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SUMMARY

Methods are developed for describing flow and‘transport
phenomena in chemical process equipment in terms of random time
delays that are undergone by material or energy elements in
passing through the process.

It is shown how these methods may be applied to typical
chemical engineering-processes including exchange processes in
packed beds, distillation and multiple reactions in coﬁplex flow
regimes.

A new mixing concept, dynamic dispersion, is defined which may
be used to account, in a formal way, for the disparity that sometimes
exists between the behaviour of a process in the steady state and

predictions based on the axial dispersion concept.
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1, INTRODUCTION

The studies reported in this thesis grew out of a general
dissatisfaction with the sort of analysis, based on diffusion theory,
usually presented to describe mixing during flow through packed beds.
Without going into too much detail, the diffusion theory suffers from
mathematical complexity if any case but the simplest, one-dimensional
diffusion in an infinite medium flowing at constant velocity, is
attempted. This in itself does not mean that the theofy is
unsatisfactory, but there are other conceptual difficultiess principally
the questions of whether true backflow occurs and the associated problenm
of whether fhe downstream boundary has any influence. In practice
it does not seem that conditions at the system outlet have much influence
on what occurs inside the system and that backflow is unimportant, if
not non-existent,in a variety of cases (1, 2). When the diffusion
theory is used in these circumstances, the result is that the degree
of true backflow predicted is small, but it does seem that an
alternative treatment of the.initial value or marching type is preferable,
and possibily more realistic.

More or less the same period that has seen the development of
the various diffusion models (refiewed by Levenspiel and Bischoff (3))
has also seen the development of the several penetration theories
(4, 5, 6) to explain the mechanism of transfer processes between
.phases. In these theories it is c¢onsidered that the transport is due
to the motion of *packets' of fluid from the bulk of the fluid to the
interface and back again; the theories differ in the details of the
distribution of lifetimes at the interface. The present study
started with an attempt to apply these same ideas to the prdblem of
representing the residence time distribution. In many flow situations
there is a so-called stagnant region in which the flow rate in the

direction of the main flow is zero or very small, but through which



material may circulate by diffusion or transverse flow. The time
delay idea was to characterize mixing in terms of plug flow upon which
is superimposed random delays which represent the random exchange
between the flowing and 'stagnaﬁt' regions. This led fairly quickly
to the abstraction that there is always a minimum transit time and that
mixing may be represented by a random delay process relative to this
minimum (which‘may be zero).

The emphasis in the chapters that follow is to look at the process
from the point of view of its residence time distribution. We start
with a brief description of the more common fddels for mixing in
chemical process equipment, most of which are in fact time delay
models‘of one sort ﬁr another; followed by some of the general
properties of distributions including a few new results, This leads
naturally on to a number of developments made, dﬁring the course of the
rresent studies, of other modelg. These developments were made at
various times, but are collected together for convenience and so that
they do not intrude into the more systematic treatment of one dimensicnal
and multidimensional time delay models that follow. We shall see
that the time delay strategy is able to treat several phenomena in a
reasongble way and leads to a new concept of dispersion modelling,
namely that the spreading of residence times is due to two effects cne
of which digappears in the steady state. At the present this idea
remains speculative, but 1t must be remarked that most of the evidence
fdr the usual diffusion treatment is not against the new idea, Finally,

the lines of future development are suggested.



2. MODELS 'FOR RESIDENCE TIME DISTRIBUTIONS IN CHEMICAL
ENGINEERING.,

2.1 Introductien

In this chapter some of the principal ideas which have been used
to construct models of the mixing processes which occur in chemical
process equipment will be discussed. The purpose is not to give an
exhaustive‘survey of the literature but to compare and contrast the
main themes of the literature and to show how they relate to the time
delay idea. Comprehensive critical surveys in this field have been
publiéhed in recent years by Levenspiel and Bischoff (1), Klinkenberg (2)
and Verloop, de Nie and Heertjes (3). Also of interest is tﬂe book
by Shepherd (4) déscribing how techniques very similar to those
employed in chemical engineering have been used in biological studies.
Chemical éngineering models fall into two main groups: those in
which a: basic unit is repeated several times with series interconnection
and thosé in which a variety of units are connected together in a more
arbitrary way. The former are essentially one-dimensional and the
latter multi-dimensional, A similar distinction exists for models
expressed in terms of differential equations., One-dimensional models
have been developed in a systematic way and each model applied in a
variety of situations. Their complexity has rather precluded this for

multi-dimensional models, which have been analysed case by case.

2.2 The well=mixed vessel

The natural definition of perfect mixing is that the composition
is everywhere the same when examined at a scale that is small compared .
with the vessel dimensions but large compared with molegylar dimensions.
This definition is not wholly satisfactory from the point of view of
molecular interactions, but is sufficient to establish the residence

time distribution. A material balance for a vessel of volume ¥ through



which fluid flowes at volumetric rate § is:

Qe — Qco =V %gc' (1)

where ci'and c, are the outlet concentrations. The outlet concentration

for impulsive forcing is

LV RN |
© = Qe (2)

that is the residence time distribution is

f(e) e

where T is the mean time.

(3)

This leads to an immediate interpretation in terms of time delays:
there is no minimum transit time and the delays have a (negative)
exponential distribution. Probabilistically, all flow elements present
in the vessel at a given instant have the same chance of leaving in the
next small increment of time.

Many more elaborate models are constructed from well-mixed vessels
connected together in an éﬁpropriate way; the simplest of these is

the tanks-in~series model.

2.3 The tanks-in-series mixing model

When n well-mixed vessels of identical size are connected in
geries, Fig. 1, a set of n equations -7 the saﬁe as Eq.(1) is obtained.

The response to an impulse, the residence time distribution, is

J('( ) tn—le“‘t/'l'

n-l)l "
%)

where T is the time constant per vessel. This model is of considerable
importance for several reasons: historically, it was first discussed
in 1918 by Ham and Coe (5) (Levenspiel and Bisc¢hoff (1) give other

early references); it is a good qualitative one-parameter

representation of many processes; for flow in packed beds a priori
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Fig. 1 The tanks-in-series mixing model




estimates of n based oi particle dimensions give reasonable results (1.
A drawback of the model is that n is apparently restricted to integral
values.of n, while a measured response might lie between those for
adjacent n-values, It is in faet posgible to generalize the model to
remove this restriction quite easily. This is done in Sec.H.2

The interpretation in terms of délays is again simples each flow
element undergoes n.randOm delays and the residence time distribution is
the distribution of tﬁe sum of n independent observations from an
éxponential distribution, In probability.theory this is usually

analysed via the characteristic function (Fourier transform) in a

way that is analogous to the treatment using the Laplace transform that

is familiar in chemical engineering.

