In the absence of data 

a ZOC vertical gradient in air temperature is acceptable· in either 

direction, i.e. the head being ZOC cooler than the feet or vice 

versa. 

Temperature and Humidity Criteria for Rooms 

The relationship between air temperature in OF and (oC) 

relative humidity in % is shown by the graph below(11B). The graph 

is based on test data from lightly clothed subjects engaged in 

sitting activities. The shading region indicates an average zone 

for human thermal comfort. 
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Ref. Nevins, R. G;, "Criteria for Thermal Comfort". Institute for 

Environmental Research, Report No. 12. Kansas State 

University(118) • 

Note: In the comfort zone, human tolerance to humidity is much· 

greater than tolerance to temperature. Consequently, air room 

temperatures must be more carefully controlled. Humidity control 

is also important, however, since high room humidity can cause 

condensation on ~ surfaces in winter, and low room humidity can 

cause. static electricity problems. Typical humidity limitations 

are Indicated in the comfort zone on the above graph. 

(119) Suggested Air Temperatures for Rooms 

The suggested temperatures in Table (-3.(4) represent 

guidelines for. design based on room heating for winter comfort 
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requirements. for summer conditions, slightly higher temperatl!res, 

about +30 f (1.6°C) are appropriate. 

Human sensitivity to changes in temperature Is normally 

b t 11°F a ou t " (0.8°C) (temp. of 2l.loC'may be excessively warm 

for persons exercising in a gymnasium, but the same conditions may 

be too cool for reading in a residence). Ideally, mechanical 

systems should have temperature control for each room as occupant 

comfort requirements can vary with age (older people generally 

prefer warmer temperature), sex (very little), clothing worn, and 

level of physical activity. Requirements can also vary from day 

to day for the same individual. 

Table Co 3.(4) 

Type of Space 

Bathrooms, swimming pools, 
industrial paint shops, etc. 

- Residences, hotels, apartments, 
homes for the aged, etc. ' 

- Courtrooms, churches, classrooms, 
offices, conference rooms, etc. 

- Theatres, large meeting rooms, 
corridors, lounges, cafeterias" 
and restaurants, etc. 

- Ki tchens, I aundr i es, reta i I shops 
and stores, hotel ballrooms. 

- Garages, factories" indust~ial 
shops, gymnasiums, etc. 

T • (oC) emperature In 

o ,,0 23.0 to 2 C 

o 22.0, to 23.0 C 

0--
18.0 C and below 
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(-3.4. Mean Radiant Temperature Criteria for Rooms (120) 

Th I t I h I b t I t • of (oC) d e re a ons p e ween a r emperature In an 

mean radiant temperature (MRT) in of (oC) Is shown by the graph 

below. The shaded region indicates an average zone for human 

thermal comfort. The graph is based on test data(11) from lightly 

clothed subjects engaged in sitting activities. Relative humidity' 

is 50% and air velocities range from about 15 to 60 fpm (0.076 

to 0.305 m/s) for the data presented. 
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<11 
Co 
E 
<11 
I-

82r-__ \_.-----.~,----.----.-----.----~ 
\ \ 
\ '\ 'Slightl War~ Z ne 

80~---k----~~~,~~~--~~--~ 

76 
° 24 C 

74 

72 . 

70 
70 

(21,1) 

Slig tl Y (00 ! Zone 

80 
(26;7) 

\ 
\ 

\ 
\ 
\ 

90 
(32,2 ) 

100 
(37,8) 

(MRT) Mean Radiant Temperature inoF (oC) 

° 22 C 

Ref. Fanger, P.O. Thermal Comfort, New York: 

( 11) 
McGraw-HIII, Inc •• 1972. 

Note: The higher the MRT value, the lower the corresponding air 

temperature for comfort conditions as indicated by the slope of the 
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comfort zone. Radiant panel heating systems for example, 

can provide satisfactory comfort conditions at low air temperatures. 

