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Abstract 

A suite of models were integrated to predict the potential of a large liquid 

hydrocarbon storage tank fire escalating and involving neighbouring tanks, as a 

result of thermal loading. A steady state pool fire radiant heat model was combined 

with a further model, in order to predict the distribution of thermal loading over the 

surface of an adjacent tank, and another model was incorporated to predict the 

thermal response of the contents of the adjacent tank. 

In order to predict if, or when, an adjacent tank will ignite, the radiant heat from the 

fire received by the adjacent tank must be quantified. There are a range of 

mathematical models available in the literature to calculate the radiant heat flux to a 

specified target and each of these models is based on assumptions about the fire. 

The performance of three of these models, which vary in complication, was analysed 

(the single point source model, the solid flame model and the fire dynamics simulator 

computational fluid dynamics model) and, in order to determine the performance of 

each model, the predictions made by each of the models were compared with actual 

experimental measurements of radiant heat flux. Experiments were undertaken 

involving different liquid fuels and under a range of weather conditions and, upon 

comparing the predictions of the models with the experimental measurements, the 

solid flame model was found to be the one most appropriate for safety assessment 

work. Thus, the solid flame model was incorporated into the thermal loading model, 

in order to predict the distribution of radiant heat flux falling onto an adjacent tank 

wall and roof. 

A model was developed to predict the thermal response of the contents of an 

adjacent tank, in order to predict variations in the liquid and vapour temperature, any 

increase in the vapour space pressure and the evolution of the vapours within the 

given time and the distribution of thermal loading over the surface of the tank as 

predicted by previous models; of particular importance was the identification of the 

possibility of forming a flammable vapour/air mixture outside the adjacent tank. To 

assess the performance of the response model, experiments were undertaken at 
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both laboratory and field scale. The laboratory experiments were conducted in the 

Chemical Engineering Laboratory at Loughborough University and required the 

design and construction of an experimental facility representing a small-scale 

storage tank exposed to an adjacent fire. The field scale experiments were 

undertaken at Centro Jovellanos, Asturias, Spain. 

An experimental vessel was designed and fabricated specifically to conduct the 

laboratory tests and to measure the response of a tank containing hydrocarbon 

liquids to an external heat load. The vessel was instrumented with a network of 

thermocouples and pressure transmitter and gauge, in order to monitor the internal 

pressure and distribution in temperature throughout the liquid and its variation with 

time. The model predicting the thermal response of an adjacent tank was shown to 

produce predictions that correlated with the experimental results, particularly in terms 

of the vapour space pressure and liquid surface temperature. The vapour space 

pressure is important in predicting the time when the vacuum/pressure valve opens, 

while the liquid surface temperature is important as it governs the rate of 

evaporation. 

Combining the three models (the Pool Fire model, the Thermal Loading model and 

the Response model) forms the basis of the storage tanks spacing international 

codes and presents a number of innovative features, in terms of assessing the 

response to an adjacent tank fire: such features include predicting the distribution of 

thermal load on tanks adjacent to the tank on fire and thermal load on the ground. 

These models can predict the time required for the opening of the pressure vacuum 

relief valve on adjacent tanks and the release of the flammable vapour/air mixture 

into the atmosphere. 

A wide range of design and fire protection alternatives, such as the water cooling 

system and the minimum separation distance between storage tanks, can be 

assessed using these models. The subsequent results will help to identify any 

recommended improvements in the design of facilities and management systems 

(inspection and maintenance), in addition to the fire fighting response to such fires. 

Keywords: atmospheric storage tanks, thermal loading, pool fire 
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  Is the pressure/vacuum relief valve cross sectional area (m2) 

    Is the hot dry shell (wall and roof) area (m2) 
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Is the carbon to hydrogen atomic ratio in hydrocarbon 
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Transmissivity equation) 
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   Is the air internal energy (W) 

   Is the vapour internal energy (W) 

   Is the Froude number (
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  Is the acceleration due to gravity (9.81 m.s-2) 

   Is the air heat transfer coefficient (W.m-2K-1) 

    Is the heat of combustion of fuel (kJ.kg-1) 

   Is the enthalpy of the vapour (J.kg-1) 
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   Is the air thermal conductivity  (W.m-1.K-1) 
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  Is the total mass in the vapour space  (kg) 

 ̇  Is the dimensionless mass burning rate (
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   Is the vapour pressure (Pa) 

   Is a reference pressure (Pa) 
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    Is the ambient partial water vapour pressure  (N.m-2) 

 ̇ 
Is the rate of heat, per unit area, which is added to the 

liquid fuel  
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       Is the maximum surface emissive power for the fuel (kW.m-2) 
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 ̇ is the linear regression rate  (m.s-1) 

   Is the view factor between flame and target  

   Is the fraction of heat radiated  
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   Is the air volumetric expansion coefficient  (K-1) 

   Is the air dynamic viscosity (kg.s-1.m-1) 
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1 Introduction 

1.1 Context and Motivation 

Atmospheric storage tanks are an essential aspect of refineries and terminal 

installations. The basic technology of tank design and fire protection is well 

established and has not changed substantially in recent years; however, there have 

been some incremental improvements. Myer (1997) suggested that the simple 

concept of the atmospheric storage tank fosters a belief that there is little complexity 

to it. 

In the last century, a series of major accidents, such as Flixborough, Bhopal, and 

Piper Alpha, have focused attention on the potential hazards posed by the chemical 

industry and the impact of such hazards on nearby communities (Pitblado et al. 

1990). Attention has primarily centred on process areas and pressure storage and, in 

particular, on situations where large vapour clouds of flammable or toxic materials 

may form. Atmospheric storage tanks have received much less attention and this 

could be due to several reasons, including: 

 The fact that the expected offsite hazards are relatively small 
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 The accident record (in terms of fatalities) has largely been regarded as 

acceptable 

 The fact that the technology is relatively static and thus new hazards are 

unlikely. 

Although atmospheric storage tanks have received less attention, they are 

associated with serious hazards to employees, the community around them and the 

environment. A historical study of atmospheric storage tank incidents was conducted 

by Pitblado et al. in 1990 and this highlighted that the majority of fatalities associated 

with atmospheric storage tank fires were site employees and that these usually 

occurred in the initiating incident. In addition, atmospheric storage tank incidents can 

cause serious damage to the economy in general. For example, the 2005 Buncefield 

oil depot accident, which involved multiple storage tanks, cost about £1 billion, 

according to the Buncefield Major Incident Investigation Board (2008). 

In such major storage tank fires, the incident may escalate to adjacent tanks, due to 

the effect of radiant heat from the fire on the adjacent tank and the subsequent effect 

on the contents of the tank. This heat can cause the temperature of the liquid and 

vapour in the adjacent tank to rise and, as a consequence, the vapour space 

pressure will increase and exceed the pressure/vacuum relief valve (PVRV) set 

point, in order to allow the vapours to escape. If the adjacent tank contains 

flammable material, there is the potential for the ignition of the vapours and thus 

escalation. 

In order to minimise the risk of escalation, there is a need to reassess the existing 

basis for atmospheric storage tank spacing, fire protection and fire fighting 

resources. The existing engineering codes are extensive and have largely been 

proven to be very effective in the detailed design of atmospheric storage tanks; 

however, they are deficient, in respect of the above issues. This is due to the fact 

that the engineering codes relating to tank spacing and tank fire protection are based 

on experience, rather than proper engineering judgement. 

In order to address this perceived deficiency, work has been undertaken in 

developing a suite of mathematical models that can predict the fire, the distribution of 
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radiant heat flux from the fire falling on adjacent tanks and the effects of radiant heat 

flux on the contents of adjacent tanks. This work has been undertaken in 

collaboration with the LASTFIRE project. The LASTFIRE project (Large Atmospheric 

Storage Tank Fires) is a collaboration of sixteen international oil companies 

reviewing the hazards associated with fires in atmospheric storage tanks and 

developing industry best practice, in order to mitigate the risks. The original 

LASTFIRE project, which was limited to open-top, floating-roof tanks, was completed 

in June 1997, while the current LASTFIRE project encompasses all tank types (fixed-

roof, internal floating-roof and open-top floating-roof) over 10 metres in diameter. 

Part of the experimental work related to this research was undertaken in 

collaboration with the LASTFIRE project Co-ordinator (Resource Protection 

International Company). 

1.2 Atmospheric Storage Tank Design 

According to the American Petroleum Institute (API 650) and the National Fire 

Protection Association (NFPA 30), liquid hydrocarbon storage tanks are categorised 

by pressure rating and by roof design. Storage tanks are defined by NFPA Standard 

30 as any vessel having a liquid capacity exceeding 60 gallons (0.23 m3), intended 

for fixed installation and not used for processing. Zalosh (2003) describes 

atmospheric storage tanks as those which operate from atmospheric pressure up to 

0.5 psig (3.4 kPa), as measured in the vapour space at the top of the tank. 

Atmospheric storage tanks that are used to store hydrocarbon liquids can be 

designed as either a horizontal or vertical construction and are normally designed to 

operate at atmospheric pressure. There are a number of options, in terms of the 

design and organisation of atmospheric storage tanks in a facility, as outlined by 

Wayne and Wisuri (2000): 

a. Tanks can be installed either above or underground, and they can be designed 

either vertically or horizontally 

b. Tanks are mainly constructed from steel, but concrete and fibreglass tanks for 

underground installation are widespread 
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c. Tanks can be constructed with double walls to contain leaks from the inner tank, 

or, more usually, they will be located in a bund or spill collection basin. 

The design of a vertical atmospheric storage tank can have either an open top, with 

the roof floating on the stored liquid, or a fixed roof. The safe design of a floating-roof 

tank offers a considerable level of fire safety over other vertical tank designs. 

Duggan and Gilmour (1944) conducted a study which compared the safety of 

different types of atmospheric storage tanks and found that the floating-roof tank 

helps to minimise the large vapour space of the fixed-roof tank and provides effective 

vapour conservation: it was also the safest of all the atmospheric storage tank 

designs considered, in terms of fire. As a result, fire codes allow closer spacing 

between floating-roof tanks and less separation between adjacent properties or 

operations, providing a cost advantage, with regards to the layout and arrangement 

of tank farms. 

1.2.1 Open-top, Floating-roof Tank 

Open-top, floating-roof tanks, as described in the API standard 650, have either a 

single deck, which has a pontoon to keep the roof deck afloat, or a double deck 

floating-roof, or some other approved flotation device. Figure 1.1 shows an example 

of a pontoon single deck and a double deck installed in an open-top, floating-roof 

tank. There is a flexible seal around the rim of the floating-roof to prevent liquid 

leakage onto the top of the roof. Sealing devices include rubber or foam tubes, 

spring-loaded fabric and pantograph mechanisms. Figure 1.2 shows two different 

seal types. 

  

Figure ‎1.1: Example of the open-top, floating-roof tanks commonly used in the storage of highly 
volatile petroleum products 

 

Pontoon Single deck Double deck 

Liquid space 

deck 

Liquid space 

deck 
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Figure ‎1.2: The mechanical shoe seal (on the left) is a metal sheet held vertically by springs against 
the wall of the storage tank and is connected by brace arms to the floating roof. The foam seal (on 
the right) consists of a series of foam blocks covered by an envelope and held down by steel plates 

Although open-top, floating-roof tanks are used to minimise vapour space, vapours 

are able to bypass the rim seal. However, the fire potential in this area is very low 

and is the only space on the tank roof where a flammable mixture normally exists. 

These fires can be readily extinguished by a hose line or a portable extinguisher on 

small-to-medium sized tanks, while a fixed fire-fighting system is normally installed 

on larger tanks. In the study conducted by the LASTFIRE project in 1997, it was 

found that rim seal fires are the most common scenario and they are unlikely to 

escalate to full surface fires in well-maintained tanks. Crude oil and other 

hydrocarbon liquids, such as naphtha, are generally stored in open-top, floating-roof 

tanks. 

If such a tank is exposed to radiant heat from an adjacent fire, then the liquid next to 

the part of the wall or roof facing the fire might reach its initial boiling point, which is 

the temperature at which a mixture of hydrocarbons initially starts to boil at 

atmospheric pressure. Vapours are formed and they will collect under the roof and in 

the seal area. These vapours will either be immediately relieved through PVRVs 

located in the seal area or, if these are not fitted, the vapours will accumulate under 

the floating-roof. As the source of vapours will be localised (around the hottest point 

on the wall or roof facing the fire) and the roof is large, an asymmetric force will act 

on the roof, tilting it. A relatively small amount of liquid boil off is adequate to 

generate sufficient vapours to tilt the roof, releasing the vapours to the space above 

the floating-roof and, possibly, to cause the roof to sink. 

Tank roof 

Tank wall 

Pantograph 

seal 

Liquid 

Tank roof 

Tank wall 

Foam tube 

seal 

Liquid 
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Thus, regardless of the presence or absence of PVRVs, flammable vapours will 

accumulate in the space immediately above the roof, as the molecular weight and 

hence density of all petroleum products stored in atmospheric storage tanks exceeds 

that of air: the vapour is then trapped by the tank wall in the space above the 

floating-roof. Although there is no specific ignition source normally present in the 

space above the roof, various sources will exist, particularly if a major fire incident is 

occurring nearby. These ignition sources might include: 

 Hot soot particles that may fall out of smoke arising from the nearby tank fire 

 Radiant heat may raise the temperature of the wall above the floating-roof (if it 

is not cooled) or the temperature of the floating-roof to a degree sufficient for 

ignition to take place 

 Emergency pumping out of the tank, if its roof has tilted due to vapour 

generation, can lead to frictional heating or sparking. 

According to the LASTFIRE incident survey (1997), it must be stressed that applying 

fire-fighting foam to the rim seal area or the whole floating-roof will not affect vapour 

generation and ignition. Flammable vapours formed by the boiling of the bulk liquid 

will simply pass through the foam and will be ignited above it. One potential benefit 

of foam is that, by covering the whole surface of the floating-roof with foam, the heat 

transfer through the roof to the underlying liquid will be substantially reduced. 

However, foam will not reduce heat transfer through the wall: this will only be 

achieved by a water spray. 

Figure 1.3 shows the possible fire scenarios that might occur in an open-top, 

floating-roof tank, as outlined in the LASTFIRE incident survey (1997). 
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Rimseal fire

Full surface fire

Bund fire

Spill on roof fire

Pontoon explosion

 

Figure ‎1.3: Possible fire scenarios that might occur in an open-top, floating-roof tank, as 
highlighted by the LASTFIRE incident survey (1997) 

1.2.2 Internal, Floating-roof Tank 

The design of an internal, floating-roof tank is a tank that has a floating roof, which is 

protected by another fixed roof against the weather or for environmental control.  

Figure 1.4 shows a typical example of an internal, floating-roof tank. During the filling 

operation, flammable mixture can be present in the vapour space between the 

floating roof and the fixed roof. Recent updates of the LASTFIRE study confirmed 

that fixed-roof tanks fitted with an internal floating roof have a very low probability of 

suffering an internal fire. However, this type of tank is more vulnerable to explosion, 

due to the presence of an explosive mixture between the two roofs. Figure 1.5 shows 

the possible fire scenarios that might occur in internal, floating-roof tanks, as outlined 

in the LASTFIRE incident survey (1997). 
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Figure ‎1.4: Typical example of an internal, floating-roof tank (showing both fixed roof and 
floating roof tanks) 

 

Vent firesVents

 

Figure ‎1.5: Possible fire scenarios for an internal, floating-roof tank, as highlighted in the 
LASTFIRE incident survey (1997) 

1.2.3 Fixed-roof Tanks 

The fixed-roof tank is the least expensive to construct and is generally considered 

the minimum, in terms of acceptable equipment for the storing of petroleum 

products. A typical fixed-roof tank, as shown in Figure 1.6, consists of a cylindrical 

wall with a dome-shaped, fixed roof, which is permanently fixed to the tank wall. The 

fixed-roof tank is normally used to store low volatility, high flashpoint liquids, such as 

kerosene. 

Fixed-roof tanks are designed as atmospheric storage tanks and thus are provided 

with a PVRV, which is fully open at the designed pressure/vacuum. Figure 1.7 shows 

a typical example of a PVRV. However, if these tanks are exposed to fire, 

vaporisation may be sufficient to generate a flammable mixture in the tank vapour 

space. This mixture, exiting through the PVRV, could be ignited, which may, in turn, 

Fixed roof 

Liquid space 

Vapour space 

Floating 
roof 
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ignite the contents of the vapour space, resulting in an explosion. Thus, the majority 

of fixed-roof tanks, which are designed in accordance with API Standard 650, have a 

weak roof-to-wall seam that, in the event of an explosion, causes the roof to detach 

from the wall, leaving the tank wall and its contents exposed. Figure 1.8 shows a 

sequence of possible fire scenarios that might occur in fixed-roof tanks, as outlined 

in the LASTFIRE incident survey (1997). 

 

Figure ‎1.6: Typical fixed-roof tank: the fixed roof may be a cone shape or a dome shape 

 

 

Figure ‎1.7: Typical example of a pressure/vacuum relief valve (PVRV) 
(EPA, 2002) 
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Liquid space 

Vapour space 
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Air in, in case of vacuum 
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Full surface fire

Vent fire

Bund fire

Vapour space explosion

 

Figure ‎1.8: Possible sequence of fire scenarios for a fixed-roof tank, as highlighted in the 
LASTFIRE incident surve1997) 

The consequences of fixed-roof tanks being exposed to fire are, initially, quite 

different from those associated with floating-roof tanks: radiant heat from an adjacent 

tank fire will enter through the wall and will be absorbed by both vapour and liquid.  

The vapour space can get very hot. 

Fixed-roof tanks normally contain liquids with high flash points and high boiling 

points, such as class III liquids,‎ according‎ to‎ the‎ NFPA’s‎ classification‎ of‎

hydrocarbon liquids. Thus, initially, heat absorbed by the liquid will go to sensible 

heat warming, with a consequent increase in vaporisation and vapour pressure 

above the liquid. If the fuel vapour/air mixture in the vapour space is initially below 

the lower flammability limit, then the flammable region may be entered and a 

confined explosion is possible if a source of ignition exists. As the liquid in the tank 

continues to warm, the vapours in the vapour space may exceed the upper 

flammable limit and thus ignition in the vapour space will not occur. Simultaneous 

with the liquid temperature rising, the vapour space temperature will also rise, most 
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likely at a substantially greater rate: this is because the mass of the vapour is much 

less than that of the liquid and the radiant heat flux per unit area is greater on the 

upper part of the wall and roof than on the lower part of the wall, as it is likely to be 

closer to the flame and thus subtend an enhanced view factor from the adjacent fire. 

This is explained in detail in Chapter 2. 

The heated vapour will be unable to expand, thus increasing the pressure in the 

vapour space. This will vent through the PVRV, which protects the mechanical 

integrity of the tank. If it has not already done so, the expelled vapour (fuel vapour/air 

mixture) will soon reach the flammable range, due to liquid warm-up below and 

enhanced vaporisation, and it may be ignited; for example, by falling soot particles or 

hot metal surfaces. This will cause a small continuous flame at the vent of the PVRV, 

which may be difficult to extinguish from a distance using water jets or foam. Should 

the PVRV be partially blocked or undersized, then increasing pressure will cause the 

roof to fail along the weak roof-to-wall‎ seam,‎ causing‎ what‎ is‎ known‎ as‎ a‎ ‘cod’s‎

mouth’‎failure,‎as‎shown‎in‎Figure‎1.9. 

 

Figure ‎1.9: Fixed-roof‎tank‎with‎‘cod's‎mouth’‎failure,‎as‎it‎was‎subjected‎to‎internal‎pressure‎
(www.mc-integ.co.uk, accessed March 2012) 

There are a number of potential scenarios which may lead to a full surface fire in this 

situation: 

 The heat from the flame on the PVRV may ultimately destroy the valve and 

flash back into the tank 
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 If‎ the‎ fixed‎ roof‎has‎ failed‎as‎a‎ ‘cod’s‎mouth’,‎ falling‎soot‎particles‎can‎pass‎

through this and ignite the fuel vapour/air mixture within the vapour space, 

which must be flammable somewhere 

 If the tank roof is poorly inspected and maintained, corrosion holes may exist 

and cause direct ignition from falling soot particles 

 The hot metal of the side walls or roof may be sufficient to ignite the fuel 

vapour/air mixture within the vapour space. 

The last scenario is the most serious, as it is associated with a rapid rise in pressure, 

(typically to 8 times the operating pressure, if the containment is sufficiently strong 

and the fuel vapour/air mixture is near to being stoichiometric) (Pitblado et al. 1990).  

Atmospheric storage tanks are not sufficiently strong, leading to catastrophic failure 

of the tank (the weak seam would fail to relieve the increased pressure). However, a 

complete weak-seam‎failure‎ is‎unlikely;‎ rather,‎a‎ large‎ ‘cod’s‎mouth’‎ rupture would 

most likely occur, followed by a full-surface fire. Any prior application of foam will 

help to reduce the likelihood of a full-surface fire, but the combustion and pressure 

wave in the vapour space may breach the integrity of the foam blanket, allowing a 

surface fire to initiate and progress. 

It is not considered suitable to use the time to raise the fuel vapour/air mixture within 

the vapour space to the flammable range as the escalation time, as it is unlikely that 

ignition will occur at this time. By the time the temperature of the hot metal surfaces 

reaches the auto-ignition temperature, the fuel vapour/air mixture within the vapour 

space is likely to be well above the upper flammable limit. 

1.3 Atmospheric Storage Tanks Area Classification 

McMillan (1998) classified the hazardous areas inside and surrounding both fixed 

and floating-roof tanks according to the Dangerous Substances and Explosive 

Atmospheres Regulations (DSEAR). Hazardous areas are classified into zones 

based on an assessment of the frequency of the occurrence and duration of an 

flammable fuel vapour atmosphere, as follows: 

a. Zone 0 is the area in which a flammable fuel vapour/air mixture is present 

continuously or for long periods. 
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b. Zone 1 is the area in which a flammable fuel vapour/air mixture is likely to occur 

in normal operation. 

c. Zone 2 is the area in which a flammable fuel vapour/air mixture is not likely to 

occur in normal operation and, if it occurs, will only exist for a short time. 

1.3.1 Open-top, Floating-roof Tanks 

In open-top, floating-roof tanks, a fuel vapour/air mixture can be present outside the 

tank when a small quantity of liquid passes the rim seal: in such a scenario, the wall 

above the roof can prevent this flammable fuel vapour/air mixture from dispersing 

(McMillan, 1998). Thus, Zone 0 does not exist within the tank and the interior of the 

tank above the roof will be Zone 1. Figure 1.10 shows the hazard zones around the 

open-top, floating-roof tank. 

Height of bund
wall 2m

2m
Zone 2

Zone 1

Liquid space

Floating

roof

 

Figure ‎1.10: Hazardous area zones around an open-top, floating-roof tank (McMillan, 1998) 

1.3.2 Fixed-roof Tank 

These tanks exhibit a particular problem when they are exposed to radiant heat from 

the sunlight, particularly in their vapour space, and temperatures higher than the 

typical ambient maximum of 32 oC can occur (McMillan, 1998). It is thus 

recommended according to Pitblado et al, (1990) that flammable liquids with a 

boiling point of below 55oC are not stored in such tanks. These tanks are usually 

provided with a cover to prevent direct sunlight. The vapour space in the fixed-roof 

tank is considered as Zone 0 as, in the emptying operation, air will be drawn into the 

tank, which will form a flammable fuel vapour/air mixture. The space around the vent 
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will be Zone 1 because, during the filling process, the flammable fuel vapour/air 

mixture will be exhausted through the PVRV. As the flammable mixture is likely to be 

heavier than air, it will travel downwards and outwards along the tank roof, possibly 

overlapping the edges of the tank. The space round the tank and in the bund will be 

Zone 2, if the tank is overfilled. The liquid will exit the PVRV, travel down the sides of 

the tank and will collect in the bund. 

Figure 1.11 shows the hazardous area zones inside and around the fixed-roof tank. 
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Figure ‎1.11: Hazardous area zones inside and around a fixed-roof tank (McMillan, 1998) 

1.4 Ignition Sources 

1.4.1 Lightning 

Lightning is by far the most frequent source of ignition, with regards to the 

occurrence of fires within floating-roof storage tanks. In the LASTFIRE incident 

survey study (2012), it was reported that 52 of the 62 initial fire events within the 

scope of the survey were lightning-ignited rim-seal fires. The study indicated that 

those regions of the world with a significantly higher-than-average frequency of 

electrical storms also experience a higher frequency of lightning-ignited rim-seal 

fires. Ramsden (2008) explained that lightning does not have to strike a tank directly 

for ignition to occur; indeed, a strike in the immediate neighbourhood can generate a 

discharge of static electricity between the floating roof and the shell of a tank. It does 

appear‎that‎some‎tanks‎are‎located‎in‎lightning‎‘black-spots’,‎as‎these‎have‎been‎the‎

subject of lightning ignitions more than once. The 2012 LASTFIRE incident survey 
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reported two sites where the same tank had been struck twice and one instance 

where a particular tank had been struck three times in succession. The incidence of 

multiple tanks being ignited by a single lightning strike or a single storm is also high: 

The LASTFIRE incident survey (2012) reported that three tanks were ignited 

simultaneously at a site in Italy (with one of these tanks being struck again 7 years 

later), while two tanks were simultaneously ignited at a site in the UK. A single storm 

caused all three recorded rim-seal fire incidents at two sites in Belgium and, in four 

cases of lightning-related rim-seal fires, it appears that the lightning was attracted 

towards the lightning rods that had been installed with the intention of preventing 

such fires. 

Many floating roofs have shunts between the roof and the shell of the tank: they are 

designed to equalise the electrical potential of the roof and the tank shell. However, 

they are not designed to take the current that may be generated by a nearby 

lightning strike. Different companies appear to have different recommendations, with 

regards to the spacing of shunts around the rim seal of a tank. The minimum spacing 

for such shunts is 3m apart, in accordance with the recommendations of the Chicago 

Bridge and Iron Company as indicated in LASTFIRE incident survey (2012). Other 

companies place the shunts closer together and there has been no definitive study to 

determine the spacing or the types of shunt required, in terms of the provision of 

adequate electrical bonding for the various types of roof design. 

A number of studies have been undertaken in order to identify the most frequent 

source of tank-fire ignition. Chang and Lin (2006) studied and analysed 242 tank-fire 

incidents and discovered that lightning was the most frequent cause of such 

incidents (80 (33%) out of a total of 242 incidents were attributed to lightning). 

Persson and Lonnermark (2004) conducted a study of 480 storage tank-fire 

accidents and found that, in all the fires in which the source of ignition was identified, 

lightning was declared to be the cause of ignition in about 150 of the incidents. 

Myers (1997) declared lightning strikes as the primary cause of fires in open-top, 

floating-roof tanks: this is due to the fact that the small amount of fuel vapour/air 

mixture escaping from the floating-roof rim seals can result in rim-seal fires. The 

bonding of the floating roof to the tank wall ensures a path for the lightning charge to 

pass through to the ground, without arcing. 
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1.4.2 Hot Work 

There are several incidents where hot work, such as welding, grinding, etc., is 

identified as the ignition source for fires: two rim seal fires recorded in the LASTFIRE 

incident survey (1997) were started as a result of hot work on live tanks. In these 

cases, heat from welding caused flammable vapours to be emitted from hydrocarbon 

deposits, or sparks were carried from gas free areas into regions where there were 

flammable mixtures. 

Two rim seal fires recorded in the LASTFIRE incident survey (2012) were from hot 

work on live tanks. Sparks were carried from gas free areas into regions where 

flammable mixtures existed. Seven fires occurred during hot work on empty tanks. 

There were cases of fire even when gas checks have been carried out before the 

work started. In these cases heat from welding caused flammable vapours to be 

given off from hydrocarbon deposits. 

1.4.3 Spontaneous Ignition 

Zalosh (2003) mentioned that the spontaneous ignition of a fuel vapour/air mixture 

can be caused by pyrophoric iron sulphide on the tank walls, which is formed by a 

slow reaction between the tank wall and the hydrogen sulphide present in some 

petroleum liquids: the reaction can be faster under moist and oxygen deficient 

atmospheres. The sudden exposure of iron sulphide to dry air can raise the surface 

temperature to the flammability limit of many fuel vapour/air mixtures. Dimpfl (1985) 

found that a similar reaction may occur with organic deposits in asphalt tanks.  

Dimpfl measured the vapour space composition in various asphalt tanks and proved 

that a fuel vapour/air mixture does in fact exist in many tanks, even though the 

asphalt flashpoint is well above the storage tank temperature. Thus, Dimpfl 

suggested that oxygen deficiency should be maintained in order to prevent the 

flammable vapour from being ignited by pyrophoric iron sulphide or organic deposits. 

A further review of 73 fire and explosion accidents involving asphalt tanks was 

provided by Davie (1993) and it was ascertained that many of these accidents were 

associated with partial oxidation of the asphalt on the tank roof. 
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1.4.4 Electrostatic Electricity 

In the LASTFIRE incident survey (2012) the electrostatic electricity has been 

postulated as the source of ignition in several fires that have occurred when foam 

has been placed onto tanks, upon discovery that the roof has sunk or partially sunk. 

However, in other cases, the surface of tanks with sunken roofs has been foamed, 

with no occurrence of electrostatic discharge. Whilst the build-up of electrostatic 

charge is possible when water drains through products of low conductivity (typically 

refined), it is thought that the foam application method affects the probability of an 

electrostatic discharge. Foam should be run gently over the surface of the liquid, 

after flowing down the sides of the tank. Particular problems appear to occur when a 

foam blanket is applied: in this, foaming is stopped and then restarted sometime 

later, as it is perceived that the foam blanket degrades.   

LASTFIRE incident survey (2012) reported that the electrostatic discharge may 

occur if the electrical bonding between the roof and shell of the tank or the earthing 

of the tank are inadequate. The Institute of Petroleum: Electrical Safety Code (1991) 

states that the maximum resistance, in terms of the earthing of a storage tank, 

should be 10 ohms for lightning and electrostatic protection and even less for the 

earthing of electrical equipment. Lightning strikes, however, generate peak currents 

of between about 2000 and 200,000 amperes. In addition to the enormous heating 

effect of such currents, the high rate of rise of current in combination with the 

resistance can create voltage differentials of over one million volts, with respect to 

the ground; hence, there is a risk of flashover to adjacent metal. 

The lining of a storage tank may affect the electrical bonding between the roof and 

shell of a tank. API 652 (2005) provides guidance on the selection of suitable tank 

linings: for single isolated tanks, a minimum number of 2 earth electrodes should be 

fitted to tanks up to 30m in diameter and a minimum of 3 earth electrodes should be 

fixed to a tank greater than 30m in diameter. There should be an independent 

connection to the tanks. 

Cathodic protection is sometimes used to inhibit the corrosion of storage tanks. 

Standards such as API 651 provide guidance on system design, yet do not give any 
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suitable guidance on the safe operation of tank farm cathodic protection systems 

(Lydon 1996). The main method of cathodic protection is impressed current cathodic 

protection, which involves the application of a d.c. current to the storage tank, in 

order to lower its potential (with regards to earthing), making corrosion 

thermodynamically impossible. This current may be tens of amps; it is a relatively 

low voltage but, as the current is so large, there is the potential for sparking if any 

section of pipework or cable carrying the current is disconnected. 

Alaimo (2001) stated that a primary concern, in terms of static electricity within the 

petroleum industry, is the risk of fire and explosion, due to the ignition of the fuel 

vapour/air mixture through electromagnetic discharge. The development of the 

electrical charge may occur at the liquid/solid or liquid/liquid interfaces and, in 

addition, both low and high conductivity liquids can develop static charges during 

processing: the amount of charge depends on the characteristics of the flow of the 

liquid (i.e., turbulence and velocity). Alaimo also affirmed that liquids with a 

conductivity rate of 50 picosiemens or above are considered as insulating. In 

atmospheric storage tanks, static electricity may be generated in several ways, such 

as the presence of debris which may float and thus be isolated from the ground and 

charged as the liquid is introduced. Splashing is another means of developing static 

electricity, through the formation of charged spray and mists during the tank-filling 

process. 

1.4.5 Exposure to Radiant Heat  

Radiant heat is the dominant mode of heat transfer, in terms of the spread of flames 

within premises (Karlsson and Quintiere, 2000). However, in the reviewed tank fire 

incidents, radiant heat was not the prime means of ignition of atmospheric storage 

tank fires, however, it is still the main cause for escalation. An earlier compilation of 

API storage tank incidents in 1976 stated that 6% of the incidents reviewed were 

ignited by exposure to fires (Zalosh, 2003). In a historical incident review of 

atmospheric storage tank fires, carried out by Pitblado et al. (1990), 5% of 85 tank 

fires were ignited by exposure to radiant heat from an external fire. 
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1.5 Location and Layout of Tanks 

The location of a liquid hydrocarbon atmospheric storage tank facility has a direct 

impact on fire safety and the location of the tanks in a tank farm can be arranged to 

prevent fires that occur in the tank farm from spreading through the farm. Also, 

adjacent plants and property can be located so that they will be unaffected by a fire 

in a tank farm. The Health and Safety Executive guidance (HSG 176) for the storage 

of flammable liquids in fixed-roof tanks determines the acceptable distances between 

storage tanks and buildings, boundaries, sources of ignition and process units. 

Moreover, the NFPA 30 outlines requirements for spacing between tanks and 

distances from tanks to property lines and adjacent structures and facilities. These 

distances are the minimum and increased spacing may be beneficial when 

constructing a new facility, as increased separation will reduce the risk of escalation. 

International engineering codes specify the required spacing between tanks and 

between tanks and bund walls, with each engineering code providing various 

definitions of tank spacing requirements. The international engineering code spacing 

recommendations are presented in full in Chapter 5. 

The origins of the spacing recommendations are unclear, but it appears that they 

have two objectives: 

 The prevention of flames from a full-surface tank fire impinging on an adjacent 

tank 

 Ensuring adequate access and means of escape for fire fighting operations.  

If flame impingement is unlikely, the dominant mechanism for the transfer of heat to 

an adjacent tank is radiant heat. According to the LASTFIRE incident survey (2012), 

escalation through radiant heat is unlikely in the first few hours of a full-surface fire, 

unless the content of an adjacent tank has a boiling point close to its storage 

temperature. The study also indicated that the transfer of radiant heat to the roof of 

an adjacent storage tank is an important factor, in terms of escalation via radiant 

heat for tanks containing product stored at a temperature close to its boiling point. 

The results of the study suggested that spacing between tanks must be increased to 

greater than one diameter, if any significant reduction in the transfer of radiative heat 
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to the roof is to be achieved. Such a reduction is best achieved through the use of a 

double deck roof, as the air space between the decks acts as an insulation layer. 

The LASTFIRE incident survey (2012) of fire incidents highlighted how the most 

frequent cause of fire escalation from one tank to another is an impinging fire in a 

bund. International standards, such as NFPA 30 (2005) and the European Model 

Code of Safe Practice (Part II) (1981), provide the details of bund and remote 

impoundment design.‎However,‎Barnes’‎ (1990)‎ review‎of‎ the‎codes‎and‎Bladon‎et‎

al.’s‎ (1992)‎and‎Harding’s‎ (1994)‎studies‎of‎major‎ incidents‎have‎shown‎ that‎ such‎

codes are not consistent; they also highlighted that several aspects of bund design 

may be inadequate, in terms of preventing the release of product outside bunds or 

the escalation of a fire from one tank to another. 

Bund walls are designed to withstand a full hydrostatic head; however, the wave of 

product generated by the sudden catastrophic failure of a tank shell or a boilover can 

overtop bund walls or apply forces greater than the hydrostatic head and these are 

sufficient to break down bund walls (Henry and Klem (1983); Barnes (1990)). 

Placing several tanks in a common bund increases the risk of the escalation of a fire 

from one tank to others surrounding it. Tanks containing boilover products should 

ideally be placed in separate bunds, but it is recognised that, for many sites, it is not 

feasible to locate each tank in a separate bund. 

Equipment with a high potential for leaks, such as pumps, strainers and manifolds, 

should be located outside bunds. If fire-fighting equipment is located on the bund 

wall, controls should be outside the bund, where they are protected from exposure to 

fire. International engineering codes allow tanks to be placed close to bund walls 

(typically within 1.5 m). Tank nozzles close to bund edges should be below the level 

of the bund wall, in order to avoid the jetting of product outside the bund. 

Finally, the arrangement of tanks within a bund should be planned with fire-fighter 

access‎in‎mind.‎According‎to‎the‎NFPA’s‎classification‎of‎hydrocarbon‎liquids,‎tanks‎

storing Class I, Class II (2) and Class III (3) liquids should be arranged so that each 

tank is adjacent to a road or place accessible by mobile fire-fighting equipment. 
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Road and methods of access should offer easy access for mobile equipment during 

construction and maintenance, fire fighting and emergency escape in a fire situation. 

A tank farm shall be provided with sufficient open spaces so that fire trucks can gain 

access and operate accordingly. Such access should be at a minimum of 6m wide, 

according to the KLM Technology Group (2011). 

1.6 Atmospheric Storage Tank Fire Incidents 

Atmospheric storage tank incidents are a major concern, with regards to industrial 

safety, as such tanks often contain large volumes of flammable and/or hazardous 

chemicals. Although the frequency of tank accidents is low (15 x10-5 per tank per 

year for ambient temperature and pressure storage tanks) (Thyer et al. 2009), the 

consequences can be catastrophic, with the potential for loss of life, major 

environmental impact and huge commercial loss. 

A study featuring a review of 242 storage tank accidents from 1960 to 2003 

conducted by Chang and Lin (2006) highlighted that accidents occurred more 

frequently at petroleum refineries, with 116 such cases (about 47.9%). The second 

most frequent accidents involved import/export terminals, with 64 cases (26%). 

Finally, incidents involving petrochemical plants accounted for around 25% of all 

incidents. The most common tank contents were crude oil and oil products, such as 

gasoline, fuel oil and diesel oil. The study also showed that the fires occurred more 

frequently in open-top, floating-roof tanks rather than fixed-roof tanks; however, both 

types of tank are extensively used for the storage of crude oil, gasoline and diesel 

oil. The most frequent cause of loss was fire, with 145 such cases, followed by 

explosion. Lightning was the most frequent cause of both fires and explosions, 

followed by maintenance errors. The remaining incidents were caused by operational 

error; equipment failure; cracks that usually occur at the bottom of the tank or welded 

edges; leaks and line ruptures; static electricity; open flames and sabotage. 

1.6.1 Single Tank Incidents 

In a review of tank incidents, conducted by Thyer et al. (2009), 64 single tank failures 

were identified between 1919 and 2004, with the causes being attributed to factors 

such as the sinking of floating roofs, corrosion and brittle fracture of storage tank 



Introduction  Chapter [1] 

1-22 

walls (a detailed list is given in Table 1 in Appendix 1). The consequences of many 

of these incidents were enormous. The largest spill occurred in Japan on December 

18, 1974, at the Mitsubishi Oil Refinery in Kurashiki City, when a 50,000 m3 crude oil 

storage tank suddenly broke up and a huge amount of oil leaked into the sea, 

following the sinking of the floating roof. The damage exceeded £78 million. 

In August 2008, a fire occurred in a crude oil atmospheric storage tank with a 

capacity of 80,000 m3 in‎ Ras‎ Lanuf,‎ Libya’s‎ largest‎ oil‎ refinery.‎ The‎ storage‎ tank‎

caught fire during routine maintenance operations and the cause of the fire was 

attributed to hot work. The accident forced the country to reduce its oil production by 

16,000 m3 per day and, despite efforts by fire fighters to extinguish the fire, the fire 

raged for 9 days. Fortunately, it was isolated to one tank (Buisier, 2009). 

1.6.2 Multiple Tank Incidents 

The historical record of more serious fires conducted by Thyer et al. (2009) provides 

information about the escalation of tank fires to other tanks and/or to boilover. Thyer 

et al. (2009) indicated that just under half (44%) of the 5-10% of more serious tank 

fire incidents escalated to involve two or more tanks. Some of these escalations 

were extensive, such as the incident at Buncefield, UK, and the Hancock Refinery, 

California. These resulted in either total loss of the facility or of a large proportion of 

the investment. 

A study by Persson and Lonnermark (2004) identified 480 storage tank fire incidents 

worldwide between 1950 and 2003. The extent of each of the identified fire incidents 

varied considerably, from just a rim-seal fire that was extinguished without difficulty 

to fires involving a complete tank storage facility with 30 to 40 burning tanks. There 

have been only 30 tank fire incidents where it has been possible to obtain full or 

almost complete information about the fire and the extinguishing operation. 

1.6.2.1 Buncefield, Hertfordshire, U.K. 11th December, 2005 

According to the final report of the Buncefield Major Incident Investigation Board 

(2005) into the Buncefield incident, a tank overfilled at an estimated rate of 550 

m3.hr-1 for several hours, overflowing into the bund and generating huge quantities of 
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vapour: this occurred as a result of instrumentation failure, as high level gauges 

failed to show that the tank was full. An explosion occurred and was followed by a 

large fire that engulfed 23 large fuel storage tanks over a high proportion of the 

Buncefield site, as can be seen in Figure 1.12. Forty-three people were injured in the 

incident but, fortunately, there were no fatalities. However, there was significant 

damage to both commercial and residential properties near the Buncefield site and 

approximately 2,000 people had to be evacuated from their homes. The fire burned 

for 5 days, destroying most of the site and emitting a large plume of smoke into the 

atmosphere, which dispersed over southern England and beyond. The estimate of 

total quantifiable costs arising from the Buncefield incident came close to £1 billion. 

 

Figure ‎1.12: Buncefield tank farm fire, which occurred on the 11th December, 2005 

(www.buncefieldinvestigation.gov.uk) 

1.6.2.2 Singapore, Pulau Merlimau, October, 1988 

Randante (2005) investigated a storage tank fire occurring in Singapore in October 

1988. After two days of heavy rainfall, a fire occurred in Tank 1, an open-top, 

floating-roof naphtha tank with a capacity of 19,000 m3. A review of the gauge 

records of Tank 1 showed that the level was rising, with an average speed of 0.3 m 

per shift. One day earlier, the rate of level rise had reached 0.49 m per shift, but this 

had gone unnoticed. On the day of the accident, the tank level dropped significantly 

and, upon visual checking, it was found that the floating-roof of Tank 1 had 
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submerged, with small sections at the anti-rotation pole (which prevents the floating-

roof from rotating) remaining above the level of the liquid. Foam was applied to cover 

the exposed naphtha but, minutes later, the entire surface area ignited. It was 

believed that the mechanical failure of the pole support had produced friction sparks, 

which ignited the fire. Hours later, the fire spread to two other identical open-top, 

floating-roof naphtha tanks that shared a common bund area with Tank 1. Two days 

later, the situation started to get under control, as all the tanks burned themselves 

out. All three tanks were totally destroyed, with surrounding tanks experiencing minor 

heat damage. Figure 1.13 shows when the adjacent Tank 2 ignited. 

 

Figure ‎1.13: Singapore tank farm fire, which occurred in October 1988 (Randante, 2005) 

1.7 Radiant Heat Effect on Atmospheric Storage Tanks 

The three fundamental methods of heat transfer (conduction, convection and 

radiation) are involved in almost all types of fire. Beyler (2002) stated that the main 

cause of damage from large open hydrocarbon fires is radiation. This is the method 

by which objects at a distance from a fire are heated, which can lead to ignition 

without direct contact with a flame. Thus, radiant heat flux causes the spread of 

flames from one object to another. 

Tank 2 catches 
fire because of 

the radiant heat 
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In order to determine if or when an atmospheric storage tank containing a 

hydrocarbon liquid adjacent to a fire may be ignited or damaged, due to exposure to 

radiant heat, the radiant heat flux falling onto the surface of the tank must be 

determined. 

Prediction of the radiant heat flux from a fire onto an adjacent tank provides the 

means to assess a number of important parameters, such as: 

 Estimating if or when an adjacent tank may ignite 

 An estimation of the level of damage to the plant and property surrounding the 

fire 

 An estimation of the safe separation distances between storage tanks 

 An estimation of the type and level of protection required, in order to prevent 

escalation. 

The LASTFIRE incident survey (2012) concluded that tank-to-tank escalation 

through radiant heat is unlikely during the first few hours of a full-surface fire, unless 

the contents of adjacent tanks have a boiling point close to their storage 

temperature. For such products, the transfer of radiant heat to the roof of an adjacent 

tank is an important factor in escalation and tank-to-tank spacing must be increased 

to greater than one diameter, if any significant reduction in the transfer of radiative 

heat is to be achieved. 

The IP Model Code of Safe Practice, Part 19 (1993) suggests that, if radiant heat 

calculations are carried out and it is found that an adjacent tank receives more than 

8 kW.m-2 of radiant heat, then cooling water should be available for application, in 

order to prevent escalation. 

The actual amount of radiant heat flux required for escalation is heavily dependent 

on the type of fuel stored in an adjacent tank. It is generally accepted that a flux of 8 

kW.m-2 is conservative and thus some operators use a figure of 12.5 kW.m-2: this is 

the approximate heat flux required to raise the temperature of a bare steel plate, 

insulated at the back, to a temperature of 300ºC. At this temperature, the metal 

surfaces reach the temperature required for auto-ignition and the fuel vapour/air 

mixture within the vapour space is likely to be well above the upper flammable limit. 
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A further method by which radiant heat to the steel surface of a tank may be reduced 

is through the use of passive fire protection or insulation. However, the issues of 

additional weight on the tank and roof, the difficulties associated with the inspection 

of the steel after application and the cost of installation make this impracticable. 

There are a number of pool fire models that predict the size and shape of 

hydrocarbon pool fires and radiation heat flux to external objects: the majority of 

these models are so-called‎‘solid‎flame‎models’,‎in‎which‎the‎flame‎is‎modelled‎as‎a‎

combination of one or more simple geometric shapes (usually a cone or a tilted or 

sheared cylinder) that emit thermal radiation from their surfaces. The correlations 

defining the shape of the flame and surface radiative emission are derived from 

ground-based pool fire experiments and the small amount of validation work that has 

taken place suggests that most of the properties of a basic flame do not change 

significantly between a large-scale ground-based fire and a tank-top fire (Lautkaski, 

1992). However, there are two effects that a solid flame model must be able to 

replicate if it is to give reasonably accurate predictions of the near-field radiative heat 

flux from a burning tank fire: 

 The wind blowing around the sides of a burning tank creates a low pressure 

region on the downwind side of the tank, which drags the flame down below the 

top of the tank. The prediction of this flame drag is important because it brings 

the flame closer to a downwind tank.  

 Secondly, the lower zone of the flame and underside of the flame burns much 

more brightly and cleanly than the upper zone of the flame, which is obscured by 

dark smoke. It is important for a tank-top fire model to predict this lower zone 

portion of flame, as it affects the prediction of radiative heat flux to nearby 

downwind tanks. 

1.8 Prior Work on Receptor Tank Heating  

A number of models have been developed, in terms of predicting the heating of 

tanks through thermal radiation from a full-surface fire on a nearby tank. 
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1.8.1 The Technica Model 

After a major fire in Singapore in 1988, Technica were commissioned by the Oil and 

Petrochemical Technical and Safety Committee (OPITSC) to determine the need for 

remedial design measures and, where necessary, the most cost effective measures 

(Pitblado et al. 1990). Of particular interest was the potential of a full-surface fire in 

one tank leading to fire in an adjacent, but as yet uninvolved, tank. A model for the 

thermal response of large storage tanks to radiant heating from a nearby full surface 

fire was therefore developed as part of the study. 

The model was made up of the following two parts: 

 A‎‘TankFire’‎model,‎in‎order‎to‎predict‎thermal‎radiation‎from‎a‎full‎surface‎fire,‎

with regards to a burning tank incident, on a nearby, uninvolved tank. This 

model is a two-zone, solid flame type, with correlations for the flame shape 

and thermal radiative emission from a lower brightly emitting zone of flame 

and an upper smoke obscured zone of flame. The model also incorporates 

correlations for the attenuation of thermal radiation by the ambient 

atmosphere. Details of the majority of the correlations defining the model are 

outlined by Pitblado et al. (1990). 

 A‎ ‘TankHeat’‎model,‎ which‎ predicts‎ the‎ response‎ of‎ a‎ downwind‎ tank.‎ The‎

model predicts the heating up of the shell and roof of the tank, the heating of 

the product in layers next to the shell, roof and bottom of the tank and the 

slow heating of the bulk of the product. A fire is deemed to have escalated to 

the downwind tank when either the product layer next to the shell facing the 

fire or the product layer under the roof reaches its initial boiling point. At this 

point,‎ large‎volumes‎of‎vapour‎begin‎to‎be‎‘driven‎off’‎from‎the‎receptor‎tank‎

and ignition is likely to occur. This model also includes the prediction of the 

mitigation effects of water sprays, based on work by Lev and Strachan (1989), 

and the effect of replacing single-deck pontoon roofs with double-deck roofs 

(heat transfer into double-deck roof tanks is modelled by reducing heat 

transfer to 10% of the heat transferred into a single-deck roof tank). 
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This model is crude; for example, the radiant heat flux entering the shell of the tank 

facing the fire is taken to be the heat flux onto a vertical wall of the same height and 

diameter as the tank, placed at the point of the tank shell closest to the fire and 

facing the fire. The mean heat flux onto this surface is calculated as the root mean 

square of the heat flux to a point at the top and bottom of the wall. Similarly, the tank 

heating model does not incorporate any flow of heated product up the tank walls and 

under the roof. The model gave a reasonable prediction of escalation time for the 

Singapore fire and it also gives reasonable qualitative measures of the effects of 

tank spacing, wind-speed, water sprays, roof type, tank diameter and fuel type. The 

main conclusions derived from the results of the model calculations are as follows: 

 The boiling point of the product in the receptor tank has a significant effect on 

the time before escalation occurs. Ignition of the second Naphtha tank during 

the incident in Singapore in 1988 occurred within 2 hours of a full-surface fire 

being established in the first tank. The ambient temperature was 27oC and the 

boiling point of the product was only 36oC. The model predicted that, if the 

second tank had contained kerosene, escalation would have taken more than 

20 hours, even in the absence of water spray cooling applied to the receptor 

tank. This type of calculation demonstrates that, if there is a large difference 

between the boiling point of a product and its storage temperature, both the 

tank and the product have a huge thermal capacity and radiant heating is 

unlikely to be a cause of fire escalation. This is the primary reason why only 

one clear instance of escalation has been recorded, with regards to a full-

surface fire escalating to an adjacent floating-roof tank purely as a result of 

radiant heating. 

 The type of product burning in the first tank has an effect on the amount of 

energy radiated to adjacent tanks: products with higher boiling points tend to 

produce smokier flames, with smaller areas of bright, radiating flame. 

Published studies describing pool fire models (for example, Rew et al. (1997)) 

suggest that the Technica TankFire model over-predicts radiative emission for 

fuels other than naphtha. This may be an alternative explanation as to why so 

few instances of escalation via radiative heating have been recorded. 
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 When tanks are closely spaced and the flame from a burning tank is blown by 

the wind and thus significant radiant heat loading is applied to the roof of an 

adjacent tank, double-deck roofs provide a good insulation effect, which 

prevents thermal radiation from the roof being conducted into the product.  

 If the receptor tank contains a product stored at a temperature close to its 

boiling point, then water sprays are only effective when there is little heat 

entering the product via the radiative heating of the roof. The mitigation of 

radiative heat transfer through the roof occurs when the tank has a double-

deck roof, the wind-speed is low or when there is significant spacing between 

tanks (i.e., greater than one tank diameter shell-to-shell). Geodesic domes 

would also be expected to provide significant mitigation of radiant heat 

transfer to the roof of an adjacent tank, provided that there is no direct flame 

impingement on the dome. The mitigation effects of water sprays and double-

deck roofs have been confirmed by a fire incident at Porvoo in Finland in 

1989, in which the flames from a full surface fire on a 52m-diameter floating 

roof containing iso-hexane were extremely close to, if not impinging, on an 

identical tank containing crude oil, with no occurrence of escalation.  

Finally, the TankHeat computer programme is no longer maintained by Technica. 

The only data that can be used for new assessments of the risk of escalation through 

radiant heating are featured in the tables generated for the original study of the 

Singapore incident. 

1.8.2 The TFFM Tool 

The Tank Farm Fire Model (TFFM) was developed in 1983 for Hydrocarbon Risk 

Consultants (a division of Minets, the International Insurance Brokers). The fire 

model was derived from 1m-diameter pool fire experiments undertaken in a wind 

tunnel by Lois and Swithenbank in 1981. No large-scale validation of the model 

appears to have been undertaken. 

Models for the rate of boil-off from an adjacent tank and the dispersion of the 

vapours into the path of the flames were also developed using methods in chemical 

engineering textbooks at the time (escalation is deemed to occur when a flammable 
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vapour reaches a flame boundary). A model for the effect of the application of water 

cooling was also used, yet no description of the development or validation of these 

models was available at the time of writing this thesis. Significantly, these models do 

not take into account the important advances in knowledge since 1983, with regards 

to hydrocarbon fires, the response of storage tanks, the dispersion of flammable 

vapours and water cooling. 

The model was then applied to a range of scenarios, in order to establish worst-case 

circumstances, and nomographs were derived to determine cooling water 

requirements as a function of separation distances between tanks. No explanation of 

how to use the published nomographs has been provided. 

At best, the model provides a qualitative idea of the type of fire scenarios under 

which escalation may be more likely. It is certainly less well-constructed and less 

validated than the other models described in this section. 

1.8.3 Model for Predicting the Flame Impingement Heating of Storage 

Vessels 

A literature search revealed no models that predict the heating and escalation of 

large floating-roof storage tanks exposed to an impinging bund fire. However, the 

nuclear industry has been conducting studies into the safety of storage vessels 

exposed to fire for a number of years. A collaborative group of the VKTA (The 

Association of Nuclear Technology and Analytics, Rossendorf Inc., Dresden), the 

FZR (Research Centre, Rossendorf Inc., Dresden) and the Technical University in 

Budapest performed experimental and numerical modelling work on vessels 

containing up to 200 kg of water, heated electrically or engulfed in a kerosene pool 

fire (Aszodi, 1995; 1996). The experiments, a two-dimensional model and a three-

dimensional computational fluid dynamics model clearly demonstrated that heat flux 

through the side of the vessel generates a warm boundary layer in the product next 

to the wall, which flows upwards and across the top of the vessel, under the roof: this 

rapidly creates strong vertical temperature stratification. The work demonstrated that 

there is little mixing between the heated fluid in the boundary layer and the bulk of 

the contents of a tank. Thus, escalation of the flame-impinged tank, through boiling 
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and vaporisation of the hot layer formed under the roof, occurs much more rapidly 

than the time required to heat the bulk of the contents of the tank to its boiling point. 

1.9 Fire Protection of Atmospheric Storage Tanks 

There are many causes and types of tank fire. In general, storage tanks pose a 

significant potential risk to life and property. In most cases, the risk factor is 

substantial, due to the relatively large quantities of fuels or unstable liquids that are 

stored in one location. For this reason, fire protection principles have been 

incorporated into the engineering codes and standards and many industries have 

generated additional practices that are more conservative than those specified by 

the engineering codes. 

