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ABSTRACT 

Abstract 

The suspension polymerisation of Methyl Methacrylate (MMA), using polyelectrolyte 

solutions, Sodium polymethacrylate (PMA-Na) and Ammonium polymethacrylate 

(APMA), as suspending agents (stabilisers) was experimentally investigated in this 

project. The topics examined were, the rheological behaviour of the aqueous 

polyelectrolyte solutions, the factors that affect drop and particle sizes, dispersion and 

stabilisation mechanism and the factors that affect the critical conversion where the 

onset of the gel effect occurs. The main advantage of using PMA-Na and APMA as 

stabilisers for the suspension polymerisation is that these stabilisers are not grafted on 

to the polymer beads'surface, and they are easily washed off and removed after the 

polymerisation. 

Rheological behavior of PMA-Na and APMA: Aqueous solutions of PMA-Na and 

APMA are characterised by high viscosity. They exhibit a non-Newtonian shear 

thinning behaviour, in contrast to the polymethacrylic acid (PMA), from which they 

are derived, and which shows a shear thickening behaviour. The viscosity of PMA-Na 

aqueous solutions depends on shear rate, but it is independent of pH and shear history. 

The viscosity of APMA solutions depends on, both, pH and shear history. Below, a 

certain pH value, the behaviour of the PMA-Na and APMA aqueous solutions, 

resembles the behaviour of the acid (PMA), showing a shear thickening behaviour. 

Hence, despite the advantage of using PMA-Na and APMA as stabilisers, their use 

induces various complexities in the flow in the reactor, because of their rheological 

behaviour. 

Factors that affect the drop and particle sizes: The factors that were found to 

influence the drop and particle sizes were, the stabiliser concentration, the continuous 

phase viscosity, the stirring speed, the monomer hold-up fraction, the dispersed phase 

viscosity, the initial pH of the continuous phase, and the reaction temperature. The 

formation of fine particles, with diameters smaller than lOJlm, was observed, for 

certain conditions. 

Dispersion mechanism. The dispersion mechanism of the drops when APMA and 

PMA-Na are used as stabilisers was investigated. Experimental data of the maximum 
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drop size, dmax. were compared with predictions of dmax. from the Kolmogoroff theory 

of inertia break-up and from Taylor's theory of viscous shear break-up. Taylor's 

theory of viscous shear break-up seems to describe satisfactorily the experimental 

data and, therefore, the viscous shear break-up mechanism is considered to be the 

prevailing dispersion mechanism. The low Reynolds and Taylor numbers were 

consistent with this conclusion. 

Stabilisation mechanism. The initial pH of the continuous phase plays a very 

important role for the MMA dispersion stability. The increase of the pH enhances the 

stability of the system, causing the drop sizes to decrease. Also, the required 

concentration of suspending agent, to stabilise the MMA dispersion, decreases as the 

pH increases. 'Electrosteric stabilisation' accounts for this behaviour. The 

polyelectrolyte solutions can promote the stability of the drops by functioning in a 

dual way, by steric stabilisation, and by electrostatic stabilisation. The adsorption of 

the polymer chain of the stabiliser on the monomer drops' surface, provides steric 

stabilisation, whereas, the ionisation of the electrolyte species and the charge of the 

polymer chain induces electrostatic repulsion, providing electrostatic stabilisation. 

The combination of the two is called electrosteric stabilisation. 

Factors that affect the critical conversion (Xcrft). The effect of temperature and of the 

molecular weight of the polymer produced in the polymerisation, on Xcrit were 

examined by using a statistical approach. This approach eliminates the experimental 

error in the estimation of Xcrit. which is induced by the difficulty in achieving 

completely isothermal conditions. The results that derive from the statistical analysis 

are compared with predictions from the free volume theory, which is the prevailing 

theory used to explain the gel effect. Analysis of variance and K-means cluster 

analysis were used to analyse a large number of experimental results. The results 

showed that Xcrit depends on temperature, and on the molecular weight of the polymer 

produced in the polymerisation. The temperature dependence is consistent with the 

free volume theory, whereas, the molecular weight dependence is not taken into 

account by the free volume theory. Another very significant factor that was found to 

affect the kinetics of the polymerisation, was the type of stabiliser used. APMA and 

benzoyl peroxide (BPO), which was used as initiator, were found to interact. This 

interaction was manifested by a phenomenal decrease of the Xcrit· This effect was 
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attributed to an acceleration of the polymerisation reaction rate, caused by APMA, 

which acts as a catalyst for the decomposition of BPO. APMA accelerates the 

decomposition of BPO, and this effect was found to depend on the concentration of 

stabiliser. The magnitude of the interfacial area, between the continuous and 

monomer phases, also influences the decomposition of BPO, and hence the 

polymerisation rate, suggesting that the interaction between the two variables, is 

related to the interfacial area between the two phases. 

Keywords: Suspension polymerisation, polyelectrolyte solutions, suspending agents, 

non-Newtonian fluids, sodium polymethacrylate, ammonium polymethacrylate, gel 

effect 
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NOMENCLATURE 

Nomenclature 

a= constant 

a2 = constant 

A = (1) sample in chapter 4, (2) constant for the empirical equations in chapter 5 

B = (1) sample in chapter 4, (2) constant for the empirical equations in chapter 5 

b = impeller blade width (m) 

Bk =constant 

C =concentration of suspending agent (kg m"3
) 

D = impeller blade diameter (m) 

d = drop diameter (m) 

d32 = Sauter mean diameter (m) 

df = degrees of freedom 

dmax =maximum stable droplet diameter (m) 

(duldr)A= average shear rate (s-1
) 

e =distance between impeller blade and wall of reactor (m) 

f =initiator efficiency 

F = F statistic (F distribution) 

fi =frequency of drops with diameters within the range (d;+d;+1)!2 

- 19p+16 
f(p) = functiOn of p, j( p) = ---'---

16p+l6 

f, = volume frequency distribution 

G =velocity gradient (s-1) 

Gmax =velocity gradient at breakup of droplet (s-1
) 

Ho = null hypothesis 

Io = initial initiator concentration (mole/1) 

I= initiator concentration (mole/1) 

k= constant 

k1= constant 

k2 = constant 

K = constant from the power law model (Pas") 

kd =initiator decomposition rate coefficient (s-1
) 

kp =propagation rate coefficient (lmol_ls-1
) 

k, = constant 
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k, =termination rate coefficient (lmol-1s'1) 

k10 =termination rate coefficient at low conversion (lmol_ls-1
) 

L = Levene's statistic 

mi = level mean 

N = stirring speed (rps) 

n = viscosity index 

nT = total number of data points 

Np =power number 

N; = number of drops 

P = power consumption (W) 

p = viscosity ratio = lld I Jlappc 

r = Pearson's correlation 

R = universal gas constant 

SSR i:( Y;- y l 
R2 =--=--"'=::.'----

SST f(y;-Yl 
i=l 

Re = Reynolds number 

Rp =Propagation rate (s-1
) 

s = sample standard deviation 

s2 = sample variance 

Se= critical surface coverage (m2 kg"1
, or cm2 g'1) 

Sd; = surface area of a single drop with diameter d; (m2
) 

S; = interfacial area of fraction of drops with diameter dL(m2
) 

T = tank diameter (m) 

t =time (s) 

Ta = Taylor number, Ta = (NDJZ"e I v c>~ 

u2 =mean square turbulent velocity for the droplet (m2s'2) 

V= volume or the reaction mixture (m3
) 

Vd; = volume of a single drop with diameter d; (m3
) 

V; = volume of fraction of drops with diameter d; 

Vi,A= viscosity number of Onhnesorge number= f.ldl(pdCJdl· 5 

NOMENCLATURE 

Vi,T =tank viscosity group of the discontinous phase= (pclpd;D5 (J.!dND/a-) 
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We =Weber number 

(We)crit =critical Weber number 

(Weh= Weber number of tank= (PcN2D3)/cr 

-2 
(We )A.= Weber number for droplet= (pu d)/cr 

(We)0=Weber number when Vi =0 

x =(!)fractional conversion of monomer (2) a variable in chapter 4 

Xcrit = critical conversion 

x; = experimental value for variable x 

x = mean value of variable x 

y = constant for the empirical equations in chapter 5 

y = a variable in chapters 3 and 4 

y = the average of they; data points, or sample mean 

y; = data point, experimental value of variable y 

y1 =the predicted value for y;, 

y1 = the mean of the ith subgroup 

z, = the group means of the Zij 

z = the overall mean of the Zij 

Greek letters 

y =shear rate (s-1
) 

Ye= effective rate of deformation (s-1
) 

JIJ. =pressure difference across droplet- fluid interface (Pa) 

e =dissipated power per unit mass of the fluid (W kg-1
) 

11 = Kolmogoroff scale (m) 

1'/e =effective viscosity (Pas) 

() = dimensionless time 

A. = number of experiments 

fl = dynamic viscosity (Pa s) 

flapp = apparent viscosity (Pa s) 

v =kinematic viscosity (m2 s'1) 

IT= disruptive pressure difference across droplet-fluid interface (Pa) 

NOMENCLATURE 
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p = density (kg m"3
) 

11 =interfacial tension (kg s"2
) 

T = shear stress (Pa) 

cp = monomer volume fraction 

Subscripts 

c= continuous phase 

d= dispersed phase 

m= reaction mixture 

Abbreviations 

APMA = ammonium polymethacrylate 

BPO = benzoyl peroxide 

CT A = chain transfer agent 

HQ= hydroquinone 

M = molecular weight 

MAA = methacrylic acid 

MMA = methyl methacrylate 

Mv = viscosity average molecular weight 

Mw =weight average molecular weight 

n-DDM = n-dodecyl mercaptan 

PD = polydispersity index 

PMA = poly methacrylic acid 

PMA-Na =sodium polymethacrylate 

PMMA =poly methyl methacrylate 

PVA = poly vinyl alcohol 

PVC = poly vinyl chloride 

SSR = regression sum of squares 

SST = total sum of squares 

VCM = vinyl chloride monomer 

NOMENCLATURE 
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CHAPTER I 

SECTION 1. INTRODUCTION AND LITERATURE REVIEW 

CHAPTER 1. INTRODUCTION 

Suspension polymerisation is a process in which a monomer is dispersed in an 

aqueous medium by the combined action of agitation and of a suspending agent 

(stabiliser). The solubilities of the dispersed phase and of the produced polymer in the 

aqueous phase are usually low. Polymerisation occurs in the drops, and in most cases, 

by a free-radical mechanism. The size distribution of both the initial drops and the 

final particles depends upon the balance between breakup and coalescence 

mechanisms. This in turn depends upon the agitation intensity and the type and 

concentration of the suspending agent used (for given reactor and agitator geometry). 

Free radicals are (usually) formed by thermal decomposition of the initiator. Once 

formed, these radicals propagate by reacting with monomers to form long macro

radical chains. The growing chain terminates when two radicals react. 

The polymerisation reaction takes place in the following main steps: initiation, 

propagation, chain transfer and termination. During the course of polymerisation the 

physical properties of the reacting medium are subjected to significant changes. As a 

consequence, the kinetic parameters exhibit aberrations from "classical" kinetics, and 

in particular the termination rate becomes diffusion controlled, resulting in a great 

increase in the polymerisation rate, known as the auto-acceleration or 'gel effect'. 

These events influence both the molecular weight and molecular weight distribution 

(MWD) of the polymer products which under the influence of these phenomena 

becomes broader and some times bimodal. 

Suspension polymerisation is a widely used process, by which, polymer is produced 

in the form of particles or beads. The most important factors that determine the 

attributes of the final product are the particle size distribution and the molecular 

weight distribution of the polymer. 
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CHAPTER 2. LITERATURE REVIEW 

The drop and particle size distribution of polymethyl methacrylate (PMMA) and the 

molecular weight distribution have been the subject of excessive study. In order to 

control the particle sizes various suspending agents have been used and their 

behaviour has been investigated for suspension polymerisation. Nevertheless, the use 

of polyelectrolyte solutions, which are widely used as means to stabilise dispersions 

or suspensions in other industrial fields such as the ceramics industry, has not been 

investigated. The literature review covers the topics that are discussed in this study, 

which include the main topics of investigation for the suspension polymerisation 

processes, and additionally some topics that are not commonly encountered in 

suspension polymerisation studies. The main topics of investigation for suspension 

polymerisation processes are, liquid-liquid dispersions, suspending agents, dispersion 

mechanisms and polymerisation kinetics. Other topics also reviewed here are, the use 

polyelectrolyte stabilisers for dispersions, the effect of the pH on the formation of 

drops/ particles, and compounds that act as accelerators for radical polymerisations. 

2.1. Liquid-liquid dispersions 

When two immiscible liquids are brought into contact in an agitated vessel a 

dispersion is formed by the combined action of agitation and surface energy. In 

suspension polymerisation a monomer phase is dispersed in a continuous aqueous 

medium. In the first stages of suspension polymerisation, it is crucial that a uniform 

liquid- liquid dispersion is formed, since this dispersion determines the attributes of 

the final particles. The dispersion is maintained by agitation and the use of suspending 

agents. Consequently, it is controlled by the agitation intensity, the monomer volume 

fraction and the type and concentration of the suspending agent used (Dowding and 

Vincent, 2000). It was also observed that an increase in the viscosity of the 

suspending medium influences drop size and has different effect on drops of different 

sizes (W ang and Calabrese, 1986). The final drop size is determined by a balance 

between break up and coalescence. 
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2.1.1. Breakage and coalescence of drops 

For a breakage to occur, it is necessary that enough energy be supplied to the drop to 

overcome the force that holds it together as a function of surface tension. The energy 

for the breakage is provided from the field outside the drop either as kinetic energy in 

the turbulent eddies, shear energy or as a combination of both. For isotropic 

turbulence, when the diameter of the drops is less than the Kolmogorov length TJ, drop 

breakage results from viscous shear; if the drop diameter exceeds TJ, drop breakage is 

caused by turbulent pressure fluctuations (Borwankar et al., 1986; Brooks, 1990). As 

the viscosity of the continuous phase increases or the rotational speed of the agitator 

decreases, the turbulent eddies diminish and the shear forces exerted on the drops 

from the flow field become more important. Thus, the drop breakage rate depends on 

the surface tension and on the hydrodynamic field outside the drops. The drop 

coalescence rate is also influenced by several factors, such as the collision rate 

between the drops and the coalescence efficiency between colliding drops. The latter 

is a function of the time that two colliding drops remain in contact and the time 

required for the intervening liquid film to drain out to achieve film rupture and thus 

coalescence. For systems of higher continuous phase viscosities, a lower film 

drainage rate would be expected and thus lower coalescence rate. The collision 

frequency increases with increasing stining speed causing the coalescence frequency 

to increase, as well. (Howarth, 1963; Coulaloglou and Tavlarides, 1976). 

Breakage and coalescence frequencies are not uniform throughout the volume of the 

reactor. Drop breakup occurs near the impeller and droplet coalescence predominates 

at other locations to a great extent. Beyond distances from the impeller region of the 

order of only 116 of the impeller diameter, breakup has been found to be virtually non

existent (Park and Blair, 1975). Experimental work by Park and Blair (1975) also 

showed that only binary coalescence occurs even at the highest dispersed phase 

concentration investigated, although the collision frequency, and consequently the 

coalescence rate, increases with the increase of dispersed phase concentration. Sprow 

(1967) studied the effect of coalescence on the drop size distribution in turbulent 

liquid-liquid dispersions, and he found that the maximum drop diameter, dma., 

increased for increasing stining speed and increasing volume fraction. Zerfa and 

Brooks (1996(a)) also studied drop coalescence in suspension polymerisation and 
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showed that the extent of coalescence rises but only slowly with mixing time is 

roughly proportional to the agitation speed and decreases sharply when the 

concentration of the stabiliser increases. 

The size dependence on drop coalescence frequency was investigated by Tobin et al. 

(1990) by measurement of transient drop size distributions in coalescing systems. The 

results indicated that the coalescence frequency of small drops (10-50!lm in diameter) 

is lower than that predicted from a constant coalescence efficiency model, and the 

coalescence frequency is an increasing function of the drop pair sizes. 

Various models describing the breakage and coalescence of drops in turbulent flows 

have been developed, either based on the mechanism of coalescence of drops by film 

drainage (Valentas et al., 1966; Coulaloglou and Tavlarides, 1977; Narsimhan et al. 

1979; Sovova H., 1981, Kumar et al., 1991; Kumar et al., 1998) or on a population 

balance model (Alvarez et al., 1994; Maggioris et al., 1998; Ni et al., 2001; Jahanzad 

et al., 2005). More recently, the models established take into consideration the non

homogeneity of turbulence (Maggioris et al., 2000) 

2.1.2. Effect of hold-up fraction (<p) 

Zerfa and Brooks (1996 (b)) have established a relationship between drop size, 

volume fraction and Weber number in a turbulent dispersion. Increases in volume 

fraction of the dispersed phase led to widening of the drop size distribution. The effect 

of the dispersed phase concentration, <p, was also investigated by Kumar et al. (1991) 

who found that for low <p, the largest stable diameter increases with increasing <p, but 

decreases with increasing <p at high <p. They identified shear and accelerating flows 

prevailing in stirred vessels as alternative sources of drop breakup, and concluded that 

the observed dmax at high <p could be explained by drop breakage in shear flows. 

Similar observations were made by Boye et al. ( 1996) who studied the effect of the 

dispersed phase concentration on the Sauter mean diameter, as well as the effect of 

increase in the apparent viscosity of the dispersion due to the increase of the dispersed 

phase concentration on drop breakup, for xylene in water dispersions. They found that 

the viscosity of the dispersion exhibited strong non-Newtonian characteristics for 
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dispersed phase concentrations greater than approximately 50% by volume. The 

development of non-Newtonian flow properties and the increase in the apparent 

viscosity of the dispersion with increasing dispersed phase concentration changed the 

flow conditions in the tank from a turbulent regime to transitional and laminar flow 

regime. The sauter mean drop diameter measured as a function of the dispersed phase 

volume fraction ( <p) was successfully interpreted in terms of inertial breakage 

mechanism for <p <50%, and by a boundary layer drop breakage model for <p >0.50% 

by volume. For <p <50% the turbulence prevailed in the reactor, whereas for <p >50% 

the flow was not turbulent because of the high monomer hold-up which leads to high 

viscosity. In the turbulent flow regime, d32 increased with increasing <p, while in the 

non-turbulent regime the opposite effect was observed. 

Desnoyer et al. (2003) carried out an experimental investigation in order to analyse 

the drop size distributions of a liquid-liquid dispersion in a stirred vessel at high phase 

ratio (<p) up to <p=0.6. Two liquid- liquid systems have been investigated, one at low 

and one at high coalescence rate. They concluded that for a given impeller speed the 

mean diameter increased as <p increased, for both coalescing and non-coalescing 

systems. The linear relationship between the logarithm of d32 and the logarithm of the 

stirring speed predicted by Kolmogorov - Hinze theory was well verified with both 

systems suggesting that the correlation between the turbulent energy spectrum and the 

maximum stable diameter is still valid at high phase fraction. The formation of a 

secondary distribution was reported. 

2.1.3. Effect of the dispersed phase viscosity 

The effect of the dispersed phase viscosity on the maximum stable drop size in a 

turbulent flow was studied by Arai et al. (1977) who showed that the maximum stable 

drop size is controlled by two dimensionless groups, the Weber number, 

p~2d . . ~ 
We= , and the V!scos1ty number, v,,~ = r::-::::;. 

a ~~~ 

Calabrese et al. (1986) and, Wang and Calabrese (1986) investigated the effect of the 

dispersed phase viscosity alone and in relation to the interfacial tension on the drop 

breakup. They found that the drop size distribution broadens considerably as the 
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dispersed phase viscosity increases. The Sauter mean diameter was well correlated for 

various dispersed phase viscosities with either the Reynolds number or the impeller 

tip speed. They also showed that the relative influence of interfacial tension decreases 

as the viscosity increases. 

2.1.4. Effect of the continuous phase viscosity 

Little work has been done on the effect of the continuous phase viscosity on bead 

diameter. Stamatoudis and Tavlarides (1985) worked with continuous phase 

viscosities ranging from 3.6 cP to 223.1 cP and found that the effect of continuous 

phase viscosity on the drop size distribution is most pronounced for systems of high 

dispersed viscosities. A logarithmic plot of the Sauter mean diameter as a function of 

the impeller speed is a straight line, the slope of which varies with the continuous 

phase viscosity. The slope increases, reaches a maximum and then decreases with 

increasing continuous phase viscosity. This is attributed to an initial decrease of the 

breakage rate with the increasing viscosity of the continuous phase which results in an 

increase of the Sauter mean diameter. A still further increase of !le causes the 

coalescence rate to decrease, resulting in a decrease of d32 after reaching a maximum. 

To increase !le still further results in a region where d32 remains almost constant. This 

occurs because the decrease in the breakage rate is counterbalanced by the decrease in 

the coalescence rate. For higher impeller speeds the Sauter mean diameter changes 

little with increasing viscosity. 

Jegat et al., (1998) used sucrose and acacia gum solutions as the continuous phase for 

suspension polymerisation experiments, in order to study the effect of the increasing 

continuous phase viscosity on the bead diameter. It was concluded that the viscous 

shear break up theory was valid for the prediction of the beads maximum diameter. 

The effect of the continuous phase viscosity on the bead diameter has also been 

studied by Gaillard et al. (2000) who used solutions of acacia gum that displayed 

Newtonian behaviour, in order to increase the viscosity of the continuous phase. But 

the effect of a non-Newtonian highly viscous continuous phase on the bead diameter 

during suspension polymerisation has not yet been investigated. 
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2.1.5. Effect of non-Newtonian flow behaviour 

Lagisetty et al. (1986) and Koshy et al. (1988) investigated the effect of non

Newtonian flow behaviour of the dispersed phase on drop breakage. Shimizu et al. 

(1999) investigated the effect of the non-Newtonian flow behaviour on the drop 

breakage in liquid-liquid dispersions by using palm oil as the dispersed phase and 

aqueous solutions of carboxymethyl cellulose and xanthan gum as the continuous 

phase. They found that the non-Newtonian characteristics of the continuous phase 

caused an increase in the maximum drop size particularly at low impeller speeds and 

wide drop size distributions. The Sauter mean diameter was proportional to the 

maximum drop diameter in non-Newtonian and Newtonian systems. 

2.1.6. Dispersion mechanisms 

Breakage is the result of viscous shear forces and turbulent pressure fluctuations in 

the vicinity of a droplet (Walstra, 1993). There are two main theories to account for 

the dmax of stable droplets in stirred liquid-liquid dispersions: the inertial breakup 

theory established by Hinze (1955) from the homogeneous isotropic turbulence of 

Kolmogorov and the shear viscous breakup theory established by Taylor (1932, 

1934). 

Leng and Quarderer (1982) proposed 4 models, two based on laminar shear and two 

based on turbulent flow, to describe drop dispersion in non coalescing systems. The 

models predict the largest surviving drop size dmax as a function of geometry, speed 

and physical property variables. Experimental evidence supports the boundary layer 

Iaminar shear model for drops larger than approximately 200 microns, while the 

presence of smaller drops supports a turbulence model. Both shear and turbulent 

mechanisms can produce stable dispersions (dispersions formed for non - coalescing 

conditions). The transition occurred at a Re of about 1000. 

Jegat et al., (2001) found that when the viscosity of the continuous phase J.lc 

increases, the ratio cr/ [J.lcf(p)], where pis the ratio of the viscosities of the two phases, 
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cr is the interfacial tension, and 11<: is the continuous phase viscosity (see equation 

2.1.6.22), as well as the maximum drop diameter dmax decreases. A linear relation of 

the maximum diameter dmax to the ratio cr/ [f.lcf(p)] was found in two peculiar regions 

separated by a break point. These workers attributed this breakpoint to changes in the 

nature of flow as a function of the Taylor number, which is given by the equation 

Ta = (NDJZ"e!vc)~, where N=stirring speed (rps) D=impeller blade diameter (m) 

e=distance between radius of small and big coaxial cylinders or between the impeller 

blade and the wall of reactor (without baffles) Ye= kinematic viscosity of continuous 

phase (m2 s"1
). On one side of the breakpoint and for lower continuous phase 

viscosity, the Taylor number is Ta>400 and the flow is turbulent. On the other side of 

the breakpoint and for higher continuous phase viscosity, the Taylor number is 

Ta:.,; 400 and the flow is laminar with Taylor vortices. Therefore, the breakpoint 

corresponds to changes in the nature of the flow. 

2.1.6.1. Inertial breakup theory 

In a turbulent dispersion, three different forces act on an isolated droplet: a dynamic 

pressure due to the surrounding liquid(<) a viscous shear of the droplet related to the 

viscosity of the droplet, f.ld ~ , and the pressure difference whose order of 
d vP:: 

magnitude is cr/d. The dynamic pressure and the pressure difference always act on the 

droplet, while the viscous shear is only taken into account for high droplet viscosity. 

When the viscous shear is negligible, the ratio of the dynamic pressure to the pressure 

difference reduces to a function of cr: r 
1 
d =(We).<. 

0" 

The We for the droplet (We)" can be expressed as 

(We)•= Pii2d 
0" 

(2.1.6.1) 

where u2 is the mean square turbulent velocity for a droplet of dimension d. 

(2.1.6.2) 
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where (We)"" is the critical We, which is the value of (We)" corresponding to the 

breakup of the droplet. 

When the viscosity of the droplet liquid increases, the ratio of the external forces to 

the internal forces cannot simply be expressed in term of (We)". The viscous shear is 

no longer negligible. Therefore, (We)"" must be experessed as a function <p of ~d and 

a by using the viscous (Ohnesorge) number Vi,l.: 

(2.1.6.3). 

Hinze (1955) proposed the following relation for (We)cri., taking into account Vi,l.: 

(2.1.6.4) 

where (We )0 is constant. The function <p(Vi.l.) decreases to zero when (Vi.0 tends to 

zero. 

It is known that(We)""is nearly constant when the viscosity number is smaller than 

0.1 (Tamogrodzki, 1993). In this case, the dynamic pressure induced by the turbulent 

flow is the determining factor for the greatest droplet diameters. Unfortunately, the 

We for a droplet cannot be determined. To avoid this difficulty, the Weber number of 

the chemical reactor (Weh is generally used (for stirred tank reactors), because it is 

proportional to the We of the droplet (We)o. 

pNzD' 
(We)~(We)o, and (Weh "--'--' -

a 
(2.1.6.5) 

When the stirring speed is constant in a given reactor the (Weh becomes 

(We)~P, 
(j 

(2.1.6.6) 

According to Kolmogorov's theory of isotropic homogeneous turbulence, the ;;>is 

independent of the of the macroscopic parameters of the flow. When the d of small 

eddies (i.e. the size of droplets) is much smaller than the D of the largest eddies (i.e. 

the impeller diameter) Kolmogorov defined the scale1] as 1] = e-114v:'4 where E is the 

dissipated mechanical power per unit mass of the stirred suspension and Ye is the 

kinematic viscosity of the continuous phase. 

(2.1.6.7) 
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-2d 
h -2 ) PcU max Sh By replacing these two relations ips for u to (We "'1 = , innar and 

Church (1960) obtained the following relations: 

( )

3/S 

When D>>d>>T], drr.x"" e-•ns ; 

( )

113 

When D>>l]>>d, dmax"" crv, 
ep, 

Replacing (a/pc) by (We)T leads to 

(2.1.6.11) 

(2.1.6.9) 

(2.1.6.10) 

When (We)"" differs from (We)o for highly viscous drops, then 

(2.1.6.12) 

and dmax"" ~:'6115 [(We)T(l+<p(VL0] 315 (2.1.6.13) 

Experimental relationships based on inertial break up theory 

(j 

Equation 2.1.6.11 validates the experimental relationships, established by several 

authors (Shinnar and Church, 1960; Coulaloglou and Tavlarides, 1976) for the mean 

diameter of a drop, when the viscosities J1<l and !le are close to each other and to the 

viscosity of water at the reaction temperature : 

(2.1.6.14) 

It is generally accepted that e'215 from eq. 2.6.1.11 is proportional to k1(1 + a<p) from 

eq. 2.1.6.14. 

Equation 2.1.6.13 is analogous to the following experimental relation established by 

Calabrese and eo-workers. (Calabrese et al.,1986a; 1986b) 

d32 =k2[(We)-T31S(1+a2V.T)II3r!S (2.1.6.15) D V I. 
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where k2 -0.05 and a2 -4-5, and 

(2.1.6.16) 

A simpler relationship was proposed by Das (1996) 

(2.1.6.17) 

2.1.6.2. Viscous shear breakup theory 

The first work of significance which considered the distortion of a droplet caused by 

the viscous stresses exerted by the surrounding continuous phase was the work of G.l. 

Taylor in 1934 (Taylor, 1934). His work provided a theoretical and practical analysis 

of the drop break-up process as a result of the local shear field experienced by a drop. 

In effect, the first stage in understanding the action of emulsification was to consider 

the break-up of drops in homogeneous fields. The theoretical analysis was supported 

by experimental results. Taylor's paper provided the first photographic record of the 

break-up process for a variety of conditions. 

According to Taylor's theory, a drop will continue to survive as long as its surface 

energy exceeds the local fluid energy. Drop breakage occurs when fluid stresses 

exceed surface resistance. This leads to the statement of conditions for the survival of 

a drop of a given diameter d. The pressure difference at the droplet-liquid interface 

(~)is ~ = 40" 
d 

(2.1.6.20) 

Taylor (1934) showed that the disruptive pressure difference across the interface (II) 

is 

II = 4GpJ(p) (2.1.6.21) 

where f(p)=(
19

P+
16

) with p=(f.la) 
16p+16 f.lc (2.1.6.22) 
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where f(p) is the function f of the viscosity ratio p and G is the velocity gradient of 

shear rate. 

Taylor assumed that in a laminar or semi laminar flow a droplet breaks up when the 

disruptive pressure is greater than the pressure difference: IT ;:>: t;. 

The equality is the limiting value that corresponds to the largest stable droplet 

diameter. So, dmax can be obtained from the relationships 

40' d ""4GmaxflJ(p) 
max 

(2.1.6.23) 

and (2.1.6.24) 

where Gmax is the velocity gradient at the breakup of the droplet. It is difficult to 

express Gmax as a function of ~· The Blasius solution for a boundary layer flow 

perpendicular to the cylinder axis is 

(2.1.6.25) 

where R is the radius of the cylinder and V is the relative velocity between the fluid 

and impeller. In this case dmax should be a function of ~·l/2 

Taylor' s theory assumes that the breakup process is due to a viscous shear. The 

viscosities of the two phases do not play the same role: ~ is a determining factor, 

while J.lct appears in function f(p) as p=J.lct I ~· The influence of the ~ has received 

relatively little attention, and there are not many experimental relationships that 

describe the effect of the continuous phase viscosity on the drop or particle sizes. 

