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ABSTRACT 

 

Current problems on the interaction of complex liquids (i.e. droplets or foams) with 

complex surfaces (i.e. soft deformable or porous surfaces) are addressed in the 

following areas: (1) wetting of deformable substrates and surface forces, (2) kinetics 

of wetting and spreading of non-Newtonian liquids over porous substrates, (3) 

kinetics of spreading of non-Newtonian solutions over hair, (4) free drainage of 

foams produced from non-Newtonian solutions, and (5) foam drainage placed on 

porous substrates. 

Equilibrium of liquid droplets on deformable substrates was investigated and the 

effect of disjoining pressure action in the vicinity of the apparent three phase contact 

line was taken into account. It was proven that the deformation of soft solids is 

determined by the action of surface forces inside the transition zone. 

Spreading/imbibition of blood, which is a power law shear thinning non-Newtonian 

liquid, over a dry porous layer was investigated from both theoretical and 

experimental points of view. It was found that blood droplet spreading/imbibition 

over porous substrates shows two different behaviours: (i) partial wetting case with 

three subsequent stages: initial fast spreading, constant maximum droplet base and 

the shrinkage of the droplet base; (ii) complete wetting case with only two stages: 

initial fast spreading and the shrinkage of the droplet base. 

The wetting of hair tresses by aqueous solutions of two commercially available 

polymers, AculynTM 22 (A22) and AculynTM 33 (A33) was investigated 

experimentally. Both A22 and A33 solutions demonstrate well pronounced shear 

thinning behaviour. Initial contact angle of the A22 and A33 solutions on hair 

tresses was about 100o. The A22 droplets remained on the hair tress after spreading 

for at least half an hour. However, a fast penetration of the A33 droplets inside the 

hair tresses was observed when advancing contact angle in the course of spreading 

reached a critical value of about 60o. This could be explained by Cassie−Wenzel 

wetting transition which is caused by filling the pores inside the porous media by 

liquid. 

The influence of non-Newtonian rheology of A22 and A33 solutions on foam 

drainage was also investigated experimentally and a new theory of foam drainage 

was presented for the case of free drainage. For lowly viscous polymeric solutions 
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and under the assumption of rigid surface of the Plateau border, the predicted values 

of the time evolution of the foam height and liquid content were in good agreement 

with the experimental data. However, in the case of highly viscous solutions an 

interfacial mobility at the surface of the Plateau border has to be taken into account. 

A completely new theory of foam drainage placed on porous substrate was 

developed. It was found that there are three different regimes of the process: (i) a 

rapid imbibition, the imbibition into the porous substrate dominates as compared 

with the foam drainage; (ii) an intermediate imbibition, that is, the imbibition into 

the porous substrate and the rate of drainage are comparable; (iii) a slow imbibition, 

the rate of drainage inside the foam is higher than the imbibition into the porous 

substrate for a period of time and a free liquid layer is formed over the porous 

substrate. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background 

Complex liquids are binary mixtures of two phases, in which at least one phase is 

liquid. These binary mixtures might consist of solid and liquid phases (e.g. 

suspensions and polymer/surfactant solutions), gas and liquid phases (e.g. foams), or 

two immiscible liquid phases (e.g. emulsions).1 Complex surfaces might include 

solid or soft substrates demonstrating chemical heterogeneities, porous structures or 

random topological patterns.2 

Complex liquids are present in our everyday lives. They are widely utilised in food, 

cosmetics, pharmacy, mining, petroleum, chemical and environmental industries. 

The interaction of these complex liquids with complex surfaces occurs frequently 

not only in our daily lives but also in different technological advances.  

Blood is a complex colloidal suspension. Blood samples can be collected using a 

complex thin porous surface such as cotton fibres, cellulous fibres or polymer 

membranes (dried blood spot sampling method). In this method of sampling, the 

blood droplets are preserved inside a complex porous layer as dried spot specimen.3    

Many cosmetics such as skin-care creams and hair-care products are formulated to 

be applied on skin and hair which are complex surfaces. Complex 

polymer/surfactant solutions (in the form of droplets or foams) interact with human 

hair during application of shampoos, conditioners or hair colorants.4 

Recent investigations have confirmed that foam, which is a complex liquid, is an 

efficient alternative method of drug delivery on the skin of patients (a complex 

surface). Although lotions, creams, gels and ointment are the most common topical 

vehicle delivery systems, foams are delivery systems which grow in popularity in 

dermatology.5-8 

In addition, the contact between complex liquids and complex surfaces takes place 

in many conventional, and modern micro- and nanotechnologies including micro- 

and nanofluidics, micro-electromechanical systems, functional printing and coating, 
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and regeneration medicine. In these technologies, complex liquids and surfaces are 

exploited to control, optimize and build up new technological processes.9-12 

In all the above-mentioned examples, understanding the interaction between 

complex liquids and complex surfaces at interfaces at different nano, meso and 

macro length scales is essential in order to enhance product quality and functionality 

in multidisciplinary applications. In addition, the interaction condition of complex 

liquids with complex surfaces is very important because, for example in some cases, 

it can affect the kinetics of delivery of active substances from complex liquids to the 

target places inside the complex surfaces. In order to make a proper choice of the 

process parameters and improve the performance of the system, the properties of the 

complex liquids should be considered in connection with the properties of complex 

surfaces.  

 

1.2  Aims and objectives 

The aim of this research focuses around expanding our understanding of complex 

liquids (in the form of droplets and foams) and their interactions with complex 

surfaces (such as soft solid and porous substrates) at interfaces from the view point 

of different length scales. Such interfaces and the related interfacial phenomena are 

widespread in our routine lives, many industrial applications, and established and 

novel technologies.  

In particular, the aims of this thesis work can be summarized in the following 

different research packages:  

 Develop an understanding and a mathematical modelling of equilibrium of 

droplets over a soft solid substrate as a complex surface, and find the effect 

of fundamental factors, and different parameters and forces, especially 

surface forces action on the equilibrium contact angle and the deformation of 

soft deformable substrate.  

 Investigate the kinetics of wetting and spreading of blood droplets as a 

complex non-Newtonian liquid over different thin porous substrates from 

both theoretical and experimental points of view. This process is a 

representation of dried blood spot sampling method. 

 Develop an experimental method to investigate wetting and spreading of two 

commercially available non-Newtonian polymeric solutions, AculynTM 22 
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and AculynTM 33, over hair tresses. These polymeric solutions are widely 

used in hair-care and cosmetic products.  

 Develop a mathematical modelling for the free drainage of foams produced 

from the above-mentioned non-Newtonian polymeric solutions and compare 

the predicted results with the measured experimental data.  

 Develop a new theory of interaction of foam, as a complex liquid, with a 

porous substrate, as a complex surface, and investigate the parameters 

affecting the kinetics of release of liquid from foam into the pores of porous 

media. 

 

1.3  Thesis layout 

The thesis has been written in eight chapters. Chapter 1 is an introduction, which is 

followed by a literature review in Chapter 2. Chapters 3 to 7 present the theoretical 

modeling, experimental methods and the results of the research.  All the findings 

presented in theses chapters have been published in 9 peer-reviewed journals (shown 

in the next section). The descriptions of each chapter are given below: 

 Chapter 1 is an introduction of background and problems which require to 

be addressed, and it mentions the motivation for the current research. 

Furthermore, it presents the aims and objectives, and the layout of the 

thesis.  

 Chapter 2 is a literature review of fundamental researches on the 

interaction of liquids in the form of droplets or foams with solid/porous 

substrates. It presents the theoretical and experimental findings in three 

different sections: (i) It starts by fundamental description of wettability, the 

equilibrium condition of a liquid droplet over solid substrate and the effect 

of surface forces action in the vicinity of three-phase contact line. (ii) It 

continues by introducing the available theories on the moving contact line 

and the dynamic contact angle, and the current problems and investigations 

on the kinetics of wetting and spreading of droplets over different 

substrates. (iii) In the last section of the literature review basic definitions 

about foam, foam geometry and foam drainage are reviewed and then the 

interaction of foam with porous surfaces is discussed. 
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 Chapter 3 presents a mathematical model for equilibrium wetting of a soft 

solid substrate by a liquid droplet and it focuses on the effect of surface 

forces action on the equilibrium contact angle, and the profiles of both the 

droplet and the soft solid substrate underneath. 

 Chapter 4 starts with a description of the difference between partial wetting 

and complete wetting of a porous substrate by a liquid droplet and then it 

continues with developing a mathematical model for the kinetics of wetting 

and spreading of non-Newtonian blood droplets over porous substrates in 

the case of complete wetting. The last section is dedicated to analyse the 

experimental data and compare them with the predicted results.   

 Chapter 5 presents the experimental method and results of wetting and 

spreading of non-Newtonian polymeric solutions, AculynTM 22 and 

AculynTM 33, on hair tresses. 

 Chapter 6 presents a mathematical model for the free drainage of foams 

produced from power-law non-Newtonian liquids and then it draws a 

comparison between the predicted results and the measured experimental 

data for the drainage of foams formed by the above-mentioned polymeric 

solutions.    

 Chapter 7 introduces a completely new theory of foam drainage placed on 

a porous substrate and then it predicts different regimes for the process 

based on the effect of different parameters related to the properties of both 

the foam and the porous substrate. 

 Chapter 8 shows the main conclusions of the thesis, and gives some 

recommendations for future studies.  

 

1.4  Dissemination from the PhD thesis 

1.4.1 Peer-reviewed journal publications 

1. O. Arjmandi-Tash, N. Kovalchuk, A. Trybala, I. Kuchin, V. Starov, “kinetics of 

wetting and spreading over various surfaces”, Langmuir, 2017, Invited Feature 

Article (Just Accepted). Chapter 3, 4 and 5. 
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2. O. Arjmandi-Tash, A. Trybala, F. M. Mahdi, N. Kovalchuk, V. Starov, “Foam 

free drainage of non-Newtonian polymeric solutions”, Colloids and Surfaces A: 

Physicochemical and Engineering Aspects, 2016 (In press). Chapter 6. 

3. G. Ahmed, V. V. Kalinin, O. Arjmandi-Tash, V. Starov, “Equilibrium of 

droplets on a deformable substrate: Influence of disjoining pressure”, Colloids 

and Surfaces A: Physicochemical and Engineering Aspects, 2016 (In press). 

Chapter 3. 

4. T. C. Chao, O. Arjmandi-Tash, D. B. Das, V. Starov, “Simultaneous spreading 

and imbibition of blood droplets over porous substrates: partial wetting”, 

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 

9-17. Chapter 4. 

5. A. Trybala, A. Bureiko, N. Kovalchuk, O. Arjmandi-Tash, Z. Liu, V. Starov, 

“Wetting properties of cosmetic polymeric solutions on hair tresses”, Colloids 

and Interface Science Communications, 2015, 9, 12-15. Chapter 5. 

6. O. Arjmandi-Tash, N. Kovalchuk, A. Trybala, V. Starov, “Foam drainage placed 

on a porous substrate”, Soft Matter, 2015, 11, 3643-3652. Chapter 7. 

7. A. Bureiko, O. Arjmandi-Tash, N. Kovalchuk, A. Trybala, V. Starov, 

“Interaction of foam with a porous medium: theory and calculations”, The 

European Physical Journal Special Topics, 2015, 224, 459-471. Chapter 7. 

8. T. C. Chao, O. Arjmandi-Tash, D. B. Das, V. Starov, “Spreading of blood drops 

over dry porous substrate: complete wetting case”, Journal of Colloid and 

Interface Science, 2015, 446, 218-225. Chapter 4. 

9. N. Kovalchuk, A. Trybala, O. Arjmandi-Tash, V. Starov, “Surfactant enhanced 

spreading: experimental achievements and possible mechanisms”, Advances in 

Colloid and Interface Science, 2016, 233, 155-160. 

10. A. Trybala, O. Arjmandi-Tash, N. Kovalchuk, V. Starov, “Spearing and 

evaporation of blood”, Advances in Colloid and Interface Science, 2017, (Under 

review). 

11. O. Arjmandi-Tash, A. Trybala, V. Starov, “Foam drainage on a thin porous 

substrate”, Langmuir, 2017, (In preparation). 

 

1.4.2 Invited oral presentations 
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1. Staff/Student Seminar at Department of Chemical Engineering, Loughborough 

University, Loughborough, UK, October 2016, Topic: Interaction of droplets 

and foams with porous substrate. 

2. Seminar at P&G Beauty Care Research & Development, Procter & Gamble 

Company, Cincinnati, Ohio, US, October 2016, Topic: Foam drainage on porous 

substrate. 

 

1.4.3 Oral presentations 

1. O. Arjmandi-Tash, S. Subramanian, F. M. Mahdi, A. Trybala, N. M. Kovalchuk, 

V. Starov “Foam Drainage: Free and Interaction with Porous Substrates”, ECIS-

2016, Rome, Italy. 

2. O. Arjmandi-Tash, V. Starov, “Interaction of foams with a porous support”, 

CoWet Winter Training school- 2016, Madrid, Spain. 

3. O. Arjmandi-Tash, A. Trybala, F. M. Mahdi, V. Starov, “Free drainage of non-

Newtonian foams”, SGIC-2016, Athens, Greece. 

4. O. Arjmandi-Tash, V. Starov, “Interaction of foams with a porous support”, 

CoWet Winter Training school- 2016, Mainz, Germany. 

5. O. Arjmandi-Tash, N. Kovalchuk, A. Trybala, A. Bureiko, V. Starov, “Polymer 

foams in hair care products”, Haircare & Transplantation 2015, Philadelphia, 

USA. 

6. O. Arjmandi-Tash, T. C. Chao, V. Starov, D. B. Das, “Spreading of Blood over 

Porous Substrate”, B&D2015, Potsdam-Golm, Germany. 

7. O. Arjmandi-Tash, V. Starov, “Interaction of foams with a porous support”, 

CoWet Sumer Training School-2015, Madrid, Spain. 

8. O. Arjmandi-Tash, V. Starov, “Interaction of foams with a porous support”, 

CoWet Winter School-2015, Loughborough, UK. 

 

1.4.4 Poster presentations 

1. O. Arjmandi-Tash, T. C. Chao, D. B. Das, V. Starov “Blood droplet 

spreading/imbibition over porous substrates: complete and partial wetting”, 

ECIS-2016, Rome, Italy. 
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2. T. C. Chao, O. Arjmandi-Tash, D. B. Das, V. Starov “Partial wetting of porous 

substrates by blood droplets”, IMA8-2016, Bad Honnef, Germany. 

3. O. Arjmandi-Tash, V. Starov, “Interaction of foams with a porous support”, 

CoWet Winter Training school- 2016, Mainz, Germany. 

4. O. Arjmandi-Tash, V. Starov. “Interaction of foams with a porous support”, 

Inspiring Research-2015, Loughborough University, Loughborough, UK. 

5. O. Arjmandi-Tash, V. Starov, “Interaction of foams with a porous support”, 

CoWet Sumer Training School-2015, Madrid, Spain. 

6. O. Arjmandi-Tash, V. Starov, T. C. Chao, D. B. Das, “Spreading of Blood Drops 

over Dry Porous Substrate: Complete Wetting Case”, IACIS 2015, Mainz, 

Germany. 

7. O. Arjmandi-Tash, V. Starov, “Foam Drainage in Presence of a Porous Support: 

Theory and Computer Simulations”, Nanotechnology-2015, Dubai, UAE. 

8. O. Arjmandi-Tash, V. Starov, “Interaction of foams with a porous support”, 

CoWet Winter School-2015, Loughborough, UK. 

 

1.4.5 Awards and prizes 

 Contribution to Knowledge award, awarded by Loughborough University, 

Loughborough, UK. 

 Travel Grant from European Cooperation in Science and Technology (COST 

MP1106) for participating in Smart and Green Interfaces Conference held in 

Athens, Greece. 
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CHAPTER 2 

 

LITERATURE RIVIEW 

Overview 

In this chapter theoretical and experimental findings on the interaction of droplets or 

foams with solid/porous substrates will be reviewed. In the first section, equilibrium 

of droplets over solid substrates will be discussed and the effect of surface forces 

action in the vicinity of three-phase contact line will be demonstrated. The available 

theories on the moving contact line and the dynamic contact angle, and the current 

problems and investigations on the kinetics of wetting and spreading of droplets 

over different substrates will be presented in the second section. In the third section, 

firstly some basic definitions about foam, foam geometry and foam drainage will be 

reviewed and then the interaction of foam with porous surfaces will be discussed. 

 

2.1  Equilibrium of droplets over solid substrates and surface forces 

Wettability or the equilibrium condition of a liquid droplet over solid substrate is 

frequently described using the well-known Young equation: 




 slsv

e


Cos , (2.1) 

where , sv  and 
sl  are liquid-vapour, solid-vapour and solid-liquid interfacial 

tensions, respectively. This equation relates the three interfacial tensions to the 

contact angle of the droplet over solid surfaces. This contact angle is an important 

parameter in interface science as it is a representation of hydrophobicity or 

hydrophilicity of a solid substrate. According to the value of contact angle, a droplet 

shows three different behaviours over a solid substrate:13,14 (i) nonwetting 

behaviour, in which the equilibrium contact angle is higher than 90° (Fig. 2.1(a)), 

for example an aqueous droplet over Teflon; (ii) partial wetting behaviour, the 

equilibrium contact angle is less than 90° (Fig. 2.1(b)), for example in the case of 

aqueous droplet over glass or mica, and (iii) complete wetting behaviour, in which 

droplet spreads out completely over the surface and there is dynamic contact angle, 
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θ 

θd(t) 

θd (t), which normally decreases over the time of spreading (Fig. 2.1(c)), for 

example,  oil droplet on a glass substrate or aqueous droplets on a hydrophilized 

silicon wafer. 

 

a) 

 

 

b) 

 

 

c) 

 

Figure 2.1: Three different behaviours of droplets over solid substrates: a) nonwetting 

case, contact angle is bigger than 90°; b) partial wetting case, contact angle is in between 

0 and 90° and c) complete wetting case, the droplets spreads out completely with 

dynamic contact angle.  

 

Eq. (2.1) is simply the balance of horizontal forces at the three-phase contact line. It 

indicates that the complete wetting behaviour corresponds to the cases in which 

  slsv , that is, all the forces in horizontal direction cannot be compensated at 

any contact angle; partial wetting case is related to 1  Cos0  e , and nonwetting 

behaviour corresponds to the cases in which, 0  Cos1  e . Taking into account 

the previous consideration, it seems that the above mentioned three different 

θ 
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behaviours, complete wetting, partial wetting and nonwetting cases can be 

determined using the values of the three interfacial tensions sl , sv  and  . 

However, the problem is more complex than this because the quantities sl  and sv  

cannot be directly measured. Therefore, Eq. (2.1) gives only a qualitative description 

of the behaviour of the system, which is often used for solving the inverse problem, 

that is, determining slsv    by means of experimental values of  and  .13,14  

According to14 an alternative to Eq. (2.1) is to consider equilibrium liquid profile in 

the vicinity of the apparent three-phase contact line, where there is the action of 

surface forces. Surface forces are well-known in colloid and interface science, where 

they are widely used to determine the behaviour and properties of colloidal 

suspensions and emulsions, such as stability, instability, interactions, rheology and 

so on.15 DLVO theory is commonly used to rationalize forces acting between 

interfaces, colloidal particles or droplets.15 The range of action of surface forces is 

generally in the order of 0.1 µm;15 therefore, surface forces play a role in the vicinity 

of three phase contact line, where the liquid profile tends to be of zero thickness.   

 

2.1.1 Disjoining/conjoining pressure and its components 

Disjoining/conjoining pressure is a manifestation of the action of surface forces, 

which indicates the behaviour of liquid profile close to the solid substrates. 

Although several physical phenomena contribute to the appearance of 

disjoining/conjoining pressure, it has been shown in15 that the main features of 

disjoining/conjoining pressure isotherm can be well captured by three additive 

contributions: 

1) The electrostatic component arising from the overlapping of the electrical double 

layers: 

Π𝐸 = 𝑅𝑇𝑐0(exp (𝜑) + exp (−𝜑)) − 2𝑅𝑇𝑐0 −
(𝑅𝑇)2𝜀𝜀0

2𝐹2 (
𝜕𝜑

𝜕𝑦
)
2
, (2.2) 

where R  is universal gas constant, T is temperature in oK and, F is Faraday’s 

constant;  and 0 are respectively dielectric constants of water and vacuum; c0 is 

electrolyte concentration;  y is the coordinate normal to the liquid-vapor interface, 

and 𝜑 is dimensionless electric potential in F/RT unit. 

The electric potential 𝜑 in Eq. (2.2) is related to the surface charge density 𝜎 as15 
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𝜎ℎ = 𝜀𝜀0
𝑅𝑇

𝐹
(
𝜕𝜑

𝜕𝑦
)
𝑦=ℎ

 for the liquid/vapour interface; 

𝜎𝑠 = −𝜀𝜀0
𝑅𝑇

𝐹
(
𝜕𝜑

𝜕𝑦
)
𝑦=0

 for the solid/liquid interface; 

2) The structural component is usually related to the interfacial layers as a result of 

water molecule dipoles orientation.  

This component is considered in16 by the following two terms expression: 

ΠS = 𝐾1 exp(−ℎ/𝜆1) + 𝐾2 exp(−ℎ/𝜆2) , (2.3) 

where 𝐾1, 𝐾2 and 𝜆1, 𝜆2 are the experimental constants corresponding to a magnitude 

and characteristic length of the short-range (1) and long-range (2) structural 

interactions, respectively; 

3) The van der Waals or molecular dispersion component:15   

36
)(

h

A
hM


 , (2.4) 

where A = AH, AH is the Hamaker constant. It should be noted that the van der 

Waals component effect is greatly exaggerated in most of the literature.14  

 )(hM  at 0h , however, disjoining/conjoining pressure is a macroscopic 

value, that is valid only at h>> molecular dimension. Under the latter condition and 

for aqueous solutions, other components of the disjoining/conjoining pressure 

contribute equally or more than the van der Waals component. 

The sum of the above-mentioned components leads to the following 

disjoining/conjoining pressure isotherm:15, 16 

)()()()( hhhh SEM 
 

(2.5) 

Schematic presentation of three possible shapes of disjoining/conjoining pressure 

isotherms is given in Fig. 2.2.14  Curve 1 in Fig. 2.2 corresponds to the complete 

wetting case where the attractive van der Waals component play a significant role. 

Curve 2 corresponds to the partial wetting case in which disjoining/conjoining 

pressure is the sum of three above-mentioned components as is shown in Eq. (2.5): 

electrostatic, structural and dispersion components. These three components lead to 

a S-shaped isotherm as is illustrated in curve 2 in Fig. 2.2. Curve 3 corresponds to 

non-wetting cases.   
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Figure 2.2: Schematic presentation of three types of disjoining/conjoining pressure 

isotherms: 1) complete wetting case, 2) partial wetting case and 3) nonwetting case.14 

 

2.1.2 Thermodynamic equilibrium and its conditions  

A droplet on homogenous flat solid substrate reaches a thermodynamic equilibrium 

if the chemical potentials of liquid molecules in the whole system are equal and 

taking into account the latter consideration the following three equilibrium 

conditions should be satisfied:14 

1) Equilibrium of liquid in the droplet with its vapour phase  

2) Equilibrium of vapour phase with the solid substrate 

3) Equilibrium of liquid in the droplet with the solid substrate 

The first condition is satisfied if the chemical potential of liquid molecules inside the 

drop is equal to the chemical potential of liquid molecules in the ambient vapour 

phase. This equality leads to the so-called Kelvin’s equation:17 

Π 

h 

3 

1 

2 
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p

p

v

RT
P sat

m

e ln , (2.6) 

where lve PPP  , vP is the pressure in the vapour phase, lP is the pressure in the 

liquid phase; R is the gas universal; T is the temperature in K; vm is the molar 

volume of the liquid, p is vapour pressure at equilibrium with the liquid drop and psat 

is the saturated vapour pressure at temperature T.  

For a droplet which has a convex curvature, pressure inside the droplet is higher 

than the pressure in the ambient vapour phase; therefore, the excess pressure inside 

the droplet, Pe, has a negative value. Accordingly, the left hand side of Eq. (2.6) is 

negative and for the sake of equality the p should be bigger than psat, in the right 

hand side of the equation. The latter means that the droplet can be at equilibrium 

only with over-saturated vapour.14    

According to14 there is an adsorbed liquid film (a monolayer or several layers of the 

adsorbed liquid molecules) on the solid substrate. Starov et al. showed that this 

adsorbed liquid film is required to satisfy the second condition of the 

thermodynamic equilibrium and it is impossible for a bare solid substrate without 

the adsorbed liquid film to be at the thermodynamic equilibrium with the vapour in 

the surrounding air.14    

The third thermodynamic equilibrium condition requires the minimization of the 

excess free energy of the liquid droplet over solid substrate. The excess free energy 

of a two dimensional cylindrical droplet with a negligible action of gravity is:13,14,18 

𝛷 = 𝛾 𝑆𝑒 + 𝑃𝑒𝑉𝑒 + 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 (2.7) 

where Se and Ve are the excess of the liquid-vapour surface area and the excess of 

the volume, respectively, and 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 is the excess free energy associated 

with the action of surface forces.  

Using the unknown profile of the liquid droplet, h(x), Eq. (2.7) can be rewritten as:14 

 𝛷 = ∫ 𝑓(ℎ, ℎ′)𝑑𝑥
∞

0
, (2.8) 

where  

𝑓(ℎ, ℎ′) = [

𝛾 (√1 + ℎ′2 − 1) + 𝑃𝑒(ℎ − ℎ𝑒)

+∫ Π(ℎ)𝑑ℎ
∞

ℎ

− ∫ Π(ℎ)𝑑ℎ
∞

ℎ𝑒

]. (2.9) 
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In above equations x is the tangential coordinate and he is the equilibrium thickness 

of the adsorbed liquid film on the solid substrate (which was described earlier).  

Under equilibrium conditions the excess free energy, Eq. (2.8), should reach 

minimum value. To satisfy this condition the first variation of excess free energy, 

Eq. (2.8), should be zero, which results in an Euler equation and it gives an equation 

for the droplet profile under the equilibrium conditions:14 

𝜕𝑓

𝜕ℎ
−

𝑑

𝑑𝑥

𝜕𝑓

𝜕ℎ′
= 0, (2.10) 

or  

𝛾ℎ′′

(1 + ℎ′2)3/2
+ Π(ℎ) = 𝑃𝑒 . (2.11) 

Eq. (2.11) is the well-known Laplace-Derjaguin equation and its first term in left 

hand side relates to the capillary pressure action and the second term corresponds to 

the action of disjoining/conjoining pressure. As mentioned earlier the range of 

surface forces action is in the order of 0.1 µm, that is, far from the three phase 

contact line where h>> 0.1 µm, the action of disjoining/conjoining pressure can be 

neglected.  

 

2.1.3 Equilibrium contact angle on a non-deformable substrate and surface 

forces    

According to the above-mentioned thermodynamic equilibrium conditions, Starov et 

al. described an overall profile for a droplet on a solid substrate with three 

subdivided regions (Fig. 2.3):14 1) a spherical cap region where is outside the range 

of surface forces action, 2) a transition zone, in which both capillary and surfaces 

forces are important, and 3) an adsorbed equilibrium liquid film on the solid 

substrate ahead of the droplet. 

 

 

 

 

 



CHAPTER 2  15 
 

 

 

 

Figure 2.3: Equilibrium droplet over solid substrate, 1- Spherical cap, in which capillary 

force dominates, 2- Transition zone, in which both capillary and surfaces forces are 

important, 3- an adsorbed equilibrium liquid film ahead of droplet.14 

 

In the case of partial wetting, that is, equilibrium contact angle, 𝜃𝑒 > 0, the shape of 

the transition zone  between the spherical cap region and the thin adsorbed liquid 

film on a solid substrate can be expressed via the disjoining pressure isotherm, 

Π(ℎ).14 The equilibrium excess pressure, 𝑃𝑒, inside the droplet can be expressed 

according to Kelvin’s equation and the equilibrium contact angle of a two 

dimensional droplet can be expressed using the well-known Derjaguin–Frumkin 

equation:14 

cos 𝜃𝑒 = 1 +
Π(ℎ𝑒)ℎ𝑒

𝛾
+

1

𝛾
∫ Π(ℎ)𝑑ℎ

∞

ℎ𝑒

. (2.12) 

The latter equation determines the equilibrium contact angle using measurable 

physical properties, that is, surface forces action in the vicinity of the three phase 

contact line.  

In chapter 3 the above mentioned approach for the equilibrium of droplet over non-

deformable solid substrate is applied to the case of deformable solid substrate and 

the effect of surface forces on the equilibrium contact angle and deformation of soft 

deformable substrate is investigated.   

  

1 

z 

he 

x 

θe 
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3 
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2.2  Kinetics of wetting and spreading of droplets over solid 

substrates 

In the previous section, equilibrium of droplets over solid substrates has been 

discussed and the action of surface forces in the vicinity of three-phase contact line 

has been demonstrated. In this section the current theories and investigations on the 

kinetics of wetting and spreading of droplets over different substrates will be 

discussed. 