Co 3.5. Relative Humidity (RH) 

(RH) in % is the amount of moisture in air compared to the 

maximum amount that can exist at a given temperature without 

condensation. (RH) can be measured by a device called a 'sling 

psychrometer'; It consists .of two mercury-filled glass thermometers 

mounted side by side on a frame fitted with a handle by which 

the device can be whirled through the air. One of the thermometers 

has a cloth sock that can be wetted. As moisture from the wet 

sock evaporates, the "wet bulb" temperature lowers. The drier 

the air surrounding the sling psychrometer, the more moisture 

that can evaporate from the sock. This evaporation lowers the wet 

bulb temperature. The greater the difference between the wet bulb 

and dry bulb temperatures (called "wet bulb depression") the lower 

the relative humidity. 

We can use a psychrometric chart for finding the (RH) 

from wet and dry bulb temperatures for 750 F (24°c) dry bulb 

reading and 630 F (17°C) wet bulb reading RH = 50% • 

Temperature and Air Velocity Criteria for Rooms. 

The.relationship between moving air stream temperature 

. (i.e. amount above or below room air temperature)in of and air 

(120) velocity in fpm (m/s) is shown by the graph below 
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The shaded region indicates an average zone for human 

thermal comfort. 
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Ref. Reinmann, et al , "Evaluation of Three Room Air 

Note: 

Distribution Systems for Summer Cool ing" ASHRAE Trans

act ions, Vo I . 65, 1959 (120) • 

Under some conditions air motion can be pleasant cooling 

breeze while under others it can be a draft. Consequently, the 

combination of-air velocity and temperature must be carefully 

. controlled. Typical temperature and velocity limitations are 

indicated in the comfort zone on the graph. 
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(-3.6. Air Velocity 

Moving air contributes to thermal comfort by removing-the 

moisture and heat surrounding the body. 

Air velocity at 
Head Level of 
Occupant in fpm 

(m/s) 

0-10 (0-0.05) 

10-50 (0.05-0.25) 

50-100 (0.25-0.5) 

100-200 (0.5-1.0) 

200 (about 2 mph) 
and above (1.0 m/s 
and above) 

Tropical subjective Occupant 
Evaluation 

Complaints about stagnant air 

Generally favourable (manufacturers 
of air outlet devices, e.g. base 
performance on 50 fpm (0.25 m/s) 
air velocity in occupied zone. 

Awareness of air motion, but can be 
comfortable (e.g. some retail shops 
and stores) when temp. of moving air 
is above room air temp. 

Constant awareness of air motion, but 
can be acceptable (e.g. some 
factories) if air supply is intermit
tent and above room-air temp. 

Increasingly drafty conditions 
with complaints about ''wind'' in 
disrupting a task, activity, etc. 

Note: The combination of air motion and air temperature is 

an important consideration for achieving. comfort (e.g. at air 

velocities of 30 fpm (0.15 m/s) and above, a 15 fpm (0.075 m/s) 

increase is' equal to about a 10 F (0;5SoC) drop-in-temperature.'· 
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Air Motion 

Air Stream Motl~n (Influence of Air O'i rect ion) (119) 

A guide to desirable air stream directions for seated 

persons Is given below. Note that typical subjective comfort 

evaluations are indicated for front, rear, side, and overhead 

air stream directions. 

Fair 

1 
Best Fair 

~l 

ij 
Poor-~ 

Poor-.iff< 
-Fair -Fair 

, Poor-

Air from Sides or Overhead Air from Fr ont, Rear or Overhead 

Poor, Draft from cold glass surfaces 
are directed toward room occupants 

Better, Continuous warm·air supply 
counterac ts downdraft at glass surface 

Glazed wall 
::'!i~~~~!.s~/.:,:/ 
~ ):)) 

~ /:{,,':. 
• 

Heater 

:' War rn- Air :::' ::,: ': 

r::~) ?~'>;--'-~~ ~~:;;: 
", '::/ 7rI 

~ 

Supply Air! Warm air) 

Natural Air Convection (Influence of Glass in Winter) 

Air distribution is shown abovE for two heating air supply 

locations in a room having a glazed exterior wall. Air supply 

location can greatly influence occupant comfort and air motion 

by.convection (i.e, tendency of warm air to rise) as shown. 
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--------------------............ 
Air Distribution in Rooms 

The best supply air outlet locations for heating ·are 

located near the floor (preferably at outside walls under glass 

areas to prevent cold downdrafts). 