2.4 The tanks-in-series backflow model

Sometimes it is appropriate to comsider that flow cccurs between
vessels in'both directions, Fig. 2. This is the case with counter-
current processes, e.g. fractionation, gas absorption, and on a
microscale with diffusion. Several authors (6, 7, 8) have considered
this case. The solutions of the model are not simple unless the
number of vessels is small,

Probabilicstically the essential feature that distinguishes the
backflow model from the simple tanks-in-series model is that the number-

" of delays is not also a random quantity. Retallick (6) has given a

probabilistic treatment of this case.

2.5 The diffusion model

The diffusion, or dispersion, model (9) is constructed by analogy
with the treatment of molecular diffusion in a flowing medium. It is
supposed that there is a diffusive flux counter to the concentration

gradient superimposed on the bulk flow. For the one~dimensional case




Fig. 2 The tanks-in-series-with-backflow mixing model




the flux of tracer at any section is:
§ = vc-D&
ox (5)
where ¢ is the concentration at position x and time t in a stream moving
at velocity v. The constant D is the diffusivity or dispersion
constant, When this flux is incorporated into a material balance -

the diffusion equation for a moving medium:

3_.29 —’U'.a_c. = _a...c.:
D ox? a2¢ ot

(6)
results.
Levenspiel and Bischoff (1) give solutions to Eq.(6) for several
different sets of houndary conditions. It is sometimes staﬁéd that if .

diffusion is possible in the inlet or outiet, then the residence time

‘distribution is affected. The effect is in fact more serious thah

this. Eq. (5) merely identifies the flux, not which tracer elements
cross a given axial position, so that it is not possible to determine
an expression for the residence time distribution in the usual sense.
The diffusion model is one of the most popular in chemical
engineering and is widely employed in situations in which it is not
clear why it should be employed., Klinkenberg's work (2) gives the
impression that, whenever the residence time distribution fits a
diffusion model response, it is both proper and desirable to use the
model. This is only partly true. If it is only the dynamic response
that is of interest, this approach is satisfactory. However, as so
many mechanisms can be reduced to an 'equivalent' diffusion case, it
follows that stimulus-response experiments cannot uniquely identify the
mixing mechanism, The most sensitive technique for using response
measurements to identify the mechanism 1s the use of the intensity

function of Naor and Shinnar (10). This involves estimating the
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instantaneous probability of a flow element leaving the system as a
function of its age.and requires precise measurements of the response.
The relationship between the intensity function and directly measurable
gquantities is discussed in the next chapter.

The importance of the above observations on mechanism is that if
some other phenomenon besides mixing occurs, the predicfed system
behaviour may well depend on how the mixing is represented. As a case
in point, Bott and Azoory (15) have studied mixing in a wiped-film heat
exchanger by the impulse response‘method and used the results to
ascertain the extent to which the pérformance of the éxchangeris affected
by mixing. In a wiped=film exchanger much of the mixing is lateral
in character and results in flﬁid elements teking a range of times in
paths at a fixed axial position as is apparent from descriptions (12, 13)
of the flow in transparent models where the flow can be seen, Thg
one-dimensional.diffusion treatment attributes all the spreading of
residence times to axial mixing and results in a conservative estimate
of the effect éf mixing in this case. In fact Bott and Azoory
conclude that for practical operating conditions axial mixing does not
significantly degrade performance relative to the piug flow assumption,
so there is no need to modify their conclusions, Thig may well not
be the case for reactors, We return to this question in Chapter 8
where mixing is interpreted in terms of two effects, axial and dynamiec
dispersion.

Multidimensional dispersion models have been discussed by several
workers whose results are summarized by levenspiel and Bischoff (1).

The main difficulty with these mefhods is their mathematical complexity.

The diffusion-type models are more naturally related to random
shuffling than delays. The equations reqﬁire boundary conditions
to be imposed at the outlet as well as the inlet, which is an important

difference between them and time-delay models,
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2.6 The two layer (Anzelius) model

This model is another classic, dating from 1926 (14), The
original application was regenerative heat tfansfer, but other processes,
notably fixed bed mass transfer processes such as adsorption‘and ‘ion
exchange, and Varioﬁs fornms of chromatography may be similarly
described. The theofy is available in several texts, e.g., Bird,
Stewart and Lightfoot (15) and Bateman (16). The basic idea is that
fluid flows in plug flow and interacts with a stagnant region in such a
way.that the rate of transfer between the flowing and stagnant regions
| is proportional to the concentration difference, Fig. Se

As flow elements are only identified in terms of concentration,
these assumptions are equivalent to assuming that each of the regions
is locally well-mixed.  Thus the residence time distribution is again
the distribution of a random number of observations from an exponential
distribution; there is also a dead time, or minimum possible transit
time, because forward motion only takes place in the plug flow region.
Analytical solutions of this model may be expressed in terms of Bessel
functiéns (15, 16). P

It is possible to generate several mechanisms that fit the above
process déscription:s: it is possible that the 'stagnant' region is well
mixed and that fluid flows through in such a way that there is little
if any nett forward motion; the interaction may be characterized hy
a transfer coefficient as in heat transfer to a packing of high
thermal conductivity; there may be transverse flow through pores of a

variety of sizes to generate the exponential distribution.

2.7 The Deans-Levich Model

The Deans-Levich model is a discrete version of the Anzelius
model and is illustrated in Fig. 4. It was proposed by Deans (17)
to describe flow in packed beds and later discussed further by Levich,

Markin and Chismadzhew (18) as a representation of dispersion in porous
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Fig. 3 The two-layer {Angzelius) mixing model



The Deans-Levich mixing model

Fig. 4
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media. Deans gave the limiting (Anzelius) solution for am infinite
number of stages while Tevich and his co-workers obtained approximate
solutions for a large number of stages. The analytical solution for
this model ig given later.

Probabilistically, the interpretation of this model in terms of
delays is rather similar to that for the Anzelius model, except that
only a finite number of delays is possible and that fhe dead.time
(minimum delay) is zero. Again it is‘possible for the exponential

distribution to be generated in several ways.

2.8 The Cairns and Prausnitz (Einstein) mogdel

Cairns and Prausnitz (19) have employed a model originally proposed

by Einstein (20) to describe the motion of pebbles on the bed of a
stream. It is considered that motion takes place in a series of
random jumps and rest phases, the jumps being of negligibly short
duration compared with the rest phases. This situation is equivalent

to the Anzelius model with zero holdup in the flowing region,

2,9 Multidimensional models

Mathematically, the treatment of multidimensional models is
difficult, As a result many models with special features designed
to represent the details of specific processes have been proposed and -
treated case by case. Many examples are given in the reviews cited
earlier, One of the objects in the present work was to generate a
common method of treating multidimensional models in terms of fime
delays. Some success hag been achieved in this and the methods are

reported later,
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3, RESIDENCE TIME DISTRIBUTIONS AND RELATED IDEAS.