Wetting and spreading of liquids over solid surfaces has been investigated in the 

literature from both theoretical and experimental points of view.14,19-29 Spreading 

dynamics and contact line motion have been described by several theoretical 

models, which can be categorised into hydrodynamic models24,26,27,30-37 and 

molecular kinetic theory models19,38,39. 

In hydrodynamic models, it is well known that singularity appears at three phase 

contact line if a non-slip boundary condition is used to solve the Navier-Stokes 

equations. To address this issue the moving contact line region is divided into 

different zones and several microscopic hypotheses such as precursor film,40 slip 

conditions,24 diffusion interface36,41-48 and non-Newtonian effects34,49-51 are proposed 

to remove the singularity at the three-phase contact line.  

In molecular kinetic theory models, the drop spreading is regarded as 

adsorption/desorption of molecules in the moving contact line region where energy 

dissipation occurs due to this adsorption/desorption process of fluid particles on 

solid substrate (Fig. 2.4). A combination of both hydrodynamic models and 

molecular kinetic theory models is also proposed in the literature52-54 for spreading 

of liquids over solid surfaces. 
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Figure 2.4: Schematic of adsorption/desorption of molecules in the vicinity of moving 

contact line in molecular kinetic theory models.19,39  

 

In a number of the approaches the kinetics of wetting is described without 

consideration of surface forces acting in the vicinity of three-phase moving contact 

line. The commonly used approach is the one based on Blake and Haynes model39 

which was applied later for the case of electrowetting55 and it suggests surface 

diffusion as a driving force for spreading (molecular kinetic theory models shown in 

Fig. 2.4). According to39 surface diffusion leads to an effective slippage and it 

eliminates the friction singularity at the moving three-phase contact line.  

Starov et al.14 suggested the application of the previously discussed hypothesis in the 

case of equilibrium based on the effect of surface forces action in the vicinity of the 

three-phase contact line (generally explained in Section 2.1), to the case of wetting 

dynamics. Accordingly, the whole part in the vicinity of three-phase contact line was 

magnified and subdivided into four regions (Fig.2.5):14,56 1) a spherical cap region in 

the bulk of the spreading droplet, which is included to demonstrate the dynamic 

contact angle, θd(t), after matching all the regions illustrated in Fig. 2.5; 2) Region 2, 

in which the hydrodynamic flow deforms the spherical cap shape; 3) Region 3, in 

which disjoining/conjoining pressure comes into play and its action is becoming 

more important than the capillary forces as the profile reaches the solid substrate. 

Surface forces action dominates and becomes the only driving force for the 

spreading at the end of Region 3. 4) Surface diffusion region, where the 

macroscopic description of the spreading process is impossible and its characteristic 

length scale in the direction of the surface normal is in the order of the molecular 

size. 

Liquid 

Vapour 
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Figure 2.5:  A magnified schematic of the vicinity of the moving three-phase contact line in 

the case of complete wetting with a dynamic contact angle: 1- a spherical cap part of the 

droplet which shows the dynamic contact angle, θd(t), by intersection of its tangent with the 

solid substrate; 2- region of the deformed spherical shape by the action of  the 

hydrodynamic force; 3- region of the action of surface forces in which this action is 

becoming more important than the capillary pressure as the profile reaches the solid 

substrate; 4- surface diffusion region, where the macroscopic description of the spreading 

process is impossible.14 

 

In26 the theory of the spreading of an axisymmetric Newtonian liquid droplet over a 

plane solid substrate is developed and the predicted results showed a good 

agreement with the available experimental data. Both disjoining/conjoining  and 

capillary pressures were taken into account and it has been established that a 

singularity at the three phase contact line can be removed by the action of surface 

forces.26,27  

As discussed above, wetting and spreading of pure Newtonian liquids over solid 

surfaces has been well documented in the literature. However, most commonly 

found liquids in our everyday life such as blood, shampoos, hair colorants and paints 

are colloidal suspensions or polymeric solutions which show non-Newtonian 

behaviour. Furthermore, the surfaces where these solutions are commonly applied 

are porous such as skin, hair tresses or textile materials. Wetting and spreading of 

non-Newtonian liquids over smooth homogeneous surfaces have been theoretically 

investigated in the literature using both hydrodynamic57-61 and molecular kinetic 
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4 θd(t) 

 



CHAPTER 2  19 
 

 

theory models62. However, the spreading and wetting conditions of a drop on a 

porous substrate are obviously different due to the presence of a porous layer. This 

process has been investigated in the case of spreading/imbibition of Newtonian 

liquids.63-65  

Wetting and spreading of biological fluids have been less widely studied in spite of 

the potential applications in medical science. Brutin et al.66-69 investigated the 

wetting, spreading and evaporation dynamics of blood droplets, which show a shear 

thinning non-Newtonian behaviour, over solid surfaces. They found a spreading law 

of L~t0.65 (where L is the radius of the drop base) at early stages of spreading in 

which the process is controlled by a competition between viscous and surface 

tension forces while at later stages of spreading, the spreading exponent (L~t0.19) 

was higher than that of Tanner’s law (i.e. L~t0.1) due to the effect of Marangoni 

stresses and humidity.  

In chapter 4, theoretical and experimental findings on kinetics of wetting and 

spreading of blood, a non-Newtonian colloidal suspension, over different thin 

porous substrates are presented, while in chapter 5 wetting and spreading of two 

commercially available non-Newtonian polymeric solutions, AculynTM 22 and 

AculynTM 33, on hair tresses are investigated experimentally. 

 

2.3  Foam and foam drainage, and interaction with porous surfaces 

In the previous sections, equilibrium and dynamic interaction of droplets with 

solid/porous surfaces has been discussed, and some of the current problems and the 

available theories on the wetting and spreading of droplet over solid/porous 

substrates were reviewed. In this section, in order to investigate the interaction of 

foams with porous surfaces, some of the properties of foam like foam drainage will 

be reviewed and the application of foam interaction with porous surfaces will be 

discussed. 

Foams are multiphase colloidal systems, which are formed by trapping a gas in a 

continuous phase (liquid or a solid).  Foams are widely used in personal care 

products and they often arise during cleaning and dispensing processes. They pop up 

in lightweight mechanical materials and affect absorbing components in cars, heat 

exchangers and textured wallpapers. Foams are widely utilised in food, cosmetics, 
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pharmacy, mining, petroleum and gas industries.70-72 That is why they attract 

scientific attention already over many decades.73-79 

A liquid foam consists of packed bubbles which are separated by liquid phase. The 

amount of liquid within the foam can be represented by liquid volume fraction, φ= 

Vliq/Vfoam, where Vliq is the volume of liquid dispersed in a foam with a volume of 

Vfoam. A foam can have a liquid volume fraction from about zero to 26-36%, the 

maximum limiting value, at which the packed deformed bubbles split into individual 

bubbles and retain their spherical shape.74,80 Although foams are composed of a 

complex disordered structure, it turns out that dry foams (i.e. low liquid volume 

fraction) can be classified as the following three distinct interconnected elements 

(Fig. 2.6) with simplified and exact geometries (Kelvin bubbles):80 

1) Films or lamellaes, which are the regions between two compressed bubbles and 

separate them from each other. 

2) Channels or Plateau borders, which are the liquid-filled volumes between three 

compressed bubbles, or the regions at intersection of three films or lamellaes. 

3)  Nodes or junctions, which are the liquid-filled volumes between four 

compressed bubbles, or the regions at intersection of four channels or Plateau 

borders. 

The liquid flow in between the gas bubbles through Plateau borders, nodes and films 

in foam driven by capillarity and/or gravity forces is referred to as drainage (Fig. 

2.6). In the case of foams built up by Newtonian liquids, equations of drainage were 

deduced using the combination of the liquid momentum and mass balance 

equations.81-85 The drainage equations in the case of Newtonian liquids have been 

solved numerically and/or analytically in different prototype situations including 

free drainage, where liquid drains out of a foam due to the influence of gravity and 

capillarity,81-86  wetting of a dry foam, where a dry foam is in contact with a liquid at 

its base and the liquid rises to the top by capillarity,87,88  forced drainage, where 

liquid is added to the top of foam column producing a traveling wave,85,86,89-91 and 

pulsed drainage, where a small volume of liquid is injected at the top of a foam and 

left to evolve.85,92-94 A especial case of these situations is the gravity-free case, 

where a liquid flows in a foam in the absence of significant gravitational forces and 

the motion of the liquid is governed by the capillarity only.87,95,96  
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Figure 2.6: Schematic of foam geometry and foam drainage through three distinct 

interconnected elements, film/lamellae, node/junction, and channel/Plateau border. 

 

The studies on drainage kinetics are of a significant importance for industry. 

Accordingly, theories of foam drainage have been developed over the last 

decades92,97 and a number of techniques and methods such as foam pressure drop 

technique,70 Eiffel Tower construction,98 and Plateau border apparatus experiment99 

have been proposed to control and/or accelerate the rate of liquid drainage. The rate 

of liquid drainage in these techniques can be adjusted by a controlled reduction of 

the pressure at the top and/or at the bottom of the foam column, by varying the 

shape and geometry of the container, and by changing the surface properties of the 

foaming solution, respectively. Despite a considerable progress in controlling the 

rate of foam drainage and understanding foam properties, there is still no 
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straightforward way to create foam with desirable properties suitable for a specific 

application.  

For many applications, particularly in pharmacy and cosmetics, foams are built up 

and stabilised by polymers. In general polymeric additives make the foaming 

solution shear thinning non-Newtonian fluids.  On the other hand, often the surfaces 

where foam is applied on are porous (skin, hair, textile materials). The interaction of 

foam with a porous substrate can affect the kinetics of the release of active 

substances from foam into the substrate. Accordingly, this interaction should be 

taken into consideration for finding optimal formulations. However, at the moment 

not only there is no comprehensive theory of foam drainage of non-Newtonian 

solutions, but there is also no theory available to describe interaction of foams with 

porous substrates. 

In chapter 6, a theoretical model for free drainage of foams produced from power-

law non-Newtonian shear thinning liquids is presented and the predicted results are 

compared with experimental data for the drainage of foams produced from 

AculynTM 22 and AculynTM 33 polymeric solutions, while in Chapter 7, a 

completely new mathematical model of interaction of foams with porous surfaces is 

introduced.   

 

Nomenclature 2 

AH Hamaker constant 

c0 electrolyte concentration 

F Faraday’s constant 

Fsurface forces excess free energy associated with the action of surface forces 

h film thickness, equilibrium liquid profile, droplet height 

he precursor film thickness 

K1 parameters related to the magnitude of the short-range structural 

forces 

K2 parameters related to the magnitude of the long-range structural 

forces 
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L radius of the droplet base 

p vapor pressure over a curved interface 

p
sat

 saturated vapor pressure over a flat liquid surface 

P non-equilibrium pressure, applied pressure from a droplet to its 

substrate 

Pe excess (equilibrium) pressure 

Pl pressure inside the liquid 

Pv pressure in the ambient vapor 

R universal gas constant 

Se excess of the liquid-vapour surface area 

t time 

T temperature 

vm molar volume the liquid 

Ve excess of the volume 

x coordinate axis 

y coordinate normal to the liquid-air interface 

Greek Symbols 

 liquid-vapour interfacial tension 

sv solid-vapour interfacial tension 

sl solid-liquid interfacial tension 

ε dielectric constant of water 

ε0 dielectric constant of vacuum 

θe equilibrium contact angle 

θd dynamic contact angle 
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1  parameter related to the characteristic length of the short-range 

structural forces 

2 parameter related to the characteristic length of the long-range 

structural forces 

  disjoining/conjoining pressure isotherm 

E  electrostatic component of disjoining/conjoining pressure 

M  molecular or van der Waals component of disjoining/conjoining 

pressure 

S  structural component of disjoining/conjoining pressure 

σs surface charge density for the solid/liquid interface 

 dimensionless electric potential 

 excess free energy of a droplet 
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CHAPTER 3 

 

WETTING OF DEFORMABLE SUBSTRATES AND 

SURFACE FORCES 

Overview 

In this chapter theoretical findings on wetting of deformable substrate and the effect 

of surface forces on the equilibrium contact angle and deformation of deformable 

substrate are presented. The results of investigations are in press in Colloids and 

Surfaces A: Physicochemical and Engineering Aspects, 2016 and reused in this 

chapter with permission. Initially in this chapter, disjoining pressure action in the 

vicinity of the apparent three phase contact line is taken into account and it is shown 

that the disjoining pressure action determines the substrate deformation. Then a 

simplified linear disjoining pressure isotherm and a simple Winkler's model of 

substrate deformation are used which allows deducing an analytical solutions for 

both the liquid profile and substrate deformation. In the next section, the apparent 

equilibrium contact angle that the droplet makes with the substrate and the profiles 

of both droplet and deformable substrate are calculated and their dependency on the 

system parameters is investigated. 

 

3.1  Introduction  

Equilibrium of a liquid droplet on a solid substrate is frequently described based on 

Young’s equation.100 This simplified equation involves the balance of the horizontal 

forces leaving the vertical force unbalance. The latter is possible in the case of a 

rigid substrate but should be reconsidered in the case of deformable substrates. It has 

been shown in14 that disjoining pressure action in the vicinity of the apparent three 

phase contact line results in a deformation of a deformable solid substrate. 

Note that direct application of Young’s equation leads to deformation singularity at 

the three phase contact line, i.e. the substrate deformation goes to infinity:101-105 

these investigation revealed that all the equilibrium properties (i.e. contact angle, 

droplet radius, etc.) of the system under consideration rely upon the selected 
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artificial length parameter which determines a width of zone near the contact line 

where surface tension is applied. It is shown below that disjoining pressure, which is 

a real physical phenomenon, determines the deformation of deformable surfaces. 

The shape of the disjoining pressure isotherm determines the shape and the contact 

angle of the droplet at equilibrium.14  

The problem of equilibrium of the droplet on a deformable substrate has recently 

gained a lot of interest. A number of experimental studies104,106-111 were recently 

conducted to investigate deformation of deformable substrates by liquid droplets 

near the apparent contact line. However, there still exists a gap in theoretically 

understanding of the problem, because the real physical phenomenon, disjoining 

pressure action in the vicinity of the three phase contact line, has been mostly 

ignored: the latter resulted in an artificial singularity at the three phase contact line. 

Below a mathematical model is presented which incorporates the effect of both 

capillary and disjoining pressure on the substrate deformation.  

 

3.2  Theory 

3.2.1 Disjoining pressure and deformation of deformable substrate 

In the case of partial wetting, that is, equilibrium contact angle, 𝜃𝑒 > 0, the shape of 

the transition zone between the bulk of the liquid droplet and the thin film on a rigid 

substrate can be expressed via the disjoining pressure isotherm, Π(ℎ).14 The 

equilibrium excess pressure, 𝑃𝑒, inside the droplet can be expressed according to 

Kelvin’s equation and the equilibrium contact angle of a two dimensional droplet 

can be expressed using the disjoining pressure isotherm as follows:14 

cos 𝜃𝑒,2𝐷 = 1 +
Π(ℎ𝑒)ℎ𝑒

𝛾
+

1

𝛾
∫ Π(ℎ)𝑑ℎ

∞

ℎ𝑒

. (3.1) 

In Eq. (3.1) S-shaped disjoining pressure isotherm, Π(ℎ), that is, the case of partial 

wetting is used. As a first step the transition zone between a two-dimensional droplet 

on a deformable substrate and a flat film having 𝜃𝑒 > 0 is examined qualitatively 

following Ref.112.  The liquid droplet forms a wedge changing to flat equilibrium 

film of thickness, ℎ𝑒, far from the droplet (Fig. 3.1). 
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Figure 3.1: 1- Profile of transition zone ℎ(𝑥) between bulk liquid and flat wetting film, 

2- S-shaped disjoining pressure isotherm, Π(ℎ), and 3- Profile of normal pressures acting 

on substrate; 𝑥  are the positions where the vertical forces are exerted. Reproduced with 

permission from Ref.113. Copyright © 2016 Elsevier B.V.  

 

The origin is taken at 𝑥 = 0, which is a point on the profile lying beyond the 

influence of surface forces (Fig. 3.1). The profile of the transition zone, ℎ(𝑥), can be 

calculated according to Eq. (3.2), which includes the influence of both capillary and 

disjoining pressure:14 

𝛾𝐾(𝑥) + Π(ℎ) =
𝛾ℎ′′

[1 + (ℎ′)2]3/2
+ Π(ℎ) = 𝑃𝑒 . (3.2) 

where, ℎ′ = 𝑑ℎ/𝑑𝑥; ℎ′′ = 𝑑2ℎ/𝑑𝑥2; and 𝑃𝑒 is the excess pressure in the droplet. In 

the region of the flat equilibrium film, ℎ′′ = 0 and Π(ℎ𝑒) = 𝑃𝑒. In the bulk of the 

liquid, beyond the influence of the surface forces, Π = 0 and 𝑃𝑒 = 𝛾/𝑅, where R is 

the radius of curvature of the droplet. In the case of a planar wedge (Fig. 3.1), 𝑅 =

∞ and 𝑃𝑒 = 0. Therefore, it can be concluded from Eq. (3.2): 

Π(ℎ) = −
𝛾ℎ′′

[1 + (ℎ′)2]
3
2

 , (3.3) 

The resultant force on the substrate is given by the following equation: 
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𝐹 = ∫ Π(ℎ)𝑑𝑥
∞

0

. (3.4) 

Substituting the disjoining pressure isotherm Π(ℎ) according to Eq. (3.3) into Eq. 

(3.4) results in: 

𝐹 = −𝛾 ∫ {
ℎ′′

[1 + (ℎ′)2]
3
2

} 𝑑𝑥
∞

0

= 𝛾
ℎ′(0)

√[1 + (ℎ′(0))
2
]

=
𝛾 tan 𝜃𝑒

√[1 + tan2 𝜃𝑒]

= 𝛾 sin 𝜃𝑒 . 

(3.5) 

Boundary conditions used in the expression above (Eq. (3.5)) are, ℎ′(∞) = 0 and 

ℎ′(0) = tan𝜃𝑒. This shows that the integration performed over the local values 

leads to same expression as the vertical component of the surface tension from the 

Young’s equation. In contrast to Young’s, the force is not exerted at a specific point, 

but it is distributed over the region where disjoining pressure acts, i.e. transition 

zone. Based on this conclusion a mathematical model is derived in the next section. 

 

3.2.2 Mathematical model 

In this section a mathematical model is deduced for a liquid droplet on a deformable 

substrate. A simple Winkler’s model for the deformable solid deformation is used 

below. According to the Winkler’s model there is a linear relationship between the 

local deformation and the applied local stress.113,114 

Fig. 3.2 shows a schematic diagram of the liquid droplet on a deformable substrate. 

Deformation in the deformable substrate is local and is directly proportional to the 

applied pressure, 𝑃. According to the Winkler’s model: 

ℎ𝑠 = −𝐾𝑃, (3.6) 

where, 𝐾 is the elasticity coefficient, ℎ𝑠 is the local deformation of the substrate due 

to the presence of the applied pressure, P, from the droplet above, see Fig. 3.2.  

 Let 𝑃𝑎𝑖𝑟 be the pressure in the ambient air. Under the action of the pressure from the 

ambient air the solid deformation is: 

ℎ𝑠𝑒 = −𝐾𝑃𝑎𝑖𝑟 . (3.7) 
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Figure 3.2: Schematic diagram of the liquid droplet on a deformable substrate. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V.   

 

The deformed solid substrate is covered by equilibrium liquid thin film, which is 

calculated according to combination of well-known Kelvin’s equation and disjoining 

pressure isotherm:14 

Π(ℎ𝑒) = 𝑃𝑒 =
𝑅𝑇

𝜈𝑚
ln

𝑝𝑠𝑎𝑡

𝑝
, (3.8) 

where, 𝜈𝑚 is the molar volume of the liquid, T is the temperature in K, R is the gas 

constant, vapour pressure, 𝑝, which is higher than the saturated pressure 𝑝𝑠𝑎𝑡. 

Reminder, a droplet can be at the equilibrium with oversaturated vapour only.  

The excess free energy of the equilibrium thin film on the deformed solid per unit 

area is given by, 

𝐹𝑒,𝑓𝑖𝑙𝑚

𝑆𝑓𝑖𝑙𝑚
= 𝛾 + 𝛾𝑠 + 𝑃𝑒ℎ𝑒 +

ℎ𝑠𝑒
2

2𝐾
+ ∫ Π(ℎ)𝑑ℎ,

∞

ℎ𝑒

 (3.9) 

where, 𝑃𝑒 = 𝑃𝑎𝑖𝑟 − 𝑃𝑙𝑖𝑞𝑢𝑖𝑑, 𝛾 and 𝛾𝑠 are liquid-vapour and solid-liquid interfacial 

tensions. This free energy should be subtracted from the free energy of the droplet 

on the deformable substrate; otherwise the excess free energy of the droplet is 

infinite. Hence, the excess free energy of the droplet on a deformable solid substrate 

is as follows (Fig. 3.2): 

𝐹 − 𝐹𝑒,𝑓𝑖𝑙𝑚 = 𝛾∆𝑆 + 𝛾𝑠∆𝑆𝑠 + 𝑃𝑒∆𝑉 + 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 + 𝐹𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, (3.10) 

where ∆ means “as compared with a flat equilibrium film”.  

Eq. (3.10) can be rewritten as: 

𝐹 − 𝐹𝑒,𝑓𝑖𝑙𝑚 = 2𝜋 ∫ 𝑓(ℎ, ℎ′, ℎ𝑠, ℎ
′
𝑠)𝑑𝑟

∞

0

, (3.11) 

where  
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𝑓(ℎ, ℎ′, ℎ𝑠, ℎ
′
𝑠) = 𝑟

[
 
 
 
 
 
 𝛾√1 + ℎ′2(𝑟) − 𝛾 + 𝛾𝑠√1 + ℎ′

𝑠
2(𝑟) − 𝛾𝑠 +

𝑃𝑒(ℎ − ℎ𝑠) − 𝑃𝑒ℎ𝑒 + 
ℎ𝑠

2

2𝐾
−

ℎ𝑠𝑒
2

2𝐾

+∫ Π(ℎ)𝑑ℎ
∞

ℎ−ℎ𝑠

− ∫ Π(ℎ)𝑑ℎ
∞

ℎ𝑒 ]
 
 
 
 
 
 

. (3.12) 

In above equations 𝑟 is the length along radial direction. The expression under the 

integral in Eq. (3.11) tends to zero as 𝑟  tends to infinity. 

Under equilibrium conditions the excess free energy, Eq. (3.11), should reach 

minimum value. To satisfy this condition the first variation of excess free energy, 

Eq. (3.11), should be zero, which results in two Euler equations for the droplet and 

deformable substrate profiles: 

𝑑

𝑑𝑟
(
𝜕𝑓

𝜕ℎ′
) −

𝜕𝑓

𝜕ℎ
= 0, (3.13) 

𝑑

𝑑𝑟
(
𝜕𝑓

𝜕ℎ𝑠
′
) −

𝜕𝑓

𝜕ℎ𝑠
= 0. (3.14) 

Substitution of the expression for 𝑓 from Eq. (3.12) into Eqs. (3.13) and (3.14) 

results in the following system of second order differential equations: 

𝛾

𝑟

𝑑

𝑑𝑟

𝑟ℎ′

(1 + ℎ′2)1/2
+ Π(ℎ − ℎ𝑠) = 𝑃𝑒 , (3.15) 

𝛾𝑠

𝑟

𝑑

𝑑𝑟

𝑟ℎ𝑠
′

(1 + ℎ′𝑠2)1/2
− Π(ℎ − ℎ𝑠) −

ℎ𝑠

𝐾
= −𝑃𝑒 . (3.16) 

Eqs. (3.15) and (3.16) form a system of two differential equations for two unknown 

profiles: the liquid droplet, ℎ(𝑟), and deformed solid substrate, ℎ𝑠(𝑟). 

In the case of a low slope approximation,  ℎ′2 ≪ 1 the profile of the droplet ℎ(𝑟) 

and profile of the substrate, ℎ𝑠(𝑟), satisfy the following set of second order ordinary 

differential equations: 

𝛾 (ℎ′′ +
ℎ′

𝑟
) + Π(ℎ − ℎ𝑠) = 𝑃𝑒 , (3.17) 

𝛾𝑠 (ℎ𝑠
′′ +

ℎ𝑠
′

𝑟
) − Π(ℎ − ℎ𝑠) −

ℎ𝑠

𝐾
= −𝑃𝑒 . (3.18) 

Eq. (3.17) is different from the usual capillary equation for the droplet on a rigid 

substrate, because now the disjoining pressure term depends on the profile of the 

deformable substrate, ℎ𝑠(𝑟), which is determined according to Eq. (3.18). Eqs. 

(3.17) and (3.18) are coupled and can be solved numerically only; however, below 
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the problem is simplified even further to obtain an analytical solution.  For this 

purpose a very simple disjoining pressure isotherm (linear function of ℎ (Fig. (3.3)) 

is adopted:  

Π(ℎ) = {
𝑃1 − 𝑎ℎ  𝑎𝑡  ℎ ≤ 𝑡1
0               𝑎𝑡  ℎ > 𝑡1 

. (3.19) 

 

 

Figure 3.3: Simplified disjoining pressure isotherm adopted for calculations. Reproduced 

with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

where 𝑃1 and 𝑡0 are defined in Fig. 3.3, 𝑡1 is the range of surface forces action. The 

corresponding radial length from the origin to the point of height 𝑡1 is 𝐿1, see Fig. 

3.4. The slope 𝑎 of the Π(ℎ) dependency is given by: 

𝑎 =
𝑃1 − 𝑃𝑒

ℎ𝑒
. (3.20) 

The selected linear dependency of the disjoining pressure isotherm Π(ℎ) on ℎ 

according to Eq. (3.19) still captures the essential properties of the disjoining 

pressure isotherm in spite of considerable simplification: (i) it satisfies the stability 

condition, Π′(ℎ) < 0 when ℎ < 𝑡1; (ii) the influence of surface forces is short range 

and radius of its action is defined by 𝑡1; (iii) it corresponds to the partial wetting 

case at the proper choice of the disjoining pressure parameters (see below).  

Although similar type of isotherm has been used in past to determine the shape of 

the transition zone, it has not been used for droplets on deformable substrates.115 In 

the future a disjoining pressure which corresponds to real systems will be used.  
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3.2.2.1 Three dimensional axisymmetric droplets on a non-deformable substrate 

Earlier only two dimensional droplets on non-deformable substrates were considered 

and the expression for the equilibrium contact angle, Eq. (3.1), was deduced.14 In 

this part an expression for a contact angle of axisymmetric three dimensional 

droplets is deduced and compared with the corresponding contact angle for two-

dimensional droplets according to Eq. (3.1). 

Fig 3.4 shows a schematic diagram of a three-dimensional droplet on a non-

deformable solid substrate, where 𝐿1 is the length from the origin to the point where 

the influence of the surface forces comes into play, 𝐿 is the effective radius of the 

droplet base, 𝜃𝑒,𝑛𝑑 is the equilibrium contact angle the droplet makes with the solid 

substrate, 𝑅 is the radius of the droplet curvature, where 𝑅 = −
2𝛾

𝑃𝑒
. 

 

 

Figure 3.4: Schematic diagram of a 3D droplet on a non-deformable solid substrate. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

For a solid non-deformable substrate Eqs. (3.17) and (3.18) reduces to: 

𝛾 (ℎ′′ +
ℎ′

𝑟
) + Π(ℎ) = 𝑃𝑒 . (3.21) 

For the bulk of the liquid droplet, i.e. the spherical region in which ℎ > 𝑡1, Π(ℎ) =

0. Hence, in this region Eq. (3.21) transforms into:  

𝛾 (ℎ′′ +
ℎ′

𝑟
) = 𝑃𝑒 . (3.22) 
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Solution of this equation is:  

ℎ(𝑟) = 𝐴𝑟2 + 𝐵, (3.23) 

where integration constants, 𝐴 and 𝐵, can be determined from boundary conditions 

at 𝑟 = 0 and 𝑟 = 𝐿 and this solution is marked by a subscript out: 

ℎ𝑜𝑢𝑡(𝑟) = −
𝑟2

2𝑅
+ 

𝑅 sin2 𝜃𝑒,𝑛𝑑

2
  or  ℎ𝑜𝑢𝑡(𝑟) =

−𝑟2 + 𝐿2

2𝑅
. (3.24) 

For the transition region in the case of non-deformable solid substrate Eq. (3.21) 

along with the disjoining pressure isotherm given by Eq. (3.19) results in: 

ℎ′′ +
ℎ′

𝑟
−

𝑎ℎ

𝛾
=

𝑃𝑒 − 𝑃1

𝛾
. (3.25) 

Solution of Eq. (3.25) marked by a subscript in is as follows: 

ℎ𝑖𝑛 = ℎ𝑒 + 𝐶1,𝑛𝑑𝐾0(𝑟𝜆), (3.26) 

where, 𝜆 = √
𝑎

𝛾
 , 𝐾0 is the modified Bessel function of second kind of zero order, 

𝐶1.𝑛𝑑 is an integration constant. Solutions (3.24) and (3.26) should satisfy the 

boundary conditions: ℎ𝑜𝑢𝑡(𝐿1) = ℎ𝑖𝑛(𝐿1) = 𝑡1; ℎ𝑜𝑢𝑡
′ (𝐿1) = ℎ𝑖𝑛

′ (𝐿1), which gives 

three equations for determination of the three unknown coefficients 𝐶1,𝑛𝑑, 𝜃𝑒,𝑛𝑑 and 

𝐿1. Solution results in,   

𝐶1,𝑛𝑑𝐾0(𝐿1𝜆) =
𝐿1

𝑅𝜆
, (3.27) 

𝜃𝑒,𝑛𝑑 = √
2

𝑅
(ℎ𝑒 +

𝐿1

𝑅𝜆
+

𝐿1
2

2𝑅
), (3.28) 

𝐿1 = 𝑅𝜆(𝑡1 − ℎ𝑒). (3.29) 

The latter allows determining the effective radius of the droplet, 𝐿: 

𝐿 = √𝐿1
2 + 2𝑅𝑡1. (3.30) 

Introducing: 𝑃2 = 𝑎(𝑡0 − 𝑡1), Eq. (3.28) can be rewritten as, 

𝜃𝑒,𝑛𝑑 = √
1

𝛾𝑎
[𝑃𝑒

2 − 𝑃1𝑃𝑒 − 𝑃2𝑃𝑒 + 𝑃2
2]. (3.31) 

The equilibrium contact angle was previously determined according to Eq. (3.1). 