The type of tank determines the nature, type and severity of a fire. The greatest 

impact on the specific hazards associated with tank fires is due to the type of roof 

system involved. According to Pitblado et al. (1990), the most common fires 

associated with fixed-roof tanks are vent fires and fires caused by leakage in the 

external tank piping. However, fires and explosions do occur in fixed-roof tank 

vapour spaces and there are always heavy losses associated with these fires.  If the 

fixed-roof collapses and the fire spreads over the surface of the liquid, then this is 

called a fully-involved fire. On the other hand, the floating-roof design on storage 

tanks was, to a large extent, implemented to reduce fire hazards. However, 

according to the LASTFIRE incident survey (1997), a large number of tank fires 

involve floating-roof tanks. As the roof sits on the liquid surface, a fully involved fire is 

very rare, unless the roof capsizes or sinks: the fire can then spread over the entire 

surface of the liquid. 

Generally, atmospheric storage tank fires are rare incidents, especially those 

involving multiple tanks. With the exception of tank spacing, existing engineering 

codes do not address the necessary resources or measures to mitigate the effects of 

a tank fire and prevent escalation. 
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1.9.1 Water Cooling Systems 

Cooling of an adjacent atmospheric storage tank wall and roof is an effective means 

of maintaining temperatures within acceptable limits that will not cause the steel to 

collapse, the flammable vapours to be discharged to the atmosphere or the hot 

surfaces to form a source of ignition. 

According to Pitblado et al. (1990), water spray requirements were found to be highly 

variable between the engineering codes, with the majority recommending water 

application rates of 0.013 to 0.03 litres.m-2.s-1 over the surface of the tank. Long and 

Garner (2004) stated that tanks within two tank diameters distance downwind of a 

tank fire or one tank diameter in other directions should be protected by the 

application of a water spray at a minimum recommended rate of 0.03 litres.m-2.s-1. 

NFPA 15, however, recommended 0.17 litres.m-2.s-1, based on flame impingement 

experiments: this rate is usually applicable to pressurised vessels that contain 

liquefied petroleum gas. 

The methods by which tanks may be cooled are summarised as follows, according to 

Long and Garner (2004): 

1.9.1.1 Water Spray and Deluge Systems 

This is the most efficient method of delivering water to the outside roof and wall of 

the fixed-roof storage tank and there are two principal ways of accomplishing this: 

a) Using concentric rings of piping supported about 0.3 m above the roof. These 

rings are fitted with spray nozzles that form overlapping spray pattern to cover 

the whole roof with water. The wall is similarly protected, usually with one spray 

ring at the top of and about 0.6 m clear of the wall. Spray nozzles are fitted to 

this ring and are angled down slightly, in order to direct the spray of water over 

the whole circumference so that it can run down the wall. 

b) The deluge system consists of a single water main being led to the tank roof, 

where the water is directed vertically onto the roof and is evenly spread over the 

roof, through the use of a conical nozzle at the end of the outlet pipe or a coronet 

attached to the roof plating. As the water streams down the roof, it is directed 
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onto the wall by splash plates fitted to the edge of the wall: these plates are 

angled so that, as the water hits them, it is directed against the wall and thus 

runs down the wall. 

These systems can be fed from a water deluge valve, which is automatically 

triggered by some form of electric, pneumatic or hydraulic system following fire 

detection. 

1.9.1.2 Fixed and Trailer Mounted Water Monitors 

Both fixed and trailer mounted water monitors are a cost effective means of 

delivering water to cool storage tanks and the number, capacity, position and 

distribution of such monitors depends upon individual site requirements. However, 

problems with access and local water supply considerations must be taken into 

account, when considering the introduction of water monitors. 

1.9.2 Foam Systems 

Foam methods are the most widely-used fire fighting system, as it is believed that 

they provide an acceptable overall level of protection. 

Foam fire-fighting systems, work by the introduction of a foam making concentrate 

into the fire fighting water main. This produces a solution, which is fed to a foam 

generator, and the resulting foam is directed onto the fire. For fixed-roof, open-top, 

floating-roof and internal, floating-roof storage tanks, there are three principle foam 

systems available: these are base injection, top foam pouring and foam monitors. 

1.9.2.1 Base Injection Systems 

Base injection systems, also known as subsurface foam injection systems, are 

suitable for use with fixed-roof tanks containing liquid hydrocarbons, with the 

exception of products requiring the use of alcohol resistance foams, such as 

alcohols, esters and aldehydes. 

The foam is injected into the base of the storage tank, as shown in Figure 1.14, 

above the bottom water layer. The foam rises through the stored product and forms 



Introduction  Chapter [1] 

1-34 

an extinguishing blanket on the surface. The rising foam causes rotational currents, 

which carry cold product to the burning surface and may also help to extinguish the 

fire. 
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Figure ‎1.14: Fire-fighting foam base injection system. The foam is injected into the base of the 
tank and it then rises, covering the surface of the liquid 

Base injection is only possible with foam that has high resistance to product 

contamination; in addition, the foam must possess good burn-back resistance. This 

type of system may be fully-fixed, with all the required components or semi-fixed 

using various suitable connections. 

1.9.2.2 Top Foam Pouring Systems 

Top foam pouring systems are used to protect fixed-roof and internal, floating-roof 

storage tanks. In each case, the systems are designed on the basis that the fire risk 

involves the total surface area of the stored product. The system operates by 

introducing the foam making concentrate into the fire fighting water feed line outside 

the tank bund area. This line is led to a foam generator, foam box and pourer, all of 

which are mounted in line at the top of the tank wall, as shown in Figure 1.15. When 

initiated, the foam solution is propelled to the tank, where the foam generator aerates 

the solution and delivers the resulting foam through a bursting disc in the foam box. 

A pourer unit immediately inside the tank wall and connected to the foam box directs 

the foam down the wall to form a blanket, which extinguishes the burning product. 
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Figure ‎1.15: Fire-fighting foam top-pouring system 

1.9.2.3 Foam Monitors 

Fixed and trailer mounted foam monitors are suitable for protecting all types of 

vertical storage tanks and, although subject to performance limitations, they can be 

used as the primary protection system for tanks up to 18m in diameter (Long and 

Garner, 2004). However, some engineering codes, such as NFPA 11, state that 

monitors should not be used as the primary attack method for tanks greater than 

approximately 20m in diameter. In practice, they have been used for larger tanks, 

although they have had limited use in tanks greater than 40m (Ramsden, 2008). 

Foam monitors are often better suited and more commonly installed as either a 

secondary fixed foam system or to tackle spill fires, with the added benefit of being 

able to be used for tank cooling. 

Ramsden (2008) also explained that the most important consideration when 

proposing foam monitors as the primary system is that, to be effective, the foam 

must reach the seat of the fire. As in most systems, foam monitors will be close to 

the ground and the foam produced will first be required to reach up and over the tank 

wall. This requirement may be difficult to achieve as a result of many factors, such as 

the height of the tank, the distance between the tanks, the position of the monitor 

and weather conditions. Figure 1.16 shows the foam monitor. 
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Figure ‎1.16: Trailer-mounted foam monitor, which can be placed away from the tank on fire 

1.10 The Research Aims and Objectives 

The overall aim of this research is to identify mathematical models that can assess 

the fire risks associated with hydrocarbon liquid storage tanks. The exposure of a 

storage tank to radiant heat from an adjacent tank fire may, following ignition, result 

in an explosion or a fire on the PVRV, which may then lead to an explosion. This 

presents an increased risk to fire fighters and an increased probability of escalation 

of the incident, through the ignition of adjacent tanks. The models implemented in 

this research may identify improvements in design and operating procedures, in 

order to reduce the level of risk associated with such tanks and to identify any 

appropriate action to be taken by emergency response workers. 

The objective of this research features three independent but interrelated parts: first 

is the development of a source model (a mathematical model that calculates the 

radiant heat flux from large, full-surface pool fires for various products, various tank 

diameters and metrological conditions). This model will be based on publicly-

available and well-known correlations for flame dimensions, flame tilt, surface radiant 

heat flux and atmospheric transmissivity. Second is the development of a model that 

determines the distribution of the radiant heat flux falling onto an object, such as a 

storage tank adjacent to a pool fire. Third is the development of a model that predicts 

the response of the contents of a storage tank adjacent to a pool fire. Specifically, 

the response model determines the conditions under which the vapours of a 

flammable liquid in a fire-exposed tank will be released into the atmosphere. The 

various thermo-physical processes that occur inside a storage tank, as a result of 

Foam 

Monitor 
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exposure to radiant heat flux, were combined and an integrated, comprehensive 

computer prediction methodology was constructed. The model predicts the history 

profiles of pressure rise in order to determine the point at which vapours are 

released from the tank and are thus likely to lead to escalation. 

The above predictions are required to provide guidance on: 

 The assessment of the fire environment and the safety of fire fighting teams at 

the time of an incident. 

 Fire protection measures, such as the water cooling requirements for adjacent 

tanks, at the time of the incident. 

 The minimum required separation distance between storage tanks, in order to 

prevent involvement of adjacent tanks. 

 Identification of the most appropriate means of protection. 

The scope of this research also required the conducting of experiments for the first 

and third parts of the modelling work. Radiant heat measurements were taken from 

fires conducted in collaboration with the LASTFIRE project team, in order to compare 

the results with the pool fire model predictions, and a specially designed tank was 

constructed in the laboratory to assess the performance of the response model. 

1.11 Outline of Thesis 

This thesis is organised as follows: 

Chapter 1 comprises of a background on large atmospheric storage tank types, 

including their hazards, layout, fire protection and past accidents involving escalation 

from one tank to another. In addition, a brief introduction to the LASTFIRE project 

was given and its relation to this research. 

Chapter 2 provides a review of the literature on radiant heat modelling. Three types 

of pool fire models are explained in detail, including all the necessary equations in 

the use of the models. The models are compared with experimental work conducted 

by Loughborough University in collaboration with the LASTFIRE project team. 

Chapter 2 also outlines all experimental measurements, accompanied by a 
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discussion of these measurements. The experimental measurements are compared 

with the predictions of the three different types of pool fire model and the most 

suitable type of pool fire model for the stated application is identified. 

Chapter 3 describes the use of the solid pool fire model (IRAD, see Chapter 2) to 

predict the distribution of radiant heat (incident radiation) over the surface of an 

adjacent tank. 

Chapter 4 describes the development of a heat transfer model for the liquid and 

vapour space of a large atmospheric storage tank exposed to fire. The governing 

equations describing the thermo-physical processes that occur inside a tank are 

developed and solved numerically. The experimental work required, which was 

conducted using a specially designed, laboratory based, experimental facility to 

validate and assess the performance of the model, is explained in detail. 

Chapter 5 outlines the engineering applications of the models, including their use in 

the design of water cooling systems and in determining the minimum separation 

distance required between storage tanks. A review of the engineering codes related 

to the requirements of the cooling water rates and the minimum separation distance 

is presented. Also, calculations are conducted to determine the cooling water rates 

using the pool fire model that was developed. 

Chapter 6 summarises all of the findings from the research and draws conclusions, 

with regards to the use of the pool fire thermal loading and response models. 

Recommendations are also made, concerning future work. 
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2 Pool Fire Modelling 

2.1 Introduction 

There are many mathematical predictive tools that are used to assess the 

consequences of hydrocarbon pool fires and these vary from empirical models to 

more complicated Computational Fluid Dynamics (CFD) calculations. Empirical 

models characterise the geometry of the pool fire, using correlations based on 

dimensionless modelling and the results of appropriate experiments. These models 

are divided into two types: point source models and solid flame models. 

Point source models are the simplest type of empirical models and can be used to 

predict the radiant heat flux around a fire. Cowley and Johnson (1992) asserted that 

the point source model can be used, fairly reliably, to predict radiant heat flux beyond 

approximately five pool diameters from the flame. 

Solid flame models apply correlations based on appropriate experiments to derive a 

flame shape, which is dependent on factors such as fuel type and wind-speed. 

Generally, a well-defined geometrical shape, such as a cylinder or a cone, is used to 

represent the flame shape. Further correlations are used to estimate the emissive 
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power of the flame. The radiant heat flux at the target is obtained by calculating the 

view factor of the flame from the position and orientation of the target. 

CFD models solve the partial differential equations (Navier-Stokes equations) that 

describe fluid flow across a vast grid of cells, known as a mesh. In order for them to 

predict fire behaviour, they must incorporate sub-models that describe the chemical 

and physical processes that occur in the fire. Radiant heat transfer is solved by 

means of an enthalpy conservation term that arises within the Navier-Stokes 

equations (Cox and Kumar, 2002), while, as stated by Cowley and Johnson (1992), 

CFD models provide a rigorous framework for solving combustion problems but, at 

present, they are essentially research tools. The CFD sub-models pertaining to 

combustion, smoke production and radiative heat transfer do not yield as good a 

prediction of radiant heat from a pool fire to external objects as those offered by the 

available empirical models. 

Although CFD models are capable of predicting a wide range of fire scenarios, 

providing that the input is correctly specified, there are distinct disadvantages 

associated with these models: they require a great deal of time and effort, in terms of 

both human effort (i.e., input) and computational effort (in solving the Navier-Stokes 

equations). 

In the following sections, the three types of model (point source, solid flame, and 

CFD) are reviewed and explained in detail and some predictions are given. 

2.2 Empirical Models 

Empirical models are those most commonly-used for predicting the consequences of 

pool fires. They are simple, as they do not incorporate the solution of the partial 

differential equations of fluid flow. Essentially, empirical models are used to calculate 

the parameters directly related to consequence assessment, such as size and shape 

of the fire and the radiant heat flux received at particular locations and orientations 

external to the fire: they are not used to describe the combustion process. Empirical 

modelling relies on experimental data and the correlations that can be derived from 

this data can be used to predict the parameters of the flame; for example, with 

regards to point source models, correlations for flame length and flame tilt represent 
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the size and location of a fire in space. For solid flame models, it is necessary to 

select a geometry to represent the flame and to derive additional correlations for 

parameters such as flame drag, surface emissive power and mass burning rate. 

Radiation emitted by the flame can be estimated by coupling the flame length and 

location in space with the measured incident radiation, in order to determine the 

fraction of heat radiated (for point source models) or the flame geometry selected 

with the measured incident radiation, in order to determine the surface emissive 

power for solid flame models. In both cases, it is necessary to consider the 

attenuation of the incident radiation by the atmosphere between the flame and the 

target. 

Empirical models are preferred for use in hazard assessment, due to their reliability 

and speed. Some advantages are that the predictions gleaned from empirical 

models provide good agreement with the experimental data and their computer 

programs can also be easily built with short run times. The main disadvantage of 

empirical models is that correlations should only be used within their range of 

applicability: this is the range over which the experiments were based on or carried 

out. Unfortunately, it is rarely possible to undertake full-scale experiments, so the 

use of empirical models inevitably requires extrapolation. 

In the following sections, the literature is reviewed and predictions are made, in 

terms of the two most commonly-used empirical models. 

2.2.1 The Point Source Model 

For pool fires that generally have a low length-to-width ratio, it is usual to consider a 

point source model with a single-point source (SPS). For fires with a high length-to-

width ratio, such as jet fires, a multi-point source model is often employed 

(Hankinson and Lowesmith, 2012). The single-point source model is a simple and 

widely-used representation of the thermal radiation emitted by a fire (Modak, 1977). 

To predict the radiant heat flux field of a flame, the flame is modelled as a single-

point source located at the centre of the flame, as shown in Figure 2.1. 

According to Lees (1980), the SPS model is based on the following assumptions: 
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1. All of the radiant heat flux from the fire is emitted from a single point located near 

to the centre of the flame, rather than being distributed over a flame shape 

intended to represent the fire. 

2. The heat radiated from the flame is a specified fraction of the energy released 

during combustion. 

3. The radiant heat flux at a particular location varies proportionally to the inverse of 

the square of the distance from the single-point source (SPS). 

The radiant heat flux ( ̇ ) kW.m-2 received at a particular location is estimated using 

the following equation: 

  ̇  
 ̇   

    
 (2.1) 

Where: 

 ̇  is the total radiative energy output of the fire (kW) 

  is the distance from the single-point source to the target (m) and 

  is the atmospheric transmissivity. 

2.2.1.1 The Distance between the Point Source and the Target ( ) 

In order to calculate the distance between the point source and the target, the flame 

length and tilt are required. The location of the hypothetical single-point source is at 

the centre of the flame, as shown in Figure 2.1. The flame length ( ) and flame tilt ( ) 

are‎ calculated‎ using‎ Pritchard‎ and‎ Binding’s‎ (1992)‎ correlations,‎ as‎ presented in 

Equations 2.13 and 2.19 respectively. These correlations and alternative 

relationships are discussed in more detail in Sections 2.2.2.3.1 and 2.2.2.3.2. 

The distance ( ) from the single-point source location to the target is determined as 

follows: 

   √(   )  (
 

 
   ( ))

 

 (2.2) 
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Where: 

  is the horizontal distance, as shown in Figure 2.1, (m)   
 

 
    ( ) 

  is the horizontal distance from the pool centre to the target (m) 

  is the flame length (m) and 

  is the flame tilt (degrees). 

z
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Point source at the
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k

R

x

L/2

L/2

 

Figure ‎2.1: Schematics and notation for the single-point source model, showing the single-point 
source and the flame parameters 

2.2.1.2 The Total Radiative Energy ( ̇ ) 

The total radiative energy output of the fire is calculated as follows: 

  ̇         (2.3) 

Where: 

    is the heat release rate of the fire (kW) and 

   is the fraction of heat radiated. 
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2.2.1.2.1 The Heat Release Rate (   ) 

The heat release rate for the fire (   ) is calculated as follows (Babrauskas, 2002): 

      ̇          (2.4) 

Where: 

 ̇  is the mass burning rate of fuel per unit surface area (kg.m-2.s-1) 

    is the heat combustion of fuel (kJ.kg-1) obtained from Table 2.2 and 

   is the surface area of the burning pool (m2). 

2.2.1.2.2 The Fraction of Heat Radiated (  ) 

The fraction of heat radiated is defined by Cook et al. (1987) as the fraction of the 

total energy released by combustion, which leaves the flame as radiation. The 

fraction of heat radiated is a function of the efficiency of combustion and the 

formation of smoke (Beyler, 2002). Markstein (1976) found that the fraction of heat 

radiated is independent of the heat release rate of the fire. 

The fraction of heat radiated was investigated for both gasoline and ethanol and was 

based on the radiant heat flux measured in the experimental work presented in 

Section 2.4 (which was conducted in collaboration with Resource Protection 

International, on behalf of the LASTFIRE Project. The work was undertaken at the 

Centro Jovellanos Experimental Facility, in Asturias, Spain). The fraction of heat 

radiated was calculated by rearranging Equation 2.1, as follows: 

    
 ̇       

 

     
  

To calculate the fraction of heat radiated from the equation above,  ̇  becomes the 

actual radiant heat flux measured in the tests. The average of the fraction of heat 

radiated was found to be 0.46 for gasoline and 0.5 for ethanol. These values are 

within the range presented by Iqbal and Salley (2004), who stated that values of 
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fraction of heat radiated can vary, from approximately 0.15 for low-smoke fuels, to 

around 0.6 for high-smoke fuels. 

2.2.1.3 The SPS Model Limitations 

Some limitations exist with the single-point source model, as follows: 

 The most important parameter in the model is the estimation of the fraction of 

heat radiated (Mudan, 1984) and thus great care should be taken in this 

estimation. The fraction of heat radiated is dependent on the fuel used. 

 The model is known to over-predict radiant heat fluxes at locations close to 

the fire, primarily because the radiant heat flux varies proportionally to the 

inverse of the square of the distance from the single-point source ( ). This 

means that, as     , then  ̇   infinity. 

 Cowley and Johnson (1992) stated that the results obtained from such models 

are applicable in the far field, but are not accurate for objects close to the fire. 

The authors thus suggested that such models are accurate for distances in 

excess of five pool diameters from the centre of the flame. 

 The SPS model does not take into account obscuration of parts of the flame by 

smoke. This is allowed for by a radiation in the fraction of heat radiated. 

Despite its simplicity, the single-point source model is often used in a range of 

applications; i.e., in the design of industrial flares. The model is seen to provide 

adequate, far-field predictions of the radiant heat flux surrounding a flare (Oenbring 

and Sifferman, 1980). 

2.2.1.4 Example of Using the SPS Model 

A MATLAB program (SPS) was built in order to calculate the radiant heat flux, using 

the single-point source model (the program is outlined in Appendix 2). The following 

calculation shows the estimation of the radiant heat flux received at different points, 

as shown in Figure 2.2. The calculation was conducted for two types of fuel: gasoline 

and ethanol. The required input data is listed in the table below: 
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Liquid fuel 

Gasoline Ethanol 

The mass burning rate  ̇  (kg.m-2.s-1) Table 2.2 0.055 0.02 

Heat of combustion    (kJ.kg-1) Table 2.2 43700 29700 

Wind-speed    (m.s-1) 2 2 

Ambient temperature    (
oC) 15 15 

The relative humidity    (%) 75 75 

The surface area of the burning pool    (m
2) 4.5 4.5 

The heat release rate calculated from Equation 2.4: 14925 2687 

Fraction of heat radiated    0.46 0.5 

 

Acceleration due to gravity   (m.s-2) 9.81 

Air density     (kg.m-3) 1.2 

Table ‎2.1: Input data for the example of using the single point source model to predict the 
radiant heat 
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Figure ‎2.2: Schematic diagram showing the positions of the measuring points for radiant heat flux 

Figure 2.3 demonstrates the predictions of the radiant heat flux received at the 

measuring points with the distance of the measuring points from the centre of the 

pan. The radiant heat flux varied considerably between gasoline and ethanol, despite 
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applying the same conditions: at 3.2m from the centre of the pan, the radiant heat 

flux for the gasoline pool fire was 92 kW.m-2, whereas, for the ethanol pool fire, it 

was 22 kW.m-2. 

 

Figure ‎2.3: Radiant heat flux predictions of the single-point source model for both ethanol and 
gasoline 

2.2.2 Solid Flame Models 

Solid flame models select a geometry to represent the flame and then determine the 

relevant dimensions, using correlations based on dimensionless modelling and the 

results of appropriate experiments. Correlations are derived from a wide range of 

experimental data and give reasonable predictions within their range of applicability. 

Unfortunately, however, these models often have to be extrapolated for use on a 

much greater scale than the experiments on which they are based. Researchers like 

Rew and Hulbert (1996), Johnson et al. (1994) and Cracknell et al. (1994) found that 

validated empirical solid flame models are well-suited for the prediction of radiant 

heat fluxes, in terms of targets outside the flame. Hence, these models have been 

successfully used in the analysis of fire consequences and, furthermore, for 

quantitative risk assessment. They are relatively simple models, can be readily 

programmed and require short run times. The main parameters that affect the 

performance of solid flame models are flame size and shape, mass burning rate, 

average flame surface emissive power and atmospheric transmissivity. 
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Solid flame models are used to estimate the radiant heat flux received by a target 

external to a fire and they are validated in this context through the use of a wide 

range of experimental data. 

The extent of the radiant heat flux from a pool fire, calculated using the solid flame 

model, is dependent upon a number of factors including: 

 The heat of combustion of the fuel 

 Fuel type and burning rate  

 The flame length and its relation to the pool diameter 

 The effect of the wind on the flame, causing tilt and drag 

 The proportion of the heat released by the flame (flame surface emissive 

power) and 

 The tendency for the formation of smoke. 

Many correlations for each parameter of this problem exist in the literature, with the 

majority of these based on experimental work. Great care is required when choosing 

a correlation that is based on a pool fire of one fuel under certain conditions, to be 

used for another fuel under different conditions. Thus, the calculation of the value of 

a parameter outside the range of its known data requires careful consideration. Much 

of the experimental work has concerned spills of Liquefied Natural Gas (LNG) or 

Liquefied Petroleum Gas (LPG) into flat concrete pans at ground level and thus 

extrapolation to higher molecular weight and multi-component fuels burning from the 

top of a storage tank, several tens of metres above ground level, is required. 

Another factor that may affect the prediction of radiant heat flux on a target is the 

distance of interest. In the far-field, the majority of pool fire models (or combinations 

of sub-models) tend to give similar results: Crocker and Napier (1986) demonstrated 

this well, using a wide range of models. As these models have largely been derived 

in order to predict the effects of radiant heat flux on humans at ground level (i.e., the 

effects at several hundred metres or more from the fire), models have been selected 

and built that perform well at this sort of distance. 

However, a diverse range of results can be generated by the use of the range of 

models to predict radiant heat flux closer at distances such as 1 pool diameter (1D) 
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or half pool diameter (1/2D): these are the distances that are of interest within this 

research, as they are the typical separation distances between tanks. Thus, it has 

been necessary to choose correlations carefully, in order to avoid the over or under-

estimation of the radiant heat flux levels that might be anticipated from a tank fire. 

Certain effects, such as flame tilt and drag, and certain assumptions, such as the 

surface emissive power of the flame, become critical at locations close to the flame. 

A pool fire model (IRAD) was built during this research and is described in more 

detail in later sections: this model has a number of innovative features which make it 

well suited to assessing the near-field consequences of a tank fire. The model is 

primarily derived from the British Gas model FIRE2, which was developed by 

Pritchard and Binding (1992) and is based on publicly available and well-known 

correlations for flame dimensions, flame tilt, average flame surface emissive power 

and atmospheric transmissivity. The model also fits well with data obtained from the 

literature for large-scale pool fire experiments and the experimental data from pool 

fire tests conducted in collaboration with Resource Protection International on behalf 

of the LASTFIRE Project. The work was undertaken at the Centro Jovellanos 

Experimental Facility in Asturias, Spain, for the purpose of this research. The good 

agreement demonstrated by the comparison of the IRAD model and the 

experimental measurements is outlined in Section 2.5. 

The following equation describes how radiant heat flux ( ̇ ) is normally calculated 

using a solid flame model. The radiant heat flux at the target is obtained by: 

 Calculating the view factor of the flame from the location and orientation of the 

target, using the area integral method developed by Hankinson (1986) (which 

divides the flame surface into layers of triangular elements) 

 Estimating the surface emissive power of the flame shape, averaged over its 

surface area and 

 Estimating the transmissivity of the intervening atmosphere. 

  ̇           (2.5) 

Where 
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  is the atmospheric transmissivity 

   is the view factor between the flame and the elemental target and 

    is the average flame surface emissive power (kW.m-2). 

In the IRAD model, the above method has been modified, in order to account for the 

obscuration of parts of the flame by smoke. 

The radiant heat flux at the target is obtained by firstly calculating the value of 

Equation 2.5 for each triangular element forming the flame surface. In addition, the 

transmissivity of the atmosphere between each triangular element and the target is 

determined, based on the actual separation distance. The surface emissive power is 

then calculated, based on the surface emissive power of a clear flame un-obscured 

by smoke and the degree in which smoke is obscuring that part of the flame where 

the triangular element resides. Finally, the value of radiant heat flux is calculated by 

obtaining the vector sum of all the triangular elements of the flame surface that can 

be‎ ‘seen’‎ from‎ the‎ position‎ and‎ orientation‎ of‎ the‎ target.‎ The‎ above‎ process‎ is‎

described in detail in Section 2.2.2.5. 

In the following sections, the correlations for mass burning rate, geometry and the 

radiation properties of flame as outlined in the literature are assessed through a 

review of recent improvements within the area of pool fire modelling and through 

comparison with large-scale experimental data. It should be noted that, although the 

flame geometry and surface emissive power are based on separate correlations, the 

pool fire model needs to be considered as a complete unit. 

2.2.2.1 Mass Burning Rate 

The mass burning rate is the mass of the liquid fuel consumed by the flame per unit 

time, per unit area of the pool. Rew and Hulbert (1996) stated how, in pool fires, the 

most important parameter that affects flame behaviour is the mass burning rate: this 

is controlled by several factors, such as fuel composition, the burning surface area 

and the heat supplied to evaporate the fuel. 
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When estimating the burning rate of a liquid fuel, most of the literature focuses on 

the steady state burning of liquid fuels in a pool configuration: the reason for this is 

that the pool fire is easily repeatable and is a widely-relevant fire scenario. The 

foundation for most of this work can be found in Blinov and Khudyakov (1957). 

Furthermore, it can be shown that, in terms of combustion heating rates, the liquid 

fuel surface temperature at which evaporation takes place is almost at boiling 

temperature under the corresponding ambient pressure (Spalding, 1952). The liquid 

fuel must be raised to this temperature and vaporised, in order to burn in the gas 

phase. The steady mass burning rate ( ̇ ) is then given as: 

  ̇  
 ̇

    
 (2.6) 

Where: 

 ̇ is the rate of heat, per unit area, which is added to the liquid fuel (W.m-2) and 

     is the heat of gasification, which is a combination of the heat of vaporisation (  ) 

at the boiling temperature (     ) and the sensible heat (kJ.kg-1). 

            (        ) (2.7) 

Where: 

   is the latent heat of vaporisation (kJ.kg-1) 

      is the boiling point (K) 

   is the initial liquid fuel temperature (K) and 

     is the specific heat of the liquid fuel (kJ.kg-1 K-1). 

The mass burning rate for pure liquid fuels would be simply solved by Equation 2.6, if 

the heat flux to the liquid fuel is able to be determined. In terms of multi-component 

fuels, it is difficult to predict the mass burning rates, as two different processes can 

occur: equilibrium flash evaporation or distillation (Cowley and Johnson, 1992). 
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Equilibrium flash evaporation occurs when all of the liquid fuel in a hot layer (a few 

millimetres thick at the surface) boils to form a vapour of a similar composition to the 

liquid fuel. Distillation takes place when only the lighter components, with lower 

boiling points, vapourise and leave a hot layer of heavy residues. The occurrence of 

either process depends on complex relations between the individual component 

boiling points and their variation in density with temperature. 

For both pure and multi-component liquid fuels, the mass burning rate is sometimes 

estimated by calculating the linear regression rate (Mudan and Croce, 1988): 

  ̇           
   
  

 (2.8) 

Where: 

 ̇ is the he linear regression rate (m.s-1) 

    is the heat of combustion of fuel (kJ.kg-1) and 

   is the latent heat of vaporisation (kJ.kg-1) 

Then, the mass burning rate ( ̇ ) can be estimated using Equation 2.9 below: 

  ̇     ̇ (2.9) 

Where: 

   is the liquid fuel density (kg.m-3). 

The mass burning rate has been found to vary with pool diameter and Zabetakis et 

al. (1961) first outlined the relationship between the mass burning rate, the maximum 

mass burning rate for a liquid fuel and the pool diameter: 

  ̇   ̇   (   
(   ) ) (2.10) 

Where: 

 ̇    is the maximum mass burning rate of a liquid fuel (kg.m-2s-1) 
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  is the tank diameter (m) and 

   is the empirical constant (m-1). 

The maximum mass burning rate is the empirically-determined mass burning rate for 

a large pool diameter (i.e., a pool in excess of 3m in diameter) and Babrauskas 

(1983) summarised the maximum mass burning rates found for various liquid fuels 

and their (  ) values. 

From Figure 2.4, it can be seen that the mass burning rate approaches the maximum 

mass burning rate at approximately 3m diameter for both gasoline and diesel pool 

fires: this may be explained by assuming that vaporisation of a liquid fuel from the 

pool surface is largely due to back radiation from the fire. As the pool diameter 

increases, it reaches a size at which the flame is said to have become optically thick 

and any further increase in pool diameter does not produce an increase in emitted 

radiation. Thus, there is a pool diameter at which the radiative feedback to the pool 

surface reaches a maximum. The pool diameter at which this occurs varies with 

liquid fuel type and thus (  ) values are also fuel dependent. 

 

Figure ‎2.4: A comparison of the mass burning rate of gasoline and diesel and pool diameter 

The maximum mass burning rate can be calculated from the correlation identified by 

Burgess and Hertzberg (1974) which is given in Equation 2.11. It should be noted 
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that this rate is independent of the pool diameter. This is consistent with the early 

work of Blinove and Khudiakov (1957) and Hottel, (1959) 

  ̇    
         
    

 (2.11) 

Where: 

 ̇    is the maximum mass burning rate of a liquid fuel (kg.m-2s-1) 

    is the heat of combustion of fuel (kJ.kg-1) and 

     is the heat of gasification (kJ.kg-1). 

With regards to the comparison study conducted by Rew and Hulbert (1996), 

concerning mass burning rate correlation results and observed experimental data (as 

can be seen in Figure 2.5), the linear regression rate correlation appears to be in 

good agreement with the experimental maximum burning rate data for most fuels 

(i.e., that their boiling points are above ambient temperature), with the exception of 

liquefied gases. The mass burning rate correlation of Burgess and Hertzberg (1974) 

does not fit the experimental data in Figure 2.6 as well as the linear regression rate 

correlation, although it provides a better prediction of the mass burning rate for 

liquefied gases. 
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Figure ‎2.5: A comparison of the correlation of the linear regression rate and full-scale data 

 

 

Figure ‎2.6 A‎comparison‎of‎Burgess‎and‎Hertzberg’s‎correlation‎and‎full-scale data 

Based on the above, the IRAD model employs a fuel database containing maximum 

burning rate and (  ) values for a wide range of hydrocarbons. The database can be 

extended to other fuels and, where experimental data is unavailable, the maximum 

mass‎burning‎ rate‎can‎be‎calculated‎using‎Burgess‎and‎Hertzberg’s‎correlation‎ for‎

liquefied gases and the linear regression rate correlation for other fuels. 
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The IRAD model uses the following data shown in Table 2.2 for the maximum mass 

burning rate and fuel properties. 
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Fuel 

Maximum 
mass 

burning rate 

Empirical 
constant 

Heat of 
Combustion 

Surface 
Emissive 

Power 

Empirical 
constant 

Carbon to 
Hydrogen 

ratio 
Un-obscuration ratio   (m

2.m-2) 

 ̇    
(kg.m-2s-1) 

   
(m-1) 

    
(kJ.kg-1) 

       
(kW.m-2) 

   
(m-1) 

    

 
 
 
 
 

 

 
 
 
 
 

 
 
 
 

 

 
 
 
 
 

 

Acetone 0.038 2.238 25,800 130 100 0.50 0.02 0.02 0.02 

Benzene 0.085 2.700 40,100 130 100 1.00 0.02 0.02 0.02 

Butane 0.110 0.852 45,700 225 0.937 0.40 0.23 0.12 0.08 

Crude Oil 0.051 1.301 42,600 130 100.00 0.54 0.05 0.05 0.05 

Diesel 0.054 1.301 44,400 130 100.00 0.53 0.02 0.02 0.02 

Ethanol 0.020 100.00 29,700 130 100.00 0.33 1.00 1.00 1.00 

Fuel Oil 0.034 1.670 39,700 130 100.00 0.61 0.02 0.02 0.02 

Gasoline/Petrol 0.055 1.480 43,700 130 100.00 0.43 0.02 0.02 0.02 

Heptane 0.081 1.394 44,600 200 100.00 0.438 0.23 0.12 0.08 

Hexane 0.075 1.394 44,700 200 100.00 0.429 0.23 0.12 0.08 

Hydrogen 
(Liquefied) 

0.161 6.741  70 7.415 0.00 1.00 1.00 1.00 

JP4 0.056 1.962 43,500 130 100.00 0.46 0.02 0.02 0.02 

JP5/Kerosene 0.063 1.269 43,000 130 100.00 0.45 0.02 0.02 0.02 

LNG 0.141 0.136  265 0.149 0.25 0.77 0.69 0.55 

LPG 0.181 0.500  250 0.55 0.375 0.55 0.23 0.16 

Methanol 0.020 100.00 20,000 70 100.00 0.25 1.00 1.00 1.00 

Naphtha/Pentane 0.095 100.00  200 100.00 0.417 0.23 0.12 0.08 

Octane 0.081 1.394  200 100.00 0.444 0.23 0.12 0.08 

Toluene 0.066 3.370  130 100.00 0.875 0.02 0.02 0.02 

Xylene 0.090 1.400 40,800 130 100.00 0.80 0.02 0.02 0.02 
Table ‎2.2 Fuel properties.  Reference: SFP Handbook of Fire Protection Engineering 3rd Edition, (2002) 
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2.2.2.2 Effect of the Wind 

It is essential to understand the effect of the wind on pool fire behaviour. Previous 

research, undertaken by Hall (1973), Pitts (1991) and Drysdale (1999), has found 

that the wind affects flame shape, mass burning rate and the heat transfer processes 

occurring within the fire. 

There have been many studies conducted on the effect of the wind on the flame 

shape, such as the work carried out by Moorehouse (1982), Pritchard and Binding 

(1992), Johnson (1992) and Rew and Hulbert, (1996). These studies have shown 

that wind has an effect on the flame length, as it causes the flame to stretch 

downwind. Higher wind-speeds cause improved air entrainment into the fire and thus 

lower flame heights (Rew and Hulbert, 1996). In addition, the wind causes the flame 

to tilt and the flame base to be extended over the edge of the pool. 

The effect of wind on the mass burning rate was studied by Blinov and Khudyakov 

(1957), who found that there was up to a 40% increase in mass burning rate as the 

wind-speed across a 1.3m diameter pool fire increased from 0 m.s-1 to 3 m.s-1: this 

was thought to correspond to better mixing and more complete combustion occurring 

within the fire. The increase in the efficiency of combustion was expected to increase 

radiant heat flux to the liquid surface, with a consequent increase in the fuel mass 

burning rate. 

2.2.2.3 Flame Geometry 

As outlined above, in order to accurately predict the radiant heat flux received at a 

target located around a pool fire, using a solid flame model, a knowledge of flame 

geometry is required: this will determine the calculation of the view factor, either for 

the flame as a whole or for each triangular element of the flame surface. 

The geometry of the flame of a pool fire can be described by its diameter, length, tilt 

and drag: all of these parameters are respectively described in more detail in the 

next three sub-sections. In the majority of the pool fire solid flame models, the 

shapes of flames associated with large hydrocarbon pool fires have been 

approximated using regular geometrical shapes (Cowley and Johnson, 1992). The 
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most commonly-used regular shapes for the solid flame models of a pool fire are 

vertical cylinder, tilted or sheared circular cylinder, vertical cone and sheared 

elliptical cylinder, as shown in Figure 2.7. Moorhouse (1982) correlated the flame 

dimensions for pool fires, based on a cylindrical as well as a conical representation 

of the flame shape. 

Rew and Hulbert (1996) argued that the use of a sheared elliptical cylinder describes 

the real flame shape more accurately and that it can be used to predict the radiant 

heat flux at targets positioned laterally, in addition to downwind of the flame; 

however, these shapes produce flame lengths shorter than the actual flame length. 

These models are not perfect in representing the observed geometry, as the flame 

shape is irregular and will fluctuate with time. Consequently, this will influence the 

estimation of the view factor. The quantity of smoke and other combustion products 

generated by the fire can further complicate the assessment of flame geometry. 

 
 

Vertical Cylinder Sheared elliptical Cylinder 

  

Vertical Cone Sheared Cylinder 

Figure ‎2.7: Regular flame shapes commonly used in pool fire modelling 



Pool Fire Modelling   Chapter [2] 

2-22 

The IRAD model applies a realistic flame shape, based upon that used by the British 

Gas FIRE2 model (developed by Pritchard and Binding (1992)). This is believed to 

be more accurate in the region close to the flame, such as the region that separates 

storage tanks. A comparison study with experimental data, conducted by Pritchard 

and Binding (1992), showed that the representation of the flame with a cylindrical or 

other simple shape may result in inaccurate predictions of radiant heat flux levels at 

positions close to the fire. For large fires in particular, the cylindrical representation 

results in a shape which extends further downwind than is actually observed 

experimentally. In an actual fire, the effects of buoyancy result in the top half of the 

flame being tilted less than the lower part; thus, for downwind receivers, the models 

based on a cylindrical flame shape predict higher radiation levels than are observed 

experimentally, with the difference increasing with fire size. Figure 2.8 shows the 

flame in the fire test conducted by the LASTFIRE project and it can be seen that the 

tilt angle of the upper part of the flame is less than that for the lower part of the 

flame. 
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Figure ‎2.8 Flame shape as observed in the LASTFIRE gasoline pool fire test (2009) 
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The FIRE2 model is based on the area integral method described by Hankinson 

(1986): this method divides the flame into small triangular elements, in order to 

extend its application to cover a more realistic presentation of the flame (Pritchard 

and Binding, 1992). The FIRE2’s‎realistic flame shape was derived from the analysis 

of images of flame shapes measured during various LNG pool fire experiments. The 

observed shapes were digitised and normalised to remove the effect of the pool size, 

flame length and flame tilt, as shown in Figure 2.9. 

Pritchard and Binding (1992) developed a number of correlations from different types 

of fuels and pool diameters, in order to produce general scaling correlations for use 

in FIRE2 model, in terms of flame length, flame tilt and flame drag. Figure 2.10 

shows the effect of wind on the flame shape used in FIRE2. 
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Figure ‎2.9 Typical normalised flame 
shape 

Figure ‎2.10 Flame shape used in the British Gas FIRE2 
Model 

During the LASTFIRE pool fire experimental work, it was noted that, if there is wind 

blowing, the flame is tilted and divided into two parts: the lower part is assumed to be 

the base of the flame to the half-height of the flame, as shown in Figure 2.10. After 

analysing a number of flame photographs depicting pool fires from a variety of fuels, 

the shape illustrated in Figure 2.10 was chosen and implemented in the IRAD model. 

Figure 2.11 below show some of the flame shapes that were observed during the 

LASTFIRE pool fire tests and these were compared with the predictions of the IRAD 

model. The comparison shows that the predicted flame shapes are close to the real 

shapes and they also represent the flame better than the idealised shapes. 
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Flames from an experimental gasoline pool fire in 
Spain in 2010 – the wind-speed is 2m. s

-1
 

The flame shape of the gasoline pool fire, as predicted 
by the IRAD Model – Spain experiment (2010) 

 
 

Flames from an experimental  gasoline pool fire in 
Spain in 2009 – the wind-speed is 1 m. s-1 

The flame shape of the gasoline pool fire, as predicted 
by the IRAD Model – Spain experiment (2009) 

 
 

Flames from an experimental ethanol pool fire in Spain 
in 2009 – the wind-speed is 0.5 m. s-1 

The flame shape of the ethanol pool fire as predicted 
by the IRAD Model– Spain experiment (2009) 

  

Figure ‎2.11 A comparison between predicted flame shapes and real flames from different pool fires 
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2.2.2.3.1 Flame Length 

Some solid flame models require the flame length, while others require the flame 

height as input (flame height and length are shown in Figure 2.12). Cowley and 

Johnson (1992) defined the flame length as the length from the centre of the flame 

base along the flame trajectory to the mean visible tip of the flame. Flame height is 

the same, but in a vertical direction, rather than along the flame trajectory. Flame 

height is equal to the flame length, provided the flame is not tilted by the wind. 

Heskestad (2002) notes that the luminosity of the lower part of the flame appears 

fairly steady, while that of the upper part appears to be intermittent. Vortex 

structures, more or less pronounced, can sometimes be observed to form near the 

base of the flame and be shed upward. 

As the flame is highly dynamic and turbulent in nature, the highest point that the 

flame exists is constantly changing. It is thus convenient to define the flame length in 

terms of its mean value. 

 

Figure ‎2.12 Flame height and length of gasoline pool fire (for a pool diameter of 10m) (LASTFIRE 
2011) 

Flame length 

Flame height 
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Reviews of pool fire flame length correlations have been carried out by Moorhouse 

(1982), Moorhouse and Pritchard (1982), Considine (1984), Mudan (1984, 1985), 

McCaffery (1988), Pritchard and Binding (1992), Cowley and Johnson (1992). Many 

different correlations have been derived for the flame length, with the majority based 

on data from small-scale experiments (i.e., pools less than 1m in diameter). 

Considine (1984) extensively reviewed the available correlations used to predict the 

length of a flame from a pool fire and it was found that the most commonly-used 

correlation is that produced by Thomas (1963), which was derived from experiments 

using wooden crib fires: 

 
 

 
   (

 ̇ 

  √  
)

    

 (2.12) 

Where: 

  is the flame length (m) 

 ̇  is the mass burning rate of fuel per unit surface area (kg.m-2.s-1) 

  is the tank diameter (m) 

   is the air density (kg.m-3) and 

  is the acceleration due to gravity (9.81 m.s-2). 

Cowley‎ and‎ Johnson‎ (1992)‎ suggested‎ that‎ Thomas’s‎ correlation‎ demonstrates‎

reasonable predictions for the flame length of fuels with little or no smoke, such as 

LNG. In addition, other studies, such as that of Johnson (1992), have found that, 

while‎ Thomas’s‎ correlation‎ is‎ fairly‎ accurate‎ for‎ non-smoky flames, it may under-

predict the flame length for smoky flames. 

Pritchard and Binding (1992) produced a two-zone solid flame model with a realistic 

flame shape, which is used in the British Gas FIRE2 model for a wide range of 

hydrocarbons. This model includes a new correlation for flame length, as follows: 
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     is the wind-speed at height of 9m (m.s-1). 

It should be noted that the correlation takes into account the effect of the wind, while 

Equation 2.12 does not. The effect of the wind in the correlation given in Equation 

2.13 is supported by the research of Attallah and Allen (1971), which suggested that 

the flame will be stretched at low wind-speeds. Also, the flame length produced by 

Pritchard‎and‎Binding’s‎correlation‎for‎realistic‎flame‎shape‎produces‎a‎larger‎flame‎

length than for models that use idealised flame shapes (Rew and Hulbert, 1996), as 

seen in Figure 2.13. 
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Figure ‎2.13: A‎comparison‎between‎the‎realistic‎flame‎that‎is‎produced‎by‎Pritchard‎and‎Binding’s‎
correlation and the idealised flame shows that the realistic flame is larger than the idealised flame 

Thomas’s‎ correlation‎ under-predicts the flame length relative to the Pritchard and 

Binding’s‎correlation‎and‎this‎may‎be‎due‎to‎Pritchard‎and‎Binding‎using‎a‎realistic‎

flame shape. However, the latter may represent a more accurate prediction for flame 

length for larger diameter and smoky flames (Rew and Hulbert, 1996). 
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Several other correlations are available, including that produced by Brotz et al. 

(1977), which uses expressions similar to those for the dispersion of gases. 

Moorhouse (1982) proposed the following for LNG: 
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      is the wind-speed at height of 10m (m.s-1). 

This is comparable with the extension of Equation 2.12, as developed by Thomas 

(1965) for wind-blown flames: 
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       Is the wind-speed at height of 1.6m (m.s-1). 

Table 2.3 below shows a comparison of several flame length correlations and 

indicates that the correlation by Pritchard and Binding (1992) gives the closest 

prediction to the experimental measurements, even at relatively large diameters. 

Test 
Location 

Pool 
Diameter 

(m) 

Wind-
speed 
(m.s-1) 

Experimental 
Results 
(   ) 

Pritchard 
and 

Binding 

Thomas 
(1965) 

Moorhouse 

China 
Lake 

8.5 6.2 2.8 2.8 3 2 

Montoir 
Maplin 
Sands 

9 2.2 2.8 2.6 2.5 1.9 

35 9 2.2 2.2 1.5 1.6 

20 6.2 2.15 2.2 1.6 1.6 

Table ‎2.3: Comparison of several flame length to diameter ratio predictions for LNG pool fire 
tests (Luketa, 2008) 

It can be seen from Figure 2.14 that‎Thomas’s‎correlation‎under-predicts low length 

to diameter ratios (   ), in relation‎to‎Pritchard‎and‎Binding’s‎correlation.‎This‎infers‎
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that‎Pritchard‎and‎Binding’s‎correlation‎predicts‎ the‎ flame‎ length‎ for‎ large-diameter 

smoky flames more accurately. However, this may be due to the fact that Pritchard 

and Binding use a realistic flame‎ shape,‎ while‎ Thomas’s‎ correlation‎ uses‎ a‎

cylindrical flame shape. 

 

Figure ‎2.14: Comparison‎of‎Pritchard‎and‎Binding’s‎correlation‎with‎flame‎length‎and‎Thomas’s‎

correlation with large-scale data (Rew and Hulbert, 1996) 

In view of the above discussion and of these uncertainties, care must be taken when 

employing different flame length correlations, in order to ensure that the flame shape 

used in the model (with which the correlation is associated) is known. As the IRAD 

model‎applies‎a‎ realistic‎ flame‎shape,‎Pritchard‎and‎Binding’s‎correlation‎ (given in 

Equation 2.13) is the most appropriate to be used in the model, in predicting flame 

length. 

2.2.2.3.2 Flame Tilt 

When estimating radiant heat flux on a nearby object, it is important to take into 

account the effect of wind on the flame, as the wind causes the flame to tilt and 

move over the edge of the pool. Consequently, the flame surface approaches any 

adjacent object in the downwind direction, increasing the level of radiant heat flux. If 

the wind-speed is high enough, the flame may impinge on the object. The flame tilts 

or skews in a downwind direction, as shown in Figure 2.15. It is essential to know the 

angle at which a flame will tilt, as a tilted flame moves closer to downwind objects: 
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this considerably increases the downwind radiant heat flux (compared with upwind) 

and may even lead to flame impingement. 

 

Figure ‎2.15: Flame tilt as observed in the LASTFIRE pool fire test (with regards to a 10m circular pool 
of gasoline) (LASTFIRE, 2011) 

Some pool fire models use the American Gas Association (AGA) (1974) correlations 

which were developed by Atallah and Raj for flame tilt: 

for       
         ( )    (2.16) 

for       
         ( )  

 

√      
 

 (2.17) 

  is the tilt of the flame from vertical (degrees) and 

      
  is the dimensionless wind-speed at a height of 1.6m (

      

(   ̇  
 

  
)
   ) 

The correlation was developed by Atallah and Rai (1974), using large-scale LNG 

pool fire data. This correlation shows a step change in the tilt function and predicts 

vertical flames at low wind-speeds when the flame is actually tilted. Rew and Hulbert 

(1996) asserted that, although this correlation gives good agreement for a wide 

range of experimental data, it has been criticised by various authors, due to its 
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prediction of zero tilt at low wind-speeds (when experiments have shown that 

significant tilt may still occur).  

One of the commonly-used correlations for flame tilt was developed by Welker and 

Sliepcevich (1966), using data from small-scale pool fires. This correlation is based 

on the balance between the buoyancy forces acting on the flame (due to the density 

differences between the hot combustion gases and the ambient air), which is 

represented by the Froude number, and the inertia forces applied to the flame by the 

wind, pushing it sideways, as represented by Reynolds number in the equation 

below. 

 
    

    
  (  )

 (  )
  (2.18) 

Where: 

   is the Froude number of the pool fire (
  
 

   
) 

   is the wind-speed (m.s-1) 

  is the pool diameter (m) 

  is the acceleration due to Gravity (9.81 m.s-2) 

   is the Reynolds number of the fire source (
   

  
) 

   is the kinematic viscosity of the ambient air (m2.s-1) and 

 ,  , and   are empirical constants. 

In Mizner and Eyre (1982) study of large-scale LNG and LPG pool fires, this 

correlation was shown to produce reasonable agreement between measurements 

from 20m diameter LNG and LPG fires. Pritchard and Binding (1992) fitted their 

experimental‎ data‎ to‎Welker‎ and‎ Sliepcevich’s‎ (1966)‎ equation‎ and‎ produced‎ the‎

following equation: 
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Where: 

     is the Reynolds number, based on a wind-speed at a height of 9m and 

     is the Froude number, based on a wind-speed at a height of 9m. 

Johnson (1992) also developed a correlation of the form given by Welker and 

Sliepcevich’s‎(1966): 
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An‎alternative‎correlation,‎based‎on‎Welker‎and‎Sliepcevich’s‎(1966)‎correlation,‎was‎

derived by Moorhouse (1982) by matching a skewed, elliptical, cylindrical flame 

shape to data from large-scale LNG pool fires. 
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 (2.21) 

Where: 

      is the Reynolds number, based on wind-speed at a height of 10m and 

      is the Froude number, based on wind-speed at a height of 10m. 

Figure 2.16 shows a comparison‎of‎Johnson’s‎and‎Prichard‎and‎Binding‎correlations‎

for flame tilt. The data is reproduced from Rew and Hulbert (1996). 
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Figure ‎2.16: Comparison‎of‎Pritchard‎and‎Binding’s‎and‎Johnson’s‎correlations‎of‎flame tilt against 
full-scale data (Rew and Hulbert, 1996) 

It can be seen in the above figure that the data is scattered and this indicates the 

difficulty of measuring flame tilt. As with flame length, care must be taken when 

comparing flame tilt correlations, in order to ensure that the flame shape model used 

to derive the correlation is identified. Pritchard and Binding (1992) used Equation 

2.19 in the British Gas FIRE2 model, with a realistic flame shape that gave 

reasonable predictions for flame tilt. Thus, this correlation was used for the IRAD 

model: an angle of tilt of   was applied to the lower part of the flame, which is 

assumed to be from the flame base to the half-height of the flame, and an angle of 

    was applied to the upper part of the flame, as shown in Figure 2 17. 
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Figure ‎2.17: The two tilt angles used by the IRAD model to represent a realistic flame shape (as 
observed in the LASTFIRE gasoline 10m pool fire test (2011)) 

2.2.2.3.3 Flame Drag 

Another effect of the wind is that the base of the flame extends beyond the 

downwind edge of the pool: this extension of the base of the flame downwind of the 

pool is called the flame drag. Figure 2.18 is a schematic diagram showing the flame 

drag, while Figure 2.19 shows flame drag from a tank fire. 

Although the earlier work of Thomas (1963) and the Atallah and Raj (1973) did not 

take this phenomenon into account in their description of the flame shape, there are 

a number of correlations which predict flame drag. Moorhouse (1982) developed the 

following correlation for flame drag: 

 
 ́

 
    (     )

     
 (2.22) 

Where: 
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Figure ‎2.18: Schematic diagram showing flame drag, which is a result of the wind causing the base of 
the flame to extend beyond the downwind edge of the pool 
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Figure ‎2.19: Flame drag, as observed in the LASTFIRE atmospheric gasoline storage tank fire test in 
Hungary 

Johnson (1992) gives a similar correlation for flame drag, based on LNG data, as 

follows: 

 
 ́
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 (2.23) 

Moorhouse’s‎correlation‎was‎originally‎developed‎for‎LNG‎fires‎and‎was‎adapted by 

Mudan and Croce (1988) to model flame drag for other hydrocarbon fuels by adding 

the term of vapour to air density ratio. 
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Where: 

   is the vapour density at boiling point (kg.m-3). 

Pritchard and Binding (1992) developed a correlation for flame drag and suggested 

that the experimental data showed that flame drag was dependent on fuel type (and 

thus flame drag correlation should include vapour density). 
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Flame‎drag,‎according‎ to‎Pritchard‎and‎Binding’s‎ correlation‎ (which‎was‎based‎on‎

LNG fires), shows reasonable agreement with the experimental data presented by 

Rew and Hulbert (1996). This correlation is also used for the realistic flame shape 

used in the British Gas FIRE2 model and thus was also used for the IRAD model, in 

predicting flame drag. 