31 Density functiong and distribution functions

The intuitive idea of distribution is adequatg for most present
puUrposes. It ig unfortunate that two different usages have developed,
in physic¢s and probability theory, for déséribing distributions.
Confusion can arise beéause the same wofd has different meanings in the
two fields. The probability that a random variadble X has a value xwt
in the range (x, x + dx) is denoted f(x) . dx. f(x) is called the
probability density function in probability theory and the distribution
Vfunction'in_physics. Correspondingly the probability that x' is in
(-00,x) is denoted F(x) and is called the distribution function
(probability theory) or the cumulative distribution function (physics).
In thé present work the latter usage is adopted except that where
the meaning is clear from the context the single word ‘distribution’
is used.

As the various possible values of x are mutually exclusive the

additivity rule of probabilities implies that:

F(x) = J f (=) dx (1)

: df (>) |
whence: ‘j‘ (x) = a’;’c (2)
When the distribution function is zero for part of the range of
x it is convenient to take this into account in ﬁhe limits of the
integral. Residence times cannot be negative go that zero is then
the appropriate lower limit.

Further obvious but useful properties are:

'f(x) z 0 (3)

.S‘” pf(aé)(iﬁt = F:'(oo ) (%)

Il
-

F-2) = 0 ®
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and the appropriate corresponding forms when the lower limit is not
minus infinity.
Danckwerts (1) was the first to discuss residence time distributioms

in detail, and his notation for several concepts has become widely

~accepted. Several of the ideas that follow are due to Danckwerts,

but his notation is not followed because it is in conflict with the
type of notation usually used in probabilistic analyses. Tt is usual
in probability theory to use lower case letters for demnsity functions

and the corresponding capital letters for distribution functions;

Danckwerts uses capital letters for both. It is not wisme to mix

two conventions and; as the probability theory convention uses fewer

letters, it is adopted here,

3,2 The residence time distribution

In general when material passes through a piece of process
equipment, not all the material passes through in the same length of
time. The very special case in which a2ll elements of the material
being processed take the same time to pass through rarély if ever
occurs in practice. As this would occur if non-diffusing material
passed through a straight conduit with a flat velocity profile, this
gituation is aften called 'plﬁg flow' and is a valuable concept
because it frequently enables a limit to be put on the-capabilities
of process equipment.

The usual situation is that material passes through the‘equipment
with a variety of residence times. This leads to the idea of a
distribution of residence times: that is, the residence times are
spread out and the spreading may be characterized by a density
function, say f{t). Intuitively this seems quite reasonable, but
there are a number of situations in which the simple idea of

residence time fails. For example: What is meant by ‘residence time’
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when it is pbssible for material, once having left a system, to

reenter it? These and other conceptual difficu;ties can be avoided

by specifying that the system under consideration is.in a steady state
flow regime and that material only enters and leaves the system by

bulk flow, thus ensuring that residence is a,ﬁnce-only event., Inlets
and outlets that obey this condition are called !closed’, Levenspiel (2},
as opposed to 'open' boundaries at which diffusive effects prevent the
unique determination of residence times. The distinction is comparable
to that in thermodynamics in which diffusion across a system (control
volume) boundary prevents an energy flﬁx being split into heat and work

interactions (3).

3.3 The impulse response

Inagine a quantity of tracer is introduced into the systenm
entrance very quickly. It will émerge later from the system exit over
a period of time; The results of this experiment clearly depend on
the residence time distribution. If the flow pituation is steady,
repetitién of the experiment will yield identical results. Steady
injection of tracer may be_regarded as indefinite repetition of the
original experiment so fhat the result of the experiment when normalized
to give proportions rather than concentrations is the residence time
distribution. | This conclusion is of considerable importance because
the sudden injection of a quantity of tracer is easy to formalize
mathematically. The Dirac delta function defined by:

s(t-t') ==, t=t

-0 , t=#t
o0 | (6)

jS(t~t')th = 1

- 00
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is used to this end. The deita function has the advantage that it

may be easily incorporated into the analysis of problems using integrals.
Cperational methods using integral transforms and éeparation of

variables used to find Fourier series $olutions are examples, These

methods make use of the 'sifting' property:

X S(t-t) ()t = p()

=00

o0

(7

of the delta function.

The advantage of the impulse response as a characteristic of a
process model is that it is usually simpler and more easily found
mathematically than other responses, although the responses to ste§
and sinusoidal forcing are frequently relatively simple, Responses
to any other forcing functions may be determined from the impulse
response by convolution, which numerically is a reliable procedure as
it depends on integrétion. If one views the impulse in terms of its
frequency content, this alsoc suggests a central role for the iﬁpulse
fesponse because the response may be regarded as one which containg
all frequencies in equal measure,

When the residence time distribution exists it is identical with
the impulse response. However the impulse response exists independently

of the idea of resgidence time,

B4 The exit age distribution

It is sometimes convenient to think of a system in terms of the
distribution of exit ages. This distribution is'an attribute of the
producf at an instant in time and the experiment to measure it directly
would involve coding a steady injection of tracer with its time of
entry. The exit age distribution is identieal with the residence time
distribution, and the need to contrive experiments to measure the exit

age distribution per se¢ doez not arise.
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2.5 The internal age distributioﬁ

The distribution of ages withina piece ofequipment is not the same
aé in the effluent. If a streanm containiﬁg tracer at concentration ¢
enters at a steady rate a proportion F*(t) of the tracer that entered
in (~t-dt,~t) will still be present at time zero. Thus the quantity
with age less than t, i.e. that entered in (-t,0), is

t .
c L so F* (t‘) at (8)

and the proportion'is
o

|, P ()
j‘: F*(t) dt'

The internal age distribution is obtained by differentiating this

(9)

expression and is

——
— T ———————

j“’ F* (£)dE E

the value of the integral being given by Egs. (17) and (19), below,.