Experimental relationships based on viscous shear breakup theory 

Experimental relationships that relate a mean diameter d with the continuous phase 

viscosity ~ are the following: 

(2.1.6.26) 

established by von Hopff, (1964) and 
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d /1
-o.s 

10 oc c (2.1.6.27) 

where d =u,d," 
pq Dcdq 

' ' 

established by Leng and Quarderer (1982). These relationships, though, have not been 

confirmed by other authors. 
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2.2. Suspending agents and their effects on particle size and morphology 

Aqueous suspensions can be stabilised by a combination of agitation and the use of 

water soluble stabilisers. These may include electrolytes to increase the interfacial 

tension between the phases, and water soluble polymers which are absorbed on the 

monomer water interface providing stabilization of the suspension by a steric 

mechanism. Stabilisers may also include finely divided insoluble organic or inorganic 

materials which interfere with agglomeration mechanically. 

As the polymeric stabiliser dissolves in the aqueous phase it acts in two ways: First it 

decreases the interfacial tension between the monomer droplet and water to promote 

the dispersion of droplets. Second, the stabiliser molecules are adsorbed on the 

monomer I water interface and prevent other drops from approaching because of steric 

repulsion forces. This causes reduction of immediate coalescence due to the 

increasing strength of the liquid film entrapped between two colliding drops. The 

presence of a protective film prolongs the contact time for drop coalescence, thus 

increasing the probability of drop separation by agitation. However, some collisions 

do result in adhesion of the colliding drops. In this case the thickness of the 

intervening film tends to decrease with time and finally collapses, permitting thus the 

coalescence of droplets (Chatzi et al., 1991; Yan et al., 1991;Vivaldo-Lima et al., 

1997) 

One of the most important issues in the practical operation of suspension 

polymerisation is the control of the final particle size distribution. The main factors 

that determine the particle size and the particle size distribution of the polymer are the 

type, attributes and concentration of the stabiliser. The presence of suspending agents 

hinders the coalescence of monomer droplets and the adhesion of partially 

polymerized particles during the course of polymerisation. Much research has been 

carried out in order to determine the effects of the suspending agents on the final 

particles under various operating conditions. 

Zerfa and Brooks (1997) demonstrated that the type of stabiliser can affect the poly

vinyl chloride (PVC) particle's shape, size distribution and porosity. The effects of the 

suspending agent on the morphology of the resulting particles was examined by 

Lemer and Nemet (1999) and more specifically the effects of poly-vinyl alcohol 
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(PVA) which is one of the more extensively used stabilisers, on the suspension 

polymerisation of vinyl chloride. At the initial steps of polymerisation PVC molecules 

are grafted onto the molecules of the suspending agent forming a PVC-PVA 

membrane. The properties of this membrane depend on the type of suspending agent, 

the polymerisation temperature, the mixing efficiency and other factors. The 

morphology of the growing PVC particles and the properties of the PVC resin depend 

in turn on the characteristics of the suspending agent. Growing PVC particles are 

covered by a PV A-PVC membrane, which regulates the degree of particle 

contraction. If the degree of PVC grafting on the suspending agent is sufficiently 

high, the membrane toughness will also be higher resulting in a lower degree of 

particle shrinking and therefore higher PVC porosity. Porosity is also related to the 

surface tension of the suspending medium. A combination of low surface tension 

PV A and intense agitation results in high porosity particles of PVC, while · a 

combination of medium surface tension PV A solution and low agitation results in low 

porosity dense particles (Ormondroyd, 1988). The importance of grafting of PVA on 

MMA during emulsion polymerisation was shown by the experimental work 

performed by Ohoya and eo-workers (1999). Kiparissides et al. (1993) investigated 

quantitatively the electrostatic and steric stabilisation of primary PVC particles. 

Electrostatic stabilisation takes place as electrolytically active species (i.e. HCI) 

formed during the polymerisation are initially concentrated on the surface of the 

primary particles, thus providing the necessary negative electrostatic stabilizing 

forces. However, as the size of the primary particles increases, the contribution of the 

electrolytically active species decreases, resulting in a corresponding decrease of the 

particles' electrostatic stability. Steric stabilisation is achieved by the adsorption of 

PVA polymer chains on the drop surface. 

The effect of continuous phase viscosity on the drop size of liquid-liquid dispersions 

in agitated vessels was examined experimentally by Stamatoudis and Tavlarides, 

(1985). Their experimental results indicate a decrease in Sauter mean diameter with 

increasing viscosity. The effect of continuous phase viscosity, though, is more 

pronounced for systems of high dispersed-phase viscosities and therefore for this 

system the drop size distribution becomes narrower and is shifted towards smaller 

drop sizes. The influence of the viscosity of the suspension medium in relation to 

molecular weight distribution and particle morphology was examined by Cebollada et 
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al., (1989) and the experimental results demonstrate that there is no appreciable 

influence of the characteristics of the suspension medium on the molecular weight 

distribution. In the case of particle size, high viscosity media produce larger size, 

unicellular spherical particles retaining their identity as individual droplets. 

Conversely, low viscosity media favour the formation of smaller particles. At lower 

viscosities, however, coalescence mechanisms become active simultaneously, 

resulting in multicellular structures. As a consequence, particle size will exhibit a 

minimum at a critical value of viscosity when all other parameters are kept constant. 

Viscosity is predicted to have no effect when turbulence governs dispersion. When 

shear controls breakage, drop sizes should respond to flc-o.s. Increasing viscosity leads 

to a decrease in the drop size. Changes in viscosity were accomplished by increasing 

the PV A concentration. These changes in PV A concentration did not affect cr at the 

high concentration used (Leng and Quadrerer, 1982). The concentration of suspending 

agent which just prevented coalescence was noted. It was found that there was a 

critical surface coverage, S,, for each suspending agent, such that if the ratio of the 

interfacial area of the dispersion over the weight of the suspending agent in the 

. . . int eifacial area 
disperswn was higher than S,, > S, , coalescence 

weight_ of_ suspending_ agent 

occurred. If the ratio was smaller than S,, ___ I_· n_t..,.e.=.rfi_a_c_ia_l=-a..,.r_e_a ___ ~ s, , the 
weight_ of_ suspending_ agent 

system was stable. 

The concentration of suspending agent necessary to stabilize a liquid dispersion is 

C= 6rpS,I( ( 1-rp )d32) (Leng and Quadrerer, 1982) 

And the critical surface coverage may be calculated from the expression, 

S, = ( 
1

- rp )d32C (Borwankar et al., 1986). The Sauter mean diameter d32 is defined 
rp 

-3 -2 -
as d32 = 'Lfid1 I 'Lfid, and d, = (di + di+I)/2, wheref; is the frequency of drops in 

the size range d; and d;+I· The frequency of the drops f; is calculated from the drop 

size distribution 

Zerfa and Brooks (1998) studied the kinetic mechanism of PV A adsorption at the 

vinyl chloride/water interface in monomer suspensions for different experimental 
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conditions. The surface coverage was found to be independent of both the turbulence 

intensity and the vinyl chloride drop size. The quantity of PV A adsorbed was found to 

be proportional to the volume fraction of the monomer and a multilayer is formed 

when high concentrations of PV A are used. The results lead to the conclusion that 

although saturation of vinyl chloride/water interface with PV A was reached relatively 

quickly (in less than 5 rnin) due to the fact that PVA molecules diffuse relatively 

quickly to the interface, the stability of VCM droplets was not reached before 30 min. 

This delay was attributed to the rearrangement and spreading of the PV A molecules 

on the interface until they reach a favourable conformation. For another monomer, 

MMA, and in the case of PV A adsorption on the interface of MMA/water system, the 

concentration of PV A adsorbed was found to vary with increasing impeller speed. It 

was observed that in the absence of polymerisation reaction, the concentration of 

PV A adsorbed increases with impeller speed, reaching a maximum at 400 rpm and 

then decreases with increasing impeller speed (at high speeds) (Lazrak et al., 1998). 

PVA adsorption on the monomer (styrene)/ water interface has also been studied by 

means of interfacial tension variations with time and PV A concentration at different 

temperatures (Chatzi et al., 1991). It was demonstrated that both the time required to 

reach equilibrium and the interfacial tension decrease with increasing PV A 

concentration. Initially, it appears that surface tension is relatively independent of 

concentration up to about 0.01 g!L. For PVA concentrations higher than 0.01 g!L 

there is a break point and the surface tension decreases almost linearly on a sernilog 

scale. A possible explanation for the observed variations of interfacial tension with 

respect to PV A concentration may be a complete and rapid unfolding of the very 

flexible PV A molecules for low PV A concentrations, resulting in an extended 

conformation of PV A with a large number of segments per molecule in the interfacial 

region. The break point marks the onset of almost complete coverage of the interface 

and its saturation with molecules having an extended conformation. The rather steep 

decrease of interfacial tension at higher concentrations is probably due to increased 

adsorption of molecules and the appearance of strong repulsive forces. The 

conformation of adsorbed molecules will be random initially. However, as the number 

of adsorbed segments increases, the packing of the molecules in the surface layer 

increases up to the formation of a monolayer. Above this concentration no significant 

changes of the drop size distribution are expected. 
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The experimental investigation of the effect of PV A on styrene, conducted by Y ang et 

al., (2000) demonstrated that an increase in PV A concentration decreases the mean 

drop size and narrows the drop size distribution. There is a critical concentration of 

PVA that depends on the monomer volume fraction, above which, further increases in 

PV A concentration do not have a great effect on the drop size and volume 

distribution. 

Although, most of experimental work reported on suspending agents, refers to the use 

of PVA, (Konno et al., 1982; Chatzi et al., 1991; Lazrak et al., 1998; Yang, 2000, He 

et al., 2002), the stabilising effects of some polyelectrolytes such as polymethacrylic 

acid and copolymers of methacrylic acid with methyl methacrylate were also 

investigated (Ryabov and Panova, 1972). It was concluded that the stabilising effect 

of the PMMA and of the MAA+MMA copolymer becomes evident at pH values 5-7, 

while it decreases at pH below 4. The stabilising effect is improved at pH values 

above 7, when the carboxyl groups are ionised. 

The effect of the type of stabiliser on particle size, porosity and morphology was also 

investigated experimentally (Konno et al., 1982) and in particular the effect of PVA 

on the suspension polymerisation of styrene. It was demonstrated that the dispersed 

drop size does not depend upon stabiliser concentration at the early stage of the 

reaction, but is influenced by it after the middle stage of the reaction. A bimodal drop 

size distribution appears during the reaction and the lower drop size mode in the 

distribution maintains a constant diameter, while the second drop size mode is shifted 

to larger sizes. The experimental results show that the stabiliser does not effectively 

prevent the coalescence of dispersed drops of a size larger than dma,, owing to the 

considerable deformation of the dispersed drops. 

2.2.1. Ammonium and Sodium salts ofPolymethacrylic acid 

Polyelectrolyte solutions are widely used to stabilise large colloidal particles and have 

found applications in many industrial fields such as the cosmetics industry, the 

adhesives industry and the paper industry. Sodium polymethacrylate (PMA-Na) is 

also used in the ceramic industry as a suspending agent to stabilise alumina 

suspensions (Cesarano et al., 1988; Sundlof and Carty, 2000). Although, it has not 
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been reported previously (to our knowledge) PMA-Na may also be used in the 

polymer industry as a suspending agent for suspension polymerisation reactions. The 

fact that it is listed within the non-hazardous chemicals list (environmental friendly) is 

one of the benefits of using this polyelectrolyte salt. The most significant advantages, 

though, of using PMA-Na as suspending agent for suspension polymerisation 

reactions are that PMA-Na is easily removed with water and washed off from the 

final polymer product at the end of the reaction, and secondly it is not grafted on the 

particle surface like other common stabilisers are, e.g. polyvinyl alcohol (Lemer and 

Nemet, 1999). 

The latter is a very important advantage, especially when a high purity polymer is 

required. Despite the obvious advantages, the use of PMA-Na induces various 

complexities, because of the high viscosity and the non-Newtonian behavior that 

characterises the aqueous solutions of PMA-Na. 

The Ammonium Salt of Polymethacrylic acid (APMA), known as 'Darvan C', has 

been widely used in the ceramic industry as a suspending agent in order to stabilise 

ceramic powders in aqueous suspensions (Cesarano et al., 1988; Kelso and 

Ferrazzoli, 1989; Beattie and Djerdjev, 2000; Sundolf and Carty, 2000; Cho and 

Dogan, 200 I). In general, suspensions can be stabilised by electrostatic, steric or 

electrosteric mechanisms. Electrostatic stabilisation is accomplished by generating a 

common surface charge on the particles. Steric stabilisation is achieved by adsorption 

of polymeric additives which serve to form protective colloids. Electrosteric 

stabilisation, is a combination of the two aforementioned, and requires the presence of 

adsorbed polymer or polyelectrolyte and significant electrical layer repulsion. The 

use of polyelectrolyte species promotes the stability of the suspension through an 

electrosteric mechanism. 

The critical factors that determine the stability of a suspension in the case of aqueous 

ceramic suspension are apart from the surface chemistry of the powders, the pH, the 

degree of polyelectrolyte dissociation, the molecular weight of the polyelectrolyte and 

the quantity of polyelectrolyte. 

The dissociation of APMA and PMA-Na is strongly affected by the pH of the solvent. 

The fraction of dissociation of APMA at different pH values increases from 0 at pH=2 
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to 1.0 at pH=ll-12. Therefore, APMA changes from a relatively neutral polymer at 

pH=2 to a fully negatively charged polymer at pH=11-12. Ionised APMA is expected 

to have a more stretched conformation with increasing pH because of the electrostatic 

repulsive force between negatively charged side groups (Jean and Wang, 1998). More 

specifically, the degree of APMA dissociation was studied by Cho and Dogan, (2001) 

who conducted ESA (Electrokinetic Sonic Amplitude) measurements. According to 

these measurements, below pH =8 dissociation of APMA molecules decreases 

approaching 0, while above pH=8 the ESA values remain constant, indicating that 

APMA molecules are fully dissociated. 

The stability of aqueous Barium Titanate suspensions as a function of pH was 

investigated experimentally and the adsorption of APMA was found to decrease as pH 

increases and the amount of APMA required to stabilise a suspension decreases as pH 

increases. A combination of electrostatic and steric stabilization, electrosteric 

stabilization is believed to be operative at pH =7-12 with the various concentrations of 

APMA investigated (Jean and Wang, 1998). 

The investigation of alkaline earth titanates' suspensions shows that the suspension is 

stable at a critical addition of APMA. With further addition of the polyelectrolyte a 

transition from stabilization to flocculation occurs. It was also concluded that at acidic 

pH range the steric repulsion of APMA has a positive contribution on the dispersion 

(Shih and Hon, 1999). 

The experimental investigation of alumina suspension with APMA showed that the 

adsorption density of APMA continuously decreases with increasing pH up to about 

pH =9 and thereafter becomes insignificant due to electrostatic repulsion. Desorption 

studies also indicate that cumulative percentage desorption of APMA from the 

alumina surface increases with increasing pH. Hydrogen bonding, electrostatic and 

chemical interactive forces are postulated to govern the adsorption process. 

Conformational changes also take place as a function of pH. At alkaline pH values, 

the polymer is fully ionized and the negatively charged sites on the polymer chains 

tend to repel each other and this leads to a stretched conformation, with the polymeric 

chains dangling into the solution phase. Such a stretched configuration of the polymer 

should favour hydrogen bonding. However, at acidic pH values, namely at pH 3, the 

polymer chains have a coiled conformation due to the absence of intrapolymer-chain 
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electrostatic repulsion. Consequently, each polymeric chain covers a relatively large 

surface area and enhanced adsorption is observed. Thus both electrostatic and 

conformational factors govern polymer adsorption as a function of pH, while FfiR 

analyses demonstrated the existence of hydrogen bonding (Santhiya et al., 2000). 

2.3. Production of fine particles 

The existence of one or more secondary distributions of fine or emulsion particles is 

of major importance in many industrial processes (solvent losses or pollution). It is 

well known that the breakage of a single drop in two equivalent daughter drops may 

be accompanied by the formation of smaller drops or 'satellite' drops (Karam and 

Bellinger, 1968). These drops may result from the stretching of the liquid filament 

that develops just before the daughter drops' separation (Stone 1994). Shreekumar et 

al. (1996) found that, at least during breakage of a drop of diameter greater than dmax 

by interaction with a fluctuation of equal length scale, a satellite drop is always 

formed between two larger drops. When very large drops are broken by smaller

length-scale fluctuations, highly deformed shapes are produced suggesting the 

possibility of further fragmentation due to instabilities. The emulsion particles may 

also result from molecular diffusion causing partial dissolution of the monomer/ 

polymer droplets (Azad and Pitch., 1978). This occurs faster for smaller drops 

because of their higher surface energy. The addition of inhibitor has been found to 

suppress the formation of the emulsion particles by consuming the initiator particles 

formed in the aqueous phase (Jahanzad et al., 2004) 

2.4. Effects of pH 

In agitated liquid-liquid dispersions, four primary factors are known to affect the 

coalescence process. These factors are 

1. energy dissipation rate, which governs the energies of the drop collision 

process and to some extent the frequency of coalescence 
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2. the dispersed phase concentration which directly determines the collision 

frequency 

3. the viscosities of the continuous and dispersed phases, all of which affect the 

rate of film drainage between two colliding drops 

4. the interfacial tension of the system, which bears on the deformability of the 

drops 

In addition to the above factors, there is evidence that drop surface charge can also be 

important for determining coalescence rates in agitated dispersions. Experimental 

work performed by Howarth (1967) showed that in the case of an organic substance in 

water dispersion (5% benzene/CCI4 in water) where the surface was charged by the 

addition of an electrolyte, the electrolyte type and concentration plays a definite role 

in determining the coalescence rate of the organic droplets. Reddy and Fogler (1980) 

showed that emulsion droplets can be substantially stabilised against coalescence 

merely by increasing the pH of the system. They investigated possible alternative 

explanations but were eventually led to the conclusion that the drop surface charges 

were due to preferential adsorption of hydroxide ions. 

Doxastakis and Sherman (1984) studied the rate of drop coalescence in concentrated 

corn oil-in-water emulsions stabilized with sodium caseinate, glyceryl monostearate 

and glyceryl distearate. Both pH and the monoglyceride/diglyceride ratio influence 

coalescence. At any pH, minimum coalescence was observed at a 5/2 

monoglyceride/diglyceride ratio. This was attributed to association of caseinate with a 

previously formed 'complex' of rnonoglyceride and diglyceride, so supporting an 

interpretation previously proposed on the basis of rheological data for the emulsions 

and for films of caseinate-glycerides at the oil-water interface. 

Ggillc et al. (1986) examined the separation of fine dispersions of organic solvents in 

water by passage through glass fiber beds. Dispersions were generated in a stirred 

tank and the Sauter mean diameter of organic droplets was between 10 and 30 ~m for 

a wide range of Interfacial tensions as well as viscosities of organic solvents. They 

showed that the pH of the aqueous phase affects the coalescence rate considerably. 

Tobin et al. (1991) studied the effect of the drop charge as a function of pH, on 

coalescence in agitated liquid-liquid dispersions and demonstrated that drop charges 

22 



CHAPTER2 

can substantially alter the coalescence rate of droplets in an agitated dispersion. 

Elevation of the pH causes the drop size distributions to narrow and shift towards 

smaller sizes. In addition, the presence of a drop charge in such dispersions appeared 

to be latent, and was attributed to the preferential adsorption of hydroxide ions onto 

the organic-water interface. The effect of drop charge on coalescence was strongly 

size-dependent, and reduction of the electrostatic repulsion promoted coalescence of 

the largest drops primarily. Tobin and Ramkrishna (1992) studied the effect of the pH 

of the aqueous phase on the coalescence rate of drops of benzene and carbon 

tetrachloride dispersed in water. They found that an increase in pH inhibited 

substantially the coalescence of drops, an effect that was attributed to the preferential 

adsorption of hydroxide ions onto the water organic interface 

Kawashima et al. (1993) controlled the size of ibuprofen microspheres fabricated by 

the o/w emulsion solvent diffusion method by adjusting the pH in an aqueous 

dispersion phase. 

Velev et al. (1994) performed experimental research into model oil-in-water emulsion 

systems stabilized with non-ionic surfactant blends: thin aqueous films between oil 

phases and oil drops coalescing against their homophase. Xylene was chosen as the 

oil phase and Tween 20 and Span 20, alone or in mixtures an different molar ratios, 

were used as stabilisers. The roles of the electrolyte concentration and pH were 

studied. It was shown that there is considerable electrostatic repulsion within the 

aqueous films, and that the pH affects significantly the coalescence rate. 

Deshiikan and Papadopoulos (1995) studied the coalescence of n-hexadecane oil 

drops with diameters within the range 70-100 f.!m, suspended in an aqueous medium 

of varying pH and ionic strength. They found that pH is more important than ionic 

strength in controlling the coalescence of charged oil drops. They also observed that 

the coalescence times indicated faster coalescence at acidic pH than at alkaline pH. 

Ruiz et al. (2002) studied the effect of pH changes on the breakage rate of organic 

drops. The organic phase they used was a 1:1 mixture of a salicylaldoxime and a 

ketoxime in an aliphatic diluent. They found that changes in the surface charge of the 

organic drops in liquid-liquid dispersions, would produce variations in the resistance 

to deformation (stiffness) of the drop surface, which in turn will change the tendency 
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of the drops to undergo breakage. A decrease of the pH increased progressively the 

tendency of the organic drops to undergo breakage, giving finer drops, due to changes 

in the surface charge of the drops produced by the pH change. 

Kraume et al. (2004) carried out an experimental investigation to analyse the 

influence of coalescence behaviour on drop size distributions in stirred liquid-liquid 

dispersions. They studied the influence of pH and addition of ions and found that the 

pH exerts a significant influence on the coalescence rate. 

2.5. Kinetics 

Free radical polymerisation of MMA, as with many other monomers, exhibits an 

autoacceleration of the polymerisation rate known as Trommsdorff or 'gel effect' 

which leads to an increase of the molecular weight of the polymer, accompanied by a 

sudden temperature rise. Consequently "classical" kinetics do not apply during 

autoacceleration regime and the modeling of polymerisation all over the conversion 

range has not yet been achieved due to a incomplete understanding of the origin of the 

phenomenon. 

2.5.1. Trommsdorff effect (gel effect) 

Many theories have been proposed trying to interpret the autoacceleration 

phenomomenon or gel effect. Experimental tests, though, to discern among these 

theories have been lacking. The most widely accepted interpretation of the 

phenomenon is based upon the changes in apparent kinetic parameters of the 

elementary reactions which occur during the course of the polymerisation. 

The kinetic expression describing free radical polymerisation at low conversions is 

where Rp is the propagation rate, kp is the propagation rate constant, M is the 

concentration of monomer, f is the initiator efficiency, I is the initiator concentration 

and k1 is the termination rate constant. This expression does not apply, though, to 
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higher conversions, where Rp undergoes a sharp increase with an accompanying rise 

in system temperature and degree of polymerisation. The phenomenon was associated 

with a decreased termination rate constant. 

During the autoacceleration regime dramatic changes in the solution properties take 

place. Various approaches have sought the onset of autoacceleration to a 'critical' 

polymer concentration and a 'critical' molecular weight (Dvomic and Jacovic, 1981). 

Abuin et al. (1977) suggested that both the conversion at which the gel effect appears 

and the value of k1 at a given conversion depend on the molecular weight of the 'dead 

polymer'. The mean size of the growing radicals is also found to influence k1• 

The onset of the autoacceleration of the propagation rate was attributed to the 

increasing bulk viscosity, which severely impeded the diffusion of the propagating 

chains causing a restriction or decrease of the termination reaction which in turn leads 

to a higher radical population and consequently an increase of Rp. In other words, 

with increasing monomer conversion the viscosity of the reaction mixture increases 

by many orders of magnitude until it becomes high enough to induce diffusion control 

over the termination steps of the polymerisation reaction, resulting in a significant 

decrease in the apparent rate constant of the termination reaction k1• As a 

consequence, a large autoacceleration in the rate of polymerisation occurs which is 

associated with a simultaneous increase in the molecular weight of the polymer 

produced. 

Brooks (1977) investigated the kinetics of free-radical polymerisation at high 

viscosities, the relationship between radical mobility and viscosity and polymer 

volume fraction, and related the chain termination rate coefficient with the viscosity. 

Bogunjoko and Brooks (1983 (a)) investigated the influence of increasing solution 

viscosity on the molecular weight distribution suggesting that the mobilities of the 

growing radicals are not equally influenced by the solution viscosity (Bogunjoko and 

Brooks, 1983 (b)). 

Dvomic and Jacovic (1981) investigated the kinetics of the suspension polymerisation 

of methyl methacrylate initiated by benzoyl peroxide and the effect of the 

concentration of the molecular weight regulator (dodecyl mercaptan) at the onset of 

the gel effect. They drew the conclusion that there exists a critical viscosity of the 
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polymerisation mixture at which the termination reaction becomes diffusion 

controlled and that autoacceleration begins when the critical viscosity is reached. 

Cioffi et al. (2001) carried out rheokinetic studies of free radical polymerisation (in 

bulk) of styrene and n-butylmethacrylate at high degrees of conversion and they 

showed that the viscosity of the reacting mixture initially increases and then after 

reaching a certain value decreases suddenly exhibiting a highly irregular trend with 

time. This phenomenon was attributed to phase separation which occurred when the 

polymer concentration increased and therefore it was no longer soluble to the residual 

monomer. 

In the last decades, three approaches have been presented that could potentially 

explain this phenomenon. The first is that the formation of chain entanglements plays 

a pivotal role in restricted chain mobility, leading to the decrease in k1• Tulig and 

Tirrell (1981) developed an entanglement based model, which related k1 to the 

diffusion coefficient of the propagating chains and included molecular weight and 

concentration scaling for the diffusion constant. There also exist experimental data 

(Abuin and Lisi, 1977; Abuin et al., 1977) that link entanglements to the gel effect. It 

was observed that there appears to be a higher gel effect onset concentration when 

lower molecular weight polymer is formed. This observation was qualitatively 

consistent with the entanglement theory, as entanglements should form at higher 

conversions for lower molecular weight. O'Shaughnessy and Yu (1994) also 

attributes the onset of gel effect to entanglement - dominated kinetics (k1 is controlled 

by polymer self diffusion which in turn exhibit entangled polymer dynamics) and 

suggests that the long chain mobility is reduced by entanglements to such an extent 

that short mobile chains provide a faster termination mechanism despite their small 

numbers. Abuin and Lissi, (1977) and Lachinov et al., (1979) had already related the 

free volume on the onset of gel effect with the chain length and the conversion at 

which the gel effect appeared to a critical entanglement. Recent experimental work, 

though, indicates that the gel effect occurs in the absence of entanglements, and 

eliminating the formation of chain entanglements does not result in a corresponding 

elimination or delay of the gel effect onset (Neil et al., 1996). Moreover, the onset of 

gel effect does not correlate with molecular weight quantitatively in a way that would 

be consistent with the entanglement theory. 
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A second approach is that termination at intermediate conversions is dominated by 

short active chains (unentangled) reacting with long active chains (entangled) a 

process governed by the diffusion of the shorter, more mobile chains. This different 

approach to describe termination kinetics on the basis of "short-long" termination has 

emerged recently. O'Shaughnessy and Yu, (1994) have advanced a theory to explain 

the kinetics during the gel effect on the basis of short-long termination. This picture 

postulates that during the gel effect the termination of a long chain becomes so 

hindered due to diffusional limitation that it can only terminate when a short chain 

diffuses to its vicinity. The gel effect is then related to a depletion of short chains in 

the system. But this theory as well has not been tested experimentally, and besides, it 

does not explain the presence of the gel effect in the absence of entanglements. 

Zhu and Hamielec (1989) and Zhu et al. (1990) investigated the bulk free radical 

polymerisation of MMA and found that a fraction of the radical population is trapped 

during the course of polymerisation and therefore there exist two radical populations 

in the reacting mass - free radicals in the liquid state and trapped radicals in the solid 

state. Consequently the reacting mass is heterogeneous and the probability of a radical 

center becoming trapped is a strong function of its chain length. 

A third theory is related to free volume of the monomer as it is converted into 

polymer. The free volume of the monomer is higher than the free volume of the 

polymer. As monomer is converted to polymer the free volume is decreasing, and the 

mobility of the free radicals is restricted. The essential idea is that the restricted 

mobility, associated with the decreasing free volume as monomer is converted to 

polymer, is adequate to account for the observed decrease in k1• In other words, when 

a critical value of conversion is reached, the termination rate k, decreases rapidly and 

its decrease can be described as a function of the free volume of the system. 

Experimental investigation of this approach shows that the dependence of the 

conversion at which the gel effect begins on temperature is consistent with that 

predicted by the free volume theory. The last approach prevails among the various 

theories reported (Arai and Saito, 1976; Neil et al., 1998). 

Most attempts to explain the gel effect have fallen into one of two categories: 

entanglement theories and free volume theories. However, neither is adequate to 

describe the gel effect completely. The theory that the onset of gel effect is caused by 
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the onset of entanglements, fails to predict trends concerning the effects of 

temperature, polymer concentration, and molecular weight on the gel effect onset 

conversion (Neil and Torkelson, 1999). The free volume theory is consistent with 

experimental results when critically tested (Neil et al., 1998) it cannot be used though 

by itself to predict accurately conversion- time results for a broad range of conditions 

and is not a molecular - level theory as it does not account for radical chain length 

effects on the rate of termination. 

The gel effect has been associated with a number of physical parameters that were 

related to the changes observed during the course of the event. Enormous effort has 

been put into the interpretation of the phenomenon and the determination of the 

factors that cause this autoacceleration of the reaction rate. It is well understood that 

the characteristic autoacceleration in polymerisation rate associated with the gel effect 

is due to a decrease in the termination rate parameter k1• This decrease of k, in turn, is 

related to a restriction of chain mobility as monomer is converted to polymer, while 

for high mass fraction of polymer kp also decreases. Nevertheless, a quantitative 

understanding of autoacceleration has not been yet achieved. 