According to the simplified isotherm (Fig. 3.3) this contact angle can be calculated 

as:   
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𝜃𝑒,2𝐷 = √2 {−
𝑃𝑒ℎ𝑒

𝛾
−

𝑎

𝛾
[𝑡0(𝑡1 − ℎ𝑒) −

1

2
(𝑡1

2 − ℎ𝑒
2)]}. (3.32) 

 

3.2.2.2 Three dimensional droplets on a deformable substrate 

Fig. 3.5 shows a schematic diagram of a droplet on a deformable solid substrate. The 

same as before the simplified linear disjoining pressure isotherm according to Eq. 

(3.19) is used. In Fig. 3.5, 𝜃𝑒,𝑑 is the apparent macroscopic equilibrium contact 

angle of the droplet with the deformable substrate. 

 

 

Figure 3.5: Schematic diagram of droplet on a deformable substrate. Reproduced with 

permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

For the bulk of the liquid droplet, i.e. the spherical region (0 < 𝑟 < 𝐿1), ℎ − ℎ𝑠 >

𝑡1, Eq. (3.18) becomes: 

−𝛾𝑠 (ℎ𝑠
′′ +

ℎ𝑠
′

𝑟
) +

ℎ𝑠

𝐾
= 𝑃𝑒 . (3.33) 

Solving the above equation results in: 

ℎ𝑠,𝑜𝑢𝑡 = 𝐾𝑃𝑒 + 𝐶3,𝑑𝑔𝐼0(𝑟𝛽), (3.34) 

where 𝐼0 is the modified Bessel function of first kind of zero order, 𝛽 is equal to 

1

√𝐾𝛾𝑠
 and 𝐶3.𝑑𝑔 is an integration constant. Bulk droplet solution remains same as Eq. 

(3.24). Note that for 𝑟 = 0, ℎ𝑠,𝑜𝑢𝑡 = 𝐾𝑃𝑒 + 𝐶3,𝑑𝑔. 

For the transition region (𝑟 > 𝐿1), the droplet profile and the deformed substrate 

profile governed by Eqs. (3.17) and (3.18) can be respectively simplified to, 
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ℎ′′ +
ℎ′

𝑟
−

𝑎(ℎ − ℎ𝑠)

𝛾
=

𝑃𝑒 − 𝑃1

𝛾
, (3.35) 

and 

ℎ𝑠
′′ +

ℎ𝑠
′

𝑟
− ℎ𝑠 (

𝑎𝐾 + 1

𝛾𝑠𝐾
) +

𝑎ℎ

𝛾𝑠
= −(

𝑃𝑒 − 𝑃1

𝛾𝑠
). (3.36) 

The system of two linear differential equations of the second order (3.35) and (3.36) 

should be solved. In order to deduce the solution of the system of Eqs. (3.35) and 

(3.36) an unknown solution is introduced in the following form: 

𝑦(𝑟) = ℎ(𝑟) + 𝛼ℎ𝑠(𝑟), (3.37) 

where 𝑦(𝑟) is a new unknown function which is a linear combination of both 

profiles, ℎ𝑠, the deformed substrate, and ℎ,  the droplet. In Eq. (3.37), 𝛼 is a constant 

to be determined. The first and second derivatives of 𝑦 are: 

𝑦′ = ℎ′ + 𝛼ℎ𝑠
′ , 

𝑦′′ = ℎ′′ + 𝛼ℎ𝑠
′′. 

(3.38) 

Let us multiply Eq. (3.36) with 𝛼 and add it to Eq. (3.35) which results in: 

ℎ′′ + 𝛼ℎ𝑠
′′ +

1

𝑟
(ℎ′ + 𝛼ℎ𝑠

′ ) −
𝑎ℎ

𝛾
+

𝑎𝛼ℎ

𝛾𝑠
+

𝑎ℎ𝑠

𝛾
−

𝛼ℎ𝑠

𝛾𝑠
(
𝑎𝐾 + 1

𝐾
)

=
𝑃𝑒 − 𝑃1

𝛾
− 𝛼 (

𝑃𝑒 − 𝑃1

𝛾𝑠
). 

(3.39) 

Using values of 𝑦, 𝑦′, 𝑦′′ and substituting them into Eq. (3.39) results in: 

𝑦′′ +
𝑦′

𝑟
− 𝑎 (

1

𝛾
−

𝛼

𝛾𝑠
) 𝑦 + ℎ𝑠 [𝑎𝛼 (

1

𝛾
−

𝛼

𝛾𝑠
) +

𝑎

𝛾
−

𝛼

𝛾𝑠
(
𝑎𝐾 + 1

𝐾
)]

= (𝑃𝑒 − 𝑃1) (
1

𝛾
−

𝛼

𝛾𝑠
). 

(3.40) 

To calculate function 𝑦(𝑟) from Eq. (3.40) let us suppose that the constant in square 

bracket is equal to zero, i.e.: 

𝑎𝛼 (
1

𝛾
−

𝛼

𝛾𝑠
) +

𝑎

𝛾
−

𝛼

𝛾𝑠
(
𝑎𝐾 + 1

𝐾
) = 0, (3.41) 

which is a quadratic equation in 𝛼. 𝛼 can be determined from the above equation 

and has two roots: 

𝛼1,2 =

−(−
𝛾𝑠

𝛾 + (
𝑎𝐾 + 1

𝑎𝐾 )) ± √(−
𝛾𝑠

𝛾 + (
𝑎𝐾 + 1

𝑎𝐾 ))

2

+
4𝛾𝑠

𝛾

2
, 

(3.42) 
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where 𝛼1 > 0 and  𝛼2 < 0. The latter results in two different functions  𝑦(𝑟) and 

from Eq. (3.40) these functions must satisfy, 

𝑦′′ +
𝑦′

𝑟
− 𝑎 (

1

𝛾
−

𝛼

𝛾𝑠
) 𝑦 = (𝑃𝑒 − 𝑃1) (

1

𝛾
−

𝛼

𝛾𝑠
). (3.43) 

Therefore, the two unknown functions 𝑦 become: 

𝑦𝑖 = ℎ𝑒 + 𝐶𝑖,𝑑𝑔𝐾0 (𝑟√𝑎 (
1

𝛾
−

𝛼𝑖

𝛾𝑠
)), (3.44) 

where 𝑖 = 1, 2. Let 𝜙𝑖 = √𝑎 (
1

𝛾
−

𝛼𝑖

𝛾𝑠
). Then the above equation can be written as: 

𝑦1 = ℎ𝑒 + 𝐶1,𝑑𝑔𝐾0(𝑟𝜙1), 

𝑦2 = ℎ𝑒 + 𝐶2,𝑑𝑔𝐾0(𝑟𝜙2). 
(3.45) 

where 𝑦1 = ℎ + 𝛼1ℎ𝑠 and 𝑦2 = ℎ + 𝛼2ℎ𝑠. Evaluating ℎ and ℎ𝑠 from solutions above 

results in: 

ℎ𝑠,𝑖𝑛 =
𝐶1,𝑑𝑔𝐾0(𝑟𝜙1) − 𝐶2,𝑑𝑔𝐾0(𝑟𝜙2)

𝛼1 − 𝛼2
, (3.46) 

and  

ℎ𝑖𝑛 =
[ℎ𝑒(𝛼1 − 𝛼2) − 𝛼2𝐶1,𝑑𝑔𝐾0(𝑟𝜙1) + 𝛼1𝐶2,𝑑𝑔𝐾0(𝑟𝜙2)]

𝛼1 − 𝛼2
. (3.47) 

where 𝐾0 is the modified Bessel function of second kind of zero order, 𝐶1.𝑑𝑔and 

𝐶2.𝑑𝑔 are integration constants. Solutions represented by Eqs. (3.24), (3.34), (3.46), 

and (3.47) must satisfy the following boundary conditions: ℎ𝑜𝑢𝑡(𝐿1) =

ℎ𝑖𝑛(𝐿1); ℎ𝑜𝑢𝑡
′ (𝐿1) = ℎ𝑖𝑛

′ (𝐿1); ℎ𝑠,𝑜𝑢𝑡(𝐿1) = ℎ𝑠,𝑖𝑛(𝐿1); ℎ𝑠,𝑜𝑢𝑡
′ (𝐿1) = ℎ𝑠,𝑖𝑛

′ (𝐿1); and 

ℎ(𝐿1) − ℎ𝑠(𝐿1) = 𝑡1 which gives five equations for determination of the five 

unknown coefficients 𝐶1,𝑑𝑔, 𝐶2,𝑑𝑔, 𝐶3,𝑑𝑔, 𝐿1 and 𝐿. In all case under consideration 

below the following inequalities are satisfies: 𝐿1𝜙1 > 5, 𝐿1𝜙2 > 5, 
𝐿1

√𝛾𝑠𝐾
> 5. 

Hence, the following approximate relations can be used: 

𝐾0(𝐿1𝜙1)

𝐾1(𝐿1𝜙1)
~1 

𝐾0(𝐿1𝜙2)

𝐾1(𝐿1𝜙2)
~1 

𝐼0(𝐿1𝛽)

𝐼1(𝐿1𝛽)
~1 

(3.48) 
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Using approximations in Eq. (3.48) and the above mentioned boundary conditions, 

Eqs. (3.24), (3.34), (3.46), and (3.47), are solved and the unknown coefficients are 

calculated. Examining the Bessel functions in Eqs. (3.34), (3.46), and (3.47) it can 

be inferred that 
1

𝜙1
, 

1

𝜙2
 and 

1

𝛽
 are all essentially length scales. 𝜙1 and 𝜙2 are present 

in Eqs. (3.46) and (3.47) and they influence the transition region. Note that 𝜙2 is 

always greater than 𝜙1 substituting the real values of 𝑎, 𝛾, 𝛾𝑠 and 𝛼𝑖  (see below) 

and therefore, 
1

𝜙2
 length scale will have lesser effect in comparison to 

1

𝜙1
 length 

scale. From Eq. (3.34) it is evident that 
1

𝛽
 scale influences the bulk of the droplet. 

These length scales play an important role when physical parameters are varied and 

will be discussed in more details in the next section.   

 

3.3  Results and discussion 

3.3.1 Non-deformable substrate: Effect of variation of 𝑷𝒆 on 𝜽𝒆,𝒏𝒅  

Equilibrium contact angles 𝜃𝑒,𝑛𝑑 and 𝜃𝑒,2𝐷 are functions of the excess pressure, 

𝑃𝑒 , according to Eqs. (3.28) and (3.32). In this section this dependency is presented. 

The parameters of the disjoining pressure isotherm are presented in Table 3.1. |𝑃𝑒| is 

varied from 0 to |𝑃2|. Fig. 3.6 shows the behaviour of equilibrium contact angle 

when the excess pressure is varied. Fig. 3.6(a) demonstrates the variation at 𝑡0 =

7 × 10−7cm and Fig. 3.6(b) shows variation at 𝑡0 = 2 × 10−6cm. In both cases, 

two-dimensional equilibrium contact angle 𝜃𝑒,2𝐷, calculated according to Eq. (3.32), 

is higher than three-dimensional equilibrium contact angle calculated according to 

Eq. (3.31). It was shown earlier14 𝜃𝑒,2𝐷 can only increase with the decrease in 𝑃𝑒, 

which is in agreement with both Figs. 3.6(a) and 3.6(b). However, it turns out that 

the dependency of the contact angle in the three dimensional case, 𝜃𝑒,𝑛𝑑, differs 

substantially from the two dimensional case (always higher) and it can go via 

minimum as a function of 𝑃𝑒 (Figs. 3.6(a)). If the value of 𝑡0 is increased and 

brought closer to 𝑡1 then  𝜃𝑒,𝑛𝑑 is an increasing function of 𝑃𝑒 with no minimum. 
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a) 𝑡0 = 7 × 10−7 cm 

 

b) 𝑡0 = 2 × 10−6 cm 

Figure 3.6: Non-deformable substrate: Effect of variation of excess pressure, 𝑃𝑒 on two-

dimensional, 𝜃𝑒,2𝐷, and three-dimensional, 𝜃𝑒,𝑛𝑑, equilibrium contact angles. Reproduced 

with permission from Ref.113. Copyright © 2016 Elsevier B.V. 
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Table 3.1: Parameters of the disjoining pressure isotherm for non-deformable substrate 

case. Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

 

 

 

 

3.3.2 Deformable substrate 

In the vicinity of the three phase contact line disjoining pressure comes into play. 

Therefore, substrate deformation near the contact line depends largely upon the 

parameters of the disjoining pressure isotherm. In this section the effect of variation 

of 𝑃𝑒, 𝑎, 𝐾 and 𝛾𝑠 on substrate deformation and its subsequent effect on the droplet 

profile is discussed. Fig 3.7 schematically shows different lengths in the region of 

deformation: 𝐿1 is the length from the axis of symmetry to the point 𝐶, where 

surface forces start to act in the radial direction. ℎ𝑠,𝑚𝑎𝑥 is the maximum height of 

deformation and ℎ𝑠,𝑚𝑖𝑛 is the minimum height of deformation. Two points are 

generated on the deformed substrate around point C, one in the spherical region, 𝐴, 

and the other in transition region, 𝐵, where the slope, 
𝑑ℎ𝑠

𝑑𝑟
, is  very small and it drops 

below 1 × 10−4. Note that ℎ𝑠 approaches to 𝐾𝑃𝑒 + 𝐶3,𝑑𝑔 as 𝑟 approaches to zero, 

see Eq. (3.34). On the other hand ℎ𝑠 approaches to zero as 𝑟 tends to infinity, see Eq. 

(3.46). Therefore, ℎ𝑠(𝑟 = 𝑃1)~𝐾𝑃𝑒 + 𝐶3,𝑑𝑔 and ℎ𝑠(𝑟 = 𝐵)~0 due to the very small 

slope. Distance between 𝐶 and 𝐴 is denoted as Δ1 (i.e. region of influence of 

disjoining pressure in the bulk of the droplet) and distance between 𝐶 and 𝐵 is 

denoted by Δ2 (i.e. region of influence of disjoining pressure in the transition 

region). It will be shown below that the disjoining pressure effects are transferred 

from the transition region to the bulk of the droplet and it affects the deformation of 

the substrate between 𝐴 and 𝐶. Therefore, Δ1 + Δ2 is defined as the total region of 

influence of disjoining pressure on the deformable substrate. Note that length scales, 

1

𝜙1
, 

1

𝜙2
, and 

1

𝛽
, introduced in Section 3.2.2.2 are valid for the relevant regions of the 

Physical Property Value 

𝛾 72 dyn/cm 

𝑡1 3 × 10−6cm 

𝑎 1 × 1011 dyn/cm3 

|𝑃𝑒| 0 − |𝑃2| dyn/cm2 
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influence of disjoining pressure, i.e. 
1

𝜙1
 and 

1

𝜙2
 are applicable to Δ2 and 

1

𝛽
 is 

applicable to Δ1.      

Table 3.2 shows the parameters of the disjoining pressure isotherm used in the case 

of deformable substrate unless stated otherwise. The profile of the droplet and the 

subsequent changes in the deformable substrate are plotted (see Fig. 3A.1 in 

Appendix 3.A) using equations deduced in Sections 3.2.2.1 and 3.2.2.2. It shows 

that for non-deformable substrate case the height of the droplet at 𝑟 = 0 is greater 

than the deformable case and it also indicates that for deformable substrate the 

apparent equilibrium contact angle is lower than in the case of non-deformable 

substrate. The deformable substrate behaves in the same manner as predicted in Fig. 

3.5. 

 

 

Figure 3.7: Lengths affected by variation of parameters, 𝑃𝑒, 𝑎, 𝐾 and 𝛾𝑠 for a droplet on a 

deformable substrate. Reproduced with permission from Ref.113. Copyright © 2016 

Elsevier B.V. 
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Table 3.2: Properties of the disjoining pressure isotherm for deformable substrate case. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

Physical Property Value 

𝛾 72 dyn/cm 

𝑡1 3 × 10−6cm 

𝑡0 7 × 10−7 cm 

𝑎 1 × 1011 dyn/cm3 

𝐾 1 × 10−11 cm3/dyn 

𝑃𝑒 −1 × 105 dyn/cm2 

𝛾𝑠 1 dyn/cm 

 

 

3.3.2.1 Effect of variation of excess pressure, Pe 

Excess pressure is varied according to 0 ≤ |𝑃𝑒| ≤ |𝑃2|. In order to compare the 

results of the apparent equilibrium contact angle on deformable substrate with the 

one on non-deformable substrate, the value of 𝐾 is decreased gradually from 1 ×

10−11 to 1 × 10−13 cm3/dyn. All other physical parameters of the disjoining 

pressure isotherm are kept constant as shown in Table 3.2 except 𝑡0 which is 

equivalent to 7 × 10−7cm for the results presented in Fig. 3A.2(a) (Appendix 3.A) 

and is equivalent to 2 × 10−6cm for the results in Fig. 3A.2(b) (Appendix 3.A). 

Dependency of 𝜃𝑒,𝑑 in Fig. 3A.2(a) (Appendix 3.A) has a minimum and it becomes 

an increasing function as 𝑡0 is increased and brought closer to 𝑡1 (see Fig. 3A.2(b) in 

Appendix 3.A). Fig. 3A.2 shows that 𝜃𝑒,𝑑 is less than 𝜃𝑒,𝑛𝑑 for all values of 𝐾 > 0.  

According to Eq. (3.20) the equilibrium flat film thickness ℎ𝑒 increases as the excess 

pressure, 𝑃𝑒 decreases. In its turn increasing the equilibrium film thickness causes 

ℎ𝑠,𝑚𝑎𝑥 to decrease and the ℎ𝑠,𝑚𝑖𝑛 of substrate to decrease. ℎ𝑠,𝑚𝑎𝑥 and ℎ𝑠,𝑚𝑖𝑛 both 

have a linear dependence on 𝑃𝑒 as shown in Fig. 3.8. Fig. 3.9 shows the variation of 

the total region of influence of disjoining pressure with the variation of excess 

pressure (as 𝑃𝑒 is reduced, i.e. becomes more negative). Δ1 + Δ2 decreases as 𝑃𝑒 is 

reduced (This is also supported by Fig. 3.11).  
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Figure 3.8: Effect of variation of 𝑃𝑒: Maximum and minimum height of substrate 

deformation as a function of excess pressure (40000 ≤ |𝑃𝑒| ≤ 130000 dyn/cm2). 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

 

Figure 3.9: Effect of variation of 𝑃𝑒 on the region of influence of disjoining pressure. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 
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Fig. 3.10 presents the variation of the ratios of Δ2/ (
1

𝜙1
+

1

𝜙2
), Δ2/ (

1

𝜙1
), Δ2/ (

1

𝜙2
), 

and Δ1/ (
1

𝛽
) (region of influence of the disjoining pressure in the bulk of the droplet 

and the transition region to the relevant length scales) as a function of 𝑃𝑒. It is clear 

from the plots that Δ2/ (
1

𝜙1
+

1

𝜙2
), Δ2/ (

1

𝜙1
), and Δ2/ (

1

𝜙2
) are all decreasing with 

decrease in 𝑃𝑒. Length scale 
1

𝜙2
 is smaller than

1

𝜙1
, that is the reason its ratio, Δ2/

(
1

𝜙2
), is higher than that of 

1

𝜙1
, Δ2/ (

1

𝜙1
) (compare Fig. 3.10(b) and Fig. 3.10(c)). 

Because Δ2 is influenced by both 
1

𝜙1
 and 

1

𝜙2
 length scales, therefore sum of these 

length scales is used later in the discussion. The plot for Δ1/ (
1

𝛽
) illustrates that the 

ratio first increases to a maximum value and then decreases. Fig. 3.11 shows the 

profiles of the droplet and substrate with variation in 𝑃𝑒. It is clear that an increase in 

𝑃𝑒 will cause ℎ𝑒 to decrease, which subsequently affects the height and span of the 

droplet to increase. Therefore causing the extent of the deformation in the radial 

direction to increase, but generates a decrease in the depth to which the substrate 

gets deformed.     

 

Figure 3.10: Ratio of regions of influence of disjoining pressure to relevant scale plotted 

against 𝑃𝑒. Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 
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Figure 3.11: Effect of variation of 𝑃𝑒: Profiles of the droplet and substrate deformation, 

which are under consideration:   1, 1′ −  |𝑃𝑒| = 130000 dyn/cm2, 2, 2′ − |𝑃𝑒| = 85000 

dyn/cm2, 3, 3′ − |𝑃𝑒| = 40000 dyn/cm2. Reproduced with permission from Ref.113. 

Copyright © 2016 Elsevier B.V. 

 

3.3.2.2 Effect of variation of slope of the disjoining pressure isotherm 𝑎 

The value of 𝑎 is increased in the following range  1 × 1011 ≤ 𝑎 ≤ 1 × 1012 

dyn/cm3 to see the effects on depth of deformation and shape of the droplet. The 

equilibrium contact angle for deformable substrates increases as the slope increases 

(see Fig. 3A.3 in Appendix 3.A). Fig. 3A.4 (provided in in Appendix 3.A) shows the 

variation of the substrate deformation as the slope is increased. Increasing 𝑎 causes 

ℎ𝑠,𝑚𝑎𝑥 to increase, but ℎ𝑠,𝑚𝑖𝑛 remains constant. Fig. 3.12 shows the profile of the 

droplet and the change in deformation profile as 𝑎 is varied. It is in agreement with 

the results discussed in the previous plots, i.e. 𝜃𝑒,𝑑 increases, ℎ𝑠,𝑚𝑎𝑥 increases and 

ℎ𝑠,𝑚𝑖𝑛remains constant with an increase in 𝑎 as shown in Fig. 3.12. The total region 

of influence of disjoining pressure increases with an increase in the slope of the 

disjoining pressure isotherm (see Fig. 3A.5 in Appendix 3.A). Fig. 3A.6 (provided in 

Appendix 3.A) presents the variation of the ratios (region of influence of the 

disjoining pressure in the bulk of the droplet, Δ1/ (
1

𝛽
), or the transition region, 

Δ2/ (
1

𝜙1
+

1

𝜙2
), to the relevant length scales) with an increase in 𝑎. Both ratios 
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increase with an increase in the slope of disjoining pressure isotherm. Fig. 3.12 also 

shows that slope a also influences the droplet profile: with an increase in the slope a 

of the disjoining pressure isotherm, the maximum height of the droplet increases 

which correspondingly increases the effective radius of the droplet. 

 

 

Figure 3.12: Effect of variation of 𝑎: Profiles of the droplet and substrate deformation, 

which are under consideration:   1, 1′ −  𝑎 = 1 × 1011 dyn/cm3, 2, 2′ − 𝑎 = 1 × 1012 

dyn/cm3. Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

3.3.2.3 Effect of variation of elasticity coefficient, 𝐾 

Elasticity coefficient determines the maximum depth to which the substrate gets 

deformed. In this section the elasticity coefficient is varied according to 1 ×

10−13 ≤ 𝐾 ≤ 1 × 10−11 cm3/dyn. Fig. 3A.7 (provided in Appendix 3.A) shows that 

as 𝐾 is increased (i.e. for a more elastic substrate) the 𝜃𝑒,𝑑 decreases slightly. Fig. 

3A.8 (provided in Appendix 3.A) describes the behavior of the substrate 

deformation when 𝐾 is increased. As 𝐾 increases, ℎ𝑠,𝑚𝑎𝑥 increases and  ℎ𝑠,𝑚𝑖𝑛 

decreases linearly. Note that as 𝐾 → 0 both  ℎ𝑠,𝑚𝑎𝑥 → 0 and ℎ𝑠,𝑚𝑖𝑛 → 0. Fig. 3A.9 

(provided in Appendix 3.A) depicts that the total region of influence of disjoining 

pressure increases with an increase in elasticity coefficient. Fig. 3A.10 (provided in 

Appendix 3.A) presents the variation of the ratios (region of influence of the 
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disjoining pressure in the bulk of the droplet, Δ1/ (
1

𝛽
), or the transition region, 

Δ2/ (
1

𝜙1
+

1

𝜙2
), to the relevant length scales) with an increase in 𝐾. Both ratios 

increase with an increase in the elasticity coefficient, but Δ2/ (
1

𝜙1
+

1

𝜙2
) becomes 

constant around elasticity coefficient of 6 × 10−12. The influence of decreasing the 

elasticity coefficient causes the profile of the droplet to approach the profile for non-

deformable substrate which is evident from Fig. 3.13. Where “ND” stands for Non-

Deformable substrate and “D” stands for Deformable substrate. 

 

 

Figure 3.13: Effect of variation of 𝐾: Profiles of the droplet and substrate deformation, 

which are under consideration:   1, 1′ −  𝐾 = 1 × 10−11 cm3/dyn, 2, 2′ − 𝐾 = 4.5 ×

10−12 cm3/dyn. Reproduced with permission from Ref.113. Copyright © 2016 Elsevier 

B.V. 

 

3.3.2.4 Effect of variation of substrate surface tension, 𝛾𝑠 

According to Eq. (3.34) the substrate deformation dependency on the radius is 

described by Bessel function, 𝐼0(𝑟𝛽). This dependency show if  𝛾𝑠 → 0 then the 

value 𝑟𝛽 tends to infinity and so does 𝐼0(𝑟𝛽), however, simultaneously 𝐶3,𝑑𝑔 tends 

to zero. Therefore, solution for ℎ𝑠 under the bulk of the droplet approaches 𝐾𝑃𝑒 for 

small 𝛾𝑠.  Substrate surface tension is varied according to 0.001 ≤ 𝛾𝑠 ≤ 30 dyn/cm. 
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Increasing 𝛾𝑠 causes 𝜃𝑒,𝑑 to increase slightly as shown in Fig. 3A.11 (provided in 

Appendix 3.A). Fig. 3A.12 (provided in Appendix 3.A) shows that ℎ𝑠,𝑚𝑎𝑥 decreases 

with increase in 𝛾𝑠 , whereas  ℎ𝑠,𝑚𝑖𝑛decreases as 𝛾𝑠 increases. It shows that ℎ𝑠,𝑚𝑎𝑥 

reaches maximum values as 𝛾𝑠 approaches zero. Total region of influence of 

disjoining pressure increases with an increase in 𝛾𝑠, see Fig. 3A.13 (provided in 

Appendix 3.A). Fig. 3A.14 (provided in Appendix 3.A) presents the variation of the 

ratios (region of influence of the disjoining pressure in the bulk of the droplet, 

Δ1/ (
1

𝛽
), or the transition region, Δ2/ (

1

𝜙1
+

1

𝜙2
), to the relevant length scales) with 

an increase in 𝛾𝑠. Both ratios decrease with an increase in substrate’s surface 

tension. Fig. 3.14 shows that there is a smooth transition of the substrate 

deformation from the bulk droplet to the region of thin films. However, when 𝛾𝑠 

tends to zero this smooth transition in the substrate deformation tends to transform 

into a sharp jump (Fig. 3.14) and ℎ𝑠,𝑚𝑎𝑥 reach a maximum value when 𝛾𝑠 tends to 

zero. 