2.2.2.4 Summary 

An accurate flame shape is essential in determining the impact of a fire on nearby 

structures.‎All‎empirical‎models,‎with‎the‎exception‎of‎Prichard‎and‎Binding’s,‎use‎a‎

simplified representation of a flame shape in calculating the radiant heat flux from the 

flame onto external objects. 

It is generally accepted that the ideal flame shape for pool fires is cylindrical; 

however, British Gas adopted a realistic flame shape and this is believed to be more 

accurate in predicting the radiant heat flux in objects close to the fire. This was 

explained by Pritchard and Binding (1992), who showed that the representation of 

the flames of a pool fire through a cylindrical or other simple shape may result in 

inaccurate predictions of radiant heat flux levels at positions close to the fire. 

There are many correlations that have been derived from experimental data that 

describe the flame shape and such correlations define the different parameters, 

depending upon the adopted flame shape. They must thus be chosen carefully and 

must be used with the corresponding flame shape in any predictive model. 

Pritchard‎and‎Binding’s‎(1992)‎correlations‎(2.13,‎2.19‎and‎2.25)‎were‎believed‎to‎be‎

adequate for predicting flame length, flame tilt and flame drag respectively. The 

correlations were derived from a realistic flame shape and thus they were 

incorporated into the IRAD model. 

2.2.2.5 Calculation of Radiant Heat Flux  

A solid flame that emits heat from its surface is commonly used to predict the radiant 

heat flux from a pool fire. The radiant heat flux at any location around the flame is 

dependent on the flame surface emissive power, the proportion of the radiation not 
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absorbed by the atmosphere in the path between the flame and the location and how 

much of the flame is visible at the particular location. 

2.2.2.5.1 Flame Surface Emissive Power 

The surface emissive power is not a real physical quantity; it is simply the constant of 

proportionality that relates radiant heat flux to the flame shape selected for a 

particular model. Therefore, the surface emissive power for a conical flame shape 

will have a different value to a circular cylinder or a skewed elliptical cylinder 

incorporating flame drag and to a realistic flame shape. In addition, the values of 

surface emissive power vary with fuel type and, for each type of fuel, they will vary 

with pool size. 

Surface emissive power is usually assumed as a value averaged over the entire 

surface of the solid flame. If a uniform average surface emissive power is assumed 

over the whole of the flame surface, the radiant heat flux levels in the far field will be 

over-estimated and, more importantly, the radiant heat flux levels close to the fire will 

be under-estimated. For fires in which large amounts of smoke are generated, the 

predicted radiant heat flux levels can be significantly (in error) close to the flame: this 

is because the average surface emissive power over the entire surface of the flame 

does not properly represent the variation in surface emissive power, from the highly 

emissive region near the base of the flame to the smoke obscured region towards 

the tip of the flame. 

Mudan and Croce (1986) derived the following equation for clear flames from 

experimental data on radiant heat flux: 

           (   
    ) (2.26) 

Where: 

    is the surface emissive power (kW.m-2) 

       is the maximum surface emissive power for the fuel, see Table 2.2 (kW.m-2) 

and 
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   is the extinction coefficient for the fuel, see Table 2.2 (m-1). 

Shokri and Beyler (1989) and Mudan and Croce (1988) correlated experimental data 

of radiant heat flux to external targets, in terms of an average emissive power of the 

flame. For these correlations, the flame is assumed to be a cylindrical with an 

average emissive power over the entire flame surface. 

Shokri‎and‎Beyler’s‎(1989)‎correlation‎is‎as‎below: 

       (           ) (2.27) 

Where: 

  is the pool diameter (m). 

This correlation appears to under-predict the surface emissive power for liquefied 

natural gas fuel, as demonstrated in Figure 2.20 (Ufuah and Bailey, 2011). 

According to Mudan and Croce (1988), a uniform surface emissive power of flames 

for smoky hydrocarbon fuels can be determined as follows. 

            
(    )      (   

    ) (2.28) 

Where: 

       is the maximum surface emissive power for the fuel (kW.m-2) (see Table 2.2) 

   is the extinction coefficient for the fuel, see Table 2.2 (m-1) 

     is the maximum smoke emissive power, 20 (kW.m-2) and 

  is the pool diameter (m). 
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Figure ‎2.20: Average surface emissive power models as a function of fire diameter (Ufuah and Bailey, 
2011) 

Mudan‎and‎Croce’s‎equation‎appears‎to‎over-predict heavy hydrocarbon fuels, such 

as gasoline and diesel, for relatively small pool diameters (less than 5m) and 

significantly under-predicts the LNG data for fires of approximately 15 to 25m in 

diameter. 

Researchers Considine (1984), Beyler (1999), McGrattan et al. (2000) and 

Engelhard (2005) stated that the large-scale experimental work and real incidents 

have demonstrated that two-zones exist in flames for pool fires involving 

hydrocarbons: 

i. A lower zone of clear visible flame, extending from the base to a fraction of 

the flame length, with only little smoke obscuration. 

ii. An upper zone above the lower zone and up to the full length of the flame, 

which appears as a plume of dense black smoke (through which hot flame 

gases periodically bloom). 

In an attempt to overcome the uncertainty of assuming an average surface emissive 

power, Considine (1984) suggested a two-zone model, based on a flame which is 

categorised into two zones. Using an approach suggested by Smith (1967), in order 

to produce a time average mean radiation rate for the upper zone of the flame, the 
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model result of the surface emissive power was in the range of 30 to 50 kW.m-2 for 

the upper zone and 100 to 170 kW.m-2 for the lower zone. 

In the IRAD Model, the average surface emissive power is determined using 

Equation 2.26, which was used in the British Gas FIRE2 model with a realistic flame 

shape. The equation is based on the assumption that thermal radiation is only 

emitted from the visible parts of the flame (i.e., those parts un-obscured by smoke). 

The maximum surface emissive power (       ) and the extinction coefficient for the 

fuel can be obtained from Table 2.2. 

2.2.2.5.2 Lower Zone Length 

As mentioned above, the lower zone of the flame constitutes the lower part of the 

flame that is un-obscured by smoke, as shown in Figure 2.21, which depicts a 

gasoline pool fire. The calculation of the lower zone length has been considered by 

Considine (1984), Pritchard and Binding (1992) and Ditali et al. (1992). Pritchard and 

Binding (1992) suggested that the length of this zone depends on the fuel type and 

the pool diameter. 

In terms of fuel type, the carbon-to-hydrogen atomic ratio (   )  describes the 

saturation of‎ hydrocarbon‎ fuel‎ and‎ is‎ thus‎ an‎ indication‎ of‎ a‎ fuel’s‎ tendency‎ to‎

produce smoke. This ratio is the one used by Pritchard and Binding (1992) to 

demonstrate the effect of fuel type in their correlation on the lower zone length: 
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Where: 

   is the lower zone length (m) and 

    is the carbon-to-hydrogen atomic ratio in hydrocarbon fuel. 
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A similar correlation was developed by Ditali et al. (1992), based on a different set of 

experiments, with lower dependence on (   ) ratio: 
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Figure ‎2.21: Lower zone length of a gasoline fire (LASTFIRE, 2011). The lower zone is not obscured 

by smoke, whilst the upper zone is partially obscured by smoke 
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Figure ‎2.22: Comparison‎of‎Pritchard‎and‎Binding’s‎correlation‎and‎full-scale data of the lower zone 
length of the flame  (Rew and Hulbert, 1996) 

 

 

Figure ‎2.23: Comparison‎of‎Ditali’s‎correlation‎and‎full-scale data, in terms of the lower zone length of 
the flame (reproduced from Rew and Hulbert, 1996) 

Figures 2.22 and 2.23 compare‎Prichard‎and‎Binding’s‎and‎Ditali’s‎correlations‎with‎

full-scale‎experimental‎data.‎Although‎the‎data‎is‎scattered,‎Pritchard‎and‎Binding’s‎

correlation provides a better prediction for the lower zone length of large pool 

diameters; however, it appears to under-predict the lower zone length for small pool 
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diameters: this was supported by the experimental work conducted by 

Loughborough University on a 2.4m diameter pan, where it was noted that the lower 

zone length was larger‎ than‎was‎ predicted‎ by‎ Pritchard‎ and‎ Binding’s‎ correlation.‎

This correlation was used in the IRAD model, due to the fact that the model is 

intended to be used for large storage tank diameters (i.e., more than 10m diameter). 

This is explained in more detail in the experimental measurements in Section 2.4. 

There are a number of other factors that might affect smoke production, as 

discussed by Rew and Hulbert (1996). Such factors include fuel molecule density, 

oxygen content, smoke point height and the rate of air entrainment into a pool fire: 

low air entrainment increases the rate of the formation of smoke and reduces its 

subsequent oxidation. This was confirmed by Pardo et al. (1978), who demonstrated 

that the smoke concentration in kerosene fires increases significantly as the air/fuel 

ratio is reduced. Thomas (1963) asserted that the rate of air entrainment to fuel burnt 

is characterised by the mass burning rate of a pool fire, which is taken into account 

in‎Pritchard‎and‎Binding’s‎(1992)‎correlation‎for‎ lower zone length.  Increased wind-

speed also aids air entrainment into the pool fire and, in the Pritchard and Binding 

correlation, this is characterised through the use of the pool fire Froude number. 

2.2.2.5.3 The Un-obscuration Ratio 

Large-scale experimental work has shown that, in reality, liquefied gas fires (such as 

LNG) have relatively clear flames, with only a small amount of smoke emerging from 

the top. In contrast, the heavier hydrocarbon fuels produce larger quantities of 

smoke, which partially covers the upper part of the flame. This smoke has a 

significant influence on predicting radiant heat flux. 

There is no correlation in the reviewed literature that estimates the percentage of 

flame uncovered by smoke (un-obscuration ratio) above the lower zone. Considine 

(1984) suggested that, for flames greater than 5m and less than 25m in diameter, 

30% of the height of the flame is continuously visible, while the remaining emits in 

blooms. Considine also added that, for flames greater than 25m in diameter, all the 

flame could be considered as blooms; however, these suggestions were based on 

the observation of a range of photographs. 
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Moorhouse and Pritchard (1988) reported on experiments incorporating LNG, LPG 

and Naphtha, in order to determine the validity of Considine’s‎proposal‎of‎the‎flame‎

in each zone. They found that the un-obscuration ratio varied from 10% to 40%, 

depending on the molecular weight of the fuel and pool diameter. The lower values 

were attributed to higher molecular weights and larger pool diameters. Moorhouse 

and Pritchard also stated that the un-obscuration ratio is dependent on the pool 

diameter and the observations of the LASTFIRE gasoline pool fire tests showed that 

the un-obscuration ratio decreases as the pool diameter increases, as outlined in 

Figures 2.24 and 2.25 below: the un-obscuration ratio is greater in the 2.4m diameter 

fire, as opposed to the 10m diameter fire. 

The IRAD model used the same database of un-obscuration ratio as that 

implemented by Pritchard and Binding (1992). 

 

Figure ‎2.24: (2.4m) diameter gasoline pool 
fire showing that the flame is less obscured 

than in pools of a larger diameter 
(LASTFIRE, 2009) 

 

Figure ‎2.25: (10m) diameter gasoline pool fire 
showing that the flame is more obscured than in pools 

of a smaller diameter (LASTFIRE, 2011) 

2.2.2.5.4 Atmospheric Transmissivity 

When calculating the radiant heat flux received at a distance from a pool fire, it is 

important to take into account the attenuation of the radiation as a result of 

absorption and scattering along the intervening path. The absorption occurs through 
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molecular species, such as water vapour, carbon dioxide, nitrous oxide, etc., while 

scattering occurs through airborne particulate matter, such as fog or smoke. 

There are a number of correlations that have been developed to estimate 

atmospheric transmissivity. Cook et al. (1990) presented Equation 2.31 below, based 

on the method of Raj (1977): 

                   (    ) (2.31) 

Where: 

    is the ambient partial water vapour pressure (N.m-2) and 

  is the distance between the flame and the target (m). 

The partial water vapour pressure in air can be calculated using the TNO (1980) 

correlation: 

             
 
  
   

 (        
    
  

)
 (2.32) 

Where: 

   is the ambient relative humidity (%) and 

   is the ambient temperature (K). 

Wayne (1991) developed correlations that are used by Shell Research: these 

correlations assume that the flame surface temperature is 1500 K, representing a 

surface emissive power of 280 kW.m-2,‎whereas,‎ in‎ the‎Raj’s‎correlation,‎ the‎flame‎

temperature is 1150K, representing a surface emissive power of 100 kW.m-2. Cowley 

and‎ Johnson‎ (1992)‎ asserted‎ that‎ the‎ flame‎ temperature‎ assumed‎ in‎ Wayne’s‎

correlation was an average of Propane and LNG pool fires, which is considered high 

for heavier hydrocarbons. However, this means it results in a value of higher 

transmissivity‎than‎predicted‎by‎Raj’s‎correlation‎and‎thus‎the‎latter‎is‎comparatively‎

conservative. 
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The correlations used in the Shell Research model, given by Wayne (1991), are as 

follows: 

                (      (   ))         (      (   ))
 

        (      (   ))          (      (   ))
 
 

(2.33) 

Where:  

(   )  
          

  
    

 (   )  
   

  
    

    is the ambient partial water vapour pressure (N.m-2) 

  is the distance between the flame and the target (m) 

   is the ambient relative humidity (%) and 

   is the ambient temperature (K). 

A correlation was derived‎from‎Kondratiev’s‎(1965)‎methodology‎ for‎ the‎calculation‎

of transmissivity, which assumes that the flame surface temperature is 1200 K, 

representing a surface emissive power of 118 kW.m-2. This correlation gives a 

conservative atmospheric transmissivity, compared to the above correlations. 

           
               

               (     )
            ( ) (2.34) 

Where: 

   
(                         

           )

   
 

  is the distance between the flame and the target (m) 

   is the ambient relative humidity (%) and 
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   is the ambient temperature (oC). 

A comparison of the atmospheric transmissivity correlations is shown for 80% 

relative humidity and 15oC in Figure 2.26. As seen, the attenuation increases as the 

distance between the flame and target increases. The correlation based on 

Kondratiev’s‎ (1965)‎ methodology‎ has‎ been‎ incorporated‎ into‎ the‎ IRAD‎model,‎ as‎

less‎radiation‎is‎assumed‎to‎have‎been‎absorbed‎than‎in‎Cook’s‎(1990)‎and‎Wayne’s‎

(1991) correlations. Consequently, it provides a conservative estimate. Fleury (2010) 

emphasised how, for small-scale pool fires, atmospheric transmissivity can usually 

be taken as unity. 

 

Figure ‎2.26: A comparison of the atmospheric transmissivity correlations is showing that‎Kondratiev’s‎
correlation is the most conservative, as its results are close to unity. 

2.2.2.5.5 Radiation View Factor Calculation 

The amount of radiant heat flux that an infinitesimal target will be exposed to is 

dependent on the size and shape of both the flame and the position and orientation 

of the target. The view factor (    ) is the proportion of all the radiation that leaves 

surface A1 and strikes surface dA2. The view factor is also sometimes known as the 

configuration factor. 

The calculation of the view factor is dependent upon the shape and location of the 

flame relative to the target. Raj and Kalelkar (1974) employed an analytical method 

to determine the view factor for tilted cylinders. Hankinson (1986) stated that the 
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available analytical methods for tilted cylinders with circular cross-section and other 

simple shapes are restricted to certain locations and orientations of the target. A 

further approach was developed by Rein et al. (1970) for tilted cylinders and 

receiving targets located at ground level, directly downwind of the flame: this is an 

area integral method, where the part of the surface of the cylinder contained within 

the‎field‎of‎view‎of‎the‎target‎is‎divided‎into‎small‎parallelograms.‎Rein‎et‎al’s method 

was criticised by Hankinson (1986), as it makes no allowance for the differences in 

area of these parallelograms as their position changes around the circumference of 

the cylinder. 

Hankinson developed an area integral method, which overcomes the limitations 

associated with the previous methods and extends its application to cover any 

geometrical shape by dividing the entire surface into triangular area elements: once 

the triangles have been defined, their contributions to the view factor may be 

calculated and summed vectorially. The method was applied to a tilted conical 

frustum of elliptical cross-section that was used to represent the flame associated 

with a large-scale fire. This method is elaborated upon below and is used as the 

basis for calculating the radiant heat flux in the IRAD model. 

The view factor between the flame surface and an infinitesimal target is calculated 

using‎ an‎ integral‎ over‎ the‎ part‎ of‎ the‎ flame‎ surface‎ that‎ can‎ be‎ ‘seen’‎ from‎ the‎

location and orientation of the target. 

    ∬
   (  )    (  )

    
   

 

 (2.35) 

Where: 

   is the view factor 

   is the angle between the local normal to the flame surface element and the line 

joining this element to the target position 

   is the angle between the unit normal specifying the orientation of the elemental 

target and the line joining the target to the flame surface element 
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  is the distance between the flame surface element and the target element (m) 

    is the area of the flame surface element (m2) and 

  is the area of the flame surface that can be viewed from the location and 

orientation of the target (m2). 

The integration is undertaken numerically by dividing the entire flame surface into 

triangular elements, as shown in Figure 2.27. Any contribution for which (     ) or 

(     ) is negative is ignored. This method was developed by Hankinson (1986) and 

can be used to calculate the view factor for modelling radiant heat flux from irregular 

flame shapes, such as the realistic flame shape used by the IRAD model. The 

method was used by Pritchard and Binding (1992) in their pool fire model. 
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Figure ‎2.27: The‎triangular‎flame‎elements,‎as‎described‎in‎Hankinson’s‎methods.‎The‎figure‎also‎
illustrates the target element and the other view factor parameters 

After defining the flame shape, Equation 2.36 is solved numerically: the flame 

surface area is divided into small triangles and the position of the nodal points in 

three-dimensional space is identified. The view factor between the flame triangular 

element and the small target element is determined as below: 

      
   (  )    (  )    

   
  (2.36) 
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   , the area of a triangular element of the flame surface, is equal to half of the 

magnitude of the vector (cross) product of the two vectors ( ⃗⃗⃗⃗  and  )⃗⃗ ⃗⃗  ⃗ of the triangular 

element.  ⃗⃗  and  ⃗⃗⃗  are found from the positions of the triangular points, as follows: 

 ⃗⃗  (        )  [(     ) (     ) (     ) ] (2.37) 

  

 ⃗⃗⃗  (        )  [(     ) (     ) (     ) ] (2.38) 
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(2.39) 

The distance ( ) between the nodal point of the centre of the area of the flame 

element (           ) and the location of the target (           ) is the value of the 

magnitude of the vector  ⃗⃗ , which can be calculated from the locations of the end 

points, as follows: 

 ⃗⃗  (         )  [(       ) (       ) (       )] (2.40) 

(           ) is obtained by: 

(           )  [
(        )

 
 
(        )

 
 
(        )

 
] (2.41) 

and (           ) represents the position of the target. 

Therefore,   is given by: 

   | ⃗⃗ |  [  
    

    
 ]
   

 (2.42) 

   (  )  and    (  )  can be calculated using the scalar (dot) product of the two 

vectors ( ̂  ), units normal to the target ( ̂  and  ̂  ) and the unit normal for the 

triangular element ( ̂ ) respectively. 
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 ̂  is the vector product of the two vectors  ⃗⃗  and  ⃗⃗⃗ , divided by the magnitude of 

 ⃗⃗   ⃗⃗⃗ , as follows: 
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 ̂  represents the orientation of the target and can be expressed as: 

  ̂  (           ) (2.46) 

   (  ) and    (  ) are the scalar (dot) product of the unit vector  ̂   and  ̂ , and 

 ̂   and  ̂  respectively. 
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It has been observed that, in this numerical method, the accuracy of the result is 

dependent upon the number of triangular flame elements: accuracy increases as the 

number of elements increases. However, the computational time also increases as 

the number of elements increase. 

The solution to Equation 2.35 is achieved by calculating the contribution from each 

element to the view factor and then summing the results vectorially to obtain the 

overall factor, as shown in Equation 2.49. 
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      ∑     (2.49) 

The method outlined above to calculate the view factor was followed as described, 

with the exception that, for the final vectorial summation, the view factor for each 

triangular element of the flame surface was multiplied by the value of surface 

emissive power multiplied by the atmospheric transmissivity (            )  (if the 

element was in the lower zone of the flame). If the element was in the upper zone of 

the flame, the view factor for each triangular element of the flame surface was 

multiplied by the surface emissive power multiplied by the atmospheric transmissivity 

multiplied by the un-obscuration ratio (                 ) . The value of the 

atmospheric transmissivity was determined using the actual distance between the 

centre of area of the flame surface element and the location of the target. Using this 

method, the radiant heat flux at the target was calculated directly, allowing for 

variation in the attenuation of thermal radiation by the atmosphere and variation in 

surface emissive power as a result of flame obscuration. Figure 2.28 below 

demonstrates the IRAD flame envelope and parameters. 

Note that any contribution for which (  ) or (  ) is negative is ignored: this means 

that only elements where    (  ) and    (  ) are greater than 0 are used in the 

calculation of radiant heat flux. 
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Figure ‎2.28: The figure is showing the IRAD flame envelope and parameters and illustrates how 

radiant heat is calculated outside the flame envelope 

2.2.2.6 The Required Data for the IRAD Model 

As discussed earlier, in the introduction, empirical models are more suitable for risk 

assessment studies because they give reasonably accurate results and require 

significantly less computer time; thus, they are commonly used for many engineering 

applications. Cowley and Johnson (1992) emphasised that any pool fire model used 

for risk assessment must give a satisfactory description and justification of its 

correlations. In addition, although these types of models are constructed from 

experimentally-derived correlations, they should be used within their range of 

validation. Unfortunately, this is not always possible, as the cost of undertaking full-

scale experiments is often prohibitive. This section explains the experimental data 

used to validate the correlations of the IRAD model as a whole. 

The IRAD model requires input data for the correlations used, as follows  
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1. Data related to the ambient conditions, such as wind-speed, wind direction, 

temperature and relative humidity. 

2. The position and orientation of the target. 

3. The pool diameter and its location. 

4. Fuel properties, including vapour density and mass burning rate. 

5. The surface emissive power (   ) kW.m-2 is calculated using Equation 2.26. 

6. The‎ lower‎ zone‎ length‎ is‎ calculated‎ using‎Pritchard‎ and‎Binding’s‎Equation‎

2.29, which requires the carbon-to-hydrogen atomic ratio (   ). This ratio 

was gleaned from the literature and is listed in Table 2.2 for some fuels. 

7. The un-obscuration ratio: this ratio is dependent on the pool diameter and is 

required to calculate radiant heat flux for the upper zone of the flame. 

Experimental data relating to the lower zone length and the un-obscuration ratio 

exists in the literature. The British Gas experimental programme, as reported by 

Moorhouse and Pritchard (1988), collected data for the lower zone length and the 

un-obscuration ratio relevant to the realistic flame shape. These data are 

incorporated into the IRAD model. 

2.2.2.7 Description of the IRAD Computer Program 

A modular program was written using the MATLAB language, in order to solve the 

pool fire parameters and numerically obtain the radiant heat flux. The program 

consists of one main program and has three functions. A description of each of the 

program units is given below and the programme flow chart is illustrated in Figure 

2.29. 

The IRAD program is the main program, as follows: 

1. Initially, it calls the INPUT function, which assigns the following input data: 

• Tank diameter (m) 

• Height of tank wall(m) 

• Acceleration due to gravity (9.81 m.s-2) 

• Air density (kg.m-3) 

• Kinematic viscosity of air (m2.s-1) 
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• Ambient temperature 

• Relative humidity (%) 

• Wind-speed (m.s-1) 

• Wind direction 

2. Next, it calls the PROPERTY function, which inputs the fuel property data for 

any hydrocarbon included in the IRAD database. Table 2.2 lists the 

hydrocarbon fuels considered in the database and gives the necessary input 

data for the IRAD model. Although the IRAD model incorporates the type of 

fuels outlined in Table 2.2, extra fuels can be added to the database. 

3. The main program calculates the realistic flame dimensions, such as flame tilt 

( ), which is shown in Figure 2.17, and also flame height and length. 

4. At this stage, the main program constructs the flame shape by using the 

previously- mentioned flame dimensions. Then, taking into consideration the 

effect of wind-speed and wind direction, the position of the nodal points 

(relative to a fixed coordinate system) is calculated. 

5. The user is required to specify the position and the direction of the elemental 

target that receives the radiant heat flux. 

6. Finally, the IRAD program calls the RADIANT HEAT FLUX function. This 

calculates radiant heat flux by vectorially summing the view factor for a 

triangular element multiplied by the transmissivity for that element multiplied 

by the surface emissive power for the clear flame (if the element is in the 

lower zone) or by the surface emissive power for the clear flame multiplied by 

the un-obscuration ratio (if the element is in the upper zone). 
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Figure ‎2.29 The IRAD programme flow chart, showing the main program and its various functions 
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2.2.2.8 Model Output 

The outputs of the IRAD model include the following: 

1. The flame geometry, including size, shape and position in space 

2. The target geometry, including shape and position in space 

3. The radiant heat flux (kW.m-2) at any specified location. 

The following example illustrates the main inputs and outputs of the IRAD program 
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Example of Output File 

IRAD OUTPUT FILE 

RUN FILE NAME: Propane_Pool_Fire 

Run Name: Example 

Input Parameters 

Tank Diameter:       2.4  m 

Tank Height:       1.7  m 

Fuel properties: LPG/Propane 

Max Burning Rate:       0.12  kg.m-2s-1 

Beam Length * Extinction Coeff.:    0.15  m-1 

Max. Surface emissive power:     250  kW.m-2 

Carbon/Hydrogen Ratio:      0.38 

Un-obscuration Ratio:      0.55 

Ambient Conditions 

Temperature:       15  C 

Relative Humidity:      70  % 

Wind-speed:        0.5  m.s-1 

Wind Direction       0.0  Degrees 

Flame Parameters 

Mass Burning Rate:      0.1139 kg.m-2s-1 

Surface Emissive Power:      250  kW.m-2s-1 

Flame tilt:        20.1  Degrees 

Lower zone length:      2.49  m 

Flame length:       9.1  m 

Flame drag Ratio:       1.1 

Dragged Diameter:       2.7  m 

Radiant heat flux at different positions 

Target 

Target Position Target Direction Thermal 

Flux 

(kW.m-2) 
X(m) Y(m) Z(m) nx ny nz 

1 5 0 1 1 0 0 11.2 

2 0 5 1 0 1 0 16.3 

3 10 0 1 1 0 0 4.2 

4 0 10 1 0 1 0 5.8 

5 20 0 1 1 0 0 1.2 

6 0 20 1 0 1 0 1.6 

7 50 0 1 1 0 0 0.21 

8 0 50 1 0 1 0 0.2 
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Figure 2.30 is produced by the IRAD program for the example above and it shows 

the realistic flame parameters. 

Drag

z

x
F

la
m

e
 h

e
ig

h
t 

(F
h

)

F
h

/2F
la

m
e

le
n

g
th

Flame tilt

D
is

ta
n

c
e

 o
n

 t
h

e
 z

 d
ir

e
c

ti
o

n
 (

m
)

Distance on the x direction (m)

φ

2
/

φ

 

Figure ‎2.30: The flame shape produced by the IRAD model is showing the flame envelope and 
other flame parameters, such as height, length, tilt and drag 

 

Another example demonstrates the variation in the heat flux received at targets 

located at various distances from the fire (the same example in Section 2.2.1.4 was 

used). The example inputs are given below, in Table 2.4. The liquid fuels used were 

gasoline and ethanol: these fuels were contained in a 2.4m diameter pan and the rim 

of the pan was 1m above ground. The radiant heat flux measuring points were 

located downwind, as shown in Figure 2.2 in Section 2.2.1.4. 
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Liquid fuel 

Gasoline Ethanol 

The maximum mass burning rate  ̇    (kg.m-2.s-1) 

Table 2.2 
0.055 0.02 

Surface emissive power     (kW.m-2) 170 70 

Wind-speed is    (m.s-1) 2 2 

Ambient temperature    (
oC) 15 15 

The relative humidity    (%) 75 75 

The surface area of the burning pool    (m
2) 4.5 4.5 

Carbon to hydrogen ratio     0.43 0.33 

Un-obscuration ratio    0.9 1 

Table ‎2.4: Input data for the example 

Figure 2.31 below shows the predictions for radiant heat flux, using the solid flame 

model (IRAD) for the above inputs. The measuring points were located, as shown in 

Figure 2.2. For gasoline, the highest heat flux, at 3.2m from the centre of the pan, 

was 67 kW.m-2,‎while‎the‎lowest,‎at‎a‎distance‎of‎11.2m‎from‎the‎pan’s‎centre,‎was‎5‎

kW.m-2.  For ethanol, the highest heat flux, received at 3.2m from the centre of the 

pan, was 21 kW.m-2, and the lowest, at a distance of 11.2m from the centre of the 

pan, was 1.1 kW.m-2. A comparison of the different models used to predict radiant 

heat flux is shown in more detail in Section 2.5. 
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Figure ‎2.31: Radiant heat flux predicted by the IRAD model for both gasoline and ethanol pool fires, at 
various distances from the centre of the pool 

2.3 Computational Fluid Dynamics (CFD) Models 

2.3.1 Introduction 

CFD models numerically solve the partial differential equations that describe the 

conservation of mass, momentum and energy in fluid flow, in order to predict fire 

behaviour. The models must also incorporate sub-models that express the chemical 

and physical processes that occur in fires. Thus, CFD models are mathematically 

complex: they require a significant amount of time to reach a solution, demand a 

high-level Central Processing Unit (CPU) and require significant user expertise. As 

noted by Cowley and Johnson (1992), although CFD models are efficient in 

predicting air and smoke movement and ventilation problems in complicated 

geometries, they are not as efficient as existing empirical models in predicting flame 

position and radiant heat flux. Furthermore, Hume and Eady (2002) also stated that 

CFD models are not ideally suited to modelling radiant heat flux, as this is not a fluid 

flow. Despite this, the use of CFD models for fire modelling has increased in line with 

the availability of greater computer processing power at lower costs. 

CFD models specifically developed for fire problems and some general CFD models 

that are sometimes used for fire modelling are listed in the tables below. Further 

details of these models can be found at the websites quoted. 
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Model Name Model Developer Website Address 

FDS NIST, USA http://fire.nist.gov/fds/ 

JASMINE and 
CRISP 

Fire Research Station http://www.bre.co.uk/frs/service5.html 

Smartfire University of Greenwich http://fseg.gre.ac.uk/ 

Sofie 
Consortium initiated at 
Cranfield University 

http://www.cranfield.ac.uk/sme/sofie/ 

Table ‎2.5: Specific fire models 

 

Model Name Model Developer Website Address 

CFX AEA Technology http://www.software.aeat.com/cfx/default.asp 

Fluent Fluent Inc. http://fluent.com/ 

Phoenics Cham Ltd http://www.cham.co.uk/ 

Table ‎2.6: General CFD models 

One of these models currently under development is the Fire Dynamics Simulator 

(FDS), which is being developed by the American National Institute of Standards and 

Technology (NIST). The FDS is discussed in detail in Section 2.3.2 and, in Section 

2.5,‎the‎model’s‎results‎are‎compared‎with‎those‎of‎the‎IRAD‎model,‎the‎SPS‎model‎

and the experimental measurements. 

2.3.2 Fire Dynamics Simulator (FDS) 

As mentioned in Section 2.1, there are two commonly-used types of fire model: the 

empirical model and the CFD model. Empirical fire models are most commonly used 

by fire engineers and their popularity is due to their ability to quickly provide 

sufficiently accurate estimates of general fire conditions. However, at the present 

time, fire modelling is undergoing a period of development and greater computational 

power means that CFD models have become an increasingly feasible option to use 

within fire research. At the helm of recent fire model developments is the FDS, which 

was officially released on the Internet in February 2000 (http://fire.nist.gov/fds). The 

FDS is a CFD model that implements a form of the partial differential equations 
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appropriate for low speed and thermally-driven flow, with an emphasis on smoke and 

heat transport from fires. The formulation of equations and numerical algorithms is 

described in the Fire Dynamics Simulator (Version 5) Technical Reference Guide 

FDS5 (TRG). 

The FDS uses the Large Eddy Simulation (LES) or the Direct Numerical Simulation 

(DNS) techniques of the CFD, in order to solve the fluid flow partial differential 

equations. Baum (1999) explained that the recent release of the model and the 

promising predictions associated with the LES fire research created a demand for 

further knowledge of the FDS. 

LES varies from other CFD techniques, such as the DNS and the Reynolds 

Averaged Numerical Simulations (RANS), in that LES explicitly calculates the 

turbulent flow in large-scale domains. However, the LES technique is 

computationally intensive: the high mesh resolution that is required to resolve the 

rapid turbulent flow in large-scale computational domains means that the LES 

technique requires a powerful computer with a large Random Access Memory 

(RAM). 

If the computational domain is small enough, the DNS technique may be used within 

the FDS; the DNS could be considered as the extreme version of LES, but it does 

not employ turbulence modelling. Thus, the current computational powers make it 

impossible to solve a fire scenario of even the size of a single room on a standard 

computer, restricting the application of the DNS to very small computational domains 

(Clement, 2000). 

Generally, as the mesh is refined further and further, the results of the simulations 

converge to provide a more accurate solution to the partial differential equations. 

However, on a practical level, computational hardware limitations and time 

constraints limit the degree of resolution (Sagaut, 2006). 

The FDS can be broken up into several major sub-models and the following 

descriptions of such sub-models are taken from the Fire Dynamics Simulator User 

Guide (Version 5). 
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2.3.2.1 The Hydrodynamic Model 

The hydrodynamic model is the main sub-model in the FDS and it solves the partial 

differential equations (Navier-Stokes equations) that describe mass transfer, 

momentum and energy. These equations involved in the modelling process were 

simplified and incorporate an approximate form of the Navier-Stokes equations for 

flow in a thermally-expandable, multi-component fluid: this simplified form is 

achieved‎ by‎ filtering‎ out‎ acoustic‎ waves,‎ in‎ order‎ to‎ obtain‎ ‘low‎ Mach‎ number’‎

equations. These equations describe the low-speed movement of gases driven by a 

chemical heat release and buoyancy forces (McGrattan et al., 2010), allowing for 

large variations in density and temperature and small changes in pressure (all 

common in fire scenarios, as they occur in open environments) (Floyd et al., 2001). 

The equations are calculated using the technique of simulation (LES or DNS) in 

FDS, which in turn depends on the user requirements or the mesh resolution. 

2.3.2.2 The Combustion Model 

The combustion process can also be modelled using the LES or DNS techniques, 

depending on the size of the computational domain. If the computational domain is 

small enough, the combustion can be modelled using the DNS technique. With DNS, 

the diffusion of oxygen and fuel during combustion can be modelled directly; 

however, this can only be implemented for very small fires and in a small domain 

around a fire, as a very dense mesh is required. If the mesh is not fine enough, then 

LES is suitable. With LES, the diffusion of fuel and oxygen can be computed using a 

mixture-fraction based model, where it is assumed that physical processes that 

occur for small periods of time and on a small scale must be computed in an 

approximate manner: large scale transport processes, both convective and radiative, 

can be modelled directly. For most applications, the FDS uses a mixture-fraction 

combustion model (McGrattan et al., 2010). 

2.3.2.3 The Radiation Transport Model 

Radiant heat flux is included in the model via the solution of the Radiative Heat 

Transfer Equation (RTE) for a non-scattering grey gas and, in limited cases, using a 

wide band model. The equation is solved using the Finite Volume Method (FVM), 
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which is similar to the finite volume methods used for convective transport. One 

hundred discrete angles are used in the Finite Volume Solver (McGrattan, 2010). 

2.3.2.4 Geometry 

The FDS model approximates the partial differential equations on a simple rectilinear 

numerical mesh. The user prescribes rectangular structures that are forced to 

conform to the underlying mesh: this can be a limitation in some situations, such as 

when certain geometric shapes do not conform to the rectangular mesh. For 

example, shapes such as a cylindrical tank cannot be accurately applied; however, a 

cylindrical geometry can be drawn, using software such as AutoCAD, and then 

imported to the FDS. 

2.3.2.5 FDS Inputs and Outputs 

The input data for the fire scenario to be modelled using the FDS are described in a 

text file known as the input file: this file contains information about the geometrical 

configuration (the computational domain, the geometrical structures, and mesh size), 

material properties, atmospheric conditions and output quantities. 

A complete description of the input data required by the FDS can be found in the 

FDS User Guide (McGrattan et al. 2010). 

 The Geometrical Configuration 

Geometrical structures in the FDS are contained within a computational domain, in 

which the size and location of the co-ordinate system should be defined. Unless 

otherwise specified, the outer boundaries of the computational domain are assumed 

to be solid boundaries that are maintained at ambient temperature: the same is true 

for any structures that are added to the domain. The computational domain may 

consist of one or more rectangular meshes and each mesh is split into rectilinear 

cells, which are often uniform in size. The number of cells used will have a 

considerable effect on the results. A finer mesh with increased cells is more 

desirable, but would demand more computer resources (both large Random Access 
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Memory (RAM) and run-time) and is thus more expensive, whereas a mesh that is 

too coarse will result in large errors. 

All geometric structures in the domain must conform to this rectangular mesh; thus, 

the structure is inputted as a series of rectangular obstructions. The size of the 

computational domain and the number of mesh cells are specified by the user. 

 The Material Properties 

A number of material properties are needed as input for the FDS, and the majority 

are related either to the fuel or solid structures. Depending on the application of the 

FDS for the fuel, the material properties required by the FDS include (but not limited 

to) the state of the fuel (whether it is a solid, liquid, or gas); density; specific heat; 

thermal conductivity; heat of combustion; heat release rate per unit area; fraction of 

the fuel amount that is converted to soot and carbon monoxide and the fraction of 

heat radiated. For solid structures, the FDS requires the density, thermal 

conductivity, specific heat, and emissivity of such structures. 

Some of the property data required by the FDS are outlined in Table 2.2. Depending 

on the application, properties for specific materials may not be readily available and 

thus the FDS documentation contains a database with thermal properties of common 

materials. This data are given as examples and the accuracy and appropriateness of 

the data needs to be verified. 

 Atmospheric Conditions 

The atmospheric condition inputs, including wind-speed, relative humidity and 

ambient temperature, need to be assigned in the FDS input file; otherwise, the FDS 

will assign default values. For relative humidity, the default value is 40 %. The 

ambient temperature is the temperature of everything at the start of the simulation, 

while the default temperature is 20oC. Wind-speed can be constant, with regards to 

the height of the domain, or it can be changed, as an atmospheric wind-speed profile 

of the form:  



Pool Fire Modelling   Chapter [2] 

2-68 

      (
  

  
)
 

 (2.50) 

Where: 

   is the reference wind-speed at height    (m.s-1) 

   is the wind-speed (m.s-1) 

   is the reference height from the ground, where the wind is measured (m) 

   is the atmospheric profile height (m) and 

  is the atmospheric profile exponent (usually taken as 0.3). 

 FDS Outputs 

The FDS calculates radiant heat flux, temperature, density, pressure, velocity, 

chemical composition and various other quantities within each numerical mesh cell 

at each separate time step. The desired output data needs to be defined in the input 

file prior to the start of the simulation. The output typically consists of fairly large data 

files and the output data may be visualised in a graphics program named Smokeview 

(also developed by NIST). 

2.3.2.6 An Example of Using the FDS 

The same example was used in Section 2.2.1.4. The FDS input file was written to 

simulate gasoline and ethanol pool fires, using the 2.4m diameter pan. Both gasoline 

and ethanol fires had the same atmospheric conditions. 

The FDS predictions were visualised by the Smokeview graphics program: all 

calculations were carried out on a computer with a relatively large RAM and a high 

CPU (Intel (R) XeonTM CPU 3.8 GH, 4 GB RAM). It took approximately 96 hours for a 

typical run of 250 seconds of real time. 

The following sections show how the input file was constructed, for this particular 

example: 
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 Defining the Geometrical Configuration 

In this example, the geometrical configuration for both the gasoline and ethanol fires 

is identical, as shown in Figure 2.32. The computational domain dimensions were set 

as 13m in the X direction, 4.7m in the Y direction and 8m in the Z direction. The 

whole domain was then divided into a mesh of cubic cells of 0.05m in size. Four of 

the six domain boundaries were set as open to the atmosphere, while the left 

boundary was set as wind-based and the ground boundary was set as a concrete 

floor. 

A solid structure within the computational domain, representing the test pan in this 

example, was added. As the FDS does not allow for cylindrical geometry, the pan 

was presented by a square box with dimensions of (2.1m x 2.1m x 0.6m), which had 

the same area as the cylindrical test pan with a diameter of 2.4m. 
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Figure ‎2.32: The geometrical configuration of the gasoline and ethanol pool fires, as specified by the 
FDS model 
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 Defining the Material Properties 

Table 2.7 below summarises the physical and thermal properties of the liquid fuels 

used in the Fire Dynamics Simulator. 

Liquid fuels 

 Gasoline Ethanol 

Heat of combustion     (kJ.kg-1) 43700 29700 

Heat release rate per unit area (kW.m-2) 2403 594 

Fraction of heat radiated    0.46 0.5 

Fraction of soot from the fuel  0.03 0.008 

Fraction of carbon monoxide from the fuel 0.01 0.005 

Thermal conductivity (W.kg-1.K-1) 0.12 0.17 

Density (kg.m-3) 680 787 

Specific heat (kJ.kg-1 K-1) 2.22 2.45 

The fuel chemical formula 

Carbon (C) 8 2 

Hydrogen (H) 18 6 

Oxygen (O) 0 1 

Table ‎2.7: The properties of liquid fuels 

Table 2.8 summarises the physical and thermal properties of the solid structures 

used in the Fire Dynamics Simulator. 

Solid structures 

Steel Pan 

Thermal conductivity (W.kg-1.K-1) 45.8 

Specific heat (kJ.kg-1 K-1) 0.46 

Density (kg.m-3) 7850 

Emissivity 0.9 

Concrete Floor 

Thermal conductivity (W.kg-1.K-1) 1.2 

Specific heat (kJ.kg-1 K-1) 0.88 

Density (kg.m-3) 2200 

Table ‎2.8: The properties of solid structures 
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 Defining the Atmospheric Conditions 

Table 2.9 summarises the atmospheric conditions used in the Fire Dynamics 

Simulator. 

Parameter Value 

Wind-speed is    (m.s-1) 2 

Ambient temperature    (
oC) 15 

The relative humidity    (%) 75 

Table ‎2.9: The atmospheric conditions 

 Mesh Independence Study 

The determination of a mesh for the FDS calculations is an important task. Indeed, a 

mesh that is too coarse will result in large errors, while an overly fine mesh will be 

costly, in terms of computer processing power and computing time. 

Before a solution can be regarded as accurate and valid, it must be demonstrated 

that the solution is independent of the mesh used. Thus, a mesh independence 

study was undertaken. Three grid sizes, representing cell sizes 0.2m, 0.1m and 

0.05m, were used in the study. 

Figure 2.33 demonstrates how the larger cell size gave a higher radiant heat 

prediction (for the 0.2m cell size, the average radiant heat flux was 70 kW.m-2, for 

the 0.1m cell size, it was 55 kW.m-2 and, for the 0.05 cell size, the average radiant 

heat flux was approximately 45 kW.m-2). Further refinement of the mesh size could 

not be achieved, due to the limited computational space on the workstation that was 

available. Thus, a mesh of 0.05m cell size was used in the simulation. 
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Figure ‎2.33: Radiant heat flux at 2.3m from the centre of the pan, using different mesh cell sizes. The 
0.05 cell size was used in the model 

 The Predictions 

Figures 2.34 and 2.35 show that the gasoline flame length was about 7m and, for 

ethanol pool fire, the flame length was about 2m. The figures also show that both 

flames are tilted, due to the effects of the wind. In addition, both flames are 

associated with smoke. In this particular example, the fraction of burning fuel mass 

converted into smoke particulate was 1% for ethanol and 3% for gasoline: this 

means that the smoke generation rate is 1% of the ethanol burning rate and 3% of 

the gasoline burning rate. 
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Figure ‎2.34: Gasoline flame as predicted by the FDS model (which was assumed to be about 7m) 

 

 

Figure ‎2.35: Ethanol flame as predicted by the FDS model (which was assumed to be 2m) 

The variation of radiant heat flux with time, both for the gasoline and ethanol pool 

fires, is shown in Figures 2.36 and 2.37. The figures show that the radiant heat flux 

increases rapidly at the beginning and become stable after about 10 seconds, with a 

small fluctuation of approximately 1.5 kW.m-2. 
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Figure ‎2.36: FDS radiant heat flux predictions for the gasoline pool fire vs. time. Radiant heat was 
measured using 7 thermocouples placed at various distances from the centre of the pool 

 

 

Figure ‎2.37: Radiant heat flux predictions of the FDS model for the ethanol pool fire vs. time. Radiant 
heat was measured using 7 thermocouples placed at various distances from the centre of the pool 

Figure 2.38 illustrates the average radiant heat flux for both gasoline and ethanol 

pool fires received at the measuring points in a set period of time against the 

distance from the centre of the pan. The average radiant heat flux for the gasoline 

pool fire measurements was 45 kW.m-2 at point 3.2m while, at point 11.2m, it was 9 

kW.m-2. The average radiant heat flux for the ethanol pool fire was 10 kW.m-2 at 
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3.2m and 0.43 kW.m-2 at 11.2m. The predictions of the radiant heat flux presented in 

this section are the average values over the steady burning period. 

 

Figure ‎2.38: FDS model predictions of radiant heat flux for the gasoline and ethanol pool fires vs. 
distance from the centre of the pool 

2.4 Pool Fire Experimental Work 

The radiant heat flux from a pool fire can be measured during experimental studies: 

these measurements may then be used to validate mathematical pool fire models. 

However, it is difficult to obtain reliable modelling results, due to the unpredictable 

flame behaviour (as a consequence of the strong influence of the weather and a 

variety of fuel types). Thus, experimental work must be conducted, in order to gather 

data pertaining to the consequences of a pool fire in different atmospheric conditions 

and the use of various fuel types. 

A series of experiments was carried out in which radiant heat flux measurements 

were recorded at various locations around a pool fire: this experimental work was 

performed by Loughborough University during pool fire tests conducted in 

collaboration with Resource Protection International, on behalf of the LASTFIRE 

Project. The work was undertaken at the Centro Jovellanos Experimental Facility, in 

Asturias, Spain, during May 2009 and September 2010. In these experiments, 

radiant heat flux measurements were recorded, in addition to the other information 

required to meet the research objective of comparing the experimental 
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measurements with the predictions of the SPS, IRAD and FDS models. 

Measurements concerned the variation in radiant heat flux, in terms of distance from 

the pool fires, flame behaviour and the parameters of the flame shape were 

observed and recorded, in the form of photographs. 

Each series of experiments is described separately in the next sections. 

2.4.1 Asturias (Spain), May 2009 

A programme of pool fire experiments was carried out during the week commencing 

11th May 2009. Loughborough University measured radiant heat flux during seven of 

the tests, in which various atmospheric conditions, including wind-speed, relative 

humidity and ambient temperature, were experienced. Variation in radiant heat flux, 

in terms of the distance from the centre of the test pan, was measured for the 

following fuels: gasoline, ethanol and a mixture of 85% ethanol and 15% gasoline. 

2.4.1.1 Experimental Facility 

A diagram of the test facility is shown in Figure 2.39. The required equipment 

consisted of a test pan, radiometers, a meteorological station and a data acquisition 

system. 
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Figure ‎2.39: The experimental facilities used in Asturias in May 2009 to measure the radiant heat 

fluxes of pool fires for different fuels and at different distances from the centre of the pool fires 

 

i. The Test Pan 

The cylindrical steel pan used for the tests is shown in Figure 2.40 below. The pan 

had a diameter of 2.4m and a depth of 0.6m: it was stood on supports, so that the 

rim was 1m above the ground. 
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Figure ‎2.40: The pool fire test pan, with a diameter of 2.4 m. The rim of the pan stood approximately 
1m above the ground 

ii. Fuel 

For each test, the required amount of fuel was floated on the surface of 2.5 m3 of 

water, forming a layer approximately 0.05m thick (thus, the surface of the fuel was 

close to the rim of the pan). The fuels used in the tests outlined in this thesis were 

gasoline, ethanol and a mixture of 85% ethanol and 15% gasoline. 

iii. Radiometers and Measurement Points 

Radiant heat flux was measured using MEDTHERM 64-Series radiometers, which 

were loaned from Germanischer Lloyd (previously Advantica): the radiometers were 

calibrated by them before and after each experimental programme. The radiometers 

were located at several distances from the centre of the pan, at a height of 

approximately 1.5m, as shown in Figure 2.41. The direction of the radiometer was 

tilted upwards by an angle (  ) above the horizontal, so that it pointed towards the 

centre of the flame, as shown in Figures 2.42 and 2.43: this allowed the approximate 

maximum radiant heat flux at each location to be recorded (the approximate values 

of (  ) are shown in Table 2.10). During the gasoline tests, the radiometer was held 

for about 30 seconds at each location of 3.2m, 5.2m, 7.2m, 9.2m and 11.2m from the 

The test pan 
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centre of the pan, while, for the ethanol tests, the radiometer was held at 3.2m, 5.2m, 

and 7.2m from the centre of the pan. 
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Figure ‎2.41: The locations of the experimental measurements, with the radiometers placed at various 
distances from the centre of the pool 
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Figure ‎2.42: The direction of the radiometer.‎Angle‎β‎represents‎the‎direction‎of‎the‎radiometer‎

(towards the centre of the flame) 
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Figure ‎2.43 The radiometer measured radiant heat flux within the LASTFIRE pool fire tests (Asturias, 
(Spain), May 2009) 

 

Point 

Distance of the 
Radiometer from 
the Pool Centre 

(m) 

Approximated 
values of (  ) 

Radiometer Direction 

       (  )            (     ) 

1 3.2 35o 0.819 0 0.573 

2 5.2 25o 0.906 0 0.422 

3 7.2 20o 0.939 0 0.342 

4 9.2 15o 0.965 0 0.258 

5 11.2 10o 0.984 0 0.173 

Table ‎2.10: The directions of the radiometer 

iv. Meteorological Station 

Ambient conditions during an experiment, particularly wind-speed, can affect radiant 

heat flux measurement; thus, a meteorological station was used to monitor the 

ambient conditions. Wind-speed and direction, humidity, barometric pressure and 

temperature were measured, with the temperature and humidity sensors 1.5m above 

the ground and the 3 cup anemometer, featuring a wind vane, was placed at 2m 

above the ground. 

Radiometer 
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v. Data Acquisition 

The most important measurements obtained from the experiments were those 

concerning radiant heat flux. For all the experiments, the data were recorded using 

the LabVIEWTM software, a product of the National Instruments Company. The 

output from each of the seven tests was a voltage and was measured in millivolts 

(mV). The conversion factor for the radiometer was applied, in order to yield the 

radiant heat flux in kW.m-2. 

2.4.1.2 Test Programme 

The experimental programme undertaken by the LASTFIRE project was essentially 

designed to enable a protocol to be devised for testing the effectiveness of foam in 

suppressing polar solvent fires and biodiesel fires; it also aimed to investigate the 

effectiveness of foam in suppressing the vapour evolution from pools of 

hydrocarbons. Loughborough University took the opportunity to measure the radiant 

heat flux from a selection of those pool fires. 

Table 2.11 below highlights the types of fuel used and the number of tests 

conducted, in addition to the atmospheric conditions during those tests in which 

Loughborough University recorded radiant heat flux measurements during the week 

commencing Monday 11th May, 2009. 

Test 
No. 

Fuel 
Wind-
speed 
(m.s-1) 

Relative 
Humidity 

(%) 

Ambient 
Temperature 

(oC) 

1 85% Ethanol and 15% Gasoline 1.00 74 15 

2 85% Ethanol and 15% Gasoline 0.001 82 16 

3 Gasoline 1.06 57 13 

4 Ethanol 3.39 66 14 

5 Ethanol 2.29 79 13 

6 Ethanol 2.21 71 12 

7 Ethanol 2.20 72 11 

Table ‎2.11: Atmospheric conditions for the seven pool fire tests 
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2.4.1.3 Experimental Procedure 

The cylindrical 2.4m diameter pan was filled with water, to a depth of approximately 

0.55m, then a layer of about 0.05m of either gasoline, ethanol or ethanol/gasoline 

mixture was introduced onto the top of the water. 

The test procedure was as follows: 

1. All equipment was checked: this included filling the pan with water and fuel, 

setting the radiometer in place, ensuring that atmospheric conditions were 

being recorded and the data logging system was ready to record the data. 

2. Data logging was initiated. 

3. The fuel in the pan was ignited and the resulting fire was allowed to achieve 

steady burning conditions. 

4. The radiometer was moved inwards, to a distance of 3.2m from the centre of 

the pan, and held in position for 30 seconds. 

5. The radiometer was then moved sequentially to distances of 5.2, 7.2, 9.2, and 

11.2m from the centre of the pan: 30 seconds of data were collected at each 

distance. 

6. The fire was extinguished using foam. 

7. All logging equipment was turned off. 

2.4.1.4 Radiant Heat Flux Measurements 

The radiant heat flux measurements are shown in Figures 2.44 and 2.45. These 

measurements showed that the radiant heat flux from the gasoline fire was a factor 

of approximately 2.5 times greater than the ethanol fire. In addition, the radiant heat 

flux measurements obtained from the 85% ethanol/15% gasoline fire were similar to 

the gasoline fire. This indicated that, during the initial period of the 85% ethanol/15% 

gasoline fire, when the measurements were taken, the lightest component of the 

gasoline was boiling off, producing essentially similar fire to that produced during the 

early stages of the gasoline-only fire. 

The average values of radiant heat flux recorded during the gasoline fire, for each 

location, are given in Figure 2.44 and demonstrate the radiant heat flux from Tests 1, 
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2, and 3 plotted against the distances from the centre of the pan. It can be seen from 

the figure that the radiant heat flux at 3.2m from the centre of the pan varies widely 

between tests (i.e., it is 66 kW.m-2 in Test 1 and 36 kW.m-2 in Test 2); however, in 

terms of locations a good distance from the fire, the radiant heat flux values in the 

various tests are similar. This is due to the changing wind conditions (speed and 

direction), as the wind-speed in Test 1 was 1 m.s-1 and, in Test 2, it was almost 0 

m.s-1. It can thus be concluded that the wind has a major influence on radiant heat 

flux received by objects close to a fire, as it causes the flame to change position and 

affects the distance between the flame and the target. 