2.6. Effect of molecular weight (Mw) 

In suspension polymerisation of MMA the concentrations, physical properties and 

kinetic parameters change dramatically during the reaction and produce polymer 

chains of different lengths with consequent variations in the weight average molecular 

weight Mw and the molecular weight distribution (MWD). In particular, the increase 

in the polymer concentration during the reaction affects strongly the process 

dynamics: the resulting increase in the viscosity of the reacting system gives rise to a 

reduction in the mobility of the polymer chain; this may lead to a situation in which 

the termination and the propagation rates are controlled by diffusion, the gel and glass 

effects. In both cases (glass and gel effect) the consequence is a broadening of the 

MWD curves. In the polymerisation of MMA the influence of the gel effect on the 

Mw is very strong, so the instantaneous values of the average chain length increase 

rapidly during the process. As a consequence, under isothermal conditions, the MWD 

shows bimodality, as observed experimentally. 
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The main mechanical and thermal properties of the polymeric products are related 

with the value of the Mw and the MWD. In order to control the Mw of the polymers 

chain transfer agents are used. Chain transfer agents affect not only the Mw of the 

resulting polymer but also the magnitude and the onset of the gel effect. It has been 

pointed out that increasing the concentration of the chain transfer agent (CTA) delays 

the onset of the gel effect and reduces its magnitude. Moreover, the presence of CTAs 

in a system may modify the final conversion of the polymer produced (Abuin and 

Lissi, 1979; Madruga et al., 1990; Wang and Ruckenstein, 1993). Consequently, the 

MWD is shifted to a lower Mw (Madruga and San Roman, 1984). 

An extensive review of previous work on batch polymerisation processes and 

strategies to narrow the MWD was carried out by Louie and Soong (1985 (a)). They 

distinguish between two categories of partial optimizations: minimizing the batch 

time which leaves the Mw uncontrolled, and narrowing the MWD which minimizes 

the polydispersity index, PD, but leaves the Mw and the batch time uncontrolled. 

Optimum strategies are then analyzed, by means of a mathematical model which 

accounts for gel and glass effects. Among them, reactor temperature, initiator, 

monomer and solvent addition and a combination of these are examined. Solvent 

addition is indicated as the most promising policy and is experimentally analyzed in a 

second paper (Louie and Soong, 1985 (b)) showing that sensible improvements can be 

achieved. 

In some cases analysis of MWD showed that the MWD of the PMMA formed by the 

reaction is bimodal (Bogunjoko and Brooks, 1983 (a)) and is influenced by the 

presence of PMMA which is dissolved in the monomer prior to polymerisation. The 

predicted changes would occur in the MWD of the new polymer when the solution 

viscosity increased. 

In batch isothermal runs the polydispersity (PD) increases with conversion and the 

final MWD becomes broad up to cases in which bimodality may be observed. 

Changing the operating temperature during the batch according to an operating 

temperature profile makes it possible to obtain a narrow unimodal MWD. Optimum 

temperature profiles have been extensively used to control the MWD and produce a 

polymer having the desired chain length and polydispersity so as to meet the product 

specifications while minimizing batch times (Driscoll and Ponnuswamy, 1990; Chang 
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and Lai, 1992; Crowley and Choi, 1997; Chang and Laio, 1999). Scali et al. (1995) 

presented a method to determine an optimal temperature profile which leads to 

products with controlled MWD (by maintaining the PD as close as possible to its 

minimum value and desired values of Mw. Based on a kinetic model, the optimal 

temperature profile is determined so as to maintain the value of the instantaneous 

chain length constant. The experimental results suggest that it is possible to decouple 

the problem: acting on the operating temperature to control the MWD, and acting on 

the initial temperature and initiator concentration to influence the Mw. According to 

the optimal temperature profile suggested, the required temperature is almost constant 

at the initial stage of the reaction. Then the temperature shows an increase with 

conversion that becomes larger when the conversion and consequently the viscosity 

increase owing to gel effect, which slows the termination rate compared with the 

propagation rate. In the final part of the reaction, owing to the diminution of initiator 

and monomer concentration, the polymerisation rate is strongly reduced and a 

decrease in temperature is required. The optimal profile requires a temperature 

increase before the onset of the gel effect in order to counteract the effect of the 

increase of viscosity, which leads to a broad MWD for the product. The positive 

effect of an increase of temperature, even if different from the optimal one, is 

confirmed by experimental results. Maschio and Scali (1992) and Maschio et al. 

(1994) investigated operation strategies for the control of the MWD of polymer 

products. In isothermal conditions, the onset of the gel effect causes a strong increase 

of the Mw and the polydispersity. Therefore, for the suspension polymerisation, they 

suggest a batch operation under isothermal followed by adiabatic conditions. This 

operation approaches the optimal temperature profile and makes it possible to 

eliminate bimodality in the molecular weight distribution. In the final part of the 

reaction also the propagation rate becomes very slow and a decrease in temperature is 

required. 

Cunningham and Mahabadi (1996) proposed the deconvolution of the MWD and the 

use of the constituent distributions to analyze the MWD in free radical systems and to 

further investigate the nature of the gel effect. The deconvolution of the MWD for the 

polymerisation of MMA reveals the presence of three distinct instantaneous MWDs 

that are produced at different times during the polymerisation. A single distribution 

characterizes the low conversion zone, while two distributions are shown to exist or 
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are formed after the onset of the gel effect, the intermediate-conversion MWD and the 

high-conversion MWD. These observations are not consistent with the existence of 

one type of radical. It was also observed that all subsequent broad 

pseudoinstantaneous MWDs were a combination of the intermediate and high 

conversion instantaneous MWD. 

Maschio et al. (1999) suggested the deconvolution technique to analyze the effect of 

diffusive phenomena on the MWD of the polymer and also to determine the influence 

of some kinetic parameters on the conversion and the molecular weight. It was 

observed that the cumulative MWD curve at low conversion, before the onset of the 

gel effect, can be described by a single distribution curve. At higher conversions, two 

distributions, centered at different peak values, must be used to describe the 

cumulative distribution. These can be considered indicative of the two extreme 

situations of chemical and diffusive control. When the value of the gel effect onset 

concentration is reached, the contribution of the first peak decreases with conversion, 

while at the same time the contribution of the second peak increases with conversion. 

2.7. Benzoyl peroxide- amine interactions 

Acrylic resins commonly used in dentistry are cured by a free-radical initiated 

polymerisation. The thermal decomposition of benzoyl peroxide (BPO) which is used 

as initiator or catalyst, yields these radicals for the heat cure of denture base materials. 

Amines are used as curing accelerators or promoters for the polymerisation of methyl 

methacrylate or styrene. Three basic promoter systems are generally used, metallic 

salt plus methyl- ethyl- ketone peroxide catalyst; amine promoter plus benzoyl 

peroxide catalyst; and double promoted system such as amine promoter and metallic 

salt plus methyl- ethyl- ketone peroxide (Werts, 1971). Berndtsson (1954) and Maltha 

(1956) found that tertiary amines also react with benzoyl peroxide to accelerate 

radical-initiated processes. Tertiary aromatic amines have been used for a number of 

years together with benzoyl peroxide (BPO) as an effective initiation system in the 

free-radical polymerisation of acrylic resins and especially of methyl methacrylate. 

(Moad and Solommon, 1995). The resultant polymers have been widely used as 

biomaterials in dentistry and in orthopedic surgery as bone cements. The role of the 

amine is to carry out the reaction in a short period of time at body temperature. 
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Amine accelerators facilitate the formation of radicals from benzoyl peroxide. The 

kinetics of the reaction of benzoyl peroxide with dimethylaniline, triethylamine, or 

aniline in solutions or emulsions of benzene were studied by Margaritova and 

Rusakona in 1969. The order of the reaction relative to each component was always 1; 

this was irrespective of whether it took place in solution or in an emulsion. The 

activation energies of these reactions were calculated, and the conditions were found 

not to affect them (in solution or emulsions). Ades and Fontanille (1978) studied the 

kinetics of the radical polymerisation of phenyl glyceric of ether methacrylate, taken 

as model of the corresponding derivative of bisphenol A, initiated by the system 

benzoyl peroxide/dimethyl p-toluidine p-toluene sulfinic acid salt. 

Brauer (1981) studied amino-containing redox systems which are very effective 

accelerators for composites, yielding restoratives with excellent mechanical properties 

and minimum discoloration. Other redox systems such as BP-sulfinic acids, peroxide

thiourea, hydro-peroxide-ascorbic acid or trialkylborane-oxygen also yield rapid 

polymerisation of acrylic resins. 

Pittman and Jada (1982) investigated the effect of polymer-bound amines accelerators 

on the radical-initiated curing of unsaturated polyesters with styrene. They compared 

the polymer-bound tertiary amine accelerators to their freely added monomeric 

analogues as catalysts for the curing of poly( diethylene glycol maleate) prepolymers 

with styrene. Benzoyl peroxide was used as the initiator. The polymer-anchored 

accelerators gave shorter curing times and lower energies of initiation than their 

monomeric analogues. Each of the polymer-bound accelerators tested was found to be 

significantly more efficient than its free analogue. When the accelerators were 

attached to the polymer being cured, the curing rate increased. Polymer bound 

accelerators exerted a promoted effect. A probable mechanism sequence is shown in 

figure 2.7.1 (Pittman and Jada, 1982). An initial amine complex with benzoyl 

peroxide is formed with free amines. The polymer-anchored analogue of this complex 

is represented by 6 in figure 2.7.1. Higher electron density at nitrogen favours the 

formation of salt 6. The accelerating effect of amines on curing derives from the 

decomposition of 6 to 7 and 8. Both 7 and 8 may initiate styrene polymerisation, or 

form new radical sites along the prepolymer chain, either by addition to the double 

bonds remaining from maleic anhydrite moieties or by hydrogen abstraction a to ether 
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oxygens. Also, radical cation 8 may directly initiate a polymerising styrene chain 

giving a quaternary ammonium salt site at the N. The fastest initiation was achieved 

by dimethylaniline. 

Yefremova et al. (1985) studied the reactions of benzoyl and lauryl peroxides with 

various tertiary aromatic amines. The presence of 2 stages in the reaction of benzoyl 

peroxide with tetramethylphenylene diamine, differing in reaction rate, was 

demonstrated. It has been shown that the radical-initiated polymerisation of styrene is 

due both to decomposition of a primary peroxide-amine complex and to a further 

transformation of the decomposition products. 

Vazquez et al., (1998) presented a review on the accelerating effect of tertiary 

aromatic amines used as activator in the benzoyl peroxide/amine system for the curing 

of acrylic resins. The kinetics, mechanism and activation energy of the reaction are 

considered, together with some toxicity, residuals and leaching data concerned with 

biomedical applications of this system, e.g. denture resins or acrylic bone cements. 

Furthermore, some results relating the effect of the temperature of the surroundings 

on the curing parameters of the cements prepared with three amines (N,N-dimethyl-4-

toluidine, N,N-dimethylbenzyl alcohol and N,N-dimethylbenzyl methacrylate) are 

shown. The results indicate that the temperature has a significant effect on the curing 

parameters, and must be considered in the evaluation of new activators. The relevance 

of these results lies with the importance of thermal trauma generally associated with 

the implantation of acrylic bone cements. 

Oldfied and Yasuda (1999) studied the polymerisation of MMA with a 

peroxide/amine system for bone cement formation. Methyl methacrylate was 

polymerized using a N,N-dimethyl-p-toluidine (TD)/benzoyl peroxide (BPO) redox 

system in the presence of polymethyl methacrylate (PMMA) powder. While the 

optimum free radical concentration was observed near the equimolar amine/BPO 

concentration, excess amine led to a change in the chemical structure of the trapped 

radical and inhibited the polymerisation process. At a high amine/BPO ratio a 

nitroxide-based radical appeared. The appearance of this nitroxide radical seems to 

depend on the amine/BPO molar ratio and on the presence of PMMA. 
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An excess amount of amine with respect to BPO was found to inhibit the 

polymerisation process. When BPO was removed, the system still polymerized but 

with a longer gelation time and a lower radical concentration. These results 

demonstrate that trapped free radicals in the bulk polymerisation of MMA convert to 

polymeric peroxides that act as initiators in bone cement. When the accelerator 4-

dimethylamino phenethyl alcohol (TDOH) was used, a higher radical concentration 

was observed in the polymerizing system. TDOH shows potential for being a more 

effective accelerator than TD for bone cement curing. 

Achilias and Sideridou (2002) studied the kinetics of the free radical bulk 

polymerisation of methyl methacrylate (MMA) using the benzoyl peroxide 

(BPO)/amine initiation system. N,N dimethyl-4-aminophenethyl alcohol (DMPOH) 

which is a newly synthesized amine used in the preparation of acrylic dental resins 

and bone cements was examined, and the results compared to the most commonly 

used amine in these applications, the N,N dimethyl-p-toluidine (DMT). For both 

amines, the effect of the molar ratio of BPO/amine and of the reaction temperature, on 

the polymerisation kinetics was investigated. The prepared polymers were 

characterized by determination of the average molecular weights and molecular 

weights using Gel Permeation Chromatography. DMPOH was found to lead in 

slightly higher polymerisation rates, lower gel times and lower average molecular 

weights than DMT. The values of these parameters for both amines were influenced 

by the molar ratio of BPO to amine, when the product of the concentrations of these 

was kept constant. The highest polymerisation rate occurred in the lowest gel time, 

resulting in polymers with the lowest molecular weight, and was observed when a 

molar ratio of about 1.5 BPO/amine was used. However, the final monomer 

conversion was found to be independent of the molar ratio and amine used. The 

overall activation energy of polymerisation was found to be 51.8 kJ/mol K for 

BPO/DMPOH and 47.1 kJ/mol K for BPO/DMT. 

35 



CHAPTER3 

SECTION 2. EXPERIMENTAL AND STATISTICAL PROCEDURES 

CHAPTER 3. EXPERIMENTAL PROCEDURES 

3.1. Materials 

Methyl Methacrylate (MMA) (analytical grade, Aldrich) was distilled at reduced 

pressure to remove the polymerisation inhibitor. Aqueous solutions of Sodium 

polymethacrylate (PMA-Na) or Ammonium polymethacrylate (APMA) in distilled 

water were used as the continuous phase. Sodium polymethacrylate was produced by 

neutralising the 3% Polymethacrylic acid (PMA) gel in water, which was provided by 

Lucite International, with NaOH (97+%, analytical grade, Aldrich). APMA was 

provided by Lucite International as an aqueous solution of 14% APMA in water, and 

was used as received. Benzoyl peroxide (BPO) (75%, Aldrich), hydroquinone (HQ) 

(99%, Aldrich) and n-dodecyl mercaptan (n-DDM) (98+%, Aldrich) were used as 

received, without any further purification. 

Additional chemicals including NH3, acetone, and methanol were analytical grade 

purchased from Aldrich and were used as received. 

3.2. Polymerisation Reactor 

Set up: For the suspension polymerisation experiments a glass reactor with capacity 

0.5-Iitre and 10 cm diameter was used, as shown in figure 3.2.1. The reactor had a 

flanged top and a dish base. A double flat 4-bladed impeller with diameter 4 cm was 

used in order to ensure the complete dispersion of the monomer in the highly viscous 

continuous phase. Four equidistant baffles were used of width 1 cm. The suspension 

polymerisation experiments were run with a nitrogen atmosphere in the reactor. The 

reactor vessel was placed in a water bath in order to control the temperature within 

±1 °C from the desired reaction temperature. The temperature of the reaction mixture 

was monitored using a thermocouple. An overhead reflux condenser was used and 

samples were drawn from the reactor at frequent time intervals by using a pipette. The 
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pH of the reaction mixture was also monitored by using a pH meter. The impeller 

speed was adjusted at the desired level at the start of each experiment. 

Thermocouple 
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Figure 3.2.1. Experimental set up 

Suspension polymerisation experiments: The required quantity of PMA-Na or APMA 

gel was dissolved in pre-weighed amount of deionised water. The aqueous phase 

(deionised water and stabiliser) was purged with nitrogen for 60 minutes before the 

addition of the organic phase (monomer and initiator). The continuous phase was 

heated and stirred and the pH was adjusted at the desired value, by the addition of 

NaOH for PMA-Na continuous phase or NH3 for APMA continuous phase. The 

initiator and the dispersed phase were weighed. The initiator was dissolved in the 

dispersed phase just prior to the addition in the reaction vessel. The total volume of 

the reaction mixture was always kept constant at 500 cm3
• 

3.3. Analytical Procedures 

The viscosity of the dispersed phase was measured by using a U-tube viscometer, 

which was calibrated with standard liquids such as olive oil and glycerol. The 

interfacial tension was measured with the Du Nouy ring technique, using a White 

surface tensionmeter manufactured by White Electrical Instruments Co. Ltd. (Malvern 

Link, Worcestershire, UK). The pH was measured by using a Mettler Toledo pH 

meter (Greifensee, Switzerland). The particle diameters after polymerisation were 
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measured by using a Leica optical microscope (Leica Microscope Systems, Nusloch, 

Germany). At the end of polymerisation, the beads were photographed by a JVC 

camera (Victor Co. Ltd., Japan) attached to the microscope. The diameters of 500 

polymer beads were measured per run and the average diameter of the 5 biggest beads 

was considered to be the maximum diameter for each run. The molecular weight 

averages and distributions were measured by Gel Permeation Chromatography at 

Lucite premises. 

3.3.1. Determination of conversion 

The monomer conversion was measured gravimetrically. Small quantities of the 

reaction mixture were withdrawn from the reactor and transferred into small 

aluminium weigh 'boats' for weighing. Methanol containing inhibitor was added to 

quench the reaction and precipitate the polymer. The samples were kept in a vacuum 

oven at 60°C for more than 16 hours. Monomer, water and methanol evaporated in the 

vacuum oven. The samples were considered dry when their weight was constant and 

did not change with further heating in the vacuum oven. The solid residue left, was 

weighed again and the monomer conversion was calculated by the expression: 

weight.residue l"d fi . so z • ractzon 
. aliquot.weight 

converszon = --'-----"'--------
monomer.fraction 

The additives account for the initiator, the stabiliser, NaOH used to control the pH, 

the chain transfer agent and any other solid additive used. The monomer accounts for 

the quantity of monomer in the liquid sample, and was calculated as follows: 

monomer = mono mer fraction x liquid sample. 

3.3.2. Determination of viscosity 

The viscosity of the continuous phase was measured by using a Haake viscometer, 

manufactured by Thermo Haake (Karlsruhe, Germany). The continuous phase is non

Newtonian, and its viscosity is shear dependent and more specifically shear thinning. 

Therefore, viscosity depends on the stirring speed in the reactor, and it will change for 
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different stirring speeds. Hence, an appropriate method has to be used in order to 

relate the stirring speed in the reactor for the various experiments with the 

corresponding apparent viscosity of the continuous phase. Solutions of various 

stabiliser concentrations were prepared, and their viscosity and shear stress over a 

range of shear rates from 0 to 648 s·1 was measured, at the reaction temperature. The 

series of data points obtained by these measurements were then fitted, to various 

models. The best fit was given by the power law model described by the expressions: 

T = Ky" or f.l = Ky"-1 

with the values of the correlation coefficient R2 ranging from 0.960 to 0.999 for the 

various solutions. The correlation coefficient R2 is computed as the ratio of the 

regression sum of squares (SSR) to the total sum of squares (SST), by the following 

expression 

SSR i:( y, -y f 
R2 = -- = -''='-~----

SST f( y, -yf 
i::::l 

where, y1 is the predicted value for y;, y is the average of the y data points and nT is 

the total number of data points. R2 is a measurement of how well the experimental 

data points are described by the model. R2 is a number between 0 and 1. 

A typical example of the data obtained by these measurements and the fit to a power 

law model is shown in figure 3.3.1, where the solid line represents the power law 

model. The data points represent the viscosity and shear stress values for increasing 

stirrer speed and therefore for increasing shear rate. 

The power law model provides values for the viscosity index n and for the constant K. 

Since, K and n are provided by the power law model, the apparent viscosity of the 

continuous phase for any impeller speed can be calculated by using the Metzner-Otto 

theory, as will be described in chapter 5.4.2 
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Figure 3.3.1. Typical example of viscosity and shear stress data obtained by using the 

Haake rheometer, and the fit to the power law model (solid line). 

3.3.3. Drop size distributions 

The drop and particle size distributions, before and during the polymerisation, were 

measured by using the laser diffraction technique, which is based on the measurement 

and interpretation of the angular distribution of light diffracted by the drops and uses 

the Fraunhofer theory. A laser particle sizer (Coulter LS130) with 85 channels, was 

used. These channels change logarithmically and cover the size range of 0.43-822 Jlm. 

An aqueous solution of the stabiliser was used in the sampling cell to prevent particles 

from coalescing. 

The output of the particle sizer is given as volume of drops in each bin size. This can 

be transformed to a volume frequency distribution ifv), 

fv(d,)= i~i 

where V; is the volume of drops with diameter between d; and d,+Dln(d;) 
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and the % volume for each size range is given by %volume=100*V/EV;. The aim of 

this transformation is to normalise the data, on a logarithmic scale, so that data from 

different experimental runs can be plotted together and compared. 

A typical output obtained from the laser diffraction particle sizer, as well as the 

%volume transformed data, are given in table 3.3.1. 

Table 3.3.1. Typical output of the laser particle sizer and the calculated %volume 

d, (llm) volume (11m3) %volume 

0.4292 50.423 0.0578 

0.4701 63.666 0.0730 

0.5149 90.588 0.1038 

0.564 118.27 0.1356 

0.6178 144.39 0.1655 

0.6766 169.81 0.1946 

0.7411 193.05 0.2213 

0.8118 214.55 0.2459 

0.8892 232.46 0.2665 

0.974 244.52 0.2803 

!.066 247.93 0.2842 

1.168 245.62 0.2815 

1.279 239.14 0.2741 

1.401 229.42 0.2630 

!.535 216.76 0.2485 

!.681 202.14 0.2317 

!.842 186.41 0.2137 

2.017 170.42 0.1953 

.... .... . ... 
48.85 1557 1.7847 

53.5 2283.8 2.6178 

58.6 3146.5 3.6067 

64.19 4130.7 4.7348 

70.31 5216.9 5.9799 

77.01 6325.7 7.2509 

84.36 7283.6 8.3489 

92.4 7856.8 9.0059 

101.2 7845.8 8.9933 

110.8 7189.1 8.2405 

121.4 6015.2 6.8950 

133 4599.3 5.2720 

145.6 3247 3.7219 

159.5 2180.1 2.4990 

174.7 1482.9 1.6998 

191.4 916.3 1.0503 

209.6 506.26 0.5803 

229.6 221.18 0.2535 

251.5 54.28 0.0622 

275.5 14.76 0.0169 

301.8 5.16 0.0059 

330.5 1.23 0.0014 
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A typical drop size distribution obtained from the transformed data shown in the 

previous table article sizer is depicted in figure 3.3.2. 

2 
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Figure 3.3.2. Typical particle size distribution 

3.3.4. Calculation of interfacial area 

1000 

The interfacial area between the continuous and dispersed phases was calculated from 

the drop size distribution. The number of the drops per size fraction and the interfacial 

area are calculated from the type of data shown in table 3.1, as follows: 

• The volume, Vd;, and the surface area, S;, of one single drop corresponding to each 

size fraction, is calculated by using the drop diameter, d;, as follows: 

• The number of drops, N;, having a certain diameter, d;, is calculated by dividing 

the volume of the size fraction over the volume of a single drop N;= V /Vdi 

• The interfacial area, S;, of these size fractions of drops having a certain diameter d; 

is then calculated by multiplying the surface area of a single drop times the 

number of drops S;=N;Sd; 

A typical example of these data is given in table 3.3.2. 
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Table 3.3.2. Interfacial area for each size fraction 

v, s, 
m3) N, m2) 

1.066 0.6339 3.5682 247.93 391.092 1395.478 
1.168 0.8339 4.2837 245.62 294.548 1261.747 
1.279 1.0949 5.1365 239.14 218.405 1121.845 
1.401 1.4391 6.1632 229.42 159.418 982.527 
1.535 1.8928 7.3985 216.76 114.518 847.270 
1.681 2.4859 8.8729 202.14 81.315 721.499 
1.842 3.2707 10.6539 186.41 56.993 607.199 
2.017 4.2943 12.7744 170.42 39.685 506.951 
2.21 5.6488 15.3361 155.23 27.480 421.439 
2.42 7.4169 18.3891 141.37 19.060 350.504 

2.651 9.7501 22.0673 129.78 13.311 293.731 
2.904 12.8165 26.4803 120.32 9.388 248.595 

3.3.5. Calculation of the critical conversion (Xcru) 

In suspension polymerisation the monomer to polymer conversion was calculated 

from the well-known rate expression (Neil et al., 1996) 

(3.3.1) 

At low monomer conversion, chain termination is unaffected by diffusion control and 

the value of the termination constant, k, is that expected in the absence of the gel 

effect (i.e. k1 = kro). Also, the half-life of benzoyl peroxide is more than 10 h at the 

reaction temperature. Therefore, at short times, the initiator concentration, /, remains 

at its initial value (10 ). Thus, 

(3.3.2) 

where B = 2
fkdlo k_r, is dimensionless time 

( )

1/2 

k,o 

Samples were drawn from the reactor and monomer conversion was measured 

gravimetrically, as described in section 3.3.1. Figure 3.3.3, shows that the 
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experimental conversion was identical to the predicted conversion at low times. As 

the conversion increases, and diffusion control causes the k, to diminish, the 

experimental conversion-time data, start to deviate from the predicted ones by the 

expression 3.3.1. The critical conversion, that heralds the onset of the gel effect, is 

defined as the conversion at which the experimental data deviate 5% from the 

theoretically predicted (from equation 3.3.1) values of conversion. 
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Figure 3.3.3. Experimental conversion data in comparison with theoretically predicted 

conversion values versus time 

Therefore, all the values for the critical conversion in this work, were calculated as the 

5% deviation from classical kinetics predictions. 

The values of the reaction constants used for the Xcrit calculations for the suspension 
polymerisation of MMA, are 

• kd [s"1
] = l.25xl018 exp(-35473/RT) (Ahn et al., 1996) 

• kp [lmo1"1s·1
] = 2.94x106exp(-5656/RT) (Ahn et al., 1996) 

• k10 [lmol"1s·1
] = 5.20x108exp(-1394/RT) (Ahn et al., 1996) 

• !=0.7 (Clarke-Pringle and MacGregor, 1998) 

where R is the universal gas constant and T is the temperature. 
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3.3.6. Molecular weight averages and distributions 

The molecular weight measurements were carried out at Lucite's premises, by using 

Gel Permeation Chromatography (GPC). The instrument had a refractive index 

detector and a 2xPLgel mix B, 10 micron, column. The conditions for running the 

GPC were, ambient temperature and lmVmin flow. The solvent used was Tetra hydro 

furan (THF). Toluene was used as internal standard and PMMA was used for the 

calibration. 
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CHAPTER 4. STATISTICAL METHODS AND TESTS 

One of the aims of this work is to investigate the factors that affect the onset of gel 

effect, which is described by the critical conversion, Xcrit. in suspension 

polymerisation of MMA. A statistical assessment was used to estimate the effect of 

various factors on the critical conversion. 

The difficulty in estimating the critical conversion, Xcrit derives from the difficulty in 

achieving isothermal experiments. There is usually, at least a small fluctuation in 

temperature, at the onset and during the gel effect, which affects the Xcrit· These 

temperature fluctuations introduce an error which may lead to a large variance of the 

values of Xcrit for replicates of the same experiment. The narrow range of values 

within which Xcrit varies, in combination with the difficulty in achieving completely 

isothermal experiments, has often led to an overestimation of Xcrit· In order to 

eliminate the error introduced by these experimental uncertainties, a large number of 

suspension polymerisation experiments were run and a statistical approach was used 

(chapter 6), to clarify the underlying factors that affect the onset of the gel effect. 

4.1. Basic statistical concepts 

The objective of statistical inference is to draw conclusions about a population using a 

sample from that population. This sample consists of a number of observations or 

experiments. The probability structure of the variables that describe these 

observations or experiments is described by its probability distribution. A statistic of a 

variable is defined as any function of the observations in the sample that does not 

contain unknown parameters. The most commonly used statistics are, the mean, the 

variance, and the standard deviation of the probability distribution. The mean of a 

probability distribution is a measure of its central tendency or location. The variance 

is a measure of the spread or dispersion of the probability distribution. The standard 

deviation is the square root of the variance and is also used as a measure of dispersion 

of a variable (Montgomery, 1991). 
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If y1, yz, ... , Yn represent a sample, these statistics are defined as follows: 

• sample mean : 

n 

~)y, -.Yi 
• sample variance : s 2 = H , where the numerator is called the sum of 

nr -1 

• 

squares, SS, and the denominator is called the number of degrees of freedom of 

the sum of squares 

sample standard deviation: s = .Jii 

The sample mean y, is a point estimator of the population mean m, and the sample 

variance is a point estimator of the population variance s2
• A particular value of an 

estimator, computed from sample data, is called an estimate. 

4.2. Probability-Probability plots 

This test plots a variable's cumulative proportions against the cumulative proportions 

from any of a number of test distributions (beta, chi-square, exponential, gamma, half

normal, Laplace, Logistic, Lognormal, Normal, Pareto, Student's t, Weibull, and 

uniform). Probability plots are generally used to determine whether the distribution of 

a variable matches a given distribution. If the selected variable matches the test 

distribution, the experimental points cluster around a straight line. The more the 

experimental date deviate from the straight line the more, their distribution deviated 

from the test distribution (Montgomery, 1991 ). A typical example of a probability

probability plot (P-P plot) is shown in the figure 4.2.1. 
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Figure 4.2.1. Typical P-P plot 

4.3. Pearson 's correlation 

CHAPTER4 

Pearson's correlation (r) reflects the degree of linear relationship between two 

variables. It ranges from +1 to -1. A correlation of +1 means that there is a perfect 

positive linear relationship between variables (Mason, 2003). 

The formula for Pearson's correlation takes on many forms. A commonly used 

formula is shown below: 

(4.3.1) 

where r = Pearson's correlation, 

X; and Y; =the experimental values for x,y variables 

X,Y =mean values ofX,Yvariables 

Sx, Sy = standard deviations for x, y variables respectively 

A.= the number of experiments 
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4.4. Levene's test of homogeneity of variance 

Levene's test (Dean and Voss, 1999) is used to test if n samples have equal variances. 

Equal variances across samples is called homogeneity of variance. Some statistical 

tests, for example the analysis of variance, assume that variances are equal across 

groups or samples. The Levene test can be used to verify that assumption. A typical 

example of an output of Levene's test is described in table 4.4.1. The output includes 

the Levene's statistic, L, the degrees of freedom dfl and df2, defined in the table, and 

the p-value which reflects the significance level for the result given by L. 