 

 

Figure 3.14: Effect of variation of 𝜸𝒔: Profiles of the droplet and substrate deformation , 

which are under consideration:   1, 1′ −  𝛾𝑠 = 0.001 dyn/cm, 2, 2′ − 𝛾𝑠 = 30 dyn/cm. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 
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3.4  Conclusions  

Equilibrium of liquid droplets on deformable substrates is investigated. Disjoining 

pressure action in the vicinity of the apparent three phase contact line is taken into 

account. It is shown that the disjoining pressure action determines the substrate 

deformation. A simplified linear disjoining pressure isotherm and simple Winkler's 

model to account for the substrate deformation are used which allows deducing an 

analytical solutions for both the liquid profile and substrate deformation. The 

apparent equilibrium contact angle that the liquid makes with the substrate is 

calculated and its dependency on the system parameters is investigated. It is shown 

that the contact angles on the deformable substrate are always lower than on the 

corresponding non-deformable substrate. It is also shown that the estimated 

equilibrium contact angles of two-dimensional droplets on a non-deformable 

substrate are bigger as compared to three-dimensional droplets. Four parameters 

namely, excess pressure, slope of the disjoining pressure isotherm, elasticity 

coefficient of the substrate and substrate’s surface tension, have been identified to 

affect the selected disjoining pressure isotherm. These parameters are varied 

independently to quantify their influence on the shape of the droplet and the 

deformation in the substrate. A region of influence of disjoining pressure on the 

deformable substrate is defined which is present under the transition zone and under 

the bulk of the droplet. Region of influence of disjoining pressure is decreased with 

decrease in excess pressure. For other parameters, slope of disjoining pressure 

isotherm, elasticity coefficient of the substrate and substrate’s surface tension, it 

tends to increase as the parameters are increased. Reducing excess pressure reduces 

the apparent equilibrium contact angle, therefore causing the droplet to wet (i.e. 

small apparent equilibrium contact angle) the deformable substrate. This results in 

the depth of deformation to increase with a decrease in excess pressure. Increasing 

slope of the disjoining pressure isotherm increases the apparent equilibrium contact 

angle and the span of the droplet, but does not affect the maximum depth of 

substrate deformation. Elasticity coefficient has a direct effect on the depth of 

deformation of the substrate, i.e. increasing it causes the depth of deformation to 

increase. Apparent contact angle is less affected from an increase in elasticity 

coefficient. Surface tension of the deformable substrate substantially influences the 

profile of the substrate deformation. For lower values of substrate’s surface tension, 

the deformation tends to a jump inside the transition zone. Interestingly this jump 
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created in the substrate cause a slight change in the profile of the droplet, i.e. the 

apparent contact angle increases slightly. 

 

Nomenclature 3 

a slope of the disjoining pressure isotherm, N.m-3 

C1,nd integration constant 

C1,dg integration constant 

C2,dg integration constant 

C3,dg integration constant 

F excess free energy of the droplet, N.m 

Fe,film 

excess free energy of the equilibrium thin film on the deformed 

solid, N.m 

h height of the fluid above the substrate, m 

he precursor film thickness, m 

hs depth of deformation of the substrate, m 

K Elasticity, m3.N-1 

L effective radius of the droplet, m 

L1 

length from the centre of the droplet to the point where surface 

forces (disjoining pressure) start to act, m 

Pe equilibrium excess pressure, Pa 

r length along radial direction, m 

R radius of curvature of the droplet, m 

t1 
height of the droplet at which surface forces (disjoining pressure) 

start to act, m 

Greek Symbols 
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1/β length scale in the bulk of the droplet, m 

 surface tension of the fluid, N.m-1 

s surface tension of the substrate, N.m-1 

Δ1 region of influence of disjoining pressure in the bulk of the 

droplet, m 

Δ2 region of influence of disjoining pressure in the transition zone, m 

θe equilibrium contact angle 

θe,2D two-dimensional equilibrium contact angle 

θe,nd apparent equilibrium contact angle on a non-deformable substrate 

θe,d apparent equilibrium contact angle on a deformable substrate 

Π(h) disjoining pressure isotherm, Pa 

1/ϕ1 , 1/ϕ2   Length scales in the transition zone, m 

Subscripts 

ND Non-deformable substrate 

D Deformable substrate 

spherical Bulk region of the droplet 

transition Region from bulk of the droplet to the thin film 

𝑜𝑢𝑡 Solution of the bulk/spherical part of the droplet 

𝑖𝑛 Solution of the transition region 
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Appendix 3.A 

 

Figure 3A.1: Comparison between the profiles of the droplet and substrate for Non-

Deformable (ND) and Deformable (D) substrate, where 𝛾𝑠 = 10 dyn/cm. Reproduced 

with permission from Ref.113. Copyright © 2016 Elsevier B.V. 
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a) 𝑡0 = 7 × 10−7 cm 

 

 

b) 𝑡0 = 2 × 10−6 cm 

Figure 3A.2: Effect of variation of 𝑃𝑒: Change in 𝜃𝑒,𝑑 for different values of elasticity 

coefficient, 𝐾. Reproduced with permission from Ref.113. Copyright © 2016 Elsevier 

B.V. 
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Figure 3A.3: Effect of variation of 𝑎: Change in apparent equilibrium contact angle. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

 

Figure 3A.4: Effect of variation of 𝑎: Change in substrate deformation. Reproduced with 

permission from Ref.113. Copyright © 2016 Elsevier B.V. 
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Figure 3A.5: Effect of variation 𝑎 on the total region of influence of disjoining pressure. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

 

Figure 3A.6: Ratio of regions of influence of disjoining pressure to relevant scale plotted 

against 𝑎. Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 
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Figure 3A.7: Effect of variation of 𝐾: Change in apparent equilibrium contact angle. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

 

Figure 3A.8: Effect of variation of 𝐾: Change in substrate deformation. Reproduced with 

permission from Ref.113. Copyright © 2016 Elsevier B.V. 
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Figure 3A.9: Effect of variation 𝐾 on the total region of influence of disjoining pressure. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

 

Figure 3A.10: Ratio of regions of influence of disjoining pressure to relevant scale 

plotted against 𝐾. Reproduced with permission from Ref.113. Copyright © 2016 Elsevier 

B.V. 
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Figure 3A.11: Effect of variation of 𝛾𝑠: Change in apparent equilibrium contact angle. 

Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

 

Figure 3A.12: Effect of variation of 𝛾𝑠: Change in substrate deformation. Reproduced 

with permission from Ref.113. Copyright © 2016 Elsevier B.V. 
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Figure 3A.13: Effect of variation 𝛾𝑠 on the total region of influence of disjoining 

pressure. Reproduced with permission from Ref.113. Copyright © 2016 Elsevier B.V. 

 

 

Figure 3A.14: Ratio of regions of influence of disjoining pressure to relevant scale 

plotted against 𝛾𝑠. Reproduced with permission from Ref.113. Copyright © 2016 Elsevier 

B.V. 
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CHAPTER 4 

 

KINETICS OF WETTING AND SPREADING OF NON-

NEWTONIAN LIQUIDS OVER POROUS SUBSTRATES 

Overview 

Kinetics of wetting and spreading of blood as a non-Newtonian colloidal suspension 

over different porous substrates is investigated theoretically and experimentally in 

this chapter1. The results of investigations were published earlier in Journal of 

Colloid and Interface Science 446, 218–225, 2015 and Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 505, 9–17, 2016 and reused in this 

chapter with permission. Initially in this chapter, the difference between a partial 

wetting and complete wetting of the porous substrate is determined in the process of 

spreading and imbibition. Then a mathematical model is developed for the case of 

complete wetting. In the next section, the predicted results for the case of complete 

wetting are compared with the experimental data and then the different features of 

partial wetting and complete wetting cases are identified and discussed.  

 

4.1  Introduction  

In this chapter theoretical and experimental findings on spreading and wetting of dry 

thin porous substrates by blood droplets is presented. This process is a representation 

of dried blood spot (DBS) sampling which is a method of blood collection.3 In DBS 

sampling a thin porous substrate such as cotton fibres, cellulous fibres or polymer 

membrane is used to collect a small amount of blood droplet from a fingertip or 

syringe: the drop spreads over a porous substrate, imbibes into and preserves there 

as a dried spotted sample. Therefore, the sampling process can be described as 

spreading of blood, which is a non-Newtonian fluid, over a thin porous substrate 

with simultaneous spreading and penetration inside the porous substrate. 

                                                 
1 Statement of contributions of joint authorship: Omid Arjmandi-Tash developed the mathematical 

model presented in this chapter and the experiments were conducted by Tzu Chieh Chao. 
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A hydrodynamic based mathematical model under lubrication approximation theory 

has been developed to describe complete wetting of thin porous layer by blood 

droplets. The result of comparison between the predicted values and experimental 

data is given below in the case of complete wetting. In addition, the influence of 

hydrophobicity of porous substrate has been identified by considering the cases in 

which the blood droplet wets only partially the porous substrate.  To gain a better 

understanding of the blood drop spreading/imbibition process, firstly the difference 

between a complete wetting and a partial wetting of porous substrate is discussed 

below. 

 

4.1.1 Partial wetting case   

The spreading and imbibition behaviour of a droplet over a porous substrate in the 

case of partial wetting can be subdivided into 3 subsequent stages as schematically 

shown in Fig. 4.1:116 Stage (1), during this stage the droplet spreads relatively fast 

over thin porous substrate until the radius of the droplet base reaches the maximum 

value, Lad, and the contact angle decreases to the value of static advancing contact 

angle, θad; Stage (2), during the second stage the three-phase contact line remains 

fixed at the maximum value while the contact angle decreases from the static 

advancing contact angle, θad, to static receding contact angle, θr, due to the loss of 

droplet volume caused by the imbibition into the porous substrate;  Stage (3), during 

the third stage of spreading/imbibition the drop base shrinks at approximately 

constant static receding, θr, contact angle until the time the droplet is sucked 

completely by porous substrate. 

The characteristic feature of partial wetting case is the presence of contact angle 

hysteresis: this results in the existence of Stage 2, in which the edge of the droplet is 

pinned. 
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Figure 4.1: Three stages of spreading/imbibition of droplet over porous substrate in the 

case of partial wetting: Lad is the maximum radius of droplet base, θad is the advancing 

contact angle, tad is the time when θad is reached, θr is the receding contact angle, tr is the 

time when θr is reached and t* is the time when imbibition is finished completely. 

Reproduced with permission from Ref.116. Copyright © 2016 Elsevier B.V.   

 

4.1.2 Complete wetting case 

There is no contact angle hysteresis in the case of complete wetting; therefore, Stage 

2 of partial wetting is absent in complete wetting case and there are only two stages 

of spreading (see Fig. 4.2):117, 118 Stage (1), during this stage the droplet spreads 

quickly over porous substrate and radius of the droplet base reaches its maximum 

value, Lm; Stage (3), in this stage the imbibition prevails over the spreading and the 

radius of the droplet base shrinks until complete disappearance. Note, over the most 

part of the Stage 3 in the case of complete wetting the contact angle retains the 

constant value, which has nothing to do with contact angle hysteresis (there is no 

contact angle hysteresis in the case of complete wetting) but determined by a pure 

hydrodynamic reason.    
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Figure 4.2: Two stages of spreading/imbibition of droplet over porous substrate in the 

case of complete wetting: Lm is the maximum radius of droplet base, tm is the time when 

Lm is reached, θm is the contact angle at tm, t* is the time when complete imbibition is 

finished and θf is the final contact angle at t*. Note, in the case of complete wetting the 

stage 2 is absent (see Fig. 4.1). Reproduced with permission from Ref.116. Copyright © 

2016 Elsevier B.V. 

 

Below the spreading behaviour of blood, which is a non-Newtonian liquid, over 

different thin porous substrates is investigated. The problem under investigation is 

similar to that considered in Ref.119 when a drop of Newtonian liquid spreads over a 

dry porous layer, however, the difference is that now the liquid is a non-Newtonian 

blood. Blood spreading deviates from the corresponding Newtonian liquid in two 

ways: (i) the droplets spreading governs by a different law as compared with 

Newtonian liquids and (ii) non-Newtonian liquid imbibition into a porous substrate 

differs from that of Newtonian liquids. 

The problem is treated below under the lubrication theory approximation and in the 

case of complete wetting. Spreading of “big drops”, that is, bigger as compared with 

thickness of the porous substrate but still small enough to neglect the gravity action 

over “thin porous layers” is considered below.  
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4.2  Materials and methods 

4.2.1 Theory 

The kinetics of blood droplet motion both above and within the porous layer itself is 

taken into account below in the case of complete wetting. Fig. 4.3 shows the 

schematic of the axis-symmetric drop spreading over a thin porous substrate with a 

thickness of , which is considered to be much smaller than the droplet height, i.e. 

<<h*, where h* is the scale of the drop height. It was assumed that the slope of the 

droplet profile is low, h*/L*<<1, where L* is the scale of the drop base. That is, 

only small droplets are under consideration: the gravity action is neglected and only 

capillary forces are taken into account (Bond number 1/*2 gL , where , g, and   

are the liquid density, gravity acceleration and the liquid-air interfacial tension, 

respectively). The time evolution of spreading radius,  L (t), the droplet height, h(t) 

and radius of the wetted area inside the porous substrate, )(t , were monitored 

during the spreading experiments.  

 

Figure 4.3: Cross-section of the axis-symmetric spreading drop over initially dry porous 

substrate with thickness ∆. 1- liquid drop; 2- wetted region inside the porous substrate; 3- 

dry region inside the porous substrate. L(t)- radius of the drop base; )(t - radius of the 

wetted area inside the porous substrate; )(t - contact angle; ∆- thickness of porous 

substrate; r, z co-ordinate system. Reproduced with permission from Refs.116, 117. 

Copyright © 2015, 2016 Elsevier B.V. 

 

4.2.1.1 Droplet profile 
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According to Ref.57, the droplet profile in the case of capillary spreading, except for 

a small region close to the three-phase contact line, remains a spherical cap:  

)(),(
2

),( 22

4
tLrrL

L

V
rth 


. (4.1) 

where V is the droplet volume. The above expression is identical for both Newtonian 

and non-Newtonian liquids.57 

A modified Darcy’s law is developed in Appendix 4.A to describe the flow of a non-

Newtonian liquid in a thin porous layer. The porous layer is assumed to be thin 

enough and the time for saturation in the vertical direction can be neglected relative 

to other time scales of the process. The time required for a complete saturation of the 

porous layer in the vertical direction, t, can be estimated in the same way as in 

Ref.119 and accordingly, the porous layer beneath the spreading drop (0<r<L(t)) is 

always assumed to be completely saturated.  

The capillary pressure inside the porous layer can be estimated as 
*

2

a
pc


 , where 

  is the surface tension and a* is the scale of capillary radii inside the porous layer. 

The capillary pressure inside the drop, p-pg, can be approximated as

cg p
aLLL

h

L

h
pp 

****

*

*

*
2


, where pg is the pressure in the ambient 

air. According to the latter expression, the capillary pressure inside the drop can be 

neglected as compared with the capillary pressure inside the porous layer.  

The volume of the droplet over porous layer, V(t), changes over time, t, due to the 

imbibition of the liquid inside the porous layer, this means: 

)()( 2

0 tVtV   , (4.2) 

where V0 is the initial volume of the drop;   is the porosity of the porous layer. 

Here the wetted region inside the porous layer is considered to be a cylinder with 

radius )(t and the height .  

If it is supposed that 
*t  is the time instant when the drop is completely sucked by 

the porous substrate, 
2

0

* *0)(  VtV ; where *  is the maximum radius of 

the wetted region in the porous layer and it can be obtained as 

2/1

0* 













V
 . (4.3) 
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*  is used below to scale the radius of the wetted region in the porous layer, )(t . 

The following value of the dynamic contact angle, , ( )tan   can be deduced 

from Eq. (4.1): 

3

4

L

V


  , (4.4) 

or  

3/1
4
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
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V
L . (4.5) 

 

4.2.1.2 Droplet spreading over porous substrate in the case of complete wetting 

The drop motion over porous substrate in the case of complete wetting can be 

considered to be a superposition of two motions:65,117 (a) an expansion of the drop 

base as a result of spreading over already saturated part of the porous layer, and (b) a 

shrinkage of the drop base as a result of the imbibition into the porous layer. Hence, 

the following equation can be written for the rate of the drop base motion: 

  vv
dt

dL
, (4.6) 

where v , v  are unknown velocities of the expansion and the shrinkage of the drop 

base, respectively. 

A time derivative of both sides of Eq. (4.5) results in: 
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During the spreading process of the droplet over the porous layer both its contact 

angle and volume can only decrease over time. Therefore, in the above equation the 

first term in the right hand side is always positive and the second term is always 

negative. 

Comparison of the Eqs. (4.6) and (4.7) leads to the following expressions for v , v : 
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The above equations can be justified as follows: there are two substantially different 

characteristic time scales in the problem under consideration: pp TttT  **

 , 

where 
*

t  and 
*

pt  are time scales of the viscous spreading and the imbibition into the 

porous layer, respectively; 1
*

*


pt

t
  is a smallness parameter (around 0.08 for 

Newtonian fluid119). Accordingly, the following function can be written for the 

droplet motion: ),( pTTLL  , where T  is a time of the fast viscous spreading and pT  

is a time of the slow imbibition into the porous substrate. The time derivative of 

),( pTTL   is  

pT

L

T

L

dt

dL


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. (4.9) 

Comparison of Eqs. (4.6), (4.8) and (4.9) results in  
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 (4.10) 

The loss of the droplet volume over time is caused only by the penetration into the 

porous layer and; hence, the drop volume, V, only depends on the slow time scale. 

According to the above consideration the whole spreading/imbibition process of 

droplet over porous substrate in the case of complete wetting can be subdivided into 

two stages: 

(i) First fast stage, when the imbibition into the porous substrate is negligible, 

and the drop spreads with approximately constant volume. This stage goes in 

the same way as the spreading over saturated porous layer and the arguments 

developed in Ref.120 can be used here; 

(ii) Second slower stage, when the spreading process is almost over and the drop 

evolution is governed mostly by the imbibition into the porous substrate.  

For the first stage of the process the spreading radius of the droplet produced from 

non-Newtonian power-law liquid can be found as:57 
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where n and k  respectively are the flow behavior index and flow consistency index 

of the known Otswald-de Waele relationship; 
73 


n

n
n  and t0 is the duration of 

the initial stage of spreading, when the capillary regime of spreading is not 

applicable;  is a constant, determined in Ref.120. Note, the parameter  is 

independent of the droplet volume.120   

The parameter n changes from 0 to 1/3 at n=0 to n and it equals to 0.1 in the 

case of Newtonian liquid at n=1; that is, the limits are: 0<n<1/3. In the case of a 

Newtonian liquid, Eq. (4.11) leads to the well-known spreading law of 

1.0

0 )(~)( tttL   for a complete wetting case.26 Eq. (4.11) indicates that pseudo plastic 

fluids, n<1, spread slower and dilatant fluids, n>1, spread faster than Newtonian 

liquids.  

The characteristic time scale of the first stage of spreading according to Eq. (4.11) 

can be found as: 
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where )0(0 LL   is the radius of the droplet base in the end of the very fast initial 

stage of spreading. Using the above scale Eq. (4.11) can be rewritten as:  
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Combination of Eqs. (4.13), (4.8) and (4.4) gives the expansion velocity of the drop 

base, v+:  
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(4.14) 

In addition, substitution of Eq. (4.2) into the Eq. (4.8) results in the following 

expression for the shrinkage velocity of the drop base, v-: 
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Substitution of Eqs. (4.14) and (4.15) into Eq. (4.6) results in: 
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(4.16) 

The only unknown function in the above expression is the radius of the wetted 

region inside the porous layer, )(t , which is determined below section.  

 

4.2.1.3 Inside the porous layer outside the droplet (-<z<0, L<r<  )  

The liquid penetrating inside the porous layer obeys the modified Darcy’s law (Eq. 

4A.10): 
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where Kn is the permeability of the porous layer.  Solution of the above equations in 

the case of a non-Newtonian liquid (n≠1) is 
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where b and c are integration constants, which should be determined based on 

boundary conditions for the pressure at the drop edge, r=L(t), and at the circular 

edge of the wetted region inside the porous layer, )(tr  . 

Note that the solution of Eq. (4.17) in the case of the imbibition of a Newtonian 

liquid is different from the case of power law non-Newtonian liquids:119 

r

c
vbrKcp p  ;ln)/(  , (4.19) 

The boundary condition at the circular edge of the wetted region inside the porous 

layer is: 

)(, trppp cg  , (4.20) 

where 
*

2

a
pc


  is the capillary pressure inside the pores of the porous substrate, and 

a* is a characteristic scale of the pore radii inside the porous layer.   

The boundary condition at the drop edge is 
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)(, tLrppp dg  , (4.21) 

where dp is an unknown pressure inside the drop.119 It was estimated above in 

section 4.2.1.1 and in Ref.119 that cd pp  . That is, dp  in Eq. (4.21) is neglected 

below. 

Both integration constants, b and c, in Eq. (4.18) can be determined using the above-

mentioned two boundary conditions, and then the following expression can be 

deduced for the radial velocity: 
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The velocity at the circular edge of the wetted region inside the porous layer is: 







r

v
dt

d
 . (4.23) 

Substitution of Eq. (4.22) into Eq. (4.23) results in the following evolution equation 

for )(t : 
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An approximation of the time scale 
*

pt  in the same way as in Ref.119 can be found 

according to Eq. (4.24) as: 
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The estimated values of 
*

t according to Eq. (4.12) and 
*

pt  based on Eq. (4.25) 

proves that 
**

ptt   under all the experimental conditions. 

Substitution of Eq. (4.24) into Eq. (4.16) leads to the following system of 

differential equations for the evolution of both the radius of the drop base, )(tL , and 

that of the wetted region inside the porous layer, )(t : 
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(4.27) 

The system of differential equations (4.26) and (4.27) can be made dimensionless 

using new scales ** /,/,/ tttLLL m   , where mL  is the maximum radius 

of the droplet base, which is reached at the unknown time instant mt when 
t

L

d

d
=0 in 

Eq. (4.26). As mentioned above in Section 4.2.1.1 *  is the maximum radius of the 

wetted region which is reached at time t*. Note that the time instant t* is unknown 

but according to the previous considerations, 
*

pt (Eq. (4.25)) can be a good 

approximation of that. That is 
**

ptt  , where   is an unknown parameter, which 

can depend on the flow behavior index, n, of the power law.   

The same notations marked with an over-bar are used for dimensionless variables as 

for corresponding dimensional variables. Using the new scales, the system of Eqs. 

(4.26) and (4.27) is transformed into: 
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where m  is the radius of wetting region at the time instant mt .  

Eqs. (4.28) and (4.29) are a system of two first order differential equations, and, 

hence, two initial conditions, )0(L  and )0( , should be imposed for solving them. 

The system of Eqs. (4.28) and (4.29) is singular at zero values of )0(L  and )0( . 

Therefore, very small but non-zero values were selected instead: 

001.0)0( L , (4.31) 

001.0)0(  , (4.32) 

The small initial time, 0t , was selected as 00001.00 t  and the calculation showed 

that the results are almost independent of the small initial values selected. 

Solution of Eqs. (4.28) and (4.29) should satisfy the following four extra conditions: 

0)1( L , (4.33) 

1)( mtL , (4.34) 

0
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td

tLd m , (4.35) 

1)1(  . (4.36) 

Conditions (4.34) and (4.35) were used above to select an expression for A in Eq. 

(4.30) and conditions (4.33) and (4.36) are to be satisfied. Accordingly, the two 

unknown dimensionless parameters,   and  , in the system of differential 

equations (4.28) and (4.29) are determined by satisfying the precisely two extra 

conditions (4.33) and (4.36).   

Comparison of Eqs. (4.10) and (4.28) gives the dimensionless velocities of the 

expansion, 
v , and the shrinkage, 

v , of the droplet base as: 
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(4.37) 

Eq. (4.4) can be rewritten using the same dimensionless variables and 

2
0 1  VVV as: 

)1(
4 2

3

0 
L

V


 . (4.38) 



CHAPTER 4  72 
 

 

If we introduce )1(
4 2
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V
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
 , which is the value of the dynamic contact angle at 

the time instant when the maximum value of the drop base is reached, then Eq. 

(4.38) can be transformed as: 
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Let us consider the asymptotic behavior of the system of differential equations 

(4.26) and (4.27) during the second stage of the spreading: According to the 

previous considerations and as it will be confirmed below in Fig. 4.5, during the 

second stage of the spreading/imbibition, velocity of the expansion of the droplet 

base, v+, becomes small; therefore, the term corresponding to v+ in the left hand side 

of Eq. (4.26) is excluded so as to understand the asymptotic behavior: 
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while Eq. (4.27) is left unchanged. In order to solve analytically the system of 

differential Eqs. (4.27) and (4.40), Eq. (4.40) is divided by Eq. (4.27), which results 
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0  VV is used in place of  , the latter equation 

is transformed into the following form: 
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3
 , which can be easily integrated 

and the solution is 

3LCV   (4.41) 

where C is an integration constant. Let us rewrite Eq. (4.4) using the same 

dimensionless variables and 0VVV  : 
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Comparison of Eqs. (4.41) and (4.42) demonstrates that the dynamic contact angle 

asymptotically remains constant during the second stage. This constant value is 

marked below as f . It is necessary to emphasize that in the case under 

consideration the constancy of the contact angle during the second stage is not 

related to the contact angle hysteresis as there is no hysteresis in the system in the 
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case of complete wetting: f  is not a receding contact angle but it exists as a result 

of a self-regulation of the flow in the drop-porous layer system.119  

 

4.2.2 Experimental data  

All experimental data for the theoretical calculations were taken from the previous 

published papers,116,118 where a series of experiments on blood spreading were 

reported. Blood of different haematocrit levels, 30 % and 50%, was prepared and a 

droplet of them with a known volume was deposited on different porous substrates: 

commercial untreated Whatman 903 filter paper, silanized Whatman 903 filter paper 

and nitrocellulose membranes of two different pore sizes 0.2 and 8 m. The 

spreading experiments were performed to monitor time evolution of droplet height, 

h(t), radius of spreading, L(t), dynamic contact angle, θ(t), and radius of the wetted 

spot, )(t . Below a brief description of the experimental procedure is presented; 

however, the details can be found in Refs.116,118.  

 

4.2.2.1 Materials and instruments 

Porcine blood was collected in EDTA anti-coagulated tubes (International Scientific 

Supplies Ltd. Bradford, UK) and treated to have different hematocrit levels. The 

blood samples of two different haematocrit levels, 30% and 50%, were prepared and 

used in the spreading experiments. Whatman 903 filter paper (blood saving card) 

and nitrate cellulose membranes of pore sizes 0.2 and 8 m (marked by the 

supplier), both provided from GE health care (UK), were used as model porous 

substrates.  

In addition, the experiments were also conducted on silanized Whatman 903 filter 

paper. In order to silanize the filter paper, it was dried for one hour at 140 °C and 

directly placed into a sealed dried temperature chamber with silicone gel to 

eliminate the effects of the humidity. APTES (3-aminopropyl-triethoxysilane) 

purchased from Sigma-Aldrich (UK) was poured into Petri dish and placed into the 

same temperature chamber at 25 °C for slowly evaporation to silanize the surface of 

fibers inside Whatman 903 filter paper.  Each Whatman 903 paper was silanized for 

over 48 hours. The goal of silanization was to form organic silane layer on the 
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surface of cotton fibers which allows obtaining the porous substrates of the same 

porosity; however, with higher hydrophobicity.   

The porosity of the Whatman 903 filter paper was in the range of 0.54 to 0.6 and the 

thickness was 500 ± 25µm measured by SEM. All samples used of nitrocellulose 

membranes were plane circles of radius 47mm and thickness in the range of 105-140 

m. The porosity of the membrane ranges between 0.66 and 0.84 as provided by the 

manufacturer.  

AVT Pike F-032 high performance camera (Allied Vision Technologies, UK) was 

used at 60 frames per second for the top view recording of both porous substrates, 

nitrocellulose membranes and Whatman filter paper, as well as side view recording 

of blood spreading over nitrocellulose membrane. I-Speed high speed camera 

(Olympus, UK) was used for side view recording (600 frames per second) on 

Whatman 903 filter paper due to the very short duration of the spreading process 

(less than 0.5 second). The optical objective used in side view experiment for drop 

spreading was IF-3 standard (INFINITY PHOTO-OPTICAL GmbH, Germany). 

KRUSS DSA100 and drop shape analysis (KRUSS GmbH, UK) were used to 

determine the static advancing and static receding contact angles of blood droplets 

on all porous substrates in the case of partial wetting.  

 

4.2.2.2 Spreading experiments 

The experimental setup used for spreading experiments is shown in Fig. 4.4. The 

porous substrates were placed in the centre of the environmental chamber to control 

the temperature and humidity. Silicone gel was placed into the chamber to maintain 

constant humidity. The environmental chamber was mounted on a vibration-control 

stand to prevent vibrations. In each spreading experiment a constant value of blood 

droplet volume was produced (using 5.00± 0.25 µl syringe in the case of 

nitrocellulose membranes and 10.00 ± 0.5µl syringe in the case of  silanized and 

untreated Whatman 903 filter papers) and placed on the porous substrates within less 

than 1mm dropping distant to ensure the consistency of each experimental 

measurement. The spreading process of blood drops over porous substrates was 

recorded and analysed using the top and side views.  
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Figure 4.4: Schematic of the setup for spreading experiments: 1 - porous substrate; 2 - 

hermetically closed, thermostated chamber; 3 - liquid drop; 4 - light sources; 5 - CCD 

cameras; 6 - PC; 7 - optical windows; 8 - optical objectives. Reproduced with permission 

from Refs.116,117. Copyright © 2015, 2016 Elsevier B.V. 