{(t) = F*(t) F t) (10)

3.6 The intensity function

Scometimes, in search of a mechanism, one is led to consider the
way in which the probability that an event occurs depends on the
period of time in which it has not occurred: one’s chances of dying
this year depend on one’s age. Thus in considering the residence
time distribution for a stirred vessel it would be reasonable to
attempt to relate the probability of a flow element leaving the vessel
to, say, swirling. Age might enter the analysis in terms of the
number of times the flow element has passed the outlet without leaving.
Suppose that i(t)dt is the probability of a flow element of age t

leaving the system in the time interval (t,t+dt): that is, i(t)dt is
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the conditional probability of leaving in (t,t+dt), the condition being
that the element is still present at time t. The multiplication
¥ule for probabilities relates the unconditional probability to

conditional probability as follows.

p(A) = P{a]B). P(B)

so that
{{t)at = L(t)dt. F(t) (1)

or

oy - A8 d e
L(E) = F¥(t) dt o F7(E) (12)

i(t) is called the intensity or age-dependent risk function and has
been advocated by Naor and Shinnar (%) and Heertjes (5) as a means

for discriminating between residence time distributions,

%.7 The washout function

Suppose that a system is in the steady state, and continually
fed with a stream containing tracer at a fixed concentration. At
t = O the tracer flow is stoppgd but conditions are otherwise
maintained as before; some other material is substituted for tracer
in the feed if necessary. The guantity of tracer present in the
system at time t is given by the washout function glt). In principle
g(t) contains the same sort of information as the functions that have
been discussed previously. The properties of the washout function
have not atfracted much direct attentidn in the chemical engineering
literature although the washout idez is clearly of importance in
specifying acceptable levels of residual contamination after washing.
An example that can be cited is the work of Tallmadge, Buffham and

Barbolini (6, 7) on rinsing as practised in the metal finishing
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industry. Wachout functions and their properties have received
'more interest in biology in comnection with ferfusion and related
techniqﬁes (8, 9.

The forcing function implied in the definition of g(t) 4s a
negative step in the input of magnitude ¢, where c is the original
steady feed concentration. A material balances
Quantity remaining at t

= quantity which will leave after t

gives

3&)==CQL F*{e)dt ) ~(23)

Differentiation shows how g(t) is related to more familiar functiona:

§(¢) _—CQF*&) _. (14)
§O = caf) - w

and division of Eq (15) by Eq (14) gives

§0 _ d [hyw] = —1O
9 (t) dt F—*(t) (16)

il

The washout function shares with the impulse response the
property that its definition does not depend én the way boundary
conditions are specified and so it remains defined in circumstances
where the simple definition of residence time fails.

Extensions of the above ideas to éystems with multiple independent

inlets are poésible.

3.8 The mean time

The mean time for a flow system with 'closed' boundaries is the

ratio of the volume to the flow rate. This result has been discussed

elsevhere (1) - but the following demonstration of the result is very
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gimple and demonstrates its wide applicability. Equation (13} gives

the steady state holdup of tracer as
' 00
X .
g(0) =c@| Frle)a an
Q

and integration by parts shows that
o0

. a? S R G- O
9(0) ¢ [F 't:’o o : ct (18)

The product F*t vanishes both when t = O and when t-» 0 , so that,

in view of Eq (2),

the integral in this equation being the mean time. TFor a system with
one inlet, or several fed with tracer at rates such that their
concentrations are the same, the steady state concentration must be

the same as the feed concentration and g(0) is eV, Hence

t = V/GL. (20)



4, CHARACTERISTICS OF PROBABILITY DISTRIBUTIONS

4.1 Moments

The moments of a probability distribution f(x) are defined by:
(]

I

/v‘r = [ xr{(x)dx , rr=4,2,3,... )

—00

The zeroth moment is unity; +the first moment or mean of x corresponds
" to the usual notion of the arithmetic average of x, so that ‘AL: may
be interpreted as the average value of xr. In addition to mean and
average the term expectation, représented oper&ﬁbnally E( ), is also

used. For values of r greater than unity the moments about the mean:

f (2~ pui') 7%‘) dac (2)

are of rather more interest. These moments, called central moments,

may be expressed in terms of the momentslﬂi by multiplying out the

(n;ij/) factor. E.g.

f(“x Z/J.’“/i”’)f/x)d%
= Mo - p

The second central moment is called the variance, written var(x), and

(3)

ig a measure of how spread out the f£(x) curve is. The square root

of the variance is the standard deviation, O . Similarly the third
central moment vanishes when f(x) symmetrical about /AL", as do all
odd order central moments, and is a measure of the skewness of the
curve.

Results corresponding to Eq(3) for the next few central moments

Ma "N’a -3)42/\&. + 2" . )
Pa= P b + S, u* = Sp (5)
/u,s .-:/L{s '—S/u.uf/t +IOM3}’L',2_‘IOM2NI _+_u_/u|!5'

are (1)



Wﬁen the variable is time it is usually the casé that
f(t) =0, t <O

so that the lower limit of the integrals may be tzken as zero,

4,2 Moment generating functione

- A generating function is a function the coefficients of whose
power geries expansion give a desired set of parameters., In

probability theory the integral

M(s) = | e e

—

ig fregquently used as a moment generating function. However it is

more convenient in the present context to use the related Laplace

f(s) = j e ™S (E) dt

since this is familiar and often known,

transform .

Expanding the exponential in the Laplace transform in a power

series yields

{6 - (-5 5o

— . / 2 ! o3
= LM+ 'St - STl o
. 31
The coefficient of (-1)T s*/r | is the rth moment

Successive differentiation of Eq (7) shows that:

d..'.r.:l(:..(s) = (-—-i) V/Ur'
ads” S=0

a result that is also frequently useful. Corresponding rules based

(8)

on the exponential Fourier transform, which uses eiwt in place of
e-St,follow in the same way; the Fourier transform of a probability
distribution is called a characteristic¢ function (1). The logarithm

of the characteristic function generates another set of coefficients,
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the cumulants, which are closely related to the moments and which are

often useful in calculating low order central moments.

4.3 Cumulants

Instead of using
"o lwt
2§ [ e ou:}
- _
as the cumulant generating function, it is again convenieny for our

purposes to use the Laplace transform., Expansion gives.

w[Fs)] = b [1- (sl S - S

- C/i4{5 ;ﬁ/pLéé?; 4_/*1; é%;'""°‘J
- L s )
1 ()A.,’S"" )3
= —'/H|,S - (/u.zl_/“'lz
- (- g+ 2u) e

The coefficients of (-1)F s%/r!l in By (9) are the cumulants.JKr. and

comparison with Eqs (3) and (4) shows that)

/
X, = M (10)
Ky = Ma (11)
(12)

Kz = M3
Beyond r = 3 the method may still be used to find the moments, but

the simple form breaks down (1),
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4,4 Probability moments

The moments of the prebability rather than the time

), = j £7(e) dt -

have certain attractions, bul suffer from the drawback of being
difficult to evaluate and manipulate. Levenspiel (2) has pointed out
that 1), is a measure of the: peakedness of the distribution and suggests
it be called the 'emminence'. Engh (3) discusses blender performance

in terms of this function.

4,5 The probabilistic entropy

Shannon (4) defined the entropy for a discrete distribution as

Sy = “‘kz Pudnbi (11)
in his ploneering work on infor¢ation theory. The entropy is &
natural measure of the uncertainty of the outcome of an experiment
with discrete outcomes (4, 5, 6).'_ The unceftainty about the exact
outcome of an experiment in which there is a continuous range of
possible outcomes in infinite, which is reflected by the fact that Sb
becomes infinite when the attempt is made to take the limit of Eq (1k)
to obtain the uncertainty for a continuous distribution.