For cooling, the best supply air outlet locations are 

high on inside walls or in the ceiling. 

Consequently, the primary comfort requirements of the 

climate region-heating or cooling should influence supply air 

outlet location. 

-stagnant area-

Drafts across floor from cold 
wall surfaces (H'~) Heating 

. 

((:1) (ooling 

,--,-~, stagnant 
~ .... -"' =' 

/ \/ ".' -air 
/..'.:'/ ". .. \ 
: ".' '.:':1 .', "'/ 
';.1 ,'~'./ "' 
'. \ T" 1 .. : \ \ 

:. ': .\ \. .-""" 
':'.' ~'-

(('2) I 

Air at low temp. is dense 

and will drop down 

( 121) 
Ref.· "Room Arr Distribution.Considerations" National Warm 

Air Heating and Air Conditioning Association, 1st Ed., 

Manual E (1965) 
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. (119) 
Suggested Air Changes for Rooms 

Type of Space 

Machinery spaces, maintenance shops 
(such as for electrical equipment), 
school and industrial shops, etc. 

Cafeterias, restaurants, offices, 
reception areas, hospitals 
residences, garages, etc. 

Churches, libraries, reading rooms, 
bowling alleys, retail -shops and 
stores, etc. 

Auditoriums, theatres, classrooms, 
kitchens, conference rooms, etc. 

Air Change· 
(per hr) 

8 to 12 

6 to 12 

15 to 25 

10 t.o 30 

The table above suggests ranges of room air change (i.e., 

complete displacement of room air) for acceptable air motion (119) • 

The appropriate air change value depends on the number and activity 

of room occupants. Note that the values given in the table are 

also well above the ~equirements to replace the oxygen consumed 

in breathing (2 cfm per person) (2 x 27 litres/minute per person) 

and to control the carbon dioxide concentrations in the air (3 

cfm per person) • Ai r change is related to ai rflow volume in cubic 

feet per minute (cfm) by the formula 

where 

N Q 
= 60 V 

N = number of air changes per hour{~ach) 

Q = airflow volume in cfm 

v = room volume in cubic feet 
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Room air change can contribute to comfort and condensation control 

by removing heat and moisture produced by room activities. 

. (119) 
Sources of Moisture in Buildings 

Moisture control In buildings Is important as high humidity 

can cause condensation on glass surfaces In winter. Also, moisture 

from buildings occupants, equipment, etc. influences the size 'of 

refrigeration elements required for summer cooling because moisture 

will change the condition of the air. Exhaust systems are provided 

to directly ventilate spaces such as kitchens, exercise rooms, 

toilet rooms, etc. for odour control as well as moisture control 

aAd heat removal. 

Source-'~ 

. Cooking anddishwashing 

Physical exercise 

House cleaning (wet cleaning) 

Vegetat ion 

Moisture (in kg) 

2.7 kg per day 

2.2 kg per person per day 

1.5 kg per each 10 m2 

0.9 kg each plant per day 

(Live plants are excellent 

"humidifiers" for residences) 

Tak ing shower 0.2 kg each shower 

High humidity retards human heat loss bY,evaporative 

cool ing (i .e., sweating), and by respiration. low humidity tends 

to dry throat and nasal passages. In buildings, low humidity 

can also cause loosened furniture joints, cracked book bindings, 

etc. 
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Humidification devices are available that can introduce 

moisture directly into the air stream of mechanical systems. 

(-3.7. The Influence of Certain Special Factors·on the 

Thermal Comfort 

National-Geographic location, Age and Sex 

The results of the experiments at the Technical University 

of Denmark(11) which were designed to obtain the best possible 

.comparison with the American Study of Nevins, show surprising 

agreement between the temperatures desired for thermal neutrality 

for the two national-geographic groups. 

The Danish subjects preferred. a slightly higher temperature 

(25.71 oC) than the Americans (25.550 C), but the difference is 

less than 0.2oC and is not statistically significant. 