Four tests were carried out using ethanol and Figure 2.45 below shows the variation 

in the radiant heat flux recorded at each location for the four tests, in terms of 

distance from the pan centre (Tests 4, 5, 6 and 7). The measurements highlighted a 

similar trend with the gasoline fire, but demonstrated significantly lower values for 

radiant heat flux. The measurements for the ethanol pool fire showed large 

differences between one test and another at 3.2m, which is the point closest to the 

pan. The radiant heat flux received at this point measured 24 kW.m-2 in Test 6, while, 

in Test 5, it measured 11 kW.m-2. This variation is again attributed to changes in the 

wind conditions. 
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Figure ‎2.44: Radiant heat flux measurements for the gasoline pool fires, taken at various distances 
from the centre of the pool 

 

Figure ‎2.45: Radiant heat flux measurements for the ethanol pool fires, taken at various distances 
from the centre of the pool 

2.4.1.5 A Comparison of the Radiant Heat Flux Measurements from the 

Gasoline and Ethanol Fires 

Figure 2.46 below shows the radiant heat flux measurements recorded during Tests 

1, 2, 3, 4, 5, 6 and 7. 
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Figure ‎2.46: Comparison of the radiant heat flux of the gasoline pool fire and the ethanol pool fire at 
various locations from the centre of the pool 

As can be seen, the radiant heat flux measurements for the gasoline fire and the 

85% ethanol/ 15% gasoline fire were substantially higher than for the 100% ethanol 

fire. In addition, the gasoline fire and the 85% ethanol/15% gasoline fire yielded 

similar levels of radiant heat flux: this indicates, as observed earlier, that, during the 

time when the radiant heat flux measurements were being recorded (the first 3 

minutes of the fire), the 85% ethanol/15% gasoline fire was essentially a gasoline 

fire. This is due to the fact that the lightest components of gasoline that have a 

boiling point in the range of 37oC-204oC boil-off at a temperature below the boiling 

point of ethanol, which is 78oC. 

The lower values of the radiant heat flux of the ethanol fires vs. the gasoline fires can 

be explained by the lower heat of combustion and burning rate of ethanol, which 

results in a substantially shorter flame length. This subsequently resulted in a lower 

surface emissive power and view factor. The ethanol flame length did not exceed 

3m, as observed from the ethanol pool fire tests, and this would have had an effect 

on the view factor and the surface emissive power which, in turn, had an effect on 

the radiant heat flux received by the radiometer. 
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2.4.2 Asturias (Spain), September 2010 

A further programme of experiments was conducted during the week commencing 

the 20th  of September, 2010, in collaboration with Resource Protection International 

on behalf of the LASTFIRE Project. The work was undertaken at the Centro 

Jovellanos Experimental Facility in Asturias, Spain, in order to investigate the 

potential methods of extinguishing fires in atmospheric storage tanks. Loughborough 

University was allowed the opportunity to measure the radiant heat flux in a series of 

seven pool fire tests, in which heptane was used as the fuel. 

2.4.2.1 Experimental Facility 

A diagram of the test facility used for Tests 1 to 7 is shown in Figure 2.47 below (the 

test facilities that were used in the previous tests and described in Section 2.4.1.1 

were used in the heptane pool fire tests). During the seven tests, the radiometers 

were placed at distances of 5m and 10m from the centre of the test pan. 

Radiometers

Ground
2.4m

1
m

0
.6

m

Test pan

10m 5m
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Figure ‎2.47: A schematic diagram showing the test facilities utilised for the pool fire tests in Asturias 
(September 2010) 
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2.4.2.2 Test Programme 

Table 2.12 demonstrates the number of tests conducted and the atmospheric 

conditions for the heptane pool fire tests, during which Loughborough University 

recorded radiant heat flux measurements (in the week commencing Monday 20th 

September, 2010). 

Test 
No. 

Ambient 
Temperature (oC) 

Relative Humidity (%) Wind-speed (m.s-1) 

1 22 64 2 

2 17 95 0.23 

3 20 80 0.27 

4 21 70 0.1 

5 20 70 1.44 

6 20 74 0.3 

7 20 74 0.3 

Table ‎2.12: Atmospheric conditions for the seven heptane pool fire tests 

2.4.2.3 Experimental Procedure 

The 2.4m diameter test pan was filled with water to a depth of 0.24m, so that the 

level of the water was below the rim of the pan. The fuel, a 0.075m deep layer of 

heptane, was placed on top of the water. The heptane was ignited and a full surface 

fire was allowed to establish (this was achieved very quickly). The fire was then 

allowed to burn steadily for 5 minutes, during which time the radiant heat flux was 

recorded using two MEDTHERM 64 Series radiometers, at distances of 5m and 10m 

from the centre of the pan and at a height of 1m. Figure 2.48 shows the radiometer 

at a distance of 5m from the pan centre, measuring the radiant heat flux. 
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Figure ‎2.48: The photo shows one of the radiometers that measured radiant heat flux in the pool fire 
tests in Asturias (September 2010) 

2.4.2.4 Radiant Heat Flux Measurements 

The measurements gathered from the seven tests are given in Table 2.13 below and 

it can be seen that the higher radiant heat flux readings correspond to higher wind-

speeds: in Test 1, the wind-speed was 2 m.s-1, while the average recorded radiant 

heat flux was 18.7 kW.m-2 at a distance of 5m from the centre of the pan and 4.9 

kW.m-2 at a 10m distance from the centre of the pan (these were the highest of all 

the readings). In Test 4, the average recorded wind-speed was 0.1 m.s-1, which was 

the lowest reading, and the corresponding radiant heat flux measurements were 7.78 

kW.m-2 at 5m from the centre of the pan and 2.98 kW.m-2 at 10m from the centre of 

the pan. 

Test No. 
Measured Radiant heat 

flux at 5 m (kW.m-2) 
Measured Radiant heat 
flux at 10 m (kW.m-2) 

1 18.7 4.9 

2 7.79 2.84 

3 8.73 3 

4 7.78 2.98 

5 12.4 4 

6 9.1 2.7 

7 9.6 3.3 

Table ‎2.13: Heptane pool fire measurements 

Radiometer 
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It can be concluded from examining these results that wind-speed and wind direction 

have a major influence on the measurements of radiant heat flux. 

A comparison of the experimental data and the predictions of the single-point source 

model, the IRAD model and the FDS model are presented in the next section. 

2.5 Comparison of Pool Fire Models and Experimental Data 

In order to evaluate the performance of the different pool fire models outlined in 

Sections 2.2.1, 2.2.2 and 2.3, experimental measurements were compared against 

the predictions made by the models, using the experimental parameters as input. 

Although there is a considerable volume of data in the literature relating to the 

radiant heat flux received at a target adjacent to a pool fire, considerable care is 

required in selecting pool fire data from the literature and comparing it to the model: 

this is due to the fact that much of the data varies, in accordance with the research 

objectives. 

One of the objectives of this research is to develop a pool fire model that can be 

applied to many types of fuel, from light liquefied gases (such as LNG) to heavy 

hydrocarbons (such as crude oil). The majority of the detailed experimental data 

available in the literature refers to light hydrocarbons, including LNG and LPG. An 

example of this is the set of LNG experiments involving pool fires within the ranges 

of 1.8m in diameter (as reported by Johnson (1992)) and 35m in diameter (as 

reported by Nedelka et al. (1989)). In contrast, many experimental data sets for 

heavy hydrocarbons available in the literature are incomplete; for example, radiant 

heat flux levels were recorded, yet atmospheric conditions during the experiments 

were not. Thus, some factors that are important in estimating radiant heat flux, such 

as atmospheric transmissivity and parameters of flame size, cannot be determined. 

In addition to the experimental data presented in this thesis, radiant heat flux 

measurements from LNG and JP4 pool fires, as reported by Rew and Hulbert 

(1996), and observations made by Lautkaski (1992) in terms of two pool fire tests 

and one storage tank fire, were compared with the IRAD model. 



Pool Fire Modelling   Chapter [2] 

2-91 

In considering the comparison of data with the models, factors such as pool diameter 

were necessary as, in previous works, the correlations used in the empirical models 

were validated using data largely pertaining to large pool diameters of 20m or more. 

However, the experiments used to validate the performance of the FDS model have 

been comparatively small-scale: thus, observation of flame behaviour and flame size 

parameters, such as flame length, tilt and drag, was necessary in the LASTFIRE 

tests, in order to obtain a reliable comparison with the predictions of the models. The 

experimental parameters, such as atmospheric conditions, target (radiometer) 

orientation and location, fuel type and test pan diameter, were used as inputs. 

Average radiant heat flux measurements from the experiments in Section 2.4 were 

compared with the model predictions: it is useful to do so, in order to obtain an 

understanding of the relative differences between the models. 

2.5.1 Required Data for the Pool Fire Models 

2.5.1.1 Fraction of Heat Radiated 

As the fraction of heat radiated is an important factor in the SPS and FDS models, 

this was estimated based on the radiant heat flux measured in the experimental work 

presented in Section 2.4.: the fraction of heat radiated was calculated by rearranging 

Equation 2.1, as seen in Section 2.2.1. For gasoline fires, the fraction of heat 

radiated was estimated to be 0.46, while, for ethanol fires, the fraction of heat 

radiated was found to be 0.5. 

2.5.1.2 Surface Emissive Power 

Surface emissive power (SEP) (in kW.m-2) was estimated by rearranging Equation 

2.5 (computing the view factor (  ) and the atmospheric transmissivity ( ) and using 

the measured values of the radiant heat flux). For each experiment, the best fit of the 

surface emissive powers was predicted by the IRAD model. For gasoline, the 

surface emissive power that gave the best prediction was 170 kW.m-2 while, for 

ethanol, it was 70 kW.m-2. 
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2.5.1.3 The Un-obscuration Ratio 

A relatively small pan (about 2.4m diameter) was used for the LASTFIRE tests, in 

order to establish a pool fire for three different liquid fuels. Rew and Hulbert (1996) 

emphasised how, in pool fires of 10m diameter or less, there will be little or no 

obscuring smoke: this can clearly be seen in Figures 2.49 and 2.50 below, which 

represent ethanol and gasoline fires respectively. With regards to the ethanol fire, it 

can be assumed that the flame is clear and that there is no smoke covering the 

upper part of the flame; thus, the un-obscuration ratio for the ethanol fires was 

assumed to be 1. In terms of the gasoline fire, the smoke covers about 10% of the 

flame and so the un-obscuration ratio for gasoline fires was assumed to be 0.9. 

 

2.5.1.4 The Heat Release Rate 

An estimation of the heat release rate as input for the SPS and the FDS models is 

important and thus the heat release rate was calculated using Equation 2.4. The 

inputs of the equation included the heat of combustion and the mass burning rate of 

gasoline and ethanol and these were obtained from Table 2.2. 

  

Figure ‎2.49:  Clear flame of the ethanol pool fire. The 
unobscuration ratio for the ethanol fires was assumed 

to be 1 

Figure ‎2.50  Smoky flame of the gasoline pool 
fire. The unobscuration ratio for the gasoline 

fires was assumed to be 0.9 
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2.5.2 Radiant Heat Flux Comparison 

The experimental data for radiant heat flux for gasoline, ethanol and heptane fires 

were obtained from measurements recorded by Loughborough University during two 

programmes of pool fire tests, which were undertaken by Resource Protection 

International on behalf of the LASTFIRE Project. The work was undertaken at the 

Centro Jovellanos Experimental Facility, in Asturias, Spain. The experimental data 

for LNG and JP4 fires were presented by Rew and Hulbert (1996). 

2.5.2.1 Radiant Heat Flux from Gasoline and Ethanol Pool Fires (May 2009) 

The comparison of the experimental measurements of the gasoline and ethanol fires 

and the predictions of the three models are outlined in Figures 2.51, 2.52, 2.53 and 

2.53 below. It can be seen that all models gave reasonable predictions: the two 

empirical models are designed to be a quick, easy-to-use method of predicting 

radiant heat flux from a fire to a target. The IRAD model is formed from correlations 

of experimental data and the SPS model is based on the assumption that radiant 

heat emerges from a point source located at the centre of the flame. Despite these 

assumptions, both of these models provide reasonable agreement with the 

experimental measurements, as shown in Figures 2.51 and 2.52. 

For ease of comparison, all data for each fuel were plotted onto a single graph: in 

this, a power trend-line that best fitted the predictions of the models was used and 

the predictions made by the IRAD model were particularly good. Figure 2.51 shows 

all the experimental measurements collected in Tests 1, 2 and 3 and it is clear that 

the IRAD model passes through the data and thus provides better predictions of 

variation in radiant heat flux, in terms of distance from the gasoline pool fire in both 

the near field (distance close to the flame) and far afield. The figure shows that the 

SPS model provided predictions that pass through the high end of the range of data, 

while the FDS model under-predicted much of the experimental measurements. 

In Figure 2.52, all the experimental measurements collected in Tests 4, 5, 6 and 7 

(for ethanol fires) are compared with the predicted radiant heat fluxes, using the 
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SPS, IRAD and FDS models. The predictions of the three models follow the same 

trend, with regards to the gasoline fire. 

 

Figure ‎2.51: A comparison of the three models, in terms of the experimental test results for the radiant 
heat flux from gasoline pool fires 

 

 

Figure ‎2.52: A comparison of the three models, in terms of the experimental test results for the radiant 
heat flux from ethanol pool fires 
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Figures 2.53 and 2.54 demonstrate how the predictions made by the IRAD model 

are, on average, much closer to the experimental data than any other model tested 

in this research. Indeed, the majority of data points are gathered around the equality 

line, at both the high and low ends of the measured radiant heat flux. The predictions 

of the IRAD model, as presented in Figure 2.53, are within -45% and +20% of the 

equality line. In Figure 2.54, which depicts the ethanol pool fire, the predictions of the 

IRAD model fall between -38 and +30%. 

The two comparisons (Figures 2.53 and 2.54) also highlight the under-prediction of 

the FDS model, with regards to the experimental measurements of radiant heat flux. 

It is readily apparent that there is an under-prediction of the measured data from the 

equality line, particularly for the ethanol pool fire. 
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Figure ‎2.53: A comparison of the results of the three models for the gasoline pool fires. The line 
represents the equality line 

 

 

Figure ‎2.54 A comparison of the results of the three models for the ethanol pool fires. The line 
represents the equality line 

The IRAD model gave a good prediction of radiant heat flux across the entire range 

of heat fluxes measured; however, upon closer analysis of the data, there is, in fact, 
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an increase in the percentage error of the three models in line with increasing radiant 

heat flux, as seen in Tables 2.14 and 2.15: this may be due to the fact that the 

measurements close to the flame are less accurate, due to the rapid fluctuation of 

the flame. The tables below provide the average absolute percentage errors for the 

three models in various heat flux ranges for both gasoline and ethanol pool fires. The 

term percentage error indicates how close the theoretical predictions are to the 

experimental measurements and an absolute value is used, so that the positive and 

negative values will not cancel each other out. The data used to calculate the 

average percentage errors, presented in Tables 2.14 and 2.15, consists of all of the 

data presented in Figures 2.53 and 2.54 

Model SPS IRAD FDS 

Distance‎≤‎7m 49.9 17 26.14 

Distance > 7m 59.1 18 39.06 

Table ‎2.14: Average absolute error for gasoline pool fires (%) 

 

Model SPS IRAD FDS 

Distance‎≤‎5m 51.2 23 50.25 

Distance > 5m 21.2 23.7 79.4 

Table ‎2.15: Average absolute error for ethanol pool fires (%) 

In Table 2.14, it can be seen that, for the gasoline pool fires, the predictions made by 

the IRAD model are good for radiant heat fluxes pertaining to distances less than 

and greater than 7m from the centre of the pan. However, this should be validated 

with a broader range of fire scenarios, such as the incorporation of liquid 

hydrocarbon pool fires of varying pool diameters and measuring points. From Table 

2.15, it can also be viewed that the IRAD model is the best model, in terms of the 

results for the ethanol pool fires. In reviewing all the data from tests 1 to 7, it was 

noted that the three models yielded an average absolute percentage error, as 

follows: 
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The Model SPS IRAD FDS 

Average absolute 
percentage error 

(%) 

35.22 23.36 65.8 

Table ‎2.16: Total average absolute percentage error % 

The percentage error is relatively high for the FDS and SPS models and, in terms of 

the SPS model, this is explained by reviewing the point source model. Firstly, all 

radiation is assumed to be emitted from a single-point source, which is located at the 

centre of the fire (the flame length and trajectory determine the location of the point 

source).‎ The‎ flame‎ length‎ is‎ calculated‎ using‎ Pritchard‎ and‎ Binding’s‎ (1992)‎

equation for flame length, which, according to Rew and Hulbert (1996), predicts a 

flame length that is greater than that determined through experiments. For the 

majority of the measurements taken during experiments, radiant heat flux was 

measured when the flame was shorter than the predicted flame length. Secondly, for 

positions close to the flame, this should have resulted in a lower value radiant heat 

flux than measured, due to the fact that the radiometer was closer to the flame 

surface rather than the predicted centre of the flame. However, this was conferring 

blame on the SPS model, which assumes that radiant heat flux is indirectly 

proportional to the square distance from the point source. Hence, as the distance to 

the point source decreases, the value of the radiant heat flux increases, tending to 

infinity (as    tends to zero): this effect is also important at positions close to the 

point source. The net effect of these two tends to cancel each other out, but results 

in high predictions for locations close to the fire (measurements were taken during 

the LASTFIRE tests). 

With regards to the FDS model, this model does not produce flame tilt or drag, unlike 

the flame shape seen in the IRAD model. The flame tilt and drag displaces the flame 

towards the target (the radiometer) and thus the distance between the flame and the 

target is shortened: this will have the effect of a higher radiant heat flux being 

predicted by the IRAD model, when compared with the FDS model. 

The validity of the empirical models for fires with a diameter of less than 10m may be 

questioned as, in the experimental work, (which was conducted for this research 

using a 2.4m diameter pan) no clear flame tilt or drag was noted. The wind-speed 
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was low for the majority of tests and the flame was largely un-obscured. Finally, the 

correlations require input such as the mass burning rate of the fuel, the fraction of 

heat radiated and the surface emissive power. In the absence of such accurate 

information, the models are unlikely to produce accurate predictions of radiant heat 

flux in some situations. 

2.5.2.2 The Radiant Heat Flux from Heptane Pool Fires (September, 2010) 

The radiant heat flux from the heptane pool fire tests were averaged over each test 

and the average was calculated from the time when the fire became steady (a few 

minutes after ignition). Table 2.17 shows the comparison between the average 

radiant heat flux at two measuring points (5 and 10m) from the centre of the tank and 

the predictions for the theoretical models (the IRAD model, the FDS model and the 

SPS model). 

From Table 2.17, it can be seen that the experimental measurements vary for the 

same position from one test to another, in accordance with changes in wind-speed: 

the highest values at 5m and 10m are 18.7 kW.m-2 and 4.23 kW.m-2 respectively, 

which correspond to the highest value of wind-speed (2 m.s-1). 

Test 

No. 

Wind-

speed 

(m.s-1) 

Radiant heat flux at 5m (kW.m-2) Radiant heat flux at 10m (kW.m-2) 

Measured IRAD FDS SPS Measured IRAD FDS SPS 

1 2 18.7 15 17.2 31 4.9 3.37 5.6 5.56 

2 0.23 7.79 9.66 6.2 12.4 2.84 2.69 0.83 3.6 

3 0.27 8.73 9.93 6.4 12.77 3 2.74 0.88 3.66 

4 0.1 7.78 8.4 6 10.4 2.98 2.48 0.83 3.26 

5 1.44 12.4 14.08 16.1 26.15 4 3.32 5.07 5.22 

6 0.3 9.1 10.2 6.56 13.45 2.7 2.8 0.89 3.78 

7 0.3 9.6 10.2 6.56 13.45 3.3 2.8 0.89 3.78 

Table ‎2.17: Comparison of experimental measurements and model predictions 

During the heptane pool fire tests, no flame drag was observed; thus, in the IRAD 

model, the flame drag ratio was assumed to be 1. 
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Perhaps the most noticeable features of Figure 2.55 are that the SPS model over-

predicts the radiant heat flux to the targets, whereas the FDS model under-predicts 

radiant heat flux. The over-prediction of the SPS model is largely due to the factors 

discussed in Section 2.5.2.1. 

 

Figure ‎2.55: A comparison of the three models with the experimental results of the measurements of 
the heptane pool fires. The line represents the equality line 

The average absolute error in Table 2.18 was obtained using all test measurements 

for 5m and 10m and the table shows that the IRAD model was the most accurate 

model. The FDS model was less accurate, whilst the SPS model performed poorly, 

particularly at a distance of 5m. 

Distance SPS IRAD FDS 

Average absolute 
error (%) 5m 

57.6 13.9 23.9 

Average absolute 
error (%) 10m 

22.4 14 56.3 

Table ‎2.18: Heptane pool fire measurements (Average absolute error (%)) 
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2.5.2.3 Radiant Heat Flux Measurements Presented by Rew and Hulbert (1996) 

Figures 2.56 and 2.57 display measured radiant heat flux values obtained from 

experiments conducted by Shell and British Gas for LNG in circular bunds and 

radiant heat flux from JP4 fires conducted by the Swedish Defence Research 

Establishment (FOA), in rectangular bunds (this data was reported by Rew and 

Hulbert (1996)). A 6.1m diameter bund was used for the LNG pool fires and a 10m 

square bund for the JP4 pool fires. The measurements were plotted against the 

values predicted by the IRAD model and it is apparent from the figures that the IRAD 

model provides good predictions of the data. 

Table 2.19 below displays the fuel type, pool diameter, atmospheric conditions and 

the number of tests which were performed for each fuel. 

 

 

Fuel Type Diameter (m) 
Relative 

Humidity (%) 
Average Wind-
speed (m.s-1) 

No. of 
Measurements 

LNG 6.1 44 - 66 6.5 4 

JP4 
Equivalent 

Diameter 11.2 
- 0 7 

Table ‎2.19: Data reported by Rew and Hulbert (1996) 
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Figure ‎2.56: A comparison of the radiant heat flux results of the IRAD model and the LNG data, as 
reported by Rew and Hulbert (1996) 

 

 

Figure ‎2.57: A comparison of the radiant heat flux results as predicted by the IRAD model and the 
JP4 experimental data as reported by Rew and Hulbert (1996) 
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Figure 2.58 plots the predicted values around the equality line and an overall 

comparison confirms that the IRAD model yields a good performance in predicting 

heat radiation values for relatively large pool diameters. The figure also shows that, 

as the radiant heat flux decreases, the predictions of the model become more 

accurate. 

 

Table 2.20 shows the average absolute percentage error of the IRAD model, in 

predicting the radiant heat flux from LNG and JP4 fires. 

 

Fuel Type Average absolute error (%) 

LNG 15.17 

JP4 20.36 

Table ‎2.20: Average absolute percentage error (%) 

 

 

Figure ‎2.58:   A comparison of the radiant heat flux predicted by the IRAD model, with the measured 
values reported by Rew and Hulbert (1996). The line represents the equality line 
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2.5.3 Comparison of Flame Parameters for the IRAD Model 

The IRAD model specifications were outlined in Section 2.2.2 and the correlations 

that defined the flame shape and radiant heat flux have been presented. The primary 

function of the IRAD model is to predict the radiant heat flux received by a target 

outside of the flame; thus, the validation of the model as a whole is based on the 

experimental measurements of radiation. The correlations that estimate the flame 

parameters were compared to data obtained from the literature, as shown in Tables 

2.21 and 2.22. 

Rew and Hulbert (1996) presented a further set of experimental data, with regards to 

the observation of flame shape parameters (flame length, tilt and drag): these 

referred to five LNG fires, an LPG fire and a Butane fire. The data were compared 

with the IRAD model predictions for the flame shape parameters and Table 2.21 

highlights the comparison. It can be seen that the IRAD model predicted the flame 

length of LNG fires very well, but it under-predicted the flame length of LPG and 

Butane fires. With regards to flame tilt, the predictions of the IRAD model were close 

to the observed values, with the exception of the first LNG test: here, the observed 

value was 28 degrees, while the IRAD model predicted 49 degrees. The calculated 

flame drag was also close to the observed values. 
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LNG 35 4.80 77.0 78 28.0 49 1.2 1.3 

LNG 20 6.20 43.0 47 54.0 55 1.38 1.5 

LNG 35 9.60 77.0 76 52.0 58 1.31 1.4 

LNG 35 4.80 77.0 78 42.0 49  1.3 

LNG 35 9.60 77.0 76 50.0 58  1.4 

LPG 20 7.00 85.0 51 53.0 56 1.4 1.5 

Butane 20 6.60 70.0 44 53.0 55 1.25 1.5 
Table ‎2.21:‎Rew‎and‎Hulbert’s‎(1996)‎observations 
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Lautkaski (1992) presented data for flame tilt and drag, which were observed in a 

real storage tank fire. Comparing the IRAD model predictions with the observed 

values of the predictions of the flame tilt and flame drag agree closely, as shown in 

Table 2.22. 
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LNG 20 6.15 54.0 54 1.25-1.5 1.49 

LPG 20 6.60 53.0 55 1.25-1.55 1.5 

Table ‎2.22:‎Comparison‎of‎Lautkaski’s‎(1992)‎observation‎and‎pool‎fire‎parameters‎as‎
predicted by the IRAD model 

 

2.5.4 Summary 

Table 2.23 illustrates the average percentage errors for the experimental results of 

the radiant heat flux, in terms of each of the pool fire models. The table below shows 

that, under the same fire conditions, the predictions made by the different pool fire 

models vary. 

Table 2.23 gives a general overview of the performance of the three models and it 

can be concluded that the IRAD model gave the best performance under the various 

conditions. The IRAD model can be applied to pool fires involving different types of 

fuels, such as gasoline, kerosene, crude oil, LNG and LPG. It can also be used to 

estimate radiant heat flux at any location around the flame: this can assist in 

evaluating the effect of a pool fire on any adjacent structure. In the case focused on 

in this research, it is assumed that the pool fire will be on top of a storage tank and 

the radiant heat flux is estimated for an adjacent tank. 
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Test SPS IRAD FDS 

LASTFIRE Gasoline fire 

1 82.7 14.5 20.07 

2 51.2 8 50 

3 35.1 31.1 20.8 

LASTFIRE Ethanol fire 

4 25.5 20.8 73.4 

5 72.8 40.4 52 

6 15.13 16.9 68.8 

7 32.6 38.9 89.1 

LASTFIRE Heptane fire 

10m distance 57.6 13.9 23.9 

5m distance 22.38 14 56.3 

Average 43.8 22 50.4 

Table ‎2.23: Average percentage error (%) from experimental measurements of the radiant heat flux 

2.6 Conclusion 

The performance of the three types of pool fire model has been evaluated, in order 

to identify the model most appropriate for estimating radiant heat flux falling onto the 

surface of an adjacent tank. The three models featured were the Single-Point Source 

Model (SPS), the Solid Flame Model (IRAD) and the Fire Dynamics Simulator (FDS).  

In order to evaluate the performance of these models, radiant heat flux data was 

extracted from the literature and measurements were taken, in terms of radiant heat 

flux around gasoline and ethanol pool fires. The measurements were taken during 

tests conducted in collaboration with Resource Protection International on behalf of 

the LASTFIRE Project. The work was undertaken at the Centro Jovellanos 

Experimental Facility, in Asturias, Spain. 

Each of the three radiation models was then set up to replicate the conditions of the 

experiments under which the data was collected and all the measurements taken in 

the experiments were compared to the predictions of the radiation models. The most 

consistent predictions were provided by the IRAD model: such predictions were in 
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close agreement with the experimental data. In addition, the correlations used to 

predict flame length, flame tilt and flame drag were compared with experimental data 

obtained from the literature and it was ascertained that the results of the correlations 

were also in close agreement with the experimental measurements. The IRAD model 

proved to be the most robust of all those investigated, yielding competent accuracy 

over the wide range of conditions tested. 

The second most appropriate model was the SPS: it was concluded from the 

comparison that, although the SPS model over-predicted radiant heat flux in the near 

field, its predictions still compared well with experimental measurements in the far 

field.  One advantage of the SPS model is that it is a very simple model, compared to 

the FDS and IRAD models 

Although the results of the FDS model are promising, it is the most complex of the 

three models: it has large CPU requirements, takes a very long time to reach a 

solution and was found to under-predict radiant heat flux received by a target outside 

the flame. In addition, the FDS model does not predict flame tilt and flame drag at 

low wind-speed, despite the fact that observations of pool fire experiments have 

shown that flame tilt and flame drag does occur. One of the main disadvantages of 

using this model is the fact that it requires very long running times: it takes 

approximately 96 hours to complete 250 seconds of real time. Also, as mentioned in 

the FDS user guide, the model currently yields inconsistent results for liquid fuel 

fires. CFD models are not usually adopted in the assessment of typical pool fire 

hazards, as they require significant effort in application yet provide little to no benefit 

over the solid flame model, when the goal is the prediction of heat flux around a fire. 

CFD models do have a distinct advantage in cases where it is necessary to model 

effects on objects engulfed in fire and in modelling fires with irregular geometry. 

In terms of the use of one of these models to predict radiant heat flux on an 

atmospheric storage tank exposed to radiant heat from a neighbouring tank fire, the 

most important factors are the accuracy of the model and its ease of use. The IRAD 

model was found to satisfy both of these criteria: it was the most accurate model and 

also one of the simplest to implement under the conditions tested. The IRAD model 

was thus selected for use in the work described in the remainder of this thesis. 
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3 Predicting the Fire Load on Adjacent Tanks 

3.1 Introduction 

Radiant heat flux from a large open fire (i.e., a fire involving a liquid hydrocarbon 

atmospheric storage tank) can cause serious damage to the surrounding plant and 

equipment, such as adjacent storage tanks, and the consequences of such an event 

may be catastrophic. There are a number of factors that affect the escalation of an 

incident to involve adjacent tanks, such as fuel type, tank design, fire protection 

systems and the separation distance between tanks: such distance may delay or 

even prevent a fire spreading from one tank to another. Historically, atmospheric 

storage tanks have been known to catch fire when exposed to accidental fire 

loading; thus, it is important to establish minimum separation distances between 

tanks and design appropriate fire protection systems. 

Minimum separation distances should be based on appropriate fire scenarios and 

the scenario implemented most frequently is a full-surface tank fire, which refers to a 

fire burning in a tank without a roof. The premise is that an explosion has blown the 

roof off a fixed-roof tank with a weak roof to wall seam, or that the roof of a floating-

roof tank has sunk, possibly because of the accumulation of water applied during a 

fire fighting operation. This premise would not apply to other types of tank, such as 
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horizontal cylinders or pressure vessels without a weak roof to wall seam.  

Furthermore, fire scenarios should not preclude fire spread resulting from massive 

overfilling or boil-over events, such as burning liquid flowing under and around the 

adjacent tank. 

The objective of this section is to develop a model that applies the IRAD model in 

predicting the level of heat flux from a tank fire, in terms of an adjacent conical fixed-

roof tank containing a flammable liquid. The model predicts the levels of radiant heat 

flux falling onto the roof and wall of adjacent tanks and, in this application, the model 

will take into account the dimensions of the liquid hydrocarbon storage tank and 

separation distances, in accordance with the API 650 (1998) guideline and the 

Institute of Petroleum Model Code Safe Practice (1981) respectively. The minimum 

separation distance between the tanks also complies with the NFPA 30 and the 

European Model Code of Safe Practice, Part II. 

3.2 Storage Tank Dimensions 

The basic design parameters for atmospheric storage tanks are revealed in the most 

widely used codes, such as the British Standard (BS) 2654, API 650 and the 

European Code prEN 14015 (Long & Garner, 2004). Figure 3.1 shows the 

dimensions of the conical fixed-roof tank: this type of tank was modelled by the IRAD 

model, in order to obtain heat loading on the walls and the roof. 

API 650 gives the standard range of tank diameters as 3m to 114m, with capacities 

judged against tank heights in 1m intervals, up to 25m in height: this is useful in 

judging the size of a tank that is required for a certain capacity; however, it is often 

the plot of land available for the tank that decides the diameter of a tank. The 

diameter can be any size and does not necessarily correlate with the dimensions 

stated in the design codes (DiGrado & Thorp, 2004). 

Figure 3.1 shows the typical dimensions of a fixed-roof storage tank, where (  ) is 

the angle between the roof and the horizontal section at the point where the roof 

meets the wall. According to API 650, self-supporting roofs with roof plates stiffened 

by sections welded to the plates conform to the following requirements: 
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   ≤‎37‎degrees‎(slope‎=‎9:12) 

   ≥‎9.5‎degrees‎(slope‎=‎2:12) 

   is the roof cone height (m) 

   is the tank height (m) 

   is the length of the slope (m) and 

  is the tank diameter (m). 

θT

Ch

Th

ds

D

 

Figure ‎3.1: Dimensions of a fixed-roof storage tank, as set out by API 650 

3.3 The Basis of the Model 

A model was developed in order to calculate radiant heat flux received by the 

adjacent tank wall and roof and this model incorporates the IRAD model. Both the 

wall and the roof are divided into elements and the view factor integration is carried 

out for each element forming the surfaces of the adjacent tank that can both see the 

flame‎and‎‘be‎seen’‎by‎the‎flame.‎It‎is‎assumed‎that‎the‎flame‎shape‎for‎tank‎fires‎is‎

similar to that applied to ground level pool fires in Chapter 2. 
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It is assumed that the correlations that estimate flame length, flame drag and flame 

tilt for ground level pool fires can be used to estimate the size and shape of a tank 

fire. This assumption is a consequence of the lack of data pertaining to tank fires: 

there is very little data available in the literature. Some data were obtained from an 

observation made by Lautkaski (1992), in terms of a 52m diameter and 14.3m height 

iso-hexane tank fire. The wind-speed was 9 m.s-1 at 10m above-ground and the 

observation was undertaken by analysing photographs taken at the storage tank fire, 

which occurred at the Porvoo works of Neste Oy in SE Finland on the 23rd-24th 

March, 1989. Table 3.1 shows a comparison of the observed values of the flame 

parameters, as recorded by Lautkaski, and the results as predicted by the IRAD 

model. 

Observed Tilt 
(Degrees) 

Predicted Tilt 
(Degrees) 

Observed Drag 
Ratio 

Predicted Drag 
Ratio 

43 - 63 56 1.2 – 1.44 1.36 

Table ‎3.1: Comparison of Lautkaski's (1992) observations and the IRAD model 

The IRAD results yielded good agreement with the data observed from the iso-

hexane tank fire, in terms of flame tilt and drag. Welker‎ and‎ Sliepcevich’s‎ (1966) 

Equation 2.19 for flame tilt, which was reviewed by Pritchard & Binding in 1992, gave 

a reasonable prediction and was used in this application. Equation 2.25, pertaining to 

flame drag associated with the fires, was adopted in the use of a realistic flame 

shape, while Equation 2.13 was used to predict the maximum flame length of a 

realistic flame shape for relatively large tank diameters (more than 10m), as 

recommended by Rew and Hulbert (1996). 

Upon defining the tank geometry, the tank wall and roof were divided into small 

elements: the view factor for each element corresponds to the view of the flame 

obtained from the centre of the area of each element on the adjacent tank, when 

viewed in a direction normal to the surface of the element. The view factor for each 

element of an adjacent tank that can see the flame or can‎‘be‎seen’‎by‎the flame is 

calculated using the integral area method developed by Hankinson (1986) (as 

explained in Section 2.2.2.5.5). 
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The atmospheric transmissivity is calculated using Kondratiev’s‎(1965)‎correlations,‎

which are outlined in Equation 2.34. 

The radiant heat flux falling on each element of an adjacent tank can then be 

estimated by solving Equation 2.5, as described in Chapter 2, Section 2.2.2.5. 

3.4 Tank Fire Scenario 

To illustrate the application of the IRAD model in predicting radiant heat flux onto an 

adjacent tank within a tank farm (from a fire in another tank), an example case study 

is examined in detail. It is assumed that a group of small tanks are separated by the 

minimum separation distance and that this distance is based on what is considered 

to be good practice and has been widely accepted by industry. For the purposes of 

this scenario, small tanks are considered to be those tanks‎with‎a‎diameter‎of‎≤10m‎

according to the Institute of Petroleum Model Code Safe Practice (1981). 

Small tanks may be placed together in groups, as seen in Figure 3.2 below. The total 

capacity of the group should be no more than 8000m3, in accordance with the 

Institute of Petroleum Model Code Safe Practice (1981). If a serious fire develops, 

involving one tank in a group, then it is unlikely that such tank separation distances 

will prevent damage to, or even the destruction of, adjacent tanks. However, they 

should allow sufficient time for emergency procedures to be implemented and for 

people to be evacuated from areas threatened by the incident. 

The tank fire scenario will involve four tanks (A, B, C and D). The fire is assumed to 

be on the top of tank A and the radiant heat flux received by the walls and roofs of 

adjacent tanks (B, C and D) will be predicted. 
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A

C

D

B1D

1D

North

 
Figure ‎3.2: Storage tank layout of the studied scenario, in which Tank A is assumed to be the tank on 

fire. Radiant heat will be estimated for the adjacent tanks (B, C and D) 

3.4.1 Tank Fire Modelling 

The IRAD model, which is explained in more detail in Section 2.2.2, was applied, in 

order to simulate the 10m diameter tank fire involving gasoline. The model predicts 

any variation in radiant heat flux from a tank fire over the external surfaces of 

adjacent tanks. 

3.4.1.1 Model Inputs 

The tank fire scenario assumes that a group of small tanks in a tank farm have a 

total capacity of 4400m3. The capacity of each of the tanks (A, B, C and D) is 550m3; 

thus, the diameter of each tank is assumed to be 10m, while the height of each tank 

is 7m. According to API 650, the angle between the roof and the horizontal aspect 

(the slope angle) for self-supported, fixed-roof tanks is between 9.5o and 37o; the 

cone height (  ) is thus obtained using Equation 3.1 below: 

    
 

 
   (  ) (3.1) 

In this case, the slope angle is assumed to be 20o and therefore the cone height (  ) 

is approximately 1.8m. 

The minimum separation distance from wall to wall between these four tanks will be 

1D, or 10m according to the Institute of Petroleum Model Code Safe Practice (1981). 
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This minimum separation distance between the tanks also complies with the NFPA 

30 and the European Model Code of Safe Practice, Part II. 

The four tanks are positioned in a Cartesian co-ordinate system, of which the point of 

origin (     ) is the centre of the base of Tank A, as shown in Figure 3.3. The 

positions of the centre of the bases of Tanks B, C and D are given by (           ), 

(           ) and (           ) respectively. The fire is assumed to be in Tank A and 

thus the base of the flame is 7m above the ground. 

The wind direction is at an angle of    towards the North, which is assumed to be 

180o in this scenario: this means that the wind is blowing towards Tank B. 

The model requires the properties of the contents of the tank on fire, the dimensions 

of the tank on fire and any adjacent tanks, ambient temperature, wind-speed, wind 

direction and relative humidity. Given the type of fuel, the relevant fuel PROPERTY 

function will be accessed and mass burning rate, flame length, clear flame length 

and flame drag will be calculated. 
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Figure ‎3.3: The position of the four tanks, as produced by the programme. Tank A is the tank on fire, 
while radiant heat flux is predicted on tanks B, C and D 
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The model inputs are summarised in Table 3.2 below: 

Tank Diameter (m) 10 

Tank Height (m) 7 

   Height (m) 1.8 

Wind-speed (m/s) 1 

Wind Direction 180o 

Relative Humidity (%) 50 

Ambient Temperature (oC) 20 

Fuel Gasoline 

Surface Emissive Power (kW.m-2) 170 

Un-obscuration Ratio 0.3 

Maximum Mass Burning Rate(kg.m-2s-1) 0.055 

Table ‎3.2: Inputs of the IRAD model for the scenario 

3.4.1.2 Radiant Heat Received by the Tank Wall 

The radiant heat received by the adjacent tank wall can be estimated by dividing the 

whole of the tank wall into small, rectangular elements, as shown in Figure 3.4. The 

nodal points (           ) are obtained for each rectangular element and conditions 

are‎ then‎ employed,‎ in‎ order‎ to‎ select‎ only‎ those‎ elements‎ that‎ can‎ both‎ ‘see’‎ the‎

flame and are in view of the flame. Radiant heat is calculated for each element of the 

wall‎ and‎ the‎ flame‎ elements‎ that‎ can‎ ‘see’‎ the‎ wall‎ element‎ contribute‎ to‎ the‎

calculation‎of‎radiant‎heat.‎The‎elements‎of‎the‎tank‎wall‎that‎cannot‎‘see’‎the‎flame‎

will not receive any radiation heat loading. The radiant heat flux on the tank wall is 

calculated for each element, as outlined in Section 2.2.2.5, and the summation of 

radiant heat for each element of the flame on one element of the tank wall is the total 

radiant heat received by that particular element. 
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Figure ‎3.4: Elements of the storage tank wall. These elements are drawn by determining the nodal 
points of each one in space, using the program 

In order to calculate the view factor for each element of the wall, it is necessary to 

determine the distance ( ) between the nodal point of the centre of the area of the 

wall elements (           ) and the nodal point of the centre of the area of the flame 

elements (           ). The point (           ) can be obtained through the use of 

Equation 2.41 in Section 2.2.2.5.5. The nodal points of the wall elements are 

calculated as follows: 

    
     
 

                    
     
 

                         
     
 

 (3.2) 

Figure 3.5 below illustrates the position of the nodal point of the centre of the area of 

the wall elements. 
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Figure ‎3.5: The nodal points of the wall element and the triangular element of the flame. The figure 
also shows the other parameters required to calculate the view factor, such as the distance between 

the nodal points and the angles. 

In order to specify the direction of the wall element, it is necessary to define the unit 

normal to the wall element ( ̂ ) which is the vector product of the two vectors ( ⃗⃗ ) and 

( ⃗⃗⃗ ) divided by the magnitude of ( ⃗⃗   ⃗⃗⃗ ), as follows: 

  ̂  
 ⃗⃗   ⃗⃗⃗ 

| ⃗⃗   ⃗⃗⃗ |
 (3.3) 

   (  ) and    (  ) are the products of multiplying ( ̂ ) by unit vector ( ̂  ) and ( ̂ ) 

by ( ̂  ) respectively, where ( ̂) is the unit vector between the wall element nodal 

point and the flame nodal point. 

    (  )   ̂  ̂   (3.4) 
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    (  )   ̂  ̂   (3.5) 

The radiant heat flux at the point (           ) is calculated using the IRAD pool fire 

model, as outlined in Chapter 2. 

3.4.1.3 Radiant Heat Received by the Tank Roof 

The circular area of the roof is divided into a number of sectors and these sectors 

are further divided into small elements. Figure 3.6 shows how the roof is divided into 

a number of sectors (  ) and how each sector is then divided into a number of 

elements (  ). The figure is obtained by the IRAD model and the number of sectors 

shown in the figure, for illustration purposes, is less than the number of sectors used 

in the calculations. 
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Figure ‎3.6: Elements of the roof of the storage tank. These elements are drawn by determining the 
nodal points of each one in space, using the program 

If the roof cone is flattened, it will give a sector of a circle of radius    (cone sector) 

and the length of the arc of this sector is the circumference of the circular base of the 

cone (the tank circumference). Figure 3.7 shows the roof cone flattened to form the 

cone sector, which is divided into equal number of small sectors: each of these has 

an angle of  . 
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Figure ‎3.7: Flattened cone roof divided into an equal number of small sectors, in order to determine 
the position and direction of the nodal points 
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The cone slant height    can be found from: 

    √(
 

 
)
 

   
  (2.6) 

To calculate the view factor for each element, the location of the nodal point of the 

centre of the area of the roof elements in space needs to be defined; thus, the 

following dimensions in Figure 3.7 must be considered: 

The angle of the cone sector can be found from: 

       
  

  
 3.7 

Where: 

  is the tank diameter (m) and 

   is the height of the cone slant (m). 

By dividing the core sector into smaller, equal sectors and each sector into smaller 

elements, the dimensions of these small sectors and elements will be as shown in 

Figure 3.8 below. The figure also shows the nodal point of each element, which is 

the centre of gravity for each element. In order to calculate the position of these 

nodal points, the dimensions of the small sectors must be defined, as follows: 

As the number of small sectors is   , then the small sector angle can be found as 

below: 

   
     

  
 (3.8) 

Where: 

      is the cone sector angle (radiant) 

   is the number of segments and 
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  is the small sector angle (radian). 

As the number of elements in each small sector is   , then the length  (  ) can be 

found using the following equation: 

    
  

  
 (3.9) 

Where: 

   is the length of the element, as shown in Figure 3.8 (m) and 

   is the number of elements number within each sector. 
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Figure ‎3.8: Nodal points of the tank roof. The tank roof is represented by a flattened cone divided into 
an equal number of small sectors, in order to determine the position and direction of the nodal points 

The distance ( ) can be identified as follows: 

    (     )   (
 

 
) (3.10) 
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The distance ( ) can be found as below: 

          (
 

 
) (3.11) 

The distance ( ) may be identified through: 

         (
 

 
) (3.12) 

The distance between the chord and the nodal point (  ) can be found using: 

    
   

 
     

 
     

 
 

         
 (3.13) 

Where the areas   ,   , and    are calculated as follows: 

    
 

 
                 

 

 
                     (3.14) 

  

Then 

    
 (
 
  

 
 )

   
 

(3.15) 

To define the position of the nodal point on the sector arc, the distance ( ) between 

the mid-point of the arc and the chord must be calculated as follows: 

      √     (
    

 
)
 

 (3.16) 

Similar to the tank wall, to specify the direction of the element, it is necessary to 

define the unit normal to the element ( ̂ ), which is the vector product of the two 

vectors ( ⃗⃗ ) and ( ⃗⃗⃗ ) divided by the magnitude of ( ⃗⃗   ⃗⃗⃗ ), as outlined in Equation 3.3. 

   (  ) and    (  ) are calculated as shown in Equations 3.4 and 3.5.   
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3.4.1.4 IRAD Model Predictions 

The IRAD model was applied to the simulation of a fire occurring in Tank (A). Tank 

(A) is 10m in diameter and contains gasoline. The wind-speed was 1 m.s-1 and was 

blowing directly from Tank (A) to Tank (B). A wind-speed of 1 m.s-1 is considered to 

be relatively low, but is predicted to produce both flame tilt and drag. Table 3.3 

shows the model outputs of the flame length, flame height, tilt and drag and these 

results are also illustrated in Figure 3.7. The storage tanks were placed on a square 

grid as such that the minimum separation distance between the tanks was 10m. 

Flame parameters 

Flame Height (m) 15.5 

Flame Length (m) 16.9 

Flame tilt (degrees) 30o 

Flame drag ratio 1.43 

Lower zone height (m) 1.8 

Table ‎3.3: The outputs of the model flame parameters 

 

 

Figure ‎3.9: The model output of the flame and the three adjacent tanks (B, C and D). The figure 
shows the position of the flame and the storage tanks in space 
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As mentioned in the previous chapter, wind-speed plays a major role in estimating 

radiant heat flux outside the flame. The wind-speed was relatively low in this case 

study, yet flame tilt and drag still affected the location of the flame. Rew and Hulbert 

(1996) reported that experimental measurements have shown that significant tilt may 

still occur, even at low wind-speed. Table 3.3 summarises the flame parameter 

predictions obtained by the IRAD model and it can be seen that a 1 m.s-1 wind-speed 

caused the flame to tilt by 30o, resulting in a flame base of 14.3m in a downwind 

direction: this means that the flame was displaced by 4.3m towards Tank (B), due to 

the fact that the wind was blowing in the direction of Tank (B). 

The length of the clear flame was about 1.8m, which is relatively short, due to the 

fact that a gasoline fire produces large amounts of smoke: this means that 15m of 

the flame was almost entirely obscured by smoke. The un-obscuration ratio used 

was obtained from Table 2.2 and is 0.02 for gasoline fires of 10m in diameter or 

greater. 

The surface emissive power is determined by rearranging equation 2.5 and the 

radiant heat flux ( ̇ ) in the equation was that received at specified locations during 

the experiments involving gasoline pool fires, conducted on behalf of the LASTFIRE 

project. The surface emissive power was determined to be 170 kW.m-2. 

The variation of the radiant heat flux on the wall and roof of adjacent tanks is 

illustrated, using contours, in Figures 3.10, 3.11 and 3.12. The tank wall and roof 

were flattened, in order to display the contours of the radiant heat flux on a flat 

surface. The wall was flattened to form a rectangle, with a width of the tank 

circumference and a height of the height of the tank. The roof was flattened to form a 

sector of a circle that has a radius of (  ), as illustrated in Figure 3.7. 

It can be seen that the highest radiant heat flux was received at the top of the wall. 

Also, it can be ascertained from the figures that the radiant heat flux indicates that 

the heat received on the wall of Tank (B), on the downwind side, was greater than 

that received by other, adjacent tanks. This was due to the influence of the wind 

causing the flame to tilt and drag towards Tank (B), as shown in Figure 3.9: the tilt 

and drag decreased the distance between the flame and Tank (B). This caused the 

view factor between the flame and Tank (B) to become larger as the angles (  ) and 
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(  ) and the distance ( ) in Equation 2.35, which calculates the view factor, became 

smaller. 

Similarly, the radiant heat flux received by the roofs of adjacent tanks is dependent 

on the distance between the flame and the roof, which may be affected by flame tilt 

and drag. As can be seen from Figure 3.10, the roof of Tank (B) received the highest 

radiant heat flux, when compared to the roofs of other adjacent tanks, and this was 

concentrated on the part of the roof that was facing to the flame. 

The radiant heat flux that fell onto the wall of Tank (B) was in the range of 5.1 kW.m-2 

(the tank base) and 26.3 kW.m-2 (on the top of the tank). In addition, the highest heat 

flux received by the roof of Tank (B) was 25.3 kW.m-2, as shown in Figure 3.10: this 

was lower than the highest radiant heat flux received by the tank wall and is due to 

the fact that the direction of elements which is normal to the surface of the wall or 

roof is different. 

Looking at Figures 3.11 and 3.12, it can be seen that the heat received by the wall of 

Tank (C) was greater than that received by the wall of Tank (D), due to the difference 

in the separation distances: the minimum distance between Tanks (A) and (C) was 

10m, whereas the minimum distance between Tanks (A) and (D) was 18m. Figure 

3.11 shows how heat flux varied between 13.8 kW.m-2 (at the top of the wall of tank 

(C)) and approximately 5.3 kW.m-2 (at the base of the wall). The highest radiant heat 

flux falling onto the roof of Tank (C) was 9 kW.m-2, which was also less than the 

highest‎flux‎received‎by‎the‎tank’s‎wall,‎for‎the‎reason‎mentioned‎above. 

Unlike Tanks (B) and (C), the variation between the radiant heat flux falling onto the 

wall of Tank (D) was not large: the highest heat flux, received at the top of the tank 

wall, was 8.7 kW.m-2, while the lowest, on the base of the tank, was 5 kW.m-2. The 

highest radiant heat flux recorded on the roof was 5.7 kW.m-2. 

It can be concluded that the radiant heat flux from a tank on fire is concentrated on 

the top of adjacent tank wall and on the side of the roof that is facing the fire and 

there are two important factors that have a significant impact on the radiant heat flux 

received by adjacent tanks from a pool fire. First is wind-speed and direction, due to 

the wind having the effect of tilting and dragging the flame; thus, the higher the wind-
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speed, the greater the radiant heat flux falling on downwind targets and, to a lesser 

extent, on cross-wind targets. The second factor is the minimum separation distance 

between tanks. 

To clearly illustrate the difference between the radiant heat fluxes received by each 

of the adjacent tanks, the total radiant heat flux received was calculated. The total 

radiant heat flux for each tank was the sum of the product of the radiant heat flux 

received at each element of the tank wall or roof multiplied by the element area. 

Table 3.4 below highlights the total radiant heat flux received by each tank and it can 

be seen that Tank (B) received more heat flux than other, adjacent tanks. In addition, 

the total heat flux received by the walls of adjacent tanks was higher than that 

received by the roofs of the same tanks. 

 Total Radiant Heat Flux (kW) 

Tank Wall Roof Total 

B 338 73 411 

C 223 43 266 

D 128 20 148 

Table ‎3.4: Total radiant heat flux received‎by‎the‎adjacent‎tanks’‎wall‎and‎roof 
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Figure ‎3.10: Radiant heat falling onto the wall and roof of Tank (B). The wall and the roof are flattened 
in order to represent a clearer view of the distribution of radiant heat. This distribution was calculated 

using the IRAD model and the Thermal Loading model 
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Figure ‎3.11: Radiant heat falling onto the wall and roof of Tank (C). The wall and the roof are 
flattened, in order to gain a clearer view of the distribution of radiant heat. This distribution was 

calculated using the IRAD model and the Thermal Loading Model 
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Figure ‎3.12: Radiant heat falling onto the wall and roof of Tank (D). The wall and the roof are 
flattened, in order to gain a clearer view of the distribution of radiant heat. This distribution was 

calculated using the IRAD model and the Thermal Loading model 
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3.4.2 FDS Tank Fire Simulation 

The tank fire scenario described in Section 3.4 was simulated using FDS and the 

scenario involved four tanks (A, B, C and D). The capacity of each of these tanks 

was 550m3. In accordance with the API 650 guideline, the diameter of each tank was 

10m, while the height of each tank was 7m. The FDS does not allow for cylindrical 

geometry and thus the geometry was approximated using rectangular shapes. The 

dimensions of the computational domain were set at 32m in the X direction, 32m in 

the Y direction and 27m in the Z direction. The whole domain was then divided into a 

mesh of cubic cells of 0.2m in size. Four of the six domain boundaries were set as 

open to the atmosphere, while the left boundary was set as wind-based and the 

ground boundary was set as a concrete floor. 

The chosen atmospheric conditions were identical to the conditions applied by the 

IRAD model (see table 3.2). 

The four tanks were positioned in a Cartesian co-ordinate system, in which the point 

of origin (     ) is the centre of the base of Tank (A), as shown in Figure 3.13. 
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Figure ‎3.13: Storage tanks positioned in a Cartesian co-ordinate system. The figure shows the 
position of the storage tanks and the direction of the radiometer, as set out by the FDS model 
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Thirty-six radiometers were put in place, in order to measure the radiant heat 

received by the walls and roofs of the adjacent tanks, as shown in Figure 3.14. 