Table 4.4.1. Example ofLevene's test 

Levene dfl 

statistic 

L u-1 

Where 

L= (-1-u)2:;=1-1,(z, -z) 
(u -1)2:;=tL~'=t (zij- z, )2 

df2 

u(J.-1) 

(4.4.1) 

u = the number of treatments or levels or groups, 

Significance 

p-value 

). = the number of experiments or replicates per group 

zij = IY'i - y,, 
z, = the group means of the Zij 

z = the overall mean of the Zij 

y1 = the mean of the i,h subgroup 

When the p-value (sig) is higher than 0.05 then the sample variances are equal, 

homogeneity of variance can be considered. If the p-value is lower than 0.05 then the 

variances are not equal and the hypothesis of equality is rejected. 
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4.5. One-Way Analysis of Variance (ANOV A) 

The one-way ANOV A is a method of analysis that requires multiple experiments. The 

one-way ANOV A provides a comparison of the means of a number of replications of 

experiments performed where a single input factor is varied at different settings or 

levels (Cobb, 1998). The object of this comparison is to determine the proportion of the 

variability of the data that is due to the different "treatment" levels or "factors" as 

opposed to variability due to random error. In other words, ANOV A is a useful tool 

which helps to identify sources of variability from one or more potential sources. By 

varying the factors in a predetermined pattern and analysing the output, one can use 

statistical techniques to make an accurate assessment as to the cause of variation in a 

process. 

The model deals with specific treatment levels and is involved with testing the null 

hypothesis that the level means are equal, 

Ho: m1 = mz = ... = mi 

where mi represents the level mean. 

Analysis of variance tests the null hypothesis that all the population means are equal, 

by comparing two estimates of variance (s2 where s2 is the variance within each of the 

"a" treatment populations), as shown in table 4.5.1. One estimate (called the Mean 

Square Error or "MSE" for short) is based on the variances within the samples. The 

MSE is an estimate of s2 whether or not the null hypothesis is true. The second 

estimate (Mean Square Between or "MSB" for short) is based on the variance of the 

sample means. The MSB is only an estimate of s2 if the null hypothesis is true. If the 

null hypothesis is false then MSB estimates something larger than s2
• The logic by 

which analysis of variance tests the null hypothesis is as follows: If the null 

hypothesis is true, then MSE and MSB should be about the same since they are both 

estimates of the same quantity (s2
); however, if the null hypothesis is false then MSB 

can be expected to be larger than MSE since MSB is estimating a quantity larger then 

sz. 
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Table 4.5.1. A typical example of an output for ANOVA 

Source of variance Sum of Degrees of Mean F Si g. 

squares freedom square 

(SS) (df) (=SS/df) 

Between SSs u-1 MSB= MSB SSB/(u-1) p-value 

treatments SSsf(u-1) 

Within treatments SSw u(.J.- 1) MSE= 
(Residual) SSwlu(.i.-1) 

Total SST (u 2)-1 

Where 

u = the number of treatments or levels or groups, 

}. =the number of experiments or replicates, 

SS =sum of squares 

SS8 =sum of squares between treatments or groups 

SSw =sum of squares within treatments or groups 

df =degrees of freedom 

F = F statistic 

--= 
MSE SSW!u( A.-1) 

The significance test involves the statistic F which is the ratio of MSB to MSE: F = 

MSB/MSE. If the null hypothesis is true, then the F ratio should be approximately one 

since MSB and MSE should be about the same. If the ratio is much larger than one, 

then it is likely that MSB is estimating a larger quantity than is MSE and that the null 

hypothesis is false. In order to conduct a significance test, it is necessary to know the 

sampling distribution ofF given that the null hypothesis is true. From the sampling 

distribution, the probability of obtaining an F as large or larger than the one calculated 

from the data can be determined. This probability is the probability value. If it is 

lower than the significance level, then the null hypothesis can be rejected. 

Basically, rejection of the null hypothesis indicates that variation in the output is due 

to variation between the treatment levels and not due to random error. If the null 

hypothesis is rejected, there is a difference in the output of the different levels at a 

significance 'a' and it remains to be determined between which treatment levels the 

actual differences lie. 
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In addition to determining that differences exist among the means, it may also be 

required to determine which means differ. There are two types of tests for comparing 

means: a priori contrasts and post hoc tests. Contrasts are tests set up before running 

the experiment, and post hoc tests are run after the experiment has been conducted. 

4.6. Post Hoc tests 

Once it has been determined that differences exist among the means with ANOV A, 

post hoc range tests and pairwise multiple comparisons can determine which means 

differ. The post hoc tests examine all possible combinations to identify significant 

differences among groups. Range tests identify homogeneous subsets of means that 

are not different from each other. Pairwise multiple comparisons test the difference 

between each pair of means, and yield a matrix where asterisks indicate significant! y 

different group means at an alpha level of 0.05. 

Tukey's significant difference test, Hochberg's GT2, Gabriel's test, and Scheffe's test 

are multiple comparison tests and range tests. The Scheffe' test is customarily used 

with unequal sample sizes, although it could be used with equal sample sizes. 

4.7. T-test 

A t-test is a statistical tool used to determine whether a significant difference exists 

between the means of two distributions or the mean of one distribution and a target 

value. The t test employs the statistic (t), with nr-1 degrees of freedom, (nr=number 

of replications or experiments) to test a given statistical hypothesis about a population 

parameter (Dean and Voss, 1999). It is usually used with small sample sizes (<30). It 

is used when population standard deviation is unknown. It tests the null hypothesis 

that two sample means are equal. It involves the test statistic, 

where 

y=mean 
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s 2 = variance 

N = number of experiments per sample 

A, B = samples A and B 
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If the p-value for the T-statistic is smaller than 0.05 then the null hypothesis that the 

group means are equal is rejected. If the p-value is higher than 0.05, then the null 

hypothesis is rejected, and the mean values are considered equal. 

4.8. K-means clustering 

K-means clustering can best be described as a partitioning method. That is, the 

function K-means partitions the observations in a set of data into k mutually exclusive 

clusters, and returns a vector of indices indicating to which of the k clusters it has 

assigned each observation. Unlike the hierarchical clustering methods used in linkage, 

k-means does not create a tree structure to describe the groupings in the data, but 

rather creates a single level of clusters. Another difference is that K-means clustering 

uses the actual observations of objects or individuals in the data, and not just their 

proximities. These differences often mean that K-means is more suitable for 

clustering large amounts of data. 

K-means treats each observation in the data as an object having a location in space. It 

finds a partition in which objects within each cluster are as close to each other as 

possible, and as far from objects in other clusters as possible. Each cluster in the 

partition is defined by its member objects and by its centroid, or centre. The centroid 

for each cluster is the point to which the sum of distances from all objects in that 

cluster is minimized. K-means uses an iterative algorithm that minimizes the sum of 

distances from each object to its cluster centroid, over all clusters (Morgan et al. 

2004). This algorithm moves objects between clusters until the sum cannot be 

decreased further. The result is a set of clusters that are as compact and well-separated 

as possible. 
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SECTION 3. RESULTS AND DISCUSSION 

CHAPTER 5. BEHAVIOUR OF PMA·Na AND APMA AS SUSPENDING AGENTS 

5.1. Rheology 

Polymer solutions may often exhibit a rheological behaviour that is shear dependent, 

or time dependent. The shear dependent behaviour describes the variation of viscosity 

with shear rate. According to their shear dependent behaviour the polymer solutions 

can be classified as pseudoplastic or shear thinning and dilatant or shear thickening 

fluids. The first term is used, when the solution viscosity decreases with increasing 

shear rate, the latter term is used when the solution viscosity increases with increasing 

shear rate. The time dependent behaviour describes the variation of viscosity with 

time for a constant shear rate. It may be either thixotropic or rheopectic, which 

corresponds to a decrease or increase, of the solution viscosity with time, respectively. 

This chapter refers to the rheological behaviour of polymethacrylic acid (PMA) and 

its salts, sodium polymethacrylate (PMA-Na) and ammonium polymethacrylate 

(APMA). The solutions are examined for time-dependent behaviour, shear dependent 

behaviour, and for any dependence on shearing history. 

5.1.1. Polymethacrylic acid 

Polymethacrylic acid (PMA) does not represent a typical polyelectrolyte due to the 

presence of the hydrophobic methyl side group. PMA solutions exhibit an anomalous 

rheological behaviour indicated by a time-dependent increase in viscosity at constant 

shear rate, and by a shear dependent viscosity increase or shear thickening behaviour 

(Ohoya et al., 2000; Katsumichi Ono and Kenkichi Murakami, 1977). The rheopectic 

behaviour (time- dependent viscosity increase) was reported for PMA solutions with 

molecular weight higher than 7xl05 or higher, while for solutions with molecular 

weight 5.9xl05
, no rheopectic behaviour was observed. The experimental work 

reported in the literature that investigates the shear induced viscosity increase of PMA 

refers to low shear rates and to angular velocities up to 200 rpm (Ohoya et al., 2000; 
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Katsumichi Ono and Kenkichi Murakami, 1977). Therefore, it is unknown whether 

the behaviour is similar for higher shear rates or if the possible explanations proposed 

for these conditions apply to higher shear rates. 

Time dependent behaviour: Initially, the dependence of the PMA solutions on 

shearing time is examined for a 3% polymethacrylic acid (with molecular weight 

5x10S) aqueous solution, at 70°C. The viscosity of two samples of the same solution 

was measured every 2 min, for a period of 200 min, and for two different shear rates, 

100 s·1 and 200 s·1• The measurements were conducted using a HAAKE viscometer. 

The results are shown in figure 5.1.1. The viscosity of the solutions, for both shear 

rates, seem to be almost independent of the shearing time, and no rheopectic effects 

were observed. This is consistent with the data reported in the literature (Ohoya et al., 

2000). The viscosity of the solution was higher at 200 s·1, indicating a possible shear 

thickening behaviour. 
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Figure 5.1.1. Effect of shearing time on a 3% aqueous PMA solution, at pH 3 

Shear rate and shear history dependence: The 3% aqueous solution ofPMA was then 

examined for shear rate dependence and dependence on the shearing history. In order 

to examine the solution dependence on the shear rate, the viscosity of the solution was 

measured for increasing shear rate, at 70°C. In order to examine the dependence on 

the shearing history, the solution was subjected to subsequent runs as shown in figure 

5.1.2. If there is no dependence on the shearing history, the measurements for all the 
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subsequent runs should be identical, otherwise, the measurements for the subsequent 

runs will differ. The time lapse between the subsequent runs was 2 min. Since no time 

dependence of the viscosity was observed previously (figure 5.1.1), the time was not 

considered to have any effect on these measurements. From figure 5.1.2 it is observed 

that, 

1. The viscosity depends on shear rate for all the runs. More specifically, the 

viscosity follows a pattern, in which it initially decreases with increasing shear 

rate at low shear rates up to approximately 100 s·1
• Then, it reaches a plateau, 

and subsequently it increases gradually with increasing shear rate, for higher 

shear rates, showing a shear thickening behaviour. 

2. Comparing the subsequent runs with one another, it is observed that the 

viscosity decreases for each consecutive run, indicating that once the solution 

has been subjected to a higher shear rate its viscosity decreases for lower shear 

rates as well and this decrease is not reversible. It is also observed that the 

plateau for the first few runs is longer lasting up to a shear rate of 400 s·1 

whereas it is decreasing for every subsequent run down to 200 s·1
• Therefore, 

the viscosity of PMA solutions depends both on shear rate and shearing 

history. 

As an explanation for these phenomena, it has been proposed that the field of shear 

builds up a network through the intermolecular force but concurrently severs it as 

well, and the former effect predominates in these systems, for higher shear rates. It is 

considered ambiguous whether the increase of the viscosity reflects a transition of 

chain conformation in the field of flow (Sakurai et al., 1993). In general, a 

conformation transition of PMA has been interpreted in terms of competition between 

electrostatic repulsion between charges on the polymer chain and some attractive 

interactions such as hydrogen bond between carboxyl or carboxylate groups, van der 

Waals or hydrophobic interactions between methyl groups (Sakurai et al., 1993). The 

conformational change of the PMA chain from a compact coil to an expanded coil is 

governed by dissociation of the carboxyl groups and by the intermolecular and 

intramolecular hydrophobic and/or hydrophilic bonding abilities. Therefore, the 

increase of viscosity does not result from the deformation of orientation of polymer 
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coils, but it may be due to the increased chance of mutual collision of PMA coil under 

shear stress (Katsumichi Ono and Kenkichi Murakami, 1977). 

The concentration and molecular weight of the polymer may also be common and 

essential factors that affect shear thickening behaviour. The hydrogen bonding ability 

of PMA molecules (Towlson and Wright, 1983) the hydrophobic interaction between 

Figure 5.1.2. Viscosity for increasing shear rate, for 3% PMA at 70°C, and pH 3. 

The decrease of the solution viscosity for the subsequent runs could also be attributed 

to the network being built up by the field of shear. As this network is being built up, 

the viscosity decreases for each subsequent run. At the end of the first run, the field of 

shear has caused the development of a network to a certain extent. Because of this 

network, when the same sample is attributed to a subsequent run, its viscosity is lower 
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(figure 5.1.2). The network is being developed for each subsequent run (runs 1 to 5), 

and hence the solution viscosity decreases. When the network has been fully 

developed for these conditions, the viscosity does not decrease any more, and remains 

constant for every subsequent run (runs 6-7). 

5.1.2. Ammonium polymethacrylate (APMA) 

The rheological behaviour of APMA solutions was also examined. The effects of 

shearing time, shear rate and pH on the viscosity of aqueous solutions of APMA were 

tested. 

Shearing time: First of all, the effect of shearing time for constant shear rate was 

examined. As shown in figure 5.1.3, a 0.78% APMA solution was subjected to 

constant shear of 108 s·1 (which is close to the value of the shear rate in the reactor) 

for 1200s; the viscosity seems to be constant and there is no effect of the shearing 

time on it. 
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Figure 5.1.3. Viscosity under constant shear 108s'1, for a 0.78% APMA solution, at 

70°C, and pH 9 versus time. 

pH and shear rate: The effect of shear rate and pH was examined concurrently. The 

pH of APMA solutions of the same polyelectrolyte concentration was adjusted to 

various values by the addition of NH3, and their viscosity was measured over a range 

of shear rates from 0 to 648 s'1, 
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Figure 5.1.4 shows the effect of both shear rate and the pH on the solution viscosity at 

70°C, for a 0.93% APMA solution. APMA, unlike PMA, shows a shear thinning 

behaviour, as the viscosity decreases with increasing shear rate, indicating that the 

neutralisation of PMA eliminates the shear thickening behaviour. The repulsion 

between the parts of the polymer chain, with the same charge, force the polymer coil 

to unfold and stretch while at the same time the friction between the extended 

polymer coils is reduced, and therefore the viscosity is reduced. The pH seems to have 

a significant effect on the viscosity. As the pH increases the solution viscosity 

decreases monotonously for certain shear rates. These observations could be 

explained in terms of the strong repulsive forces that are developed between the 

charged polymer coils. The pH increase leads to a greater extend of ionisation, to 

stronger repulsive forces and a more charged coil. These repulsive forces between the 

carboxyl anions on the polymer chain, cause the PMA molecules to occupy a more 

stretched and extended conformation while also preventing the yielding of 

intermolecular bonds which could be regarded as the origin of the viscosity increase 

(Ohoya et al., 2000). 

Shear history: Figure 5.1.5. also shows that, like PMA, the viscosity of the APMA 

solutions also depends on shear history. More precisely, figure 5.1.5.a, shows that for 

pH 8, the behaviour of APMA, when subjected to subsequent runs, resembles the 

behaviour of PMA. The viscosity initially decreases for shear rates up to 500s·I, but 

for higher shear rates it starts to increase, resembling the shear thickening behaviour 

of APMA. The difference between the two materials is that, in the case of PMA, the 

shear thickening behaviour occurs at lower shear rates, of 200s·1
• For pH 9, the 

solution viscosity decreases for every subsequent run, and this decrease is more 

evident for lower shear rates. Once the solution has been subjected to higher shear 

rates, the viscosity decreases even for lower shear rates, as shown in figure 5.1.5.b. 

Accordingly, comparing the response of PMA and APMA for pH ~9, to subsequent 

runs, it is concluded that these materials behave in a different way for high shear 

rates. The viscosity of PMA solutions increases with increasing shear rates while the 

viscosity of APMA decreases, gradually. The only similarity is that in both cases the 

viscosity of PMA and APMA solutions for pH ~9, depends on the shearing history. 
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Figure 5.1.4. The effect of pH and shear rate on the viscosity of a 0.93% APMA 

solution at 70°C 
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Figure 5.1.5.a) Effect of subsequent runs of shear on the viscosity of 0.93% APMA 

solution, at pH 8 and 70°C 
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Figure S.l.S.b) Effect of subsequent runs of shear on the viscosity of 0.93% APMA 

solution, at pH 9 and 70°C 

5.1.3. Sodium polymethacrylate (PMA-Na) 

Shearing time: Aqueous PMA-Na solutions of various concentrations were subjected 

to a constant rate in order to find out the effect of shearing time on the solution 

viscosity. Figure 5.1.6 shows that the viscosity remains stable and is not affected by 

the elapse of shearing time. Therefore, PMA-Na does not exhibit rheopectic 

behaviour. 

pH and shear rate: The effect of the pH and of the shear rate on PMA-Na aqueous 

solutions was also examined. Comparing the viscosity response to the pH changes 

(figure 5.1.7) for increasing shear rate, it is observed that the viscosity remains 

constant for pH values varying from 8 to 12 and it changes when the pH drops to 7. 

Within the range of pH values from 12 to 8, the viscosity follows the same pattern; it 

decreases sharply at low shear rates and it becomes almost constant at shear rates 

higher than 400 s·1
• Therefore, the pH does not affect the solution viscosity when it 

ranges between 8 and 12. The viscosity drops significantly and becomes pH 

dependent for pH values below 8. 
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Figure 5.1.7. Effect ofthe pH on the viscosity of 0.6% PMA-Na aqueous solution 

Shearing history: Figure 5.1.8 shows that when the pH decreases to 7 (figure 5.1.8.a), 

the viscosity pattern changes and it resembles the behaviour of polymethacrylic acid 

by becoming dependent on the shearing history. When the pH increases within the 

range, from 8 to 12 (figures 5.1.8.b and c), subsequent runs do not affect the viscosity. 

Therefore, the viscosity profile of the PMA-Na solutions is independent of the shear 

history within this range of pH values. Comparing the response of PMA and PMA-Na 

(within a pH range 12-8) to subsequent runs, it is concluded that these materials 

behave in a different way at high shear rates: 
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1. the viscosity of PMA solutions increases with increasing shear rates while the 

viscosity of PMA-Na decreases gradually and after 400 s·1 it becomes almost 

constant. 

2. the viscosity of PMA solutions depends on the shearing history, whereas the 

viscosity of the sodium salt is not influenced at alL 

These differences between PMA and PMA-Na may be explained in terms of the 

strong repulsive interaction between the ionised carboxyl anions in the presence of 

NaOH. The presence of NaOH may prevent from yielding intramolecular and 

intermolecular bonds. 

5.1.4. Conclusions 

The conclusions that can be deduced from the investigation of the rheological 

behaviour of PMA, and its ammonium and sodium salts, are: 

• All the solutions examined, (PMA, APMA, and PMA-Na), show a time 

independent rheological behaviour. 

• PMA solutions exhibit a shear thickening behaviour, whilst APMA and PMA-Na 

solutions exhibit a shear thinning behaviour. The rheological behaviour of PMA 

solutions seems to change when the polymethacrylic acid is neutralised either with 

NH3 or with NaOH. 

• PMA and APMA show a shear history-dependent behaviour. Once the PMA or 

APMA solutions have been subjected to high shear rates, their viscosity decreases 

even for low shear rates. On the contrary, PMA-Na solutions do not show any 

dependence on shear history. 

• The viscosity of APMA solutions depends on pH. For increasing pH, the 

solutions' viscosity decreases. The viscosity of PMA-Na solutions does not 

depend on pH. 
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• For pH < 9, APMA solutions resemble the behaviour of PMA, showing a slight 

shear thickening behaviour for high shear rates. PMA-Na solutions resemble the 

behaviour of PMA for pH< 8, showing, also a dependence on shear history. 
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5.2. Interfacial tension 

The interfacial tension between PMA-Na or APMA, and MMA was measured for 

various stabiliser concentrations and pH values. 

5.2.1.APMA 

The influence of APMA concentration, and of the pH, on the interfacial tension 

between APMA solutions and MMA was examined within a range of APMA 

concentrations from 0.78 to 1.56% APMA, and within a range of pH values from 8-

12, at 70°C, as shown in figure 5.2.1. It was observed that the interfacial tension does 

not change significantly with increasing APMA concentration, in fact it remains 

almost constant over all the concentration range. pH did not seem to have any 

significant effect on the interfacial tension either, as the interfacial tension remains 

almost constant, over all the pH range. The interfacial tension ranged from 12 x 10·3 

N/m to 13 x 10-3N/m for all the APMA concentrations and pH values used. 
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Figure 5.2.1. Interfacial tension between the monomer and the APMA continuous 

phase versus pH at 70°C 
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5.2.2. PMA-Na 

The effect of pH and of PMA-Na concentration on the interfacial tension between 

PMA-Na solutions and MMA was examined for PMA-Na concentrations from 0.5 to 

1.2% PMA-Na and within a range of pH values, from 10 to 12, at 70°C, as shown in 

figure 5.2.2. The interfacial tension ranged between 12.9 x 10·3N/m to 14.8 x 10-3N/m 

over all the PMA-Na concentration range. The pH did not have any effect on the 

interfacial tension. The interfacial tension remained constant for every solution , over 

all the pH range. 
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Figure 5.2.2. Interfacial tension between the monomer and the PMA-Na continuous 

phase versus pH at 70°C 

5.2.3. Conclusions 

The conclusions drawn from these measurements is that 

• The increase in stabiliser concentration does not have any significant effect on the 

interfacial tension between the continuous phase and the monomer. The interfacial 

tension remains almost constant over all the range of stabiliser concentrations 

• The pH does not affect the interfacial tension between the two phases 
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5.3. Factors that affect the drop and particle sizes and their distributions 

In this chapter, the factors that affect the drop and particle sizes were also 

investigated. Drop and particle sizes and distributions were measured, and their 

variation as a function of these factors was examined. These factors are the stabiliser 

concentration and continuous phase viscosity, impeller speed, pH, temperature, 

monomer hold-up and dispersed phase viscosity 

5.3.1. Effect of the stabiliser concentration - continuous phase viscosity 

In order to investigate the effect of the concentration of the polyelectrolyte stabilisers 

PMA-Na and APMA on the drop and particle size distributions, suspension 

polymerisation experiments were run with different polyelectrolyte concentrations, at 

70°C, and at 750rpm (12.5 s·1
). The initial pH of the continuous phase at 70°C, is 

adjusted to 10 for all runs. The particle size distributions of the polymer beads 

produced with PMA-Na and APMA are depicted in figures 5.3.1 and 5.3.2 , 

respectively. When the concentration of the stabilisers in the continuous phase 

increases, the particle sizes in both cases decrease and the particle size distributions 

become slightly broader, especially towards the smaller sizes. This means that the 

maximum drop diameters decrease, while not only do the minimum drop diameters 

decrease in size but they also increase in number, justifying the broadening of the 

distribution especially towards the smaller sizes. 

The particular feature of these stabilisers is that they are viscous gels and they 

produce aqueous solutions which are also very viscous. Hence with increasing 

concentration of the stabiliser in the continuous phase, the viscosity of the continuous 

phase also increases. More specifically, for PMA-Na concentrations ranging from 0.5 

to 1.2%, the continuous phase viscosity would range from 0.15 to 0.38 Pas. For 

APMA concentrations ranging from 0.78% to 1.56%, the viscosity ranged between 

0.116 to 0.168 Pas. The broadening of the distribution as the stabiliser concentration 

increases might be caused by the simultaneous increase of the viscosity of the 

continuous phase (Jahanzad et al., 2004 (a)). 
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Figure 5.3.1. Particle size distributions for increasing PMA-Na concentration in the 

continuous phase, at 70°C, 12.5s"1
, and initial pH=IO 
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The drop size distribution at any time is a result of the dynamic equilibrium between 

breakage and coalescence. Decreasing the drop breakage rate or increasing the drop 

coalescence rate results in larger drop sizes. On the other hand, increasing the drop 

breakage rate or decreasing the drop coalescence rate results in smaller drop sizes. 

In the case of PMA-Na and APMA, where the viscosity of the continuous phase plays 

a very important role in determining the hydrodynamic conditions in the vessel, the 

increase of the continuous phase viscosity results in an increase of the viscous shear 

forces exerted on the drops which, in turn, cause the breakage rate to increase. At the 

same time the increased viscosity hinders the coalescence because of the thicker film 

trapped between colliding drops and the coalescence rate decreases. For a breakage to 

occur, it is necessary that enough energy be supplied to the drop to overcome the 

forces that resist breakage as a function of surface tension. The energy for the 

breakage will come from the field outside the drop, either as kinetic energy in the 

turbulent eddies, or as shear energy, or as a combination of both. As the viscosity of 

the continuous phase increases, the viscous stress increases leading to an increase of 

the breakage rate. The drop coalescence is also influenced by several factors. One of 

them is the collision rate between the drops. Another factor, is the coalescence 

efficiency between the drops. This is a function of the time that two colliding drops 

remain in contact. And the time required for the intervening liquid film to drain out to 

achieve film rupture and thus coalescence. For systems of higher continuous phase 

viscosities, a lower film drainage rate would be expected and thus a lower coalescence 

rate. 

Figure 5.3.3, shows the effect of the continuous phase viscosity on the Sauter mean 

diameter, with a)PMA-Na and b)APMA. In both cases the Sauter mean diameter 

decreases with the increase of the continuous phase viscosity. This may be attributed 

to the decrease of the coalescence rate that is also supported by the fact that the 

particle size distribution becomes broader towards the smaller sizes when the 

viscosity increases. 

These two factors, concentration and viscosity of the continuous phase, can not be 

decoupled in order to distinguish between the effects on the particle sizes caused by 

each one of them. A factor that can provide a useful source of information for the 
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behaviour of the polyelectrolyte stabilisers is the variation of the interfacial tension 

with increasing stabiliser concentration. 
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Figure 5.3.3. Effect of the continuous phase viscosity on the Sauter mean diameter, at 

70°C, 12.ss·1, and initial pH =10 for a)PMA-Na and initial pH =9 for b)APMA 

Comparing the S auter mean diameters of the beads produced by the two stabilisers 

(figure 5.3.4), it is observed that for the same continuous phase viscosity values, 

APMA produces smaller particles than PMA-Na. More specifically, for the same 

continuous phase viscosity of 0.153 Pas, the d32 of the particles produced with PMA

Na is 96 ~-tm, whereas the d32 of the particles produced with APMA is 54 ~-tm. One 

factor that could probably explain the difference is the interfacial tension between the 

monomer and the two stabilisers. Lower interfacial tension means lower resistance to 
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breakage and consequently leads to smaller particle sizes. Therefore, if the interfacial 

tension of the system APMA+MMA is lower than the interfacial tension of the system 

PMA-Na +MMA, smaller drops would be expected for the first one. 
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Figure 5.3.4. d32 for PMA-Na and APMA, at 70°C, 12.5s"1
, for increasing continuous 

phase viscosity 

There are two questions to be answered by the interfacial tension measurements: 

• For samples produced with the same stabiliser, which is the determining factor 

causing the diminution of the drop sizes, the increase of the stabiliser concentration 

through decreasing the interfacial tension, or the increase of the continuous phase 

viscosity? 

• Comparing samples produced with PMA-Na and APMA, what causes the 

difference in the drop sizes for samples produced with the same continuous phase 

viscosity? 

In figure 5.3.5, the interfacial tension between PMA-Na and monomer and APMA 

and monomer is depicted for increasing stabiliser concentration at the reaction 

temperature (70°C). The interfacial tension for both of the solutions is low. 
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Figure 5.3.5. Interfacial tension between monomer and the continuous phase for 

increasing stabiliser concentration, at 70"C 

Two significant observations can be made from these data. First, the interfacial 

tension varies only slightly over the whole range of stabiliser concentrations. In fact, 

it remains almost constant over all the concentration range. Therefore, there is no 

significant influence of the increase of the stabiliser concentration on the interfacial 

tension. The second observation is that the interfacial tension between PMA-Na 

solutions and the monomer ranges between 12.8x10"3 N/m and 14.9x10·3 N/m and is 

slightly higher than the interfacial tension between APMA solutions and the 

monomer, that ranges between 11.7 x10·3 N/m and 12.4 x10·3 N/m. But is this small 

difference sufficient to explain the difference between the produced particle sizes? 

The answer is no, and therefore, the diminution of the particle sizes with increasing 

stabiliser concentration could not be attributed to interfacial phenomena. For polymer 

samples produced with the same stabiliser, it could possibly be attributed to the 

increased viscosity of the continuous phase. 

Although, the increased continuous phase viscosity can probably justify this 

diminution, it cannot justify the formation of different drop sizes for the same 

continuous phase viscosity, when APMA is used instead of PMA-Na. This could 

probably be caused by the different nature and properties of the two materials. One of 

the factors that might account for this, is the different shear thinning behaviour of the 

two stabilisers. More specifically, the viscosity index, n, for PMA-Na solutions is 
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lower than the viscosity index for APMA solutions. Lower viscosity index is 

associated with an increasing shear thinning behaviour. Increasing shear thinning (or 

lower viscosity index) in the laminar flow region leads to larger drops (Shimizu et al., 

1999; Kumar et al, 1993). With increasing shear thinning, the shear stress tending to 

deform the drop decreases and, as a result, the maximum drop diameter increases. 

5.3.2. Effect of the stirring speed 

Increasing the stirring speed during the suspension polymerisation has been found to 

lead to a decrease of the particle sizes, when the flow in the reactor is turbulent (Zerfa 

and Brooks, 1996 (b), Leng and Quarderer, 1982). When, it is not turbulent, it has 

also been found to lead to a decrease of the drop sizes (Boye et al. 1996). A decrease 

initially, followed by an increase of the Sauter mean diameter for increasing stirring 

speed and high hold-up fraction dispersion systems has also been reported (Chatzi and 

Kiparissides, 1995). The initial decrease was attributed to the increase of the breakage 

rate with increasing impeller speed. The subsequent increase was attributed to the 

diminishing molecules of the stabiliser on the interface because of the large increase 

of the interfacial area. The increase of the coalescence frequency with increasing 

impeller speed (Howarth, 1964), in combination with the diminution of the stabiliser 

molecules lead to an increase of the drop sizes. 

The effect of the stirring speed on the particle sizes when the non Newtonian PMA

Na and APMA solutions are used as suspending agents was investigated. Suspension 

polymerisation experiments were run for various stirring conditions, at 70°C, and 

initial pH 10 for PMA-Na. Figures 5.3.6 and 5.3.7 present the particle size 

distributions (PSDs) for 0.6% and 1.2% PMA-Na, and for 3 stirring speeds. As can be 

observed in these figures, the particle sizes, which reflect the initial drop sizes, for 

these conditions increase with increasing stirring speed. For a certain stabiliser 

concentration, the increase of the stirring speed causes an increase in the particle size. 