The function

Se =~k | FEObfle)ae

‘exists, however, and represents the relative uncertainty (4). S, is
a measure of the spread of f(t), because the wider and flatter f(t) is,
the more uncertain in relative: terms is the result of a randonm
observation.

Jaynes (7) has suggested a formalism for guarding against bias
which 1s based on the entropy ides. This formalism is that. the

entropy should be maximized subject to constrants which express any

known facts concerning averages and the like, When this is done one



- 26 =

obtaine the 'maximally vague"(most spread out) distribution that
fits the facts. Logically this is the best choice as a working
hypothesis and is the 'minimally prejudiced' estimate of the

distribution. .

For a flow-mixing system that obeys the mean value theorem,

Sec.3.8, and about which nothing else is knbwn, Jaynes formalism gives

~&tfy

f(t) =& e | -
V ' (16)

which is the residence time distribution for a perfect mixer, Thus
the sense in which a perfect mixer is perfect from the resi@ence time
distribution point of view is that it induces the maximum possible
spread in~the residence time distribution. This result and ome or two
others is-proyed in'Kppendix Iﬂ |

Although the entropy is an attractive measure of distribution
spread, being fundamentally more suitable than the variance (see
Appendix I), its major drawback is that it may be evaluated analytically
for only a few very special cases, Moran (8)! has recently remarked

on how scarce applications of the entropy idea are in probability theory

despite the appeal of the concept.

4,6 Additivity of moments for independent events

Models of a serial nature are of freguent occurrence. Suppose
‘that n random events with probability density functions fi(t),
i =1,2,3,6444 N occur in succession and cail the density function for
the composite event f(t)., This situation is familiar as n stirred
vessels in serieg‘with residence time distributions fi(t). The

Laplace transform of f(t) is

n

Fisy =] f.6)

' =4 (17)




- 27 =

because f(t) is the n-fold convolution of the fi(t). Taking

logarithms:

An .ﬁ(s) Z Jm.ff (s) (18)

and expanding l«\ ‘)('(S) and ,L.\.].'._(s) as power series in §:
- M's + — WS
)'{‘ /ui | /“3'3—.

" 3
A8+
E /U.“L S + E f*z,t 2._| - E }43,! 5',(19)
: i=) :

(=1

"

which shows that the means, variances and skewnesses are additive.

4,7 Miscellaneous distribution characteristies.

Many othér characteristics may be defined that differ from
distribution to distribution. Those described above are important in
that they represent the distribution in terms of 'averages':assessed
in a continucus way,  Measures such as the median, the point which
‘bisects the distribution; the qﬁarfiles, which divide the distribution
into four equal areas; the 1ocafion of the maximum probability; and
the slope of the cumulative distribution fqnction at the point at
which it equals 0.5 are cruder measures which group the distribution
into intervals and are consequently less discriminating. However
these: measures are usu#ll& easier to determine from experimental
data; whether they are easily determined analytically depsnds on

the mathematical form of the distribution considered.
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Se SCME AD HOC DEVELOPMENTS OF TIME DELAY MODELS.

5.1 Introduction

In this ¢hapter a number of developments and extensions of
existing models of the.time delay type are discussed. These include
anaiyg?cal solutiong of hitherto unsolved problems, some new forms
that were suggested by previous models zand reinterpretations of
previous models, The various topics discussed are arranged in a
logical sequence rather than in the order in which they were developed.

They arose during the course of the more general investigation and

are collected together hergfor convenience,

5«2 A Generalized Tanks-in-Series Model

The transfer function for the tanks-in-series model i=s:
- -y .
f(s) = (vs+1) ()

in terms of actual time so that

tn-l "‘t/’k
f&) = —%—
(Y\-—i)l T (2)

When this meodel is used to describe arbitrary mixing situations it
is convenient to use normalized time units: i.e. a time scale such
that the mean time is unity. The ¢ -domain and a-domain solutions

are thén
-— -Nn
jle) = (% + ') (3)

Ff(@) - h“ en—lei-ne , (4)
(n-—l)!

For many situations this expression is a reasonably adequate one~

parameter representation (1) especially for describing the responses
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of columns when fairly high values of n are required. However, many
workers, e.g. (2, 3), have found the model lacking in its ability to
describe such phenomena as mixing in stirred vessels and fluidized
beds. Often the physical response has characteristics intermediate
between those for two low adjacent values of a, say 1 and 2 or 2 and 3.

Since, in the situations in which the model is usually applied, the

parameter n has no immediate physical significance, the suggestion arises:

is it possible to retain the form of Eqsuzwith_non-integral values
of n? The answer to this gquesticn is affirmative because it is
not necessary to restriect n to integral values for Eg.(4) to havela
valid inverse (4). If n is not integral the inverse is
n=t =nb
flo) = M7, >0 -
M (n) (5)

~ a distribution known as the gamma distribution,

When n is integral the distribution takes-the familiar form of
an exponential decay if n is unity and a skewed bell—shapeﬁ curve
that becomes less skew and more peaked for progressively higher values
of n, This behaviour persists in the generalized form for n;} 1,
-the curves for non-integral n lying between tbose for integral n in
an intuitively satisfactory way. ﬁowever, when 0:>n;>1 the curve
takes a rather different form: it ie infinite at B = 0, decays
rapidly at first and finally decays more slowly than an exponential
decay. These features are illustrated in Fig. 1.

The generalized tanks-in-series model then is an excellent
example of fhe fact that the statement often made in the recent
literature that plug flow and perfect mixing are extremes 'between!
which all other mixing situations lie, is false. Early workers (5,6)
did not make this mistake. Perfect mixing is an extreme in a very
special sense - maximum spread of residence times - and can be

regarded as being intermediate between perfect bypassing and plug flow,
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© Fig.l The gamma distribution, showihg two types of deviation from
perfect mixing,
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both of which result in no spread of residence times, The natural

neasure for spread of residence times is the probabilistic entropy.
The moments of the generalized tanks-in-series model are most

easily found by regarding the transfer function as a geﬁerating

function (see 4,2) and are

v r‘(n+r')
Hr A () | (6)

from which it follows that the variance is

it

-1
var (8) n (7

It is apparent from Fig. 1 that the model response possesses a

maximum only when n>1; differentiation of Eq.5 shows. that this

occurs at

A | 1
0 =i——;; (8)

Using the gamma distribution of residence times in a series
replication model leads back to the same model. For if the prototype

distribution transfer function is taken as

Jci(s) = (TS"'i)—m (9)

where m 1is not necessarily integral, and this is repeated n times

in series, the resulit is
- YN
f.(s) = (vs+1)

which is identical in form to Bg (1).