The experiments were performed for only one combination of 

clothing (0.6 c1o),activity and relative velocity (0.1 mts),· 

and for mean radiant temperature = air. temperature. 

M 

~ 
u 

M 
[~ 

o 
u 

Since the comfort equat ion (of P .0. Fanger) (11) 

( 1 - n) -0.35 [43-0.061 M (1 - n) - P ] - 0.42 . a 

M 
(Hll-SO]-O.0023 - A ' (44 - P ) -

a. . D 
u 

0.0014}- (34-t ) = 3.4 .10- 8 fcl [(tcl + 273)4 
D . a 

u 
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agrees very we,ll with the results of Nevins, the results of thIs 

study suggests that the equation can readily be used for col lege

age persons in Denmark or more generally, at national-geographic 

locations within the temperate·· cl imate zones. 

The actual differences in practice between preferred 

temperatures in the USA and in Europe which have been reported, 

especially in earlier field studies, probably reflect only 

differences in clothing habits, however, the differences in cloth

Ing habits have been considerably reduced during the past few 

decades, with a strong trend in Europe away from the traditional 

heavy clothing towards lighter textiles such as those used 

generally In the USA. 
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( - 4. Thermal Comfort in UK 

M. A. Humphreys (·16) collected data from more than thi rty field 

studies of thermal comfort. They come from a wide variety of climates 

·and countries, ranging from winter in Sweden to summer in Iraq. In 

his survey he mentioned ni.ne research workers whom they stated fifteen 

different field studies of thermal comfort covering wide variety of 

activitres, seasons, sex, and age in England. 

Here we can define the thermal comfort in United Kingdom, 

considering the field studies which were conducted in England. In these 

'studies, t:he mean air or globe temperatJure can be regarded as a , 

broad in'dication of the thermal environment prevailing during the 

study •. It is fairly representative of the daytime conditions experienced 

by the respondents. o The mean temperatures range from 17 C for the 

elderly in their homes during a fai rly mild English winter (Fox) where 
o '. 

almost 800 men and women were involved, to 24 C for young students (age 

12) taking school lessons during the summer (Humphreys). The range of 

daytime mean temperatures covered by the studies during the winter 
o '. 0 0 0 

Is 17 C to 19.9 C, and during the summer was 19.3 C to 24 C. 

Neutral' Temperature: 

For adults in England the neutral temperatures ranged from 17.SoC 

for the elderly in their homes (Fox) to 19.4o C for office workers 

(Black) -during the winter, and ranged 'fromI9.30C~for men mostly 

sedentary (light industry) (Hicklsh) to 22.30 C for office workers 

(Black) working mostly in air-conditioned single offices during the 

summer. Neutral. temperatures for adults all year round were found 
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to be 20.SoC for office workers, and surgeons, nurses; anaesthetics in 

operating theatres (Wyon). For children in their schools, In several 

, classes, the neutral temperature ranged from 16.'Soc to 21.loC during 

the summer and It was IB.loC during the winter (Auliciems). 

Three factors, apart from the thermal environment, can combine 

to produce different neutral temperatures. They are the level of 

activity, the thermal insulation of the clothing and the physiological 

state which is considered by the respondents to be 'neutral'. For 

elderly people such as Fox's respondents the metabolic heat generation 

would have been rather low, both because of thei r age and because of 

,the relative inactivity which usually accompanies it. 

M. A. Humphreys (16) . in his paper stated the existance of a 

close relationship between the mean temperature and the neutral 

temperature. The correlation coefficient is 0.96, and over 90 percent 

of the variation of the neutral temperature is associated with the 

variation of the mean temperature, so the relationship is 

where Tn is. the neutral temperature and Tm 
o The standard error of. prediction isl.l • 

is the mean temperature. 

Choice of clothing, regulation of physical activity and 

physiological acclimatisation could be regarded as a learning process 

directed towards achieving thermal comfort. If this were so,. the 

learning would be most effective for the mean of the conditions 

experienced. One would therefore expect, apart from random effects, 

that the neutral temperture would coincide with the mean temperature 
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If the process were complete. That the neutral temperature Is 

almost always below the mean thus requires explanation. It suggests 

that either people prefer to be slightly warmer than. the condition they 

describe' as neutral, or that the mean temperaturesof the observations 

do not truly represent the respondents' total thermal experience. 