 

Figure ‎3.14: The distribution of the radiometers on adjacent tanks 

The orientation of these radiometers was assumed as follows: 

Tank Tank (B) Tank (C) Tank (D) 

Orientation nx ny nz nx ny nz nx ny nz 

Wall -1 0 0 0 -1 0 -0.71 -0.71 0 

Side of roof facing 
fire 

-0.34 0 -0.94 0 -0.34 0.94 -0.24 -0.24 0.94 

Side of roof  
facing away from 

fire 

0.34 0 0.94 0 0.34 0.94 0.24 0.24 0.94 

Table ‎3.5: The orientation of the radiometers on the adjacent tanks 

Figures 3.13 and 3.15 show the position and orientation of the radiometers, with 

regards to the adjacent tanks. There were 15 radiometers on the wall of the tank, 

beginning with radiometer 1 on the ground and ending with radiometer 15 at the top 

of the tank: the distance between each radiometer was 0.5m. In order to allow the 

measuring of the heat flux received in the area of the tank wall facing the fire, the 

radiometer was placed as shown in Table 3.4. The radiometers on the walls of Tanks 

B and C were placed horizontally, pointing in the negative direction of the x axis and 

the y axis respectively. The radiometer on the wall of Tank (D) was placed 

horizontally, at angles of 225o from the positive x axis and 135o from the positive y 

axis, as shown in Figure 3.13. 
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The roofs of the tanks had 21 radiometers placed along the diameter and the 

distance between each radiometer was 0.5m. As the roofs were conical and the 

cone angle (  ) was assumed to be 20o, the normal vector to the roof was tilted by 

the same angle to the vertical line, as shown in Figure 3.15. The direction of the roof 

of the tanks is illustrated in Table 3.4. 
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Figure ‎3.15: The locations and the directions of the radiometers on adjacent tanks, as set out by the 
FDS model 

Figure 3.16a shows the domain and the geometry of the four tanks, which were 

approximated by rectangular shapes, due to the FDS requirement of rectangular 

geometry. The diameter of each tank was 10m, while the height was 7m. The 

minimum separation distance between the tanks was 1D, or 10m. 

Figures 3.16b and 3.16c show a clear flame without smoke and a flame with smoke 

respectively. The fraction of gasoline fuel that converts into smoke particulate was 

assumed to be 0.03 and the flame can reach a height of 20m or more, which gives 

good agreement when comparing it with the flame length as estimated by the IRAD 
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model (which was 20.8m). It can also be seen from Figure 3.16b that there is no 

predicted flame tilt or flame drag. 

Figure 3.16d shows the velocity within the domain and it can be seen that the flame 

bounce can cause the flame to rise at a velocity of 9 m.s-1 (at the base of the flame) 

to 30 m.s-1 (at the top of the flame). Figure 3.16e shows that the temperature of the 

flame can reach 1300 oC. 
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Figure 3.16a 

  

Figure 3.16b Figure 3.16c 

  

Figure 3.16d Figure 3.16e 

Figure ‎3.16 FDS output of storage tank location, smoke, flames, flame velocity and flame 
temperature, as predicted by the FDS model 
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Figures 3.17a to 3.17f below show the profile of the radiant heat flux received by the 

three storage tanks (B, C and D), at various locations and distances. The average 

value of the radiant heat flux located on the wall of Tank (B) is shown in Figure 

3.17a: this varies between 3.2 kW.m-2 (at ground level) and 13 kW.m-2 (at a height of 

5.5m). The average thermal heat received by the roof of Tank (B) also varies 

between 0.5 kW.m-2 (at the far side, which is facing away from fire) and 5.2 kW.m-2 

(at the nearest point to Tank A; i.e. on the side facing the fire). 

Figure 3.17c shows the average radiant heat flux received by Tank (C) and the 

results show no significant difference between the radiant heat flux received by 

Tanks (B) and (C). The main reason for this is the flame is not tilted or dragged 

towards Tank (B), even though the wind is blowing towards that tank. The average 

heat flux received by the wall of Tank (C) varies from 4 kW.m-2 (on the ground) to 14 

kW.m-2 (at a height of 6m), while the heat flux received by the roof of Tank (C) varies 

between 0.5 kW.m-2 (at the furthest end from the shell of Tank (A)) and 5.1 kW.m-2 

(at the nearest point to tank (A)). 

Figure 3.17d shows the average radiant heat flux received by Tank (D) and the 

distance between the shell of Tank (A) and Tank (D) is 18m. It can be seen that the 

average heat flux on the wall of Tank (D) varies from 1 kW.m-2 (at ground level) to 

7.5 kW.m-2 (at a height of 4m. The radiometers on the roof of Tank (D) are located 

along the diameter, at distances of between 18m and 28m from Tank (A). The heat 

flux received on the roof varies from 0.5 kW.m-2 at 28m from the wall of Tank (A) to 

2.6 kW.m-2 at a distance of 18m from Tank (A). 
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Figure (3.17a) Tank (B) Wall Figure (3.17b) Tank (B) Roof 

  

Figure (3.17c) Tank (C) Wall Figure (3.17d) Tank (C) Roof 

  

Figure (3.17e) Tank (D) Wall Figure (3.17f) Tank (D) Roof 

Figure ‎3.17 Radiant heat flux received on the walls and roofs of adjacent tanks (B), (C) and (D), as 
predicted by the FDS model 
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3.4.3 Comparison of the IRAD Model and the FDS Model 

Figures 3.18a to 3.18f below compare between the radiant heat flux received by 

adjacent Tanks (B, C and D), as predicted by the IRAD and the FDS models. It can 

be seen that the predictions of the IRAD model are generally higher than those of the 

FDS model. 

The figures show that, with regards to the IRAD model, there was a gradual increase 

in radiant heat flux, from the ground to the top of the wall. The highest point on the 

tank wall always received the maximum radiant heat flux, whilst the maximum 

radiant heat flux predicted by the FDS model was always below the highest point of 

the wall. With regards to the roof of the tanks, the predictions of the FDS model 

follow the same trend as those of the IRAD model, due to the fact that radiant heat 

flux decreases as the distance from the nearest edge of the tanks to Tank (A) 

increases. 

Figure 3.18a shows the difference between the radiant heat flux received by the wall 

of Tank (B), as predicted by the IRAD model, and that predicted by the FDS model. 

The highest heat flux predicted by the IRAD model was 26.3 kW.m-2 (at the top of 

the tank wall), whilst the highest heat flux predicted by the  FDS model was 13 

kW.m-2 (at a distance of 5.5m from the ground). As mentioned previously, with the 

IRAD model, the flame is tilted by 30o from the vertical towards the positive direction 

of the X axis and thus dragged towards tank (B). The relatively high radiant heat flux 

received by the wall and roof of Tank (B) is largely due to flame tilt and drag, as 

these decrease the distance between the flame and the target. 

The predictions of the FDS model for Tank (B) were similar to those of Tank (C), as 

the distance between these and Tank (A) is the same and there was no observed 

flame tilt or drag. The lowest heat flux was predicted for Tank (D), due to the fact that 

this tank was at a relatively longer distance from the tank fire. In general, the heat 

flux received by the walls of the tanks, as estimated by the FDS model, increased 

rapidly above a height of 3.5m. 
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Figure 3.18a Tank (B) Wall Figure 3.18b Tank (B) Roof 

  

Figure 3.18c Tank (C) Wall Figure 3.18d Tank (C) Roof 

  

Figure 3.18e Tank (D) Wall Figure 3.18f Tank (D) Roof 

Figure ‎3.18: A comparison of the predictions of the IRAD and Thermal Loading models with the 
predictions of the FDS model 

3.5 Conclusion 

The scenario of a tank farm was created in order to implement the IRAD model for 

the purpose of predicting radiant heat flux falling onto adjacent tanks. This scenario 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

R
ad

ia
n

t 
H

ea
t 

Fl
u

x 
(k

W
.m

-2
) 

Tank (B) Height (m) 

FDS Model IRAD Model

0

5

10

15

20

25

30

0 2 4 6 8 10

R
ad

ia
n

t 
H

ea
t 

Fl
u

x 
(k

W
.m

-2
) 

Tank (B) Diameter (m) 

FDS Model IRAD Model

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

R
ad

ia
n

t 
H

ea
t 

Fl
u

x 
(k

W
.m

-2
) 

Tank (C) Height (m) 

FDS Model IRAD Model

0

5

10

15

20

25

30

0 2 4 6 8 10

R
ad

ia
n

t 
H

ea
t 

Fl
u

x 
(k

W
.m

-2
) 

Tank (C) Diameter (m) 

FDS Model IRAD Model

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

R
ad

ia
n

t 
H

e
at

 F
lu

x 
(k

W
.m

-2
) 

Tank (D) Height (m) 

FDS Model IRAD Model

0

5

10

15

20

25

30

0 2 4 6 8 10

R
ad

ia
n

t 
H

ea
t 

Fl
u

x 
(k

W
.m

-2
) 

Tank (D) Diameter (m) 

FDS Model IRAD Model



Predicting the Fire Load on Adjacent Tanks Chapter [3] 

3-35 

involved the simulation of a gasoline tank fire of 10m in diameter and the calculation 

of the heat flux received by three similar, adjacent tanks. At a wind-speed of 1m.s-1, 

the model predicted a flame length of 20.8m, tilted 30o from the vertical axis, and a 

flame drag of 4.3m. The model also predicted a lower flame zone of 1.8m: this would 

radiate strongly, with an average surface emissive power of 170 kW.m-2. It was 

estimated that the upper part of the flame would have an un-obscuration ratio of 

0.02. 

The IRAD model predictions for the tank farm fire scenario were compared with the 

FDS model predictions and it was found that the FDS model was more complex and 

that the predicted radiant heat flux received by adjacent tanks was lower than that 

estimated by the IRAD model. In addition, the FDS model did not take into account 

flame tilt and drag, despite the fact that observations of pool fire experiments have 

shown that flame tilt and drag does occur at such low wind-speeds. 

In conclusion, the IRAD model provided reliable results relative to the experimental 

data; it also generated the results within a few minutes, while the FDS model takes a 

significantly longer time to apply. Thus, the IRAD model can be used with a relative 

amount of confidence, in terms of studies concerning safety. An important 

application in which the IRAD model could be used is in the assessment of the 

minimum separation distance between storage tanks and the required water flow 

rates for fire-fighting, which is used to reduce the impact of radiant heat flux on 

adjacent tanks. This is explained in more detail in Chapter 5. 
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4 Response of the Contents of Adjacent Tanks 

4.1 Introduction 

This work aims to obtain an improved quantitative understanding of the thermo-

physical processes that occur within a storage tank containing a liquid exposed to 

radiant heat. Such phenomena play an important role in the storage of hydrocarbon 

liquids, as they determine the layout of storage facilities, the type of protection 

required by storage tanks and emergency response procedures. As mentioned 

previously, this research consists of three independent but interrelated parts: the first 

aim was to build a model capable of predicting the radiant heat flux emitted from a 

large hydrocarbon tank fire, as outlined in Chapter 2. Second was the development 

of a model that would determine the distribution of radiant heat flux falling onto an 

object, such as a storage tank adjacent to a pool fire, as described in Chapter 3. The 

final aim was to develop a response prediction model for a storage tank containing 

flammable liquids exposed to a fire. 

A serious hazardous condition that is likely to lead to escalation is assumed to occur 

once the Pressure/Vacuum Relief Valve (PVRV) is open, due to a rise in pressure 

and the subsequent release of flammable vapours into the atmosphere. The 

RESPONSE model was constructed in order to predict the thermo-physical 

processes that occur inside adjacent tanks that are exposed to radiant heat flux. The 

model is based on the work of Allahdadi et al. (1988) and the specific system 
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selected for the study consists of a vertical cylindrical tank partially-filled with liquid, 

as shown in Figure 4.1. Initially, the liquid is isothermal and motionless and, at a 

specified time, radiant heat flux is suddenly imposed onto the wall and roof of the 

tank. The radiant heat flux from an adjacent tank fire affects both the liquid and the 

vapour in the tank, entering through the wall and roof, as ascertained in detail in 

Chapters 2 and 3. The resulting natural convection circulations are completely 

characterised by the transient temperature and velocity fields within the liquid. These 

fields depend on the properties of the liquid, the body force field (gravity), the system 

geometry and the manner in which heat is supplied to the boundaries of the liquid. 

Radiant heat flux on the wetted wall of the tank (that part of the wall that is in contact 

with the liquid) results in a thin, boundary-layer type of flow up the wall: this 

phenomenon can be explained by the fact that the liquid in contact with the hot 

wetted wall becomes less dense and rises and the surrounding cooler liquid then 

moves to replace it. The boundary layer liquid is discharged radially at the top of the 

liquid core, in order to replace the liquid that entered the boundary layer, and thus 

circulation continues. The driving force for natural convection circulation is the 

buoyancy resulting from the deference between the density of the hot and cold 

liquids, while the boundary layer flow is either laminar or turbulent, depending on the 

ratio of the buoyancy to viscous forces acting on the liquid: this ratio is known as the 

Rayleigh number (see Section 4.3.11.1). 

The cylindrical tank in this study was a cone-roof tank, which normally contains 

liquids with high flash points and high boiling points. Thus, initially, any heat 

absorbed by the liquid will add to the sensible heating of the liquid, with a 

consequent increase in vapour pressure above the liquid. If the vapour space is 

initially below the lower flammable limit, then it may enter the flammable region and a 

confined explosion is possible, if a source of ignition exists. Alternatively, as the 

liquid in the tank continues to heat up, the vapour space will exceed the upper 

flammable limit and the vapour will not ignite. 

With a rise in the temperature of the liquid is a simultaneous rise in the temperature 

of the vapour, most likely at a substantially greater rate. This is because the mass of 

the vapour is much less than the liquid and the heat flux, per unit area, is greater on 
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the upper wall and roof than on the lower part of the wall, due to the enhanced view 

factor from the adjacent fire (as outlined in Chapter 3). 

The heated vapour cannot expand and thus the pressure increases: this will be 

vented through the PVRV. Should this be partially blocked or undersized, then the 

roof will fail along the designed weak junction with the wall. Although the PVRV 

protects the mechanical integrity of the tank, the expelled vapour will be in the 

flammable range and it may be ignited by falling soot particles or hot metal surfaces. 

This will give a small continuous flame at the vent of the PVRV, which may be 

difficult to extinguish using water jets or foam. 

An estimation of how the storage tank wall and roof, liquid core temperatures and 

pressure in a storage tank adjacent to a fire varies with time may give a useful 

indication of the likelihood of escalation to a fire and any possible delay, with regards 

to this. A dynamic model that estimates the involved heat fluxes, any increase in 

vapour pressure and the rate of change of the liquid core and surface temperatures 

can also be used to examine the effectiveness of protection strategies, such as: 

a) The separation distance between tanks 

b) The application of cooling water to the wall and roof of tanks 

c) Insolation of the roof through the use of foam. 

Thus, a model was built that used the radiant heat flux as predicted by the IRAD 

model as input and calculated the changes, over time, in pressure, liquid core and 

surface temperature. 
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Figure ‎4.1: The RESPONSE storage tank model. A partially-filled storage tank was equipped with 
PVRV and exposed to radiant heat from an adjacent fire 

4.2 Previous Approaches 

Considerable research was conducted during the 1980s, with regards to the effects 

of pressurised liquefied petroleum gas storage tanks engulfed in fire, and some 

important models were implemented as a result of this. In contrast, atmospheric 

storage tanks have received much less attention. 

Hunt‎and‎Ramskill’s‎model‎(1987) was designed for the Health and Safety Executive 

(HSE) by the Safety and Reliability Directorate (SRD) and was developed in order to 

predict the temperature and pressure within a tank partially-filled with liquid and 

engulfed in fire. In addition, there has been considerable experimental work 

conducted to validate the theoretical model, much of it co-ordinated by the HSE. 

Although Ramskill has claimed that this model has been extended to incorporate 

applied water sprays and distant fire sources, the model assumes that the system is 

lumped and liquid temperature is uniform throughout the tank, in order to reduce 

complexity. 

Aydemir et al. (1988) presented a mathematical model for a horizontal tank 

containing LPG and engulfed in fire. This model estimates loading temperature, 

pressure and mass lost during heating and the approach is based upon visual 

observation of the contents of a tank within a laboratory. The code takes into account 

any variation in liquid temperature in a vertical direction, which is known as the 
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thermal stratification of both liquid and vapour; however, the code assumes total 

engulfment of fire, which can over-simplify the problem, and the assumption of 

symmetry may be invalid. 

Beynon et al. (1988) constructed a predictive model for a horizontal, pressurised 

LPG tank engulfed by fire. The model calculates the flow of heat through the wall 

and roof of the tank, the convective and radiative exchange of liquid and heat and 

the mass transfer of liquid and vapour. It also assumes that both the vapour and 

liquid spaces are well-mixed. The model was validated against relatively small LPG 

tanks (0.25, 1 and 5 tonne). 

Allahdadi et al. (1988) developed a methodology of predicting the response of a 

vessel containing flammable liquid, in terms of being exposed to a uniform, external 

heat flux from an accidental-spill fire. The thermo-fluid physical processes for the 

worst-case scenario are assumed, which results in a Boiling Liquid Expanding 

Vapour Explosion (BLEVE): this analysis assumes that the tank is totally engulfed in 

flames from a large, intense, turbulent fire, considers the response of the tank under 

thermal loading for two possible tank configurations (vented and unvented) and 

assumes that the physical properties of the liquid are consistent with changes in the 

temperature of the liquid. 

A mathematical model was proposed by Shebeko et al. (2000), which outlines the 

predictions of temperature, pressure and liquid mass in the event of the total 

engulfment of a tank fire involving hydrocarbon liquid. In addition, experiments were 

conducted in order to compare the predictions of a tank equipped with a PVRV and a 

tank with no protective mechanism. Although agreement was obtained, in terms of 

the theoretical and experimental data, this model assumes that stratification cannot 

occur and that liquid temperature is uniform. 

Experimental and mathematical research was undertaken by Aszodi et al. (2000), 

with regards to investigating the heating-up processes of fluids in storage tanks 

under the influence of an external heat source. The investigation involved single and 

double phases of the heating-up processes of tanks, in terms of the heating up of the 

side walls. The model estimates the distribution of temperature in the subjected tank 

and uses the finite volume method to solve the natural convection equations. As 
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previously ascertained, such CFD methods are very time-consuming, particularly in a 

large domain. 

Gong et al. (2004) produced a simplified model in an attempt to outline the response 

of pressurised liquefied gas tanks subjected to fire. The model divides liquid into 

three regions (the boundary layer, the stratification layer and the liquid core region) 

and the development of the stratification layer is considered by this model. The 

predictions of the model indicate that the pressure in the tank rises faster as a result 

of thermal stratification and the model assumes that the tank is totally engulfed by 

fire. This results in a uniform heat flux received by the walls of a tank, which does not 

reflect a true situation. 

Birk et al. (2006) conducted a series of tests to investigate the thermal response of 

two 2m3 LPG tanks that were partially engulfed by a hydrocarbon fire (approximately 

25% of the walls of the tank were engulfed in fire). These tests were conducted as 

part of an overall test programme that studied thermal protection systems for 

propane-filled railway tank cars. The fire was generated through the use of 25 liquid 

propane-fuelled burners and the experiments yielded data on the tank walls, vapour 

space and liquid space temperatures, in addition to the internal pressure of the 

tanks. The main purpose of this work was to provide experimental data for use in the 

development of a mathematical code to predict the phenomena surrounding Boiling 

Liquid Expanding Vapour Explosion (BLEVE). 

All the above was principally aimed at investigating how long a pressurised tank 

containing LPG will survive a pool fire before it ruptures, given a relief device of an 

appropriate size. 

4.3 Formulation of the Model 

4.3.1 Basis of the Model 

The RESPONSE model is primarily based on thermodynamic relations. Essentially, it 

predicts the temperature and pressure within an atmospheric storage tank exposed 

to radiant heat from an adjacent tank fire. The model calculates the effect of 
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temperature gradients in the tank on the wall and roof of the adjacent tank, in terms 

of the liquid core, the vapour space and the surface of the liquid. 

The most suitable general theoretical approach in determining pressure, temperature 

and the distribution of velocity within enclosed fluids is to formulate and solve the 

three-dimensional, partial differential equations for the conservation of mass, energy 

and momentum for specified boundary conditions. Although modern computers are 

extremely fast and their Random Access Memory (RAM) is relatively large, this 

approach still leads to challenging mathematical problems and any attempts to solve 

the equations through the use of numerical techniques requires extremely large 

amounts of computation. 

The RESPONSE model is intended to be a real-time model, as real-time modelling is 

crucial in the management of emergencies (the results may then be used to impose 

proper measures in the minimising of the consequences of such emergencies). The 

disadvantage of the Computational Fluid Dynamics (CFD) approach is obvious: it is 

very time-consuming, even with the inclusion of the most sophisticated computers, 

and thus real-time solutions are unobtainable. In terms of quick and informative 

solutions, there is a proposed approach that uses simple thermodynamic relations to 

obtain reliable and reasonably accurate predictions. 

A description of the thermodynamic processes that occur inside an atmospheric 

storage tank exposed to radiant heat is illustrated in Figure 4.2 below and, as shown 

in the figure, the tank is partially-filled with flammable liquid, with the remaining 

space occupied by vapour. Radiant heat flux from an adjacent tank fire enters 

through the wall and roof into the contents of the tank and the heat load raises the 

temperature of the wall next to the liquid; thus, a convective thermal and velocity 

boundary layer is established. With the passing of time, the temperature of the wall 

and roof adjacent to the vapour increases and the hot wall and the roof begin to 

radiate. The radiant heat flux, when combined with the convective current inside the 

vapour space, causes vaporisation of the liquid at the interface between the liquid 

and the vapour. At this point, the vapour cannot expand, resulting in an increase in 

the internal pressure of the tank. If the tank is equipped with a PVRV and the internal 

pressure exceeds the set point of the valve, the valve will open and release the 
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vapour into the atmosphere: this will control the internal pressure of the tank, but 

there is an increased probability of the ignition of the released vapours. 

The continual heating of the wall next to the liquid causes the temperature of the 

liquid to reach saturation and copious vapour is generated from nucleate boiling. 

There are two potentially hazardous consequences that are likely to arise as a result 

of this situation: 

1. The flammable vapours may mix with outside air and ignite, further increasing 

radiant heat flux on the tank. 

2. The radiant heat flux from the fire continuously strikes an adjacent tank and 

this may result in the metal reaching a temperature at which the mechanical 

strength of the tank is reduced. 

The mathematical model outlining the thermo-physical processes is presented in the 

following sections. 
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Figure ‎4.2: Interaction of the transfer of heat in a partially-filled tank. The figure shows the parameters 
as predicted by the RESPONSE model (Allahdadi, 1988) 

4.3.2 Model Assumptions 

A vertical cylindrical tank partially-filled with hydrocarbon liquid was modelled and the 

initial condition of the liquid was isothermal and motionless. At a specified time, heat 

flux is suddenly imposed onto the wall and roof of the tank and the resulting natural 

convection circulations are completely characterised by the transient temperature 

and the velocity fields within the liquid. These fields depend on the properties of the 

liquid, the body force field (gravity in the majority of cases) and the system geometry. 

To produce a workable model, it was necessary to make certain, simplifying 

assumptions. According to the experimental observation and findings, it was 

assumed that: 
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1. The thickness of the tank wall and roof is very thin, compared with its other 

dimensions. Thus, any variation in temperature across this thickness is 

negligible. 

2. Vapour and air in the vapour space behave as well-mixed, ideal gases. 

3. Temperature and concentration distributions in the vapour space are 

homogenous. 

4. At the interface between the liquid in the tank and the vapour space, the liquid 

forming the boundary layer is discharged radially inwards, where it mixes with 

the colder liquid in the core close to the surface of the liquid. This produces a 

layer of well-mixed liquid of uniform temperature, feeding the lower region of 

the liquid core. 

5. Below the surface of the liquid, radial temperature gradients are small. The 

warm bulk liquid gradually settles as cooler liquid from lower regions in the 

core feeds the boundary layer. Still warmer liquid is deposited on the surface 

by the exit boundary layer flow and a plug flow model appears to be 

reasonable for this region. 

6. Below the surface of the liquid, the vertical liquid temperature essentially 

changes with height. The value of the liquid core temperature gradient varies 

with time, liquid properties and the flux level of wall heat. 

7. Cold wall temperature is not taken into account. 

8. A serious, hazardous condition that is likely to lead to escalation is assumed 

to occur once the flammable vapour is present outside the tank, as a result of 

increased pressure and the opening of the PVRV. Although there is no 

specific source of ignition normally present in the roof space, during a major 

fire incident, nearby various sources will exist, such as: 

a. Hot soot particles that may fall from the smoke arising from the 

adjacent tank fire. 

b. Radiant heat may raise the temperature of the wall above the level of 

the liquid or the temperature of the roof to such a degree that auto-

ignition is possible. 

On the basis of these assumptions, the liquid space was divided, for analytical 

purposes, into two regions: the boundary layer and the liquid core region, as shown 
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in Figure 4.3. Radial temperature gradients were assumed as negligible in the main 

bulk of the liquid. 
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Figure ‎4.3: The two regions of the RESPONSE model: the boundary layer region, where the hot fluid 
flows by the hot wall, and the liquid core region, where the liquid gradually sinks to the bottom of the 

tank 

4.3.3 Heat Transfer through the Hot Dry Wall and Roof 

‘Hot‎dry wall and‎roof’‎refers‎to‎the‎heated‎part‎of‎the‎wall‎and‎roof‎in‎contact‎with‎the‎

vapour and the transfer of heat through the hot dry wall and roof takes place through 

conduction. As the thickness of the wall and the roof is small, compared to the 

overall dimensions of the tank, such conduction may be considered one-

dimensional. The hot dry wall and roof may reach extremely high temperatures, due 

to the poor transfer of heat into the bulk vapour: this means that, in the vapour space 

enclosure, there is an area of the hot wall and roof that radiates into the vapour 

space and into the cooler, unheated part of the dry wall and roof, enclosing the 

volume of vapour. 

To calculate the change in nodal temperature over time, it is necessary to consider 

the rate of change in the temperature of the hot dry wall and roof, which are exposed 

to the fire. The rate of change in temperature can be calculated through the use of 

the following thermal energy balance equation, which satisfies the first law of 

thermodynamics: 
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( ̇   ̇    ̇    ̇    ̇  )

(      )
 (4.1) 

Where: 

 ̇  is the radiant heat flux received by the tank from the fire incident (W.m-2) 

   is the density of the wall (7800kg.m-3) 

   is the specific heat capacity of the wall (J. kg-1 K-1) 

   is the thickness of the wall (m) and 

    

  
 is the change in the hot dry wall and roof temperature gradient, over time (K.s-1). 

The heat is lost to the surrounding air by re-radiation ( ̇  ), which can be calculated 

using‎Stefan‎Boltzmann’s‎expression‎for‎a‎grey‎radiator: 

  ̇       (   
    

 ) (4.2) 

Where: 

  is the emissivity of the wall surface 

  is the Stefan-Boltzmann constant (5.6704 × 10-8 (J.s-1.m-2.K-4)) 

   is the ambient temperature (K) and 

    is the temperature of the hot dry wall and roof (K). 

The transfer of heat from the hot dry wall and roof ( ̇  )  of a tank into the 

atmosphere is conducted through convection. In order to determine whether this is 

forced convection or natural convection, a parameter called the Archimedes number 

(   ) parameterises the relative strength of free and forced convection. The 

Archimedes number is the ratio of the Grashof number and the square of the 

Reynolds number, which represents the ratio of buoyancy force and inertia force and 

the contribution of natural convection. When     , natural convection dominates 

and when     , forced convection dominates. 
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 (4.3) 

Where 

   is the Grashof number, which is the ratio of buoyancy to viscous forces 

     
 (      )  

 

  
  

   is‎ the‎ Reynold’s‎ number,‎ which‎ is‎ the‎ ratio‎ of‎ the‎ inertial‎ and‎ viscous‎ forces‎

(
       

 
) and 

  is the tank diameter (m) 

   is the wind-speed (m.s-1) 

   is the air volumetric expansion coefficient (1.K-1) 

  is gravitational acceleration (9.81 m.s-²) 

  is the characteristic height of the hot dry wall (m) 

   is the density of the air (1.2 kg.m-3)  

   is the air dynamic viscosity (kg.s-1.m-1). 

By substituting the values of the parameters in Equation 4.3 above, it can be 

determined wehether the convection heat transfer from the hot wall to the 

atmosphere is natioral convection or forced convection.  

The heat transferred by natural convection is calculated using the natural convection 

empirical heat transfer coefficient (  ), as in Equation 4.4 below: 

  ̇     (      ) (4.4) 

(  ) may be obtained from Equation 4.5, which was produced by McAdams (1954): 
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        (
   
   

            (      )

  
)

   

 (4.5) 

Where: 

   is the air heat transfer coefficient (W.m-2K-1) 

   is the air thermal conductivity (W.m-1.K-1) 

     is the specific heat capacity of air at constant pressure (J.kg-1.K-1) 

   is the air volumetric expansion coefficient (1.K-1) 

Similarly, the radiation heat transfer to the interior of the tank ( ̇  ), impinging on the 

surface of the liquid, is: 

  ̇       (   
    

 ) (4.6) 

Where: 

   is the temperature of the liquid at the surface of the liquid (K). 

There is also a convective heat transfer term into the vapour from the inner hot dry 

wall and roof is represented by ( ̇  ). Rohsenow and Choi (1961) states that the total 

convective heat transfer for a given surface coefficient (  ) can be obtained from: 

  ̇     (      ) (4.7) 

Where: 

   is‎the‎surface‎of‎the‎tank‎walls’‎heat‎transfer coefficient (W.m-2K-1) and 

   is the temperature of the vapour (K). 

According to Rohsenow and Choi (1961), Equation 4.7 can be re-written as: 

  ̇     (      )
    (4.8) 
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Where: 

         (
    
    

)
   

 (4.9) 

Where: 

   is the thermal conductivity of the vapour (W.m-2.K-1) 

         is the dimensionless constant for the horizontal orientation of the surface 

   is the thermal expansion coefficient of the vapour (K-1) 

   is the kinematic viscosity of the vapour (m2.s-1) and 

   is the thermal diffusivity of the vapour (m2.s-1). 

Equation 4.1, outlining the temperature of the hot dry wall and roof, was solved using 

the Runge–Kutta method. 

4.3.4 Energy Balance in the Vapour Space 

The energy in the vapour space changes in accordance with changes in the internal 

energy of the vapour and the transport of energy across the boundary of the dry wall 

and roof and the surface of the liquid. Changes in energy for closed tank can be 

calculated using Equation 4.10 below: 

 
   

  
  ̇        ̇        ̇     (4.10) 

Where: 

   

  
 is the rate of increase in the energy of the vapour (W) 

    is the area of the hot dry wall and roof (m2) 

 ̇   is the conduction of heat to the liquid (W.m-2) 
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 ̇  is the mass rate added to the vapour space, due to evaporation (kg.s-1) 

   is the enthalpy of the vapour (J.kg-1) and 

    is the surface area of the liquid (m2). 

The vapour space contains both flammable vapour and air and Equation 4.10 may 

be rewritten, in terms of air and vapour mass fractions, as below: 

 
        

        
(4.11) 

Where: 

   is the air mass in the vapour space (kg) 

  is the total mass in the vapour space (kg) 

   is the mass fraction of air in the vapour space 

   is the vapour mass in the vapour space (kg) and 

   is the mass fraction of vapour in the vapour space. 

The summation of the mass fraction is equal to unity 

         (4.12) 

The total mass of air and vapour in the vapour space is given by: 

         (4.13) 

The following equations are applied in the event of a closed tank: 

 
   
  

   (4.14) 
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  ̇  (4.15) 

Where: 

   

  
 is the rate of change of the air mass in the vapour space (kg.s-1) 

  

  
 is the rate of change of the total mass in the vapour space (kg.s-1) 

In terms of a vented tank, the total mass balance equation for the vapour space 

takes the following form: 

 
  

  
  ̇   ̇  (4.15a) 

Where: 

 ̇  is the mass of vapour and air vented out of the tank (kg.s-1). 

Changes in the vapour and air mass in the vapour space are dependent upon two 

variables: the mass that is vented outside the tank and the vapour mass that is 

produced by evaporation. The mass rate of changes in the air and vapour in the 

vapour space is calculated using the following equations respectively: 

 
   
  

 
 

  
(   )      ̇  (4.15b) 

 
   
  

 
 

  
(   )   ̇     ̇  (4.15c) 

Where: (   ̇ ) is the mass of air leaving the tank ( ̇  ) and (   ̇ ) is the mass of 

vapour leaving the tank ( ̇  ). 

Using Equations 4.15a, and 4.15b, any change in the fraction of air mass can be 

calculated as: 
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From Equation 4.15b 

 

  
(   )    

  

  
  

   
  
     ̇  

From Equation 4.15a 

  

  
  ̇   ̇  

The following equation is formed: 

 
 

  
(  )     (

 ̇ 
 
) (4.15d) 

The mass of air and vapour that is vented out of the tank can be obtained by 

applying‎Bernoulli’s‎law,‎as‎the‎mass‎vented‎is‎related‎to‎the‎drop‎in‎pressure‎across‎

the vent: 

  ̇      √ (      )   (4.15e) 

Where: 

  is the PVRV cross-sectional area (m2) 

   is the coefficient of the discharge of the PVRV 

  is the pressure in the vapour space (Pa) 

     is the atmospheric pressure (Pa) and 

   is the density of the vapour (kg.m-3). 

In the case of a closed tank, the balance of energy in the vapour space is noted as 

the sum of air and vapour energy, as follows: 

              (4.16) 
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Where: 

   is the internal energy of air (J.kg-1) and 

   is the internal energy of vapour (J.kg-1). 

By taking the derivative of both sides of Equation 4.16 and substituting for the mass 

fractions from Equations 4.14 and 4.15, the following equation is formed: 

   
  

   
   
  
   

   
  

   
   
  
   

   
  

 (4.17) 

Where: 

   
  

   

   
  

  ̇  

 

 

The following equation is formed: 

   
  

   
   
  
   

   
  
  ̇    (4.18) 

By substituting (
   

  
) from Equation 4.18 into Equation 4.10, the following equation is 

formed: 

  
   
  
   

   
  
  ̇         ̇        ̇  (     ) (4.19) 

It is assumed that the temperature of the vapour is uniform and, based on this 

assumption and from the definitions of internal energy ( ) and enthalpy of the ideal 

gas; the Equation 4.19 may be modified, as below: 

   
  
     

   
  

 
   
  
     

   
  

 (4.20) 
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 (4.21) 

          
  

    
 

  
    

 (4.22) 

Where: 

   is the universal gas constant 8314.462 (J.K-1. kmol-1) 

     is the molecular weight of the vapour (kg. kmol-1) 

     is the vapour specific heat capacity at constant pressure (J.kg-1.K-1) 

     is the vapour specific heat capacity at constant volume (J.kg-1.K-1) 

     is the air specific heat capacity at constant volume (J.kg-1.K-1) and 

   is the vapour pressure (Pa). 

Using Equations 4.19, 4.20, 4.21 and 4.22, the rate of change of vapour temperature 

(
   

  
) can be obtained, as follows: 

   
  
 
 ̇        ̇        ̇ [    (     )  

  
  
]

             
 (4.23) 

For a vented tank Equation 4.10 becomes: 

 
   

  
  ̇         ̇         ̇      ̇     (4.24) 

Where  

   is the enthalpy of the vapour leaving the tank (J.kg-1). 

In the case of vented tank: 
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   ̇   

(4.25) 
   
  

  ̇   ̇   

By substituting Equation 4.25 into Equation 4.17 the following equation is formed: 

  
   
  
   

   
  
  ̇         ̇         ̇      ̇        ̇     ( ̇   ̇  ) 

(4.26) 

Using Equations 4.120, 4.21, 4.22 and 4.26, the rate of change of vapour 

temperature (
   

  
) can be obtained, as follows: 

   
  
 
 ̇        ̇        ̇ [             ]  

 ̇      
(     )

             
 (4.27) 

Where: 

  is the volume of the vapour space(m3). 

4.3.5 Mass Outflow through the PVRV 

The mass outflow rate ( ̇ ) from the vapour space through the PVRV is calculated 

as follows: 

 ̇    For        Valve closed 

(4.28) 

 

 ̇   ̇     
(      )

     
 For                   Valve partially open 

 

 ̇   ̇      For              Valve fully open 

Where: 

  ̇          [  (      )
(     )

 
]

   

 (4.29) 
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(    ) is the vent activation pressure, indicated by the vent being closed (      ) or 

open (      ). The quantity (     )  when it is set greater than zero, gives a model 

of a vent that is partially open within the pressure range (                 ). 

The mass of vapour and air in the vapour space respectively are represented by the 

following ordinary differential equations: 

   
  

  ̇  For        Valve closed 

(4.30) 
   
  

  ̇   ̇  (
  

     
) For        Valve open 

and 

   
  

   For        Valve closed 

(4.31) 
   
  

   ̇ (
  

     
) For        Valve open 

The five simultaneous ordinary differential Equations (4.1, 4.23, 4.27, 4.30 and 4.31) 

are solved by a fourth order Runge-Kutta numerical method (Carnahan et al. 1969). 

4.3.6 Calculation of Vapour Space Pressure 

Pressure in the vapour space at any time is the sum of the partial pressure of air and 

the partial pressure of vapour: 

         (4.32) 

Where: 

  is the total pressure in the vapour space (Pa) 

   is the partial pressure of air (Pa) and 

   is the partial pressure of vapour (Pa). 

After considering the time derivative of pressure, this becomes: 
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 (4.33) 

Using ideal gas relations: 

    
  
    

 
    

 
 (4.34) 

Where: 

     is the molecular weight of air (kg.kmol-1). 

    
  
    

 
    

 
 (4.35) 

With regards to a closed tank, the volume of vapour space is considered constant 

and the rate of changes in pressure may be calculated using Equation 4.36 below: 

 
  

  
 
     

      
 ̇  [

     

      
 
     

      
]
   
  

 (4.36) 

In the derivation of Equation 4.36, the identities describing a closed tank 

configuration, Equations 4.14 and 4.15 have been used. 

For the vented configuration, the internal pressure of the tank at any time is 

calculated as below: 

  ( )  [
  ( )

    
 
  ( )

    
]
     ( )

 
 (4.37) 

The Clausius-Clapeyron equation and the ideal gas thermodynamic relations are 

used to calculate the initial values of vapour pressure   ( ), vapour mass   ( ) and 

air mass   ( ). 

With regards to the Clausius-Clapeyron equation, the initial vapour pressure in the 

tank is obtained using the following equation: 
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   ( )        (
       
  

(
 

  
 

 

  ( )
)) (4.38) 

Where: 

   is the reference pressure (Pa) 

   is the reference temperature, corresponding to (  ) (K) and 

   is the latent heat of evaporation (j.kg-1). 

The corresponding initial mass of the vapour   ( )  in the tank is calculated by 

substituting   ( ) from Equation 4.38 in the ideal gas law relation: 

   ( )  
         ( )

     ( )
 (4.39) 

Assuming that the initial total pressure inside the tank is equal to the ambient 

atmospheric pressure (    ), the initial mass   ( ) of the air is calculated as follows: 

   ( )  
       [       ( )]

     ( )
 (4.40) 

4.3.7 Calculation of Boiling Temperature 

The boiling temperature      ( ) of the liquid at the total pressure  ( ) is calculated 

using the Clausius-Clapeyron equation: 

      ( )  [
 

  
 

  

       
  
 ( )

  
] (4.41) 

Where (  ) is the vapour pressure at the reference temperature (  ); i.e., (  ), is the 

boiling temperature when the total pressure is (  ). 

4.3.8 Evaporation from the Liquid Surface 

The temperature in the vapour space is much higher than the temperature of the 

liquid. Evaporation at the interface between the liquid and the vapour occurs as a 



Response of the Contents of Adjacent Tanks Chapter [4] 

4-25 

result of the convective transfer of heat from the vapour to the liquid and heat flux 

radiating from the hot dry wall and roof to the liquid. Stagnant film theory 

(Kamenetski, 1964) considers a thin, stagnant layer of liquid of thickness ( ) as 

shown in (Figure 4.4), as described in Alahdadi, 1988: 

 

Figure ‎4.4: A thin, stagnant layer of liquid. Stagnant film theory (Kamenetski, 1964) considers a thin, 
stagnant‎layer‎of‎liquid‎of‎thickness‎δ 

Assuming that, due to the high temperature gradient, mass is evaporating at the free 

surface. The thickness of the layer is defined so that: 

 
  
 
    (4.42) 

Where: 

   is the thermal conductivity of the liquid (W.m-1 K-1) 

  is the thickness of the thin layer (m) and 

   is the coefficient of the heat transfer of the surface of the tank walls (W.m-2K-1). 

The conduction equation, in respect of this layer, is: 

     ̇       
  

  
   

   

   
 (4.43) 

Where: 

   is the density of the liquid (kg.m-3). 

If ( ̇) is the mass rate of evaporation per unit surface area, the conduction Equation 

4.43 can be modified using ( ̇   ̇   ), as below: 

δ 

y 

x 
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       ̇ 
  

  
   

   

   
 (4.44) 

Where: 

 ̇ is the mass rate of evaporation per unit surface area (kg.m-2.s-1). 

The differential Equation 4.44 is integrated: 

     
  

      ̇
[   (

      ̇  

  
)   ]     (4.45) 

Where: 

  is the temperature of the thin layer (K) 

   is the integration constant and 

   is the integration constant. 

In applying the following boundary condition: 

         

         

The solution then becomes 

       
    
     ̇

    (      ̇
 

  
)    (4.46) 

The energy balance at the surface gives: 

   ̇       ̇    ̇     
  

  
|
   

  ̇   (4.47) 

Where: 

     is the effective heat of gasification (J.kg-1) 
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 ̇   is the heat conduction absorbed by the liquid through its surface (W.m-2) and 

 ̇   is the heat radiation absorbed at the surface of the liquid (W.m-2). 

From Equation 4.45 

   
  

  
|
   

      (4.48) 

From Equation 4.47 

   ̇       ̇        (4.49) 

Substituting (    ) from Equation 4.49 into Equation 4.46 gives: 

    (     )  (     
   
 ̇
)  [   (      ̇

 

  
)   ] (4.50) 

By substituting 4.42 into 4.50, which describes the rate of mass transfer, can be 

solved for ( ̇), giving 

  ̇  
  
    

  [  
    (     )

     
   
 ̇

] (4.51) 

The relationship between evaporation and mass transfer across the interface of the 

vapour is outlined in Equation 4.51. This equation is a transcendental equation and 

may take the following form: 

  ̇      [  
   ̇

 ̇   
] (4.52) 

Where: 

  
  
    

  

From Equations 4.7, 4.8 and 4.9 substitute for (  )  

  
  

    
(     )
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    (     )

    
  

  

            (      )  

  

    
       
   

  

  

  
   
    

  

Where: 

    is the liquid temperature at the top of the liquid core (K) (this will be explained in 

detail in Section 4.3.11.2) and 

     is the specific heat capacity of liquid at constant pressure (J.kg-1.K-1). 

The surface temperature of the liquid (  ) is estimated using the following equation: 

       [
      
 

      ] (4.53) 

Boiling temperature (     )  is determined by the Clausius-Clapeyron equation, as 

demonstrated by Equation 4.41. 

Equation 4.52 is a non-linear equation that needs to be solved for ( ̇) and this 

problem is a particular case from a general class of problems in which roots are to 

be found for an equation of the form ( ( )   ).  Numerical methods for solving such 

problems are discussed extensively in the literature. An iterative scheme, which is a 

combination of Newton's method and the bisection method (Conte and Boor, 1972), 

is used in the numerical solution of this equation. 



Response of the Contents of Adjacent Tanks Chapter [4] 

4-29 

4.3.9 Heat Transfer at the Liquid Surface 

The heat transfer at the surface of the liquid is a statement of energy balance 

between conduction and the radiative transfer of heat and the energy associated 

with the evaporated mass. Assuming no radiation energy is absorbed by the vapour 

in the vapour space, the interface energy equation reads 

  ̇       ̇    ̇   (4.54) 

The radiative heat flux at the liquid surface ( ̇  ) is directly related to the total inward 

radiation energy emanating from the hot dry wall and roof. It thus follows that: 

  ̇   
 ̇     
   

 (4.55) 

Where, as defined previously,  ̇       (   
    

 ). 

4.3.10 Heat Transfer through the Hot Wetted Wall 

The hot wetted wall refers to the heated part of the wall in contact with the liquid. As 

with the heating of the dry wall and roof in the vapour space, it is assumed that the 

temperature across the thickness of the hot wetted wall is uniform. The thermal 

balance equation for the wall can thus be written as: 

 
    
  

 
( ̇   ̇     ̇   )

(      )
 (4.56) 

Where: 

    

  
 is the rate of change in the hot wetted wall temperature(K.s-1). 

 ̇    is the re-radiation transfer of heat (kW.m-2) 

 ̇    is the convective heat loss of the liquid (kW.m-2) 

The temperature of the hot wetted wall is assumed to be a function of the height of 

the liquid and is calculated numerically, based on a stationary grid given as: 
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 ( )  
(   )   

  
            (    ) (4.57) 

In Equation 4.57, the height of the liquid (  ) is divided into (  ) cells of equal size in 

the interval (       ) , as seen in Figure 4.5. Once the stationary grid is 

implemented, the temperature of the hot wetted wall (   ) can be approximated. 

    (   )       ( )               (    ) 
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Figure ‎4.5: The stationary grid of the hot wetted wall. The height of the liquid (Lh) is divided into nz 

cells‎of‎equal‎size‎in‎the‎interval‎0‎≤‎z‎≤‎Lh 

In Equation 4.56, ( ̇   ) is the convective heat loss of the liquid. In common with the 

derivation of Equation 4.8, the convective transfer of heat ( ̇   ) may be written as: 

  ̇   (   )   ̇     ( )    (     ( )      ( ))
 
  (4.58) 

Where: 

    ( ) is the temperature of the liquid core at level ( ) (K) and 

   is a coefficient that is dependent on the physical properties of the liquid 

(Rohsenow and Choi, 1961): 

Liquid-core 
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           (
       

(   )    
)

 
 
            (

       

   
)

 
 
 (4.59) 

   is the kinematic viscosity of the liquid (m2.s-1) 

   is the Prandtl number 

   is the thermal expansion coefficient of the liquid (K-1) 

     is the liquid specific heat capacity at constant pressure (J.kg-1.K-1) 

   is the density of the liquid (kg.m-3) and 

    (   )
          is a coefficient within the heat transfer coefficient 

corresponding to the vertical walls. 

The re-radiation transfer of heat ( ̇   ) can also be written as: 

  ̇   (   )   ̇     ( )      (     
 ( )    

 ) (4.60) 

4.3.11 Modelling the Liquid Temperature 

Transient natural convection temperature fields and circulation patterns were 

investigated in the literature, with regards to fluids contained in vertical cylindrical 

tanks and partially subjected to wall heat flux. It is believed that heat from an external 

fire is partially stored in the wall next to the liquid and is partially transmitted to the 

liquid through convective currents. Heat passing through the vertical walls 

establishes a natural convective velocity and the temperature of the boundary layer 

and the analyses of this physical phenomenon considered in this study are: 

1. The determination of the boundary layer flow produced by natural convection. 

2. An analysis of the top layer of the liquid, where the boundary layer lies 

horizontally and the flow descends into the mass of the liquid. 

3. An evaluation of variation in the temperature of the core of the liquid. 

In their study of natural convection within a vertical cylinder, Evans et al. (1968) 

stated that two factors characterise flow in the core of a liquid: kinetic energy and the 
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momentum of the boundary layer close to the surface of the liquid. These factors 

determine whether the flow in the core of the tank consists of large mixing eddies or 

a slow, stratified motion. 

In order to simplify the calculation, the liquid space was divided into two regions for 

the purpose of analysis: a thin boundary layer region, rising up the heated walls, and 

a main core region, with no radial temperature gradients. At the surface of the liquid, 

the boundary layer is discharged and mixed with upper core liquid. 

A mathematical evaluation of the heating of the liquid by convective currents is 

presented in the next sections: this assumes that the flow of the boundary layer may 

be laminar or turbulent, depending upon the Rayleigh number, which is explained in 

detail in Section 4.3.11.1. It is also assumed that the liquid core does not contain 

large eddies and that the boundary layer region may be continuously described 

using laminar or turbulent boundary layer equations. 

Radial temperature gradients were assumed negligible in the main core and the axial 

core temperature distribution was assumed to change, with regards to height. 

4.3.11.1 Convective Boundary Layer 

The classical boundary layer problem of natural convection flow along a heated 

infinite vertical plate immersed in an infinite fluid medium has been extensively 

discussed in the literature. Here, the solutions for temperature and velocity fields 

close to the hot wetted wall would be modified if, as expected for enclosed fluid 

systems, a non-uniform temperature were present outside the boundary, in the liquid 

core. As the thickness of the boundary layer is small, in relation to the radius of the 

storage tank, the hot wetted wall may be treated as a vertical flat plate. However, the 

analysis is complicated by the fact that the temperature (  ) of the liquid core outside 

of the boundary layer is not constant; it varies in accordance with time and vertical 

height. For use in the overall model, (  ) is synonymous with the core temperature. 

A detailed analysis of free convection from a vertical plate to an isothermal fluid was 

undertaken by Drake (1966). Figure 4.6 shows the velocity of the boundary layer and 

the temperature profiles. 
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Figure ‎4.6: The velocity of the boundary layer and temperature profiles 

Assuming the liquid is initially isothermal and quiescent, a steep change in the heat 

flux received by the hot wetted wall to a finite value results in the initiation of the flow 

of the boundary layer. According to Drake (1966), it takes a relatively short amount 

of time to establish a fully-developed natural convection boundary layer flow and, 

during this time, the liquid core is essentially unaffected. Indeed, for a period of time 

thereafter (as the flow rate of the boundary layer is slow), the transfer of heat may be 

modelled by assuming that an isothermal liquid core feeds this boundary layer. 

According to Evans et al. (1968), the integral forms of the momentum and energy 

equations for boundary layer flow are as follows: 

 

  
∫  (    )
 

 

   
 ̇ 
      

 ∫  
   
  
  

 

 

 Energy equation (4.61) 

   

 

  
∫   
 

 

       ∫  (    )  
 

 

 
  
  

 Momentum equation (4.62) 

Where: 

  is the distance measured upwards from the bottom of the hot wetted wall (m) 
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  is the distance from the hot wetted wall, in the normal direction (m) 

   is the shear stress of the tank wall (Pa) 

   is the temperature of the liquid core (K) 

  is the velocity of liquid in the boundary layer (m.s-1) 

  is the thickness of the boundary layer (m) 

  is the temperature at point ( ) inside the boundary layer, where   varies from zero 

at the wall to ( ) at the edge of the boundary layer (K) and 

 ̇  is the heat flux received by the hot wetted wall (W.m-2). 

It can be seen from the last term in the energy equation that the temperature of the 

liquid core (  ) is a function of the height of the tank. If the temperature of the liquid 

core is isothermal, this term is zero. 

As previously mentioned, the flow of the boundary layer is either laminar or turbulent, 

depending on the critical value of the Rayleigh number. For a fluid, the Rayleigh 

number is a dimensionless number, associated with the transfer of heat within the 

fluid. When the Rayleigh number is below the critical value of a fluid, the transfer of 

heat is primarily undertaken through conduction. When the Rayleigh number 

exceeds the critical value of a fluid, the transfer of heat is largely conducted through 

convection. The Rayleigh number is defined as the product of the Grashof number 

(  ), which describes the relationship between buoyancy and viscosity within a fluid, 

and the Prandtl number (  ), which describes the relationship between momentum 

diffusivity and thermal diffusivity. For a heated vertical flat plate in an isothermal 

medium, conduction predominates over convection below Rayleigh numbers of 

approximately 103. For Rayleigh numbers between 103 and 108-109, the flows of 

natural convection are laminar. For higher Rayleigh numbers, the convective flow 

becomes turbulent near the plate. 

Equation 4.63 below defines the Rayleigh number (  ). 
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          (4.63) 

Where: 

   
              

              
 
   (      )  

 

  
  (4.64) 

where: 

  is the length of the vertical cell (see Equation 4.57). 

The Prandtl number (  ) is defined as follows: 

    
  
  

 (4.65) 

Where: 

   is the thermal diffusivity (
  

      
) (m.s-1). 

After defining the type of flow in the boundary layer (i.e., whether it is laminar or 

turbulent), the thickness of the boundary layer may be defined, as asserted by 

Burmeister (1993): 

      [
(        )

      
]    Laminar (4.66) 

   

               [
(             )

      
]

    

  Turbulent (4.67) 

The solution of Equations 4.61 and 4.62, as informed by Burmeister (1993), (to 

estimate the velocity of the boundary layer and the temperature profiles for laminar 

and turbulent flow) is outlined below, as was explained by Burmeister (1993). The 

following functional forms are assumed for the velocity and temperature profiles 

within the boundary layer (     ). 
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The distribution of temperature and velocity within the boundary layer is based on 

the one-seventh law for turbulent convection (Burmeister, 1993). 

    [  
 

 
]
 

 

Laminar 

(4.68) 
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Where: 

       

  is the temperature of the boundary layer (K) 

          

  is the thickness of the boundary layer (m) 

  is the velocity of the liquid in the boundary layer (m.s-1) and 

   is the velocity scale of the boundary layer (m.s-1). 
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  )

 
 

 (4.72) 

4.3.11.2 Top Temperature of the Liquid Core 

In order to calculate the top temperature of the core of the liquid (   ), the heat flux 

and the mass flux leaving the boundary layer and entering the surface of the liquid 

must be calculated. A stationary grid was set for the velocity and temperature of the 
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boundary layer. The stationary grid features the same number of intervals in the   

direction as in the case of the hot wetted wall (see Section 4.3.10), while the height 

of the grid is the height of the liquid (  ). In the   direction, the grid is relatively very 

fine, as the thickness of the boundary layer is small. The grid is divided into (  ) 

intervals in the   direction, while the width of the grid is equal to the maximum 

thickness of the boundary layer (  ). 

Figure 4.7 below illustrates a finer grid, for a better appreciation of the formation of 

the boundary layer. 

The velocity of the boundary layer  (   ) and the temperature  (   ) were averaged 

for each level ( )  in the   direction inside the boundary layer, in order to obtain 

average velocity   ( ) and average temperature   ( ). The average velocity of the 

liquid   ( ) and the average temperature   ( ) are expressed by Equations 4.73 and 

4.74 respectively. 
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Figure ‎4.7: The boundary layer grid. The figure illustrates a finer grid, for a better appreciation of the 
formation of the boundary layer 
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   ( )  
∑  (   )
    ( )
   

  ( )
 (4.73) 

Where: 

  ( ) is the average velocity of the liquid at a height of   in the boundary layer (m.s-1) 

 (   ) is the velocity of the liquid in the boundary layer (m.s-1) and 

   is the number of liquid velocities at each level ( ) inside the boundary layer. 

   ( )  
∑  (   )
    ( )
   

  ( )
 (4.74) 

Where: 

  ( ) is the average temperature of the liquid at a height of ( ) in the boundary layer 

(m.s-1) 

 (   ) is the temperature of the liquid in the boundary layer (m.s-1) and 

   is the number of liquid temperatures at each level ( ) inside the boundary layer. 

The average mass-flux of the liquid in the boundary layer for each level ( ) can be 

estimated using the following equation: 

  ( )    ( )    (4.75) 

Where: 

 ( ) is the average mass-flux in the boundary layer for each level ( ) (kg.m-2.s-1). 