(10)

These observations allow one an escape from the dilemma that
occurs when the tanks-in-series model fits data but with a value of n
that is in conflict with prior reasoniﬁg. If the prototype mixing
processes are not\perfect the number of stages identified experimentally

will differ from the actual number.
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Gibilaro (7) and Gibilaro, Kropholler and Spikins (8) have
presented RTD data for a stirred vessel that show several interesting
features including oscillations superimposed on an almost exponential
decay, extremely high initial responses, and rapid rise followed
by an almost exponential decay. The generalized tanks-in-series model
is able to represent the latter two of these in a qualitative way as.
is shown in Figs. 2 and 3. The data are not fitted as well as they
are by the moreésophiéticated, physically based models presented in
the original references, but the fit is clearly a hetter representation
than could be obtained from the tanks-in-~series model conventionally

interpreted,

5«3 A Two-Constant Generalized Tanks-in-Series Model

The success of the generalized tanks-in-series model in
describing in a qualitative: way a wide variety of mixing situations,
rénging from stirred vessels showing bypass characteristics to packed
columns, suggests that a similar model, based on comparable physical
premises, but including another parameter could be very useful indeed,
Suppose the unit cell is deseribed by the transfer funetion

f(s) = [(ms+t)(ms )]
- (11)
that is, the unit process is equivalent to two well-mixed regions of
different volumes in series. When n such units are combined in

series Fig. 4, the resultant transfer function is

f(s) = [(T,S+J.)(725 +i)] -

(12)
or in normalized form
-n
- 1+l ) g «6”
Flo) = | [T 4 1) (2Tt a»
N N
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Figs. 2 and 3. The gamma distribution fitted to mixing tank

residence time distributions,
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where « is in effect a volume ratio and is giveh by

X = ’t',/("(—,+'t‘,_) | (14)
Had the unit process been taken as a combination of two gamma
processes with the same indéx but different means, exactly the same
form of normalized transfer function would have resulted.
Equation (13) reduces to the usual tanks-in-series model when
O =1 or O and is symmetrical about X =4, Hence the range of &
can be conveniently taken as

i/, ¢ x < 1

™

(15)
When X=: ¥ the model again reduces-fo tanks-in-series form but with
twiée_as many tanks.

As with the tanks-in-series model, it is not necessary to restrict
n to integral values in order to invert the transfer function. The

inverse is (4):

_ oy,
-f(e) N __8____ n x (1-=0) 6 Ze:.nﬂ/lot(l-«)In’ h(-’lol-l)e

i

™ (n) | 2u-1 n (2a-1) 2 ,QOL(l—ét)
(16)

The moments of the response are most easily found by expanding Eq. (13)

as a power series in o0 . They are
!
WK = Hj = j- ' 1

~ 2 (=) |
=1+ X ” (18)

/us' = i"'%— + g—g%{—j:)[i - 3“(1"0*’)] (19)

The central moments could be established from the above results, but

are more easily found from the cumulants:

. L= 2xdox)
[ "
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o a3« (1-x)]
M}is n* (21)

If the moments are to be used directly in model simplification or

to fit suitable data the simplest way to proceed is to eliminate 0&(#-“)
between Eqs (20) and (21) to give the following quadratic for n:

My N _B/um +1 =0

/ (22)
The value(s) of n thus found are then substituted into Eq.(20) to
give a quadratic in x . To be acceptable, values of n must be
positive and (X may arbitrarily be restricted to 6.5‘< o1
remember,

This model may well be the basis for a good general-purpose

simplified model for if a dead time is added the transfer function

becomes

jf(s) o S [(;ESJri)(.GS“,_i)]—n

(23)
a form which includes the two:
- B -~ S < .1 -n
7((5)'" © (T' i ) (24)
and _ :
{(s) = €™ (ms+i)(T5+1)
(25)

recently discussed for this purpose by Gibilaro and Lees (9), Also
Myréen (10) has successfully used Eq.(24), fitted in the s-domain,

to approximate transient thermal conduction.

5,4 Infinite sequences of identical stirred tanks with backflow

The various cell models that have been previously discussed are

capable of producing a wide variety of residence time distribution
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shapes and can reflect the behaviour of many types of process
equipment. There is, however, a significant aspect in which they are
lacking: they cannot describe true backmixing. This feature can
be introduced by incorporating flow in both direﬁtions_between the
cells, Fig.5. The characteristics of this model are very similar
to those of the diffused plug flow modelj indeed the equations that
describe the model are the finite difference form of the diffusion-
model. As with the diffusion model, care is required in formulating
the boundary conditions. End cells with a stream entering or
leaving counter to the direction of the main flow correspond to the
‘open' diffusion case while the absence of these flows corresponds
to 2 "closed' boundary condition, Considerable interest attaches
to this model because not only can it ﬁe used to describe mixing in
Tlow in packed beds and the like but the equations are anﬁlogous
to those for counter-current stagewise processes.

The backflow model has received much attention in the literature
(11, 12, 13, 14). The analytical solutions are cumbersoms but it
will no# be shown that the solutions for infinite sequences are
simple and provide uséful approximations, Uﬁilateral (semi-infinite)

gnd bilateral (infinite) sequences are considered.

Referring to Fig.D> , a material balance over a typical stage
yields: . _
ﬁcﬂ+i~(a+zi)ch+ (a""ﬂ-)C—y\—l = VE{__C"'
ct (26)

where Cn is the concentration in the nth stage at time t, Q@ is the
through-flow rate, ¢ 1is the backward flow-rate and V is the stage
volume, A convenient dimensionless form of Eq.(26) is obtained by

setting:

«-qfarg) e (BVEN L y- e/
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The tanks-in-series-with-backflow model - infinite sequence
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where Co is a suitable constant with dimensions of concentration,

The result of making these substitutions is:

djn-rl - (l+d)3'ﬂ + jh-—i = %ﬂ (27)

The response to impulsive forcing of the zeroth cell is most easily
obtained by taking as initial conditions:
Yn (0)

i

o, n 4 0

= 1, n = 0 -~ (28)
ﬁhich identifies Co as the initial concentration in the zeroth tank.
The béundary conditions correspondiné to the two types of infinite

dequence discussed above are::
— 0 .
Ya () — 0, n =+ (29)

for the bilateral sequence and
Ya (T) — O, n-——o0
Y.y (v) =0 | (30)
for the unilateral sequence.
The Laplace transform of the model equation, Eq.(26}, is

Mgm-l - (i_-l—O(-I'S) gn + gn-—l = 3“(0) (31)

where, for the response to an impulse input of tracer to the zeroth
stage,‘an(Q)is given by Eq.(28). TFor a sequence that does not
include the zeroth stage this may be written in finite difference
form (15) as follows:
2 - . O
LE* - 5E +1)fn =
(32)

where 6 = |4+x+8 . Substituting a trial solution:

— n

5" = Ap (33)
shows that

Pia = [o*:i: (c‘z——ll-oe)l/":[ /2&.