The j>osslbll ity that people prefer a sensation which differs 

systematically from the neutral should not be dismissed. In Fox's 

st'udY of the elderly, although the overall sensation was one of thermal 

neutrality, many of the respondents reported coldness of the extremities 

and most said that they would have preferred it somewhat warmer. In 

a recent survey at the BRS during winter (Humphreys and Gidman), the 

respondents were asked which of the categories of the Bedford Scale 

they considered to be a preferable state. The mean preference lay 

between 'comfortable' and 'comfortably warm'. 
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Appendix - 0 

D- 1. Traditional Building Materials and Their Location 

Stones, sun - dried mud bricks, burnt clay bricks and wood are the 

_ basic traditional building materials, used in Saudi Arabia. The common 

factor in selecting any of these materials are: their cost, transportation, 

the function of the building, the availabll ity of an expert builder, and 

the social, economic and cultural conditions of the owner. The most 

Impootant factors of all are the influences of the climate and the local 

materials which come from the ground surface formations, in each of 

following _regions. 

Do 1-.1.Coastal Plains In the West 

In the western provlnce(23), sedimentary rocks outcrop 

in thin bands along the coast of the Red Sea, within a narrow 

plain whose width varies from one place to another. The plane 

is 20 kilometres wide near Jeddah and 17 km wide near Yanbo'. 

It is characterised by extensive -eolian sand, alluvium and 

related surficial depoSIts, and sabakhas and is called "Ti hama" (23) • 

The economical building material around this area is limestone 

in the form-of marine deposits. Often they contain fossils of 
. . - (24) 

various marine organisms, such as molluscs and corals • 

The shoreline at Jeddahand Yanbo' is in most instances 1 to 2 metr-es 

high, composed of coral rocks, which are made irregular and highly 

porous by the action of sea waves erosion. The top of these 

rocks -i s -fl at, covered wi th-s i It and sand; and is cont i nUQUS wi th- ., 

. the planes to the east. The local people cut _these moderatly soft 

to hard corals into stones, to build their traditional houses, 

as shown In FI gure . (6) A form of coral reefs underlies 
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the coastal shallow waters. This was used for the same purpose, 

when It was exposed In some areas as small islands bordering 

the coast, or attached to the mainland. 

0- 1 .2.Sarawat Mountains In the West 

To the east of the coastal plains, basement rocks of 

Pre-Cambrian age occupy almost one third of Arabia, out cropping 

sporadically along the south fringe of the peninsula, and are 

called the west and south Arabian shields. They are eastern 

extensions of the much larger African shield which Is a'stable, 
. . .... '. (26) 
'rigid nucleus of Igneous and metamorphic rocks • These 

mountains are broken by great valleys, of which the most 

important are Wadi Jizan,Wadi Yanbo' and Wadi Fatima near Mecca 

The decline of this range of mountains is nearly vettical towards 

the west; consequently the flood waters wash most of the silt on 

the coast plains and deposit silt and clay layers on the' valleys. 

A good example of a traditional building material is near Mecca, 

where clay' deposits were used for making hand made bricks burnt 

In primttive kilns. 

The rocks in Mecca Mountains are mostly igneous rocks, 

and most of the stones used in building traditional houses were . 

granite and diorite rocks, cut 'In shape to the size required 

for building walls and door sells, Igneous rocks, which include 

granite and diorite, are hard, weather resistant materials and 

2 possess compressive' strengths in-the 'range 110 - 180 MN/m • 

Quartz (silica) which is a very hard mineral is a major constituent 

in granites{24,25) 
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The highest mountains are in Asir 'south western region' ( 23) 

where peaks rise to over 3000 metres. Then they decline to 

2400 metres to the east ·of Mecca, to 1200 metres to the west 

of Mahd Adh-Dhahab and to I 000 metres at Medina. The range 

extends to the north with the same elevation. Most of the 

scattered settlers around these areas, built their homes by 

using a combination of granite, diorite stones, and sun-dried 

, . 