 

The time evolution of the spreading radius, L(t), and the droplet height, h(t), were 

monitored using side view camera. The time evolution of wetted region radius, )(t , 

was recorded using top view camera. For each sample the camera recording started 

as the blood drop touched the porous surface and finished after the complete 

penetration of the droplet into the porous substrate. The time evolution of dynamic 

contact angle, θ(t), was calculated from the experimental results based on spherical 

shape assumption. Due to the thin thickness of porous substrate, the cross section of 

the porous substrate was assumed to be fully saturated as shown in Fig. 4.3. All 

experimental data for each porous substrate were averaged using at least ten 

repeated spreading experiments.  

 

4.2.2.3 Blood rheology  

The blood rheology measurements have been made in Ref.118 using a rheometer with 

parallel plate geometry (4 cm diameter, stainless steel) and 250 µm gap. The range 

of shear rate was from 0.2 to 100 s-1. The power law Otswald- de Waele relationship 

has been used as the rheological model of blood: 
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1 nk  . 
(4.43) 

where k is the flow consistency index, n is the flow behaviour index and  is the 

shear rate. Eq. (4.43) showed a good representation model for the measured blood 

viscosity as a function of shear rate,118 where both k and n were fitted for all blood 

samples under investigation with different haematocrit levels. Table 4.1 shows the 

fitted values of k and n according to Eq. (4.43). 

 

Table 4.1: Fitted values of k and n for different blood samples according to Eq. (4.43). Data 

taken from Ref.118 

Haematocrit levels 

(%) 
k n 

30 57.72 0.394 

50 120.60 0.325 

 

 

4.2.2.4 Measurements of the permeability and effective capillary pressure of porous 

substrate 

In the developed theoretical model for the complete wetting case, the permeability, 

effective capillary pressure and porosity of porous layer can be considered as a 

single coefficient, n

n

cn

k

pK
/1

/1


 , in the system of Eqs. (4.26) and (4.27). This coefficient 

was found from the permeability experiments based on the modified Darcy’s law. 

The horizontal imbibition of blood samples with different haematocrit levels into the 

silanized and untreated Whatman 903 filter papers was investigated similar to 

Ref.119 and the position of imbibition front was recorded by high speed camera over 

time. As is shown below (see results and discussion section) drop 

spreading/imbibition over nitrocellulose membranes is a partial wetting behavior; 

therefore, the coefficient was found only in the case of Whatman 903 filter papers. 

According to Eq. (4.17) and the modified Darcy’s law the position of the imbibition 

front can be expressed as the following equation:116,117   
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n

n

cnn )/11()(
/1
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
 (4.44) 

where d(t) is the position of the imbibition front inside the porous layer. The value 

of the coefficient, n

n

cn

k

pK
/1

/1


, can be determined by the slope of the straight line in the 

figure of 
n

td n

/11

)(/11





 against t. The measured values of n

n

cn

k

pK
/1

/1


 are presented in Table 

4.2 for both silanized and untreated Whatman 903 filter papers.  

 

Table 4.2: The values of n

n

cn

k

pK
/1

/1


 for silanized and untreated Whatman 903 filter papers 

with different blood samples. Adapted with permission from Refs.116,117. Copyright © 2015, 

2016 Elsevier B.V. 

Haematocrit level  

(%) 

n

n

cn

k

pK
/1

/1


 (mm(1+1/n)s-1) 

silanized filter paper untreated filter paper 

30 117.15 43.33 

50 30.184 27.01 

 

 

4.2.3 Numerical solution of the system of differential equations (4.28) and 

(4.29) 

In the developed mathematical model for complete wetting cases, the system of 

differential equations (4.28) and (4.29) was solved using initial conditions (4.31) and 

(4.32). The conditions (4.33) and (4.36) were used to determine the two unknown 

parameters,   and . It should be noted that the system after that does not include 

any fitting parameters. As is shown in Table 4.3 both parameters,   and , vary 

insignificantly for the n values used in the calculations.  
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Table 4.3: Calculated values of the two unknown dimensionless parameters   and   for 

blood samples with different n values. Reproduced with permission from Ref.117. Copyright 

© 2015 Elsevier B.V. 

Haematocrit level 

(%) 
n       

30 0.394 0.281 0.376047 

50 0.325 0.214 0.3454006 

 

Therefore, the three dimensionless dependencies )(),( ttL  and /m should fall on 

three almost universal curves. See solid lines in Figs. 4.6, 4.7 and 4.8. The predicted 

results are in good agreement with the experimental observations (see below):  

experimental dependencies also show a universal behavior. 

 

4.3  Results and discussion 

In all spreading experiments116,117 with both Whatman 903 filter papers and 

nitrocellulose membranes, the droplets shape remained a spherical cap over the 

entire duration of spreading/imbibition process which satisfies the above theoretical 

assumption. This spherical cap shape allowed calculating the dynamic contact angle 

of each spreading droplet using the droplet base radius and height according to well-

known equations.118  

 

4.3.1 Complete wetting 

The results of experiments presented in Refs116,117 indicated that the blood droplets 

spreading/imbibition on both untreated and silanized Whatman 903 filter papers was 

a complete wetting. The silanization of filter paper resulted in a considerable 

increase in the dynamic contact angle, but the spreading behaviour still remained 

complete wetting. Although there were some differences in the spreading behavior 

of blood samples with different haematocrit levels on filter papers, in general, the 

spreading/imbibition results of all samples showed similar features during the whole 

process. As shown earlier in Fig. 4.2 the whole process can be subdivided into two 

stages similar to the case of Newtonian liquids119: over the duration of the first stage, 

the expansion of droplet radius, due to the capillary regime of spreading, is faster 
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than the shrinkage, caused by the imbibition into the filter paper, until they 

counterbalance each other as the maximum radius is reached.  After that the second 

stage starts in which the droplet base shrinks and the wetted region expands until the 

complete disappearance of the droplet (see below in Figs. 4.6-4.8).  

Fig 4.5 shows dimensionless velocity v  and v  for blood samples with different 

haematocrit levels (n values) spreading in a complete wetting case calculated 

according to Eq. (4.37), and   and   values presented in Table 4.3.  This figure 

confirms that in a complete wetting case:  

a) First stage of spreading/imbibition is much shorter than the second stage. 

During the first stage the capillary spreading prevails over the drop base 

shrinkage caused by the liquid imbibition into the porous substrate; 

b) Spreading of the droplet base over porous substrate almost stops after the 

first stage and the shrinkage of the droplet base is determined by the 

imbibition of the liquid from the drop into the porous substrate.  

 

 

Figure 4.5: The time evolution of the dimensionless velocity 
v  and 

v  according to Eq. 

(4.37) for blood samples with 30% and 50% haematocrit level. Adapted with permission 

from Ref.117 Copyright © 2015 Elsevier B.V. 
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Table 4.4 shows the experimental data obtained from spreading experiments over 

untreated and silanized Whatman 903 filter papers, which include the maximum 

spreading radius, 
exp,mL , contact angle at maximum spreading, m,exp, maximum 

radius of wetted region, 
*

exp and the time of complete imbibition, exp
*t . 

Experimental time evolution of the radius of the droplet base, Lexp, radius of the 

wetted region, exp and contact angle, θexp , were made dimensionless using the 

values presented in Table 4.4. 

Table 4.4 indicates that the main difference between blood spreading over the 

silanized and untreated filter papers is the value of contact angle, m, which is 

affected by the silanization (hydrophobization) of the filter paper and it is 

substantially higher in the case of silanized filter paper in comparison with the 

untreated one.   

 

Table 4.4: The experiment data of spreading over silanized and untreated Whatman 903 

filter paper to make experimental dependences dimensionless for comparison with predicted 

time dependences according to Eqs. (4.28), (4.29) and (4.39). Adapted with permission from 

Refs.116,117. Copyright © 2015, 2016 Elsevier B.V. 

Type  

of filter 

paper 

Haematocrit 

level 

(%) 

t*
exp 

(s) 

Time of 

complete 

imbibition 

Lm,exp 

(mm) 

Max radius 

of droplet 

base 

θm,exp 

(degree) 

Contact 

angle at mt  

*

exp  

(mm) 

Max radius of 

wetted region 

silanized 

30 
0.226 

0.032 

2.00 

0.15 

40.45 

3.57 

2.97 

0.07 

50 
0.438 

0.021 

2.13 

0.21 

39.4 

7.6 

2.94 

0.03 

untreated 

30 
0.351 

0.014 

2.18 

0.07 

32.80 

1.88 

3.36 

0.09 

50 
0.508 

0.022 

2.18 

0.08 

30.94 

2.50 

3.32 

0.06 
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Figs. 4.6-4.8 compare the experimental data with the predicted results according to 

Eqs. (4.28), (4.29) and (4.39) for complete wetting cases. These figures show that all 

the data fall into corresponding universal curves when the dimensionless values are 

used: mLL / , */  , */ tt , and m / . The predicted results for blood droplets with 

different values of n are in a good agreement with the experimental data. However, 

the main conclusion is that both experimental dependences and the calculated 

theoretical dependences show a remarkable universal behavior independent of n. As 

can be seen in Figs. 4.6-4.8, only two stages of speeding have been identified in the 

case of complete wetting:  a relatively fast initial stage of spreading followed by a 

shrinkage of droplet base as a result of the droplet volume loss due to the imbibition 

into porous substrate.  

It is necessary to consider that a simple model of blood rheology and its imbibition 

into the porous substrate is used in this chapter for complete wetting cases:  The 

absorption of red blood cells inside the porous substrate, bi-porous structure of the 

substrate,118 and evaporation were not considered within the model.    

 

 

Figure 4.6: Dimensionless radius of the droplet base in the case of spreading over silanized 

and untreated Whatman 903 paper. Adapted with permission from Ref.116 Copyright © 2015 

Elsevier B.V. 
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Figure 4.7: Dimensionless dynamic contact angle in the case of spreading over silanized 

and untreated Whatman 903 paper. Adapted with permission from Ref.116 Copyright © 2015 

Elsevier B.V. 

 

 

Figure 4.8: Dimensionless radius of the wetted region inside the filter paper in the case of 

spreading over silanized and untreated Whatman 903 paper. Adapted with permission from 

Ref.116 Copyright © 2015 Elsevier B.V. 
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In order to predict completely the blood spreading/imbibition behavior in the case of 

complete wetting, the four experimental data, time of complete imbibition, t*, 

maximum radius of droplet base, Lm, contact angle at maximum spreading, θm, and 

maximum radius of wetted region, * , are determined from the theoretical results 

and physical parameters which are obtained independently from different 

experiments. These physical parameters are the viscosity of blood, 
1 nk  , 

namely, n and k; the surface tension,  and the physical parameters of porous 

substrate: the permeability coefficient, 
n

cn pK /1
, the thickness, , and the porosity, ε. 

The universal dimensionless constants, namely, mt,,   and m  could be 

determined from the result of the dimensionless model.  

The value *  can be determined directly according to Eq. (4.3), where the values of 

V0, ε and  are equal to 10±0.5µl, 0.57 ± 0.03 and 500 ± 25 µm, respectively.118 The 

imbibition time, *t , can be obtained by 
**

ptt  , where 
*

pt  is determined by Eq. 

(4.25) and the measured values of n

n

cn

k

pK
/1

/1


 for silanized and untreated Whatman 903 

filter papers  in Table 4.2 .  

Due to the fast expansion of the droplet base radius during the first stage of 

spreading, the imbibition of blood could be neglected in this stage; therefore, the 

maximum spreading radius can be approximately by Eq. (4.11) and then, the contact 

angle, θm can be calculated according to Eq. (4.38) as the following equations: 
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


  (4.46) 

where 50 ±5 dyne/cm and the values of the k and n for blood samples with 

different haematocrit levels are presented in Table 4.1.118 

The calculated data for simt*
, simmL , , simm, and 

*

sim  based on the mathematical 

model and independent measurements of physical parameters are given in Table 4.5. 

The comparison of the simulated result and experimental data (Table 4.4) indicates 

that the calculated parameters are in a good agreement with the experimental 

observations.  
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Table 4.5: The predicted values of blood spreading/imbibition behavior over silanized and 

untreated Whatman 903 filter paper. Adapted with permission from Refs.116,117. Copyright © 

2015, 2016 Elsevier B.V. 

Type  

of filter 

paper 

Haematocrit 

level 

(%) 

t*
sim 

(s) 

Time of 

complete 

imbibition 

Lm, sim 

(mm) 

Max radius 

of droplet 

base 

θm, sim 

(degree) 

Contact 

angle at mt  

*

sim  

(mm) 

Max radius of 

wetted region 

silanized 
30 0.172 1.954 51.14 3.344 

50 0.973 2.035 42.71 3.344 

untreated 
30 0.465 2.050 44.30 3.344 

50 1.087 2.044 42.13 3.344 

 

4.3.2 Partial wetting 

According to Ref.116 the blood droplets spreading/imbibition on nitrocellulose 

membranes shows a partial wetting behaviour. The whole process can be subdivided 

into three stages, as shown earlier in Fig. 4.1, which is a characteristic feature of the 

partial wetting case (see Figs. 4.9-4.11). During the fast first stage drop spreads until 

its base radius reaches the maximum value, Lad,; after that the second stage starts in 

which the three-phase contact line is pinned on the substrate at the maximum 

position and the contact angle decreases from static advancing contact angle, θad,  to 

static receding contact angle, θr ; and finally, during the third stage the droplet base 

radius starts to shrink at approximately constant contact angle equal to the static 

receding contact angle until the complete imbibition of the droplet (see Fig. 4.10). 

Therefore, blood drop spreading/imbibition over nitrocellulose membranes was a 

partial wetting process.  

In order to compare the spreading behaviour of blood on different nitrocellulose 

membranes, the following dimensionless parameters were used: adLtLL /)( , 

*/)(  t , adt  /)(  and */ ttt  , where Lad is the maximum radius of 

droplet base, 
*  is the radius of wetted region at the end of the process, θad is the 
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advancing contact angle,  t* is the time when imbibition is finished (see Fig. 4.1). All 

corresponding parameters are presented in Table 4.6.   

In Figs. 4.9-4.11, time evolution of the dimensionless radius of the droplet base, 

dynamic contact angle and radius of the wetted area is presented in the case of 

partial wetting. A corresponding universal behaviour independent of bloods with 

different haematocrit level and n values is also clear here for different nitrocellulose 

membranes. As mentioned earlier, the whole spreading process on nitrocellulose 

membranes can be subdivided into three stages. However, note that in the case of 

spreading over 0.2 µm pore size nitrocellulose membranes the red blood cells did 

not penetrate inside the membrane pores and only plasma could penetrate inside. 

That is, the final radius of the droplet base did not vanish (see Fig. 4.9) and only 

stages 1 and 2 are present in this case.  

 

Table 4.6: The experiment data of spreading over nitrocellulose membranes to make 

experimental dependences dimensionless. Adapted with permission from Ref.116. Copyright 

© 2016 Elsevier B.V. 

Pore size 

of 

membrane 

(µm) 

Haem

atocrit 

level 

(%) 

t* 

(s) 

Time of 

end of 

spreading 

process 

tad 

(s) 

Time of 

reaching 

max 

radius 

Lad 

(mm) 

Max 

radius of 

droplet 

base 

θad 

(degree) 

Advancing 

contact 

angle 

θr 

(degree) 

Receding 

contact 

angle 

*  

(mm) 

Max 

radius of 

wetted 

region 

0.2 

30 49.2 11.733 
1.97 

±0.04 

44.03 

±0.9 

22.60 

±1.53 
3.07 

50 52.2 19.933 
2.16 

±0.04 

45.84 

±2.4 

24.21 

±3.50 
2.6 

8.0 

30 
21.2 

±1.9 
0.866 

1.99 

±0.07 

39.82 

±0.517 

15.58 

±4.09 
3.88 

50 
182.3 

±13.3 
8.466 

1.88 

±0.06 

39.10 

±0.44 

17.10 

±5.10 
3.32 
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Figure 4.9: Dimensionless radius of the droplet base in the case of spreading over 

nitrocellulose membrane. In the case of 0.2 µm NCM, only stage 1 and 2 are present. 

Reproduced with permission from Ref.116. Copyright © 2016 Elsevier B.V. 

 

 

 

 

Figure 4.10: Dimensionless dynamic contact angle in the case of spreading over 

nitrocellulose membrane. Note, in the case of 0.2 µm NCM, there is no stage 3, it is a 

continuation of stage 2. The contact angle remained almost constant after stage 1. 

Reproduced with permission from Ref.116. Copyright © 2016 Elsevier B.V. 
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Figure 4.11: Dimensionless radius of the wetted area inside the membrane in the case of 

spreading over nitrocellulose membrane. Note, in the case of 0.2 µm NCM, stage 3 is 

only continuation of stage 2. Reproduced with permission from Ref.116. Copyright © 2016 

Elsevier B.V. 

 

4.4  Conclusions 

Spreading/imbibition of small drops of blood, which is a non-Newtonian liquid, over 

different dry porous layers, is investigated from both theoretical and experimental 

points of view. A system of two differential equations is derived for the case of 

complete wetting from the combination of a spherical cap spreading model over 

porous layer and a modified Darcy’s law for power law fluids. The deduced system 

of differential equations describes the time evolution of radii of both the drop base 

and the wetted region inside the porous layer during blood spreading/ imbibition 

over a dry porous substrate. The developed mathematical model does not include 

any fitting parameters and predicts a universal behavior for the dimensionless 

dependences of the droplet base radius, the radius of wetted region, and the contact 

angle of droplet over porous substrate, which are completely independent of the 

rheological properties of blood. The results of experiments indicated that the blood 

droplets spreading/imbibition on both untreated and silanized Whatman 903 filter 

papers was a complete wetting behaviour with two subsequent stages: initial fast 

spreading and the shrinkage of the drop base. However, in the case of nitrocellulose 

membranes a partial wetting behaviour with three subsequent stages: initial fast 

spreading, constant maximum droplet base and the shrinkage of the drop base, was 
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observed. All experimental data fell on three universal curves independent of bloods 

with different haematocrit levels and n values if appropriate scales are used with a 

plot of the dimensionless droplet base radius, the wetted region radius, and the 

contact angle of droplet over porous layers. The predicted theoretical results for 

complete wetting cases are also three universal curves accounting quite satisfactory 

for the experimental data. The simulated results show a good agreement with 

experiment data although the bi-porous structure of the filter paper and adsorption of 

red blood cells inside the porous substrate were not taken into account according to 

the suggested model.  

  

Nomenclature 4 

a* characteristic scale of the pore radii inside the porous layer, m 

A dimensionless parameter defined in Eq. (4.30) 

b, c, C integration constants 

d position of the imbibition front inside the porous layer, m 

g gravity acceleration value, m∙s-2 

h height of the drop, m 

h* scale of the drop height, m 

Kn,p permeability of the porous layer, m1+1/n 

k flow consistency index, Pa∙sn 

L radius of the drop base, m 

Lad maximum value of the drop base radius in a partial wetting, m 

Lm maximum value of the drop base radius in a complete wetting, m 

L0 radius of the drop base in the end of the very fast initial stage of 

spreading, m 

L* scale of the drop base, m 

  radius of the wetted region inside the porous layer, m 

m  radius of wetting region at time instant mt , m 

*  maximum radius of the wetted region inside the porous layer, m 

n flow behavior index 

p pressure, Pa 

pc capillary pressure inside the porous layer, Pa 
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pd capillary pressure inside the drop, Pa 

pg ambient pressure, Pa 

Q flow rate, m3.s-1 

r, x, z co-ordinate system 

R Radius of tube, m 

t time, s 

tad time when θad is reached in a partial wetting, s 

tm time of maximum spreading radius in a complete wetting, s 

tr time when θr is reached in a partial wetting, s 

t time required for a complete saturation of the porous layer, s 

t0 duration of the very fast initial stage of spreading, when the 

capillary regime of spreading is not applicable, s 

t* time when imbibition is finished in partial and complete wetting, s 

t*
p
 time scale of imbibition into the porous layer, s 

t*
µ time scales of viscous spreading over porous layer, s 

Tp time of the slower imbibition into the porous substrate, s 

T time of the fast viscous spreading over porous layer, s 

u, v vertical and radial velocity components, m.s-1 

v+ velocities of the expansion of the drop base, m.s-1 

v- velocities of the shrinkage of the drop base, m.s-1 

V volume of the drop, l 

V0 initial volume of the drop, l 

Greek symbol 

n  dimensionless parameter defined as n/(3n+7) 

 surface tension, N.m-1 

  shear rate, s-1 

ε porosity of the porous layer 

∆ thickness of the porous layer, m 

 smallness parameter 

 effective viscosity, Pa.s 

 dynamic contact angle, degree 

ad static advancing contact angle in a partial wetting, degree 
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f constant contact angle during the second stage of complete wetting, 

degree  

m contact angle at tm in a complete wetting, degree 

r static receding contact angle in partial wetting, degree 

  dimensionless parameter in Eqs. (4.28) and (4.29) 

 density, kg∙m-3 

 effective lubrication parameter 

  dimensionless parameter in Eqs. (4.28) and (4.29) 

 

Appendix 4.A 

A radial velocity profile for flow of a power law liquid in a pipe is given by the 

following expression:121 
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Everywhere below it is assumed that the flow is directed along x.  

Therefore, the flow rate, Q , is: 
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According to the latter equation the average velocity of flow, v, in the pipe can be 

found as: 
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Capillary imbibition of non-Newtonian liquid into a thin capillary 

The schematic of capillary imbibition of a non-Newtonian liquid, like blood, into a thin 

capillary is shown in Fig. 4A.1. 
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Figure 4A.1: Capillary imbibition of a non-Newtonian liquid into a thin capillary. 

 

The rate of the imbibition can be written according to Eq. (4A.3): 
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The gradient of the pressure is equal to, capillary pressures/  : 



R

dx

dp /cos
 ,  (4A.5) 

where  is the liquid-air interfacial tension and  is the contact angle. Substitution of 

Eq. (4A.5) into Eq. (4A.4) results in  
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Integration of the latter expression with the initial condition gives 
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Eq. (4A.8) leads to the well-known Washburn solution in the case of a Newtonian 

liquid, n=1: 
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Comparison of the Eqs. (4A.8) and (4A.9) demonstrate that pseudoplastic fluids 

(n<1) penetrate into thin capillaries slower than Newtonian liquids, while dilatant 

fluids (n>1) penetrate faster than Newtonian fluids. It is easy to confirm that the 
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same conclusion is also valid for the imbibition of non-Newtonian liquids into a 

porous medium.  

 

One dimensional imbibition of a non-Newtonian liquid into a porous medium 

In the case of one dimensional imbibition of a non-Newtonian liquid into a porous 

medium, Eq. (4A.3) can be rewritten as follows 

n
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where Kn is the permeability of the porous medium for the power law non-

Newtonian liquid of power n. In the case of Newtonian liquid the well-known 

Darcy’s law can be recovered from the above equation:  
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CHAPTER 5  93 
 

 

CHAPTER 5 

 

KINETICS OF SPREADING OF NON-NEWTONIAN 

SOLUTIONS OVER HAIR 

Overview 

In the previous chapter theoretical and experimental findings on kinetics of wetting 

and spreading of blood as a non-Newtonian colloidal suspension over different thin 

porous substrates were presented. Below wetting and spreading of two commercially 

available non-Newtonian polymeric solutions, AculynTM 22 and AculynTM 33, on 

hair tresses are investigated experimentally1. The results of investigations were 

published earlier in Colloids and Interface Science Communications 9, 12-15, 2015 

and reused in this chapter with permission. Initially in this chapter, a description of 

the material preparation and experimental procedure of wetting of hair tresses with 

different solutions is explained. Then, bulk and surface properties of the solutions 

along with the behaviour of the solutions’ droplets on dry hair tresses are studied. 

Spreading kinetics of the droplets is analysed, including wetting, spreading and 

penetration, as well as the influence of several additives common in cosmetic 

formulations. 

 

5.1  Introduction  

In this chapter wetting and spreading of non-Newtonian polymeric droplets on hair 

tresses are presented. Hair wetting is a very common phenomenon in our everyday 

life. Interactions between hair and water occur frequently not only in shower during 

application of the hair care products such as shampoos, conditioners or hair 

colorants, but also in contact with the atmospheric moisture. Water can absorb and 

penetrate into hair making it wet. As a result, the wetted strands stick to each other 

and form several clumps due to cohesive forces caused by water bridges.122 Hair 

                                                 
1 Statement of contributions of joint authorship: The experiments presented in this chapter were 

conducted by Anna Trybala. Omid Arjmandi-Tash analysed the experimental data and interpreted the 

findings.   
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wettability, and how hair care products affect its wetting properties, is of 

considerable interest in cosmetic science.123,124 It is important to realise that 

behaviour of hair care products is different when they are applied on wet or dry hair; 

generally, wetting should be studied in the conditions which can mimic real 

applications. 

The majority of research presented in the literature concentrate on interaction of a 

single hair fibre (dry or wet) with various liquids;124-126 however, wetting of dry hair 

tresses with polymer solutions is largely unexplored up to now. These properties, 

however, attract significant interest from the industry, particularly for treatments 

which are applied on dry hair, e.g. for hair colouring products, hair styling products, 

leave-on conditioners and serums. Moreover, there is a desire to minimise the use of 

harsh surfactant in such systems; cosmetic polymers with a pronounced affinity to 

interfaces, like AculynTM 22 (A22) and AculynTM 33 (A33) solutions, are such 

alternatives. These polymers are widely used in production of shampoos, bath 

foams, foaming facial cleansers, hair styling gels, liquid soaps, lotions, moisturizing 

creams and hair colorants.4 Below wetting of dry hair tresses by polymer solutions 

of A22 and A33 is investigated to determine behaviour of polymeric solutions 

during real cosmetics applications.  

Hair is a natural fibre consisting of a core (cortex and medulla) covered with 

overlapping cuticle cells. The most important for wetting is the outer surface of the 

cuticle, which is covered by a covalently attached monolayer of fatty acid (18-

methyle-icosanic acid), thus making the fibre slightly hydrophobic.127-129   

 

5.2  Materials and methods 

As mentioned above, the experiments were conducted using two polyacrylate 

polymers, A22 and A33, which are broadly applied by hair care industries. A22 is a 

hydrophobically-modified anionic alkali soluble polymeric emulsion, and A33 is an 

anionic alkali soluble, lightly crosslinked emulsion of the ethyl acrylate and 

methacrylic acid.130,131 General structures of the polymers are presented in Fig. 5.1.  
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a) b) 

Figure 5.1: Schematic structure of a) AculynTM 22 and b) AculynTM 33.130, 131 

 

Aqueous solutions of these polymers are viscous, shear thinning non-Newtonian 

fluids.132,133 Both polymer emulsions may contain a trace amount of surfactant 

(sodium dodecyl sulphate); therefore, some low level of surfactant was expected in 

the experiments; the surfactant effect was separately investigated in this work. 

Polymers were used without any pre-processing, like purification to keep condition 

of the experiments as close to the real application conditions as possible. A22 and 

A33 emulsions were 30 % w/w and 28 % w/w active in water, respectively, and they 

were supplied by Dow. The polymers were soluble in water at high pH (>7).130,131   

Aqueous solutions of the polymers in the concentration range 1.0 – 1.5% w/w were 

prepared by diluting and neutralising the stock polymer emulsions with a 2 % 

ammonia solution in ultra-pure water produced by Millipore Q, and further buffered 

with  ascorbic and citric acids (0.2 % w/w each). Sodium chloride (NaCl) was added 

to the solutions in the range 0-1.5 M, and iso-propyl alcohol (i-propanol, ipr-OH) 

was used at 0 or 1.67 M (10% w/w) concentration. Sodium dodecyl sulphate 

surfactant (SDS) was used at the concentration 5 mM. The above compositions have 

been chosen to represent typical systems used in the cosmetic applications where the 

polymers are utilized, for example in hair colorant applications. In such systems, salt 

is often used to control the ionic strength and rheology, and solvents like i-propanol 

are added to control solubility of the active ingredients (such as dyes). Surfactant is 

typically used to enhance wetting properties and, in some cases, to produce a good 

quality foam.  In the researches presented in this chapter and in Refs.132,133 the 

procedure adapted by Procter & Gamble Company to produce cosmetics 

formulations was followed.  

Rheology and surface tension measurements were conducted as described in 

Refs.132,133. Rheology measurements were conducted on an AR 1000-N rheometer 

(TA Instruments), using a steel cone of 4 cm diameter, cone angle 1°59’ and 
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truncation of 56 μm. The temperature was kept constant at 20 OC using the Peltier 

plate. The relative standard error of rheology measurements when the samples were 

taken from the same solution was below 5 %; the error increased for the solutions 

prepared at different times, and was estimated at around 10%; this was attributed to 

variations in the solution preparation and polymer neutralization. Measurements on 

the surface tension were performed by the drop shape analyser DSA100 (Kruss), 

using a buoyant air bubble formed at the tip of the hooked capillary immersed in the 

cuvette containing a polymer solution.  