This is not what would be expected, if the flow was turbulent. It was not consistent 

with previous work suggesting that, for a low coalescing system such as this, one of 

the parameters favouring the droplet breakup, is higher impeller speed which 

generally decreases the minimum transition time required for the system to reach 
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steady state, and leads to smaller drop sizes (Chatzi et al., 1991). The particle size 

distribution becomes more narrow, though, with increasing stirring speed, as 

expected. 
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Figures 5.3.8 and 5.3.9 show the PSDs produced with various concentrations of PMA

Na at 850 rpm and 950 rpm respectively. The distributions follow the same pattern 

they followed at 750 rpm or 12.5 s·1 (figure 5.3.1). The particle sizes diminish with 

increasing stabiliser concentration and viscosity, and simultaneously their distribution 

becomes broader towards the smaller sizes. 
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Figure 5.3.10. d32 for increasing stabiliser concentration at different stirring speeds 

The Sauter mean diameters decrease with increasing stabiliser concentration but 

increase with increasing stirring speed as shown in figure 5.3.10. They follow the 

same trend for all the different speeds. 

5.3.3. Effect of monomer hold-up 

Monomer hold-up (or monomer volume fraction) has been found to have a significant 

effect on the particle sizes. Increasing the monomer hold-up during suspension 

polymerisation leads to an increase of the particle sizes when turbulent conditions 

prevail in the reactor, and for certain hold-ups. Boye et al. (2000) studied dispersions 

of high hold-up and found that, for hold-ups up to 0.5, the drop breakup occurs via the 

inertial breakup mechanism and that the particle size increases with increasing hold

up. For hold-ups higher than 0.6 the dispersion showed strong non-Newtonian 

characteristics and the apparent viscosity of the dispersion increased significantly. For 
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these conditions, the shear breakup mechanism prevailed and the drop size decreased 

for increasing hold-up. Stamatoudis and Tavlarides (1985) studied dispersions for 

high continuous phase viscosities and found that the drop sizes increase for increasing 

hold-up. 

Here, the effect of the monomer hold-up ( cp) on the particle sizes for the PMA-Na 

system has been studied for 3 different PMA-Na concentrations, 0.6, 0.9 and 1.2% 

and for hold-ups ranging from 0.05 to 0.3. The particle size distributions of the 

polymer produced with 0.6% PMA-Na for increasing cp are depicted in figure 5.3.11. 

The particle size distribution is more narrow for smaller hold-ups and becomes 

broader for higher hold-ups. For hold-ups from 0.05 to 0.2 the PSD is shifted towards 

smaller sizes as the hold-up increases. When the hold-up increases to 0.2, a small 

second peak is formed in the large size range of the distribution indicating the 

occurrence of coalescence. For an even higher hold-up, 0.25, the PSD becomes even 

broader and is shifted towards larger sizes, while the second peak becomes 

significantly larger indicating that coalescence occurs to a greater extent. Therefore, 

the effect of the increasing hold-up on the PSD is not monotonous. Initially, for low 

hold-ups the particle sizes decrease as the hold-up increases. For higher hold-ups, the 

particle sizes increase for increasing hold-up. This behaviour could be attributed to 

two competing factors, the viscosity of the system and the coalescence rate. As the 

hold-up increases, the viscosity of the system increases. This viscosity increase causes 

the formation of smaller particles which is consistent with the decreasing particle 

sizes for low hold-ups (0.05 to 1.5). The coalescence rate also increases for increasing 

cp, but for low cp, this effect may be counterbalanced by the viscosity increase which 

enhances the drop breakup by shear. For cp ::0:0.2, the viscosity increase causes the 

formation of smaller particles but the coalescence rate also increases causes the 

formation of a second small peak at higher sizes. As the hold-up increases even 

further (0.2 to 0.25), the coalescence rate increases to such an extent that, it can not be 

counterbalanced by the increasing viscosity. Therefore, for higher hold-ups the 

particle sizes increase. For systems with hold-ups equal to 0.3, or higher, coalescence 

occurs to a great extent and the PSD becomes very broad and multimodal, while 

coagulation of the particles to bigger agglomerates is also observed. 
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Figure 5.3.11. PSDs for increasing holdup and 0.6% PMA-Na, at pH 10 and 750rpm 

The effect of the increasing hold-up on the Sauter mean diameter for 3 different 

PMA-Na concentrations, 0.6, 0.9 and 1.2% is shown in figure 5.3.12. Initially, for low 

hold-ups, from 0.05 to 0.15, a similar trend is evident for all PMA-Na concentrations. 

For the lower PMA-Na concentration, 0.6%, d32 starts to increase for hold-ups higher 

than 0.15, and the increase becomes sharp for hold-ups higher than 0.2. As the PMA

Na concentration increases to 0.9%, the capacity of the system against coalescence 

increases, and the increase of the particle sizes is mitigated. In fact only a slight 

increase for hold-ups higher than 0.15 occurs, and the particle sizes increase for hold

ups higher than 0.2. When the stabiliser concentration is increased, even further, to 

1.2%, the capacity of the system against coalescence is even more enhanced, and the 

drop sizes decrease up to a hold-up of 0.2, and a slight increase occurs for hold-up 

equal to 0.25. The point where the coalescence starts to prevail over the viscosity, 

causing an increase of the particle size with increasing rp, is affected by the stabiliser 

concentration in the continuous phase. Hence, for higher stabiliser concentrations the 

capacity of the system against coalescence is enhanced and the increase of the particle 

sizes correspond to higher hold-ups. For 0.6% PMA-Na the coalescence takes over for 

rp equal to 0.15, whereas for 1.2% PMA-Na the coalescence takes over for rp equal 

to0.2. 
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5.3.4. Effect of the viscosity of the dispersed phase 

The particle size distributions broaden significantly as the dispersed phase viscosity 

increases (figure 5.3.13). Not only do the maximum diameters become larger but also 

the number of drops with small diameters increases. These observations are consistent 

with previous studies on the dispersed phase viscosity (Calabrese et al, 1986 (a); Arai 

et al., 1977) that referred to turbulent flow in tanks. The effect of the dispersed phase 

viscosity on the maximum diameter is shown in figure 5.3.14. The increase of the 

dispersed phase viscosity causes the drop sizes to increase. 
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5.3.5. Effect of pH 

One of the features that make these polyelectrolyte stabilisation systems differ from 

many other systems is their sensitivity to pH. The pH of the continuous phase has a 

profound effect on the particle sizes and on their distribution. In order to investigate 

this effect, suspension polymerisation experiments were run for the same conditions, 

while the pH was varied. The BPO concentration for these runs was 0.04 mole/1 and 

the PMA-Na concentration was 0.45%. The pH was adjusted to the desirable value by 

the addition of 5M NaOH solution, in the continuous phase before the treatment of the 

continuous phase with N2 and, of course, before the addition of MMA. The pH of the 

continuous phase before the addition of NaOH was 10 at the reaction temperature, 

70°C, for all the solutions. The pH of the continuous phase decreases when the 

monomer is added and it decreases even further during the course of polymerisation 

reaction. This pH decrease is presented in figure 5.3.15 for various initial pH values. 

The pH decrease follows the same pattern in all cases, despite the different initial 

conditions. It decreases sharply when the monomer is added and then it decreases 

gradually during the course of polymerisation until it reaches a plateau at 

approximately pH 8. It is noted that despite the big difference in the initial pH values 

(10, 11, and 12), the final pH values (7.89, 8.17 and 8.32, respectively) do not differ 

significantly. 
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The particle size distributions produced from experiments conducted as described 

above, for a pH range from 10.5 to 13, are depicted in figure 5.3.16. There are two 

different phenomena that accompany the increase of the initial pH during suspension 

polymerisation. First of all, the particle sizes diminish with pH increase and their 

distributions are shifted towards smaller sizes. Secondly, apart from the initial main 

peak, two more secondary peaks appear. Both of them correspond to small particles. 

The first of the secondary peaks, designated from now on, 'peak 1 ', corresponds to 

very small particles with diameters that range from 0.4 to 1.5 J..lm. The second of the 

secondary peaks, designated 'peak 2', corresponds to larger particles with diameters 

that range between 1.5 and 15J..lffi. These secondary peaks appear only when the pH 

had been adjusted to values higher than the initial pH of the solution. 

Once the secondary peaks appear, each one of them is influenced by further pH 

increase in a different way. The main peak is also influenced by the pH increase in a 

different way. As can be observed, in figure 5.3.16, the area of peak 1, increases with 

increasing pH, while peak 2 decreases with increasing pH. The area of the main peak, 

also decreases with increasing pH, while at the same time the peak is shifted to 

smaller diameters. 
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Figure 5.3.16. Effect of increasing initial pH on the PSD, for 0.45% PMA-Na 
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The influence of the increasing pH on each one of the three peaks is depicted 

separately in figures 5.3.17. Figure 5.3.17.a shows the effect of the pH on peak 1. As 

the pH increases, the area of peak 1 increases, meaning that the volume % or the 

number of fine particles that correspond to diameters from 0.4 to 1.5!!m increases. 

The range of the diameters is not influenced by the pH increase, but only the area of 

the peak. Figure 5.3.17.b., shows the effect of the increasing pH on peak 2. This peak 

appears as the pH rises higher than 10.5 to 11. Then, with a further increase of the pH 

the peak area decreases, and it also becomes bimodal for pH values equal to 12 or 

higher. The effect of the increasing pH on the main peak is depicted in figure 5.3.17.c. 

As can be observed, the increase of the pH values causes both the main peak area and 

the corresponding diameters to decrease. Hence, pH has a dual effect on the main 

peaks. Firstly, the main peaks become more narrow with increasing pH. Secondly, the 

particle sizes decrease and the main peaks are shifted towards smaller diameters. 

The corresponding variations of d32, for each one of the three peaks and for the total 

distribution, with increasing pH are depicted in figure 5.3.18, where figure 5.3.18.a. 

depicts d32 for peaks 1 and 2, figure 5.3.18.b. shows d32 for peak 3 and figure 5.28.c. 

depicts d32 of the total distribution. 
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Peaks 1 and 2 are formed for pH values higher than 10.5 as was shown in figures 

5.3.17.a. and 5.3.17.b. Therefore, the d32 values given for pH 10.5, in figure 5.3.18.a, 

for peaks 1 and 2, (0.87j.tm and 3.1j.tm, respectively), do not correspond to a peak. In 

fact, they correspond to a small fraction of fine particles that have diameters within 

the same ranges with peak 1 and 2, and they are only presented, in the figure, for 

comparison. Once these peaks are formed, for pH higher than 10.5, they have a 

constant d32· For peak 1, d32 has a constant value, of 0.6 !lffi, over the pH range. Peak 

2, also has an almost constant value of 4.5 j.tm, overall the pH range. Therefore, pH 

does not seem to affect the value of d32 for the two secondary peaks. 

85 



CHAPTERS 

Figure 5.18.b shows the effect of pH on the main peak (peak 3). As the pH increases, 

d32 for peak 3 decreases significantly, from 139.9 J.lm for pH 10.5 to 55 J.lm for pH 13. 

Therefore, the pH has a significant effect on the d32 of the main peak causing it to 

decrease significantly. Summarising, the pH increase does not have any influence on 

d32 for the two secondary peaks 1 and 2, but it has a very strong effect on d32 of the 

main peak 3, causing it to decrease significantly. 

The effect of the pH on d32 for the total particle size distribution is shown in figure 

5.3.18.c. The total d32 decreases significantly as the pH increases. d32 for the total 

distributions shows very low values as the pH increases, compared to the 

corresponding values of the main peak (peak 3), suggesting that there is a strong 

influence of the two secondary peaks on the total d32· The value of d32 for pH 10 

before the secondary peaks appear was 135 J.lm; a value very close to d32 for the main 

peak. But as the pH increases, the deviation of the total d32 from the d32 for peak 3 

becomes larger, indicating that the influence of the small peaks becomes stronger. 

Therefore, the influence of the secondary peaks becomes stronger with increasing pH. 

The increasing influence of the secondary peaks on the total d32 could be explained if 

the % volume or the number of the particles that belong to each diameter range is 

taken into consideration. Figure 5.3.19 shows the effect of pH on the % volume of 

particles that form each peak. For increasing pH the volume of the secondary peaks 

increases significantly, whereas the volume of the main peak decreases. For pH 10.5 

the secondary peaks have not yet been formed and the volume of the fine particles 

that belong to the same diameter range with peak 1 and 2 are taken into consideration. 

Once the secondary peaks are formed, at pH from 10.5 to 11, their total volume 

increases with pH. The volume of peak 1 increases significantly with increasing pH. 

Peak 2 is initially larger for pH 11, then it diminishes gradually as the pH increases 

further. Therefore, both the main peak (peak 3) and peak 2 diminish as the pH 

increases. The overall tendency, for increasing pH, is to form fine particles within the 

diameter range 0.4 to 1.5 J.lm. 
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The effects of the variation in reaction temperature (T) in suspension polymerisation 

are multiple. The temperature variation affects the attributes of both phases, 

continuous and dispersed. More specifically, it affects 

• the rate of polymerisation 

• the way the stabiliser distributes between the two phases 

• the viscosity of both phases, 

• the pH of the continuous phase, which has been proved to play an important role 

in the determination of the particle sizes 

The influence of the temperature on so many different factors complicates the 

determination of the effect on the drop and particle sizes to a great extent. It is a 

multivariate problem, and the factors have to be decoupled, in order to ease the 

deduction of conclusions. 

Two series of experiments are run in order to study the effect ofT. For the first series 

of experiments, designated 'A', polymerisation experiments are run for the same 

conditions, with the same BPO concentration, but at different temperatures. In this 

case all the above mentioned variables change simultaneously leading to a combined 
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effect. The conditions used for these series are BPO concentration 0.06 mole/!, PMA

Na concentrations 0.6%, 0.9% and 1.2%, temperatures 60, 70, 75 and 80°C, stirring 

speed 12.5s·1, and D 0.1. The same stock stabiliser solution was used for the 

preparation of the continuous phase in all cases, and therefore, the initial pH varied 

only because of the temperature variations. No additional pH adjustment took place. 

The pH was 10.5 at 70°C, 10.8 at 60°C, 10.3 at 75°C, and 10.2 at 80°C. 

For the second series of experiments, designated 'B ', suspension polymerisation 

experiments were run for various temperatures and different BPO concentrations. For 

this series the BPO concentrations are such, that the rate of polymerisation is 

maintained constant in all cases. The BPO concentrations used were 0.06 mole/! at 70 

°C , The variables, in this case, will be the viscosity and the pH. 

The effect of temperature on the viscosity of the continues phase for both series is 

depicted in figure 5.3.20. The viscosity of the continuous phase decreases for 

increasing reaction temperature. Lower viscosity causes the formation of larger 

particles, as was shown in chapter 5.3.2. Therefore, in the absence of other influences, 

the temperature increase would be expected to lead to larger particles. 
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Figure 5.3.20. Continuous phase viscosity (0.6% PMA-Na) for various temperatures, 

for series A and B 

The effect of the temperature on the pH of the continuous phase for both series is 

depicted in figure 5.3.21. Figure 5.3.21 shows the pH decrease with time during the 
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polymerisation, for various temperatures. The initial pH decreases with increasing 

temperature. In the absence of other influences, a pH decrease would also be expected 

to lead to larger particles as was shown in section 5.3.5. 
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Figure 5.3.21. pH decrease with time for various temperatures 

Series A: The conversion versus time for various temperatures, for the same BPO 

concentration is shown in figure 5.3.22. The increase of temperature has a strong 

effect on the reaction kinetics, increasing the polymerisation rate two to threefold for 

every l0°C of increase (Odian, 1991). The increase of the polymerisation rate causes 

the viscosity of the dispersed phase to increase more rapidly. This viscosity increase 

results in a decrease of the breakage rate that could lead to larger particles. The PSDs 

of beads produced for increasing temperature are shown in figure 5.3.23. The particle 

sizes increase for increasing temperature, and this increase could be attributed to the 

combined effect of the increasing polymerisation rate, the pH decrease and the 

viscosity decrease of the continuous phase. The distributions also become more 

narrow for increasing temperature, which could be attributed to the decrease of the 

continuous phase viscosity. 
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Figure 5.3.22. Conversion-time for various temperatures, and BPO 0.06mole/l 
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Figure 5.3.23. PSDs for various temperatures and 0.6% PMA-Na 

Figure 5.3.24 shows the effect of the increasing temperature on d32 for various PMA

Na concentration. d32 increases for increasing temperature. Though, as the stabiliser 

concentration increases, the breakage rate is enhanced and d32 decreases. 
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Series B: The conversion -time data for suspension polymerisation experiments run 

for various temperatures, by adjusting the BPO concentration in order to achieve 

equal polymerisation rates for all the runs, are depicted in figure 5.3.25. The BPO 

concentration is adjusted to 0.01 mole/! for 80°C, and to 0.025 mole/1 for 75°C. The 

BPO concentration at 70°C, is 0.06 mole/1. 

The Sauter mean diameters for these runs are shown in figure 5.3.26. They increase 

for increasing temperature but decrease for the same temperature and increasing 

PMA-Na concentration. 
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Figure 5.3.26. d32 of the final particles for series B and for PMA-Na concentrations: 

0.6, 0.9 and 1.2% 

Comparing the Sauter mean diameters for the two series A and B (figure 5.3.27), for 

increasing and constant polymerisation rate, respectively, the net effect of the 

polymerisation rate can be deduced. The polymerisation at 70°C, was used as a 

reference point and in both cases the same BPO concentration was used. Therefore, 

there is no difference in d32 between the two series A and B. 
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Figure 5.3.27. d32 for series A and B and for PMA-Na concentrations 0.6 and 1.2% 

For the runs at 60 °C, the BPO concentration was increased from 0.06 mole/! to 0.35 

mole/1 in order to achieve a higher polymerisation rate, equal to the polymerisation 
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rate for 70 °C. In the other cases, for 75 and 80°C, the BPO concentration was 

decreased in order to achieve a lower polymerisation rate, equal to the polymerisation 

rate at 70 °C. 

This increase of the polymerisation rate for 60 °C for series B, results in a higher 

Sauter mean diameter. In the other cases, where the polymerisation rate is higher for 

series A, the higher Sauter mean diameters are also observed for series A. The Sauter 

mean diameters for 75 °C increase from 71.8 Jlm for series B, to 89 Jlm for series A, 

for 0.6% PMA-Na. The increase in d32 is higher for 80 °C, from 112 Jlm to 152 Jlm. 

This increase in the Sauter mean diameter between series A and B reflects the net 

effect of the increase in the polymerisation rate induced by the increase in 

temperature. The increase in d32 for increasing temperature in series B reflects the 

effect of the effect of temperature on the pH and the viscosity of the continuous phase. 

5.3. 7. Effect of the chain transfer agent 

The effect of the chain transfer agent, which is n-dodecyl mercaptan (DMA) is 

examined here. The initiator concentration is 0.08 mole/! monomer, in all cases. The 

concentration of the chain transfer agent is 0.025 mole/! monomer. The conversion 

time data for the runs with and without n-dodecyl mercaptan are given in figure 

5.3.28. Two stabiliser concentrations were used, 0.6% and 0.4% PMA-Na. The higher 

of the two concentrations is sufficient to maintain a constant d32 over all the 

conversion range, as described in section 5.4.1. For the second stabiliser concentration 

the particle size increases with increasing conversion. The initial pH of the continuous 

phase in all cases was 10. 
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Figure 5.3.28. Conversion-time data for polymerisation with and without DMA 

For the higher stabiliser concentration, 0.6% PMA-Na, the PSDs, over the total range 

of particle sizes, for two runs are presented in figure 5.3.29. The first run was carried 

out with the addition of chain transfer agent in the monomer phase, whereas the 

second run was carried out without DMA. For this concentration the particles in both 

cases are within the same range, and the PSDs are almost identical. The PSD for the 

run without DMA is a little higher than the PSD for the run with DMA. The addition 

of DMA results in a slightly shorter main peak. 

A more significant difference exists in the fine particles' distributions, as shown in 

figure 5.3.30, for particles with diameters smaller than lOJlm. The volume of the fine 

particles for the run with DMA is significantly larger than the volume of the fine 

particles for the run without DMA. The dissolution of the mono mer phase in the water 

phase may account for this difference. Because of the longer time that the 

polymerisation requires in the presence of DMA, the dissolution of the monomer in 

the aqueous phase may occur to a greater extent. The dissolution of the monomer in 

the water phase is one of the possible sources for the appearance of fine particles 

during the polymerisation. 
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Figure 5.3.29. PSDs for runs with DMA and pure monomer, for 0.6% PMA-Na 
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Figure 5.3.30. PSDs of fine particles, for runs with DMA and pure monomer, and for 
0.6%PMA-Na 

For the lower stabiliser concentration examined, 0.4% PMA-Na, the evolution of the 

particle size distribution for all particle sizes is depicted in figure 5.3.31. The particle 

sizes increase with increasing conversion. The shape of the PSD does not change 

significantly with conversion. It becomes slightly shorter and broader as conversion 

increases. The dmax of the final polymer beads produced with DMA is 300 ~tm, 

whereas the dmax of the polymer beads produced without DMA is 396 ~tm. Therefore, 

the maximum diameter is significantly smaller when DMA is used. This might be 

attributed to the lower rate of viscosity build up in the presence of DMA. Because the 

polymer produced in the presence of DMA has significantly lower molecular weight, 
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the rate of viscosity build up is lower, and therefore the resistance to breakage is 

lower, resulting is smaller particle sizes. 

Figure 5.3.32, shows the evolution of the PSD for the fine particles, for 0.4% PMA

Na. Also here, there is a slight decrease of the volume of the fine particles with 

increasing conversion. 
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Figure 5.3.31. Evolution of the PSD, with DMA, and for 0.4% PMA-Na 
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5.3.8. Evolution of the particle size distribution during suspension 

polymerisation 

In this section the evolution of the particle size distribution is examined. The stabiliser 

used was PMA-Na and the initiator concentration was 0.04 mole/1, and the initial pH 

10. The conversion time data for these runs are presented in figure 5.3.33. Two cases 

are presented, for stabiliser concentrations 0.2% and 0.4% PMA-Na. In the first case 

the stabiliser concentration is low and significant coalescence occurs during the 

course of the polymerisation and mainly during the gel effect. In the second case the 

extent of coalescence is limited. 
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Figures 5.3.33. Conversion time data for 0.04 mole/! BPO, at 70°C, with 0.2% and 

0.4%PMA-Na 

Figures 5.3.34 and 5.3.35 show the evolution of the particle size distribution for 0.2% 

PMA-Na. The first of the two figures shows the evolution for particles with diameters 

larger than 10 J.lm, whereas the latter one shows the evolution of the fine particles 

(with diameters smaller than 10 J.lm) throughout the polymerisation reaction. For 

particles with diameters larger than 10 J.lffi (figure 5.3.35) the particle sizes increase 

with conversion and their size distribution shifts to larger sizes. Coalescence occurs to 

a significant extent during the polymerisation reaction and especially during the gel 

effect, leading to the formation of a second broad peak at sizes larger than the main 

peak. The main peak becomes broader and shorter while the second broad peak 

increases in volume with increasing conversion. During the first 30 minutes, the main 
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peak of the distribution only shifts slightly to larger sizes. At 40 minutes, which 

corresponds to a conversion of about 23%, the second peak appears and starts to 

increase in volume thereafter. 
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Figure 5.3.34. Evolution of the PSD for particles with diameter larger than lOflm, and 

0.2%PMA-Na 

For particles with diameters smaller than lOflm (figure 5.3.35), there is a secondary 

peak of fine particles. This peak maintains a constant range of particle diameters 

throughout the polymerisation, but its volume decreases with increasing conversion. 

For the first 30 minutes the distribution of the fine particles remains almost constant. 

After 40 minutes the fine particles start to coalesce and their total volume, in the small 

size range, decreases with increasing conversion. Thus the higher concentration of 

fine particles occurs at the beginning of the polymerisation, and, as the polymerisation 

proceeds, the fine particles' concentration decreases. 
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Figure 5.3.35. Evolution of the PSD for particles with diameter smaller than lOJlm, 

and 0.2% PMA-Na 

In the second case, for a higher PMA-Na concentration 0.4% PMA-Na, the evolution 

of the particle size distribution differs significantly. Figure 5.3.36. shows the 

evolution of the particle sizes with diameters larger than 10 Jlm. The particle sizes 

increase with increasing conversion and their distribution shifts to larger sizes, but 

maintains the same shape throughout the polymerisation reaction. The coalescence 

seems to occur to a smaller extent because of the higher stabiliser concentration and 

the higher continuous phase viscosity. As a result, the second peak at sizes larger than 

the main peak does not appear in this case. For the first 40 minutes the main peak is 

only slightly shifter towards larger sizes. The most significant shift is observed after 

40 minutes, for conversion higher than 23%, which was the conversion where the 

most significant changes were observed for 0.2% PMA-Na. 

The fine particles' peak, shown in figure 5.3.37, decreases in volume with increasing 

conversion. The peak maintains almost the same volume for the first 40 minutes and 

then starts to decrease in volume because of coalescence of the fine particles. The 

decrease of the fine particles' peak occurs to a smaller extent, compared to the 

decrease of the same peak for a smaller stabiliser concentration, 0.2% (figure 5.3.35). 

This is attributed to the limited extent of coalescence in this system because of the 

higher stabiliser concentration. 
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5.3.9. Conclusions 

The main conclusions drawn from the series of experiments investigating factors that 

may influence the drop and particle sizes are: 

• Continuous phase viscosity: The continuous phase viscosity has a strong effect 

and plays an important role on the determination of the drop and particle sizes. For 

both PMA-Na and APMA, an increase in the continuous phase viscosity causes a 

diminution of the particle sizes, and vice versa. The PSDs shift to smaller sizes 

and become slightly broader as the continuous phase viscosity increases. For the 

same continuous phase viscosity, APMA solutions produce smaller particles than 

PMA-Na solutions. 

• Stirring speed: Increasing the impeller speed leads to an increase of the particle 

sizes. This is attributed to the non-Newtonian nature of the continuous phase. 

Increasing the stirring speed, causes the viscosity of the non-Newtonian 

continuous phase to decrease. According to the previous conclusion, since the 

viscosity decreases, the particle sizes increase. 

• Hold-up: For increasing hold-up, d32 initially decreases, reaches a minimum and 

then starts to increase. The hold-up, for which d32 becomes minimum, increases 

for increasing stabiliser concentration and continuous phase viscosity. 

• Dispersed phase viscosity: Increasing the dispersed phase viscosity causes the d32 

to increase and the PSD to broaden significantly. 

• pH: Increasing the initial pH of the continuous phase, causes the particle sizes to 

diminish, and leads to the formation of two secondary peaks, at size ranges up to 

1.5 J..lm for the first one, and within the range from 1.5 to 10 J..lm for the second. 

The total volume of the secondary peaks increases with increasing pH, while the 

volume of the main peak decreases. The first peak increases monotonously, while 

the second peak, increases initially and then decreases. The overall trend is to form 

fine particles within the diameter range 0.4 to 1.5 J..tm. 

• Temperature: Increasing the reaction temperature causes the particle sizes to 

increase. This decrease of the particle size is a combined effect caused, mainly, by 
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the viscosity decrease of the continuous phase as the temperature increases, and by 

the increase of the polymerisation rate. The effect of the temperature on the 

particle size is more evident for lower stabiliser concentrations. 

• Chain transfer agent ( CTA): In the presence of a chain transfer agent the volume 

of the particles with diameters smaller than 10 J.lm increases, and the size of the 

maximum diameter decreases significantly. The increase of the volume of fine 

particles may be caused by the dissolution of the monomer in the continuous phase 

to a greater extent, in the presence of a CT A. The diminution of the maximum 

particle size could be attributed to the lower rate of viscosity build up in the drops. 
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5.4. Factors required for the investigation of the dispersion mechanism 

Among the factors that influence the drop and particle sizes examined, the continuous 

phase viscosity was proved to play a very important role, not only for increasing 

stabiliser concentration, but also for increasing stirring speed, and for increasing 

temperature. The viscosity of the reaction mixture for increasing hold-up also was a 

determining factor for the formation of the drops. This strong effect of the viscosity 

could be an important factor that determines the drop breakup mechanism in the 

initial dispersion. In order to determine the dispersion mechanism, we have to 

measure, calculate or estimate the required factors. These factors are the apparent 

viscosity of the continuous phase, the Kolmogorov macroscale of turbulence, the 

dissipated power, the interfacial tension, the density of the two phases, the interfacial 

tension and the maximum drop diameters. The factors required for the determination 

of the dispersion mechanism are presented and calculated in this chapter. 

Three series of suspension polymerisation experiments were run in order to 

investigate the dispersion mechanism when polyelectrolyte stabilisers (PMA-Na and 

APMA) are used for the suspension polymerisation of MMA (table 5.4.1). For the 

first series of experiments, designated A, sodium polymethacrylate (PMA-Na) is used 

as a suspending agent. Series A consists of 3 groups of experiments for 3 different 

impeller speeds, At for 750 rpm or 12.5s·I, A2 for 850 rpm or 14.17 s'1 and A3 for 

15.83 s·1• For the second series, designated B, ammonium polymethacrylate (APMA) 

was used as suspending agent in the continuous aqueous phase, and the impeller speed 

was 750 rpm or 12 s·1
• For series A and B, the dispersed, organic, phase was pure 

MMA, while for the third series, designated C, PMMA was predissolved in MMA 

prior to polymerisation in order to examine the combined effect of the viscosities of 

the two phases. PMA-Na was used as a suspending agent for series C. 

The dispersed phase volume fraction was 0.1 for all series. The initiator concentration 

in the monomer was always the same 0.04 mole/!. For series A the PMA-Na 

concentration in the continuous phase varied from 0.5 to 1.2 % resulting in an 

increase of the continuous phase viscosity. In series A, the viscosity and the density of 

the dispersed phase were constant in all experiments, and equal to the viscosity and 

density of the pure monomer, which are 0.5x10'3 Pas and 910 kgm'3 respectively, at 

the reaction temperature. For series B, the APMA concentration in the continuous 
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phase varied from 0.78% to 1.56% resulting in increasing continuous phase viscosity 

also. For series C, the PMA-Na concentration remained constant at 0.6%, resulting in 

constant continuous phase viscosity, but the viscosity of the organic phase was 

increased by dissolving solid PMMA prior to polymerisation. The polymerisation 

temperature was 70°C. The stabiliser concentrations used for these series of 

experiments were chosen by using the criteria for the required stabiliser concentration 

that are presented in the following chapter (5.4.1). The initial pH for all the 

experiments run with PMA-Na was 10, while the initial pH for all the runs with 

APMAwas9. 