(34)
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and consequently that the general solution of Eq.(32) is

T n n ]
When the fconstants’ A1 and A2 are chosen s0 as Lo match the boundary

condition at infinity and the special form of Eg (31) for n = 0O, the

results are: ' n
Yuls) = e [ TN O A nz0

{0 Ho 2 (36)

for the bilateral seqguence, and:

Gn(s) = (o~--.r"““o—=-4o< "

2 (37)

for the unilateral sequence.

The inverses of BEgs.(36) and (37) are (16}

. (’t’) o{_-nlze——(uu)ben (25,?)

n

(38)

and

...(n-l-l)/ - -
(n+1) o it (40T Tt (24'7)

(39}

It

Ya ()

wherarlh(I ) is the nth order modified Bessel function of the first

kind.

The Bessel function In( ) may be defined by:

- b
:Ir\(jz) = ::V\ j_ 4-_553_____“_ + Z 4u..'
2%n! 2 (2a+2) 2.4 (2n+2)(2n+4) k0

when n is integral; for large values of the argument the asymptotic

series |

I(z) ~ & || - fni=l 4 (We2-1)(4w-9)
’2?(2- 82 2] (82)2 {41)

is useful, By retaining the leading term only of each series the

following approximations are obtained,

Early respounse:

g () = € " |
! (42)




with 0CT"<<n + 1 for a bilateral sequence and XT*<«<Kn + 2
for a unilateral sequence.

Late response or tail:

(T CY
‘dh (’t) = £ {n+i2)
\ ,ZOC n+i2)/2 fﬂ,,c' (43)
with 1645317>3> 4n2 - 1. for a bilateral sequence and

Yn (T) = (n+d) SR

with 16@EIHT S>> 4(n +1)° = 1 for a unilateral sequence.

The conditions of validity in the abhove expressions are gilven
in full because they apply for all values of n; for larger values
of n they can be simplified. The inequalities represent the error
in the calculated response; for example, if the ratio of the two
sides is 100 = 1 the error is 1%.

In utilizing the stirred-tank-with~backflow model two different
approaches may be employed, depending on the application. If the
problem is couched in terms of real cells or equilibrium stagés, the
equations developed above are useful directly to obtain the response
in terms of actual time. Alternatively the object might be to fit
experimental data and treat n as an adjustable mixing index; mnormalized
presentation is then more suitable, That is, new concéntration and

time variables, y* and %, are défined such that

jm y*dr* = 1

and ® X% . 3% ¥
o

This is done by finding the zeroth and first moments of ?n from ?ﬁ

and its derivative with respect to s. One obtainsk

e e

| —

an- *:-._ — T |+
d T (i—t) /(n+|a<)

—
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for a bilateral sequence, while:

g = ndoy,

emd Y = 12X g

n+1i
for a unilateral sequence. In each case 3,.* (’L‘*) is the normalized
response of tank n.

fhe analytical solutions presented above are exacty; thus if the
behaviour of an n-tank sequence (tanks O to n-1) that is part of an
infinite sequence is to represent accurately the behaviour of a2
finite n-tank sequence it is only necessary.to establish conditions in
which the concentration history of the end tanks is matched. If n
ig relatively iarge, the exact nature of the boundary condition becomes
unimportant, so the analytical solutioné can be expected to provide
good approximations. As a test the impulse responses of 3-, 6- and
12-tank sequences (n=2, 5 and 11) were calculated for o = 0.5 using
the bilateral equations to compare Fig.6, with the residence time
distributions for the corresponding_'cloaed—end' finite case calculated
by Roémer'and Durbin. The bilateral case was chosen for this
comparison because the equations are simpler. For the lower values
of n there is no useful similarity between the curves, but this is to
be expected because the models are quite different. However for
n =141 (i.e. 12 tanksj the overall agreement is reasonable and the
agreement.between the early part of the curves is very good, For
still higher values qf n the agreement will be better,

The equations that describe stagewise separation processes are
analogous to Eqs.(26), so that finite sequences with end tanks with
baékflow are also of interest (gas absorption). The unilateral
approximation will predict the responses of all stages to composition
disturbances in a feed (liguid or gas) stream to an absorber until the

disturbance is noticeable at the other end of the colunmn, For control
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12

\ Infinite sequence approximation

\ —— Rogmer and Durbin exact solution

\.

Fig. 6. Comparison of the bilaterally infinite backflow model
with the calculations of Roemes and Durbin for the

corresponding closed-end finite case. (& = 0.5).
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purposes it is this early part of the response that is important.
Similar reasoning appliés to disturbances near the feed plate of a
distillation column operating with a mixture of low relative volatility.
In this case the equilibrium line is nearly straight and the liquid

flow is almost the same above and below the feed plate so that the
bilateral sequence equations may be applied. When the model is used

in this way there is no need to be in any doubt about the validity

of the approximation betcause the initial response of the remote plates
may be calculated using the same expressiofi, as is used for the response

of the near plates,

5.5 The Deans-Levich model

This model hag already been introduced in a qualitative way. It
will now be discussed analytically. Levich et &) (17) give the

transfer function as:

jf (s) = A (3+7)

$2+ (A +0+9)S + AT (45)

n

for n stages, where:
=2' ']_):P ;sz

(1-x)V (1-a)V aV
The notation is that used by Levich et al and is indicated in Fig. 7.

Inversion of Eq.{45) yields the impulse response and the residence
time distribution. B

A convenient technique for inverting transforms of this type
is the use of the lLaurent series to determine the residues at the
poles. The details of the method are given in texts on operational
calculus, e.g. that of Churchill (4). The inverse transform is the
sum of the co?fficients of (5 - si)-1ﬁ in the Laurent expansions of
eStfn(s) about the poles s = 8,5 i =12,3,0esy where the Laurent
expansion is & series of the form:

A, + AL (s—5;)+ Ay (s=s:)*+ ...

—l-'A_ S-S54 "1+A_ 5-S. -24-...
1(5-54) 2 (5-54) (46)




eans~Levich mixing model

-g.h_
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‘a5 5% 15 an entire function, the poles of eStfn(s) are identical with

those of ?n(s) and they occur at

[ (o) & Rww oY - T 2 -

Since A, M and ¥ are real positive quantities, the poles are on

the negati&e real axis and Eq.(45) may be rewritten :

N

T _an S+ A ‘
Fa(s) = A Y (48)

where both r1 and ra are positive; i.e. the poles are at s = —r1 and

g = -r2-

Considering first the pole at s = -r,, eSt7(s) may be written:

S+ '
esbj-c-h (s = j\,,e:- rt:+(s+r)l: _Y_) [1 } |
(s+6)" (r-n)" [1 + §_*:~_2] (49)

which form is suitable for expanding eStfn(s) in powers of (s+r1) by

multiplying the following series:
o O
e (svedt (s+v)’E?