Blended human hair tresses (brown, Caucasian origin) were supplied by 

International Hair Importers, arranged into flat tresses of 12 cm length, width 2.5 cm 

and approximately 3 mm thickness. The average weight of the hair tress was 2g and 

the average number of hair fibres in the tress was 4000. For wetting measurements, 

the tresses were secured in a special frame to provide as much hair alignment as 

possible. Frame allows fixing bunch of hair in a way which enables measurement of 

contact angle on hair. The surface of hair tress was as flat as possible. Example of 

hair arrangement and SEM images of hair fibres are presented in Fig. 5.2. 

 

 

a) 

  

b) 

Figure 5.2: a) Example of hair tress used for contact angle measurements; b) SEM 

images of hair fibers. Reproduced with permission from Ref.134. Copyright © 2015 

Elsevier B.V. 
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The thickness of the tress was sufficient to avoid contact of the investigated liquid 

with the frame material. There was some expected variation in the arrangement of 

individual hair fibre on the frame in the course of repeated experiments, leading to a 

considerable standard error of measurements. 

Each hair tress was washed by a neutral shampoo, rinsed 3 times in distilled water 

and dried naturally. Measurements of the apparent contact angle were performed on 

dry hair tresses using the drop shape analysing software DSA 3, KRUSS. This 

software provides the contact angles θ, the droplet volume V, and the droplet base 

diameter DB, all as a function of time t.  The movies were recorded with a constant 

speed of 5 fps. The process time reported below is defined as the time during which 

the droplet remains on the hair tress. During this time various parallel processes 

(spreading, penetration and evaporation) occur. The initial contact angle was 

measured immediately after a droplet was placed on the support material. The final 

(advancing) contact angle is the contact angle after spreading stops, when the DB 

reaches a constant value. All measurements were made at 20oC and 40% relative 

humidity. Teflonated silicon wafers (Teflon below) were selected as a reference 

support material for the contact angle measurements, as the initial contact angle on 

Teflon and hair tresses (both hydrophobic) is similar. In present experiments, the 

droplet volume was 2-3 μl for each measurement. However, different droplet 

volumes resulted in different base diameters, but the differences were compensated 

in the equipment software by converting the base diameter into the equivalent 

volume.  

In the case of measurements on Teflon, reproducibility was very good, and the 

relative standard error was around 2-3%. When measuring on hair tresses, at least 10 

repeated measurements were performed, however, the error was still in the range of 

10 - 20 % due to variations in the tress arrangement on the frame, as mentioned 

above. 

 

5.3  Results and discussion 

5.3.1 Bulk and surface properties of the polymer solutions  
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Rheological and surface properties of the solutions under investigation are shown in 

Table 5.1. Data presented in Table 5.1 show that both polymers reduce surface 

tension, and the surface tension of the A33 solutions is lower than that of the A22 

solutions. According to132, 133 both A22 and A33 solutions demonstrate well 

pronounced shear thinning behaviours. Viscosity is presented at shear rate 12 s-1 

because this particular shear rate is of industrial interest. Viscosity decreases 

considerably with increase in the salt concentration, and remains always higher for 

the A22 solutions of comparable concentration vs. the A33 solutions.  

 

Table 5.1: Comparison of Bulk viscosity, surface tension and wetting properties of 

investigated solutions on hair tresses. Reproduced with permission from Ref.134. Copyright 

© 2015 Elsevier B.V. 

 

Addition of 10% i-propanol does not change substantially viscosity of the A33 

solutions, but decreases viscosity of the A22 solutions (Table 5.1). The equilibrium 

surface tension slightly increases for the solutions of A33 with i-propanol; the 

opposite effect was observed with A22. The results presented in Table 5.1 confirms 

that the properties of A22 and A33 polymer solutions strongly depend on the 

composition, and even small changes could results in significant variations in their 

 

Solution 

Surface 

tension 

(mN/m) 

Bulk viscosity 

at 12 s-1 

(mPa.s) 

Initial 

contact 

angle 

(deg) 

Spreading 

time 

(s) 

 

Final 

contact 

angle 

(deg) 

Process 

time 

(s) 

Water  1 100 5-10 90 --- 

A22 1% 0.3M NaCl 42±1 550±10 100 10-20 80 2000 

A22 1% 0.3M  NaCl  10%  ipr-OH 36±1 400±7 80 1-4 60 2400 

A22 1% 0.3M  NaCl  5mM SDS 35±1 510±15 90 40-50 50 2000 

A22 1% 1.3M  NaCl 38±1 100±5 100 10-20 80 2000 

A22 1% 1.3M  NaCl 10%  ipr-OH 32±1 40±5 0 immediate penetration 

A33 1% 0M  NaCl 30±1 100±10 100 5-25 60 200 

A33 1% 0M  NaCl  10%  ipr-OH 33±1 100±10 90 1-5 30 10 

A33 1% 0M  NaCl  5mM SDS 32±1 108±10 90 1-5 30 10 

A33 1.5% 0M NaCl 27±1 500±50 100 10-30 60 100 

A33 1.5% 0M  NaCl  10%  ipr-OH 30±1 500±50 90 2-3 50 60 

A33 1.5% 0M NaCl  5mM SDS 35±1 560±10 80 1-8 25 70 

A22:A33=1:1 --- 90±10 100 25-80 65 180 

A22:A33=1:3 --- 40±10 100 10-40 50 140 

A22:A33=3:1 --- 400±15 100 40-50 60 2000 
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bulk and surface properties. Comparison of the results with 10% i-propanol and 5 

mM of SDS shows that viscosity of A33 is less sensitive to additives than A22. It is 

also important to stress that the polymer solutions are non-Newtonian shear thinning 

liquids, hence viscosity values presented in the Table 5.1 at a chosen shear rate are 

only indicative of the trends affecting their rheological behaviour across the broad 

range of shear rates. 

 

5.3.2 Wetting properties of the polymer solutions  

Table 5.1 presents comparison of the wetting properties: the initial contact angle, the 

final contact angle (contact angle after spreading), the spreading time and the 

process time for the investigated solutions.  

Initial contact angle of water on Teflon is around 110o, and on hair is around 100o.  

It confirms the expected hydrophobic nature of the undamaged hair fibre as its 

primary component is keratin. However, hair tresses are a porous support. Even 

more than that, it has two-type porous structure: (i) pores built by an array of 

individual fibres (slightly different in each measurement) and (ii) a fine porous 

structure of each individual hair fibre (see Fig. 5.2(b)).128 A hair tress demonstrates 

hydrophobic properties not only because of the hydrophobic nature of the hair 

surface, but also because of air pockets in between the fibres. That is, there are three 

possible wetting regimes: (a) Cassie wetting, where liquid is sitting on the hair tress, 

without penetration inside the tress, (b) Wenzel wetting, characterized by  

penetration of liquid into the hair tress, (c) transition from Cassie wetting to Wenzel 

wetting, after some critical contact angle is reached.135-137 All three mentioned 

regimes were observed (see below).   

Dynamic contact angle and diameter of the base line of the A22 polymer solution 

droplets on the hair tress is presented in Fig. 5.3. In the case of Teflon, the initial 

contact angle of all A22 solutions (1% polymer, 0.3M and 1.3M NaCl) was 110 o, 

and fast spreading over a short period of time, around 20 s, was observed. After the 

fast spreading stage the contact angle remained around 100 o and the droplet stayed 

on the support without changing its hemi-spherical shape. The initial contact angle 

on the hair tress for this polymer was about 100o. Spreading stopped after 10-20 s, 

and the contact angle reached the value of 80o (Fig. 5.3 and Table 5.1). The droplets 

remained on the surface of the hair tress after the initial fast spreading stage. 
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Following this stage the total process time (until the droplet complete 

disappearance) was around 2000 s for both solutions (A22 1% polymer, 0.3M and 

1.3M NaCl). During this longer stage a slow evaporation and possible imbibition of 

the solutions into the hair were observed. Wetting properties of the solutions were 

very similar in spite of a considerable difference in their viscosities.  

 

  

  

Figure 5.3: a) Contact angle and b) base line diameter of A22 1%, 0.3M NaCl solution on a 

hair tress; c) Contact angle and d) base line diameter of A22 1%, 1.3M NaCl solution on a 

hair tress. Partially reproduced with permission from Ref.134. Copyright © 2015 Elsevier 

B.V. 

 

Characteristic droplet shape of the A22 solution on the hair tress is presented on the 

Fig. 5.4. Droplet remained on top of the tress after initial short time spreading. 

Droplet volume was decreasing with time due to evaporation and, possibly, slow 

penetration inside the hair tress. 
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t=0 s t=20 s t=197 s 

Figure 5.4: Behaviour of pure A22 solutions on a hair tress. 

 

Wetting properties of the A33 solutions on Teflon are similar to that of the A22 

solutions. Initial contact angle of both A33 solutions (1% and 1.5% polymer, 0M 

NaCl) on Teflon was about 100 o and duration of the fast spreading stage was around 

40-50 s (slightly longer than A22). The contact angle after spreading was around 

80o: the smaller contact angle in comparison with the A22 solutions is consistent 

with the lower surface tension of the A33 solutions (Table 5.1). The initial contact 

angle of the A33 solutions on the hair tress was about 100o. For the A33 1% 0M 

NaCl the first fast stage of spreading was completed after 5-25 s. For the A33 1.5% 

0M NaCl this stage took 10-30 s. In both cases the final contact angle after 

spreading was around 60o. The total process time, during which the droplet 

disappeared completely, was 100 s for A33 1.5% 0M NaCl and 200 -250 s for A33 

1% 0M NaCl (Table 5.1). It is important to notice that the droplet with higher 

viscosity disappeared faster. Contact angles and base line diameter of the A33 

solutions vs. time on the hair tress are presented in Fig. 5.5; an example of the 

droplet shape change over time is illustrated in Fig. 5.6. 

Fig. 5.5 shows that in the case of A33 solutions, where the contact angle reached the 

critical value (around 60o), fast penetration into the hair tress was observed. This 

resulted in a “jump” on the graph of contact angle and diameter of the base line (Fig. 

5.5). This can be explained by Cassie−Wenzel wetting transition: before reaching 

the critical contact angle (around 60o) the droplet was in a Cassie state “sitting” on 

the outer surface of the hair tress; however, after the critical contact angle was 

reached then penetration of the liquid into the pores inside the porous media (like the 

hair tress in the case) by liquid started. Schematic penetration of the liquid inside the 

porous media (hair tress) is presented in Fig. 5.7. In the case of Cassie state, liquid 

wet only the outer layer of the hair tress; however, at the Wenzel state liquid 

penetrate inside the hair tress. Capillary transport along fibres started after the 
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transition. Such wetting transition is also observed on other keratin-built biological 

tissue, pigeon feathers, when it is irradiated by nitrogen and air plasma.138   

 

  

  

Figure 5.5: a) Contact angle and b) base line diameter of A33 1%, 0M NaCl solution on a 

hair tress; c) Contact angle and d) base line diameter of A33 1.5%, 0M NaCl solution on a 

hair tress. Partially reproduced with permission from Ref.134. Copyright © 2015 Elsevier 

B.V. 

 

 

t=0 s t=40 s t=200 s 

Figure 5.6: Behaviours of pure A33 solutions on a hair tress. 
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Cassie state 

 

Wenzel state 

Figure 5.7: Behaviour of liquid droplet on a hair tress. Cassie state: only outer layer of 

the hair tress is wetted; Wenzel state: liquid penetrate dipper into the hair and penetrates 

along the hair tress. Reproduced with permission from Ref.134. Copyright © 2015 Elsevier 

B.V. 

 

Figures 5.3 and 5.5 proves that the conditions for wetting transition is to reach the 

critical contact angle, which is around 60o in the case under consideration. This 

condition is satisfied for the A33 solutions and not satisfied for the A22 solution, the 

latter showing higher contact angle. The critical value of contact angle was obtained 

faster for the A33 1.5% solution than that for the A33 1.0% solution. It can be 

caused by slightly higher concentration of the trace surfactant carried over from the 

stock emulsion with the higher concentration of the polymer. The decrease of the 

total process time for the A33 solutions with added SDS confirms this observation.  

Differences in wetting behaviour of A22 and A33 solutions could be attributed to 

the presence of a yield stress for A22 solutions, which was reported in previous 

publications.130,132 The presence of yield stress for a liquid can affect its spreading. It 

was shown earlier in Chapter 3 that equilibrium profile of a droplet over a substrate 

is determined by the action of surface forces. However, for a viscoplastic fluids with 

a considerable yield stress, the fluid yield stress may inhibit the spreading of drop, 

preventing the formation of drop shape governed by equilibrium conditions: contact 

angle cannot decrease to the equilibrium and it stays with a contact angle higher than 

equilibrium like an elastic solid. It was found earlier132 that the A22 solutions 

demonstrate noticeable yield stress, decreasing with the increase of the NaCl 

concentration, and increasing with the increase in the polymer concentration. It 

could be a reason why A22 droplets remained on the surface of the hair tress after 

the initial fast spreading stage. However, A33 solutions which do not have any yield 
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point can spread and reach a critical contact angle and accordingly can show a fast 

penetration over hair tress.  

In most cases droplets of the A33 solutions behaved as described above, that is, 

underwent Cassie-Wenzel transition; however, there were few cases when the 

droplets only spread on hair tress but did not reach the critical contact angle (60o), 

and thus remained on the hair tress for a prolonged period of time. It could be 

caused by somewhat random arrangement of hair fibres on the surface of the tress 

(in spite of the forced alignment on the frame), and changed conditions favouring 

the Cassie−Wenzel wetting transition, which strongly depends on the roughness of 

the substrates and structure of the porous medium.136,137 It confirms that in all 

experiments with hair tresses the hair arrangement plays a very important role.  

The effect of i-propanol and SDS additives was also investigated (Table 5.1). Both 

solvents and surfactants are capable of changing both surface tension and bulk 

rheology of the polymer solutions. i-propanol and SDS were chosen as they are 

frequently used in cosmetics formulations. The initial contact angle of the A22 1% 

0.3M 10% ipr-OH solution on the hair tress was around 80o.  In the case of the A22 

1% 0.3M 10% ipr-OH, very fast spreading (1-4 s) was observed, and the final 

contact angle was around 60-50 o. The total process time was still long, though, 

around 2400 s. The solution showed better spreading on the hair tress than the 

solution without alcohol, but not better penetration. In the case of the A22 1% 1.3M 

10% ipr-OH solution, the droplet penetrated into the hair tress immediately after 

deposition. It indicates that the initial contact angle was smaller than a critical value 

corresponding to the Cassie-Wenzel transition mentioned above, and the penetration 

occurred immediately. The initial contact angle of the solutions with alcohol was 

slightly smaller, and the total process time was shorter in comparison with the 

solutions without alcohol. In the case of the A33 1% 0M 10% ipr-OH, the initial 

contact angle on the hair tress was around 90o, the spreading time was 1-5 s, the 

final contact angle was between 30o- 20o. The total process time was 10 s only. For 

the A33 1.5% 0M 10% ipr-OH solution, the initial contact angle on the hair tress 

was 90 o, but the final contact angle after 2-3 s spreading was 50o and the total 

process time was 60 s.  

The addition of 5mM SDS to the A22 1% 0.3M solution resulted in slightly different 

wetting properties on the hair (Table 5.1). The initial and final contact angles were 

lower (90 o and 50 o, respectively) than those for the solutions without SDS, and 
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spreading time was longer. The total process time was identical to that for the 

solutions without SDS. The most important influence of SDS addition on the A33 

solutions was the decrease in the total process time. The initial contact angle of the 

A33 1% 0M NaCl 5mM SDS solution was around 90o, and its spreading time was 

around 5 s. The total process time was 10 s. The initial contact angle of the A33 

1.5% 0M NaCl 5mM SDS on hair tress was about 80 o and its total process time was 

70 s. Similar to A22, wetting properties of the A33 solutions were improved by the 

addition of SDS. Thus, the addition of SDS and i-propanol to the polymers solutions 

improved their spreading on hair tress.  

In addition, mixtures of the A22 and the A33 solutions with ratios A22:A33 1:1, 1:3 

and 3:1 were investigated (Table 5.1). It was found that behaviour of the mixtures 

follows smoothly the changes in the polymer concentrations. For solutions with the 

higher content of A22, the droplet behaviour was similar to the pure A22 solutions, 

and vice versa. As before, no significant interactions between the two polymers in 

this concentration range were detected. 

 

5.4  Conclusions 

Wetting of multi-fiber hair tresses with solutions of two cosmetic polyacrylate 

polymers was investigated.  The neutralized solutions of Aculyn 22TM and Aculyn 

33TM polymers were studied in the concentration range 1.0 – 1.5 % w/w, with the 

bulk solution viscosity 40 – 500 mPa.s. The effect of common viscosity and surface 

tension modifiers, like sodium chloride, sodium dodecyl sulphate and i-propanol, 

was also investigated. The bulk viscosity of the solutions can be varied in a broad 

range by changing concentrations of the polymers or by adding salt, solvent or 

surfactant. It was found that the nature of the polymer, as well as its concentration 

and the concentration of additives, can be used to control wetting properties and 

hence the spreading kinetics on hair tresses. The solutions of both polymers spread 

on hair tresses. However, they show markedly different behaviour.  For the A22 

solutions, the droplet remains on the surface of the hair for almost half an hour, and 

only slow (if any) imbibition is observed. This behaviour could be related to the 

presence of a yield stress for A22 solutions. For the A33 solutions, the complete 

penetration/imbibition happens fast, after the contact angle reaches a critical value 

(around 60o). This can be attributed to the so-called Cassie−Wenzel wetting 
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transition, when the liquid starts to penetrate inside the hair array. The conditions for 

this transition are more favourable for the A33 solutions in comparison to the A22. 

The total process time (time until droplet disappears) for the pure A33 solutions is 

much shorter than for the pure A22 solutions. In other words, the A33 solutions are 

readily absorbed by dry hair bulk, whereas the A22 solutions are absorbed very 

slowly if at all. Addition of a surfactant or a solvent (SDS and i-propanol in this 

study) can improve wetting properties of both polymers. In the case of the relatively 

low viscosity A22 solution (1% polymer, 1.3M NaCl, 100 mPa.s) addition of 10% i-

propanol causes immediate imbibition of the solution into the hair. For a mixture of 

A22 and A33, the wetting properties follow behaviour of the polymer with the 

higher fraction.  
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CHAPTER 6 

 

FREE DRAINAGE OF FOAMS PRODUCED FROM 

NON-NEWTONIAN SOLUTIONS 

Overview 

In the previous chapter the result of wetting and spreading of non-Newtonian 

polymeric droplets on hair tresses was presented. Below the free drainage of foams 

produced from those non-Newtonian polymeric solutions is investigated 

theoretically and experimentally. The results of investigations are in press in 

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016 and 

reused in this chapter with permission. Initially in this chapter, a short description of 

the materials and experimental procedure with regards to the home-made foam 

generating apparatus is explained. Then a mathematical model along with 

appropriate boundary conditions and equilibrium profile is derived for the free 

drainage of non-Newtonian foams. In the next section, the predicted results for 

different foaming solutions are compared with the experimental data. 

 

6.1  Introduction  

In this chapter theoretical and experimental findings on free drainage of foams 

produced from non-Newtonian polymeric solutions is presented. Foams are 

conventionally stabilised by surfactants; however, polymers (polyelectrolytes) grow 

in popularity during the last decade as alternative stabilising additives to foaming 

solutions and they show increasing benefits in different industrial applications. For 

example, polymer enhanced foams are increasingly being utilised for reservoir 

recovery in petroleum industry.139-141 Polymers are also used in firefighting foams 

on polar fuels to prevent the foam from collapse.80 In addition, polymer stabilized 

hair colouring foams were recently patented in Ref.4 to provide improvements in 

colour delivery. 

Understanding the rate of foam drainage/liquid release from foam is of great 

importance in various industries because it shows the rate of delivery of active 
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components to the target places. Incorporating polymers into foaming solutions can 

affect the rate of drainage and thus, efficiency of the application. Addition of 

polymers often increases the viscosity of foaming solutions and therefore it affects 

the kinetics of foam drainage and the rate of inter-bubble gas diffusion.132, 133, 142 For 

example, polymers used in firefighting foams can significantly lengthen the drainage 

time by viscosifying the aqueous phase. In general polymeric additives make the 

foaming solution shear thinning non-Newtonian fluids.   

To date only a few foam drainage studies have been devoted to non-Newtonian 

fluids, such as polymer solutions,143, 144  while the majority of researches deal with 

Newtonian liquids, such as water, glycerin or oil. Despite intensive research in the 

field, to the best of our knowledge, only semi-empirical approaches have been 

developed so far and there is no comprehensive theory of foam drainage of non-

Newtonian solutions. In previous publications132,133,145 the influence of rheology of 

commercially available polymers AculynTM22 (A22) and AculynTM33 (A33) on the 

free foam drainage was investigated experimentally and the results of the properties 

modification (polymer type, concentration, mixtures, salt and iso-propanol addition) 

of A22 and A33 polymeric solutions were presented. Below a theory of foam 

drainage is developed for the non-Newtonian polymeric solutions in the case of free 

drainage and its results are compared with experimental data. 

 

6.2  Materials and methods 

6.2.1 Experiments 

A22 is a hydrophobically-modified alkali soluble emulsion (HASE) and A33 is an 

anionic alkali polymer emulsion, water soluble, lightly crosslinked. Polymer 

emulsions were supplied by Dow. Both polymers are soluble in water at high pH 

(~12) and thus aqueous solutions of them were prepared by neutralising the stock 

polymer emulsions with a 2% ammonia solution in ultra-pure water produced by 

Millipore Q, with ascorbic and citric acids added (0.2 mass % each). NaCl was 

added to solutions in the range of 0-1.3 M concentrations. This composition 

represents the common system utilised in cosmetic products such as hair colourants 

where the ionic strength can be controlled by the added salt. The details about the 

preparation of polymeric solutions can be found in Refs.132,133.  
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The rheometer AR 1000-N, TA Instruments with the cone and plate geometry (4 cm 

diameter, cone of 1◦59' and truncation of 56 µm) was used for the rheology 

measurements. Peltier plate was used to keep the temperature constant at 20◦C. In 

the oscillating mode the strain sweep measurements have been performed in the 

range of 0.1–10 at frequency 1 Hz and in the flow mode shear rate measurements 

have been made at the values higher than 3 s−1 which corresponds to the local shear 

rates during the foam drainage.143 The experimental error was lower than 5% at 

measuring probes taken from the same sample; however, the difference between 

individual samples of the same composition was higher, roughly 10%. 

Surface tension measurements have been performed by the Drop shape analyser 

DSA100, Kruss, Germany. Buoyant air bubble was formed at the tip of the hooked 

capillary immersed in the cuvette containing a polymer solution in these 

experiments. 

Foaming experiments have been performed in a home-made glass column of 380 

mm height and 43 mm inner diameter. The foaming head, fitted at the bottom of the 

column, consisted of 19 capillaries of 0.18 mm inner diameter for a gas supply. The 

foaming gas was air. To study the kinetics of foam drainage, a foaming liquid was 

poured into the column to the height of about H0=45 mm and bubbling was started 

at a constant flow rate. Bubbling was stopped after the foam height increased to 

about 150 mm. Time evolution of the height of the foam, H2-H1 (Fig. 6.1) and the 

liquid under the foam, H-H2, (Fig. 6.1) were measured during the experiments. The 

average liquid volume fraction inside the foam during the drainage was calculated as 

(H0-(H-H2))/(H2-H1) and results of calculations are reported below. The produced 

foam was quite uniform and the variation of bubble size due to coarsening was 

negligible during the drainage (bubble coarsening parameter C was less than 10% 

for the solutions used in the experiments).133 Accordingly, an average bubble size 

was determined for each foam drainage experiment by analysing the pictures taken 

from the whole column during the drainage. Each experimental run was repeated at 

least twice and the average values are reported below. The details of foam drainage 

experiments can be found in Refs.132,133. 

 

6.2.2 Theory 
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Let us consider foam composed of bubbles of uniform size and produced from 

polymeric solutions in a column of height H (Fig. 6.1). Drainage occurs in the 

vertical direction along the co-ordinate axis z directed downward, with z=0 at the 

top of the column. Time evolutions of the foam height and free liquid under the 

foam are H2(t)-H1(t) and H-H2(t), respectively (Fig. 6.1). It is assumed below that 

the bubble size remains constant during the drainage, the dissipation occurs in the 

Plateau borders only and the contribution of the liquid flow in the films and nodes is 

neglected. 

 

 

Figure 6.1: Schematic of free foam drainage experiment. Reproduced with permission 

from Ref.146. Copyright © 2016 Elsevier B.V. 

 

It was determined in Ref.133 (and shown below) that the polymeric solutions of A22 

and A33 are non-Newtonian power-law liquids, which show a shear-thinning 

behaviour. For a power-law liquid dependence of the effective viscosity, µ, on 

applied shear rate is given by the well-known Ostwald–de Waele relation: 

1 nk  , (6.1) 

where k is flow consistency index, n is the flow behaviour index and is the shear 

rate.  

A velocity profile for flow of a power-law fluid in a pipe of radius R with no-slip 

boundary condition is given by the following expression:121 
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where dP/dz is the pressure gradient and everywhere below we assume that the flow 

directed downward along z. According to Eq. (6.2), the average velocity, V, in a 

circular tube of cross-sectional area of A, identical to that of actual Plateau border, is 

determined as follows: 
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According to Ref.147 the average velocity in the actual Plateau border geometry, v, is 

related to that given by Eq. (6.3) as: 

cVv  , (6.4) 

where the coefficient c is:147 

)(nac  . (6.5) 

In the above equation a(n) are functions of flow behaviour index, n, and their values 

are presented in Table 6.1. Here it is assumed that the interface is completely 

immobile (i.e. the Poiseuille flow).  

 

Table 6.1: The values of velocity coefficient in Eq. (6.5) for different values of flow 

behaviour index. Data taken from Ref.147 

n 1 0.8 0.6865 0.6 0.5 0.35 

a(n) 0.5169 0.4851 0.459 0.434 0.3922 0.2942 

 

Substitution of Eq. (6.3) into Eq. (6.4) results in 
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Hence, the flow rate, qPb, in a Plateau border is as follows: 
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The quantity P in Eqs. (6.2)-(6.7) is referred to modified pressure and it is an 

abbreviation for the sum of the capillary pressure and gravitational contributions. 

Accordingly, the driving force for Plateau border drainage dP/dz is: 

)(
pbRdz

d
g

dz

dP 
  , (6.8) 

where  is the liquid-air interfacial tension, Rpb is the radius of curvature of Plateau 

border;  and g are the liquid density and the gravity acceleration, respectively. 

According to Ref.73:  
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where  is liquid volume fraction, Vb is the volume of a bubble of radius Rb, l is the 

length of the Plateau border, np is the number of plateau borders per bubble; 

C2~0.161, C1 a geometrical coefficient, C1=4π/(3npδ)~0.378-0.972 for a foam with 

structures between bcc (body-centred cubic) and fcc (face-centred cubic) and 

bubbles of the same size (l=δRb(1-)-1/3, δ=0.718-1.108, np=6-10).73 Substituting 

Eqs. (6.9) and (6.8) into Eq. (6.7) results in the following equation for the flow rate 

in a Plateau border: 
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then Eq. (6.10) can be rewritten as 
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According to Eq. (6.11) and Table (6.1), fn~49 for a Newtonian liquid (n=1) and 

immobile interface which is in complete agreement with the values reported 

earlier.75,85,148 

The total volumetric flux through the Plateau borders is therefore calculated as:149,150 
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where N=(1-φ)/Vb is the number of bubbles per unit volume. 

The mass conservation law for liquid inside Plateau border channels is149 
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Substituting Eq. (6.13) into Eq. (6.14) and replacing A with expression (6.9) results 

in the following equation for the liquid volume fraction, : 
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where 

n

n
p

n
n nn

n
c


















 )2/(12/3212/33/1

1

532

1

13

1


. (6.16) 

Let us introduce the following dimensionless variable and co-ordinate: 

00 /,/ ttzz   , (6.17) 
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Substitution of these variables into Eq. (6.15) results in 
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is a corresponding Bond number. 
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For a fresh foam produced in the foam column, the liquid volume fraction profile is 

initially uniform, that is, i  )0,( .151,152 

 

6.2.2.1 Boundary conditions 

During the drainage the liquid from the top of the foam drains to the lower parts. 

Therefore, the liquid volume fraction at the top decreases with time. There is a 

critical liquid volume fraction, cr, below which the coalescence/bubble burst 

begins.153 The value of this critical liquid volume fraction is a function of the nature 

of the surface active substances (polymer and/or surfactant) and their concentration. 

The critical liquid volume fraction is determined by a disjoining pressure 

action.149,154,155 However, in Ref.153 a mechanism based on a critical film dilatation is 

proposed for the onset of coalescence and critical liquid content in draining foams. 