Table 5.4.1. Experimental conditions 

Series Groups Stabiliser Initial Organic Impel/er Stabiliser 

pH phase speed concentration 

A At PMA-Na 10 MMA 12.5 s· 0.5-1.2% 

Az PMA-Na 10 MMA 14.17 s'1 0.5-1.2% 

A3 PMA-Na 10 MMA 15.83 s·1 0.5-1.2% 

B APMA 9 MMA 12.5 s·1 0.78-1.56% 

c PMA-Na 10 MMA+ 12.5 s·1 0.6% 

PMMA 

5.4.1. Required stabiliser concentration 

The determination of the dispersion mechanism requires knowledge of the maximum 

drop sizes, dmax. rather than an average drop diameter, because dmax appears in 

established hydrodynamic relationships, whereas the average d does not. The 

maximum drop sizes could be considered equal to the maximum particle sizes when 

sufficient quantity of stabiliser is used, to prevent coalescence from occurring (Konno 

et al. 1982, Larzak et al. 1998, Jahanzad et al., 2004). In order to determine the 

stabiliser concentration that satisfies the previous requirement, suspension 

polymerisation experiments were run with a wide range of stabiliser concentrations 

and the evolution of the Sauter mean drop diameter was monitored throughout the 

reaction. In figures 5.4.1, a and b, the Sauter mean drop diameters for various 

conversion intervals and for various stabiliser concentrations are depicted for series 
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A1 and B, respectively. As can be observed, for series A1 (figure 5.4.l.a) and PMA-Na 

concentrations lower than 0.5%, the Sauter mean drop diameter increases with the 

conversion, which means that the drops coalesce as their viscosity increases. For 

PMA-Na concentrations higher than 0.5%, the mean drop sizes remain constant over 

all the conversion range. Therefore, PMA-Na concentrations higher than 0.5% could 

be considered sufficient to prevent coalescence during the course of polymerisation 

and, for these conditions, the drop diameters could be considered equal to the final 

particle diameters. For series B (figure 5.4.1.b ), and APMA concentrations equal to 

0.62%, or higher, could be considered sufficient to prevent coalescence over all the 

range of conversion, whereas for lower concentrations there was significant 

coalescence occurring and the Sauter mean diameter increased with conversion. 

Figure 5.4.2 shows the sauter mean diameters with increasing conversion for the C 

series of experiments. The Sauter mean diameter is shown to increase as the dispersed 

phase viscosity increases, but coalescence is prevented with a 0.6% w/w stabiliser 

concentration and the drop sizes remain constant until the end of the reaction. 

Therefore, over this range of concentrations the particle size distributions can be 

considered to reflect the drop size distributions. 

Figure 5.4.3 shows the drop/particle size distribution from an early stage of the 

reaction, when the conversion from monomer to polymer is only 0.19, through the gel 

effect for conversion 0.38 and at the end of the reaction for conversion 0.91. The drop 

I particle size distribution seems to remain the same throughout the course of the 

reaction and it is not shifted to larger sizes after the gel effect, which means that with 

the stabiliser concentrations used, coalescence is prevented from occurring and the 

final particles reflect the initial drop sizes. 
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Figure 5.4.1: Evolution of d32 with conversion for various stabiliser concentrations at 
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5.4.2. Apparent viscosity of the non-Newtonian continuous phase. 

The viscosity of the continuous phase is a shear dependent variable and therefore its 

value can only be considered for a specific shear rate. Although, the viscosity can be 

measured over a wide range of shear stress values, as shown in figures 5.4.4 and 

5.4.5, for PMA-Na and APMA respectively, the shear stress that prevails in the 

reactor tank is not known and hence the corresponding viscosity could not be 

determined, unless an appropriate theory was used, to estimate the pair of values shear 

stress and corresponding viscosity. For this reason, the pair of variables: apparent 

viscosity and shear rate in the reactor tank are estimated by using the theory proposed 

by Metzner and Otto (1957). According to this theory, an average shear rate, (duldr)A, 

must exist in an agitated vessel. This average shear rate is such that the apparent 

viscosity corresponding to (duldr)A is equal to the viscosity of the Newtonian fluid 

which would show exactly the same power consumption under identical conditions, at 

least in the laminar region. This average shear rate is linearly related to the rotational 

speed of the impeller. According to this theory proposed by Mezner and Otto, the 

average shear rate and hence apparent viscosity depend only on the rotational speed of 

the impeller 

(du) = k,N (5.4.1) 
dr A 

where k, = constant and N = rotational speed of the impeller. The assumption that 

average fluid shear rates are related only to impeller speed has led to a useful 

correlation of the power requirements for agitation of non-Newtonian fluids. 

Ducla et al. (1983) determined the effective viscosity of the continuous phase by 

using the power consumption in stirred tanks based on the concept of the effective 

rate of deformation proposed by Metzner and Otto. That rate is proportional to the 

rotational speed of the impeller: y e=kN where k is a function of the vessel geometry 

and not of the rheological properties of the fluid and it is essentially the same constant 

as the k, used by Metzner and Otto. 

In this work the rheological properties were assumed to be represented by a power

law model 

109 



CHAPTERS 

T= }(y" (5.4.2) 

To obtain the average shear rate, the equations (5.4.1) and (5.4.2) are combined as 

follows: T = }(y" = }((du)" = }((k,N)" . Hence, the apparent viscosity can be 
dr A 

calculated from the equation: 

f..lapp = K(k,N)n-1 (5.4.3) 

This flow model has been widely used for shear dependent viscosity i.e. shear 

thinning (n<l ). 

Metzner and Otto calculated the constant k, for various impellers including 6-bladed 

disc turbines, marine propellers, anchors. but their study does not include 4-bladed 

impellers. Thus, the constant k, is calculated by the equation established by 

Calderbank and Moo-Young (1959), where B= constant, n= the viscosity index: 

( 
4n )'~" k =B --

' * 3n +I 
(5.4.4) 

When 4 baffles are used with n<l and the ratio of the Tank and impeller diameters is 

TID>l.5 the value of Bk can be estimated from the literature (Skelland, 1967, Skelland 

and Kanell990). Here, the value of Bk was found to be 11 ± 10%. 

Determination of K and n indices 

For the determination of the indices K and n used in equation (5.4.3), shear stress 

versus shear rate data for various concentrations of PMA-Na and APMA that are 

depicted in figures 5.4.1 and 5.4.2 were fitted by regression to the power law 

equation. The K and n values that derive from these data, as well as the k, values 

calculated from equation 5.4.4, are reported in table 5.4.2. The constant k, is 

calculated by using the aforementioned values of the viscosity index n, and Brll. 

110 



0.8 

0.6 
~ 
~ 

" ~ 
~ 

0 .,. 
0 
b! 0.4 
> 

0.2 

CHAPTERS 

Viscosity (Pas) and shear stress versus shear rate 
for various PMA-Na concentrations 
-~~- viscosity for 0.5% 

--t.~- viscosity for 0.6% 

0 viscosity for 0.7% 

--*"--- viscosity for 0.9% 
--E)>-- viscosity for 1% 

- - ~- - shear stress for 0.5% 

- - El- - shear stress for 0.7% 

- - ~- - shear stress for 0.9% 
- - !)> - - shear stress for 1% 

_.o-0 
e-O-e . e--o-

o- ~-o- ~ 
-o- ~-o- ~-

~-o- ~ 
-0"" ~ -o- viscosity for various 

1>'~"- --------- PMA-Na concentrations 

80 

60 

20 

L----,-----.----.-----.----.------.---b-0 

200 400 

Shear rate (s-1) 

600 

Figure 5.4.4: Viscosity and shear stress versus shear rate for various PMA-Na 

concentrations at the reaction temperature (70"C) 

Ill 



0.3 

0.25 

Viscosity and shear stress for 
various concentrations of APMA 
-~r-- viscosity 1.56% 

-~:>----- viscosity for 1.24% 

---t'r--- viscosity for 0.93% 
---l(-- viscosityfor0.78% 
-- ~-- shear stress 1.56% 
- - -e - - shear stress for 1.24% 

- - 6 - - shear stress for 0.93% 

- - ~ - - shear stress for 0.78% 

CHAPTERS 

50 

45 

40 

35 

0.2 

~ 
30 g1 

"' D> 
~ 

~ 
"' 

25 ~ 
!Z g 0.15 

> 20 ~ 

15 
0.1 

10 

5 
0.05 

~----,-----,------,-----,-----,------.-----+- 0 

0 200 400 

Shear rate (s·1) 

600 

Figure 5.4.5: Viscosity and shear stress versus shear rate for series Bh for various 

APMA concentrations at the reaction temperature (70°C), at pH 9 

As can be observed in table 5.4.2., the viscosity index n for APMA solutions is higher 

for the viscosity index of PMA-Na solutions, meaning that the two stabilisers exhibit 

a different shear thinning behavior. 

The viscosity of the reaction mixture is calculated by using the following expressions 

(Vermeulen, 1955) 

(5.4.5) 

where 

fl.m = viscosity of reaction mixture 
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fi.d = viscosity of dispersed phase and 

fl.appc = apparent viscosity of continuous phase 

Table 5.4.2: Values of K, viscosity index n, and k,, for series A 

Type of stabiliser % K n k, 
concentration (Pas") 

PMA-Na 1.2 9.884 0.321 8.99 

1.0 9.627 0.306 9.79 

0.9 8.502 0.291 9.82 

0.75 6.975 0.294 9.81 

0.7 6.324 0.289 9.82 

0.65 6.223 0.290 9.05 

0.6 4.583 0.326 9.76 

0.55 3.363 0.356 8.95 

0.5 3.793 0.326 9.76 

APMA 0.78 0.948 0.550 8.76 

0.93 0.780 0.613 8.72 

1.09 1.086 0.561 8.73 

1.24 1.221 0.557 8.76 

1.40 1.307 0.553 8.76 

1.56 1.396 0.549 8.76 

5.4.3. Density and interfacial tension 

The measured values for the density of the continuous phase and the interfacial 

tension between the polyelectrolyte solutions and the monomer are given in table 

5.4.3 

The density of the reaction mixture is then calculated by using the following 

expression (Vermeulen, 1955) 

Pm = rppd + (1- rp)pc (5.4.6) 

where Pm =density of reaction mixture 

pd and Pc =density of dispersed and continuous phase respectively 
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Table 5.4.3. Density and interfacial tension for various PMA-Na and APMA 

concentrations. 

%PMA-Na 1.2 1.0 0.9 0.75 0.7 0.65 0.6 0.55 0.5 

concentration 

Density (kgm· ) 1010 1008 1007 1006 1005 1005 1004 1004 1003 

Interfacial tension x103 14.9 14.3 12.9 13.0 13.0 12.7 13.0 13.0 12.8 

(N/m) 

%APMA 1.56 1.40 1.24 1.09 0.93 0.78 

concentration 

Density (kgm· ) 994 994 993 993 993 992 

Interfacial tension xl03 12.4 12.6 12.5 12.4 12.1 11.7 

(N/m) 

5.4.4. Dissipated power 

The dissipated power, P, is calculated by using the power number Np estimated by 

empirical equations (Nagata, 1975), which have been widely used (Sumi and 

Kamiwano, 2001; Roychoudhury et al., 1999; Chen et al., 1998; Moreira et al., 

1995), in a general form covering both laminar and turbulent regions. More 

specifically the first term of the right hand side in the following equation corresponds 

to the laminar region, whereas the latter term corresponds to the turbulent region. 

N _ A B lO +0.6Re 
( 

3 )y 
P - Re+ 103 + l.6Re <5·4·7) 

where 

A= 14 +b/T(670(D/T-0.6i+185) = 100 

B = 10 {1.3-4(b/T-0.5)2-1.14(DII)} = 6.3 

y = 1.1 +4(b/T)-2.5(D/Tl-7(b/T)4= 2.52 

ND 2 

and Re= Pm (5.4.8) 
f.lm 
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T is the tank diameter, and D and b are the impeller diameter and width respectively. 

It should be noted that the power required by two paddles at an arbitrary distance 

apart is equal to the power consumed by a single paddle with double width. 

Additionally, the power required by an impeller having four blades is equal to that 

required for a paddle with double width. Thus, for this case that two impellers with 

four blades are used the dimension b (impeller width) should be multiplied by a factor 

4. 

The dissipated power is then calculated from the equation given below 

and the dissipated power per unit mass is given by 

where V is the reactor volume 

p 
e=- (5.4.10) 

pV 

The values calculated for Np and P, and the energy dissipation rate e are presented in 

table 5.4.4 for series A, and 5.4.5 for series B. 

5.4.5. Kolmogorov turbulence macroscale 

The Kolmogorov scale is defined by the equation 

where e is the dissipated power per unit mass of the stirred suspension and vc is the 

kinematic viscosity of the continuous phase. It is a very important parameter because 

it provides information about the viscosity influence on the droplet breakup. 

All the quantities required for the determination of the dispersion mechanism are 

presented in table 5.4.4, for series A, in table 5.4.5, for series B, and table 5.4.6, for 

series C. Among these, there is also the viscosity ratio, p=!l<lff.lappc, where f.\d is the 

viscosity of the dispersed phase and f.lappc is the apparent viscosity of the continuous 

phase. 
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Table 5.4.4. Results for PMA-Na (series A): Viscosity, Re, Nr, power, dissipated 

power, Kolmogorov scale, viscosity ratio , maximum diameter, and Taylor number 

Stirring % PMA-Na f.lapp Re Np P t: 1J x HI pxlo' dmax Ta 

speed concentration (Pas) (W) (Wikg) (m) xlcf (m) 

750rpm 

850rpm 

950rpm 

1.2 

1.0 

0.9 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

1.2 

1.0 

0.9 

0.75 

0.7 

0.6 

0.55 

0.5 

1.2 

1.0 

0.9 

0.75 

0.7 

0.6 

0.55 

0.5 

0.379 53.2 7.43 1.500 3.000 

0.343 58.8 7.18 1.448 2.896 

0.281 71.8 6.72 1.353 2.706 

0.234 86.0 6.33 1.274 2.548 

0.217 92.6 6.08 1.221 2.483 

0.205 98.1 6.06 1.218 2.436 

0.180 111.6 5.80 1.165 2.330 

0.153 131.2 5.48 1.100 2.200 

0.149 134.5 5.43 1.090 2.180 

0.348 

0.314 

0.257 

0.214 

0.199 

0.165 

0.141 

0.137 

0.323 

58.6 

64.8 

79.2 

94.9 

102.1 

122.6 

143.5 

147.5 

69.2 

0.291 76.4 

0.237 93.2 

0.198 110.9 

0.184 119.0 

0.154 141.7 

0.131 164.0 

0.127 168.9 

7.19 

6.95 

6.50 

6.13 

5.98 

5.61 

5.31 

5.25 

6.80 

2.115 

2.042 

1.908 

1.796 

1.751 

1.644 

1.552 

1.535 

2.791 

4.230 

4.084 

3.815 

3.592 

3.501 

3.288 

3.104 

3.070 

5.581 

6.58 2.696 5.391 

6.16 2.521 5.042 

5.81 2.375 4.750 

5.67 2.316 4.632 

5.33 2.179 4.358 

5.05 2.058 4.116 

4.99 2.033 4.067 

2049 

1920 

1682 

1490 

1419 

1366 

1254 

1126 

1108 

1764 

1651 

1444 

1280 

1219 

1079 

972 

955 

1556 

1454 

1269 

1126 

1073 

950 

859 

842 

1.330 

1.470 

1.797 

2.155 

2.440 

2.460 

2.801 

3.296 

3.379 

1.448 

1.603 

1.964 

2.354 

2.535 

3.048 

3.573 

3.677 

1.561 

1.731 

2.124 

2.546 

2.740 

3.284 

3.837 

3.962 

101 

112 

142 

158 

167 

176 

187 

212 

230 

110 

125 

149 

169 

178 

229 

228 

258 

121 

137.5 

157 

179 

184 

251 

246 

276 

116 

116.9 

139.9 

170.7 

204.6 

231.4 

246.4 

265.5 

312.1 

320.0 

129.6 

143.2 

175.1 

209.6 

225.5 

271.0 

317.0 

325.9 

152.9 

168.9 

205.8 

245.1 

262.8 

313.1 

362.3 

373.2 
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Table 5.4.5. Results for APMA (series B): Viscosity, Re, Np, power, dissipated 

power, Kolmogorov scale, viscosity ratio , maximum diameter, and Ta for 750 rpm 

%APMA Jl.app Re Np p e 'f/ X JQ pxl dmnx Ta 

concentration (Pas) (W) (Wikg) (m) 
xirf(m) 

0.78 0.115 155 2.75 0.545 1.08 515 4.708 161 272 

0.93 0.127 140 2.84 0.563 1.11 552 4.247 146 245 

1.09 0.139 128 2.91 0.579 1.14 585 3.895 129 225 

1.24 0.153 117 3.00 0.596 1.18 623 3.541 114 205 

1.40 0.160 Ill 3.04 0.605 1.20 644 3.373 102 195 

1.56 0.168 106 3.09 0.614 1.23 685 3.221 95 186 

Table 5.4.6. Results from series C: %concentration of PMMA predissolved in MMA, 

maximum diameter, Kolmogorov length, interfacial tension, viscosity, viscosity ratio, 

power number, power and dissipated power 

%PMMA dmaxXlO DxUf Interfacial Initial pxHf f(p) Np p 

inMMA 

5 

10 

15 

20 

25 

6(m) (m) tension dispersed (W) 

xld(Nim) phase 

viscosity 

(cP) 

186.5 1286 14.5 0.505 3.0 1.0006 5.868 1.168 

202.4 1299 15.9 9.0 54.2 1.0096 5.899 1.175 

247.8 1303 17.3 12.66 76.3 1.0133 5.910 1.179 

278.1 1308 18.8 16.4 98.8 1.0169 5.921 1.182 

332.6 1313 20.7 20.21 121.8 1.0204 5.933 1.186 

5.4.6. Conclusions 

From this section, it can be concluded that 

• The viscosity index, provided by the fit of the data to the power law model, is 

higher for APMA solutions than the viscosity index for PMA-Na solutions 

• The dmax is, when either PMA-Na or APMA solutions are used as continuous 

phase, lower than the Kolmogorov macroscale of turbulence 
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5.5. Determination of the dispersion mechanism 

The low values of the Re in tables 5.4.3 and 5.4.4 indicate that the turbulence was not 

fully developed. This is also indicated by the values of the Taylor number, as it has 

been found that for Ta<400 the prevailing dispersion mechanism was the viscous 

shear mechanism (Jegat, 2001). These indications have to be verified by the 

experimental data which must be consistent with the prevailing mechanism. Having 

measured and estimated all the variables required to determine the dispersion 

mechanism, the two theories for droplet breakage, Kolmogorov' s theory of isotropic 

turbulence and Taylor' s theory of viscous shear breakup, are now examined. 

According to Kolmogorov' s theory for inertial breakup in isotropic homogeneous 

turbulence (Shinnar and Church, 1960), when D)) d)) 7J, the maximum drop 

diameters in a dispersion are given by 

( )

3/5 

dma,"" e-215 
; (5.5.1) 

If the viscosity of the continuous phase plays an important role in the drop breakup 

process and D)) 7J ) ) d, then the drop diameters are given by 

( )

1/3 

dmax"" OVc (5.5.2) 
ePc 

Therefore, if Kolmogorov's theory is applicable for the suspension polymerisation 

experiments conducted with sodium polymethacrylate as a suspending agent, then the 

maximum drop diameters should be given by one of the two aforementioned 

expressions. 

According to Taylor' s theory of viscous shear breakup, and in the case of laminar or 

semi Iaminar flow, or when the turbulence is not fully developed, the maximum 

diameter is given by 
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where G is the velocity gradient, p = (...&__J is the initial viscosity ratio of the 
PaPPc 

dispersed and continuous phases and 

f( ) =(19p+l6) (554) 
p 16p+16 .. 

is a function of the viscosity ratio. 

5.5.1. Experimental results and inertial breakup mechanism 

In the case that the flow in the reactor is turbulent and the inertial breakup mechanism 

is responsible for the drop breakup, equation (5.5.2) should be valid, where D)} D)) d, 

and dmax should be proportional to (ov,)"'. A plot of lndmax versus ln(ov') is 
ep, ep, 

presented in figure 5.5.1 for series A1 (PMA-Na) and figure 5.5.2 for series B 

(APMA). The figures show that there is a linear relationship between lndmax and 

ln(ov, ). but with a slope of -1.19 for PMA-Na and approximately -0.6 for APMA, 
ep, 

instead of 113. When ( ov, lep) increases dmax decreases, which is contrary to the 

theoretical predictions that dmax increases as ( ov, I ep,) increases. Therefore, a 

different break-up mechanism should be considered in the case where 17 )} d 

·7.6 ,---------------------, 

-7.8 0 
rf -8 
0 

~ ·8.2 
..... 
"0~ ·8.4 

];" ·8.6 

-8.8 

y = ·1.19x • 32.762 
R2 =0.967 

-9+---~--~--~--~--r---r---r---r-~ 

-20.9 -20.8 -20.7 -20.6 -20.5 -20.4 -20.3 -20.2 -20.1 -20 

ln(avJtpJm·') 

Figure 5.5.l.lndmax versus In ( ov, I ep) for PMA-Na (series A1) 
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5.5.2. Experimental results and viscous shear break up mechanism 

If we assume Iaminar or semi-laminar flow in the reactor and 11}} d, the maximum 

diameter is given by equation (5.5.3). Then the maximum drop diameters should 

depend on the interfacial tension a-, the continuous and dispersed phase viscosities 

and the velocity gradient or abrasion velocity G. It should be noted that the velocity 

gradient, G, could not be measured in the reactor and hence equation (5.5.3) should be 

used with care. Keeping the stirring speed constant for all the experiments cannot 

ensure that G remains constant, because G itself depends on the viscosity and the 

viscosity changes. 

However, the existence of a linear relationship between dmax and a- would 
JlappJ( P) 

give strong evidence to support the validity of the viscous shear mechanism for the 

drop breakup. Therefore, dmax versus a- is plotted, in figures 5.5.3 and 5.5.4 
JlappJ( P) 

for series A and B, respectively. In figure 5.5.3, all the maximum diameters obtained 

for various stirring speeds and PMA-Na concentrations, versus a- , are 
JlappJ( P) 

depicted. It is shown that in all cases, the relationship between the two variables is 
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linear. Figure 5.5.4, shows that the relationship for APMA is also linear. Thus, the 

data seem to be consistent with Taylor' s theory. The low values of Re and Ta, seem to 

be consistent with this theory, also. Therefore, the viscous shear mechanism could be 

considered suitable to describe the breakage of the droplets. 

As can be observed in table 5.4.3, increasing the stirring speed causes the maximum 

drop diameter to increase. The non-Newtonian nature of the continuous phase and the 

breakage mechanism can also explain this increase. Changing the stirring speed, 

causes the viscosity of the continuous phase, which is the determining factor 

controlling the drop sizes, to change. As the stirring speed increases, the shear stress 

exerted on the continuous phase increases and the viscosity decreases. Since the shear 

breakup mechanism is responsible for the drop breakage, lower viscosity means larger 

drops. 

In figure 5.5.5, all the maximum diameters obtained for various stirring speeds and 

a 
PMA-Na concentrations are depicted versus the ratio . All of them follow 

P.,,J( p) 

the same trend regardless of the speed variations. 

If dma, is plotted versus the Taylor number for the different stirring speeds, as shown 

in figure 5.5.6, a linear relationship seems to be valid for each case. By plotting the 

different cases together and comparing them, as in figure 5.5.7, it seems that the 

overall proportionality constant for dmax and Taylor number is 0.8. A linear 

relationship between Ta and dma, seems to exist for APMA as well as shown in figure 

5.5.7 (b). 
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Figure 5.5.7 (b). dmax versus Taylor number for APMA (series B) 

5.5.3. Effect of the dispersed phase viscosity 

In order to examine the effect of increases in dispersed phase viscosity on the 

dispersion mechanism, the dispersed phase viscosity was increased by dissolving 

PMMA in the monomer prior to polymerisation (series C). In this series of 
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experiments, the concentration of the PMA-Na in the continuous phase, and therefore 

the viscosity of the continuous phase, remained constant at 0.6% of PMA-Na and 

0.166 Pas respectively. The dispersed phase viscosity increases from 0.5x10'3 Pas to 

20x10'3 Pas. The results for series Care presented in table 5.4.6. The influence of the 

dispersed phase viscosity could only be examined for an initial viscosity ratio p<l. 

For p=1 or p>1 the organic phase could not be properly dispersed in the viscous 

a 
aqueous phase. Figure 5.5.8 shows dmax plotted versus ---'-- and it is shown 

JlappJ( p) 

that these two variables are related linearly. 
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Figure 5.5.8. dmax versus cr/11cf(p) for increased dispersed phase viscosity 

When the polymerisation of MMA alone is compared with polymerisation of 

MMA+PMMA (figure 5.5.9), the straight lines that derive from the data points by 

regression have almost the same slope, 2.398 for the MMA runs and 2.313 for the 

MMA+PMMA runs, indicating that the dispersion mechanism remains the same. 
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Figure 5.5.9. dmax versus at 750rpm. Comparison for simple runs (MMA 

pJ(p) 

only) and runs with predissolved PMMA 

5.5.4. Conclusions 

The aim of this series of experiments was to investigate the mechanism of drop 

formation in the suspension when PMA-Na and APMA are used as suspending agents 

From the experimental results it can be concluded that: 

• For PMA-Na concentrations higher than 0.5% and APMA concentrations higher 

than 0.62% in the continuous phase, coalescence is prevented and d32 remains 

constant over all the conversion range. Therefore, for these concentrations the 

final particle sizes can be considered to reflect the initial drop sizes. 

• The continuous phase viscosity seems to be the main factor that determines the 

particle sizes. 

• The results show that for high continuous phase viscosities, the inertial breakup 

theory cannot explain the drop breakup. The dmax values obtained from the 

suspension polymerisation experiments show a good agreement with Taylor' s 

theory. It can be reasonably deduced that the viscous shear breakup mechanism 

controls the dispersion process when PMA-Na is used as a suspending agent in 

laboratory scale reactors and when the Reynolds number has a low value. This 
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would not be expected in large scale industrial reactors where the Reynolds 

numbers are higher by some orders of magnitude 

• Increasing the dispersed phase viscosity by the addition of PMMA to the 

monomer prior to polymerisation does not affect the dispersion mechanism for 

viscosity ratios lower than 1. 

• The low values of Re and Ta are consistent with the viscous shear breakup 

mechanism. 
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5.6. Stabilisation mechanism 

Most of the information and the studies in the literature refer to polyelectrolyte 

solutions, such as APMA and PMA-Na as dispersant agents for ceramic powders and 

there is no information (to our knowledge) on the use of PMA-Na and APMA as 

suspending agents for suspension polymerisation processes. Polyelectrolyte species, 

though, may also be considered as an optional approach for the suspension 

polymerisation processes. 

5.6.1. pH 

When polyelectrolyte stabilisers are used for the suspension polymerisation of MMA, 

the pH of the continuous phase affects the particle sizes, as was shown in chapter 

5.3.5. The pH has a very strong effect on d32, and more specifically, a significant 

diminution of the Sauter mean diameter is caused with the pH increase for various 

stabiliser concentrations. When the initial pH at the beginning of the reaction was 

increased by the addition of NaOH or NH3 in the continuous phase for PMA-Na or 

APMA respectively, the particle sizes decreased, while two secondary peaks were 

formed at the small diameter range of the main peak. The effect of the pH on d32 of 

the main peak, for various stabiliser concentrations and pH values are depicted in 

figure 5.6.1, for PMA-Na and in figure 5.6.2, for APMA. For these figures the d32 of 

the main peak is used, instead of the d32 of the total distribution, because for higher 

pH values, the secondary peaks exert a stronger influence on d32, and deter the 

deduction of conclusions for the main peak, which represents the bulk volume of 

polymer product. The d32 for the total distribution is also depicted in figure 5.6.3. 

From these figures, it is evident that in order to produce particles of certain size range, 

one could either increase the stabiliser concentration or the pH. For example, if the 

desirable particle size is d32-?0 J.UD, this could be produced either with 0.9% of PMA

Na at pH 10, or with 0.7% PMA-Na at pH 11, or with 0.5% PMA-Na at pH 12. 

The pH increase also affected the quantity of stabiliser required to prevent 

coalescence during suspension polymerisation, and maintain a constant d32 throughout 

the polymerisation. The required quantity of stabiliser decreased for increasing pH. 
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More specifically, for an initial pH -9, the required concentration of APMA that 

prevents coalescence during suspension polymerisation of MMA, maintaining d32 

constant over all the conversion range was found to be 0.78% (see chapter 5.5.1). As 

the pH increases to higher values the required concentration decreases to 0.62% and 

0.47% for pH 10 and 11 respectively. The same observations were made for PMA-Na. 

For pH 10, the required amount of PMA-Na to stabilise the MMA dispersion was 

found to be 0.5% (see chapter 5.5.1). As the pH increased the required PMA-Na 

quantity decreased to 0.45% and 0.4 % for pH 11 and 12, respectively. Figure 5.6.3, 

shows the effect of the pH on the amount of stabiliser required to prevent coalescence 

over all the conversion range. The relationship between the pH and the required 

stabiliser concentration seems to be linear for APMA and almost linear for PMA-Na. 

Another significant effect of the pH is that the stabiliser concentration required to 

stabilise a dispersion decreases as the pH increases. It should be noted that small 

concentrations of stabiliser were not sufficient to stabilise the dispersion at pH-9 for 

APMA, but the same concentrations could stabilise the dispersion when the pH was 

increased above 10, while at the same time a further pH increase to about 11 causes 

the particle sizes to diminish. The required stabiliser concentration to stabiliser a 

MMA dispersion versus pH is depicted in figure 5 .6.4. 
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The factors that may change with the pH are the viscosity and the degree of ionisation 

for APMA solutions, but only the degree of ionisation for PMA-Na solutions, since 

their viscosity has been shown to be independent of the pH for pH > 8. Each of these 

factors will be examined in order to find out their contribution to the dispersion 

stabilisation process. The viscosity decrease will be examined only for APMA 

solutions, since the viscosity of PMA-Na solutions does not depend on pH. 

5.6.2. Viscosity decrease (APMA) 

Since drop breakage has been shown to occur via a viscous shear mechanism, a 

decrease in the viscosity would be expected to lead to bigger particles. This is the case 

when the pH is not manipulated and lower viscosity leads to bigger particles. But, 

when the pH is increased, the viscosity decreases and smaller particles are produced. 

This might happen because the viscosity decrease changes the flow field. If 

turbulence is enhanced, the viscous shear mechanism may no longer prevail. A 

decrease in particle size could result from a shift towards a turbulence mechanism. 

But the viscosity measurements showed that this was not happening. Despite this 

decrease, the viscosity of the continuous phase remains within the range that is 

compatible with the viscous shear breakup mechanism, and hence bigger particles 

would be expected with the viscosity decrease, instead of smaller ones. Therefore, in 

this case, it is not a change in the flow field that caused the particle size diminution 

and, despite the viscosity drop, the prevailing mechanism remains the same. 