The new time step top temperature of the liquid core can be determined by the 

following energy balance: 
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(4.76) 

Where: 

   is the liquid core top layer mass (     ) (kg.m-2) 

   (   ) is the new step top temperature of the liquid core (K) 

   (   ) is the old step top temperature of the liquid core (K) 

       (    )    (kg.m-2.s-1) 

   is the time step (s) and 

   is the liquid core mass flow which is assumed to be equal to the boundary layer 

mass flow (     ) (kg.m-2.s-1). 

From Equation 4.76, the new step liquid top temperature can be obtained 

   (   )     (   )  
   
  

  (    )  
    
  

   (   ) (4.77) 

Where: 

     
   
     

            

φ             (   ) 

φ              (    ) 
           (   ) 

Liquid core top layer 
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 can be neglected  

Equation 4.76 becomes: 

   (   )     (   )  
   
  

  (    ) (4.78) 

Figure 4.8 below shows the liquid flowing from the top of the boundary layer to the 

top of the liquid core: 
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Figure ‎4.8: Hot liquid flows from the boundary layer to the top of the liquid core and mixes with the 
cold liquid on the top of the core, before gradually sinking to the bottom of the tank 

4.3.11.3 Computation of the Temperature of the Core of the Liquid 

The temperature of the liquid core increased as a result of the hot layer close to the 

interface of the vapour liquid moving down the centre of the tank. In this case, the 

variation in the temperature of the liquid core was calculated using the general 

diffusion heat transfer equation. The second-order diffusion terms and the viscous 

effects were neglected. It was also assumed that the core liquid was radially well-

mixed, with an axial temperature variation that varies with height. 

The rate of change of the temperature of the liquid core is due to variation in the top 

temperature of the liquid core (   ) which is caused by convective heat flux leaving 

the top of the boundary layer and settling on top of the liquid core. The core liquid 

moves downwards with the velocity of the plug flow (  ). 
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 (4.79) 

By neglecting the liquid lost from the core through entrainment into the boundary 

layer and by noting that    , the instantaneous velocity of the core liquid at any 

position may be reasonably approximated using the following continuity agreement. 

The velocity of flow within the boundary layer must be much larger than the core 

velocity: thus, based on the conservation of mass argument, the velocity of the liquid 

core is calculated by setting the upward mass flow in the boundary layer as equal to 

the total downward mass-flow within the core. 

  ( )         ( )  ( )   ( ) (4.80) 

Where: 

   is the width of the hot wetted wall at level ( ) (m). 

Equation 4.79 is referred to as a one-dimensional advection equation. The liquid 

core was divided vertically into (  ) intervals, as with the hot wetted wall, with each 

interval having a thickness of (  ). The equation was solved numerically, using the 

finite difference method (the Lax scheme): this scheme uses forward time 

discretisation. Therefore, Equation 4.79 is discretised as follows: 

  ( )
    

 

 
(  (   )

    (   )
 )  

  ( )   

   
(  (   )

    (   )
 ) (4.81) 

Where: 

   is the time step (s) 

  is the position step and 

  ( )
    is the temperature of the liquid core at level ( ) and the next time-step (   ). 

The initial and boundary conditions for Equation 4.79 are as follows: 

         
       where:      is the initial temperature (K) 
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At   (    )           (    )
      

At   ( )         
   

  
   

4.3.12 Description of the Computer Program 

A computer code, using the MATLAB language, was written in order to numerically 

solve the governing equations. The code consisted of one main programme and 

sixteen functions and a description of each of the functional components is outlined 

below. Figure 4.9 illustrates the RESPONSE model flow chart, which is explained 

below. 

The main program is called the RESPONSE programme and undertakes the 

following: 

1. Initially, it calls the input functions (INPUT1, INPUT2, INPUT3 and INPUT4) 

2. It carries out the iterative numerical procedure by calling the functions WL, 

DVG, GKUTTA, PROP, BOUY, CORE and LKUTTA for every update of the 

vapour and liquid variables in accordance with time increments, (  ). It also 

controls output time through the variable ( ). When ( ) becomes larger than 

the maximum time (    ), the program stops. It then outputs the desired liquid 

variables, in addition to the desired vapour variables, in the form of graphs. It 

also outputs the interface and the remaining variables. 

The INPUT1 function assigns the initial values for the temperatures of the hot dry 

wall and roof (   ), the vapour (  ), the surface of the liquid (  ), the hot wetted wall 

(   ), the top of the liquid core (   ), the liquid core (  ), and the surrounding air 

(  ). It also calculates initial values for the vapour pressure (  ) the mass (  ) of 

vapour in the vapour space and the mass (  ) of air in the vapour space. 

The INPUT2 function sets up the liquid core and boundary grids. 

The INPUT3 function gives the radiant heat flux falling onto the adjacent storage 

tank dry and wetted wall as calculated by the IRAD model. 
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The INPUT4 function assigns the initial values of the thermal and physical properties 

of vapour, liquid, air and steel. 

The DVG function calculates ( ̇ ), (  ) and the first derivative, in respect to the 

timing of the vapour variables (   ), (  ), (  ) and (  ). It calls function WG to 

evaluate other variables appearing in the differential equations of the vapour 

variables. The other variables are functionally dependent on the vapour variables 

and on (   ). 

The WG function calculates the variables that are functionally dependent on the 

vapour variables (   ), (  ), (  ) and (  ) and also on (   ). Firstly, it calculates 

(    ), (    ), (    ), (    ), ( ) and (     ). Secondly, it calls the SURF function, in 

order to obtain the surface temperature of the interface (  ). Finally, it calls the EVAP 

function, in order to obtain the value of the evaporation rate ( ̇). The EVAP function 

calls the WNEW function, which numerically solves the transcendental equation for 

the evaporation rate ( ̇) using a combination of Newton's method and the bisection 

method. 

The GKUTTA function updates the vapour variables (   ), (  ) (  ) and (  ) over a 

time increment (  ), using a fourth-order Runge-Kutta method to solve the system of 

simultaneous ordinary differential equations for the vapour variables. It obtains the 

first derivative, in terms of the timing of the vapour variables, by calling the DVG 

function. 

The PROP function updates the thermal and physical properties of the hydrocarbon 

liquid, in accordance with the new temperature of the surface of the liquid (  ). 

The BOUY function calculates the velocity and temperature profiles ( ) and ( ) in 

the boundary layer and then it calculates the average velocity (  )  and 

temperature(  ). it calls the LAMINAR or the TURBULENT functions depending on 

Rayleigh number. 

The CORE function calculates the temperature of the liquid core by solving the 

advection convection Equation 4.78, and calculates the liquid core top temperature 

(   ). 
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The LKUTTA function updates the variables (   ), using a fourth-order Runge-Kutta 

method to solve the system of ordinary differential equations for the variables. It 

obtains the first derivative of these variables, with regards to time, by calling the DVL 

function. 

The DVL function calculates the values of the first derivative of the temperatures of 

the liquid wall (   ), in respect of time. DVL calls function WL to evaluate other 

variables appearing in the differential equations for the temperatures of the liquid 

wall. The other variables are functionally dependent on the temperatures of the hot 

wetted wall and also on the temperature of the liquid core (  ), for ( )= 1,2,.,(    ). 

The WL function calculates the variables (    )  and (   ) , which are functionally 

dependent on the temperatures of the hot wetted wall    , and the core temperature 

   for ( )= 1,2,...,(    ). 
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Figure ‎4.9: The RESPONSE model flowchart, illustrating the main programme and its associated 
functions 

4.3.13 Multi-Component Liquid Properties 

Gasoline was analysed in the literature and it was found to consist of up to 80 

distinguishable hydrocarbon components, covering a wide range of carbon numbers.   

In order to simulate gasoline for the purpose of this work, correlations were used to 

estimate the physical properties of gasoline. The thermal and physical properties of 

gasoline govern the response of the liquid to heat penetration: these thermal and 

physical properties are viscosity, thermal conductivity, specific heat and the latent 

heat of evaporation. 
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4.3.13.1 Gasoline Density 

The density of gasoline, as a function of temperature, may be calculated using 

Equation 4.82 (Washburn (2003)). 

        (     )   (     )
  (4.82) 

For gasoline: 

            

             

   refers to density =719.7 (kg.m-3) and 

   refers to temperature (273 K). 

Figure 4.10 below shows the change in density with a change in temperature. 

 

Figure ‎4.10: Gasoline density vs. temperature of the liquid. The graph was produced using equation 
4.81, which will be incorporated into the RESPONSE model in order to calculate the density of 

gasoline 

4.3.13.2 Gasoline Viscosity 

Viscosity is a measure of resistance to flow and, in general, the viscosity of gasoline 

decreases as temperature increases. Erwin (2002) outlined a number of equations 

that are reasonably close to most hydrocarbons and these equations were 

719.6

719.62

719.64

719.66

719.68

719.7

719.72

0 20 40 60 80 100 120 140 160

D
e

n
si

ty
 (

kg
/m

3 )
 

Temperature (oC) 



Response of the Contents of Adjacent Tanks Chapter [4] 

4-47 

categorised in accordance with the specific gravity of the liquid hydrocarbons. The 

following viscosity equation is one of the equations derived by Erwin, using 

numerous actual sample points: this particular equation was chosen as it is suitable 

for the API gravity of gasoline, which is taken as (0.739). 

      (                           
 ) (4.83) 

Where: 

   is the viscosity of the liquid (cP) 

   is the temperature of the liquid surface (oF). 

Figure 4.11 demonstrates the viscosity change with temperature. The viscosity unit 

was converted from (cP) to (Pa.s), while the temperature unit was converted from 

(oF) to (oC) 

 

Figure ‎4.11: Gasoline viscosity vs. temperature of the liquid. The graph was produced using equation 
4.82, which will be incorporated into the RESPONSE model in order to calculate the viscosity of 

gasoline 
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4.3.13.3 Thermal Conductivity of Gasoline 

Thermal conductivity measures the ability of a material to conduct heat and the 

thermal conductivity of gasoline is gauged using the following equation (Speight 

(2001)): 

   
                

  
 (4.84) 

Where: 

   is the liquid thermal conductivity of gasoline (W.m-1.K-1) and 

   is the specific gravity of gasoline = 0.739. 

Figure 4.12 shows the change in the thermal conductivity of the liquid in accordance 

with temperature. 

 

 

Figure ‎4.12: Thermal conductivity of gasoline vs. temperature of the liquid. The graph was produced 
using equation 4.83, which will be incorporated into the RESPONSE model in order to calculate the 

thermal conductivity of gasoline 

0.144

0.146

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

0.164

10 30 50 70 90 110 130 150

Th
e

rm
al

 C
o

n
d

u
ct

iv
it

y 
(W

.m
-1

.K
-1

) 

Temperature (oC) 



Response of the Contents of Adjacent Tanks Chapter [4] 

4-49 

4.3.13.4 Specific Heat of Gasoline  

Specific heat is defined as the quantity of heat energy required to raise the 

temperature of unit of mass of the material by one degree centigrade at constant 

pressure. The value of the specific heat of gasoline as a function of temperature was 

outlined by Speight (2001) through the following equation: 

     
                

  
 (4.85) 

Figure 4.13 shows the change in the specific heat of the liquid in accordance with 

temperature. 

 

Figure ‎4.13: Specific heat of liquid vs. temperature of the liquid. The graph was produced using 
equation 4.84, which will be incorporated into the RESPONSE model in order to calculate the specific 

heat of gasoline 

4.3.13.5 Molecular Weight of Gasoline  

Molecular weight is obtained using the API-recommended equation: 

         (  
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                 )] 
(4.86) 

Where: 

   is the molecular weight of the liquid (kg) 
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   is the  surface temperature of the liquid (K) and 

   is the specific gravity of gasoline (0.739). 

Figure 4.14 shows the change in the molecular weight of the liquid in accordance 

with surface temperature for the gasoline boiling range temperature. 

 

Figure ‎4.14: Molecular weight of the liquid vs. temperature of the liquid. The graph was produced 
using equation 4.85, which will be incorporated into the RESPONSE model in order to calculate the 

molecular weight of gasoline 

The thermodynamic properties of gasoline were then coded into separate property 

functions. 

4.3.13.6 Latent Heat of Evaporation 

One of the most important parameters is the latent heat of evaporation, due to its 

effect on the distillation process: the latent heat of evaporation is defined as the 

amount of heat required to evaporate a unit mass of a liquid at its atmospheric 

boiling point. The latent heat of evaporation decreases as temperature increases and 

it becomes zero at the critical temperature. The latent heat of evaporation for a 

hydrocarbon liquid can be calculated by using Equation 4.87 (Speight, 2001), once 

the boiling temperature and specific gravity of the liquid are known. 
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   refers to the latent heat of evaporation (kJ.kg-1). 

Figure 4.15 shows the change in the liquid latent heat of evaporation with the surface 

temperature for the gasoline boiling range temperature 

 

Figure ‎4.15: Latent heat of evaporation of the liquid vs. temperature of the liquid. The graph was 
produced using equation 4.86, which will be incorporated into the RESPONSE model in order to 

calculate the latent heat of the evaporation of gasoline 

4.3.13.7 Vapour Pressure of Gasoline  

Distillation data from the ASTM (American Society for Testing and Materials) and the 

average boiling points of successive fractions were used to predict an overall vapour 

pressure. The average vapour pressure of the gasoline was then calculated using 

the Clausius-Clapeyron equation, to yield 

   (
  
 
)  
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) (4.88) 

  is a reference vapour pressure (Pa) at reference temperature ( ) (K) 

   is the vapour pressure at boiling point (Pa) and 

   is the surface temperature (boiling temperature) (K). 
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4.4 Experimental Work 

4.4.1 Introduction 

In order to assess the performance of the RESPONSE model, experiments were 

undertaken, at both laboratory and field scale. The laboratory experiments were 

undertaken in the Chemical Engineering laboratory at Loughborough University and 

consisted of the design and construction of an experimental, small-scale storage 

tank that had part of its side wall heated by oil to simulate an adjacent fire. The field 

scale experiments were undertaken in collaboration with the LASTFIRE project. 

4.4.2 Laboratory Tests 

4.4.2.1 Test Facility and Experimental Arrangement 

A specially-designed experimental vessel was used to conduct tests, in order to 

measure the response of a tank containing hydrocarbon liquids to external heat 

loading. Figure 4.16 shows the steel vessel that was designed and fabricated for use 

in the experiments (it was placed about 1m above the ground). The vessel was 

instrumented to monitor the rises in the internal pressure and temperature and was 

fitted with a network of 62 thermocouples throughout the steel, liquid and vapour’s 

space to measure the spatial and temporal variation in temperature, as can be seen 

in Figure 4.16. 

All thermocouples used in these experiments were type K thermocouples with 

mineral insulated metal sheathed cable as shown in the figure below. 

 
Figure ‎4.16 Type K thermocouples, as fitted in the experimental vessel 

The type K (Chromel (Ni-Cr alloy) / Alumel (Ni-Al alloy)) thermocouple is a general-

purpose thermocouple. It is low cost and, owing to its popularity, is available in a 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=hLbegGPf5Ajc4M&tbnid=UCIcNKKkqy1EnM:&ved=0CAUQjRw&url=https://www.labfacility.com/mineral-insulated-thermocouple-plain-pot-seal-lead-type-k-p247-pg57/&ei=q_9GUZqmLcqp0QXAlIDoCA&bvm=bv.43828540,d.d2k&psig=AFQjCNEFzmXaG0kp572ejaHCKHgX5ekJng&ust=1363693846493996
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wide variety of probes. It is available in the -200 °C to +1200 °C range. The  

sensitivity‎of‎this‎thermocouple‎is‎approximately‎41‎μV.°C-1. 

The temperature of the surface of the liquid was measured using thermocouples, 

numbered as 29, 30, 31, 32 and 33: these were placed directly under a float and 

distributed across the diameter, as demonstrated in Figures 4.17 and 4.18. The 

temperatures of the hot and cold parts of the dry wall were measured using 

thermocouples number 26 and 28 respectively, while the temperature of the vapour 

was measured using thermocouple number 27. The temperatures of the cold and hot 

parts of the wetted wall were measured using a series of thermocouples, which were 

placed in different vertical positions the same distance away from each other (0.04m 

spacing, starting from the vessel base). The thermocouples inside the core of the 

liquid were distributed into three columns, with each column having 5 thermocouples 

placed vertically. The first column was placed approximately 5mm from the hot 

wetted wall of the vessel, to measure the temperature of the boundary layer. The 

other two columns were placed 0.125m and 0.25m away from the hot wetted wall, to 

measure the temperature within the core of the liquid. 
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Figure ‎4.17 The steel experimental apparatus shows the steel vessel connected to the heater, equipped with a network of thermocouples and a pressure 
transmitter connected to a data acquisition system (not to scale) 
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Figure ‎4.18: Thermocouples measuring the temperature of the surface of the liquid. These were 
attached to a float and immersed just below the surface of the liquid 

The heating of the vessel through radiation from an adjacent fire was simulated by 

running heating oil (Shell Thermia Oil B) through a jacket, which covered a section of 

the vessel-wall, as shown in Figure 4.19. The jacket extended over half the 

circumference of the vessel from the base to a height of 0.5m. The oil was heated in 

a heater, as shown in Figure 4.20, and was then pumped to the jacket. However, 

before the hot oil was introduced to the jacket, it was circulated in a loop, as shown 

in Figure 4.21, until it reached the desired temperature: the jacket inlet valve was 

then opened. This was intended to simulate the sudden shock of the heat wave that 

can strike a storage tank adjacent to a fire. 

Compared with direct exposure to fire, the use of the oil heater offered two main 

advantages: 

1. It was safer, with regards to undertaking the work in the laboratory 

2.  It was controllable, due to the fact that the temperature of the heating oil 

could be adjusted. 

The insulation around the jacket ensures the efficient transfer of energy to the 

contents of the vessel. 

Thermocouples measuring the 

liquid surface temperature 
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Figure ‎4.19: The heating oil jacket allows the heating oil to flow over and cover half the wall of the 
vessel 

 

 

Figure ‎4.20: The heater heats the oil to the desired temperature and then pumps it to the vessel 
jacket. The vessel then receives cold oil, in a circulation heating process 
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Circulation of the 

heating oil before it is 

introduced to the jack

 

Figure ‎4.21: The circulation loop of the heating oil allows the heating oil to be circulated, in order to 
reach the desired temperature before it is suddenly introduced to the jacket 

A pressure gauge and transmitter were used in some tests, in order to monitor and 

record the rise in pressure in the vapour space. As can be seen from Figure 4.22, 

the vessel was also equipped with a pressure relief valve, in order to release the 

vapour at a certain set pressure. The relief valve was connected to a condenser, in 

order to collect the hydrocarbon vapours that were than condensed and stored in 

sealed containers. Two types of condenser were used: a coil condenser and a 

Graham condenser, which was connected by a copper tube grid immersed in an ice 

bath, as seen in Figure 4.23. The vessel was also fitted with a sight glass, to 

measure any changes in the level of the liquid in the vessel during heating. 
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Figure ‎4.22: The experimental vessel was equipped with a pressure relief valve, in order to release 
the vapour at a certain set pressure 

 

 

Figure ‎4.23: The vessel was connected to a condenser, in order to collect the hydrocarbon vapours: 
these were then condensed and stored in sealed containers. Two types of condenser were used: a 

coil condenser and a Graham condenser, which was connected by a copper tube grid immersed in an 
ice bath 

Throughout all the experiments, the data was recorded using LabVIEWTM software, 

which is a product of the National Instruments Company. 

Ice Bath (Condenser) 

Relieve valve 
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4.4.2.2 Experimental Procedure 

The tests were conducted in the following manner: 

1. Prior to the beginning of the heating process, the vessel was filled with the 

test liquid, up to a height of 0.3m from the base of the vessel. 

2. The vessel was sealed, in order to ensure no vapours escaped through the 

flange between the vessel and the lid. 

3. The pressure relief valve was connected to the condenser and the 

condenser’s‎ ice‎bath‎was‎filled‎with‎coolant‎water,‎which‎was‎allowed‎to‎run‎

through the condenser. 

4. The jacket inlet and outlet valves were closed and the circulation valve was 

opened. 

5. The heater was started, in order to allow the heating oil to reach the desired 

temperature. 

6. The jacket valves were opened and, while closing the circulation valve, the 

temperature and pressure data were recorded. 

7. When the temperatures of the liquid in the vessel reached steady state, the 

heater was turned off and the experiment was stopped. 

4.4.2.3 Experimental Programme 

In addition to developing the model, laboratory scale experiments were carried out, 

in order to extract information about temperature variation and pressure in the 

vapour space during the heating process.  The main objective of the experiment was 

to measure the: 

1. Temperature of the hot and cold parts of the dry wall. 

2. Temperature of the vapour 

3. Pressure within the vapour space 

4. The temperature of the hot and cold parts of the wetted wall 

5. The temperature of the surface of the liquid  

6. The temperature of the liquid core. 
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The liquids used within the vessel during the experiments were water, diesel, 

gasoline and a hydrocarbon liquid mixture of gasoline, kerosene, diesel and lubricant 

oil (results of the diesel and mixture tests are in Appendix 3). The hot oil was 

introduced to the heating jacket at a certain temperature and the temperatures 

measured by all the thermocouples were recorded until a steady state was achieved. 

The temperature data for each thermocouple position was recorded throughout the 

experiments. 

4.4.2.4 Water Tests 

Two tests were conducted and the conditions for each test are given in Table 4.1 

below. The measurements made during Test 1 are presented in Sections i to vi 

below, and were compared with corresponding predictions of the RESPONSE 

model. 

Test conditions Test 1 Test 2 

Heating oil inlet temperature (oC) 200 150 

Initial temperature (oC) 12 16 

Liquid height (m) 0.22 0.3 

Table ‎4.1: Water testing programme 
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i. Heating of the Vessel 

To simulate a real-life scenario, the heating oil was set to provide a wall temperature 

similar to what would be experienced during an incident. In Test 1, the heating oil 

inlet temperature was set to 200 oC. Figure 4.24 below shows the difference 

between the inlet temperature, as measured by thermocouple 24, and the outlet 

temperature, as measured by thermocouple 25. 

 

Figure ‎4.24: Temperature of heating oil. The heating oil was introduced to the vessel jacket suddenly, 
in order to simulate a real situation of sudden shock by fire 

 

ii. Temperature of Hot Dry Wall 

The temperature of the hot dry wall was measured by thermocouple number 26, 

which was inserted into the centre of the thickness of the wall. Figure 4.25 shows the 

measurement of the temperature of the hot dry wall. As the thermocouple was 

located close to the heating oil inlet, the measured temperature was 200 oC. 
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Figure ‎4.25: Measured temperature of hot dry wall. The hot dry wall (in contact with the vapour) was 
equipped with one thermocouple. The temperature was steady and constant, at around 200°C 

iii. Temperature of the Hot Wetted Wall 

Figure 4.26 shows the vertical variation in the hot wetted wall temperature. The 

temperature varied from approximately 50 oC at the vessel base, which was 

measured using thermocouple 42, to approximately 155 oC, which was measured 

using thermocouple 34. 

 

Figure ‎4.26: Measured temperature of hot wetted wall. The hot wetted wall (in contact with the liquid) 
was measured using 5 thermocouples placed vertically (the distance between each was 4 cm) 
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iv. Heat Input to the RESPONSE Model 

The measured temperatures of the hot dry and wetted parts of the wall were 

measured as inputs for the RESPONSE model, so that the predictions could be 

compared with the experimental measurements. In the RESPONSE model, the hot 

dry wall temperature was set as the measured temperature (200 oC) and was 

assumed uniform around the hot dry wall. The measured temperature of the hot 

wetted wall varied from approximately 50oC at the base of the vessel (which was 

measured using thermocouple 42) to approximately 155 oC, which was measured 

using thermocouple 34. In Equation 4.56, the height of the liquid (  ) was divided 

into (  ) cells of equal size, at intervals of (       ), as illustrated in Figure 4.5 in 

Section 4.3.10. In order to compare the predictions of the model with the 

experimental measurements, the temperature of the hot wetted wall in the model 

(   ) was assumed to vary from 50 oC, at a height of zero, to 155 oC at the height of 

the liquid, (  ), with intervals of 2.1 oC for      . 

v. Temperature of Vapour 

During the experiment, the temperature of the vapour was measured using 

thermocouple 27. As seen in Figure 4.27, the vapour temperature increased 

gradually, reaching a steady state at 60 minutes. The temperature of the vapour was 

calculated using Equations 4.22 and 26. It can be seen from the equations that the 

change in vapour temperature is a function of the vapour pressure, surface 

temperature and the heat flux transferred to the vapour. 

Figure 4.27 below shows that the model over-predicted the measured temperature 

until it approached 60 minutes; then, the results of the model appeared to be closer 

to the experimental results. It is stated in the model assumptions that the model 

takes the temperature of the vapour as a uniform temperature and assumes that 

there is good mixing in the vapour space; thus, the only thermocouple in the vapour 

space was located in the centre of the vapour space. This assumption was made to 

simplify the model and reduce the calculation time and it might be invalid, particularly 

for larger vapour spaces. It was evident in measuring the temperatures of the hot dry 

wall and the cold dry wall that these varied significantly. 
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Figure ‎4.27: Measured and predicted temperature of vapour. The vapour temperature was assumed 
to be uniform; thus, one thermocouple was placed in the vapour space 

vi. Liquid Core Temperature 

The temperature of the liquid core was measured using 18 thermocouples, as 

illustrated in Figure 4.17. The temperature of the whole of liquid core became 

uniform, at a value of 117oC, after 90 minutes. It can be seen from Figure 4.28 that, 

in spite of the relatively small size of the vessel, differences in vertical temperature 

occurred. The top of the liquid core reached its boiling-point after approximately 61 

minutes, while the entire body of water reached boiling point after approximately 95 

minutes. 

The graph in Figure 4.29 was plotted in order to clearly illustrate the differences in 

vertical temperature. The figure shows the liquid core temperature plotted in-line with 

the height of the liquid, which was 0.22m, with the various lines representing the 

heating time. This figure was compared with the results of the RESPONSE model, 

with regards to liquid core temperature, as presented in Figure 4.30. 
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Figure ‎4.28: Measurements of liquid core temperature. The temperature of the liquid core was 
measured using 18 thermocouples placed in 3 columns, starting from the hot wetted wall to the centre 

of the vessel. The distance between each was 12.5 cm 

Looking at Figures 4.28 and 4.29, it is apparent that, as a result of the heat 

penetrating the hot wetted wall of the vessel, the water next to this wall was heated 

quicker than the main body of water (liquid core); thus, the density of the hotter water 

became less than that of the main body of water. This difference in densities caused 

the water to flow up in a thin, warmer boundary layer and to rise above a cooler body 

of water (liquid core) at the surface. Consequently, a stable, horizontal, hot layer was 

created. With time, the amount of warm water that accumulated on top of the core of 

the water increased. Thus, the horizontal hot layer separating the cold and warm 

water slowly moved downwards. It is apparent that mixing in the system was poor 

and so it is understandable that differences in vertical temperature and disharmony 

were observed. 

One unusual aspect of the experiment was the jumps in temperature, as seen in 

Figure 4.28. The first temperature jump occurred at 69 minutes, as measured by 

thermocouples 48, 53 and 58, while the final jump in temperature occurred at 93 

minutes, as measured by thermocouples 52, 57 and 62. With the aid of the 

experimental results, it can be explained that these jumps in temperature could occur 
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because the boiling of the liquid at the top enhances mixing near the top, bringing 

the top horizontal layer to a uniform temperature at the boiling point corresponding to 

the vapour pressure at that time. When the horizontal hot layer, which separates the 

upper warm water and the lower cold water, enters through the area where the 

thermocouples are placed, the thermocouples record the jump. By the time the 

horizontal hot layer reaches the bottom of the vessel (through a downwards motion), 

the whole body of water has almost reached the stage of saturation. 

 

Figure ‎4.29: This graph was plotted in order to clearly illustrate the differences in vertical temperature: 
it shows the temperature of the liquid core plotted in-line with the height of the liquid, (which was 

0.22m) with the various lines representing heating time 
 

 

Figure ‎4.30: The temperature of the liquid core, as predicted by the RESPONSE model, vs. liquid 
height 
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In comparing the two Figures 4.29 and 4.30, it is apparent that, after an initial period 

of time corresponding to the time required for the first warm water to sink to the 

bottom of the core, which is 29 minutes for the experimental results (see Figure 4.29) 

and less than 10 minutes for the model results (see Figure 4.30), the predicted 

velocity of the sinking warm water is higher than the actual velocity. To clearly 

compare the two figures, the graph in Figure 4.31 was plotted, which highlights the 

differences between the experimental measurements and the predictions of the 

model, in terms of surface temperature, middle of the liquid core temperature and 

base of the liquid core temperature.  

It is noted that the model gave a reasonable estimate for the top of the liquid core 

(liquid surface) temperature at a height of 0.22m: this temperature is considered as 

the most important parameter, as it governs the evaporation process. The model 

slightly over-predicted the experimental data, in terms of middle-of-the-liquid core 

temperature at a height of 0.12m, until minute 70: a jump in temperature occurred at 

this time, which meant that the prediction of the model was lower than that of the 

experimental results. The model also significantly under-predicted the experimental 

results, with regards to temperature at the base of the liquid core. The model 

assumes the boundary condition at the base of the vessel is adiabatic, therefore no 

heat is transferred to the surrounding area; thus, the temperatures at the base of the 

vessel did not rise as quickly as the predictions of the model until minute 90, when a 

jump in temperature occurred in order to allow the liquid at the base to reach 

saturation temperatures. In addition, the over-prediction may have been due to the 

fact that the assumption of plug flow is not totally appropriate. 

The model was unable to predict the jumps in temperature that were mentioned 

earlier because it does not allow for the boiling process and does not take into 

account any mixing that could occur. 
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Figure ‎4.31: The differences between the actual measurements and the predictions, in terms of 
surface temperature, middle of the liquid core temperature and base of the liquid core temperature 
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vii. Vapour Space Pressure 

Figure 4.32 illustrates the rise in vapour space pressure. The test vessel was 

equipped with a spring-operated pressure relief valve, which had a set point of 1.8 

MPa for the opening gauge-pressure. The pressure in the vapour space was 

calculated using Equations 4.35 and 36 and, as seen from the figure below, there 

was good correlation between the experimental measurements and the predictions 

of the model. There was a difference of approximately 5 minutes between the 

release of the valve (which opened at 29 minutes) and the prediction of the model 

(which estimated that the valve would open at 24 minutes). This difference may have 

been due to a small leak that occurred in the flange between the vessel and the lid of 

the vessel. 

As already mentioned, the opening of the valve represents a hazardous situation: if 

the vapours are flammable, they may be ignited at any time if a source of ignition is 

located near the vessel. 

 

Figure ‎4.32: The rise in vapour space pressure. The test vessel was equipped with a spring-operated 
pressure relief valve, which had a set point of 1.8 MPa for the opening gauge-pressure 
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4.4.2.5 Gasoline Tests 

Four tests were conducted for various inlet oil temperatures, as seen in the table 

below. 

Test 
No. 

Inlet Oil Temperature 
(oC) 

Initial temperature 
(oC) 

Initial Liquid Level 
(mm) 

1 100 22 0.3 

2 150 20 0.3 

3 200 18 0.3 

4 150 40 0.3 
Table ‎4.2: Gasoline tests data 

In the following sections, a comparison of the experimental results of Test 4 and the 

results of the RESPONSE model are presented. In Test 4, the experimental vessel 

was filled with 60 litres of gasoline and the depth of the liquid was 0.3m. Pressure 

was recorded using a pressure transmitter and recorder, which was connected to the 

vapour space. The test lasted for 70 minutes, beginning when the hot oil was 

introduced to the jacket. 

Gasoline vapours may be rapidly ignited when exposed to heat, a spark, an open 

flame or any other source of ignition; this is due to the fact that gasoline has a very 

low flash point of -43oC and a wide range of flammability (between 1.4% and 7.6%). 

If gasoline vapours are present in the open air, they may be ignited by a source of 

ignition, such as static electricity. When flammable vapours are mixed with air and 

exposed to a source of ignition, they can burn in the open or explode within a 

confined space. Thus, all preventative and protective measures were considered and 

implemented prior to conducting the tests. After the vessel was filled with gasoline, 

the vapour space was filled with nitrogen and the lid of the vessel was properly 

sealed, in order to prevent any leaks. Furthermore, the vessel was grounded, in 

order to prevent static electricity. Fire extinguishers were placed near to the vessel 

and adequate personal protective equipment was worn. 
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i. Heating of the Vessel 

The temperature of the heating oil inlet in Test 4 was 150oC, which was well below 

the auto ignition temperature of gasoline (280oC). Figure 4.33 below shows the 

difference between the temperatures of the heating oil inlet and outlet. 

 

 

Figure ‎4.33: Temperature of the heating oil. The heating oil was introduced to the jacket of the vessel 
suddenly, in order to simulate a real situation of sudden shock by fire 

 

ii. Temperature of Hot Dry Wall 

Figure 4.34 below shows the increase in the temperature of the hot dry wall. The hot 

oil was heated up to 150oC and then suddenly introduced to the jacket. The 

temperature of the hot dry wall increased to 150oC within a few seconds and 

remained constantly at 150oC throughout the test. 
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Figure ‎4.34: Measured temperature of the hot dry wall. The hot dry wall (in contact with the vapour) 
was equipped with one thermocouple. The temperature was steady and constant, at around 150°C 

iii. Temperature of Hot Wetted Wall 

As illustrated in Figure 4.35 below, the temperature of the hot wetted wall varied from 

70oC, as measured by thermocouple 42 at the base of the vessel, to 130oC, as 

measured by thermocouple 34 at a height of (  ). 

 

Figure ‎4.35: Measured temperature of the hot wetted wall. The hot wetted wall (in contact with the 
liquid) was measured using 5 thermocouples placed vertically. The distance between each was 4 cm 
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iv. Heat Input to the RESPONSE Model 

There were similarities with the water test in Section 4.4.2.4, in comparing the 

predictions of the model with the experimental measurements: in the model, the 

temperature of the hot dry wall (   ) was assumed constant, with a value of 150oC, 

in order to compare the experimental results with the predictions of the model. The 

temperature of the hot wetted wall (   ) was assumed to vary from 70oC, at a height 

of zero, to 130oC at the height of the liquid (  ), at intervals of 1.2oC for      . 

v. Temperature of Vapour 

Figure 4.36 shows that the measured vapour temperature increased gradually, from 

an initial temperature of 40oC to approximately 100oC by the end of the test. One 

thermocouple (number 27) was located at the centre of the vapour space and the 

temperature of the vapour was assumed to be uniform at any location within the 

vapour space. In comparing the results of the model with the experimental 

measurements, it became apparent that the model over-predicted the measured 

value of the vapour temperature. 

Looking at the figure, it is clear that there is a discrepancy in the experimental results 

around 6 minutes after the test began: this fluctuation is due to the functioning of the 

pressure relief valve, which opened at approximately 6 minutes. The opening of this 

valve decreased the pressure in the vapour space, which resulted in an increase in 

the evaporation rate (causing the temperature of the vapour to drop and vice-versa). 

The model over-predicted the experimental results: the predicted temperature of the 

vapour increased rapidly in the first 10 minutes, before rising gradually. 
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Figure ‎4.36: Predicted and measured vapour temperature. The vapour temperature was assumed to 
be uniform; thus, one thermocouple was placed in the vapour space 

vi. Liquid Core Temperature 

Distribution of temperature within the core of the liquid can be complex. The change 

in temperature in the liquid core is shown in Figure 4.37 and, as in the water test, the 

temperature of the core of the liquid varies vertically. The temperature of the 

gasoline increased quickly over the first 20 minutes, while the horizontal hot layer 

slowly sank, causing the jumps in temperature. The first temperature jump occurred 

after 25 minutes, while the last jump in temperature occurred after 38 minutes. It is 

apparent that, when the horizontal hot layer reached the base of the liquid core, the 

temperature of the liquid became uniform and then continued to increase gradually. 

Because gasoline is a hydrocarbon liquid mixture and its boiling point consists of a 

range encompassing the boiling points of the components (from 39 oC to 200 oC), its 

temperature will continue to rise until the liquid become one pure component. The 

temperature of the gasoline will then become constant. 
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Figure ‎4.37: Measurements of liquid core temperature. The temperature of the liquid core was 
measured using 18 thermocouples placed in 3 columns, starting from the hot wetted wall to the centre 

of the vessel. The distance between each was 12.5 cm 

Figure 4.38 shows the changes in the temperature of the core of the liquid, in 

accordance with height. It can be seen that the warm liquid took about 20 minutes to 

reach the base of the core of the liquid, while the model predicted that the warm 

liquid took about 10 minutes to reach the base of the liquid core, as seen in Figure 

4.39. 

During the heating of the vessel a distillation process, with regards to the gasoline, 

was taking place. Gasoline consists of hydrocarbon components, with between 5 

and 12 carbon atoms per molecule and, ideally, the component with the lowest 

boiling point temperature evaporates first. The temperature remains constant until 

that component has completely distilled and, once the component with the lowest 

boiling point has been removed, the temperature can be raised and the distillation 

process repeated with the component with the next lowest boiling point. This 

distillation process that was undertaken was not included in the model. 
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Figure ‎4.38: This graph was plotted in order to clearly illustrate the differences in vertical temperature. 
It shows the temperature of the liquid core plotted in-line with the height of the liquid, which was 

0.22m (the various lines represent heating time) 

 

 

Figure ‎4.39: Liquid core temperature predicted using the RESPONSE model vs. liquid height 
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0

0.05

0.1

0.15

0.2

0.25

0.3

35 45 55 65 75 85 95

Li
q

u
id

 C
o

re
 D

e
p

th
 (

m
) 

Temperature (oC) 

0 min

5 min

10 min

20 min

30 min

40 min

50 min

60 min

70 min

0

0.05

0.1

0.15

0.2

0.25

0.3

35 45 55 65 75 85 95

Li
q

u
id

 C
o

re
 D

e
p

th
 (

m
) 

Temperature (oC) 

0 min

5 min

10 min

20 min

30 min

40 min

50 min

60 min

70 min



Response of the Contents of Adjacent Tanks Chapter [4] 

4-77 

Figure 4.40 illustrates the differences between the measured temperatures and the 

model predictions of temperature for the top of the liquid core, the middle of the liquid 

core and the base of the liquid core. The figure demonstrates good agreement 

between the measured and predicted values of the temperature of the top of the 

liquid core, at a height of 0.3m; however, the model slightly under-predicted the 

experimental temperature measurements at the middle of the liquid core (at a height 

of 0.16m). With regards to the base of the liquid core, the model over-predicted the 

experimental temperature measurements and then, at 40 minutes, a jump in 

temperature occurred. 
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Figure ‎4.40: The differences between the measurements and the predictions, in terms of surface 
temperature, temperature of the centre of the liquid core and temperature of the base of the liquid 

core 
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vii. Vapour Space Pressure 

Figure 4.41 demonstrates the rise in pressure in the vapour space and it is apparent 

there is good correlation between the experimental results and the results of the 

model. The set point of the relief valve was 1.8 MPa and it opened at about 6 

minutes. After 40 minutes, there was a slight leak from the relief valve, which was 

contained. The effect of the leak is readily apparent, as the experimental results 

declined from 40 minutes onwards. An increase in pressure beyond the valve set 

point indicates that the valve opening area was inadequate in releasing pressure 

from the vessel. 

The vapour pressure of the gasoline was calculated using the Clausius-Clapeyron 

(Equation 4.88). 

 

 

 

Figure ‎4.41: The rise in vapour space pressure. The test vessel was equipped with a spring-operated 
pressure relief valve, which had a set point of 1.8 MPa for the opening gauge-pressure 
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4.4.3 Field Tests 

Experiments were undertaken in collaboration with The Resource Protection 

International Company, on behalf of the LASTFIRE Project, using the experimental 

facilities at Asturias, Spain, in May 2009 and September 2010. This work was 

outlined in Chapter 2, where it was explained that the research aimed to measure 

radiant heat flux at various locations around a pool fire. In addition, measurements 

were taken of the variation in temperature in a small tank containing gasoline and 

water close to the fire. The temperature measurements were recorded, along with 

the radiant heat, in order to meet the objectives of the research by comparing these 

measurements with the results of the RESPONSE model. 

There were 4 tests in which the liquid temperature was measured in a small adjacent 

tank, as illustrated in the table below: 
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1 May 2009 1 15 74 Gasoline Horizontal 

2 May 2009 0.4 16 82 Gasoline Horizontal 

3 May 2009 1.06 13 57 Gasoline Vertical 

4 
September 

2010 
2 22 64 Water 

Distributed in 

the tank 

Table 4.3: Field tests data 

4.4.3.1 Tests 1, 2 and 3 

Loughborough University joined the first testing programme from 12th May 2009 

onwards. There were 3 tests in which Loughborough University placed a 100-litre 

steel tank adjacent to a 2.4m diameter tank fire. Thermocouples were placed in 

various positions within the small tank, in order to measure any temporal and spatial 

variation of temperature within the gasoline. 
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The equipment used in Tests 1, 2, and 3 is illustrated in Figure 4.42. The test facility 

consisted of a steel drum (0.57m in diameter and 0.42m high, as demonstrated in 

Figures 4.43 and 4.44). The tank was manufactured using carbon steel, with a 

thickness of 1mm. Prior to the start of the fire, 3 thermocouples were placed in 

various positions in the tank (one for each test). 

The small tank was filled with gasoline up to a depth of 0.40m and was placed on a 

stand about 1m above the ground, as illustrated in Figure 4.43. Figure 4.42 shows 

the location of the small tank, with regards to the pool fire. 

Radiant heat flux was measured for each test, using a radiometer placed above the 

small tank (at a height of 1.5m from the ground and 3.2m from the centre of the pool 

fire. The radiometer was pointing towards the centre of the flame and the 

temperatures were recorded by a data logger. Figure 4.43 shows the fire on the 

adjacent test pan. 

The RESPONSE model was used to predict variation in temperature within the liquid 

and the predictions of the model and the experimental measurements are then 

compared and discussed. 

Test Procedure 

The test procedure is summarised as follows: 

a) The adjacent tank was mounted on the steel stand, as shown in Figure 4.43 

b) The thermocouples and the radiometer were connected and the acquisition of 

data was verified 

c) The small adjacent tank was filled with gasoline up to 0.4m from the base of 

the tank 

d) The liquid fuel was charged to the test pan (2.4m diameter) 

e) The liquid fuel in the test pan was ignited. This was considered time zero 

f) Data was continuously collected 
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Figure ‎4.42: Layout of the experimental facility, including the test pan of 2.4m diameter and the 
adjacent small tank used to measure the temperature of the gasoline 
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Figure ‎4.43: The small tank exposed to radiant heat flux from the fire (the temperature of gasoline 
was measured) 

 

 

Figure ‎4.44: Thermocouples distributed inside the small tank, in order to measure the temperature of 
the liquid gasoline at various locations 
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i. Test 1 

In Test 1, the thermocouples were placed on a horizontal plane in the small adjacent 

tank, as seen in Figure 4.45. The recording of temperature began 12 minutes before 

the gasoline fuel was ignited in the test pan. The radiometer was placed above the 

small tank (at a height of 1.5m from the ground and 3.2m from the centre of the pool 

fire) and was pointing towards the centre of the pool fire. 
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Figure ‎4.45: The location of the thermocouples used inside the adjacent small tank in Test 1. The 
thermocouples were placed at the same level, but in different locations 

The radiant heat flux received by the radiometer was also recorded and the average 

radiation heat flux received by the radiometer was 66 kW.m-2. 
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Figure 4.46 shows the comparison of the experimental measurements and the 

predictions of the RESPONSE model, in terms of the temperature of gasoline at a 

height of 0.25m from the base of the small tank. It can be seen that the model under-

predicts the experimental results for the initial period of 7 minutes: it then over-

predicts the experimental results. This may be due to the fact that the model does 

not take into account the period where the temperature remains constant (from 4 

minutes to 9 minutes), due to the distillation process of the gasoline (which is a multi-

component liquid). 

Figure 4.46 illustrates that all three thermocouples sensed the same liquid 

temperature, indicating that there was no variation in temperature in the horizontal 

plane. The records also show that there was a period during the test where the 

temperature remained constant with time. During this period, a phase change 

occurred, during which the lightest component of the gasoline boiled-off. Figure 4.46 

shows that the temperature of gasoline rises to 40oC in about 11 minutes. At 

approximately 11.3 minutes after ignition, the gasoline in the small adjacent tank was 

ignited, as can be seen in Figure 4.47. The fire was extinguished with foam. 

 

Figure ‎4.46: The experimental results of Test 1, measured using three thermocouples at the same 
liquid level but in different locations, vs. the predictions of the RESPONSE model, in terms of liquid 

temperature at the same level 
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Figure ‎4.47: The gasoline ignited in the adjacent tank as a result of radiant heat flux. The adjacent 
small tank was uncovered and the liquid was evaporating 

ii. Test 2 

In Test 2 the same apparatus was used as used in Test 1. In addition, the remaining 

gasoline from Test 1 was used in Test 2. The thermocouples were at the same 

height from the base of the small tank but with different radial positions, as illustrated 

in Figure 4.48. The thermocouples were moved towards the 2.4m diameter pan. The 

tank was not covered and the liquid surface was directly exposed to the radiant heat. 

Figure 4.48 shows the experiment facilities and the distribution of the thermocouples. 

The centre of the thermocouple beads nearest the wall were located only 0.02m 

away from the wall: this corresponds to approximately 20 times the width of a 

thermocouple bead. In general, however, this thermocouple was still outside of the 

convection boundary layer. It is noted in Figure 4.49 that the initial temperature of the 

liquid in the small adjacent tank was around 24oC which was slightly higher than the 

ambient temperature. This resulted as a consequence of using the gasoline that 

remained in the small adjacent tank for Test 2, following Test 1. 

With regards to Test 2, the same weather conditions as experienced in Test 1 

prevailed. The average incident heat received by the small tank was 44 kW.m-2. The 

initial temperature of the liquid was 24oC and the running time was 20 minutes. 
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Figure ‎4.48: The location of the thermocouples inside the adjacent small tank in Test 2. The 
thermocouples were placed at the same level but in different locations 

As can be seen in Figure 4.49, all three thermocouples recorded the same liquid 

temperature, confirming the observation (in Test 1) that there was no variation in 

temperature in the horizontal plane. However, unlike Test 1, the records did not 

highlight a period where the temperature remained constant with time, indicating that 

the lightest component of gasoline present in the small tank had been removed 

during Test 1 and hence was not present during Test 2. 
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Figure ‎4.49 Experimental results of Test 2 (measured using three thermocouples placed at the same 
liquid level but in different locations) vs. the predictions of the RESPONSE model, with regards to 

same-level temperature of the liquid 

iii. Test 3 

The same procedure as in the preceding tests was followed in Test 3. In this test, the 

thermocouples were placed at different heights within the adjacent small tank, as can 

be seen in Figure 4.50, and showed a decreasing temperature gradient downwards 

from the top of the tank, as illustrated in Figure 4.51. The average radiant heat 

measured by the radiometer was 40 kW.m-2. 

Figure 4.52 was plotted to clearly highlight the differences between the experimental 

measurements and the predictions of the model. As seen in Figures 4.52a, 4.52b 

and 4.52c, following ignition, a temperature gradient was established in the gasoline 

within the small tank. It can be seen from the figures that the temperature towards 

the top of the liquid in Figure 4.52a increased at a faster rate than the liquid at 

greater depths. The top thermocouple recorded an increase in temperature up to 

approximately 48°C, after which it remained constant. The middle thermocouple 

followed the pattern of the top thermocouple, with a time-lapse of about 2 minutes, 

and the bottom thermocouple followed the middle thermocouple, with a similar time-

lapse. Roughly 10 minutes after ignition, the whole of the gasoline in the small tank 

had reached a uniform temperature. The period in which the temperature remained 

constant at a particular level indicated that a phase change was in process, during 

which the lightest component of the gasoline was boiled-off. 
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Figure ‎4.50: Location of thermocouples in Test 3. The thermocouples were distributed vertically, in 
order to measure any variation in temperature 

 

 

Figure ‎4.51: Liquid temperature gradient, as measured by the three vertical thermocouples 
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Figure 4.52a: Top thermocouple 

 
Figure 4.52b: Middle thermocouple 

 

Figure ‎4.52c: Bottom thermocouple 
The differences between the measurements and the predictions, in terms of top temperature, middle 

of the liquid core temperature and base of the liquid core temperature 

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

Te
m

p
e

ra
tu

re
 (

o
C

) 

Time (min) 

Thermocouple (0) Model Result

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

Te
m

p
e

ra
tu

re
 (

o
C

) 

Time (min) 

Thermocouple (1) Model Result

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

Te
m

p
e

ra
tu

re
 (

o
C

) 

Time (min) 

Thermocouple (2) Model Result



Response of the Contents of Adjacent Tanks Chapter [4] 

4-91 

4.4.3.2 Asturias (Spain), September 2010: Test 4 

The experiment was conducted by Loughborough University during a programme of 

pool fire testing, undertaken by Resource Protection International on behalf of the 

LASTFIRE collaboration. Loughborough University joined the testing programme 

from Tuesday 22nd March 2010 onwards and recorded measurements of 

temperature and radiant heat, with regards to a small tank exposed to an adjacent 

tank fire. 

Figures 4.53 and 4.54 demonstrate the set-up of the experiment. The same type of 

tank used in Tests 1, 2 and 3 was used in this test and the small steel tank used as 

the receptor tank is shown in Figure 4.54. The small tank was placed on the ground, 

approximately 5m from the centre of the 2.4m diameter pan. 

Radiant heat flux was measured using a radiometer, which was placed beside the 

small tank and was pointing towards the centre of the flame. 

Prior to the start of the fire on the 2.4m diameter pan, the small tank was filled with 

water up to a height of 0.28m from the bottom of the tank and was fitted with a flat 

steel roof. 
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Figure ‎4.53: Layout of the experimental facility, including the 2.4m diameter test pan and the adjacent 
small tank used to measure the temperature of the water. The figure also shows the radiometer used 

to measure the radiant heat received by the small, adjacent tank 

 

 

Figure ‎4.54: Photograph showing the test pan, small tank and radiometer 
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Figure 4.55 shows the location of the thermocouples inside the small tank. As can be 

seen from the figure, two thermocouples (F and H) were placed inside the vapour 

space. F was close to the wall of the tank, on the side facing the fire, while 

thermocouple H was located in the middle of the vapour space. There were 5 

thermocouples placed in the liquid space, at different levels: thermocouples D and E 

were placed at a height of 0.22m from the base of the tank, while thermocouples A 

and C were placed at a height of 0.1m from the base of the tank. Thermocouple B 

was located at the junction of the base of the tank and wall, at the point farthest from 

the fire, as can be seen in Figure 4.56 below. 

The pressure was not measured as the tank was not sealed; the pressure in the 

vapour space remained atmospheric. The ambient temperature was 12°C, while the 

average wind-speed was 2 m.s-1 and the relative humidity was 64%. 

The heat flux received by the radiometer is illustrated in Figure 4.57. The figure 

shows that the average heat flux received was about 10 kW.m-2. The two peaks (at 

33 minutes and 40 minutes) demonstrate that boil-over occurred in the tank fire, 

which was the objective of the main experiment. 
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Figure ‎4.55: Distribution of thermocouples in the small, adjacent tank: 5 thermocouples were used to 
measure liquid temperature at various levels, while 2 thermocouples were used to measure vapour 

space temperature in 2 locations 
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Figure ‎4.56: Shows the fire in the 2.4m test pan and the small tank, with regards to the pool fire. The 
flame is tilted, due to the effects of the wind, and the radiometer is positioned near the top of the small 

adjacent tank 

 

 

 

Figure ‎4.57: Radiant heat flux received by the radiometer. The reading can be assumed steady, at 
around 10 kW. m-2. The two peaks indicate radiant heat and the two instances when boilovers 

occurred 
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The experimental results, in terms of vapour temperature, measured using 

thermocouples F and H, showed that the vapour temperature rapidly increased 

during the first 5 minutes: the initial temperature was 12oC and rose to approximately 

40oC. It then remained constant for around 30 minutes. When the boil-over occurred 

in the 2.4m test pan, the vapour temperature increased from 40oC and reached an 

instantaneous peak of 124oC. 

The vapour temperature predicted by the model increased gradually, from the initial 

temperature to 82 oC by the end of the test. A comparison of the experimental results 

and the predictions of the model, in terms of vapour temperature, is shown in Figure 

4.58. 

 

Figure ‎4.58: A comparison of the measurements of vapour space temperature and the results as 
predicted by the RESPONSE model 

Figure 4.59 shows the comparison between the temperature of the liquid at different 

levels and the predictions of the RESPONSE model and it can be seen that the 

model over-predicted the experimental results for the top (D, E) thermocouples and 

the middle (A, C) thermocouples; however, it slightly under-predicted the results of 

the bottom thermocouple (B). 

These results may be related to some of the assumptions made in order to simplify 

the model, with regards to plug flow: the assumption was that the energy flux leaving 

the boundary layer gives a temperature level at the top of the core at a specific time 

and the flow rate can be converted into a core plug flow velocity, which describes the 
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position of fluid originally at the surface as it slowly sinks into lower regions. This 

assumption may be inappropriate as there is in fact a mixing and convection current 

taking place in the core region, which may have an effect on the velocity of the 

sinking liquid. 
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Figure ‎4.59: A comparison of the temperature of the liquid core measured at 3 levels and the results 
as predicted by the RESPONSE model 
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4.5 Conclusion 

The physical processes that can occur inside a storage tank partially filled with a 

flammable liquid and exposed to radiant heat were identified and analysed. In 

addition, the corresponding thermodynamic equations describing the physical 

phenomena were explained. These governing equations were solved numerically 

and predictions of the response of the contents of an adjacent tank to radiant heat 

were presented. 

It is considered that the flow of fluid within the adjacent tank subjected to radiant 

heating was created by natural convection heat transfer, as a result of the wall heat 

flux (the flow was of a boundary layer type). When the boundary layer approaches 

the surface of the liquid, it turns rapidly and flows radially inward, spreading over the 

core region. As a result of the sharp turning of the rapid boundary layer flow, rather 

complex flow circulations occur just below the surface. However, the net effect 

appears to be good mixing at the surface of the liquid. Below the liquid surface, the 

core is essentially isothermal in the radial direction and temperature variation 

increases with the axial direction. In the axial direction, the temperature of the liquid 

near the surface increases at a greater rate than at greater depths, with the 

temperature of the liquid at the bottom of the tank increasing at the slowest rate. 

Eventually, the temperature of the liquid throughout the core equalises. 

The time taken to create a condition of escalation in a tank adjacent to a tank fire 

depends upon a number of factors, including type and size of tank, separation 

distance, the boiling point of the flammable liquid stored in the tank, water cooling 

arrangements, tank design and wind-speed and direction, etc. 