Based on the theory of critical liquid volume fraction, there are two possible 

scenarios for the boundary condition at the top of the foam (i.e. z=H1(t) or ζ= ζ1(t)): 

(i) If the liquid volume fraction at z=H1 is higher than cr, then there is no bubble 

collapsing at the top of the foam (i.e. dH1/dt=0) and the top boundary condition is  

zero liquid flux: 

0),( 1 tHQ , (6.21) 

or in dimensionless form: 

0),( 1 Q , (6.22) 

(ii) If the foam continues to dry and the liquid volume fraction at z=H1 drops to the 

value of cr, then the bubbles at the top of the foam start to rupture and the height of 

the foam decreases from the top (i.e. dH1/dt>0).  In this case the boundary condition 

at the top of the foam is a constant liquid volume fraction: 

crttH  )),(( 1  (6.23) 

or 

cr )),(( 1  (6.24) 
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and the rate of foam collapse, dH1/dt, can be expressed according to the following 

equation:149 
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or in dimensionless form: 
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After the onset of the drainage, the boundary condition at the bottom of the foam is a 

constant liquid volume fraction, max~0.36, which corresponds to random packing 

limit for spherical particles in three dimensions.156 However, as we consider a 

uniform initial liquid volume fraction along the foam height (i.e.

max)0,(   icr ), the boundary condition at the bottom of the foam 

should be zero liquid flux during a very early stage of the drainage until the liquid 

volume fraction at the bottom of the foam reaches max. 

As the foam drains the polymeric solution accumulates under the foam and the 

interface between the foam and polymeric solution, H2, moves up. The rate of this 

movement can be found using a mass conservation law of the polymeric solution 

within the whole column (see Appendix 6.A): 
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or in dimensionless form: 
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The above equations could be easily deduced from the fact that the product of the 

front velocity with the density difference of the two sides of the front is equal to the 

flux. 

The equilibrium profile for liquid content inside the foam is reached when the 

gravity and capillary gradient forces equilibrate each other inside the foam. The 

equilibrium profile can be found by assuming zero liquid flux across the foam 
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height. Integration of Eq. (6.15) in this case using the boundary condition at the 

bottom of the foam ( max2 )),((  ttH ) results in: 
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Eq. (6.30) can be rewritten as the following dimensionless form: 
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Eq. (6.31) shows that as expected, the equilibrium profile does not depend on flow 

behaviour index, n, and it is identical to foams produced from Newtonian liquids. 

The calculated profile of the equilibrium liquid volume fraction is in good 

agreement with the results presented in Ref.157 using the concept of an osmotic 

pressure (see Fig. 6B.1 in Appendix 6.B).  

If e1  is substituted in the above equation (we suppose that e1 is the 

dimensionless position of the top of the foam at equilibrium), then the equilibrium 

liquid volume fraction at the top of the foam can be deduced. The latter is a function 

of the foam height at equilibrium, ee 12    and can be calculated as  
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1
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1 eeeeee Bo    . (6.32) 

The dependency of the equilibrium liquid volume fraction at the top of the foam on 

the foam height (according to Eq. (6.32)) is schematically illustrated in Fig. 6.2. As 

shown in Fig. 6.2, )( 1ee  increases to max as the final foam height, ee 12   , 

decreases. Substituting cree  )( 1  in Eq. (6.32) allows determining a critical 

foam height, λcr. This critical foam height is shown in Fig. 6.2 where cree  )( 1 . 

If the initial foam height, ii 1212 )0()0(    is less than λcr then over 

duration of the whole process the liquid volume fraction at the top of the foam 

remains above the cr  and the top part of the foam does not move, that is 
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i11 )(   . However, if ii 12    is bigger than λcr then two possibilities can be 

predicted: (1) over duration of the whole drainage process the liquid volume fraction 

at the top of the foam remains above the cr , which is exactly the same as before, 

(2) at some moment in time, cr, crcr  ),( 1 . After that moment the apparent 

boundary of the foam at the top starts to decrease according to Eq. (6.26).  

 

 

Figure 6.2: The dependency of the equilibrium liquid volume fraction at the top of the 

foam on the foam height. Reproduced with permission from Ref.146. Copyright © 2016 

Elsevier B.V. 

 

Therefore, the foam height will decrease from both top and bottom boundaries while

cr ),( 1 . This reduction in foam height continues until the time when it reaches 

equilibrium. According to Eq. (6.32) and Fig. 6.2, the final height of the foam in this 

case is fixed and equal to the critical foam height, cree   12 . Considering a 

mass conservation of the polymeric solution within the whole column at initial and 

final state of the process, it is possible to predict which of the two above mentioned 

possibilities will occur: 
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The left hand side of the equation shows the initial amount of the liquid presented 

within the whole column while the right hand side of the equation determines the 

final liquid content at equilibrium.  Eq. (6.33) can be rewritten as the following 

dimensionless form: 

 
e

e

eeiiii d
2

1

2212 )()(



 . (6.34) 

If we suppose that during the drainage the liquid volume fraction at the top of the 

foam drops to the value of cr  (i.e. the second possibility occurs), then as 

mentioned above cree   12 . Substituting this expression into Eq. (6.34) results 

in 
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From the above equation 
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Since the foam height decreases from the top in this case, 011  ie   and the right 

hand side of Eq. (6.36) should be also a positive value: 
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According to the above equation the condition for the movement of the top of the 

foam during the drainage can be written as: 
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or 
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A comparison between the values of i and t for each foaming solution can predict 

the state of the top of the foam during the drainage. The integral in Eq. (6.39) (to 

find the values of t) can be calculated numerically using Eq. (6.31) for different 

values of Bo number and it is identical to the area under the equilibrium curve from 

012  ee   to cree   12  in Fig. 6.2. Therefore, in the case in which the initial 

foam height, ii 12   , is bigger than λcr the foam height decreases from the top 

boundary only if the condition specified in Eq. (6.39) is satisfied for the value of 

initial liquid volume fraction. Otherwise the liquid volume fraction at the top of the 

foam remains above the cr  and the top boundary of the foam does not move.  

 

6.2.2.2 Model calculation 

The model of foam drainage described by dimensionless Eq. (6.19) has been solved 

using finite element method on one dimensional regular grid with 800-1200 

elements corresponding to the foam height. A backward differentiation formula was 

used to solve time-dependent variables and time stepping was free taken by solver 

with initial step size of 10-20. Relative tolerance was set to 10-8, whereas absolute 

tolerance was set to 10-10. The boundary conditions at the top and bottom of the 

foam and their locations were imposed and updated as described in the previous 

section to obtain the evolution of liquid volume fraction inside the foam. The values 

of t0, z0, Bo, λcr, flow behaviour index, n, and flow consistency index, k, are obtained 

for different polymeric solutions based on the experimental data shown in the next 

section.  

 

6.3  Results and discussion 

6.3.1 Rheology and surface tension measurements of polymeric solutions  
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The rheology of polymeric solution is an important parameter in the kinetic of the 

foam drainage. Fig. 6.3 shows the dependency of the measured effective viscosity of 

different polymeric solutions on shear rate. The dependencies are fitted according to 

Eq. (6.1). The obtained values of k and n for different polymeric solutions are listed 

in Table 6.2 and are used in calculations below. The shear thinning character of the 

polymeric solutions was found, as expected. Fig. 6.3(a) shows that the solutions 

viscosity decreases with increasing of the salt concentration. Fig. 6.3(b) also 

indicates that solution viscosity increases with the increase of the polymer 

concentration. The values of surface tension for different polymeric solutions are 

given in Table 6.2 and they are used in calculations. 

 

 

a) 

 

b) 

Figure 6.3: The dependency of the measured effective viscosity of a) A22 and b) A33 

solutions on shear rate. The dependencies are fitted according to Eq. (6.1). Fitted values are 

given in Table 6.2. Reproduced with permission from Ref.146. Copyright © 2016 Elsevier 

B.V. 

 

6.3.2 Foam drainage of polymeric solutions 

Drainage of foams produced from power-law non Newtonian liquids of three 

compositions of A22 and A33 polymers have been chosen for investigation as 

shown in Table 6.2. The density of all solutions was around 1000 kg/m3. Each foam 

drainage experiment was performed for 120 minutes. The average bubble size 

reported in Table 6.2 indicates that the foams formed from the more viscous 

solutions had larger bubbles. Based on the four obtained experimental data, k, n, γ 

and Rb, we calculated Bo, c, αn, z0, t0 and λcr according to Eqs. (6.20), (6.5), (6.16), 
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(6.18), (6.18) and (6.32) respectively, and their values for each foaming solutions 

are reported in Table 6.2. The values of velocity coefficient, c, were found according 

to Eq. (6.5) and Table 6.1. To find the critical foam height, λcr, (according to Eq. 

(6.32)) the values of critical liquid volume fraction cr, are required. In Ref.153 a 

narrow field of liquid fraction ranging from 0.0005 to 0.0007 was found as the 

critical liquid volume fraction in foam stabilised by mixture of surfactants. As a 

rough estimate, this range was used below to calculate the critical foam height. As 

can be seen in Table 6.2, the initial foam height (~0.15 m) is higher than the 

estimated critical values for different polymeric solutions. The values of t in Eq. 

(6.39) are also calculated for each foaming solution and their values are reported in 

Table 6.2. The initial liquid volume fraction, i (~0.25-0.30) is lower than the 

calculated values of t; thus, the condition specified in Eq. (6.39) is satisfied.  

Although this suggests that the liquid volume fraction at the top of the foam drops to 

the value of cr and the foam height decreases from the top boundary, the measured 

experimental data showed that the change of the location of the top of the foam, H1, 

was negligible compared to the change of the foam height, H2-H1, for all polymeric 

solutions during the drainage (maximum 7.4 %). Foams produced from polymeric 

solutions are more stable than foams build up by surfactant solutions; thus, cr is 

expected to be lower and λcr should be higher for foams stabilized by polymers than 

by surfactants only. It confirms that the liquid volume fraction at the top of the foam 

),( 1 tH does not decrease to the value of cr during the draining and, hence, zero 

liquid flux boundary condition (Eqs. (6.21) and (6.22)) was used in the simulations 

below. Accordingly, the value of cr is set so low that there is no collapse for the 

foams examined here. Our calculations according to Eq. (6.39) suggest a value of 

roughly 0.0001 for the critical liquid volume fraction cr within the foams produced 

from the polymeric solutions used in our experiments. 
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Table 6.2: Characteristic values of polymeric solutions and their foam drainage. The first 

four values, k, n, γ and Rb are extracted from the experimental data. The second seven 

values, Bo, c, αn, z0, t0, λcr andt are calculated according to Eqs. (6.20), (6.5), (6.16), (6.18), 

(6.18), (6.32) and (6.39), respectively. Reproduced with permission from Ref.146. Copyright 

© 2016 Elsevier B.V. 

Foaming 

solutions 

k  

(Pa.sn) 

n 

(-) 

γ  

(N/m) 

Rb 

(m) 

Bo 

(-) 

c 

(-) 

αn 

(-) 

z0 

(m) 

t0 

(s) 

λcr 

(-), (m) 

t 

(-) 

A22_1.0%1.3M 0.7102 0.402 0.038 0.00139 3.003 0.334 20.575 0.00197 38.449 
20.976-24.973, 

0.041-0.049 
0.67-0.72 

A33_1.0%0M 0.3761 0.535 0.030 0.00131 3.358 0.408 31.033 0.00175 13.115 
19.837-23.617, 

0.035-0.041 
0.73-0.78 

A33_1.5%0M 1.7246 0.437 0.027 0.00158 5.435 0.358 22.916 0.00166 316.148 
15.593-18.564, 

0.026-0.031 
0.80-0.83 

 

 

Fig. 6.4 shows calculated results on the time evolution of liquid volume fraction, φ, over 

the foam height, ζ, for “A33_1.0% 0M” solution. In this figure ζ=0 is the top of the 

foam and φi=0.2939, according to the experimental data. In the very beginning of 

the drainage the liquid volume fraction varies only at the top and bottom of the 

foam, whereas in the middle part of the foam the initial value is retained. The 

interface between the foam and polymeric solution at the bottom is moving up 

during the drainage. This decrease of the foam height is very fast in the early stage 

of the drainage; however, reduction of the foam height and the profile of the liquid 

volume fraction approach a steady state over time. 
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Figure 6.4: Time evolution of the predicted results of liquid volume fraction, φ, over the 

foam height, ζ, for “A33_1.0% 0M” solution (ζ=0 corresponds to the top of the foam). 

Reproduced with permission from Ref.146. Copyright © 2016 Elsevier B.V. 

 

Comparison of the predicted and experimental time evolution of the height of the 

foam, ζ2-ζ1, and average liquid volume fraction, φ, is shown in Figs. 6.5 and 6.6, 

respectively for different polymeric solutions. As expected, for all polymeric 

solutions the foam height and the average liquid volume fraction decrease 

dramatically in the beginning of the drainage and after some time they reach a 

plateau. As can be seen in Figs. 6.5 and 6.6, the predicted values are in a quantitative 

agreement with the measured experimental data (R2>0.85) especially for lowly 

viscous non-Newtonian solutions.  However, in the case of “A33_1.5% 0M” 

solution, which has the highest k value (k=1.7246 Pa.sn), there is a deviation between 

the theoretical predictions and experimental results in the initial stage of the 

drainage (see Figs. 6.5(c) and 6.6(c)). The latter can be attributed to the assumption 

of immobile surface of the Plateau border and Poiseuille-like flow. It seems that in 

the case of “A33_1.5% 0M” solution (the highest viscosity), the surface of Plateau 

border is not completely immobile in the initial stage of the drainage and there is 

some mobility at the surface of Plateau border. According to Ref.143 elongational 

properties of the polymeric solution can also affect the foam drainage. It was found 
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that the rate of the drainage increases by increasing the elongational viscosity of the 

solutions. This influence can be important at higher concentration of the polymeric 

solutions and with larger polymer molecular weights,143,144 this phenomenon could 

account for the small deviations between predicted results and experimental data 

presented below.  

 

 

a) 

 

b) 

 

c) 

Figure 6.5: Comparison of the predicted time evolution of the height of the foam, ζ2-ζ1, 

with experimental data for a) A22_1.0% 1.3M, b) A33_1.0% 0M and c) A33_1.5% 0M. 

Reproduced with permission from Ref.146. Copyright © 2016 Elsevier B.V. 
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a) 

 

b) 

 

c) 

Figure 6.6: Comparison of the predicted time evolution of the average liquid volume 

fraction along the foam height, φ,  with experimental data for a) A22_1.0% 1.3M, b) 

A33_1.0% 0M and c) A33_1.5% 0M. Reproduced with permission from Ref.146. Copyright 

© 2016 Elsevier B.V. 

 

6.4  Conclusions 

A model for free drainage of foams produced from power-law non-Newtonian shear 

thinning liquids is presented and compared with experimental data for the drainage 

of foams formed by A22 and A33 polymeric solutions. Equation was deduced, 

which describes the drainage of foam build up by a power-law non-Newtonian 

liquid. The boundary condition at foam/liquid interface is a constant liquid volume 

fraction corresponding to the maximum liquid volume fraction inside the foam. 

There are two possible boundary conditions at the top of the foam which depends on 

the initial foam height and initial liquid content within the foam: (i) If the liquid 
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content at the top is higher than a critical liquid volume fraction, there is no 

collapsing of bubbles at the top of the foam and boundary condition is zero liquid 

flux; (ii) If the liquid volume fraction at the top of the foam drops to a critical value, 

the height of the foam decreases from the top by collapsing of the bubbles at the top 

of the foam. The predicted values showed that in the early stage of the drainage the 

liquid content varies only at the top and bottom of the foam, whereas in the middle 

section of the foam the initial value is retained. The interface between the foam and 

polymeric solution was moving up during the drainage and the kinetics of this 

motion is predicted. This decrease in the foam height was very fast in the very 

beginning of the drainage; however, it reached a steady state over time. The 

equilibrium profile of the liquid volume fraction is predicted and shown that it does 

not depend on power law index, n, of non-Newtonian liquid. The predicted values of 

the time evolution of the foam height and liquid content were in good agreement 

with the experimental data. 

  

Nomenclature 6 

a velocity coefficient 

A Plateau border cross-sectional area, m2 

Bo Bond number 

c velocity coefficient 

C geometrical coefficient 

C1 geometrical coefficient 

,fn drag coefficient 

g gravity acceleration, m/s2 

H column height, m 

H0 initial height of the liquid  before producing the foam, m 

H1 position of the top of the foam, m 

H1e position of the top of the foam at equilibrium, m 
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H1i initial position of the top of the foam, m 

H2 position of the foam/polymeric solution boundary, m 

H2e position of the foam/polymeric solution boundary at equilibrium, 

m 

H2i initial position of the foam/polymeric solution boundary, m 

k flow consistency index, Pa sn 

l length of the Plateau border, m 

n flow behaviour index 

np number of plateau borders per bubble 

N number of bubbles per unit volume, 1/m3 

p pressure, Pa 

P modified pressure, Pa 

qPb flow rate in Plateau border, m3/s 

Q total volumetric flux through the Plateau borders, m/s 

r radial co-ordinate, m 

R radius, m 

Rb radius of bubbles, m 

RPb curvature radius of Plateau border, m 

t time, s 

t0 characteristic time scale, s 

u velocity, m/s 

V average velocity in a circular tube, m/s 

Vb bubble volume, m3 

z co-ordinate axis, m 

z0 characteristic length scale, m 
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Greek symbol 

n coefficient in Eq. (6.15) 

 surface tension, N/m 

  shear rate, s-1 

 geometrical coefficient 

ζ dimensionless vertical co-ordinate  

ζ1 dimensionless position of the top of the foam 

ζ1e dimensionless position of the top of the foam at equilibrium 

ζ1i dimensionless initial position of the top of the foam 

ζ2 dimensionless position of the foam/polymeric solution boundary 

ζ2e dimensionless position of the foam/polymeric solution boundary 

at equilibrium 

ζ2i dimensionless initial position of the foam/polymeric solution 

boundary 

cr dimensionless critical foam height 

µeff effective viscosity, Pa s 

  average velocity in actual Plateau border geometry, m/s 

 liquid density, kg/m3 

τ dimensionless time 

 liquid volume fraction 

i initial liquid volume fraction 

cr critical liquid volume fraction 

e equilibrium liquid volume fraction 

max maximum liquid volume fraction 
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Appendix 6.A 

The rate of the movement of the interface between foam and polymeric solutions  

As the foam drains the polymeric solution accumulates under the foam and the 

interface between the foam and polymeric solution, H2, moves up. To find the rate 

of this movement, let us consider a mass conservation law of the polymeric solution 

within the whole column: 

constHHdztz
tH
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Differentiating Eq. (6A.1) with time results in: 
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When the liquid volume fraction at the top of the foam is higher than critical liquid 

volume fraction, crtH  ),( 1 , H1 is constant and in this case applying Leibnitz 

rule for differentiation of the integral in Eq. (6A.2) leads to the following 

expression:  
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Substituting Eq. (6.14) and using expression (6.21) leads to the following equation 

for the rate of moving boundary between the foam and polymeric solution: 
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or in dimensionless form: 
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However, when the liquid volume fraction at the top of the foam decreases to critical 

liquid volume fraction, crttH  )),(( 1 , H1 is a function of time and it moves 
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down. In this case differentiation of the integral in Eq. (6A.2) and using Eq. (6.14) 

result in:     
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tdH

dt

tdH
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If the rate of foam collapse, dH1/dt, according to Eq. (6.25) is substituted in the 

above equation then again Eq. (6A.4) is recovered for the rate of moving interface 

between the foam and liquid. 

 

Appendix 6.B 

The comparison of the calculated profile of the equilibrium liquid volume fraction 

according to Eq. (6.31) with the results reported in Ref.157 is presented in Fig. 6B.1. 

 

 

Figure 6B.1: Comparison of the calculated profile of the equilibrium liquid volume 

fraction according to Eq. (6.31) with the results presented in Ref.157. Reproduced with 

permission from Ref.146. Copyright © 2016 Elsevier B.V. 
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CHAPTER 7 

 

FOAM DRAINAGE PLACED ON POROUS 

SUBSTRATES 

Overview 

In the previous chapter a theory of foam drainage was developed for the non-

Newtonian polymeric solutions in the case of free drainage. Below a completely 

new mathematical model of drainage of foam produced from Newtonian solutions 

and in contact with porous surfaces is introduced. The results of investigations were 

published in Soft Matter 11, 3643–3652, 2016 and The European Physical Journal 

Special Topics 224, 459–471 and reused in this chapter with permission. Initially in 

this chapter, the difference between the drainage of foam in the case of a free 

drainage and a drainage of a foam placed on a porous substrate is explained. Then a 

mathematical model along with appropriate boundary conditions is derived for foam 

drainage placed on a porous substrate. In the next section, the predicted results for 

different properties of foam and porous substrate are analysed and accordingly 

different regimes of the process are identified. 

 

7.1  Introduction  

In this chapter theoretical findings on drainage of foams placed on porous surfaces is 

presented. For many applications, particularly in pharmacy and cosmetics, the 

interaction of foam with substrate is of considerable importance as often the surfaces 

where foam is applied on are porous (skin, hair, textile materials). Recent 

investigations have confirmed that foams are an efficient alternative method of drug 

delivery on the skin of patients.5-8 Lotions, creams, gels and ointment are the most 

common topical vehicle delivery systems that have been applied in dermatology; 

foams are delivery systems which grow in popularity. The density of foams is much 

lower than that of traditional vehicles and they spread out more easily.72 This 

reduces the requirement of applying pressure or prolonged period of contact with the 
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sensitive diseased skin.6 In addition, drugs from foams absorb and penetrate more 

quickly as compared to other carriers.  

The rate of drug delivery from foams can be controlled by the rate of foam drainage 

and collapse. Kinetics of topical drug delivery can be tailored by varying such foam 

characteristics as the bubbles size, liquid viscosity, initial liquid content and surface 

tension. In order to make a proper choice of foam characteristics, processes of drug 

delivery from foam should be considered in connection with the properties of 

substrate where the foam is applied to (skin or hair). Skin or bunch of hair have 

porous structure of their own, therefore an additional phenomenon, a capillary 

suction into porous substrate affects the foam drainage/imbibition. 

Analysis of liquid drainage and flow in foams confined in porous media has been 

widely investigated in literature79,158-163 from both theoretical and experimental 

points of view. However, a theoretical description of foam drainage/imbibition in 

contact with a porous substrate (i.e. a foam placed on the top of a porous substrate), 

which is applicable to the analysis of liquid release from foam into skin or bunch of 

hair, was recently introduced in Refs.148,164. The aim of this chapter is to present a 

new theory of foam drainage in contact with a porous substrate. To identify the 

methods to control the kinetics of liquid release in this case a direct numerical 

simulation of foam drainage in contact with a porous substrate is developed. The 

mathematical model combines the foam drainage equation with the equation 

describing the imbibition of liquid in the porous substrate coupled with appropriate 

boundary conditions at foam/porous substrate interface.  

 

7.2  Mathematical model 

There is a substantial difference in the drainage/imbibition of foam in the case of a 

free drainage (for example, foam placed on a solid substrate) and a 

drainage/imbibition of a foam placed on a porous substrate. In both cases the 

drainage is caused by the action of both gravity and the capillary forces. However, if 

foam is initially wet enough, then sooner or later the drainage/imbibition results in a 

formation of a free water layer under the foam and the water content in the foam 

layer immediately above the free water layer reaches the rigidity limit165 which for 

3D mono-disperse foam can be estimated as 0.36 corresponding to random packing 

limit for spherical particles.166 Sometimes the maximum liquid fraction is estimated 
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as 0.26, what correspond to the minimum possible voids content at hexagonal 

packing of equal spheres.73 The latter value is accepted below. The equilibrium 

distribution of the water contents in the foam in the end of a free drainage is well 

known.73, 85, 146 Important to notice that even in a relatively thin foam layer, the 

water content distribution is non-uniform over the foam height: from the highest 

possible at the bottom to the lowest at the top. 

The scenario is substantially different in the case of foam placed on a porous 

substrate: (i) the presence of unsaturated pores inside the porous layer results in an 

imbibition of water from the Plateau channels into the pores, i.e. drainage/imbibition 

proceeds faster and (ii) this results in a drier foam layer in contact with a porous 

substrate and close to the end of the drainage/imbibition process the liquid volume 

fraction will become lower as compared with the free drainage and below some final 

value. The final value can be characterised as follows: if the water contents is above 

this final value then the pressure inside the Plateau channels is positive, that is, the 

liquid will flow from the Plateau channels to outside. If the final value of the water 

content is reached then by further drainage the pressure inside the Plateau channels 

becomes smaller than the capillary pressure inside the pores of the porous substrate 

and the drainage stops. The previous consideration shows that the final equilibrium 

distribution of water content over the foam height is lower in the case of 

drainage/imbibition in contact with the porous substrate than in the case of a free 

drainage over a non-porous substrate.    

 

7.2.1 Flow inside foam 

As can be seen in Fig. 7.1, let us consider a foam composed of bubbles of uniform 

size (radius of Rb) with Kelvin structure73. It is placed on a horizontal porous 

substrate with pores size of Rpm. Drainage occurs in the vertical direction along the 

co-ordinate axis z directed downward, with z=0 at the top of the foam. The foam 

height is supposed to be constant equal to H and L is the penetration depth of liquid 

into the porous medium. The porous medium is supposed to be infinite at the 

bottom. Therefore, liquid always penetrate from foam into the porous medium and 

reverse imbibition cannot occur. It is assumed also that the bubble size remains 

constant during the drainage.  
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Figure 7.1: Schematic diagram of a foam placed on a porous medium. Reproduced with 

permission from Ref.164. Copyright © 2015 EDP Sciences, Springer-Verlag. 

 

Below we use the model of Plateau borders mediated foam drainage (produced from 

Newtonian solutions) where the dissipation in the nodes is neglected. In this case the 

drainage kinetics can be described by the following equation:85 

0
23

1 2 








































z

AA
CgA

fzt

A



, (7.1) 

where µ is the dynamic viscosity of liquid, which foam is built of, f ~49, A(z, t) is 

the Plateau border cross-section at position z and time t;  and g are the liquid 

density and the gravity acceleration, respectively; 232 C ~0.161 is a 

geometrical constant related to the triangular form of the Plateau border cross 

section, and  is the liquid-air interfacial tension. In Eq. (7.1) the first term in 

parentheses describes the contribution of the gravitation and the second term is the 

contribution of the capillary forces to the drainage. 

According to Ref.73 
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or 
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2

1 bRCA  , (7.3) 

where Rb and Rpb are the radii of the bubble and Plateau border, respectively,  is 

liquid volume fraction and C1 is a geometrical coefficient, C1~0.4857 for a foam 

with Kelvin structure.73 

Substitution of Eq. (7.3) into Eq. (7.1) results in the following equation for the liquid 

volume fraction : 
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Let us introduce the following dimensionless variable and co-ordinate:

crttHz  /,/,/ 0  , where H is the foam height, t0 is the time 

scale of the process to be determined below and cr is the liquid volume fraction 

after the pressure inside the Plateau channels and the pressure inside the porous 

substrate equilibrate. Substitution of these variables into Eq. (7.4) results in 
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There are two dimensionless parameters in the latter equation. Their ratio is
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 . The latter means that if we 

select the characteristic time scale from the following condition: 
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Substitution of Eq. (7.6) into Eq. (7.5) results in 
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Assuming that the liquid films between bubbles in foam are flat (i.e. in a dry foam, 

Rb>> Rpb) the pressure in all bubbles is identical167 and equals to: 

b

ab
R

PP
4

 , (7.8) 
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where Pa is the atmospheric pressure. The pressure in the Plateau border is lower 

than that in the bubbles on the value of the capillary pressure:167 

pb

c
R

P


 , (7.9) 

From Eqs. (7.2), (7.8) and (7.9) the pressure in the Plateau border is 
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Let us introduce Ppm as the mean capillary pressure inside capillaries in the porous 

substrate, which can be estimated by pmpm RnP ~ , where Rpm is radius of pores, n 

=1 in the case of porous media built by cylinders and n=2 in the case of two 

dimensional geometry. Accordingly, the pressure difference, which results in the 

liquid flow from the Plateau channel into the porous substrate at the foam/porous 

substrate interface, will be     
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If P > 0, then liquid from the Plateau border will penetrate into the porous 

substrate. If P < 0, then penetration will not happen. The latter consideration and 

Eq. (7.11) determine the final liquid content, when P=0: 
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Hence, 
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If we introduce α as a ratio of capillary pressure in the porous substrate to capillary 

pressure in the bubbles: 
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then, Eq. (7.13) can be rewritten as: 
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Substitution of expression (7.13) into Eq. (7.6) results in the following expression 

for the characteristic time of the foam drainage: 
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If we introduce Bond number as a ratio of hydrostatic pressure in foam to capillary 

pressure in bubbles: 
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(7.17) 

then substitution of Eq. (7.13) into Eq. (7.7) results in the following dimensionless 

equation for the foam drainage: 

0
1

2 2 





























 Bo
. (7.18) 

 

7.2.2 Liquid imbibition into porous substrate 

The kinetics of imbibition of a liquid into a porous substrate is described by the 

Darcy’s equation:  

L

P
Qpm





  (7.19) 

and 

L

P

dt

dL 




 , (7.20) 

where pmQ  is the flux of the liquid inside the porous substrate, ε is the porosity, L is 

the depth of the wetted part inside the porous layer, κ is permeability of the porous 

substrate, ΔP is the pressure difference causing the liquid imbibition, according to 

Eq. (7.11). Substitution of Eq. (7.11) into Eq. (7.20) results in 



CHAPTER 7  138 
 

 

 
0)0(,

)(

,
4

1




















 L
tL

R

n

tHzC

C

R

dt

dL pmb










 . 