5.6.3. Ionisation I Dissociation degree. 

Two mechanisms for drop stabilization, steric and electrosteric, may coexist and their 

contribution varies depending on the pH. As the pH increases, the ionization/ 

dissociation degree increases, the number of charged sites on the polymer coil also 

increases and the repulsive forces start playing an important role in the conformation 

and the behaviour of the polymer chains. Thus, the contribution of the electrosteric 

mechanism for drop stabilization increases with increasing pH. Therefore, it is 
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considered more probable that it is the enhancement of the electrosteric stabilization 

mechanism, which now prevails over the steric stabilization, that caused the particle 

size diminution. 

It was found that a particular concentration of APMA might be insufficient to stabilise 

a dispersion, and to prevent coalescence, at pH-9 but it was effective at pH-11. A 

possible explanation could be that, at pH -9, the steric stabilization is more likely to 

prevail and the stabiliser quantity is insufficient to provide physical hindrance to 

coalescence. As the pH increases, the electrosteric stabilization is more likely to 

prevail and stabilization of the dispersion becomes feasible. This is because the 

charged polymer coils stretch and take up a more extended conformation.They expand 

on the drop surfaces as well, and in this way the charges enhance the stability of the 

dispersion. 

5.6.4. Conclusions 

The experimental work showed that the pH played a very important role in the 

stabilisation of the dispersion. 

• The pH had a profound effect on the particle sizes and, at a constant stabiliser 

concentration, increasing the pH caused the particle size to decrease. Not only did 

the pH increase cause a decrease of particle sizes for various stable dispersions 

but, at a given stabiliser concentration, it induced stability in dispersions that were 

unstable at a lower pH. This was attributed to increases in the charges on the 

polymer coil and in the strength of repulsive forces. 

• The enhancement of the stabilisation of the dispersion was considered to have 

been achieved through the contribution of the electrosteric stabilisation 

mechanism. 
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CHAPTER 6. FACTORS THAT AFFECT THE ONSET OF THE GEL EFFECT 

According to the free volume theory (Neil et al., 1998) which is the prevailing theory 

used to interpret the gel effect, the Xcrit depends on the reaction temperature but does 

not depend on the molecular weight of the polymer produced prior to the onset of the 

gel effect. This theory, like all the theories used to interpret this phenomenon, has 

received criticism and it has been suggested that the molecular weight of the polymer 

produced prior of the gel effect influences the Xcrit but indirectly. More specifically, it 

has been suggested that as the molecular weight (M) of the polymer produced prior to 

the onset of the gel effect increases, the concentration dependence of the termination 

rate constant k1, which is controlled by translational diffusion, increases. The 

diminution of k1 is more pronounced at high conversion. Therefore, increasing M has 

a more evident effect on k1 and hence on the onset of the gel effect. If this is the case, 

the initiator concentration which determines the M of all the polymer produced 

throughout the polymerisation should have an effect on the onset of critical 

conversion as well. 

Therefore, there are two cases that need to be examined. According to the first, the 

Xcrit does not depend on M of the polymer produced prior to gel effect. According to 

the second, the M of the polymer produced prior to gel effect influences the critical 

conversion but indirectly. In order to test these theories, the effect, if there is any, of 

the initiator concentration on Xcrit is examined, as well as the relationship, between the 

M of the final polymer and the Xcrit· 

In this chapter factors that may affect the onset of the gel effect, in terms of the 

critical concentration, are examined. The effect of the reaction temperature and the 

effect of the initiator concentration on the critical conversion are examined 

experimentally and a statistical approach is used to assess and evaluate the results. 

The effect of the type of stabiliser on the Xcrit is also examined and the molecular 

weight of the polymer produced is also considered. 
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6.1. Experiments 

The main experimental work for this chapter includes three series of experiments: 

Series A: Experiments were run with constant BPO concentration, 0.04 mole/!, and 

the same stabiliser type and concentration, 0.6% PMA-Na, for varying temperature, in 

order to examine the effect of temperature on Xcrit. Series A, consists of 3 groups, 

group A1 for 70°C, group A2 for 75 °C, and group A3 for 80°C. Pure monomer was 

used as organic phase. The Xcrit and the final conversion for each group is shown in 

table 6.1.1. The initial pH ofthe continuous phase was adjusted to 10. 

Series B: Series B, consists of two groups, group B1 and group B2. Experiments were 

run, for both series, at 70°C, with the same stabiliser concentration, 0.6% PMA-Na, 

for various BPO concentrations, 0.04, 0.06, 0.08, 0.10, and 0.12 mole/1 BPO, in order 

to examine the effect of initiator concentration on Xcrit. Polymerisation experiments 

with each BPO concentration are repeated many times. Pure monomer was used as 

organic phase for both groups. The initial pH of the continuous phase for all runs was 

10. For both groups, Xcrit was calculated, as described in section 3.3.5. The only 

difference between the two groups is that for the group B2, apart from Xcri" molecular 

weight measurements were also carried out, as shown in table 6.1.3., whereas for B1 

only the Xcrit data are presented, in table 6.1.2. 

Series C: Experiments run with 0.78% APMA, for various BPO concentrations, 0.04, 

0.06, 0.08 and 0.10 mole/1 BPO, at 70°C, in order to examine the effect of the 

stabiliser type on Xcrit· Pure monomer was used as organic phase. The initial pH of the 

continuous phase was adjusted to 9. 
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Table 6.1.1. Results for series A 

A, Az A, 
70°C 75°C 80°C 

Xcrit conversion Xcrit conversion Xcrit conversion 
0.299 0.9125 0.3253 0.876 0.3295 0.933 
0.3028 0.9144 0.3139 0.9153 0.3321 0.908 
0.2963 0.908 0.3201 0.923 0.3411 0.918 
0.3139 0.918 0.3244 0.944 0.3433 0.931 
0.297 0.923 0.3254 0.871 0.3102 0.9412 
0.3065 0.917 0.3132 0.87 0.3127 0.9531 
0.2808 0.9067 0.32 0.9203 0.321 0.925 
0.3077 0.9142 0.3279 0.8982 0.315 0.9308 
0.297 0.909 0.312 0.926 0.3146 0.9518 
0.2948 0.8959 0.3102 0.931 0.3356 0.9451 
0.3107 0.9054 0.3265 0.9058 0.3317 0.944 
0.2957 0.8866 0.3204 0.859 0.3327 0.954 
0.307 0.873 0.3127 0.897 0.3316 0.9373 
0.287 0.893 0.3259 0.871 0.3439 0.942 
0.2931 0.9172 0.3236 0.967 0.3235 0.8997 
0.287 0.8893 0.3247 0.925 0.3193 0.931 
0.3129 0.925 0.3082 0.899 0.3429 0.942 
0.299 0.867 0.3213 0.947 0.3323 0.9385 
0.2976 0.896 0.3284 0.9267 0.3329 0.9618 
0.2898 0.931 0.3044 0.9206 0.3476 0.923 

Table 6.1.2. Results for series B1• 

!JPO concentration (molell) 
0.04 0.06 0.08 0.10 0.12 
0.2785 0.2931 0.3028 0.3091 0.3326 
0.283 0.2948 0.3102 0.3132 0.3347 
0.2834 0.2957 0.311 0.3213 0.3357 
0.285 0.2963 0.3127 0.3247 0.3395 
0.2901 0.2977 0.3133 0.3253 0.3458 
0.2977 0.299 0.3167 0.3254 0.3479 
0.298 0.3054 0.3201 0.3284 0.3499 
0.2983 0.307 0.3204 0.3329 0.3569 
0.2986 0.3076 0.3236 0.3411 0.3585 
0.3082 0.3086 0.3259 0.3439 0.3587 
0.3139 0.3107 0.3316 0.3476 
0.3148 0.3127 

0.3146 
0.3156 
0.3157 
0.3181 
0.3193 
0.32 
0.3201 
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Table 6.1.3. Results for series B2 

BPO 
concentration 
mole// 

0.04 

0.06 

0.08 

0.1 

crit 

0.299 
.3028 
.2963 
.3139 
.297 

0.3065 
0.2808 
0.3077 
0.297 
.2948 

.3076 

.3098 

.3156 

.2898 
0.303 
0.3065 
0.315 

0.315 
0.3129 

.3102 
0.3356 

conversion 

0.9125 
0.9144 
0.908 
0.918 
0.923 
0.917 
0.9067 
0.9142 
0.909 
0.8959 

0.8995 
0.9257 
0.8922 
0.9213 
0.9275 
0.9187 
0.8949 
0.8983 
0.923 
0.942 
0.9263 

0.944 
0.937 
0.9287 
0.9318 
.0.928 
.0.916 
0.896 

0.3317 0.9167 
0.3052 0.908 
0.3265 .0.921 

.3327 0.931 
0.925 

.3082 0.9286 
0.33044 0.947 
0.3235 .0.9356 
0.3193 0.948 
0.3433 0.9568 

.3244 

.3321 

.3429 

.3195 

.3184 

.3323 

0.9385 
0.9185 
0.9265 
0.9181 
.0.935 
.0.928 

Mn 

358258 
269573 

Mw 
1059576 
966361 

343608 949407 
329051 932259 
310204 924790 
290779 925401 
290259 
327805 
258797 
286301 

290703 
247381 

909254 
890609 
838703 
832335 

812371 
810941 

266420 760613 
234523 779913 
224063 
271925 
226310 
219431 
255909 
217596 
220648 

224616 
221990 

769743 
722482 
750259 
727984 
694173 
663568 
662976 

658554 
637714 

234176 625954 
194645 623392 
193730 668593 
232395 604708 
184133 599475 
209799 587560 
182578 610199 
171036 582185 
172909 574928 
180592 582081 

177284 504491 
147386 526482 
134471 518589 
142336 526482 
146293 514382 
168549 507837 
163954 507837 
137085 491439 
132152 467207 
135873 459042 
140655 449860 

Mz 

1923498 
1780432 
1694845 
1639694 
1655782 
1671233 
1628956 
1570455 
1541843 
1522810 

1451099 
1507064 
1363722 
1805663 
1805663 
1285269 
1771224 
1666084 
1247822 
1217655 
1216425 

1216296 
1163227 
1146579 
1191337 
1476263 
1106623 
1165852 
1078780 
1685861 
1202592 
1076988 
1047890 

975632 
1246233 
1109654 
1246233 
1231379 
1169026 
1169026 
1125378 
1269670 
1135279 
1045809 

Mv 

904490 
858000 
849255 
834527 
824595 
822956 
809316 
799392 
741949 
739876 

725296 
716966 
678663 
668732 
668732 
646804 
643479 
627640 
620761 
589982 
586206 

583664 
568265 
558925 
547805 
544820 
539803 
524574 
524088 
502301 
494447 
479325 
502459 

449013 
447111 
445313 
445111 
439424 
438532 
437932 
399308 
393956 
430000 
405000 

CHAPTER6 

3.55 
2.76 
2.83 
2.98 
3.18 
3.13 
2.72 
3.24 
2.91 

2.8 
3.28 
2.86 
3.48 
3.48 
2.66 
3.32 
3.32 
2.71 
3.05 
3.15 

2.93 
2.87 
2.67 
3.2 
3.18 
2.6 
3.24 
2.8 
3.39 
3.2 
3.17 
3.12 

2.87 
3.57 
3.86 
3.57 
3.52 
3.01 
3.01 
3.25 
3.54 
3.26 
3.4 
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.3454 0.925 133843 441524 994703 381068 3.3 
0.3296 0.929 146285 427453 854495 374732 2.92 

.3468 0.9697 139868 417811 914908 362926 2.99 
.0.932 122175 464048 1228386 354881 2.93 

.3457 0.916 118548 376784 825382 326045 3.18 
0.12 0.926 120869 289094 496924 262210 2.24 

0.942 128809 289094 496924 260725 2.24 
.3219 0.95 124506 279883 685877 224991 2.42 
.3305 0.927 123870 273579 643279 262210 2.43 
.3461 0.925 123974 268965 642380 228495 2.51 

0.351 0.906 122609 263570 635342 223549 2.32 

Table 6.1.4. Results for series C 

BPO BPO 
concentration concentration 

mol ell Xcrit mol ell Xrrit 

0.04 0.18199 0.08 0.167 
0.2147 0.16544 
0.1875 0.1754 
0.19765 0.1765 
0.1754 0.1643 
0.1977 0.18675 
0.18654 0.18654 
0.1979 0.1589 
0.217 0.1567 
0.1782 0.18975 
0.2247 0.1655 

0.06 0.2065 0.1 0.1567 
0.1875 0.1608 
0.1754 0.14987 
0.1643 0.15677 
0.1865 0.1678 
0.1986 0.1567 
0.194 0.15447 
0.1699 0.15667 
0.1795 0.16778 

0.1643 
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6.2. Preliminary tests of the variables 

The statistical tests used to assess the relationship between the variables, like the 

Analysis of Variance (ANOVA), require that the variables satisfy some assumptions 

before the tests are performed. If these assumptions are not valid, the test results 

cannot be considered reliable. The assumptions made when ANOV A is applied, are 

the following: 

• The population from which the samples were obtained must be normally or 

approximately normally distributed 

• The samples must be independent of each other 

• The variances of the populations must be equal. 

Before the application of ANOV A, these assumptions have to be tested and verified. 

For the first assumption of normality, the values of Xcrih for series A, B and C, and the 

values of the viscosity average molecular weight (Mv), for series B, are tested for 

normality, by a Normal probability plot (P-P plot) as shown in figure 6.2.1, where 

cumulative proportions of Xcrit and Mv are plotted against the expected cumulative 

proportions of the variable if the normal distribution was followed. If the selected 

variable matches the normal distribution, the points cluster around the diagonal 

straight line. The more the experimental points deviate from the diagonal straight line 

the more their distribution deviates from normality. 
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Figure 6.2.1. P-P plots for Xcrit and Mv 

CHAPTER6 

The experimental points, in both cases, for Xcn1 and Mv, do not deviate significantly 

from the straight line and therefore they can be considered to follow the normal 

distribution. The samples are independent runs and therefore, they satisfy two of the 

three requirements for the application of ANOVA. The third requirement of equal 

variances is examined in each case together with the application of ANOV A. 

6.2.1. Conclusions 

The probability - probability plots for Xcrit and M v showed that the values of the 

variables do not deviate significantly from normality and they may be considered to 

follow a normal distribution. 
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6.3. Effect of temperature on Xcrit 

According to the free volume theory, Xcrit depends on the reaction temperature. The 

alleged relationship between these two variables is examined in order to verify it or 

reject it, by using ANOV A. A number of experiments (series A) run for three 

different temperatures but for the same BPO concentration (0.06 mole/1) were used, 

with PMA-Na as stabiliser. The variance of the Xcrit values for each temperature are 

depicted in figure 6.3.1. A trend for an increase of Xcrit with increasing temperature 

becomes evident . 

. 36.-------------------, 

.34 

.32 

.30 

.28 

.26....._ ________________ __, 

70 75 

temperature (degrees Celcious) 

Figure 6.3.1. Xcrit for various temperatures 

80 

The descriptive statistics, including the mean, standard deviation, standard error, the 

lower and upper bounds for 95% confidence interval and the minimum and 

maximum, for Xcrit for various temperatures are shown in table 6.3.1, where A. is the 

number of experiments. The mean values of Xcrit for each temperature seem to differ. 

Table 6.3.1. Descriptive statistics for Xcrit and various temperatures (series A) 

Temperature Mean Std. Std. Error 95% ConfidenceMinimum Maximum 

C) Xcrit Deviation Interval for Mean 

Lower Upper 
Bound Bound 

70 20 0.298771 0.0090225 0.0020175 0.294549 0.302994 0.2808 0.3139 
75 20 0.319415 0.0072433 0.0016196 0.316025 0.322805 0.3044 0.3284 
80 20 0.329667 0.0112894 0.0025244 0.324384 0.334951 0.3102 0.3476 
Total 60 0.315951 0.0158759 0.0020496 0.311850 0.320052 0.2808 0.3476 
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The test of homogeneity of variance is shown in table 6.3.2, where the number of 

treatments is u=3 (represents the 3 different temperatures for subgroups Ah A2 and 

A3) and the number of experiments for each treatment is A =20. Therefore, the 

degrees of freedom for this test are dfl = u-1=2 and df2=u(A. -1)=57. This test shows 

that the p-value (sig.) is 0.177 which is higher than the 0.05 level. When the Levene's 

test (described in chapter 4.4) is significant (the value under "Sig." is less than 0.05), 

the two variances are significantly different. When it is not significant (Sig. is greater 

than 0.05), the two variances are not significantly different; that is, the two variances 

can be considered equal. 

Table 6.3.2. Test of Homogeneity of Variances 

Levene Statistic f1 df2 Sig. 

1.784 57 0.177 

Table 6.3.3, shows the ANOVA for the Xcrit for the various groups determined by the 

temperature. The p-value is lower than 0.01 which means that the group means are 

different. 

Table 6.3.3. ANOV A 

um of Squares df 

Between Groups 

Within Groups 

Total 

. 010 2 

.005 

.015 

57 

59 

Mean Square F Sig . 

.005 56.858 .000 

0 

The Tukey test (described in section 4.6), shown in table 6.3.4, shows that all the 

means differ from one another. 
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Table 6.3.4. Tukey test 

Mean Std. Error Sig. 95% 

Difference Confidence 

Interval 

(I) Temperature J) Lower Bound Upper Bound 
Temperature 

70 5 -0.0206* 0.00295 .000 -0.0277 -0.0135 

80 -0.0309* 0.00295 .000 -0.0380 -0.0238 

75 70 0.0206* 0.00295 .000 0.0135 0.0278 

80 -0.0102* 0.00295 .003 -0.0174 -0.0032 

80 70 0.0309* 0.00295 .000 0.0238 0.0380 

75 0.0102* 0.00295 .003 0.0032 0.0174 

* The mean difference is significant at the .05 level. 

The values noted with a * in the previous table represent statistically significant 

differences between the group means which were tested. This means that Xcrit depends 

on temperature. More specifically, Xcnt was found to increase for higher reaction 

temperatures, which is in agreement with published results and has been justified in 

terms ofthe free volume theory. 

6.3.1. Conclusions 

From the analysis of the experimental results with ANOV A, it is shown that critical 

conversion, Xcrit, increases for increasing polymerisation temperature, as has been 

explained in terms of the free volume theory. 
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6.4. Effect of the initiator concentration on Xcrit 

The effect of the initiator concentration on the monomer conversion to polymer is 

shown in figure 6.4.1. With increasing initiator concentration the overall reaction rate 

increases, but does this increase of the initiator concentration have any effect on the 

Xcrit? 

1-
Conversion for various 

o2U~~xx BPO concentrations 0 0 

0.8-
at 700C 

0 0.04moiA 

- X 0.06moVI 
X 

6. O.OSmoiA c: 0.6-0 0 0.10mol/l ·;;; 
~ 

OAX 0 ~ -
c: 0 0 

0.4- o .t.Xo t) 

0 AX 
- !>.X ot>.x 0 

0.2-
OAXo 

~~; 