mud brlcks,.as In Khamis-Mushait, Talf and Medina. In Medina, 

the stones used were of lava flow, volcanic origin. 

o -'1.3.Central· and 'Northern Regfons 

Directly to the east of this range of mountains, lies 

the Interior Homocl ine in the Najd plateau 'central region,(23), 

which is bordering the shield to the west and south. The Interior 

Homocline is a belt of sedimentary rocks that dip towards the Rub-

al-Khali and the arablan Gulf' basins slightly and uniformly, 

reflecting the attitude of the basement. The width of the 

Homocline is about 400 km, and follows the eastern margin of the 

shield from the northwest border to the east Rub-al-Khali and is 

dominated by a series of west facing strike escarpments without 

significant interruption •. , The older rocks of the Homocl ine are-

of Paleozoicage and occur in the west. Successively younger 

rocks of Mesozoic and early Tertiary, ages occur to the east. 

East of the Hoinocl ine is the Interior platform. This is a 

broad area of relatively low rei ief terrain in which older rocks 

are buried by 
. (26) 

Tertiary and younger deposits • 

The Najd plateau has an average height of 1200 - 1800 
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metres. The elevation drops to 600 metres at the Ad-Dahna 

desert which faces the Arabian Gulf. Also it extends southward 

to Wadi Ad-Dawaser, then runs parallel to the Rub-al-Khall (the 

empty quarter). A great number of marshes are scattered through

out the Najd. These are considered remnants of Inland seas which 

existed In ancient times. To the north, the plains of Najd extends 

for nearly 1400 kilometres past Hall, until they join the Iraqi 

and Jordanian borders. This area Is called 
, '(23) 

the Northern region • 

There are number of mountainous areas in Najd such' as the mountains 

ofAJa and Selma, and the Tuwaiq Limestone range, which run' 

from' southwest to northwest ,Into the Nafud. The Nafud are 

sandy hill s having the form of ribs extendi ng towards the north 

where they come together in what is called the Great Nafud. 

,1':-, Traditional building materials in these areas is in Riyadh 

and Hail were sun-dried mud bricks and sometimes a combination 

of limestones and mud bricks. Much of the earth around Rlyadh 

Is made up of sedimentary rocks, 'which are often well stratified 

and show well defind bedding planes. These sedimentary rocks 

were cleaved and cut easily into fair,ly regular shapes. 

Sedimentary rocks in' this area are limestones and dolomites, 

formed by the precipitation of calcium carbonates, or calcium 

and, magnesium carbonates, from solution. Limestones and 

dolomites are ver'y hard, with compressive strengths of the order 

of 150 MN/m2• 

Mud and clays have been used extensively in building 

most of the traditional houses. It came from the top surface 

layer of the soil in the areas of building sites and from the 

nearby valleys where silt and clay been dep.osited by the action 
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of' water flooding. 

0- 1 .4.Coastal· Areas· in the East 

. . (23) 
In the eastern province along the Arabian Gulf, 

geol.oglcal Information was obtained in connection with petroleum 

and some civil engineering works. This describes the geology 

of the coastal areas (' 27 - 29) in which the early settlers built 

thel r homes. Most of thl s region I ies within the Arabian plat": '. 

'. form, which Isa largely flat area of early to late Tertiary' 

rocks covered by eol ian sand, gravel and other deposit·s, except 

'for som~ rock outcrops and sabakhas (1ow 1 ay I ng in 1 an~ and 

coastal salt flats) bordering on the sea. Sometimes unconsolidated 

deposits are underlain by weathered rock, at relatively shallow 

depth. The soil is mainly a disintegrated weathered rock and fine 

wind. blown sand and silt overlying limestone, frequently inter-. . . 

bedded with dolomites, marl and shale. The main features inland 

are low escarpment where coral stones, sometimes referred to as 

calcareous gritstone are. exposed and were quarried .In the pas't 

for local materials. A form of .coral rocks underl ies the 

.coastal waters, exposed in some places and in others covered by 

several metres· of sand or silt(4). The very fine silts were 

used also as a building mud-brick material. 
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