(7.21) 

Let us introduce the following dimensionless variables: 

crttLLl  /,/,/ 00  , where L0 is the characteristic depth of 

penetration which is defined as: 
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and t0 and cr are defined by Eqs. (7.16) and (7.15), respectively. Now Eq. (7.21) 

can be rewritten as:  
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(7.23) 

The above dimensionless equation describes the kinetics of liquid penetration into 

the porous substrate.   

 

7.2.3 Foam/porous substrate interface 

The boundary condition at the foam/porous substrate interface is a mass 

conservation of the liquid in the case when the free liquid layer does not form: 

pmf QQ  , (7.24) 

where Qf is the flux of liquid from foam to the interface. It can be concluded using 

Eq. (7.4): 

z

tHz
tHz

f

RCC
tHz

f

gRC
Q

bb
f






),(
),(

6
),(

3

12
2

1 










. (7.25) 

On the other hand, from Eqs. (7.19) and (7.11), the flux of liquid from interface into 

the porous substrate is:  
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Substitution of Eqs. (7.25) and (7.26) into Eq. (7.24) results in the following 

expression for the mass conservation of the liquid at the interface (no free liquid 

film): 
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(7.27) 

Using dimensionless variables and co-ordinate as before: 

crttLLlHz  /,/,/,/ 00  , Eq. (7.27) can be rewritten as: 
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(7.28) 

Substituting Eq. (7.22) into Eq. (7.28) and introducing Darcy number as: 
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results in the following dimensionless equation for the conservation of liquid at the 

interface: 
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(7.30) 

where 
3

12 616 CfCC  ~ 2057.8. 

Let us use the Kozeny-Carman168 model of the capillary tubes as the porous medium 

in the present study. According to Ref.168, the permeability of this model can be 

found by the following equation:    

2
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
   (7.31) 

where kz and Spv are Kozeny constant and specific surface area per unit pore volume, 

respectively. For cylindrical pore shape kz=2 and Spv=2/Rpm.169 Although this model 

ignores the tortuous character of the flow paths in real porous media, the advantage 

of using this model, is its simplicity and clarity. Substituting Eq. (7.31) into Eq. 

(7.30) leads to the following expression for the continuity of liquid at the interface: 
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(7.32) 
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where 
3

13 38 CfCC  ~ 727.5. 

The suggested system of equations (7.18), (7.23) with boundary condition (7.32) is 

valid only when no liquid layer is formed at foam/substrate interface, i.e. if 

max),(  tH . In this case porous substrate sucks all liquid coming from the foam.  

 

7.2.4 Accumulation of liquid layer 

If the liquid volume fraction at foam/porous substrate interface reaches the 

maximum limiting value, φmax, the accumulation of liquid layer starts (at the 

moment t=tm) and free liquid layer is formed in between the porous substrate and the 

foam. This situation continues until t=tM when porous substrate sucks the liquid 

above the layer and again all liquid coming from the foam goes directly into the 

porous substrate. Therefore, the boundary condition at the bottom of the foam is 

constant liquid volume fraction at Mm ttt  : 

 max),(  tH , (7.33) 

and in dimensionless form at Mm   : 

max),1(   , (7.34) 

where φmax~0.26, 0ttmm  , 0ttMM  and cr maxmax  . The boundary 

condition (7.33) or (7.34) is valid until the moment tM and afterwards the condition 

(7.32) is again satisfied.        

In the case of liquid accumulation at foam/porous substrate interface, a mass balance 

of liquid leads to the following equation for the thickness of film in between the 

foam and the porous substrate:  
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, (7.35) 

where h is the thickness of the liquid layer. It is assumed in Eq. (7.35) that the 

thickness of liquid layer, h(t), is so small and the pressure inside the film remains 

constant and is equal to that given by Eq. (7.10).  
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We use below the following dimensionless variables and co-ordinate: 

crttLLlHzhh  /,/,/,/,/ 000  , where h0 is the 

characteristic thickness of liquid layer which is determined as: 
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Using the above expression, Eq. (7.35) can be rewritten as: 
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(7.37) 

The suggested system of Eqs. (7.18), (7.23) and boundary condition (7.32) in the 

case no liquid layer is formed over porous substrate or conditions (7.32), (7.34) and 

(7.37) in the case of liquid accumulation at the foam-porous substrate interface 

include three dimensionless parameters: Bo, α (according to Eq. (7.15)) and the 

porosity of the porous substrate, .  

 

7.2.5 Model calculation 

The model of foam drainage/imbibition described by dimensionless Eq. (7.18) has 

been solved below using finite element method on one dimensional regular grid with 

50000 elements corresponding to the foam height. The model of liquid imbibition 

into porous substrate described by Eq. (7.23) was coupled with foam drainage 

equation at foam/substrate interface. A backward differentiation formula was used to 

solve time-dependent variables and time stepping was free taken by solver with 

initial step size of 10-20. Relative tolerance was set to 10-6, whereas absolute 

tolerance was set to 10-8. The boundary condition at the top of the foam was zero 

liquid flux.  The boundary condition at foam/porous substrate interface was 

continuity of flux, Eq. (7.32), in case no liquid layer is formed over porous substrate 

or the combination of conditions (7.32), (7.34) and (7.37) in case of liquid layer 

accumulation. According to Eqs. (7.18), (7.23), (7.32), (7.34) and (7.37) kinetics of 

foam drainage/imbibition depends on three dimensionless numbers: Bo, α and ε. 

Furthermore, the initial value of liquid volume fraction in foam, φ(z, 0), was set to 
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be varied in simulations in order to investigate its effect on the kinetics of foam 

drainage/imbibition. 

 

7.3  Results and discussion 

The typical time evolution of the liquid volume fraction, φ, over the dimensionless 

foam height, ζ, and time evolution of the depth of imbibition into the porous 

medium, l, is shown in Fig. 7.2. In the very beginning of the drainage/imbibition the 

liquid volume fraction decreases only at the top of the foam and near foam/porous 

substrate interface, whereas in the middle part of the foam the initial value is 

retained. This is a common feature of foam drainage/imbibition process below. In 

contrast to the foam placed on a layer of liquid or on a non-porous substrate, the 

liquid volume fraction at the interface with porous substrate decreases dramatically 

over a very short time due to imbibition into pores of the porous substrate. After 

initial considerable decrease in the liquid volume fraction near the interface the 

difference in the capillary pressure between foam and porous substrate decreases, 

whereas the penetration depth of the liquid into substrate increases and therefore, 

according to Eq. (7.23), the imbibition becomes slower.  At the same time there is a 

continuous supply of liquid to this region from the higher parts of the foam. That is 

why the further decrease in the liquid volume fractions slows down and in some 

cases after initial drop; the liquid volume fraction starts to increase and experiences 

a peak point (see τ=0.002 in Fig. 7.2(a)). This process is controlled by Bond number, 

α, ε and initial liquid volume fraction, φ(z, 0). In addition, as is shown in Fig. 7.2(b), 

in the beginning of the drainage the liquid penetrate into the porous substrate with a 

higher rate while after a short period of time the depth of liquid imbibition increases 

very gradually and it plateaus at a maximum value.  
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a) 

 

b) 

Figure 7.2: Time evolution of a) liquid volume fraction over the foam height b) liquid 

imbibition into the porous medium at Bo=5.45, α=10, ε=0.03 and φ(z, 0)= 5%.148 

Reproduced by permission of The Royal Society of Chemistry. Copyright © 2016 Royal 

Society of Chemistry. 
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Fig. 7.3 shows the time evolution of the liquid volume fraction at foam/porous 

substrate interface φ(ζ =1,τ) at various Bo, α and ε numbers, and with various initial 

liquid volume fractions, φ(z, 0). Based on the value of Bo, α, ε and φ(z, 0), there are 

three possible scenarios for the interaction of foam with a porous substrate. 

 

  

  

Figure 7.3: Time evolution of liquid volume fraction at foam/porous substrate interface at 

a) α=10, ε=0.03, φ(z, 0)=5% and various Bo; b) Bo=5.45, ε=0.03, φ(z, 0)=5% and various α; 

c) Bo=5.45, α=10, φ(z, 0)=5% and various ε; d) Bo=5.45, α=10, ε=0.03 and various φ(z, 0). 

In all cases inserts present enlarged region of time scales from 0 to 0.005-0.01. Note, in 

Figure 7.3 the first very fast stage when the liquid volume fraction at the foam/porous 

substrate interface decreases cannot be clearly shown but it is present in all cases 

considered.148 Reproduced by permission of The Royal Society of Chemistry. Copyright © 

2016 Royal Society of Chemistry.   

 

7.3.1 Rapid imbibition  

(a) (b) 

(c) (d) 
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As shown in Fig. 7.3 φ(ζ =1,τ) is a decreasing function of time at low Bo, α and φ(z, 

0), and high porosity values, ε (e.g. Bo=1.23 in Fig. 7.3(a), α=2 in Fig. 7.3(b), 

ε=0.06 in Fig. 7.3(c) and φ(z, 0)=3% in Fig. 7.3(d)). In these cases, liquid imbibition 

into porous substrate occurs quicker as compared with the liquid drainage inside the 

foam, and liquid volume fraction at the interface does not experience a peak point 

after initial considerable decrease and it remains constant near final liquid volume 

fraction. This regime, when the imbibition into porous substrate dominates, is 

referred to as a rapid imbibition.  

Fig. 7.4 shows the time evolution of liquid volume fraction over the foam height at 

low values of Bo, α and φ(z, 0) and high value of porosity, corresponding to the 

regime of rapid imbibition. Bond number is a ratio of hydrostatic pressure in foam to 

capillary pressure in bubbles as is defined by Eq. 7.17. Accordingly, at lower Bond 

numbers, the capillary forces in foam dominate the gravitational forces acting 

downward and thus, liquid drainage due to gravity occurs slower than the imbibition 

into the pores of porous substrate. Therefore, Figs. 7.2(a) and 7.4(a) show the 

considerable difference: at identical α, ε and φ(z, 0), the liquid supply from higher 

parts of the foam occurs slower at low Bo numbers (Fig. 7.4(a) as compared with 

that in Fig. 7.2(a)). α is a ratio of bubbles radius to the radius of pores according to 

Eq. 7.14. At low α numbers, the drainage at the top of the foam proceed slower 

while the capillary suction imposed by the porous substrate is not considerable also. 

Therefore, at identical Bo, ε and φ(z, 0), the liquid supply from higher parts of foam 

occurs slower at lower α numbers (Fig. 7.4(b) as compared with that in Fig. 7.2(a)). 

It is also possible to conclude from both Fig. 7.4(b) and Eq. 7.15 that final liquid 

volume fraction is higher at lower values of α. Comparison of Figs. 7.4(c) and 7.4(d) 

with Fig. 7.2(a) demonstrates that at higher values of ε and lower values of φ(z, 0), 

the liquid volume fraction at the bottom of the foam does not experience a peak 

point and it remains constant near final liquid volume fraction.    

In all three plots presented in Figs. 7.4(a)- 7.4(d) the liquid volume fraction reaches 

maximum value somewhere inside the foam, while the liquid volume fraction 

decreases close both the top and the bottom of the foam. However, there is one 

important difference between plots presented in Fig. 7.4(a) as compared with other 

plots (Figs. 7.4(b), 7.4(c) and 7.4(d)): position of the maximum is close to the 

middle of the foam on all plots in Fig 7.4(a) while it is closer to the bottom of the 

foam in Figs. 7.4(b), 7.4(c) and 7.4(d). 
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Figure 7.4: Time evolution of liquid volume fraction over the foam height at a) Bo=1.23, 

α=10, ε=0.03 and φ(z, 0)=5%; b) Bo=5.45, α=2, ε=0.03 and φ(z, 0)=5%; c) Bo=5.45, α=10, 

ε=0.06 and φ(z, 0)=5%; d) Bo=5.45, α=10, ε=0.03 and φ(z, 0)=3%.148 Reproduced by 

permission of The Royal Society of Chemistry. Copyright © 2016 Royal Society of 

Chemistry. 

 

7.3.2 Intermediate imbibition 

Fig. 7.3 shows that φ(ζ =1,τ) experiences a maximum value at intermediate Bo, α, ε 

and φ(z, 0) numbers (e.g. Bo=4.90, 5.45 and 7.08 in Fig. 7.3(a), α=8.33, 10 and 

13.89 in Fig. 7.3(b), ε=0.025, 0.03 and 0.0325 in Fig. 7.3(c) and φ(z, 0)=4.8, 5 and 

5.5% in Fig. 7.3(d)). This regime, when the rate of the imbibition into the porous 

substrate is comparable with the rate of drainage, is referred to as an intermediate 

imbibition. Accordingly, as shown in Fig. 7.2(a) the liquid supply from higher parts 

of foam to the interface occurs quicker, whereas liquid penetration from interface 

into the porous substrate goes slower at the beginning of the process but the 

(a) (b) 

(c) (d) 
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imbibition is faster during the final stage of the process. That is why at the early 

stage of the drainage/imbibition, liquid volume fraction at the bottom of the foam 

reaches a maximum value and then it drops to approximately final value. Note that 

at this regime, there is not any liquid accumulation between the foam and the porous 

substrate. 

 

7.3.3 Slow imbibition 

The system switched to a different regime at high Bo, α and φ(z, 0), and low ε 

values (e.g. Bo=9.81 in Fig. 7.3(a), α=25 in Fig. 7.3(b), ε=0.02 in Fig. 7.3(c) and 

φ(z, 0)=6% in Fig. 7.3(d)). This regime, when the liquid volume fraction at the 

foam/porous substrate interface can increase to a maximum limiting value and free 

liquid layer is formed over the porous substrate, is referred to as a slow imbibition.  

Fig. 7.5 shows the time evolution of liquid volume fraction over the foam height in 

the case of slow imbibition regime, which happens at high values of Bo, α and φ(z, 

0) and low values of ε, correspondingly. At slow imbibition regime the liquid supply 

from higher parts of the foam occurs quicker as compared with liquid imbibition 

into the porous substrate. Accordingly, φ(ζ =1,τ) reaches the maximum limiting 

value, φmax, at m   and free liquid layer starts to accumulate between the porous 

substrate and the foam. Time evolution of the thickness of the free liquid layer is 

shown in Fig. 7.6 for Bo=9.81, α=10, ε=0.03 and φ(z, 0)=5%. The thickness of the 

free liquid layer increases and reaches a maximum value and then it decreases until 

the moment M   when free liquid layer disappears and it is sucked completely by 

the porous substrate. After that at M  again all liquid coming from the foam goes 

directly into the porous substrate and φ(ζ =1,τ) also drops to approximately final 

liquid volume fraction (See Fig. 7.3). Fig. 7.5 shows that the drainage at the top of 

the foam is practically uncorrelated with processes near foam/porous substrate 

interface. 
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Figure 7.5: Time evolution of liquid volume fraction over the foam height at a) Bo=9.81, 

α=10, ε=0.03 and φ(z, 0)=5%; b) Bo=5.45, α=25, ε=0.03 and φ(z, 0)=5%; c) Bo=5.45, α=10, 

ε=0.02 and φ(z, 0)=5%; d) Bo=5.45, α=10, ε=0.03 and φ(z, 0)=6%. In all cases inserts 

present enlarged region of liquid content from 0 to 5-6%.148 Reproduced by permission of 

The Royal Society of Chemistry. Copyright © 2016 Royal Society of Chemistry. 

 

Note, there is a difference in time dependencies presented in Fig. 7.5(a) from those 

presented in Figs. 7.5(b)- 7.5(d): at the moment =0.004 (just after the free liquid 

layer disappeared) the dependency of the liquid volume fraction on the foam height 

has a s-shape character, which is different from all other dependences presented in 

Figs. 7.5(b)- 7.5(d). 

 

(a) (b) 

(c) (d) 
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Figure 7.6: Time evolution of the thickness of free liquid layer between foam and porous 

substrate at Bo=9.81, α=10, ε=0.03 and φ(z, 0)=5% (corresponds to Fig. 7.5(a)).148 

Reproduced by permission of The Royal Society of Chemistry. Copyright © 2016 Royal 

Society of Chemistry. 

 

7.3.4 Transition points between three regimes of drainage/imbibition 

It was shown earlier that the kinetics of foam drainage/imbibition depends on the 

values of four parameters: Bo, α, ε, and φ(z, 0). Below we try to find relations 

between these four parameters, which determine transitions between three different 

regimes of the drainage/imbibition process. At a very early stage of the 

drainage/imbibition, the liquid volume fraction at the foam/porous substrate 

interface drops from its initial value to roughly final liquid volume fraction and then 

based on the drainage/imbibition regime it experiences a peak point or remains 

constant near final value (see discussion of the results presented in Fig. 7.3). 

However, even in the fast imbibition regime, there is also a weak peak point, but its 

value is very close to final liquid volume fraction. If we adopt 3),1(   or

crtH  3),(   as a transition point between rapid and intermediate imbibition regimes, 

using the regression analysis between various simulations we reach the following 
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dimensionless number which determines the boundary between rapid and 

intermediate imbibition regimes:  

 
19

1
94.2

56.2

75.3

0

34.1











Bo
RI . (7.38) 

If RI < 19, then the rapid imbibition regime of drainage/imbibition takes place. 

According to Eq. (7.33) a transition between intermediate and slow imbibition 

regime occurs at 26.0),( max  tH . Therefore, the same procedure as above allows 

finding another dimensionless number, IS, which determine the boundary between 

intermediate and slow imbibition regimes: 

 
35

1
05.2

56.2

75.3

0

34.1











Bo
IS . (7.39) 

At IS > 35, the liquid volume fraction at the foam/porous substrate interface reaches 

the maximum limiting value and free liquid layer is formed over the porous 

substrate (slow imbibition). However, at RI > 19 and IS < 35 the system is in 

intermediate imbibition regime and no liquid layer is formed at the interface.  

 

7.4  Conclusions 

A model for foam drainage/imbibition placed on a porous substrate was introduced, 

which allows describing three different regimes of the process. According to 

suggested mathematical model, kinetics of foam drainage/imbibition depends on 

three dimensionless numbers: the ratio of capillary pressure in porous substrate to 

that in bubbles, α, porosity of the porous substrate, ε, Bond number, Bo, and initial 

liquid volume fraction, φ(z, 0). It was found that there are three different regimes of 

the drainage/imbibition. All three regimes of drainage/imbibition start with a very 

fast decrease of the liquid volume fraction at the foam/porous substrate interface. All 

processes are considered after this short initial stage. At low Bo, α and φ(z, 0), and 

relatively high ε values liquid imbibition into the porous substrate occurs faster as 

compared with the liquid drainage inside the foam. This case was referred to as a 

rapid imbibition. During foam drainage/imbibition at the rapid imbibition regime, 

the liquid volume fraction at the bottom of the foam remains almost constant close 

to a final liquid volume fraction after initial considerable decrease. At intermediate 
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Bo, α, ε and φ(z, 0) numbers the process of drainage/imbibition switched to a 

different regime, when the liquid volume fraction at the foam/porous substrate 

interface experiences a maximum value. At this regime the rates of drainage and 

imbibition are comparable and this regime is referred to as an intermediate 

imbibition. At even higher Bo, α and φ(z, 0), and lower ε values the liquid volume 

fraction at foam/porous substrate interface increases to a maximum limiting value 

and free liquid layer is formed over the porous substrate. This case is referred to as a 

slow imbibition. Applying the regression analysis between various simulation 

results, transition points between three different regimes of drainage/imbibition were 

determined by introducing two dimensionless numbers.  

 

Nomenclature 7 

A Plateau border cross-sectional area, m2 

Bo Bond number 

C geometrical coefficient 

C1 geometrical coefficient 

C2 coefficient  

C3 coefficient 

Da Darcy number 

,f drag coefficient 

g gravity acceleration, m.s-2 

h thickness of the free liquid layer, m 

h0 characteristic thickness of the free liquid layer, m 

H foam height, m 

kz Kozeny constant 

l dimensionless depth of penetration 

L penetration depth, m 
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L0 characteristic depth of penetration, m 

n geometrical coefficient of porous substrate 

P pressure, Pa 

Pa atmospheric pressure, Pa 

Pb pressure in a bubble, Pa 

Pc pressure difference in bubble and Plateau border, Pa 

Ppb pressure in Plateau border, Pa 

Ppm pressure in porous substrate, Pa 

Q flow rate, m3.s-1 

Qf flux of liquid from foam to the foam/porous substrate interface, m.s-1 

Qpm flux of liquid into the porous substrate, m.s-1 

Rb radius of bubbles, m 

Rpb curvature radius of Plateau border, m 

Rpm radius of pores inside porous substrate, m 

Spv specific surface area per unit pore volume, m-1 

t time, s 

tm time instant when a free liquid layer starts to form, s  

tM 
time instant when a free liquid layer is sucked by the porous 

substrate, s 

t0 characteristic time scale, s 

z co-ordinate axis, m 

Greek Symbols 

α ratio of capillary pressure in porous substrate to that in bubbles 

 surface tension, N.m-1 

ε porosity 
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ζ dimensionless vertical co-ordinate  

κ substrate permeability, m2 

 dimensionless thickness of the free liquid layer 

µ dynamic viscosity, Pa.s 

 liquid density, kg.m-3 

τ dimensionless time 

τm dimensionless time instant when a free liquid layer starts to form 

τM dimensionless time instant when a free liquid layer is sucked 

 liquid volume fraction 

cr final liquid volume fraction 

ϕ dimensionless liquid volume fraction 
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CHAPTER 8 

 

CONCLUSIONS AND FUTURE WORK 

 

8.1  Conclusions 

The interaction of complex liquids (i.e. droplets or foams) with complex surfaces 

(i.e. soft deformable or porous surfaces) was addressed in the following areas: (1) 

wetting of deformable substrates and surface forces, (2) kinetics of wetting and 

spreading of non-Newtonian liquids over porous substrates, (3) kinetics of spreading 

of non-Newtonian solutions over hair, (4) free drainage of foams produced from 

non-Newtonian solutions, and (5) foam drainage placed on porous substrates. 

Equilibrium of liquid droplets on deformable substrates was investigated in Chapter 

3. Disjoining pressure action in the vicinity of the apparent three phase contact line 

was taken into account. It was shown that the combined disjoining and capillary 

pressure action determine the substrate deformation. A simplified linear disjoining 

pressure isotherm and simple Winkler's model to account for the substrate 

deformation were used which allows deducing analytical solutions for both the 

liquid profile and the substrate deformation. The apparent equilibrium contact angle 

of the liquid profile with the deformable substrate was calculated and its dependency 

on the system parameters was investigated. 

Spreading/imbibition of blood, which is a power law shear thinning non-Newtonian 

liquid, over a dry porous layer was investigated in Chapter 4 from both theoretical 

and experimental points of view. It was found that blood droplet 

spreading/imbibition over porous substrates shows two different behaviours: (i) 

partial wetting case with three subsequent stages: initial fast spreading, constant 

maximum droplet base and the shrinkage of the drop base; (ii) complete wetting case 

with only two stages: initial fast spreading and the shrinkage of the drop base. A 

system of two differential equations was derived for the case of complete wetting 

from the combination of a spherical cap spreading model over porous layer and a 

modified Darcy’s law for power law fluids. All experimental data fell on three 

universal curves independent of bloods with different haematocrit levels and n 

values under the dimensionless scale. The predicted theoretical results for complete 
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wetting cases were also three universal curves accounting quite satisfactory for the 

experimental data. 

Wetting properties of the neutralized non-Newtonian AculynTM 22 (A22) and 

AculynTM 33 (A33) polymer solutions on dry hair tresses were studied 

experimentally in Chapter 5. Wetting behaviour on the dry undamaged hair tresses 

was drastically different between the two polymers and, in a first approximation, not 

directly linked with their bulk rheology. In the case of A22 the droplet spread and 

remained on the tress after spreading for at least half an hour, during which it slowly 

evaporated and possibly penetrated inside the hair. For A33 fast penetration of the 

droplet inside the hair tress was observed when the advancing contact angle reached 

a critical value of about 60o. It was attributed to the so-called Cassie−Wenzel 

wetting transition, in which the liquid starts to penetrate inside the hair array.  

A model for foam free drainage of power-law non-Newtonian liquids was presented 

in Chapter 6 which accounted for the drainage of A22 and A33 polymeric solutions. 

The predicted values showed that the decrease in the foam height and liquid content 

is very fast in the very beginning of the drainage; however, it reaches a steady state 

at long times. Under the assumption of rigid surface of the Plateau border, the 

predicted values of the time evolution of the foam height and liquid content were in 

good agreement with the measured experimental data especially for lowly viscose 

polymeric solutions. However, in the case of highly viscous solutions an interfacial 

mobility at the surface of the Plateau border has to be taken into account. 

A model for drainage/imbibition of a foam placed on the top of a porous substrate 

was presented in Chapter 7. The equation of liquid imbibition into the porous 

substrate was coupled with foam drainage equation at the foam/porous substrate 

interface. The deduced dimensionless equations were solved using finite element 

method. It was found that the kinetics of foam drainage/imbibition depends on three 

dimensionless numbers and initial liquid volume fraction. The result showed that 

there are three different regimes of the process: (i) rapid imbibition: the liquid 

volume fraction inside the foam at foam/porous substrate interface remains constant 

close to a final liquid volume fraction; (ii) intermediate imbibition: the liquid 

volume fraction at the interface with porous substrate experiences a peak point and 

imbibition into the porous substrate is slower as compared with the drainage; (iii) 

slow imbibition: the liquid volume fraction at foam/porous substrate interface 

increases to a maximum limiting value and a free liquid layer is formed between the 
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foam and the porous substrate. However, the free liquid layer disappears after some 

time. The transition points between these three different drainage/imbibition regimes 

were delineated by introducing two dimensionless numbers. 

 

8.2  Future work 

In this section some recommendation for future researches are given in each of the 

above-mentioned area: 

 It was shown in Chapter 3 that even in the case of equilibrium the 

deformation is more complex than it was assumed in earlier investigations. 

Note, there is a substantial problem here: experimental observation of 

equilibrium droplets on either non-deformable or deformable substrates is 

impossible, because according to Kelvin’s equation, the droplets should be 

kept at equilibrium with oversaturated vapour for a prolonged period of time 

and the oversaturation should be kept constant with enormously high 

precision. This is currently beyond the experimental capabilities. It is the 

reason why only static advancing/receding contact angles can be 

experimentally observed on either non-deformable or deformable substrates. 

A theory of calculations of hysteresis contact angles was suggested only 

recently (cited in Chapter 3) on non-deformable solid substrates and has 

never been attempted in the case of deformable substrates. This is to be done 

in the future.  

 A mathematical model was developed in Chapter 4 to describe wetting and 

spreading of non-Newtonian liquid droplets over a thin porous substrate in 

the case of complete wetting and the results were compared with the 

experimental data of the same process. However, to the best of our 

knowledge not only there is no available theory to describe the kinetics of 

wetting and spreading in the case of partial wetting, but the wetting of a thick 

porous medium is also challenging even in a complete wetting case. These 

are to be addressed in the future. 

 Wetting and spreading of non-Newtonian A22 and A33 polymer solutions 

over dry hair tresses were studied experimentally in Chapter 5 and it was 

shown that unlike A33, the A22 droplets remains on the surface of the hair 

tress after the initial fast spreading stage. This behaviour was attributed to 
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the presence of a yield stress for A22 solutions. Although the effect of yield 

stress on wetting and spreading phenomena is an interesting topic, there is 

only limited number of investigations in this area and it requires to be 

comprehensively explored in the future. 

 It was shown in Chapter 6 that the developed mathematical model for foam 

free drainage of power-law non-Newtonian liquids was in a good agreement 

with the measured experimental data especially in the case of lowly viscose 

polymeric solutions, and the small deviation between the theoretical 

predictions and experimental results in the case of highly viscose polymeric 

solutions was attributed to the assumption of immobile surface of the Plateau 

border and Poiseuille-like flow. It shows that in the case of highly viscous 

solutions an interfacial mobility at the surface of the Plateau border has to be 

incorporated in the mathematical model. This is to be done in the future.  

 A completely new theory of foam drainage placed on the top of a porous 

substrate was presented in Chapter 7 for foams produced from Newtonian 

solutions. The current model can be developed to describe the drainage of 

foams produced from non-Newtonian solutions.   
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