0 
~~~0 

I I I I ' I 

0 20 40 60 80 100 

Time (min) 

Figure 6.4.1. Effect of initiator concentration on monomer conversion, for PMA-Na 

and pH 10 

The statistical process used to investigate the relationship between Xcrit and initiator 

concentration consists of the following steps: 

1. Investigate whether Xcrit varies with BPO concentration. Analysis of variance 

(ANOV A) was carried out, using Xcrit and BPO concentration. 

2. Investigate whether Xcrit varies with M of polymer produced. 

• Classify the samples into groups according to their viscosity average 

Mv, using the K-means clustering method. 

• Examine, whether Xcrit values for these groups are equal, using 

ANOV A. If the mean Xcrit values of these groups of samples with different 

Mv are equal then there is no relation between Mv and Xcrit· 

144 



CHAPTER6 

6.4.1. One way Analysis of Variance (A-NOVA) 

The Xcrit was calculated for 122 suspension polymerisation runs, series B (groups B1 

and B2), with 5 different initiator concentrations 0.04, 0.06, 0.08, 0.10 and 0.12 mole/1 

and constant temperature (70°C) under isothermal conditions. Analysis of variance 

was used in order to find if there is any statistically significant difference between Xcrit 

values for various initiator concentrations. The experimental hypothesis for this test is 

simply that there may be a difference in Xcrit between the five groups of BPO 

concentrations: that is the experimental hypothesis is non-directional. In this case, the 

corresponding null hypothesis is that there is no difference, and a large difference in 

either direction would be evidence against it. ANOV A was performed for the Xcrit and 

the BPO concentration was used as the grouping variable. The statistical descriptive 

statistics for these runs are reported in table 6.4.1, and they include the mean values of 

Xcri" the standard deviation, the lower and upper bound and the minimum and 

maximum values. 

Table 6.4.1. Descriptive statistics for Xcrit 

Mean Std. Std. Error 95% Confidence lnterva/Minimum Maximum 

BPO Deviation for Mean 

Concentration 

(molell) Lower Bound Upper Bound 

.04 2 .2974 .OllO .0024 .2925 .3022 .2785 .3170 

.06 4 .3061 .0102 .0018 .3025 .3097 .2870 .3210 

.08 3 .3170 .Oll2 .0024 .3121 .3219 .2963 .3356 

.10 2 .3276 .0112 .0024 .3226 .3325 .3082 .3476 

.12 1 .3407 .0121 .0026 .3352 .3462 .3190 .3587 

Total 122 .3164 .0184 .0017 .3131 .3197 .2785 .3587 

The mean values of each one of the five groups differ, but it cannot be determined 

whether this difference is due to random variance or systematic variance caused by 

the independent variable, which in this case is the BPO concentration. 

In figure 6.4.2 the boxplot shows the variance of the values of Xcrit for the 5 cases of 

BPO loading, where the box represents the interquartile range which contains 50% of 

the values. The whiskers are lines that extend from the box to the highest and lowest 

values, excluding outliers. A line across the box indicates the median. As shown in 
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the boxplot, the higher Xcrit values for 0.04 mole/! are within the same range with the 

lower values for 0.06 mole/! BPO. The same thing can be observed for all the 

successive values of BPO concentrations; there is significant overlap of values for 

various BPO concentration. The higher Xcrit values for a certain concentration are 

within the same range with the lower values of the next concentration examined. It is, 

therefore, considered expedient to compare the means of the two groups of values via 

a more rigid statistical method, like ANOVA, that would take into consideration the 

variance of the Xcnt values. 

The application of this method requires, apart from the normality and the independent 

sample requirements, that the variances of the variable at every level (level = BPO 

concentration) are equal. 

.38 

.36 

.34 

-·c 
0 .32 
X 

.30 

.28 

.26 
N• 22 34 

.0400 .0600 

23 

.0800 

22 

.1000 

BPO concentration (mole/1) 

Figure 6.4.2. Xcrit for various BPO concentrations 

21 

.1200 

The equality of variances is examined by Levene's test (table 6.4.2).which is less 

dependent on the assumption of normality than most other tests. The Levene's test 

examines the homogeneity or equality of group variances, which means whether the 

groups have approximately equal variance on the dependent variable. When the 

Levene's test is significant (the value under "Sig." is less than 0.05), the two variances 

are significantly different. When it is not significant (Sig. is greater than 0.05), the 

two variances are not significantly different; that is, the two variances can be 
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considered equal. In this case, the significance is 0.879, which is greater than 0.05. 

We can assume that the variances are approximately equal. The third assumption has 

been met. 

Table 6.4.2. Test of Homogeneity of Variances for Xcrit 

Levene Statistic lfl dj2 Sig. 

.298 117 0.879 

Since all of the assumptions are met, the analysis of variance can be performed, as 

shown in table 6.4.3. When the value of the F distributions, which is the ratio of the 

variance between the groups over the variance within the groups, is much larger than 

1, as in this case (F= 54.527), the means of the groups are different. If the means were 

equal then the F distribution should be equal to 1. The probability value (si g.) is lower 

than the significance level of 0.05, which means that the null hypothesis of the 

equality of means is rejected. Therefore, the mean values of Xcrit for the various groups 

are statistically different at a significance level 0.05. Therefore, there seems to be a 

statistically significant difference between the values of Xcrit for the different BPO 

concentrations, and the null hypothesis is rejected. 

Table 6.4.3. ANOVA for the mean values of xcrit for various BPO concentrations 

Between Groups 

Within Groups 

Total 

um of Squares df 

. 027 4 

.014 

041 

117 

121 

Mean Square F Sig . 

0.007 54.527 0.000 

0.000 

The mean values of the variable groups are statistically different and hence the Xcrit is 

affected by the BPO concentration, and more specifically as can be observed in figure 

6.4.3, where the mean values of Xcrit are plotted against BPO concentration, the Xcrit 

values increase with increasing BPO concentration. 
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Figure 6.4.3. Mean values of Xcrit for increasing BPO concentration 

The linear association of the two variables of interest, Xcrit and BPO concentration 

(mole/!), was also tested by the Pearson correlation coefficient, as shown in table 

6.4.4. A correlation coefficient is a statistic devised for the purpose of measuring the 

strength, or degree, of a supposed linear association between two variables. The 

Pearson coefficient ranges between 0 and 1, corresponding to no linear and linear 

relationships respectively. The Pearson coefficient (table 6.4.4) for the two variables 

is 0.805, which is significant at the 0.01 level and indicates that there is a linear 

association between them. 

Table 6.4.4. Pearson correlation 

BPO concentration (mole/!) 

Xcrit 

Pearson Correlation 
Sig. (2-tailed) 
N 
Pearson Correlation 
Sig. (2-tailed) 
N 

•• Correlation is significant at the 0.01level (2-tailed). 

BPO concentrationx"" at 7rJ'C 
(mole/1) 
1 

122 
.805** 
.000 
122 

.805** 

.000 
122 
1 

122 
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6.4.2. K-means cluster analysis 

The viscosity average molecular weight, Mv, of the final polymer is used as the 

variable for the cluster analysis by K-means of 55 suspension polymerisation samples 

(series Bz). Therefore, the criterion for the classification of these samples is only their 

similarity in terms of molecular weight values. The clusters to be produced by K

means will consist of samples with similar molecular weights. The initial cluster 

centres are shown in table 6.4.5. The final cluster centres chosen to maximise the 

distance among cases in different clusters (after 20 iterations) are shown in table 

6.4.6, whereas the distances between the final cluster centres are shown in table 6.4. 7. 

Table 6.4.5. Initial Cluster Centres 

Cluster I 2 3 4 5 

Cluster 04490 224991 799392 326045 716966 

center 

Table 6.4.6. Final Cluster Centres 

Cluster 1 2 3 4 5 

Cluster 37816 255378 674964 413620 535419 

center 

Table 6.4.7. Distances between Final Cluster Centres 

Cluster I 

1 

2 

3 

4 

5 

82438 

24195 

2 3 4 5 

582438 162852 424195 302396 

419585 158242 280041 

158242 261343 

261343 139544 

121799 

02396 280041 139544 121799 

The smallest distance is found between clusters 4 and 5, and it is 121xl03
, whereas the 

biggest distance is found between clusters 1 and 2, and it is 582 x103
. 

The number of cases in each cluster is given in table 6.4.8. 
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Table 6.4.8 Number of Cases (experiments) in each Cluster 

Cluster Cases 

1 8 

2 !7 

3 12 

4 15 

5 13 

Valid ~5 

The samples comprising each cluster are shown in figure 6.4.4, and they are labelled 

by the BPO concentration used for their production. Each cluster consisted of samples 

with similar Mv. The samples comprising each cluster were mainly produced by the 

same BPO concentration, one BPO concentration is predominant in each cluster. 

Figure 6.4.4 shows the number of the samples produced by a certain BPO 

concentration that belong to each cluster. Clusters 1 and 2 consist solely of samples 

produced by 0.04 and 0.12 mole/! BPO, respectively. 90% of the samples produced by 

0.06 mole/1 and 20% of the samples produced by 0.04 mole/! BPO belong to cluster 3. 

All of the samples (100%) produced by 0.10 mole/! BPO and 40% of the samples 

produced by 0.12% belong to cluster 4. Cluster 5 consists of 100% of the samples 

produced by 0.08 mole/! BPO and 10% of the samples produced by 0.06 mole/1 BPO. 

~ 
(]) 
.0 
E 
:J 
1: 

1 2 3 

clusters 

4 5 

mill 0.12mole/l BPO 

a0.10mole/l BPO 

mrtl0.08mole/l BPO 

1:3 0.06mole/l BPO 

00.04mole/l BPO 

Figure 6.4.4. Samples (labelled with BPO concentration) comprising the clusters 
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Figure 6.4.5, shows the percentage of the sample type in each cluster, reflecting the 

degree of homogeneity of the clusters. Clusters I and 2 consist 100% of samples 

produced by 0.04 and 0.12 mole/! BPO respectively. Cluster 3 consists 80% of 

samples with 0.06 mole/! BPO and 20% of samples with 0.04 mole/! BPO. Cluster 4 

consists of 70% of 0.10 mole/1 BPO samples and 30% of 0.12mole/l BPO samples. 

Finally, cluster 5 consists 90% of 0.08 and 10% of 0.06 mole/! BPO samples. 

1 2 3 4 5 

clusters 

Figure 6.4.5. Percentage of samples type in each cluster 

(a0.12mole/l BPO 

110.1 Omole/1 BPO 

mo.osmole/1 BPO 

m 0.06mole/l BPO 

o0.04mole/l BPO 

The mean values of Xcrit for each cluster shown in table 6.4.9, together with the rest of 

the descriptive statistics, differ. Whether this difference is due to the variation of the 

viscosity average molecular weight or random error will be verified by the application 

ofANOVA. 

Table 6.4.9. Descriptive statistics for Xcrit in the clusters 

95% Confidence 

Std. Interval for Mean 

Cluster MeanXcnt Deviation Std. Error Lower Upper Minimum Maximum 

Bound Bound 

1 8 0.2881 0.0069 0.0025 0.2823 0.2939 0.2785 0.2977 
2 7 0.3361 0.0126 0.0047 0.3245 0.3477 0.3190 0.3510 
3 12 0.3074 0.0091 0.0026 0.3017 0.3132 0.2898 0.3210 
4 15 0.3290 0.0116 0.0030 0.3226 0.3355 0.3082 0.3468 
5 13 0.3176 0.0122 0.0034 0.3102 0.3249 0.2963 0.3356 
Total 55 0.3165 0.0184 0.0025 0.3116 0.3215 0.2785 0.3510 
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The test of homogeneity of variance, in table 6.4.10, shows that the variance is 

homogeneous. The p-value (sig.) is (0.261) higher than 0.05 and therefore the group 

variances can be considered almost equal, permitting the application of ANOV A. 

6.4.10. Test of Homogeneity of Variances for Xcrit in the clusters 

Levene Statistic dfl dj2 Si g. 

1.359 4 50 .261 

The application of ANOVA, as shown in table 6.4.11, verifies that there is a 

statistically significant difference in the cluster means. The p-value is lower than 0.01 

and therefore the difference between the cluster means is significant at a 0.01 level. 

Table 6.4.11. ANOVA for Xcntin the clusters 

Between Groups 

Within Groups 

Total 

urn of SqUilres df 

0.013 4 

0.006 50 

0.018 54 

Mean Square F 

0.003 26.726 

0.000 

Si g. 

0.000 

Each cluster is homogeneous in relation to the Mv. Since, the mean Xcrit between the 

clusters vary, the conclusion that can be drawn is that the Xcrit and the Mv are related. 

When the Pearson correlation is used to determine whether there is a linear correlation 

between the two variables, as in table 6.4.12, it is shown that there is a strong 

relationship between Xcrit and Mv. Consequently, the Mv does influence the onset of 

the gel effect. 

Table 6.4.12. Pearson Correlations 

Xcril Mv 

1 -0.814** 

ig. (2-tailed) 0.000 

Mv earson Correlation 

ig. (2-tailed) 

55 55 

-0.814** 

0.000 

1 

55 55 

** Correlation is significant at the 0.01level (2-tailed). 
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When the Mv and the Xcrit for each cluster are plotted, it becomes clear that the two 

variables are inversely proportional, and hence for decreasing Mv the Xcrit increases. 
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Figure 6.4.6. Mv and Xcrit for each cluster 

Eventually, the critical conversion does depend on the molecular weight of the 

polymer produced in the polymerisation reaction. 

6.4.3. Effect of predissolved polymer on Xcrit 

In order to examine the effect of the molecular weight of the polymer produced prior 

to the onset of gel effect on Xcrit, some simulation experiments were carried out. In 

those experiments, polymer PMMA of various molecular weights was dissolved in 

monomer, prior to polymerisation, and the Xcrit. was calculated as described in 

subchapter 3.3.5. The concentration of the predissolved polymer was 20% in all cases, 

corresponding to a conversion of 20%. The viscosity average molecular weights of 

the predissolved polymer and the corresponding Xcnt are given in table 6.4.13. For 

each experiment, three replicates were run and the average Xcrit was then calculated. 

The stabiliser used was PMA-Na, and its concentration was 0.6% for all the runs. The 

polymerisation temperature was 70°C. The BPO concentration was constant for all the 

runs, 0.08 mole/!. For this initiator concentration at 70°C, and for runs with pure 

monomer, the corresponding Xcrit (see subchapter 6.4.1) is 0.3170. 
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In order to provide a reference case, a run with pure monomer was canied out and the 

polymerisation was stopped after 50 min with the addition of inhibitor and cooling of 

the reaction mixture at the same time. The conversion reached after 50 min was 0.336, 

slightly higher than the Xcrit· The molecular weight and the molecular weight 

distribution of the polymer produced up to that point was measured with GPC (figure 

6.4.7). The Mv of the sample was 178,000. This Mv does not correspond to Xcrit. but it 

can provide a good estimate for the order of magnitude of Mv, at the onset of gel 

effect. Therefore, the Mv of the polymer produced prior to gel effect, for the run with 

pure monomer, is considered to be approximately 178,000. 

Table 6.4.13. Viscosity average molecular weight Mv, concentration ofpredissolved 

PMMA, Xcrit and BPO concentration 

Cases 

Reference 
case 
1 
2 

3 

4 

0.9 
0.8 

c: 0.7 1 0.6 
0.5 

:E 
·~ 0.4 
;: 0.3 

0.2 

Mv at 
gel 
effect 
178000 

-
-
-
-

Mv of Concentration Xcrit 

predissolved of predissol ved 
PMMA PMMA 

- 0 0.317 

21000 20% 0.365 

354000 20% 0.307 
631000 20% 0.285 
858000 20% 0.267 

0.1 

0~--~----~----~--~----~----~--~ 
0 2 3 4 5 6 7 

logMN 

Figure 6.4.7. MWD ofPMMA at 0.336 conversion 

BPO 
concentration 
(mole/1) 
0.08 

0.08 

0.08 
0.08 

0.08 

As shown in figure 6.4.8, the critical conversion increases with decreasing Mv of 

predissolved polymer. The trend is similar with the trend observed in figure 6.4.6, 
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(chapter 6.4.2) for the Xcrit and the Mv of the final polymer produced, for runs with 

pure monomer as dispersed phase. 

As observed in table 6.4.13, for case 1, where the Mv is very low, 21000, lower than 

the Mv of the reference case, the Xcrit is significantly higher than the Xcnt of the 

reference case. For the other 3 of the cases with predissolved PMMA, the Mv of the 

predissolved monomer is higher than the Mv of the reference case, and therefore, the 

Xcrit is significantly lower, than the Xcrit of the reference case. 
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Figure 6.4.8. Mv of predissolved PMMA and corresponding Xcrit 

6.4.4. Conclusions 

The conclusion deduced from the statistical assessment of the experimental results 

are: 

• The analysis of variance applied on groups of samples produced with various BPO 

concentrations showed that mean values of Xcrit of the groups increase for 

increasing BPO concentration 

• When the samples are clustered using the viscosity average molecular weight as a 

grouping variable, the clusters produced, which are similar in terms of Mv, have 

means (Xcrit) which also increase for decreasing Mv. Therefore, the relationship 

between Mv and Xcnt has been verified. 
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6.5. Effect of the type of stabiliser on Xcrit 

Two different stabilisers were used for the experimental investigation of the factors 

that affect the Xcri" PMA-Na and APMA, for series A and C, respectively. The type of 

stabiliser used, seems to influence the conversion-time data indicating that there may 

exist an influence on the reaction kinetics. Figure 6.5.1, shows the conversion time 

curves for the two stabilisers, for the same initiator loading. As observed in this 

figure, the use of APMA seems to cause an acceleration of the reaction rate and the 

reaction reaches higher conversion at earlier times. 
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Figure 6.5.1. The effect of the type of stabiliser on conversion 

The descriptive statistics for the two stabilisers PMA-Na and APMA are given in 

table 6.5.1. The mean critical conversion values calculated for the runs performed 

with APMA are significantly lower than the corresponding values for the runs with 

PMA-Na. The influence of APMA, first observed on the time-conversion curves, is 

also evident on the Xcrit data. 

Table 6.5.1. Descriptives 

Stabiliser 

APMA 

PMA-Na 

11 

10 

Mean 

0.1963 

0.2968 

Std. Deviation Std. Error Mean 

.0165 

.0107 

.0050 

.0034 
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6.5.1. T-test 

In order to compare the mean values of Xcrit for the two groups of experiments run 

with the two stabilisers and the same initiator loading, a T- test is performed. As 

shown in table 6.5.2, there is a statistically significant difference between the mean 

values of Xcrit for the two stabilisers. 

When the probability (sig.) value is lower than 0.05, the hypothesis of equality of 

means is rejected. Therefore, there is a statistically significant difference between the 

Xcrit values of the two groups, produced with APMA and PMA-Na. 

Table 6.5.2. Independent Samples T-test 

Levene's Test fort-test for Equality of Means 

p;quality ofVariances 

F Sig. t df 

~qual variance 1.950 

ISSUmed 

lqual variance 

tot assumed 

.179 -15.581 19 

-15.905 17.242 

Sig. 

(2-tailed) 

.000 

.000 

Mean Std. Error95% 

Difference Difference Interval 

Difference 

Lower 

-.0955 .0061 -.1084 

-.0955 .0060 -.1082 

Both, the conversion time curves and the Xcrit data indicate that there is a significant 

influence of the stabiliser on the reaction kinetics. Xcrit values published on previous 

work for PVA- BPO systems (Neil et al., 1996), are consistent with the Xcnt values for 

the system PMA-Na - BPO. The deviation from previously published values is 

observed for the APMA - BPO system. Therefore, it must be APMA and not PMA

Na that plays a role or has some kind of influence on the reaction kinetics. This of 

course, also indicates that there must be some sort of interaction between the two 

phases. 

The mechanism via which APMA interacts or interferes with the MMA+BPO system 

is not known, and a number of questions are raised about the mechanism and the 

factors that determine this interaction. One of the these is whether the concentration of 

157 

Confidence 

of the 

Upper 

-.0827 

-.0829 



CHAPTER6 

APMA affects the reaction kinetics and Xcrit· A second one is how the concentration of 

BPO affects Xcrit when APMA is used. 

6.5.2. Combined effect of increasing BPO and APMA concentrations 

But what happens to the reaction kinetics when the BPO concentration is increased, 

for runs where APMA is used in the continuous phase? What interaction between the 

two phases occurs? 

The conversion-time data for increasing BPO concentration and APMA, used as 

stabiliser, are depicted on figure 6.5.2, for 70°C. The reaction rate increases as it 

would be expected according to previous results for PMA-Na. The critical conversion 

would also be expected to increase because Xcrit was shown to increase with increasing 

initiator concentration. As shown on figure 6.5.3, though, the critical conversion 

seems to decrease for increasing BPO concentration. 
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Figure 6.5.2. Conversion for increasing BPO concentration, with APMA at 70°C 
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By comparing the variation of Xcrit for increasing BPO concentrations for the two 

stabilisers (figure 6.5.4), two contradicting trends are observed. While for increasing 

BPO concentration Xcrit increases when PMA-Na is used, it decreases when APMA is 

used. This decrease cannot be explained and is not consistent with the recent findings 

presented on chapter 6.4.1 showing that increasing initiator concentration leads to an 

increase of Xcrit· It could probably be attributed to the interactions of BPO with the 

stabiliser. 

-·;:: 
0 
X 

PMA-Na APMA 
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IDIBII .04 

D .06 

• .08 

mm .10 

• .12 

Figure 6.5.4 Comparison between PMA-Na and APMA for increasing BPO 

concentration 

The question raised by these phenomena is whether this observed Xcrit decrease 

reflects an earlier gel effect onset, or is in fact just manifestation of interactions that 

have not been so far determined. 
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6.5.3. Effect of APMA concentration on Xcrit 

Since APMA affects the reaction mechanism, the concentration of APMA might have 

an influence on the reaction kinetics as well. Runs for various APMA concentrations 

are depicted in figure 6.5.5. 

As can be observed, an increase of the reaction rate takes place for increasing APMA 

concentration. The corresponding (to these runs) values of Xcrit also decrease for 

increasing APMA concentration. 

This might be attributed to two possible causes: 

• the increase of the concentration of APMA as a chemical reagent for the 

reaction/interaction between APMA and BPO 

• the increase of the interfacial area between the continuous and the dispersed 

phase. As APMA concentration in the continuous phase increases, the drops become 

smaller and the interfacial area between the two phase increases. If the interaction of 

APMA and BPO is associated with the interfaces and the interfacial area between the 

two phases, increasing the interfacial area might lead to an increasing interaction rate. 
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Figure 6.5.5. Conversion for increasing APMA concentration in the continuous phase 
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These two factors have to be decoupled, and the effect of each one of them has to be 

investigated separately, in order to find out what are the factors that determine this 

type of interaction. 

6.5.4. Effect of interfacial area 

If the interfacial area between the continuous and dispersed phases, has any influence 

on the phenomena of autoacceleration observed so far, then by varying the interfacial 

area, Xcrit will change as well. In order to vary the interfacial area without changing 

the stabiliser concentration, the stirring speed is varied. As shown in section 5.3.2, 

increasing the stirring speed leads to increasing drop sizes and therefore to a decrease 

of the interfacial area. Hence, experiments with the same APMA and BPO 

concentration were run for increasing stirring speeds. The particle size distributions of 

the samples produced are depicted in figure 6.5.6. 
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Figure 6.5.6. Particle size distributions for APMA and increasing stirrer speed, at pH 
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The interfacial area for these runs is calculated from the drop size distribution with the 

procedure described in the experimental part, chapter 3.3.4 
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Figure 6.5.7. Interfacial area for increasing APMA concentration 

The interfacial area is a function of two variables, of the APMA concentration and 

the stirring speed. As shown in figure 6.5.7, the interfacial area increases with 

increasing APMA concentration for a certain stirring speed, but decreases for 

increasing stirring speed for all stabiliser concentrations. Higher stabiliser 

concentrations produce smaller drops and hence larger interfacial areas for the same 

monomer concentration. When the stirring speed increases, larger drops are produced, 

as shown in chapter 3.3.4, and hence the interfacial area decreases. 

The conversion-time data depicted in figure 6.5.8, for constant stabiliser concentration 

in the continuous phase, show that the reaction rate accelerates for decreasing stirring 

speed, and therefore increasing interfacial area. 
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Figure 6.5.8. Conversion for 0.78% APMA and increasing stirring speed and BPO 

0.06mole/l. 

Figure 6.5.9, shows that for increasing stirring speed the values of Xcrit diminish. For 

these runs the increase of the interfacial area is achieved by lowering the stirring 

speed. Hence, there must exist an influence of the interfacial area on the reaction 

kinetics, and this influence is manifested by an acceleration for decreasing stirring 

speed . 
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Figure 6.5.9. Xcrit for APMA and increasing stirrer speed 
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The Xcrit values for increasing interfacial area are depicted in figure 6.5. 10, where it is 

shown that Xcnt decreases for increasing interfacial area. Hence there must exist a 

relation between the interfacial area and Xcnt 
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Figure 6.5.10. Xcrit for increasing interfacial area 

Summarising, the observations made so far are regarding the use of APMA as a 

stabiliser and its effect on the polymerisation kinetics: 

• When APMA is used, the Xcrit decreases with increasing BPO concentration, in 

contradiction with the trend that Xcrit follows when other stabilisers are used (PMA-Na 

andPVA) 

• For increasing APMA concentrations, the reaction rate accelerates 

• For increasing interfacial area, achieved by lowering the stirring speed and for the 

same APMA concentration the reaction rate also accelerates 

• For increasing interfacial area the Xcrit diminishes 

These observations indicate that there must exist an influence of APMA on 

polymerisation kinetics and more specifically, there must exist an interaction of 

APMA and BPO, that takes place or is related to the interface between the two liquid 

phases. What kind of interaction this is may become a little bit more obvious if the 

molecular weight distributions and averages of the samples produced with APMA 

under various conditions are examined. 
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6.5.5. Conclusions 

The effect of the stabiliser type on Xcrit was examined in this chapter, for two 

stabilisers PMA-Na and APMA. The results so far lead to the following conclusions: 

• When APMA is used, for the same conditions as PMA-Na, an acceleration of the 

reaction rate occurs. When APMA solutions are used, the Xcrit decreases with 

increasing BPO concentration, in contradiction with the trend that Xcrit follows 

when other stabilisers are used (PMA-Na and PVA). APMA interacts with the 

reacting system and interferes with the reaction kinetics causing an acceleration of 

the polymerisation rate. 

• For increasing APMA concentrations, the polymerisation rate accelerates and Xcrit 

diminishes 

• For increasing interfacial area, achieved by lowering the stirring speed and for the 

same APMA concentration, the reaction rate accelerates, and Xcrit diminishes. This 

suggests that they interaction of APMA with the reacting system takes place in a 

way that is related to the interfacial area. 
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6.6. Effect of AMPA on Mw 

The two factors that affect the polymerisation rate, APMA concentration and 

interfacial area, may also affect the molecular weight of the polymer produced. By 

examining the effect of the these factors on the molecular weight the interference of 

APMA with the reaction kinetics may be clarified. 

6.6.1. Effect of APMA concentration on MWD 

In order to clarify the kind of interaction between APMA and BPO, experiments run 

with PMA-Na are compared with APMA runs. These suspension polymerisation 

experiments were run, at 70°C, with the same BPO concentration 0.04 mole/1 and 

monomer volume fraction (0.1), but with different stabiliser concentrations PMA-Na 

and APMA. The concentration of the stabilisers was such that the drop sizes 

produced, or the drop size distributions produced, were almost identical in both cases, 

and that the specific interfacial area was almost equal as well (52,000 and 55,000 m·1
, 

for APMA and PMA-Na, respectively). Therefore, the only different factor in these 

cases was the stabiliser type. 

The MWDs produced under these conditions are shown in figure 6.6.1. It is observed 

that, although the BPO concentration and the reaction temperature that are the factors 

affecting the MWD are the same in both cases, the M of the sample produced with 

APMA is lower than that of the sample produced with PMA-Na. If the stabiliser type, 

did not play any role influencing the reactions kinetics the MWD and the molecular 

weight averages would be identical. But in this case the molecular weight averages 

differ significantly. In fact the Mv for these samples are approximately 830,000 for 

PMA-Na and 560,000 for APMA. 

This kind of difference between the Mv averages should not take place for the same 

BPO concentration. Lower Mv means that a larger number of free radicals were 

produced that could initiate the polymerisation of a larger number of polymer chains. 

This can only mean that APMA interacts with BPO, facilitating the decomposition of 

BPO and the formation of free radicals. In fact, APMA seems to act as a catalyst for 

the decomposition of BPO. This type of interaction, has not been reported before. 

Although, the catalytic effect of tertiary amines on the decomposition of BPO has 

been reported (Maltha, 1956; Yefremova et al., 1985; Vasquez et al., 1998), the 

167 



CHAPTER6 

catalytic effect of the ammonium salt of polymethacrylic acid has not been reported 

previously. 
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Figure 6.6.1. MWDs for PMA-Na and APMA, produced under similar conditions 

The fact that APMA causes the formation of free radicals by facilitating the 

decomposition of BPO can also explain, apart from the lower Mv of the samples 

produced by APMA, some of the previous observations summarised in chapter 6.5.3. 

Hence, the acceleration of the reaction rate is caused by the larger number or 

concentration of free radicals formed. The corresponding decrease of the Xcrit observed 

with increasing BPO could be explained by the increase of the decomposition rate of 

BPO. 

The decomposition rate of BPO increases, and hence the actual decomposition rate 

constant of BPO, also increases. But because this interaction between APMA and 

BPO was not known, this increase was not taken into consideration, when classical 

kinetics calculations were used for the determination of Xcrit, as was described in 

chapter 3.3.5. Therefore, the values of the decomposition rate constant of BPO used 

in classical kinetics calculations are lower than the actual ones. The use of lower 

values than the real ones for the decomposition rate constant gives lower values for 
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the theoretically predicted conversion-time data when classical kinetics is used. This 

means that the theoretically predicted curve is shifted to lower values, than the actual 

ones, and therefore, the experimental conversion-time data start to deviate from the 

theoretical curve, earlier on time scale, that the actual onset of the gel effect. This 

earlier deviation, results in underestimating the Xcrit· Finally, the lower Xcrit values 

observed were only an underestimate of the Xcrit because of the initiator decomposition 

rate increase, which in turn was caused by the catalysing effect of APMA on BPO 

decomposition. Since, the kinetics of this APMA-BPO interaction are not known, the 

real values of Xcrit cannot be estimated. 

6.6.2. Effect of interfacial area on MWD 

The effect of the interfacial area on the molecular weight was also examined by 

running suspension polymerisation experiments with the same BPO concentration 

(0.04 mole/!), at the same temperature, 70°C, the same monomer volume fraction 

(0.1), and the same APMA concentration in the continuous phase (0.78%). The 

increase of the interfacial area was achieved by lowering the stirring speed. The 

MWDs of the samples produced for 3 different stirring speeds are shown in figure 

6.6.2. The interfacial area corresponding to the three stirring speeds are: 81,000, 

69,000 and 52,000 m·1
, for 750, 850 and 950 rpm respectively. As shown in this 

figure, M increases for increasing stirring speed, or increases for decreasing 

interfacial area. 

169 



---<~- 750rpm 

0.8 -~-- 850rpm 
-~>--- 950rpm 

0.6 
c 
0 

u 
~ -:E 

0.4 "' ·;;; 
;: 

0.2 

3 
3.5 

4 
4.5 

5 

log (Mv) 

5.5 
6 

CHAPTER6 

6.5 
7 

Figure 6.6.2. MWDs for increasing stirrer speed, produced with 0.93% APMA, at 

initial pH 9 

The effect of the interfacial area on the M means that the interaction between APMA 

and BPO is related to the interfacial area between the two liquid phases, or takes place 

on the interface. Hence, as the interfacial area increases for decreasing stirring speed, 

the interaction of APMA and BPO takes place to a greater extent. APMA causes the 

formation of more free radicals and therefore a lower molecular weight polymer is 

produced. 

6.6.3. Conclusions 

The main conclusions drawn from the effect of APMA on the molecular weight of the 

polymer produced, are: 

• APMA influences the reaction kinetics by catalysing the decomposition of BPO. 

The decomposition rate of BPO increases, producing a larger number of free 

radicals, which lead to the acceleration of the polymerisation rate and to polymer 

product with lower molecular weight. 
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• The increase of the interfacial area, has as a result, the decrease of the molecular 

weight of the polymer produced. This occurs because the increase of the 

interfacial area facilitates the catalysing effect of APMA on BPO leading to the 

production of lower MW polymer. 
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SECTION 4. CONCLUSIONS AND FUTURE WORK 

7. GENERAL CONCLUSIONS 

The use of the sodium and ammonium salts of polymethacrylic acid, PMA-Na and 

APMA, as suspending agents for the suspension polymerisation of MMA was 

investigated. The particular characteristics of these stabilisers is that they are 

polyelectrolytes, which determines their chemical behaviour, and they are viscous 

gels producing viscous continuous phases, which determines the flow conditions in 

the reactor. The experimental investigation carried out includes experimental work 

focused on 

• the rheological behaviour of PMA and its salts, PMA-Na and APMA and the 

interfacial properties between PMA-Na or APMA and MMA 

• the behaviour of PMA-Na and APMA as suspending agents for the suspension 

polymerisation, the dispersion mechanism and the stabilisation mechanism 

• the factors that affect the onset of the gel effect. 

7 .1. Rheological behaviour and interfacial properties 

The viscosity of PMA, PMA-Na and APMA was examined for any dependence on 

shear rate or shearing time, and pH, that they may exhibit, and the conclusions 

deduced were that: 

• All the solutions examined, (PMA, APMA, and PMA-Na), show a time 

independent rheological behaviour. 

• PMA solutions exhibit a shear thickening behaviour, while APMA and PMA-Na 

solutions exhibit a shear thinning behaviour. The rheological behaviour of PMA 

solutions seems to change when the pol ymethacrylic acid is neutralised either with 

NH3 or with NaOH. The neutralisation seems to eliminate the shear thickening 

behaviour. This may be attributed to the repulsion between the parts of the 

polymer chain with the same charge, which force the polymer coil to unfold and 
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stretch causing the friction between the extended polymer coils and therefore the 

viscosity to reduce. 

• PMA and APMA show a shear history-dependent behaviour. Once the PMA or 

APMA solutions have been subjected to high shear rates, their viscosity decreases 

even for low shear rates. On the other hand, PMA-Na solutions do not show any 

dependence on shear history. 

• The viscosity of APMA solutions depends on pH (within the range of pH values 

from 9 to 11). For increasing pH, the solutions' viscosity decreases. For pH< 9, 

APMA solutions resemble the behaviour of PMA, showing a slight shear 

thickening behaviour for high shear rates. The viscosity of PMA-Na solutions 

does not depend on pH (within the range of pH values from 8 to 12). PMA-Na 

solutions resemble the behaviour of PMA for pH < 8, showing, also a dependence 

on shear history. 

• The increase of the stabiliser concentration does not have any significant effect on 

the interfacial tension between the continuous phase and the monomer. The 

interfacial tension remains almost constant over all the range of stabiliser 

concentrations. The pH does not affect the interfacial tension between the two 

phases either. 

7.2. Behaviour of PMA-Na and APMA as suspending agents 

The behaviour of the polyelectrolyte stabilisers was examined in terms of the factors 

that influence the drop or particle sizes and the dispersion and stabilisation 

mechanisms. 

7 .2.1 Factors that affect the drop I particle sizes 

The factors that affect or determine the drop formation and the final particle sizes, 

when PMA-Na or APMA are used as suspending agents, are the following: 

• Continuous phase viscosity: The continuous phase viscosity has a strong effect 

and plays an important role on the determination of the drop and particle sizes. In 
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both cases of PMA-Na and APMA, an increase in the continuous phase viscosity 

causes a diminution of the particle sizes, and vice versa. The PSDs shift to smaller 

sizes and become slightly broader as the continuous phase viscosity increases. For 

the same continuous phase viscosity, APMA solutions produce smaller particles 

than PMA-Na solutions. 

• Stirrer speed: Increasing the impeller speed above a particular value leads to an 

increase of the particle sizes. This is attributed to the non-Newtonian nature of the 

continuous phase. Increasing the stirring speed causes the viscosity of the non

Newtonian continuous phase to decrease, and therefore, the particle sizes increase. 

• Hold-up: For increasing hold-up, d32 initially decreases, reaches a minimum and 

then starts to increase. The hold-up, for which dn becomes minimum, increases 

for increasing stabiliser concentration and continuous phase viscosity. 

• Dispersed phase viscosity: Increasing the dispersed phase viscosity causes the d32 

to increase and the PSD to broaden significantly. 

• pH: Increasing the initial pH of the continuous phase causes the particle sizes to 

diminish, as well as the formation of two secondary peaks, at size ranges up to 1.5 

Jlm for the first one, and within the range from 1.5 to 10 Jlffi for the second. The 

total volume of drops within the secondary peaks increases with increasing pH, 

while the volume within the main peak decreases. The size of the first peak 

increases monotonously, while the size of the second peak, increases initially and 

then decreases. The overall trend is to form fine particles within the diameter 

range 0.4 to 1.5 Jlm. 

• Temperature: Increasing the reaction temperature causes the particle sizes to 

increase too. This decrease of the particle size is a combined effect caused, 

mainly, by the viscosity decrease of the continuous phase as the temperature 

increases, and the increase of the polymerisation rate. The effect of the 

temperature on the particle size is more evident for lower stabiliser concentrations. 

• Chain transfer agent ( CTA): In the presence of a chain transfer agent the volume 

of the particles with diameters smaller than 10Jlm increases, and the size of the 

maximum diameter decreases significantly. In the presence of a CTA the 

polymerisation requires longer time, which causes the dissolution of monomer in 

the continuous phase to a greater extent. The increased dissolution of monomer 
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causes the formation of a larger number of fine particles. The diminution of the 

maximum particle size could be attributed to the lower rate of viscosity build up in 

the drops. 

7.2.2. Dispersion mechanism 

• The viscosity index provided by the fit of the data to the power law model, is 

higher for APMA solutions than the viscosity index for PMA-Na solutions, 

suggesting that they exhibit a different shear thinning behaviour 

• For PMA-Na concentrations higher than 0.5% and APMA concentrations higher 

than 0.78% in the continuous phase, coalescence is prevented and d32 remains 

constant over all the conversion range. Therefore, for these concentrations the 

final particle sizes can be considered to reflect the initial drop sizes. 

• The results show that for high continuous phase viscosities, the inertial breakup 

theory cannot explain the drop breakup. The dmax values obtained from the 

suspension polymerisation experiments show a good agreement with Taylor's 

theory. It can be reasonably deduced that the viscous shear breakup mechanism 

controls the dispersion process when PMA-Na is used as a suspending agent in 

laboratory scale reactors and when the Reynolds number has a low value. This 

would not be expected in large scale industrial reactors where the Reynolds 

numbers are higher by some orders of magnitude 

• Increasing the dispersed phase viscosity by the addition of PMMA to the 

monomer prior to polymerisation does not affect the dispersion mechanism for 

viscosity ratios lower than 1. 

7.2.3. Stabilisation mechanism 

The experimental work showed that the pH played a very important role in the 

stabilisation of the dispersion. 

• The pH had a profound effect on the particle sizes and, at a constant stabiliser 

concentration, increasing the pH caused the particle size to decrease. Not only did 

175 



CHAPTER 7 

the pH increase cause a decrease of particle sizes for various stable dispersions 

but, at a given stabiliser concentration, it induced stability in dispersions that were 

unstable at a lower pH. This was attributed to increases in the charges on the 

polymer coil and in the strength of repulsive forces. 

• The enhancement of the stabilisation of the dispersion was considered to have 

been achieved through the contribution of the electrosteric stabilisation 

mechanism. 

7.3. Factors that affect the onset of the gel effect 

The onset of the gel effect, in terms of Xcrit was examined for increasing temperature, 

initiator concentration and molecular weight of the polymer produced, 

• Xcrit, increases for increasing polymerisation temperature, as has been explained 

in terms of the free volume theory. 

• Xcrit increases for increasing BPO concentration, and decreasing molecular weight. 

The effect of the M v on Xcnt has been verified. 

• When APMA is used, for the same conditions as PMA-Na, an acceleration of the 

reaction rate occurs. When APMA solutions are used, the Xcrit decreases with 

increasing BPO concentration, in contradiction with the trend that Xcrit follows 

when other stabilisers are used (PMA-Na and PV A). APMA interacts with the 

reacting system and interferes with the reaction kinetics causing an acceleration of 

the polymerisation rate. Also, for increasing APMA concentration, the 

polymerisation rate accelerates and Xcn1 diminishes 

• For increasing interfacial area, achieved by lowering the stirring speed, and for 

constant APMA concentration the reaction rate also accelerates, and Xcnt 

diminishes, suggesting that the interaction of APMA with the reacting system 

takes place or that the interaction is related to the interfacial area. 

• APMA influences the reaction kinetics by catalysing the decomposition of BPO. 

The decomposition rate of BPO increases, producing a larger number of free 
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radicals, which lead to the acceleration of the polymerisation rate and to polymer 

product with lower molecular weight. 

• With APMA, the increase of the interfacial area leads to decrease of the molecular 

weight of the polymer produced. This occurs because the increase of the 

interfacial area facilitates the catalysing effect of APMA on BPO leading to the 

production of lower MW polymer. 
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8. SUGGESTIONS FOR FURTHER WORK 

This experimental results produced within the frame of this project, and the 

conclusions drawn, have elucidated the use of polyelectrolyte stabilisers for the 

suspension polymerisation processes. Interesting subjects that have been raised within 

this project and are recommended for future investigation are: 

1. The effect of ammonium polymethacrylate on the kinetics of the 

decomposition rate of BPO. The catalysing effect of APMA on BPO has not 

been reported before (to our knowledge) and investigation would produce 

useful information about the effect of APMA on the decomposition rate of 

BPO. 

2. The role of the drop sizes and of the interfacial area on the interaction between 

APMA and BPO. APMA, when used with BPO, can act both as a stabiliser 

and as an accelerator. This dual action can have significant potential for the 

suspension polymerisation processes. 

3. Further investigation on the evolution of drops and particles in non-turbulent 

flows in suspension polymerisation, and in other systems 

4. Further investigation on the formation of fine particles during suspension 

polymerisation 

5. Further investigation on the effect of the non-Newtonian, shear thinning 

behavior on the drop and particle evolution, in suspension polymerisation. 

6. The Molecular weight dependence and concentration dependence of the 

termination rate constant, k1 
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