As mentioned in the earlier sections, a serious fire hazard condition is assumed to 

exist once the relief valve is open. The time that this occurs is a key output of the 

model. 
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5 Applications of Theoretical Modelling 

5.1 Introduction 

This study was directed toward obtaining an improved quantitative understanding of 

the effect of radiant heat on a storage tank filled with hydrocarbon liquid. Such a 

study can play an important role in the safe storage of flammable liquids at 

atmospheric pressure, including the development of hazard protective and 

preventive measures, such as water cooling systems, emergency planning, 

determining the minimum safe separation distances between storage tanks and 

between storage tanks and adjacent facilities. These measures need to be 

considered in the early design stages. 

Mathematical models have been developed that can be applied to a broad range of 

fluid properties and storage tank design. The resulting models will be of use to an 

engineer confronted with a practical application in determining the radiant heat falling 

on adjacent tanks or on adjacent facilities as well as gauging the time of the opening 

of the pressure/vacuum relief valve installed on the adjacent tank. In addition, the 

cooling water flow rate of the water cooling system can be calculated with the area of 

the exposed tank that needs to be protected by water. Another important application 
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is determining the minimum safe separation distances between storage tanks and 

between storage tanks and the site boundary. 

The overall model is divided into three submodels: the pool fire model (IRAD), which 

is described in Chapter 2, the model which applys the IRAD model to determine the 

distirbution‎of‎the‎radiant‎heat‎on‎the‎adjacent‎tank’s‎wall‎and‎roof,‎as‎described‎in‎

Chapter 3, and the RESPONSE model, which is described in Chapter 4. All of these 

sub-models have a number of features that make them well-suited to assessing and 

guiding a response to a tank fire in neighbouring storage tanks. The IRAD model is 

used as a source model to predict radiant heat flux from a range of fuels in a pool fire 

situation and the RESPONSE model is used to predict temperature warm-up and the 

time needed for the pressure/vacuum relief valve to open as a result of an increase 

in vapour space pressure. 

The available engineering codes propose a number of storage tank layouts and 

water cooling system requirements that are likely to increase the level of safety of 

atmospheric storage tank farms. The models developed can be implemented for a 

wide range of variables, in order to enable specific quantitative judgements to be 

made on the likely benefit of each measure. The information that can be obtained 

from the models can be combined with the frequency of serious fire incidents and 

likely outcomes to determine the risk inherent in various tank farm layouts and the 

required water cooling system flow rates. 

As noted earlier, the models developed predict thermal source intensity, the 

distribution of the radiant heat flux on adjacent tanks and facilities surfaces and the 

resultant times of the opening of the pressure/vacuum relief valve in adjacent tanks. 

A significant hazardous condition is assumed to have occurred once the 

pressure/vacuum relief valve in the receptor tank reaches its set point to open. 

Therefore, the models can be used in determining the water rate requirement of the 

deluge system and in estimating the minimum separation distance between storage 

tanks, in order to prevent or delay such an event. 
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5.2 The Water Cooling Systems 

5.2.1 Overview 

Radiant heat flux from a large pool fire is one of the main causes of damage to 

adjacent facilities. In the event of a tank farm fire, the tank on fire and its adjacent 

tanks can be seriously damaged by the radiant heat flux. The cost of such an event 

can be catastrophic; thus, protection must be provided to prevent adjacent tanks 

from damage. 

Water cooling systems are one type of protection installed in storage tanks. The 

application of water to protect an exposed tank can be done either as a spray from a 

nozzle or as a cooling film applied at the top of the tank wall or roof, which runs down 

the tank. The means and the extent by which the water removes heat from the tank 

surface differ between the two systems. 

The water cooling system is usually a fixed ring pipe installed around the top of the 

tank wall and connected to a reliable supply of fire water, as can be seen in Figure 

5.1. It is designed to provide controlled protection against exposure to radiant heat. 

Water has a high absorption coefficient (absorptivity of water is 0.95 to 0.97) at 

temperatures of 0oC to 100oC (Jain and Gopta, 2007); this leads to strong 

attenuation of the radiant heat flux. 

 

Figure ‎5.1: A water cooling system was applied, in order to cool a storage tank. The type used 
consisted of a fixed ring installed around the top of the tank wall (www.saval.be) 

Water cooling system ring 
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Fast and effective water film coverage is more easily achieved using fixed systems, 

but the problem with this sort of system is that they require an expensive 

maintenance programme. Water running down the side of a wall can cool the metal 

surface by one of two mechanisms: 

 By absorbing heat from the surface over which it flows through convection 

(sensible heating). 

 By boiling and removing heat as latent heat. 

It is believed that the second mechanism is of greatest benefit and there may be a 

tendency to reduce water flow so that boiling occurs. Certainly, removing heat 

through boiling is more effective than absorbing heat by convection. However, with 

boiling, there is the danger that the dry areas of wall will be exposed and thus the 

water film will boil off before it reaches the bottom of the wall. In fact, the first 

mechanism is very effective and the amount of absorption is related to the thickness 

of the water film running down the side of the tank. If a water film is maintained over 

the surface, the temperature cannot reach a greater temperature than 100oC. 

5.2.2 Cooling Water Requirements 

5.2.2.1 Prior Work 

Water cooling systems are widely used to protect storage tanks against exposure to 

fire. The majority of the engineering codes and standards dealing with water cooling 

system design are, however, primarily based on one set of experiments. These tests 

were undertaken in the U.S. in 1943-44 by the Rubber Reserve Company (Fritz and 

Jack, 1983), when a horizontal cylindrical tank was partially filled with water, 

immersed in flames and cooled externally by water. As an outcome of the work, the 

Rubber Reserve Company recommended water application rates based on the 

requirement to reduce heat input into the tank to a level compatible with the venting 

capacity of its relief valve. Another similar set of experiments were conducted by 

Mather and Platt in the early 1960s (Bray, 1964). 

There is another work looking at the efficiency of water cooling systems conducted 

by Shell Research Ltd, as reported by Lev and Strachan (1989). The Shell 
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researchers conducted large scale tests on the cooling mechanisms of water films 

and water sprays. 

Apart from the above-mentioned experimental works, all other reported work on 

water cooling systems of tanks have been on a much smaller scale. Consequently, 

in the absence of updated experimental information, standards and practices based 

on the Rubber Reserve Company work have been extended to cover applications 

that require the protection of tanks and equipment against radiant heat, which bear 

little resemblance to engulfed fire applications (NFPA 15). 

5.2.2.2 American Petroleum Institute (API 2030) 

The required application rate depends upon the rate of heat transfer, the maximum 

allowable temperature and the efficiency of heat absorption by the water. In general, 

suggested application rates are between 0.068 and 0.17 litres.m-2.s-1: these 

suggested flow rates are experience based and include a safety factor of 0.03 litres. 

m-2.s-1. The higher application rate of 0.17 litres.m-2.s-1 is recommended for 

protecting steel surfaces that are stressed, such as pressure vessels, and load 

bearing structural members, such as vessel legs, pipe rack supports and vessel 

skirts. Also, rates between 0.1 and 0.17 litres.m-2.s-1 may be used where supported 

by relevant engineering data or documented experience, or where other protective 

measures have been taken. 

According to the API 2030, cooling should cover only the area that is exposed to fire 

and this is standardly determined as one-quarter to one-half of the tank surface. In 

addition, with regards to API 2030, cooling benefits only those walls that are not in 

contact with liquid; typically, the upper 3.7 - 7.4 m of the walls. 
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5.2.2.3 European Model Code of Safe Practice, Part II 

Tank Diameter (m) Water Rate (litres.m-2.s-1) 

D≤‎20 0.017 

20 <D< 80 (70 0.4D)/(3600)* 

D>80 0.0105 

*For a typical 60 (m) diameter tank this is equivalent to 0.0127 

Table ‎5.1: European Model Code of Safe Practice, Part II 

5.2.2.4 I.P. Refining Safety Code 

To protect adjacent tanks against exposure to radiant heat from a burning tank, the I. 

P. Refining Safety Code recommendation is to wet the shell surface facing the fire at 

a rate of 0.28 litres.s-1per metre of circumference (for a typical 18m high tank, this 

would be equivalent to 0.015 litres.m-2.s-1). It is not clear what the application rate 

given in the Refining Safety Code is based on. 

5.2.2.5 NFPA 30 

NFPA 30 has no requirements for cooling water, but requires an engineering 

evaluation, in order to determine the extent of fire prevention and control measures. 

Where the need for cooling water is indicated, reference is made to NFPA 15 for 

information on the subject. 

5.2.2.6 NFPA 15 

NFPA 15 recommends a water application rate of 0.17 litres.m-2.s-1 of uninsulated 

surface exposed to an impinging flame. For full surface fires, it is nominally assumed 

that half the vertical height of the tank is exposed. 

5.2.2.7 Australian Standard (AS) 

The AS gives recommendations on fire exposure protection and outlines the 

procedure for determining the cooling water requirements for each tank. It gives a 

graph of the rate of cooling water (  )  litres.m-2.s-1 as a function of (separation 

distance /diameter of tank on fire) ratio (   ). 
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Where: 

  is the seberation distance between tank on fire and adjacent tank (m) 

  is the tank on fire diameter (m) and 

   is the rate of cooling water of the projected wall area (litres.m-2.s-1). 

In addition, for fixed-roof tanks within one diameter of the tank on fire, an amount 

equal to (          ) can be added for cooling the fire exposed area of the roof. 

5.2.3 Application of Models 

The IRAD model, which is used in terms of determining the radiant heat flux falling 

onto adjacent tanks, can be used to determine the area that is exposed to radiant 

heat. Thus, water cooling systems will be located on the subjected area instead of 

covering the whole tank area with water. Determining a specific area can help to 

minimise the consumption of cooling water which, in addition to the use of a huge 

quantity of water, can cause flooding in the bunds area and prevent the response 

team from gaining easy access to the tank farm and locating their equipment. 

It can be seen from the tank farm fire scenario that was explained in Section 3.4 that 

the area subjected to radiant heat from fire is determined for each adjacent tank. 

It is believed that the water needed for the protection of adjacent tanks against 

exposure to radiant heat is greatly reduced if application is restricted only to the area 

of the tank roof and wall above the level of the liquid (Lees, 1980). Figure 5.2, given 

by Nash (1973) and cited by Lees (1980), illustrates the differences in applying the 

cooling water to the whole tank and to the roof and wall of the vapour space only. 

The curves are based on the cooling water rate recommended by the NFPA 15, 

which is 0.17 litres.m-2.s-1. Curves A1 and B1 respectively state the water 

requirements for the extinction of the fire and the protection of adjacent tanks, with 

water coverage of the whole tank and of the roof and vapour space only. Curves A2 

and B2 give the corresponding water requirements for the protection of adjacent 

tanks only. Water requirements can be further reduced if, rather than applying water 
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to the whole surface of the tank, water is only applied to that part that is facing the 

fire (hence, the part that is subjected to radiant heat). 

 

Figure ‎5.2: Water requirements for protection against exposure to fire and extinction of fire for storage 
tanks (P.Nash, 1974): A1, NFPA 15 – extinction and exposure; A2, NFPA 15 – exposure only; B1, 
‘economical’‎requirements‎– extinction‎and‎exposure;‎B2,‎‘economical’‎requirement‎– exposure only. 

(Reproduced from Lees, 1980) 

In addition to minimising the use of cooling water, the model can be used to 

determine the required water flow rate; however, the calculation of the required 

cooling water flow rate is beyond the scope of this research. The provision of radiant 

heat flux and its distribution on adjacent tank walls and roofs can help in predicting 

cooling water flow rates. Indeed, the majority of the recommended cooling water flow 

rates provided in the engineering codes are based on experience or experimental 

work. 

5.3 Separation Distance between Storage Tanks 

In this study, a mathematical model has been developed to predict the time needed 

for the pressure/vacuum relief valve of the adjacent tank to open and release the 

flammable vapour. This model was based on the quantity of heat received from the 

fire, which was calculated using the IRAD model. As was illustrated in Chapter 2, the 

radiant heat received at the target decreases dramatically as the distance between 
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the flame and the target increases. In addition, in Chapter 4, it was shown that the 

pressure increase in the volume space is proportional to the vapour space 

temperature, as can be seen in Equation (4.33). Also, in Equations (4.21 and 4.22), 

the temperature of the vapour space is proportional to the heat received by the 

vapour. Therefore, as the distance between the source and the target increases, the 

heat received will decrease and, as a result, the pressure of the vapour space 

decreases; thus, the time taken for the pressure/vacuum relief valve on the adjacent 

tank to open increases. 

Since large loss tank incidents usually involve fire spreading to adjacent tanks or the 

site boundary, it is important to establish a minimum separation distance between 

tanks, so as to reduce the chances of a fire spreading. The minimum separation 

distances should be based on an appropriate design and the majority of engineering 

estimates of the minimum tank spacing required examine radiant heat flux levels on 

the exposed tank. 

Tank layouts and spacing at the refineries, petrochemical sites and terminals are 

built and installed to meet the codes and standards such as NFPA 30. The majority 

of codes reviewed based their recommendations on experience. Most of the codes 

require 0.5 tank diameter spacing between fixed-roof tanks and 0.3 tank diameter 

spacing for floating-roof tanks. Some of the proposals put forward by oil companies 

recommend an increase in tank spacing, which would be very expensive to 

implement in places where the land is valuable and this increase would not reduce 

risk enough to warrant the expenditure. Separation distances generally delay the 

possibility of escalation, rather that eliminate it altogether. 

While there are differences between individual codes, it may be generalised that the 

minimum separation distances between storage tanks from accepted international 

codes normally conform to: 

Fixed-roof tanks 0.5 D large tank, but not less than 10m diameter 

Floating-roof tanks 0.3 D large tank, but not less than 10 m diameter 

NFPA 30 requires large spacing for tanks over 46m diameter, normally 0.66D, on 

average, for fixed-roof tanks and 0.5D, on average, for floating-roof tanks. For tanks 



Applications of Theoretical Modelling  Chapter [5] 

5-10 

equal to or smaller than 46m, the NFPA 30 requirements are less. In the following 

section, some of the tank spacing codes are reviewed, in order to highlight the 

differences between them. 

5.3.1 Emergency Response Access 

In addition to the separation distance between storage tanks, those responsible for 

the layout of such tanks must consider the accessibility required by response teams 

and the distance between storage tanks and nearby buildings.  

According to the TRCI tank farm guidelines (2009), the accessibility of tank farms 

containing flammable liquids must be safeguarded for mobile fire extinguishing 

equipment (vehicles) from at least two sides and every individual tank must be 

accessible by mobile fire extinguishing equipment from outside of the tank area, as 

shown in Figure 5.3. Within a group of tanks, the layout of the tanks should be as 

such‎ that‎ ‘shadow‎ zones’‎ (zones‎ which‎ cannot‎ be‎ reached‎ by‎ fire-extinguishing 

equipment or with difficulty) do not occur, in the case of a fire. If this demand cannot 

be met due to the operational situation, fixed fire-fighting installations must be 

provided. Fire-fighting from the top may also be considered (see Figures 5.4 and 

5.5). 

 

 

 
 

Figure ‎5.3 Tank farm accessible from two sides 
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Figure ‎5.4 Tank farm accessible from one side 
only 

Figure ‎5.5 Tanks inside of the tank field (shadow 
accessible from one side zone) not accessible by 
mobile fire extinguishing equipment, or only with 

difficulty 

5.3.2 Application of Models 

Care must be taken when selecting a location for storage tank, in order to protect 

people and property from the effects of any fire in the tank and to protect the tank 

from fires which may occur elsewhere on site. According to Institute of Petroleum 

Model Code Safe Practice (1981), the location of storage tanks should always take 

into account accessibility for the emergency services. The separation distances 

recommended in the engineering codes are unlikely to give complete protection in 

the event of a fire involving storage tanks, but should allow sufficient time for people 

to be evacuated, provided there are good means of escape. They should also allow 

sufficient time for additional fire-fighting equipment and emergency procedures to be 

mobilised. 

The minimum separation distances are based on what is considered to be good 

practice and have been widely accepted by industry. Institute of Petroleum Model 

Code Safe Practice (1981) defines the minimum separation distance as the minimum 

distance between any point on the tank and any building, boundary, process unit or 

fixed source of ignition. 

The mathematical models explained in Chapters 2, 3 and 4 can be used to 

determine the safe minimum separation distance between storage tanks. The 

models give the radiant heat received by adjacent tanks and its distribution over the 

tank walls and roofs for an assigned separation distance. In addition, the time for the 
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flammable vapours to be released from the adjacent tanks can be estimated using 

the RESOPNSE model. 

5.3.2.1 The Effect of the Separation Distance on the Radiant Heat 

It can be seen from the tank farm fire scenario outlined in Section 3.4 that, for 

separation distances of 0.5D, 1D and 1.5D between tanks, the total radiant heat flux 

received by Tanks B, C and D is as shown in Table 5.11. It can be noted that, for a 

distance of 0.5D, the total radiant heat was the highest. However, increasing the 

minimum separation distance can dramatically reduce the total heat flux received by 

adjacent tanks, but this is dependent upon land cost and availability. In addition, 

minimum separation distances can be combined with other protection measures, 

such as water cooling systems, to increase the level of safety and provide sufficient 

time for the response teams to tackle the fire. 

Separation Distance between 
Storage Tanks 

0.5D 1D 1.5D 

Tank Total Radiant Heat (kW) 

B 
Wall 1287 475 306 

Roof 1028 271 122 

C 
Wall 491 339 235 

Roof 215 109 64 

D 
Wall 404 231 144 

Roof 160 70 37 

Table ‎5.2: Total radiant heat received by Tanks B, C and D vs. different separation distances 

5.3.2.2 Spacing Engineering Codes and the Use of Mathematical Models 

National and international engineering codes provide companies with definitions of 

the required spacing between tanks and between tanks and bund walls, with each 

code presenting various definitions for the spacing of tanks. For example, the NFPA 

and European standards and the IP Refining Safety Code requirements are set out 

as follows: 

NFPA 30 provides the following guidelines for minimum tank spacing (shell to shell) 

for floating roof and fixed-roof tanks.  
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 The minimum spacing distance between all floating-roof tanks less than 45m 

in diameter is one-sixth of the sum of the diameters of adjacent tanks, but not 

less than 1m. 

 The minimum spacing distance between floating-roof tanks larger than 45m in 

diameter with remote impounding is one-sixth of the sum of the diameters of 

adjacent tanks. 

 The minimum spacing distance between floating-roof tanks larger than 45m in 

diameter, where impounding is around tanks, is a quarter of the sum of the 

diameters of adjacent tanks. 

 The minimum spacing distance between all fixed-roof tanks less than 45m in 

diameter is one-sixth of the sum of the diameters of adjacent tanks. 

 The minimum spacing distance between all fixed roof tanks over 45m in 

diameter is one-third of the sum of the diameters of adjacent tanks. 

 For stable liquids stored at an operating pressure of 17.2 kPa or less, the 

minimum spacing distance from the shell of a floating-roof tank to a property 

line that is or can be built upon, including the opposite side of a public way, is 

half the diameter of the tank, if protection of exposures is provided. If no 

exposure protection is provided, the minimum spacing distance is the 

diameter of the tank: this does not have to exceed 52.5m if the liquid does not 

have the potential to produce a boilover. In all cases, this distance shall be no 

less than 1.5m. 

 For stable liquids stored at an operating pressure of 17.2 kPa or less, the 

minimum spacing distance from the shell of a floating-roof tank to the nearest 

side of any public way or to the nearest important building on the same 

property is one-sixth of the diameter of the tank and shall be no less than 1.5 

m. 

The European Model Code of Safe Practice (Part II) suggests the following minimum 

spacing distances between tank shells for Class I liquids (with a flash point below 

21oC), Class II (2) liquids (with a flash point from 21oC and up to and including 55oC, 

handled at a temperature at or above their flash point) and Class III (2) liquids (with a 

flash point above 55oC and up to and including 100oC, handled at a temperature at 

or above their flash point).  
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 The minimum required spacing distance between two floating-roof tanks is 

one-third of the diameter of the larger tank. 

 The minimum required spacing distance between a fixed-roof tank and a 

floating-roof tank is half of the diameter of the fixed-roof tank or one-third of 

the diameter of the floating-roof tank, whichever is the larger. 

 The minimum separation distance between fixed-roof storage tanks is half the 

diameter of the larger tank. 

 No special requirements are given regarding the spacing between tanks for 

the exclusive storage of Class II (1) products (liquids with a flash point from 

21oC, up to and including 55oC, handled at a temperature below its flash 

point) or Class III (1) products (liquids with a flash point above 55oC and up to 

and including 100oC, handled at a temperature below their flash point). 

However, where Class I, II(2) or III(2) tanks are adjacent to Class II(1) or III(1) 

tanks, the spacing shall be based upon the diameter of the Class I, II(2) or 

III(2) tank. 

The Institute of Petroleum Model Code Safe Practice provides the following 

recommended shell-to-shell spacing distance for floating roof and fixed-roof storage 

tanks containing Class I, II(2) and III(2) products (using the same product definition 

as per the European Model Code of Safe Practice (above)). 

 The minimum required spacing distance between two floating-roof tanks for 

tanks up to and including 45m in diameter is 10m. 

 The minimum required spacing distance between fixed-roof tanks is half the 

diameter of the larger tank, but not less than 10m and no more than 15m. 

 The minimum required spacing distance between tanks over 45m in diameter 

is 15m. The size of the larger tank should govern the spacing. 

 The minimum required spacing distance between crude oil tanks no less than 

10m in size should be one-third of the diameter of the larger tank, with no 

upper limit. 

 The minimum required spacing distance between a floating-roof tank and a 

fixed-roof tank is taken as half the diameter of the smaller tank, whichever is 

less, but in no case less than 10m. The spacing should not exceed 15m 

(except in the case of crude oil).  
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 The minimum spacing distance between a floating-roof tank and any filling 

point, filling shed or a building not containing a possible source of ignition 

should be 10 m. 

 The minimum spacing distance between a floating-roof tank and the outer 

boundary of the installation, any designated non-hazardous area or any fixed 

source of ignition at ground level should be 15m. 

 For tanks greater than 18m in height, it may be necessary to consider whether 

the distances above should be increased, in order to take account of the 

height of the tank. 

The origins of all these spacing recommendations are not clear, but it appears that 

they have two objectives: 

 To prevent the flames from a full-surface tank fire from impinging on a nearby 

tank (heat loading is significantly increased by convective heat transfer from 

the flames when impingement occurs)  

 To enable access for fire fighters, so that they may get close enough to cool 

exposures on nearby tanks. 

According to the LASTFIRE 2012 escalation review, the IP recommendation for a 

minimum spacing distance of 10m for floating-roof tanks up to and including 45 m in 

diameter and 15m for tanks greater than 45 m in diameter is adequate in preventing 

flame impingement in most weather conditions. However, the IRAD model suggests 

that flame impingement is likely for wind-speeds in excess of approximately 8 m.s-1, 

in terms of full-surface fires in tanks greater than 40m in diameter as can be seen in 

Figure 5.6. Flame impingement is less likely for larger tank spacing and, for tanks 

with a 0.5 diameter spacing, impingement is only likely to occur for the smallest of 

the tanks under consideration in this research (about 40m in diameter) (and only 

then when the wind-speed is in excess of 12-15 m.s-1). 
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Figure ‎5.6 The minimum separation distance of 10 m between storage tanks of diameter greater than 
40 meter can cause flame impingement as illustrated by IRAD model 

Larger tank spacing also enables the implementation of measures to prevent 

escalation via impinging bund fires, such as intermediate bund walls, sloping bund 

floors and run-offs to remote impoundment. 

If flame impingement is unlikely, the dominant mechanism for the transfer of heat to 

a nearby tank is radiative heat transfer. The LASTFIRE incident survey (2012) 

indicated that escalation by radiant heating is unlikely in the first few hours of a full-

surface fire, unless the contents of adjacent tanks have a boiling point close to their 

storage temperature (Section 5.2 includes a discussion on the use of water sprays to 

protect against exposure from radiant heat) The review also indicated that radiant 

heat transfer to the roof of an adjacent storage tank is an important factor governing 

escalation via radiant heating for tanks containing product stored at a temperature 

close to its boiling point. 

The results of the calculations outlined in Section 5.3.2.1 suggest that inter-tank 

spacing must be increased to greater than one diameter before any significant 

reduction in radiative heat transfer to the roof is achieved. Thus, the application of 

water spray systems is required in cases where the spacing is less than one tank 

diameter. 

As mentioned previously, the existing engineering codes are extensive and have 

largely proven to be very effective in the detailed design of atmospheric storage 

tanks. However, the results vary amongst these: this is due to the fact that the 
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engineering codes relating to tank spacing and tank fire protection are based on 

experience, rather than actual engineering judgement. This research is an attempt to 

provide a basis for those engineering codes based on detailed and reliable 

estimations of the radiant heat loaded onto adjacent tank roofs and walls and the 

thermal response of adjacent tanks to exposure to radiant heat from an adjacent fire. 

Table 5.12 below shows a comparison of the results of the engineering codes 

pertaining to the minimum separation distance between two storage tanks (A and B) 

with a diameter of 10m (see tank fire scenario in Section 3.4). It is assumed that both 

storage tanks are fixed roof and contain a Class I flammable liquid, such as gasoline. 

It is also assumed that Tank A is on fire. 

The IRAD model and the thermal loading model were used to estimate the total 

radiant heat received by the roof and wall of Tank B, while the RESPONSE model 

was implemented to estimate the required time for the PVRV on Tank B to open and 

release the flammable vapours. The calculation was carried out for each separation 

distance and the calculation varying input variables, excluding the fuel properties for 

both models, are as follows: 

Tank A diameter 10 m Fuel level in Tank B 4 m 

Tank A height 7 m Tank Thickness 0.01m 

Tank B diameter 10 m Wind-speed 1 m.s-1 

Tank B height 7 m Wind direction 180 Degree 

Fuel Gasoline Air Humidity 70% 

Fuel temperature 15 oC Ambient temperature 15 oC 

Table ‎5.3 The input data of the mathematical models 

The modelling of the tank fire scenario was continued until the PVRV on the adjacent 

tank was open; in fact, a serious, hazardous condition is assumed to exist once the 

PVRV is open and the times when this occurs are the key output of the RESPONSE 

model. 

The calculation refers specifically to fixed-roof storage tank full-surface fires. 

However, it is also approximately applicable to floating-roof tank fires. For the fixed-

roof storage tank, it is assumed that the roof opens very wide or collapses into the 
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tank.‎If‎the‎roof‎remains‎in‎a‎‘cod’s‎mouth’‎shape,‎restricting‎air‎flow‎to‎the‎fire,‎then‎

the full-surface unimpeded fire model will over-predict radiant heat; however, in 

terms of design basis assumptions, it is believed that roof collapse should be 

assumed and that the model is applicable. 

Engineering Code 

Minimum 

Separation 

Distance (m) 

Total Radiant 

Heat (Wall) 

(kW) 

Total Radiant 

Heat (Roof) 

(kW) 

Response time 

for the PVRV 

(hr) 

NFPA 30 3.3 2540 2187 0.35 

European Model Code of 

Safe Practice, Part II 
5 1287 1028 1.7 

Institute of Petroleum 

Model Code Safe Practice 
10 475 271 3.42 

Table ‎5.4 the results of total radiant heat received by Tank B for different engineering code separation 
distances calculated using IRAD and the thermal loading models 

In order to better interpret the results, an example case study was examined. This 

referred to a 10m diameter fixed-roof gasoline storage tank full-surface fire affecting 

an adjacent gasoline tank of equal size. Based on the above calculation for a wind-

speed of 1 m.s-1 and wind direction towards Tank B, there was a substantial increase 

in the total radiant heat received by Tank B and a significant rise in the response 

time of the PVRV. It can be seen that the total radiant heat received by Tank B 

dropped dramatically from the required minimum separation distance of the NFPA 30 

(3.3 m) to the separation distance outlined by the European Model Code of Safe 

Practice, Part II (5m) and, similarly, the minimum separation distance required by the 

Institute of Petroleum Model Code Safe Practice.  

The significance of the response times is that they indicate the time available to deal 

with the original source of the fire incident, before the adjacent tank escalates the 

situation to two tank fires. The calculated time is the time available to respond to and 

extinguish a fire in the source tank before the receptor tank becomes highly 

vulnerable to ignition, due to the continuous generation of flammable vapours. It 

should be noted that these results were obtained in the absence of the application of 

protective measures, such as cooling water spray. Such results will be different and 

the response time will increase, in the case of applying such measures. This can be 

studied further in future research. 
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5.3.3 Estimating the Radiant Heat Flux on the Ground 

In this section, the calculations to estimate the radiant heat flux levels from a tank on 

fire are presented. Figure 5.8 gives the result of the radiant heat flux on the ground 

for the tank farm fire scenario, which was explained in Section 3.4. The scenario 

assumes a tank farm consists of four identical storage tanks with a diameter of 10m 

and a height of 7 m and that the storage tanks contain gasoline. The contours are 

around Tank A, which was assumed to be on fire. In addition to applying the IRAD 

model and the thermal loading model to predict radiant heat flux on nearby facilities, 

it can be applied for another particular scenario, which is human exposure to the 

radiant heat flux. Human exposure to radiant heat flux may be compared with values 

considered acceptable for different activities and periods. 

The American Department of Housing and Urban Development (HUD) has 

established radiant heat flux levels of 31.5 kW.m-2 for buildings and 1.4 kW.m-2 for 

people as guides in determining a safe separation distance between a flammable 

liquid fire and nearby buildings and people. 

The effect of radiant heat flux on humans is shown below (API RP 521, 1997). 

 

Figure ‎5.7 Time that can cause pain to human vs. radiant heat flux 

Experimental work on radiant heat flux recommends that a radiant heat flux of 5 

kW.m-2 causes second-degree burn injuries on bare skin, if the exposure lasts about 

45 seconds. Exposure to 10 kW.m-2 quickly causes third-degree burns that are likely 

to lead to death. These two levels are typically used in determining injury and fatality 
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hazard zones. A safe level of radiant heat, according to (API RP 521, 1997), is 1.4 

kW.m-2 and refers to total radiation at ground level (including the solar component, 

which is approximately (0.7-1.05 kW.m-2)). Figure 5.7 above illustrates the required 

time that people need to escape in accordance with varying radiant heat flux, in 

terms of sudden exposure to radiant heat. 

 

 

 

Figure ‎5.8 Radiant heat flux calculated using IRAD model and the thermal loading model on the 
ground 

5.4 Conclusion 

The most common objective of a water cooling system and separation distances is 

exposure protection; i.e., protecting storage tanks from heat stress caused by 

exposure to radiant heat. The majority of engineering codes that were reviewed, 
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system, based their recommendations on experience and no calculation background 

was determined. The IRAD model, the thermal loading model and the RESPONSE 

model can be used to determine both the water rate of cooling systems and the 

minimum separation distance between storage tanks. 

The purpose of water cooling systems is to absorb heat and reduce temperatures: a 

continuous water film from sprays will limit the surface temperature to the boiling 

point of water (100ºC). Exposure protection involves spraying water directly onto the 

walls and roofs of storage tanks, in order to prevent failure due to heat or to prevent 

vapours from escaping through the PVRVs, due to exceeding the operating 

pressure. Another advantage of applying the IRAD model and the thermal loading 

model is the ability to determine the subjected area that needs to be cooled by water, 

which may help to dramatically reduce the application of cooling water. The model 

can also be applied to determine the distribution of radiant heat flux at ground level, 

in order to define a safe distance from the storage tank on fire. 
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6 Conclusion and Recommendations for 
Future Work 

Large-scale pool fires, such as atmospheric storage tank pool fires, can be caused 

by the accidental release and ignition of flammable vapours and can cause hazards, 

due to radiant heat. A detailed knowledge of the radiant heat estimation methods is 

necessary, in order to predict the likely hazards of these fires on adjacent facilities, 

such as adjacent storage tanks. 

Detailed pool fire modelling was undertaken, in order to predict the radiant heat flux 

resulting from a tank fire and the impact of this on adjacent tanks. The IRAD model 

was developed and used as a basis for source fire modelling and was combined with 

a further model, in terms of predicting the distribution of thermal load on the walls 

and roof of an adjacent tank. A third model, based on thermodynamic relations, was 

developed as the basis of the receptor tank modelling and predicted the time taken 

for the pressure/vacuum relief valve on the receptor tank to open. Once the 

pressure/vacuum relief valve is open, flammable vapours will be present around the 

tank and the ignition of these vapours must be considered likely. 

A combination of the three models (The IRAD model, the Thermal Loading model 

and the Response model) presents a number of innovative features that make such 
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a combination well suited to assessing an adjacent tank fire response. These 

features include predicting the distribution of thermal load on adjacent tanks located 

in any place around the tank on fire and thermal load at ground level. The models 

can predict the time required for the opening of the pressure vacuum relief valve on 

adjacent tanks and the release of flammable vapour/air mixtures into the 

atmosphere. The time taken to create a condition such that an adjacent tank can 

become involved in an incident is dependent upon a number of factors, such as tank 

type and size, separation distance, flammable liquid stored, fire protection, tank 

design and wind condition. 

6.1 Pool Fire Modelling 

A review of pool fire modelling has been conducted and the aim of this review was to 

evaluate the performance of a number of radiant heat modelling types, in order to 

provide recommendation on which type of modelling would be most appropriate for 

implementation, with regards to a tank farm fire. The three models that were 

evaluated were the single source model (SPS), the solid flame model (IRAD) and the 

CFD model (Fire Dynamics Simulator (FDS)). 

Each of the three pool fire models were then set up to replicate the conditions of the 

experimental programme conducted by Loughborough University in collaboration 

with the Resource Protection International, on behalf of the LASTFIRE project 

companies. All of the heat flux measurements taken in the experiments were 

compared with the predictions made by the radiation models and it was found that 

the three models varied in their predictions close to the flame and that this variation 

narrowed in accordance with an increase in distance from the flame. 

The most accurate model was found to be the solid flame model (IRAD), with an 

average absolute percentage error of 22% from the measured data. The IRAD model 

also proved to be the most robust of all those investigated, showing better 

agreement with the experimental results over the range of conditions tested. 

The single-point source model (SPS) was found to over-predict the measured data in 

the near field, especially for ethanol fires. The overall average absolute percentage 

error for the SPS was 43.8% and it performed best when the measuring point was in 
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the far field. One of the required inputs is the fraction of heat radiated, which had a 

significant effect on the predictions, when varied. 

The FDS model was by far the most complex of the three models investigated. It was 

the third best performing model and had an average error of 50.4% from the 

experimental measurements. Its complexity and the fact that it consumes a 

significant amount of time, in terms of implementation, means that, currently, the 

FDS model is inappropriate for use in predicting the consequences of a tank fire. 

When deciding one of the modelling types for use in determining the heat radiation 

received at adjacent tanks, two main factors were considered. Firstly, the accuracy 

of the model: as the function of the model is to predict the radiant heat flux from a 

tank fire falling onto adjacent tank roofs and walls, it is preferable that the predictions 

are as close as possible to the experimental measurements of a real scenario. 

Chapter 2 of this work determined that the IRAD model was, on average, the most 

accurate model under the conditions tested. In addition, when selecting a model for 

this task, it is important that the model is accurate over a wide range of conditions. 

The IRAD model satisfies this, as it was found to be not only the most accurate 

model, but also the most robust. The second consideration of importance when 

selecting the most appropriate pool fire modelling type is the ease of implementation 

into the applications by the end user. A model that is very complex, such as the FDS 

model, would be somewhat difficult to apply. In addition, the time required to achieve 

a solution is considerable and requires a vast amount of computer storage. 

The IRAD model satisfies both of the important considerations discussed above:  it 

was found to be the most accurate model and it is easy and quick to use. It follows, 

therefore, that the IRAD model is recommended for use in predicting radiant heat 

from a pool fire in a tank farm. 

6.2 Radiant Heat Flux Distribution on the Walls and Roofs of 

Adjacent Tanks 

The IRAD model was applied to predict the level of heat flux from a tank fire, in terms 

of an adjacent conical fixed-roof tank containing a flammable liquid. The model 

predicts the levels of radiant heat flux falling onto the roofs and walls of adjacent 
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tanks and, in this application, the model took into account the dimensions of the 

liquid hydrocarbon storage tank and separation distances, in accordance with the 

API 650 guideline. 

Both the wall and the roof were divided into small elements and the view factor 

integration was carried out for each element forming the surface of the adjacent tank 

that‎can‎both‎‘see’‎the‎flame‎and‎‘be‎seen’‎by‎the‎flame.‎It‎is‎assumed‎that‎the‎flame‎

shape for tank fires is similar to that applied to ground-level pool fires in Chapter 2. 

6.3 The Receptor Tank Modelling 

The RESPONSE model is primarily based on thermodynamic relations: it predicts 

time temperature response and the corresponding vapour space pressure of an 

adjacent tank. In addition, the model predicts the temperature gradients in the tank at 

the facing wall for the liquid and the vapour spaces and liquid temperatures. A 

serious hazardous condition is likely to occur when the pressure/vacuum relief valve 

opens and the flammable vapours are released to the surrounding atmosphere. 

The governing equations describing the interactive processes occurring between the 

fire and the tank have been solved numerically and calculations were made for 

vented tanks containing either water or gasoline. Based on the analysis of the 

calculated prediction, it is concluded that the time taken to create an escalation 

condition in an adjacent tank depends upon a number of factors including: tank size, 

separation distance, boiling point of flammable liquid stored in the tanks, water 

cooling arrangements, tank design, wind-speed and direction etc. 

Laboratory experimental work was carried out in order to investigate the interactive 

processes that occur when a storage tank is suddenly exposed to heat and also to 

compare the experimental results with the RESPONSE model predictions. A 

specially-designed experimental vessel was used to conduct tests to measure the 

response of a tank containing hydrocarbon liquids to external heat load. The 

temperatures within the liquid, the liquid surface, the vapour and the wall were 

recorded, in addition to the pressure in the vapour space. 
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6.4 Application of the Models 

The layout of storage tanks in a tank farm and the cooling water requirements have a 

major effect on the level of safety of storage tanks. These two factors can be 

considered individually or in combination, depending on the cost analysis that 

involves protection systems and the land costs. 

Engineering codes for factors such as flammable liquid classification, tank spacing 

requirements and water cooling requirements were reviewed and the real purpose of 

this was to demonstrate the variation between the engineering codes. The majority 

of codes required a minimum separation distance of 0.5D for fixed-roof tanks and 

0.3D for floating-roof tanks. Water cooling requirements were found to be highly 

variable, with the majority of the engineering codes recommending cooling water 

rates of 0.013 to 0.041 litres.m-2.s-1. 

The mathematical models developed can be run for a wide range of variables, in 

order to enable specific quantitative judgements to be obtained on the likely benefit 

of each measure on its own and in combination with other measures. The 

information obtained can be combined with the frequency of serious fire incidents 

and any likely outcomes, in order to determine the risk inherent in various tank farm 

layouts and cooling water rates. 

The models predict both thermal source intensity and the resultant pressure rise in 

adjacent tanks. A significant hazard condition is assumed to occur when the adjacent 

tank pressure/vacuum relief valve is open and flammable vapours are allowed to 

leave the storage tank. 

6.5 Future Work 

6.5.1 The Pool Fire Model 

The experimental work aimed to cover different types of fuels and weather 

conditions; however, it would be useful to broaden the scope of the experimental 

work in order to encompass the following: 

 Different types of fuels should be studied (pure and multi-component liquids) 
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 Different size of test pools. 

 Measuring the radiant heat flux in different positions around the fire, including 

upwind locations. In addition, taking measurements at positions close to the 

flame: this would provide more data for high heat fluxes 

 Using image software to analyse the flame parameters. 

The variety of data for different fire scenarios will help to highlight the pool fire 

models: the solid flame model has been proven to be the most accurate model 

among those investigated; however, there may be fuels or measuring positions 

in which it is not as accurate. In contrast, the other two models might be more 

accurate in different scenarios. 

6.5.2 The RESPONSE Model 

 An‎experimental‎study‎where‎measurements‎of‎the‎boundary‎layer’s‎flow‎and‎

temperature distribution can be taken would also be of interest. 

 Consideration of temperature gradient in the radial axis for larger tank 

diameters, taking into account the simplification of the model. 

 A detailed study of the interface between liquid and vapour. Although surface 

temperatures were recorded in this study, surface phenomena are complex, 

especially when interaction with a vapour phase is considered. For a system 

near saturation temperature, temperature gradients along the surface can 

cause vaporisation in the area near the wall. An experimental study in which 

numerous temperature measurements are made in the surface region for 

different tank diameters is probably warranted. For liquids, movement of the 

surface due to the expansion of fluid must be considered as part of such an 

investigation. 

 A detailed study of the estimation of cooling water flow rates and its effect on 

the interactive processes occurring inside an adjacent tank. 

The thesis contains a review of the previous work which has been carried out 

regarding pool fire modelling, the response of a tank exposed to radiant heat, and 

the tank spacing and cooling water international engineering codes. The information 

provided in this thesis can be used as a basis for the international engineering codes 

of storage tanks spacing and cooling water. 
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Appendices 

Appendix (1) 

i. Single Tank Incidents 

Date Location Contents Inventory Lost Cause 

13/02/1919 

Boston, 

Massachusetts, 

USA 

Molasses 12,300 Inadequate design 

12/1924 
Ponca City, 

Oklahoma 
Oil 8500 tons Brittle fracture 

17/07/1938 
Wellsville, New 

York, USA 
Oil/Naphtha 250 tons 

External fire caused 

tank to rocket 

02/1952 
Esso refinery, 

Fawley, UK 
Water Approx. 21,500 (m

3
) 

Failed during hydro-

test 

03/1952 
Esso refinery, 

Fawley, UK 
Water Approx. 21,500 (m

3
) 

Failed during hydro-

test 

1953 West Indies 

Sulphuric 

acid/cracked 

gasoline 

200 (m
3
) Internal explosion 

04/12/1957 
Meraux, Louisiana, 

USA 
Petrol 2220 (m

3
) Not known 

1968 UK Water Not reported 
Failed during hydro-

test 
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1970 Norfolk, USA Petrol 2700 (m
3
) 

Tank collapsed 

following fire caused 

by lightning 

1970 USA Slop Oil 2400 m
3
 

Internal explosion 

following lightning 

strike 

12/1970 Netherlands Fuel Oil 19,000 m
3
 

Brittle fracture 

starting at corroded 

weld 

31/01/1971 USA Crude Oil Approx. 10000 m
3
 

Brittle fracture of 

severely corroded 

much repaired tank 

1972 USA Oil 7900 m
3
 Brittle fracture 

12/1974 Japan Oil 50,000 (m
3
) 

Subsidence of base 

following addition of 

access stairway 

1976 Addyston, USA Methanol 2275 m
3
 

Internal explosion 

following lightning 

strike 

1977 Umm said, Qatar 
Refrigerated 

propane 
37,000 m

3
 

Possibility of faulty 

welding 

18/08/1977 
Geismar, Louisiana, 

USA 
Sulphuric acid Approx. 3500 tons 

Failure of corroded 

weld caused 1 (m) 

diameter hole 

12/07/1980 
Bayonne, New 

Jersey, USA 
Ethylene glycol 1400 (m

3
) 

Crack in tank 

(Cause unspecified) 

17/09/1980 
Huscatine, Iowa, 

USA 
Styrene monomer 

155 (m
3
) from 620 

(m
3
) concrete tank 

Unspecified 

01/12/1980 

Moose Jaw, 

Saskatchewan, 

USA 

Crude oil 15,900 (m
3
) Defective welding 

28/12/1980 
El Dorado, Kansas, 

USA 
Petroleum solvents 2220 (m

3
) Mechanical failure 

02/04/1983 Shuaiba, Kuwait Heavy fuel oil Not reported Storm damage 

23/12/1983 
Maryland, 

Baltimore, USA 
Sulphuric acid 1470 (m

3
) Mechanical failure 

1983 Canada Crude oil Not known Brittle fracture 

24/12/1983 USA Sulphuric acid 1800m
3
 Not reported 

27/04/1986 Colon, Panama Light crude oil 38000m
3
 Not known 

29/11/1986 Australia C4 heavy ends 28m
3
 Internal explosion 

08/01/1987 Holand Slops oil Not reported Over pressurisation 

23/02/1987 Tampa Florida, USA 
Ammonium nitrate 

solution 
2650m

3
 Not reported 
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23/06/1988 Bombay India Reduced crude oil 3300 tons 

Adverse chemical 

reaction caused, 

fire, boilover and 

tank rupture 

1987 Lyon, France Multiple failures Not reported 

Internal explosions 

Internal explosions 

due to fire in tank 

farm 

23/06/1988 Monterrey, Mexico Petrol 4920m
3
 

Explosion following 

escape of petrol 

from corroded roof 

after overfilling 

2/01/1988 
Floreffe, 

Pennsylvania, USA 
Diesel 14, 800m

3
 

Lack of full hydro-

test for reassembled 

tank.  Or brittle 

fracture 

11/07/1988 Brisbane, Australia Petrol 3000m
3
 Mechanical failure 

8/10/1988 Louisiana USA Waste Oil 2,270m
3
 

External fire caused 

tank to split then 

explode 

8/10/1988 Louisiana USA Waste Oil 2,270m
3
 

External fire caused 

tank to split then 

explode 

6/02/1989 
New Haven, 

Connecticut, USA 
Heating Oil 

760m
3
 from 

15140m
3
 tank 

Not reported 

18/07/1989 New York, USA Crude Oil 900m
3
 Not reported 

16/05/1989 
Tampa, Florida, 

USA 
Phosphoric acid 500m

3
 Corrosion 

10/1989 
Richmond, 

California, USA 
Petrol 3200m

3
 Earthquake 

20/03/1989 Jonava, Lithuania 
Refrigerated 

ammonia 
7000 tons Roll-over 

16/02/1990 
Loveland, Colorado, 

USA 
Molasses fracture 2000 tons Possibly brittle 

30/08/1990 Seattle, USA Asphalt 860m
3
 

Over-pressurisation 

following over filling 

1992 USA 
Undisclosed 

flammable liquid 
Nil (tank empty) 

Ignition of 

flammable vapour 

in tank by external 

welding 
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1993 
El Segundo 

California, USA  
Fuel oil 830 tons Not known 

11/05/1993 Fawley, UK Bunker oil 20,000 tons 
Not known (4 m spilt 

opened in shell) 

1994 USA 
Petroleum-based 

sludge 
Not specified Internal explosion 

3/03/1995 
Wilmington, Los, 

Angeles, USA 
Asphalt 14,000m

3
 Internal explosion 

10/10/1995 
Immingham, 

Humberside UK 

Ammonium nitrate 

solution 
3500 tons Corrosion 

8/04/1997 
Albany, New York, 

USA 
Hydrochloric acid 5700 gallons 

Over-pressurisation 

following over filling 

21/09/1977 Alberta, Canada Hydrochloric, acid 64m
3
 Fractured weld 

28/05/1998 Harrisburg, USA 
Ammonium 

hydroxide solution 
Not reported Not reported 

17/07/2001 Delaware, USA 
Petrol /sulphuric 

acid mixture 

1.1 million (US?) 

gallons 

Welding sparks 

ignited flammable 

vapours inside 

badly corroded tank 

2002 
Friendswood, 

Texas, USA 

Lubricating oil and 

other petroleum 

products 

Not specified Bund fire 

04/03/2001 Sao Paulo, Brazil Fuel oil 
156,000 (US?) 

gallons 
Not reported 

10/2004 Hamburg, Germany Heating oil 
500m

3
 in 50,000m

3
 

tank 

Internal explosion 

as demolition 

workers started 

demolishing the 

wrong tank 

Unknown USA Naphtha 3000m
3
 

Corrosion caused 

failure of top four 

tiers 
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ii. Multiple Tank Incidents 

Date Location Contents 

Inventory Lost 

Cause Source 
tank 

Subsequent 
tanks 

1949 
Perth Amboy, 

USA 
Asphalt 

Not 
reported 

Not reported 

Overheating of 
asphalt tank caused 

explosion 
engulfing four 

adjacent 
thanks.  One, 

containing 
Naphtha rocketed. 

1970 Louisiana, USA Creosote 
Not 

reported 
Not reported Not reported 

1977 USA Diesel 

60 m 
diameter 

tank. 
Volume not 

reported 

30 m and 55 
m diameter. 
Volume not 

reported 

Explosion in tank 
struck by lightning. 
Debris hit two other 
tanks causing failure 

1978 USA Petroleum products 
87 tanks suffered damage, 

68,000m
3
 lost 

Earthquake 

1979 USA Not reported Not reported 

Internal explosion 
occurred in one tank 
lifting entire tank off 

foundations. Ten 
minutes later a 
neighbouring 
tank exploded 

1990 Western Siberia Crude oil 
Not 

reported 

10,000 tons 
(four tank 
contents) 

Internal explosion 
following lightning 

strike 

1995 

Rouseville, 

Pennsylvania, 

USA 

Mixed waste 

flammable liquids 

Approx. 

500m
3
 

Approx. 

500m
3
 

Internal explosion 

during welding on 

tank exterior 

1997 Iowa, USA 
Ammonium 

phosphate solution 
4550m

3
 

9100m
3
 

from two 

tanks 

Defective welding 

1999 Michigan, USA 
Ammonium, 

phosphate solution 
4550m

3
 

Damage to 

three other 

tanks, 

volume lost 

not 

reported 

Defective welding 

2000 Ohio, USA Liquid fertiliser 4550m
3
 

4500m
3
 

from four 

tanks 

Defective welding 

2000 Ohio, USA 
Ammonium 

phosphate solution 
6825m3 

Approx. 

3400m
3
 

from three 

tanks 

Defective welding 

2000 Decatur, USA 
Fermenting corn 

water mixture 

500,000 

gals 

500,000 

gals 
Not reported 
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Appendix (2) 

1. Single-point Source (SOS) Model 
clear all 
maxm=0.101;     %Maximum burning rate (kg.m-2.s-1) 
kb=1.1;      % An empirical constant 
d=2.4;      % Tank diameter (m) 
g=9.8;      % Acceleration due to gravity (m2.s-1) 
wspeed=2;      %Wind-speed (m.s-1) 
aird=1.205;      %Air density )kg.m-3) 
kv=15.11e-6;     % Air kinematic viscosity  
dHc=44600000;     %Gasoline heat of combustion (J.kg-1) 
af=pi*d^2/4;     %Tank section cross area  
%------------------------------------------------------------------------------------------------------------------- 
% Target position 
c=[5,10];%[2.2,2.4,3.2,5.2,7.2,9.2,11.2];      % X distance from the pool centre (m) 
%------------------------------------------------------------------------------------------------------------------- 
m = maxm*(1-exp(-kb*d));   % Mass Burning Rate (kg.m-2.s-1) 
dm = m/(aird*(g*d)^(1/2));    % Dimensionless Burning Rate 
dws = wspeed/(g*m*d/aird)^(1/3);  % Dimensionless Wind Speed (dws>=1) 
fl = d*10.615*dm^0.305*dws^-0.03;  %(Pritchard and Binding, 1992) 
b=fl/2;      % Half of the flame length (m) 
%------------------------------------------------------------------------------------------------------------------- 
% Flame-tilt 
%------------------------------------------------------------------------------------------------------------------- 
f = wspeed^2/(g*d);    % Froude Number 
r = wspeed*d/kv;     % Reynolds Number  
theta = 0.666*(wspeed^2/g/d)^0.333*(d*wspeed/kv)^0.117; 
for i =1:89 
    theta1 = pi/180*(i-1); 
    theta2 = pi/180*i; 
    if ((tan(theta1)/cos(theta1)<= theta) && (tan(theta2)/cos(theta2)> theta)) 
        theta = theta1; 
        break 
    end 
    if i == 89 
        theta = pi/180*89; 
        break 
    end 
         
end 
theta=pi/2-theta; 
k=b*cos(theta); 
for i=1:2 
    R(i)=c(i)-k; 
end 
%------------------------------------------------------------------------------------------------------------------- 
Hrr=m*dHc*af*(1-exp(-kb*d));    % Heat release rate (W) 
xr=0.2;       % Radiation fraction 
Q=Hrr*xr;       % Total heat radiated (W) 
for i=1:2 
q(i)=Q/(4*pi*R(i)^2);            % Heat received by target (W.m-2) 
end 
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2. The RESPONSE Model 
 
global u 
global seg 
global bt 
%------------------------------------------------------------------------------------------------------------------- 
%Initial values of temperatures 
%------------------------------------------------------------------------------------------------------------------- 
tz=15+273;     % 
tinf=17+273;     % 
twg=tz;      %Hot Wall temperature (vapour space) 
twgc=tz;      %Cold Wall temperature (vapour space) 
tg=tz;      %Vapour space temperature 
ti=tz; 
tct=tz; 
tinfs=tinf; 
tinft=tinf; 
%------------------------------------------------------------------------------------------------------------------- 
input2 
tank_dimensions 
%------------------------------------------------------------------------------------------------------------------- 
%Function (Heat Flux) 
%------------------------------------------------------------------------------------------------------------------- 
qf=[0.1e3:0.0145e3:3e3]; 
qfs = qf; 
qft=qf(201); 
%------------------------------------------------------------------------------------------------------------------- 
%The Grid 
%------------------------------------------------------------------------------------------------------------------- 
n=200; 
delz = hl/(n-1); 
z=0:delz:delz*(n-1); 
yl=0.01; 
mj=40; 
dely=yl/(mj-1); 
y=0:dely:dely*(mj-1); 
delt = 1; 
tmax =60*60; 
%------------------------------------------------------------------------------------------------------------------- 
%Time Inputs 
%------------------------------------------------------------------------------------------------------------------- 
t(1)=0.0; 
timl=t(1);       %Time for liquid phase 
timg=t(1);       %Time for vapour phase 
tdftol=2.0; 
xtol=1.0e-25; 
ftol=1.0e-8; 
ntol=20; 
timpr= - 0.001 + t; 
%------------------------------------------------------------------------------------------------------------------- 
%Initial values 
%------------------------------------------------------------------------------------------------------------------- 
t1=27+273.0;      %Reference temperature 
p1=1.0132e5;      %Reference pressure 
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xlv=(251.47-377.136e-3*(ti-273))/0.739*1000; 
pv=p1.*exp((xmolv.*xlv./r).*(1.0./t1-1.0./ti)); 
xmv=(xmolv.*v./r).*pv./tg; 
xma=(xmola.*v./r).*(patm-pv)./tg; 
pa=(xma./xmola).*(r./v).*tg; 
p=pa + pv; 
tb=1.0./((1.0./t1)-(r./(xmolv.*xlv)).*log(p./p1)); 
tws = tz*ones(1,n);      %Wall temperature (liquid space) 
tc = tz*ones(1,n);      %Core liquid temperature 
Tc=tc; 
Ts=tws; 
p_=[]; 
twg_=[]; 
twgc_=[]; 
tg_=[]; 
ti_=[]; 
tb_=[]; 
dxm_=[]; 
xma_=[]; 
t_=[]; 
raz(1)=0; 
%------------------------------------------------------------------------------------------------------------------- 
%The Main Programme 
%------------------------------------------------------------------------------------------------------------------- 
while t<tmax 
    t=t+delt;    
 [tqcls,qrros,qcls]=wl(raz,epsi,tc,n,tws,tinfs,z,cps,pr,xnuc,kl,g,Beta); 
 [dtwgc,dtwg,dxmtrm,dtg,dxmi,dxmo,dxmv,dxma,ti,p,dxm]=dvg(t1,p1,ti,tinf,... 
     ep,ht,hl,diat,si,twgc,xkg,rhoalph,Betag,cvp,g,vvis,akg,arho,aBeta,... 
     cap,avis,epsi,twg,tinft,tg,cg,xma,xmola,xmolv,r,v,xlv,tct,aw,al,cpl,Cev,cpg,... 
    tdftol,xtol,ftol,ntol,qft,rcdw,cvv,cav,xmv,pvnt,avnt,cdvnt,patm,dpvnt,xl); 
 timpr=timpr + delt; 
 while( timl<timpr );   
  [twgc,twg,tg,xmv,xma,ti]=gkutta(t1,p1,ti,tinf,ep,ht,hl,diat,si,twgc,... 
      xkg,rhoalph,Betag,cvp,g,vvis,akg,arho,aBeta,cap,avis,delt,epsi,twg,... 
      tinft,tg,cg,xma,xmola, xmolv,r,v,xlv,tct,aw,al,cpl,Cev,cpg,tdftol,... 
      xtol,ftol,ntol,qft,rcdw,cvv,cav,xmv,pvnt,avnt,cdvnt,patm,dpvnt,xl); 
[kl,cp,cpl,rhoz,rho,mul,xnuc,xmolv,Beta,xl,xlv,pr]=gasprops(ti,tinf); 
  timg = timg +delt;  
    if( timg>=(timl+0.999*delt)) 
        while(timl<(timg-0.001*delt)) 
            for j = 1:mj 
                for i=1:n 
                    if tws(i)>tc(i) 
                        raz(i)=(g*Beta*(tws(i)-tc(i))*z(i)^3/xnuc^2)*pr; 
                        [yb,zb]= Grid(i,j,n,mj,delz,dely); 
%                         if raz(i,j)>0 
                        seg(i,j)=zb(i,j)*2.96*raz(i)^(-1/6)*(pr^(2/3)/(2.14+pr^(2/3)))^(-1/6)*pr^(-1/6); 
%                         else 
%                             seg(i,j)=0; 
%                         end 
                        [u,bt]=turbulent(i,j,Beta,tws,tc,g,xnuc,pr,zb,yb,seg,raz); 
                    else 
                        seg(i,j)=0; 
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                        u(i,j)=0; 
                        bt(i,j)=0; 
                        U(i)=0; 
                        pst(i)=0; 
                    end 
                end 
            end 
            umat=u'; 
            uu=mean(umat); 
            for k = 1:mj 
                for l = 1:n 
                    if seg(l,k) >0 
                        a(l,k)=0.2*pi*diat*seg(l,k); 
                        pst(l)=uu(l)*a(l,k)*rhoz; 
                        U(l)=-pst(l)/(rhoz*(pi*diat^2/4)); 
                    end 
                end 
            end 
            psttop=pst(n); 
            dltw(n)=g.*Beta.*(tws(n)-tc(n)); 
            qbndtop=c2.*dltw(n).*psttop.^(3.0./4.0); 
            
[mz,tpc,tct,dtpc]=core(tqcls,U,diat,hl,rho,n,tc,delt,cpl,psttop,qbndtop,z,pst,xll,rhoz,al); 
            [tws]=lkutta(raz,delt,epsi,tc,n,tws,tinfs,rcdw,qfs,z,cps,pr,xnuc,kl,g,Beta); 
            [tc]=rezcore(mz,z,tc,tpc,n,tz,ti,tct,tb); 
            timl=timl+delt; 
        end 
    end 
 end 
 p_=[p_,p]; 
 dxm_=[dxm_,dxm]; 
 tg_=[tg_,tg]; 
 ti_=[ti_,ti]; 
 twg_=[twg_,twg]; 
 twgc_=[twgc_,twgc]; 
 t_=[t_,t]; 
 Tc=[Tc;tc]; 
 Ts=[Ts;tws]; 
 xma_=[xma_,xma]; 
end 
%------------------------------------------------------------------------------------------------------------------- 
function[mz,tpc,tct,dtpc]=core(tqcls,U,diat,hl,rho,n,tc,delt,cpl,psttop,qbndtop,z,pst,xll,rhoz
,al) 
%  dtpc=xll*hl/(rho*cpl*pi*diat^2/4*hl)*tqcls; 
 dtpc=pi*diat^2/4/(rho*cpl*pi*diat^2/4*hl)*qbndtop; 
tct=tc(n)+delt*dtpc; 
if(psttop > 0) 
tct=tc(n)+qbndtop/(cpl*psttop);  
end 
for  k=1:n 
     tpc(k)=tc(k)+delt.*dtpc; 
end 
tpc(n+1)=tct; 
mz(1)=z(1); 
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for  j=2:n 
        mz(j)=z(j)+delt.*U(j);   
end 
mz(n+1)=z(n); 
for  i=1:n; 
        if(mz(i+1) < mz(i)) 
        return; 
        end 
end 
end 
%------------------------------------------------------------------------------------------------------------------- 

function[dtwgc,dtwg,dxmtrm,dtg,dxmi,dxmo,dxmv,dxma,ti,p,dxm]=dvg(t1,p1,ti,tinf,ep,ht,hl
,diat,si,twgc,xkg,rhoalph,Betag,cvp,g,vvis,akg,arho,aBeta,cap,avis,epsi,twg,tinft,tg,cg,xm
a,xmola,xmolv,r,v,xlv,tct,aw,al,cpl,Cev,cpg,tdftol,xtol,ftol,ntol,qft,rcdw,cvv,cav,xmv,pvnt,a
vnt,cdvnt,patm,dpvnt,xl) 
[qchr,qcvv,qcro,qrro,qcg,p,qrri,qrl,qcl,ti,dxm]=wg(xlv,t1,p1,ti,tinf,ep,ht,hl,diat,si,twgc,xkg,r
hoalph,Betag,cvp,g,vvis,akg,arho,aBeta,cap,avis,epsi,twg,tinft,tg,cg,xma,xmv,xmola,xmo
lv,r,v,tct,aw,al,cpl,Cev,cpg,tdftol,xtol,ftol,ntol,xl); 
dtwg=(qft-qrro-qrri-qcg)/(rcdw); 
dxmtrm=al.*dxm.*(cvp.*ti-cvv.*tg); 
dtg=(qrri*aw+qcg.*aw-qrl*al-qcl.*al+dxmtrm)./(xma.*cav+xmv.*cvv); 
dxmi=al.*dxm; 
dxmo=0.0; 
dxmv=dxmi; 
dxma=0.0; 
if( p>pvnt ) 
 dxmo=avnt.*cdvnt.*sqrt(2.0.*(p-patm).*(xmv+xma)./v); 
 if( p<(pvnt+dpvnt) ) 
  dxmo=dxmo.*(p-pvnt)./dpvnt; 
 end; 
 dxmv=dxmv - dxmo.*xmv./(xmv+xma); 
 dxma= - dxmo.*xma./(xmv+xma); 
 dtg=dtg - dxmo.*p.*v./((xmv+xma).*(xma.*cav+xmv.*cvv)); 
end 
dtwgc = (qchr+qcvv-qcro)/rcdw; 
end 
function [dtws]=dvl(raz,epsi,tc,n,tws,tinfs,rcdw,qfs,z,cps,pr,xnuc,kl,g,Beta) 
 [tqcls,qrros,qcls]=wl(raz,epsi,tc,n,tws,tinfs,z,cps,pr,xnuc,kl,g,Beta); 
for k=1: n 
 dtws(k)=(qfs(k)-qrros(k)-qcls(k))./(rcdw); 
end 
end 
%------------------------------------------------------------------------------------------------------------------- 

function [dxm]=evap(tg,ti,Cev,cpg,xleff,qrl,tdftol,xtol,ftol,ntol) 
if ((tg-ti)>=0) 
    tdiff = (tg-ti); 
else 
    tdiff=0; 
end 
ay=Cev.*tdiff.^(1.0./3.0); 
by=cpg.*tdiff./xleff; 
cy=qrl./xleff; 
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if( tdiff<tdftol )    
dxm=cy; 
return 
end 
 [xy,i1fl,i2fl]=evnewt(ay,xtol,by,cy,ftol,ntol); 
 dxm=xy; 
 if((i1fl+i2fl)>=ntol) 
     return     
 end  
end 
%------------------------------------------------------------------------------------------------------------------- 

function [xy,i1fl,i2fl]=evnewt(ay,xtol,by,cy,ftol,ntol) 
if( ay>xtol ) 
 avar=ay.*sqrt(by.*cy./(ay+ay.*by+by.*cy)); 
 xy=cy + max(avar,0.99.*ftol); 
else 
 xy=cy + 0.99.*ftol; 
end 
i1fl=cy; 
i2fl=cy; 
for k=1: ntol    
 f=xy - ay.*log(1.0+by.*xy./(xy-cy)); 
 df=1.0 + ay.*((by.*cy./((1.0+by).*(xy-cy)+by.*cy))./(xy-cy)); 
 dx=f./df; 
 if( f>0.0 )    
  i1fl=i1fl + 1; 
  if((xy-cy)<ftol ) 
   break 
  end 
    dx=min(dx,0.5.*(xy-cy)); 
 else   
  i2fl=i2fl + 1; 
 end 
 if(abs(f)<ftol ) 
  break; 
 end 
 xy=xy - dx; 
end 
end 
%------------------------------------------------------------------------------------------------------------------- 

function[kl,cp,cpl,rhoz,rho,mul,xnuc,xmolv,Beta,xl,xlv,pr]=gasprops(ti,tinf) 
aa=66e-5; 
bb = (-15.4+19*0.739)*1e-7; 
kl=(0.12-8.66e-5*(ti-273))/0.739; 
cp=(1.685+3.4e-3*(ti-273))/0.739*1000; 
cpl=cp; 
rhoz=719.7-aa*(ti-tinf)+bb*(ti-tinf)^2; 
rho=rhoz; 
fr=ti*9/5-459.67; 
mul=exp(3.518-0.01591*fr-1.734e-5*fr^2)*0.001; 
xnuc=mul/rho; 
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xmolv=42.965*(ti^1.26007*0.739^4.98308)*(exp(2.097e-4*ti-7.78712*0.739+2.08476e-
3*ti*0.739));                                                          %Liquid molecular weight 
Beta=0.000950;                                                   %Liquid thermal expansion coefficient 
xl=(251.47-377.136e-3*(ti-273))/0.739*1000;      %Liquid latent heat of evaporation 
xlv=xl; 
pr=cp*mul/kl;                                                       %Prandtl Number 
end 
%------------------------------------------------------------------------------------------------------------------- 

function 
[twgc,twg,tg,xmv,xma,ti]=gkutta(t1,p1,ti,tinf,ep,ht,hl,diat,si,twgc,xkg,rhoalph,Betag,cvp,g,
vvis,akg,arho,aBeta,cap,avis,delt,epsi,twg,tinft,tg,cg,xma,xmola,xmolv,r,v,xlv,tct,aw,al,cpl
,Cev,cpg,tdftol,xtol,ftol,ntol,qft,rcdw,cvv,cav,xmv,pvnt,avnt,cdvnt,patm,dpvnt,xl) 
vgy(1)=twg; 
vgy(2)=tg; 
vgy(3)=xmv; 
vgy(4)=xma; 
vgy(5)=twgc; 
h=delt; 
for k=1: 5; 
 v1(k)=vgy(k); 
end 
 
[dtwgc,dtwg,dxmtrm,dtg,dxmi,dxmo,dxmv,dxma,ti,p,dxm]=dvg(t1,p1,ti,tinf,ep,ht,hl,diat,si,t
wgc,xkg,rhoalph,Betag,cvp,g,vvis,akg,arho,aBeta,cap,avis,epsi,twg,tinft,tg,cg,xma,xmola
,xmolv,r,v,xlv,tct,aw,al,cpl,Cev,cpg,tdftol,xtol,ftol,ntol,qft,rcdw,cvv,cav,xmv,pvnt,avnt,cdvn
t,patm,dpvnt,xl); 
dgvy(1)=dtwg; 
dgvy(2)=dtg; 
dgvy(3)=dxmv; 
dgvy(4)=dxma; 
dgvy(5)=dtwgc; 
for k=1: 5; 
 s(k)=dgvy(k); 
 vgy(k)=v1(k) + dgvy(k).*h./2.0; 
end 
 
[dtwgc,dtwg,dxmtrm,dtg,dxmi,dxmo,dxmv,dxma,ti,p,dxm]=dvg(t1,p1,ti,tinf,ep,ht,hl,diat,si,t
wgc,xkg,rhoalph,Betag,cvp,g,vvis,akg,arho,aBeta,cap,avis,epsi,twg,tinft,tg,cg,xma,xmola
,xmolv,r,v,xlv,tct,aw,al,cpl,Cev,cpg,tdftol,xtol,ftol,ntol,qft,rcdw,cvv,cav,xmv,pvnt,avnt,cdvn
t,patm,dpvnt,xl); 
dgvy(1)=dtwg; 
dgvy(2)=dtg; 
dgvy(3)=dxmv; 
dgvy(4)=dxma; 
dgvy(5)=dtwgc; 
for k=1: 5; 
 s(k)=s(k) + 2.0.*dgvy(k); 
 vgy(k)=v1(k) + dgvy(k).*h./2.0; 
end 
 
[dtwgc,dtwg,dxmtrm,dtg,dxmi,dxmo,dxmv,dxma,ti,p,dxm]=dvg(t1,p1,ti,tinf,ep,ht,hl,diat,si,t
wgc,xkg,rhoalph,Betag,cvp,g,vvis,akg,arho,aBeta,cap,avis,epsi,twg,tinft,tg,cg,xma,xmola
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,xmolv,r,v,xlv,tct,aw,al,cpl,Cev,cpg,tdftol,xtol,ftol,ntol,qft,rcdw,cvv,cav,xmv,pvnt,avnt,cdvn
t,patm,dpvnt,xl); 
dgvy(1)=dtwg; 
dgvy(2)=dtg; 
dgvy(3)=dxmv; 
dgvy(4)=dxma; 
dgvy(5)=dtwgc; 
for k=1: 5; 
 s(k)=s(k) + 2.0.*dgvy(k); 
 vgy(k)=v1(k) + dgvy(k).*h; 
end;  
[dtwgc,dtwg,dxmtrm,dtg,dxmi,dxmo,dxmv,dxma,ti,p,dxm]=dvg(t1,p1,ti,tinf,ep,ht,hl,diat,si,t
wgc,xkg,rhoalph,Betag,cvp,g,vvis,akg,arho,aBeta,cap,avis,epsi,twg,tinft,tg,cg,xma,xmola
,xmolv,r,v,xlv,tct,aw,al,cpl,Cev,cpg,tdftol,xtol,ftol,ntol,qft,rcdw,cvv,cav,xmv,pvnt,avnt,cdvn
t,patm,dpvnt,xl); 
dgvy(1)=dtwg; 
dgvy(2)=dtg; 
dgvy(3)=dxmv; 
dgvy(4)=dxma; 
dgvy(5)=dtwgc; 
for k=1: 5; 
 vgy(k)=v1(k) +(s(k)+dgvy(k)).*h./6.0; 
end 
twg=vgy(1); 
tg=vgy(2); 
xmv=vgy(3); 
xma=vgy(4); 
twgc=vgy(5); 
end 
%INPUT2 
%-------------------------------------------------------------------------------------------------------------------
%Water Version 
%------------------------------------------------------------------------------------------------------------------- 
%Materials' properties 
%------------------------------------------------------------------------------------------------------------------- 
si=5.67e-8;     %Stephen constant 
ep=0.9;      %Wall emissivity 
epsi=ep.*si;      % 
patm=1.0132e5;     %Atmospheric pressure 
r=8.31447e3 ;      %Universal gas constant 
ppsi=1.4504e-4;     % 
g=9.8;       %Acceleration due to Gravity   
%-------------------------------------------------------------------------------------------------------------------
xmola=29.0;     %Air molecular weight 
cav=7.953e2;     %Air specific heat at constant volume 
akg= 0.0314;     % Air thermal conductivity 
arho=0.946;     % Air density 
aBeta=2.68e-3; 
cap= 1009;     % Air specific heat capacity 
avis= 2.17e-5;     % Air viscosity 
%-------------------------------------------------------------------------- 
rhoz= 719.7; 
[kl,cp,cpl,rhoz,rho,mul,xnuc,xmolv,Beta,xl,xlv,pr]=gasprops(ti,tinf); 
%-------------------------------------------------------------------------- 
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rhot=7.86e3;     %Steel density 
ct=4.9e2;      %Steel specific heat 
tt=2.5e-3;      % 
rcdw=rhot.*ct.*tt;     % 
%-------------------------------------------------------------------------- 
cvp=1.9e3;    %Vapour specific heat at constant pressure 
cvv=1.44e3;    %Vapour specific heat at constant volume 
cpg=cvp;    % 
cps=rhoz.*cp.*(xnuc.*Beta.*g./((5.3.^4).*pr.^2)).^(1.0./3.0);% 
xkg=0.001;   %Vapour thermal conductivity 
Betag=1.2e-4;   %Vapour thermal expansion coefficient 
xnug=0.00000315;  %Kinematic viscosity of the vapour 
vvis=0.0000126;   %Dynamic viscosity of the vapour 
rhoalph=3.5;     %Vapour density 
calph=0.711e3;     % 
alphg=xkg./(rhoalph.*calph);   %Vapour thermal diffusivity  
%-------------------------------------------------------------------------- 
c1ht=0.06;      %Constant 
c1hi=0.06;       
%Constant 
cg=xkg.*c1ht.*(Betag.*g./(xnug.*alphg)).^(1.0./3.0); 
Cev=xkg.*c1hi.*((Betag.*g./(xnug.*alphg)).^(1.0./3.0))./cpg; 
c0=rhoz*xnuc.^(1.0./12.0)/(0.937*5.3^(4/3)*pr^(1/6));   % 
c2=(0.937.*(xnuc.^(1.0./4.0)).*cp./(pr.^(0.5)))/(Beta.*g);   % 
c1vs=0.11;         % 
c1hb=0.06;     % 
%-------------------------------------------------------------------------------------------------------------------
%Venting Inputs 
%-------------------------------------------------------------------------------------------------------------------
pvnt= 1.8e5;     %1.4269e5; 
dpvnt=0.0; 
avnt=pi*0.5^2/4;     %pi*0.014^2/4;%4.561e-5; 
cdvnt=0.3;      %0.002; 
%------------------------------------------------------------------------------------------------------------------- 

function [tws]=lkutta(raz,delt,epsi,tc,n,tws,tinfs,rcdw,qfs,z,cps,pr,xnuc,kl,g,Beta) 
for k=1: n 
 vly(k)=tws(k); 
end;  
h=delt; 
for k=1: n 
 v1(k)=vly(k); 
end 
[dtws]=dvl(raz,epsi,tc,n,tws,tinfs,rcdw,qfs,z,cps,pr,xnuc,kl,g,Beta); 
for k=1: n 
 dlvy(k)=dtws(k); 
end 
for k=1: n 
 s(k)=dlvy(k); 
 vly(k)=v1(k) + dlvy(k).*h./2.0; 
end 
[dtws]=dvl(raz,epsi,tc,n,tws,tinfs,rcdw,qfs,z,cps,pr,xnuc,kl,g,Beta); 
for k=1: n 
 dlvy(k)=dtws(k); 
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end 
for k=1: n 
 s(k)=s(k) + 2.0.*dlvy(k); 
 vly(k)=v1(k) + dlvy(k).*h./2.0; 
end 
[dtws]=dvl(raz,epsi,tc,n,tws,tinfs,rcdw,qfs,z,cps,pr,xnuc,kl,g,Beta); 
for k=1: n 
 dlvy(k)=dtws(k); 
end 
for k=1: n 
 s(k)=s(k) + 2.0.*dlvy(k); 
 vly(k)=v1(k) + dlvy(k).*h; 
end 
[dtws]=dvl(raz,epsi,tc,n,tws,tinfs,rcdw,qfs,z,cps,pr,xnuc,kl,g,Beta); 
for k=1: n 
 dlvy(k)=dtws(k); 
end 
for k=1: n 
 vly(k)=v1(k) +(s(k)+dlvy(k)).*h./6.0; 
end 
for k=1: n  
 tws(k)=vly(k); 
end 
end 
%------------------------------------------------------------------------------------------------------------------- 

function[qchr,qcvv,qcro,qrro,qcg,p,qrri,qrl,qcl,ti,dxm]=wg(xlv,t1,p1,ti,tinf,ep,ht,hl,diat,si,tw
gc,xkg,rhoalph,Betag,cvp,g,vvis,akg,arho,aBeta,cap,avis,epsi,twg,tinft,tg,cg,xma,xmv,xm
ola,xmolv,r,v,tct,aw,al,cpl,Cev,cpg,tdftol,xtol,ftol,ntol,xl) 
qrro=epsi.*(twg.^4-tinft.^4); 
if ((twg-tg)>0) 
    tdiff = (twg-tg); 
else 
    tdiff = 0; 
end 
qcg=cg.*tdiff.^(4.0./3.0); 
pa=(xma./xmola).*(r./v).*tg; 
pv=(xmv./xmolv).*(r./v).*tg; 
p=pa + pv; 
tb=1.0./((1.0./t1)-(r./(xmolv.*xlv)).*log(p./p1)); 
[ti]=surftemp(tg,tct,tb); 
qrri=epsi.*(twg.^4-ti.^4); 
qrl=qrri.*aw/al; 
xleff=xl + cpl.*(ti-tct); 
[dxm]=evap(tg,ti,Cev,cpg,xleff,qrl,tdftol,xtol,ftol,ntol); 
qcl=dxm.*xleff - qrl; 
  
ac = (ht-hl)*pi*diat-aw; 
Atot = al*2+(ht-hl)*pi*diat; 
epson = (aw+ac)/Atot*ep+al; 
qchr = si*ep^2*aw*ac/(epson*Atot)*(twg^4-twgc^4); 
  
hcv = 0.105*(xkg^2*rhoalph^2*Betag*cvp*g*(tg-twgc)/vvis)^(1/3); 
qcvv = hcv*(tg-twgc); 



 Appendices  

30 

  
hair = 0.105*(akg^2*arho^2*aBeta*cap*g*(twgc-tinf)/avis)^(1/3); 
qcro = hair*(twgc-tinf); 
  
end 
%------------------------------------------------------------------------------------------------------------------- 

function [tqcls,qrros,qcls]=wl(raz,epsi,tc,n,tws,tinfs,z,cps,pr,xnuc,kl,g,Beta) 
for k=1: n     
 qrros(k)=epsi.*(tws(k).^4-tinfs.^4); 
 if  tws(k)-tc(k)> 0 
    tdiff(k)= tws(k)-tc(k); 
else 
    tdiff(k) = 0; 
 end 
   qcls(k)=cps.*tdiff(k).^(4.0./3.0); 
end 
tqcls=sum(qcls)/n; 
end 
%------------------------------------------------------------------------------------------------------------------- 

3. The FDS input file used for the experiment of gasoline pool fire is below 

&HEAD CHID = 'gasoline_test_1', TITLE = 'Simulation of a Gasoline pool fire Test (1)'/ 

&MISC TMPA  = 15. 

      HUMIDITY  = 74./ 

&TIME T_END = 250./ 

&MESH IJK = 150, 70, 100, XB = -3.50, 11.50,-3.00, 4.00, 0.00, 10.00/ 

&VENT MB = 'XMIN', SURF_ID = 'WIND'/ 

&VENT MB = 'XMAX', SURF_ID = 'OPEN'/ 

&VENT MB = 'YMIN', SURF_ID ='OPEN'/ 

&VENT MB = 'YMAX', SURF_ID = 'OPEN'/ 

&VENT MB = 'ZMAX', SURF_ID = 'OPEN'/ 

&VENT MB = 'ZMIN', SURF_ID = 'CONCRETE_FLOOR'/ 

--------------------------------------------------------------------------------------------------------------------------- 

&REAC ID='GASOLINE', 

      C=8.00, 

      H=18.00, 

      O=0.00, 

      N=0.00, 

      HEAT_OF_COMBUSTION=4.6E4, 

      CO_YIELD=0.0100, 

      SOOT_YIELD=0.03/ 

&MATL ID='STEEL', 
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      FYI='Drysdale, Intro to Fire Dynamics - ATF NIST Multi-Floor Validation', 

      SPECIFIC_HEAT=0.4600, 

      CONDUCTIVITY=45.80, 

      DENSITY=7.8500000E003, 

      EMISSIVITY=0.95/ 

&MATL ID  = 'CONCRETE' 

      DENSITY  = 2200 

      CONDUCTIVITY = 1.2 

      SPECIFIC_HEAT = 0.88/ 

&SURF ID='GASOLINE POOL', 

      COLOR='RED', 

 HRRPUA= 4E3 

&SURF ID='steel plate', 

      MATL_ID(1,1)='STEEL', 

      MATL_MASS_FRACTION(1,1)=1.00, 

  COLOR = BLACK, 

 THICKNESS(1)  =1.E-3/ 

&SURF ID  = 'CONCRETE_FLOOR' 

      MATL_ID  = 'CONCRETE' 

      COLOR  = GRAY 

      THICKNESS = 0.15 

      BACKING  = 'EXPOSED'/ 

--------------------------------------------------------------------------------------------------------------------------- 

&SURF ID='WIND',VEL=-1/ 

&OBST XB = -0.4, 1.7,-0.4, 1.7, 0.4, 1.0, SURF_ID6 = 'steel plate', 'steel plate', 'steel plate', 

'steel plate', 'steel plate', 'GASOLINE POOL'/  

&DEVC ID='Rad insid fire', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=1.60,0.65,1.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad 2.2M1', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=2.70,0.65,1.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad 2.4M2', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=2.90,0.65,1.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad 3.2M3', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=3.70,0.65,1.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad 5.2M4', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=5.70,0.65,1.5, 

ORIENTATION=-1.00,0.00,0.00/ 
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&DEVC ID='Rad 7.2M5', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=7.70,0.65,1.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad 9.2M6', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=9.70,0.65,1.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad 11.2M7',QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=11.10,0.65,1.5,ORIENTATION=-1.00,0.00,0.00/ 

&SLCF PBY = 0.65, QUANTITY = 'VELOCITY',VECTOR=.TRUE./ 

&SLCF PBY = 0.65, QUANTITY = 'TEMPERATURE'/ 

&SLCF PBX = 0.00, QUANTITY = 'TEMPERATURE'/ 

&BNDF QUANTITY = 'RADIATIVE HEAT FLUX' 

&TAIL/ 

4. The FDS Input-file for the Tank-farm fire 

&HEAD CHID='Tank Fire',TITLE='Tank Fire' / 

&MESH IJK=160,160,135, XB=-6,26,-6,26,0,27 / 

&TIME T_END = 3600./ 

&MISC SURF_DEFAULT='STEEL' 

  U0=1.0  

   TMPA   = 20. 

      HUMIDITY  = 50./ 

&REAC ID='GASOLINE', 

      C=8.00, 

      H=18.00, 

      O=0.00, 

      N=0.00, 

      HEAT_OF_COMBUSTION=4.6E4, 

      CO_YIELD=0.01, 

      SOOT_YIELD=0.08/ 

&SURF ID = 'STEEL',COLOR = 'SKY BLUE'/ 

&SURF ID='EARTH',COLOR='SIENNA' / 

&SURF ID='WIND',VEL=-1.,PROFILE='ATMOSPHERIC',Z0=7.0,PLE=0.3 / 

&SURF ID='GASOLINE POOL', 

      COLOR='RED', 

      HRRPUA=2.5E3/ 

&OBST XB=   5,4.75,1,-1,0, 7,             SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=4.75,4.5 ,2,-2,0, 7,             SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=4.5,4.25,2.75,-2.75,  0., 7,     SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 
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&OBST XB=4.25,4,3.,-3.,  0., 7,           SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=4,3.75,3.25,-3.25,  0., 7,       SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=3.75,3.5,3.5,-3.5,  0., 7,       SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=3.5,3.25,3.75,-3.75,  0., 7,     SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=3.25,3,3.75,-3.75,  0., 7,       SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=3,2.75,4,-4,  0., 7,             SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=2.75,2.5,4.,-4.,  0., 7,         SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=2.5,2.25,4.25,-4.25,  0., 7,     SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=2.25,2.,4.25,-4.25,  0., 7,      SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=2.,1.75,4.5,-4.5,  0., 7,        SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=1.75,1.5,4.5,-4.5,  0., 7,       SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=1.5,1.25,4.75,-4.75,  0., 7,     SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=1.25,1.,5,-5.,  0., 7,           SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=1.,0.75,5,-5.,  0., 7,           SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=0.75,0.5,5,-5.,  0., 7,          SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=.5,.25,5,-5.,  0., 7,            SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=.25,0,5,-5.,  0., 7,             SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

--------------------------------------------------------------------------------------------------------------------------- 

&OBST XB=0,-.25,5,-5,  0, 7,              SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-0.25,-0.5,5,-5,  0., 7,         SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-0.5,-0.75,5,-5,  0., 7,         SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-.75,-1,5,-5,  0., 7,            SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-1,-1.25,5,-5,  0., 7,           SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-1.25,-1.5,4.75,-4.75,  0., 7,   SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-1.5,-1.75,4.5,-4.5,  0., 7,     SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-1.75,-2.,4.5,-4.5,  0., 7,      SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-2,-2.25,4.25,-4.25,  0., 7,     SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-2.25,-2.5,4.25,-4.25,  0., 7,   SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-2.5,-2.75,4.,-4.,  0., 7,       SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-2.75,-3,4.,-4.,  0., 7,         SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-3,-3.25,3.75,-3.75,  0., 7,     SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-3.25,-3.5,3.75,-3.75,  0., 7,   SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-3.5,-3.75,3.5,-3.5,  0., 7,     SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-3.75,-4,3.25,-3.25,  0., 7,     SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-4,-4.25,3,-3.,  0., 7,          SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-4.25,-4.5,2.75,-2.75,  0., 7,   SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 
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&OBST XB=-4.5,-4.75,2,-2.,  0., 7,        SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

&OBST XB=-4.75,-5.,1,-1,  0., 7,          SURF_IDS='GASOLINE POOL','STEEL','STEEL' / 

--------------------------------------------------------------------------------------------------------------------------- 

&OBST XB=25,24.75,1,-1,  0, 7 / 

&OBST XB=24.75,24.5,2,-2,  0., 7 / 

&OBST XB=24.5,24.25,2.75,-2.75,  0., 7 / 

&OBST XB=24.25,24,3.,-3.,  0., 7/ 

&OBST XB=24,23.75,3.25,-3.25,  0., 7 / 

&OBST XB=23.75,23.5,3.5,-3.5,  0., 7 / 

&OBST XB=23.5,23.25,3.75,-3.75,  0., 7 / 

&OBST XB=23.25,23,3.75,-3.75,  0., 7 / 

&OBST XB=23,22.75,4,-4,  0., 7 / 

&OBST XB=22.75,22.5,4.,-4.,  0., 7 / 

&OBST XB=22.5,22.25,4.25,-4.25,  0., 7 / 

&OBST XB=22.25,22.,4.25,-4.25,  0., 7 / 

&OBST XB=22.,21.75,4.5,-4.5,  0., 7 / 

&OBST XB=21.75,21.5,4.5,-4.5,  0., 7 / 

&OBST XB=21.5,21.25,4.75,-4.75,  0., 7 / 

&OBST XB=21.25,21.,5,-5.,  0., 7 / 

&OBST XB=21.,20.75,5,-5.,  0., 7 / 

&OBST XB=20.75,20.5,5,-5.,  0., 7/ 

&OBST XB=20.5,20.25,5,-5.,  0., 7 / 

&OBST XB=20.25,20,5,-5.,  0., 7 / 

--------------------------------------------------------------------------------------------------------------------------- 

&OBST XB=20,19.75,5,-5,  0, 7 / 

&OBST XB=19.75,19.5,5,-5,  0., 7/ 

&OBST XB=19.5,19.25,5,-5,  0., 7/ 

&OBST XB=19.25,19,5,-5,  0., 7 / 

&OBST XB=19,18.75,5,-5,  0., 7 / 

&OBST XB=18.75,18.5,4.75,-4.75,  0., 7 / 

&OBST XB=18.5,18.25,4.5,-4.5,  0., 7/ 

&OBST XB=18.25,18,4.5,-4.5,  0., 7/ 

&OBST XB=18,17.75,4.25,-4.25,  0., 7/ 

&OBST XB=17.75,17.5,4.25,-4.25,  0., 7/ 

&OBST XB=17.5,17.25,4.,-4.,  0., 7 / 

&OBST XB=17.25,17,4.,-4.,  0., 7/ 
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&OBST XB=17,16.75,3.75,-3.75,  0., 7 / 

&OBST XB=16.75,16.5,3.75,-3.75,  0., 7/ 

&OBST XB=16.5,16.25,3.5,-3.5,  0., 7/ 

&OBST XB=16.25,16,3.25,-3.25,  0., 7 / 

&OBST XB=16,15.75,3,-3.,  0., 7/ 

&OBST XB=15.75,15.5,2.75,-2.75,  0., 7/ 

&OBST XB=15.5,15.25,2,-2.,  0., 7 / 

&OBST XB=15.15,20.,1,-1,  0., 7 / 

--------------------------------------------------------------------------------------------------------------------------- 

&OBST XB=5,4.75,21,19,  0, 7 / 

&OBST XB=4.75,4.5,22,18,  0., 7/ 

&OBST XB=4.5,4.25,22.75,17.75,  0., 7 / 

&OBST XB=4.25,4,23,17.,  0., 7/ 

&OBST XB=4,3.75,23.25,16.75,  0., 7/ 

&OBST XB=3.75,3.5,23.5,16.5,  0., 7 / 

&OBST XB=3.5,3.25,23.75,16.25,  0., 7/ 

&OBST XB=3.25,3,23.75,16.25,  0., 7/ 

&OBST XB=3,2.75,24,16,  0., 7, / 

&OBST XB=2.75,2.5,24.,16.,  0., 7 / 

&OBST XB=2.5,2.25,24.25,15.75,  0., 7/ 

&OBST XB=2.25,2.,24.25,15.75,  0., 7 / 

&OBST XB=2.,1.75,24.5,15.5,  0., 7 / 

&OBST XB=1.75,1.5,24.5,15.5,  0., 7 / 

&OBST XB=1.5,1.25,24.75,15.25,  0., 7 / 

&OBST XB=1.25,1.,25,15.,  0., 7 / 

&OBST XB=1.,0.75,25,15.,  0., 7 / 

&OBST XB=0.75,0.5,25,15.,  0., 7 / 

&OBST XB=.5,.25,25,15.,  0., 7 / 

&OBST XB=.25,0,25,15.,  0., 7 / 

--------------------------------------------------------------------------------------------------------------------------- 

&OBST XB=0,-.25,25,15,  0, 7 / 

&OBST XB=-0.25,-0.5,25,15,  0., 7 / 

&OBST XB=-0.5,-0.75,25,15,  0., 7 / 

&OBST XB=-.75,-1,25,15,  0., 7 / 

&OBST XB=-1,-1.25,25,15,  0., 7 / 

&OBST XB=-1.25,-1.5,24.75,15.25,  0., 7/ 
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&OBST XB=-1.5,-1.75,24.5,15.5,  0., 7 / 

&OBST XB=-1.75,-2.,24.5,15.5,  0., 7 / 

&OBST XB=-2,-2.25,24.25,15.75,  0., 7 / 

&OBST XB=-2.25,-2.5,24.25,15.75,  0., 7 / 

&OBST XB=-2.5,-2.75,24.,16.,  0., 7 / 

&OBST XB=-2.75,-3,24.,16.,  0., 7/ 

&OBST XB=-3,-3.25,23.75,16.25,  0., 7/ 

&OBST XB=-3.25,-3.5,23.75,16.25,  0., 7 / 

&OBST XB=-3.5,-3.75,23.5,16.5,  0., 7 / 

&OBST XB=-3.75,-4,23.25,16.75,  0., 7 / 

&OBST XB=-4,-4.25,23,17.,  0., 7/ 

&OBST XB=-4.25,-4.5,22.75,17.25,  0., 7 / 

&OBST XB=-4.5,-4.75,22,18.,  0., 7 / 

&OBST XB=-4.75,-5.,21,19,  0., 7 / 

--------------------------------------------------------------------------------------------------------------------------- 

&OBST XB=25,24.75,21,19,  0, 7 / 

&OBST XB=24.75,24.5,22,18,  0., 7/ 

&OBST XB=24.5,24.25,22.75,17.75,  0., 7 / 

&OBST XB=24.25,24,23,17.,  0., 7/ 

&OBST XB=24,23.75,23.25,16.75,  0., 7/ 

&OBST XB=23.75,23.5,23.5,16.5,  0., 7 / 

&OBST XB=23.5,23.25,23.75,16.25,  0., 7/ 

&OBST XB=23.25,23,23.75,16.25,  0., 7/ 

&OBST XB=23,22.75,24,16,  0., 7, / 

&OBST XB=22.75,22.5,24.,16.,  0., 7 / 

&OBST XB=22.5,22.25,24.25,15.75,  0., 7/ 

&OBST XB=22.25,22.,24.25,15.75,  0., 7 / 

&OBST XB=22.,21.75,24.5,15.5,  0., 7 / 

&OBST XB=21.75,21.5,24.5,15.5,  0., 7 / 

&OBST XB=21.5,21.25,24.75,15.25,  0., 7 / 

&OBST XB=21.25,21.,25,15.,  0., 7 / 

&OBST XB=21.,20.75,25,15.,  0., 7 / 

&OBST XB=20.75,20.5,25,15.,  0., 7 / 

&OBST XB=20.5,20.25,25,15.,  0., 7 / 

&OBST XB=20.25,20,25,15.,  0., 7 / 

--------------------------------------------------------------------------------------------------------------------------- 
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&OBST XB=20,19.75,25,15,  0, 7 / 

&OBST XB=19.75,19.5,25,15,  0., 7 / 

&OBST XB=19.5,19.25,25,15,  0., 7 / 

&OBST XB=19.25,19,25,15,  0., 7 / 

&OBST XB=19,18.75,25,15,  0., 7 / 

&OBST XB=18.75,18.5,24.75,15.25,  0., 7/ 

&OBST XB=18.5,18.25,24.5,15.5,  0., 7 / 

&OBST XB=18.25,18,24.5,15.5,  0., 7 / 

&OBST XB=18,17.75,24.25,15.75,  0., 7 / 

&OBST XB=17.75,17.5,24.25,15.75,  0., 7 / 

&OBST XB=17.5,17.25,24.,16.,  0., 7 / 

&OBST XB=17.25,17,24,16.,  0., 7/ 

&OBST XB=17,16.75,23.75,16.25,  0., 7/ 

&OBST XB=16.75,16.5,23.75,16.25,  0., 7 / 

&OBST XB=16.5,16.25,23.5,16.5,  0., 7 / 

&OBST XB=16.25,16,23.25,16.75,  0., 7 / 

&OBST XB=16,15.75,23,17.,  0., 7/ 

&OBST XB=15.75,15.5,22.75,17.25,  0., 7 / 

&OBST XB=15.5,15.25,22,18.,  0., 7 / 

&OBST XB=15.25,15,21,19,  0., 7 / 

--------------------------------------------------------------------------------------------------------------------------- 

&VENT PBX=-6.0,SURF_ID='WIND',COLOR='INVISIBLE' / 

&VENT PBY=-6.0 ,SURF_ID='OPEN' / 

&VENT PBY=26.0,SURF_ID='OPEN' / 

&VENT PBX=26.0 ,SURF_ID='OPEN' / 

&VENT PBZ=27.0 ,SURF_ID='OPEN' / 

&VENT PBZ=0.0,SURF_ID='EARTH' / 

--------------------------------------------------------------------------------------------------------------------------- 

&DEVC ID='Rad(1WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,0, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(2WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,0.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(3WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,1, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(4WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,1.5, 

ORIENTATION=-1.00,0.00,0.00/ 
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&DEVC ID='Rad(5WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,2, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(6WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,2.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(7WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,3, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(8WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,3.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(9WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,4, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(10WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,4.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(11WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(12WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,5.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(13WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,6, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(14WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,6.5, 

ORIENTATION=-1.00,0.00,0.00/ 

&DEVC ID='Rad(15WB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=14.99,0,7, 

ORIENTATION=-1.00,0.00,0.00/ 

--------------------------------------------------------------------------------------------------------------------------- 

&DEVC ID='Rad(1RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=15,0,7, 

ORIENTATION=-0.342,0.00,0.93969/ 

&DEVC ID='Rad(2RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=15.5,0,7.182, 

ORIENTATION=-0.342,0.00,0.93969/ 

&DEVC ID='Rad(3RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16,0,7.364, 

ORIENTATION=-0.342,0.00,0.93969/ 

&DEVC ID='Rad(4RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.5,0,7.546, 

ORIENTATION=-0.342,0.00,0.93969/ 

&DEVC ID='Rad(5RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=17,0,7.728, 

ORIENTATION=-0.342,0.00,0.93969/ 

&DEVC ID='Rad(6RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=17.5,0,7.91, 

ORIENTATION=-0.342,0.00,0.93969/ 
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&DEVC ID='Rad(7RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=18,0,8.1, 

ORIENTATION=-0.342,0.00,0.93969/ 

&DEVC ID='Rad(8RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=18.5,0,8.274, 

ORIENTATION=-0.342,0.00,0.93969/ 

&DEVC ID='Rad(9RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=19,0,8.456, 

ORIENTATION=-0.342,0.00,0.93969/ 

&DEVC ID='Rad(10RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=19.5,0,8.64, 

ORIENTATION=-0.342,0.00,0.93969/ 

&DEVC ID='Rad(11RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=20,0,8.82, 

ORIENTATION=0.00,0.00,1.00/ 

&DEVC ID='Rad(12RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=20.5,0,8.64, 

ORIENTATION=0.342,0.00,0.93969/ 

&DEVC ID='Rad(13RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=21,0,8.456, 

ORIENTATION=0.342,0.00,0.93969/ 

&DEVC ID='Rad(14RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=21.5,0,8.274, 

ORIENTATION=0.342,0.00,0.93969/ 

&DEVC ID='Rad(15RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=22,0,8.1, 

ORIENTATION=0.342,0.00,0.93969/ 

&DEVC ID='Rad(16RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=22.5,0,7.91, 

ORIENTATION=0.342,0.00,0.93969/ 

&DEVC ID='Rad(17RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=23,0,7.728, 

ORIENTATION=0.342,0.00,0.93969/ 

&DEVC ID='Rad(18RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=23.5,0,7.546, 

ORIENTATION=0.342,0.00,0.93969/ 

&DEVC ID='Rad(19RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=24,0,7.364, 

ORIENTATION=0.342,0.00,0.93969/ 

&DEVC ID='Rad(20RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=24.5,0,7.182, 

ORIENTATION=0.342,0.00,0.93969/ 

&DEVC ID='Rad(21RB)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=25,0,7, 

ORIENTATION=0.00,0.00,1.00/ 

--------------------------------------------------------------------------------------------------------------------------- 

&DEVC ID='Rad(1WC', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,0, 

ORIENTATION=0.00,-0.70,0.70/ 

&DEVC ID='Rad(2WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,0.5, 

ORIENTATION=0.00,-0.70,0.70/ 
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&DEVC ID='Rad(3WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,1, 

ORIENTATION=0.00,-1.00,0.00/ 

&DEVC ID='Rad(4WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,1.5, 

ORIENTATION=0.00,-0.70,0.70/ 

&DEVC ID='Rad(5WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,2, 

ORIENTATION=0.00,-1.00,0.00/ 

&DEVC ID='Rad(6WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,2.5, 

ORIENTATION=0.00,-0.70,0.70/ 

&DEVC ID='Rad(7WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,3, 

ORIENTATION=0.00,-1.00,0.00/ 

&DEVC ID='Rad(8WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,3.5, 

ORIENTATION=0.00,-0.70,0.70/ 

&DEVC ID='Rad(9WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,4, 

ORIENTATION=0.00,-1.00,0.00/ 

&DEVC ID='Rad(10WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,4.5, 

ORIENTATION=0.00,-0.70,0.70/ 

&DEVC ID='Rad(11WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,5, 

ORIENTATION=0.00,-1.00,0.00/ 

&DEVC ID='Rad(12WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,5.5, 

ORIENTATION=0.00,-0.70,0.70/ 

&DEVC ID='Rad(13WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,6, 

ORIENTATION=0.00,-1.00,0.00/ 

&DEVC ID='Rad(14WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,6.5, 

ORIENTATION=0.00,-0.70,0.70/ 

&DEVC ID='Rad(15WC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,14.99,7, 

ORIENTATION=0.00,-1.00,0.00/ 

--------------------------------------------------------------------------------------------------------------------------- 

&DEVC ID='Rad(1RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,15,7, 

ORIENTATION=0,-0.342,0.93969/ 

&DEVC ID='Rad(2RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,15.5,7.182, 

ORIENTATION=0,-0.342,0.93969/ 

&DEVC ID='Rad(3RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,16,7.364, 

ORIENTATION=0,-0.342,0.93969/ 

&DEVC ID='Rad(4RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,16.5,7.546, 

ORIENTATION=0,-0.342,0.93969/ 
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&DEVC ID='Rad(5RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,17,7.728, 

ORIENTATION=0,-0.342,0.93969/ 

&DEVC ID='Rad(6RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,17.5,7.91, 

ORIENTATION=0,-0.342,0.93969/ 

&DEVC ID='Rad(7RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,18,8.1, 

ORIENTATION=0,-0.342,0.93969/ 

&DEVC ID='Rad(8RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,18.5,8.274, 

ORIENTATION=0,-0.342,0.93969/ 

&DEVC ID='Rad(9RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,19,8.456, 

ORIENTATION=0,-0.342,0.93969/ 

&DEVC ID='Rad(10RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,19.5,8.64, 

ORIENTATION=0,-0.342,0.93969/ 

&DEVC ID='Rad(11RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,20,8.82, 

ORIENTATION=0.00,0.00,1.00/ 

&DEVC ID='Rad(12RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,20.5,8.64, 

ORIENTATION=0,0.342,0.93969/ 

&DEVC ID='Rad(13RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,21,8.456, 

ORIENTATION=0,0.342,0.93969/ 

&DEVC ID='Rad(14RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,21.5,8.274, 

ORIENTATION=0,0.342,0.93969/ 

&DEVC ID='Rad(15RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,22,8.1, 

ORIENTATION=0,0.342,0.93969/ 

&DEVC ID='Rad(16RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,22.5,7.91, 

ORIENTATION=0,0.342,0.93969/ 

&DEVC ID='Rad(17RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,23,7.728, 

ORIENTATION=0,0.342,0.93969/ 

&DEVC ID='Rad(18RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,23.5,7.546, 

ORIENTATION=0,0.342,0.93969/ 

&DEVC ID='Rad(19RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,24,7.364, 

ORIENTATION=0,0.342,0.93969/ 

&DEVC ID='Rad(20RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,24.5,7.182, 

ORIENTATION=0,0.342,0.93969/ 

&DEVC ID='Rad(21RC)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=0,25,7, 

ORIENTATION=0,0.342,0.93969/ 

--------------------------------------------------------------------------------------------------------------------------- 
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&DEVC ID='Rad(1WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,0, 

ORIENTATION= -0.7,-0.7,0.00/ 

&DEVC ID='Rad(2WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,0.5, 

ORIENTATION= -0.7,-0.7,0.00/ 

&DEVC ID='Rad(3WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,1, 

ORIENTATION=-0.7,-0.7,0.00/ 

&DEVC ID='Rad(4WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,1.5, 

ORIENTATION= -0.7,-0.7,0.00/ 

&DEVC ID='Rad(5WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,2, 

ORIENTATION=-0.7,-0.7,0.00/ 

&DEVC ID='Rad(6WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,2.5, 

ORIENTATION= -0.7,-0.7,0.00/ 

&DEVC ID='Rad(7WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,3, 

ORIENTATION=-0.7,-0.7,0.00/ 

&DEVC ID='Rad(8WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,3.5, 

ORIENTATION= -0.7,-0.7,0.00/ 

&DEVC ID='Rad(9WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,4, 

ORIENTATION=-0.7,-0.7,0.00/ 

&DEVC ID='Rad(10WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,4.5, 

ORIENTATION= -0.7,-0.7,0.00/ 

&DEVC ID='Rad(11WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,5, 

ORIENTATION=-0.7,-0.7,0.00/ 

&DEVC ID='Rad(12WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,5.5, 

ORIENTATION= -0.7,-0.7,0.00/ 

&DEVC ID='Rad(13WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,6, 

ORIENTATION=-0.7,-0.7,0.00/ 

&DEVC ID='Rad(14WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,6.5, 

ORIENTATION= -0.7,-0.7,0.00/ 

&DEVC ID='Rad(15WD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.25,16.5,7, 

ORIENTATION= -0.7,-0.7,0.00/ 

--------------------------------------------------------------------------------------------------------------------------- 

&DEVC ID='Rad(1RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=16.5,16.5,7, 

ORIENTATION=-0.2418,-0.2418,0.93969/ 

&DEVC ID='Rad(2RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=16.85,16.85,7.182, ORIENTATION=-0.2418,-0.2418,0.93969/ 
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&DEVC ID='Rad(3RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=17.2,17.2,7.364, 

ORIENTATION=-0.2418,-0.2418,0.93969/ 

&DEVC ID='Rad(4RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=17.55,17.55,7.546, ORIENTATION=-0.2418,-0.2418,0.93969/ 

&DEVC ID='Rad(5RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=17.9,17.9,7.728, 

ORIENTATION=-0.2418,-0.2418,0.93969/ 

&DEVC ID='Rad(6RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=18.25,18.25,7.91, ORIENTATION=-0.2418,-0.2418,0.93969/ 

&DEVC ID='Rad(7RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=18.6,18.6,8.1, 

ORIENTATION=-0.2418,-0.2418,0.93969/ 

&DEVC ID='Rad(8RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=18.95,18.95,8.274, ORIENTATION=-0.2418,-0.2418,0.93969/ 

&DEVC ID='Rad(9RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=19.3,19.3,8.456, 

ORIENTATION=-0.2418,-0.2418,0.93969/ 

&DEVC ID='Rad(10RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=19.65,19.65,8.64, ORIENTATION=-0.2418,-0.2418,0.93969/ 

&DEVC ID='Rad(11RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=20,20,8.82, 

ORIENTATION=0,0,1/ 

&DEVC ID='Rad(12RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=20.35,20.35,8.64, ORIENTATION=0.2418,0.2418,0.93969/ 

&DEVC ID='Rad(13RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=20.7,20.7,8.456, ORIENTATION=0.2418,0.2418,0.93969/ 

&DEVC ID='Rad(14RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=21.05,21.05,8.274, ORIENTATION=0.2418,0.2418,0.93969/ 

&DEVC ID='Rad(15RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=21.4,21.4,8.1, 

ORIENTATION=0.2418,0.2418,0.93969/ 

&DEVC ID='Rad(16RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=21.75,21.75,7.91, ORIENTATION=0.2418,0.2418,0.93969/ 

&DEVC ID='Rad(17RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=22.1,22.1,7.728, ORIENTATION=0.2418,0.2418,0.93969/ 

&DEVC ID='Rad(18RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=22.45,22.45,7.546, ORIENTATION=0.2418,0.2418,0.93969/ 

&DEVC ID='Rad(19RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=22.8,22.8,7.364, ORIENTATION=0.2418,0.2418,0.93969/ 

&DEVC ID='Rad(20RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', 

XYZ=23.15,23.15,7.182, ORIENTATION=0.2418,0.2418,0.93969/ 
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&DEVC ID='Rad(21RD)', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=23.5,23.5,7.0, 

ORIENTATION=0.2418,0.2418,0.93969/ 

--------------------------------------------------------------------------------------------------------------------------- 

&SLCF PBY=0.,QUANTITY='TEMPERATURE',VECTOR=.TRUE. / 

&SLCF PBY=20.,QUANTITY='TEMPERATURE',VECTOR=.TRUE. / 

&SLCF PBY=0, QUANTITY='VELOCITY', VECTOR=.TRUE. / 

&BNDF QUANTITY='HEAT_FLUX' / 

&TAIL/ 

Appendix (3) 

1. Diesel Tests 

Two tests were conducted with different conditions and inlet temperatures. The 

results of the test 1 are summarised below. 

i. Heating Oil Temperature 

The heating oil inlet temperature in Test 1 was 200oC. Figure 7.1 below shows the 

difference between the inlet and the outlet temperatures. 

 

Figure 7.1: Diesel Test 1 heating oil temperature 
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ii. Hot Dry Wall Temperature 

 

Figure 7.2: Test 1 hot dry wall temperature 

iii. Vapour Temperature 

 

 

Figure 7.3: Test 1 vapour temperature 
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iv. Cold Dry Wall Temperature 

 

Figure 7.4: Test 1 cold dry wall temperature 

v. Liquid Surface Temperature 

 

Figure 7.5: Test 1 liquid surface temperature 
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vi. Liquid Core Temperature 

 

Figure 7.6: Test 1 liquid core temperature vs. liquid height 

 

 

Figure 7.7: Test 1 liquid temperature vs. time 
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vii. Wetted Hot Wall Temperature 

 

Figure 7.8: Test 1 wetted hot wall temperature 

viii. Wetted Cold Wall Temperature 

 

Figure 7.9: Test 1 wetted cold wall temperature 
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2. Mixture Test 

i. Heating oil inlet and outlet temperature 

 

Figure 7.10: Mixture test (heating oil inlet and outlet temperature) 

ii. Hot Dry Wall Temperature 

 

Figure 7.11: Mixture test (hot dry wall temperature) 
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iii. Vapour Space Temperature 

 

Figure 7.12: Mixture test (vapour temperature) 

iv. Cold Dry Wall Temperature 

 

Figure 7.13: Cold dry wall temperature 
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v. Liquid Surface Temperature 

 

Figure 7.14: Mixture test (liquid surface temperature) 

 

vi. Liquid Core Temperature 

 

Figure 7.15: Mixture test (liquid core temperature vs. height) 

 

0

50

100

150

200

0.0 20.0 40.0 60.0 80.0 100.0

Te
m

p
e

ra
tu

re
 (

o
C

) 

Time (min) 

Thermocouple 29 Thermocouple 30 Thermocouple 31

Thermocouple 32 Thermocouple 33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

x/
L 

A
sp

e
ct

 r
at

io
 

Temperature (oC) 

0 min

5 min

10 min

15 min

20 min

30 min

40 min

50 min

60 min



 Appendices  

52 

 

Figure 7.16: Mixture test (liquid temperature vs. time) 

 

 

vii. Wetted Hot Wall Temperature 

 

Figure 7.17: Mixture test (wetted hot wall temperature) 
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viii. Wetted Cold Wall Temperature 

 

Figure 7.18: Mixture test (wetted cold wall temperature) 
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