7o J! | (50)
n l<=n \
[ s+n] (SHT < nl |
L+ 222 = S R L |
T . -] K (n-k)! (51)
=0

[i*-srif.] Z( 1) (SH) (r:fhfi)‘l (52)

It follows that the coefficient of (s+r1) in the expansion

of est¥n(s) about the pole at s = -r, is:

Ay = S5 (r=n) X" (-1 (ned-)! (avi) “E
(R-4)" SR (n-k N (=11 (7=1.)"

(53)
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where the summation is taken over all triples (j, k, 1) of which the
individual members are non-negative ang sum ton - 1. The summation

is a power series in t; call this series

-1
, 50’-) = Z Bh;') tJ )
_ J«‘—'O

then the Bn

(5%)
N

terms, obtained by factoring out tY are:

v J

B.= N Z (-—i)f' (h+-€-1).‘ .
M KT n—k)IA! (0=r)F (ra v )
k+dzn-j-1 (55)

As in each term in this sum k + £ has the value n-j-1, £ can be

eliminated with the result:

-1-)-k
(-2)" 7 (an2 —j- k)

an' = :l jg:: n-1-j-k
) o k'.(n~l<)!(n—i—-j‘—k).'('f-ﬁ)k(l&-ﬁ) -J_(56)

Equations (53), (54%) and (56) taken together give the contribution

n-1-)

due to the pole at s = =T,

The contribution due to the pole at & = T, is similar and is

easily found by interchanging r, and r_ in these egquatioms. Hence

2
the final sclution for the impulse response is:

) = K[ By

n-!
[g] i -_—
- Kz_ [ CV\,] tJ e rzt
)=

(57}

il

where i<y A (‘T-—n)/(r,_r.)
K> A(r-n)/ (n-nr)

the Esh)) are given by Eq.(55) and the erbj are found from Eq.(55)

]

by interchanging r, and r,. The constants r, and r_, are, from Eg.47,

2 1 2
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n,h = [(?\+ﬂ+?)$ { (Y +7) _./.D\'r:[ /2 (58)

Equation (57) is expressed in terms of actual time. When n is
to be determined experimentally it is usually more convenient to use
the data in normalized form: To express Eq.(57) in normalized form
the time is measured in units equal to the mean time and fn(t) is
" multiplied by the mean time to presefve the unit area property. The
mean time is equal to the voluma/flow—réte ratio for the systen,

i.e. nV/a

The moments of the Deans-Levich model will be established later

when & unified treatment ig given of this and several other models,

see page 60.°

5,6 Alternative physical forms leading to the Deans-Levich model

equations.
Fig. 8 shows the unit cell of the Deans-Levich model with all

the extra flows that can have any physical significance added, except
bypassing.' Recycle in a process usually has the effect of
substantially modifying the behaviour of the process. However in the
present case recycle has only a quantitative effects not a qualitative
effect. Clearly recycle from either of the vessels to itself is
irrelevant. The overall recycle loop shown in Fig, 8 is equivalent
to the flows shown dotted in Fig.9; these flows present no new
features and may be inéorporated into flows already present in the
system. Thus the model of Fig. 9 may be reduced: to that of Fig. 10.
It will now be shown that this augmented model is described by a

transfer function of exactly the same form as the Deans-Levich model

itself.
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Figs. 8, 9 and 10, Generalized Deans-Levich unit cells.




Using the notation indicated in Fig. 10, a material balance in

the 'main' region yields:

(ﬁ‘ng) Coor * (f—"e)PEnH

- - ([——0‘) VSEHI
(59)

~[(t-pp+3-ep]c.
when transformed, and a balance on the ‘'stagnant' region gives

= oVsg” (60)

BpE., + (1-8)p&’ — pi.
Now write these equations as:: ' '

III | /
A+ B G (s) = (C.+D,s) G, (s) 1)

and
(62)

Ay~ (824‘525)6”(5) = C,G'(s)

where
A = q.-Bp ;A = gp
B, = (-e)p , B, =5p
C, = (1-p)p+q-€b ;5 G = (18)p
Dy = (1-e0)V
B2 = &V
Gy = & G'(s) - G
Cin-i

Can

All the constants A, B, C, D and E may be taken as positive because

reversing the direction of the flows BP and Gfb simplifies the
' . /"
Equations (61) and (62) are readily solved for G;is) and G (3):

model,

(O lS) = 22 © ™
E\tzs ! (BiDi i C‘EZ)S i(B.zcl B\C:L) (63)




G”(S) = (Alcl +A2C") + AZD\S
D,E,S% + (BlD\+C‘El)S + (BJC‘—-B\Cz) (64)

A material balance zt the point at which the streams leaving

the two mixed regions come together gives:

EpCa + (q-eb)a = Qi

(65)

Or

(8- B) G(s) + (C—G)G(5) = g G(s) (66)

where G (S) = —C_n/ Eh__l

Thus

C;(E;) = Q,S +%
67)
(bys®+ bys+ by ) g | 7
where the a's and b's are implied by Equations (63), (64) and (66). For
a model consisting of n replications of the cell illustrated in Fig. 10

connected in series the transfer function is

— n

_ Qs+ Qp
fr\(s) - (bzs'z__}_ b‘g_\. ’DD)S_

(68)

which duplicates the form of Eq (45),
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6. ONE~DIMENSIONAL TIME-DELAY MODELS

6.1 Introduction

Many chemical engineering situationsare one-~dimensional in the
empiricel sense that there is a predominant axial direction which is
the average direction of flow; and that, after perhaps an entrance
region in whigh the flow pattern is established, the flow pattern i=m
independent of axial position in its essential features, quw‘in
pipes and pﬁcked beds falls into this category as does flow in coils
and serpentine pipes which might noet at first be thought of as one-
dimensional,

The time delay description is designed to apply to the residence
time distribution in any one-dimensional situation where there is a
main flow region which communicates in . ~» spme way with a side capacity.
The model was first formulated to describe trickle flow in packed beds
and this is probably as good an_example as any to illustrate the
reasoning that leads to the model.

In trickle flow in.a packed bed the liquid is spread in an
extended film over the surface of the packihg. Relatively, the flow
is rapid in the more nearly vertical portions of the film and less
rapid in the more horizontal parts. At points of contact between
packing pieces and on horizontal surfaces there are stagnént regions.
through whidh no bulk flow occurs, but which can communicate with the
rest of the holdup by molecular diffusion. These observations lead
to the: suggestion that the spreading of residence times is due tor
(1) random interchange between the stagnant* and moving portions of
the holdup; (ii) random transfer to portions of the holdup which are
in slow near-horizontal motion; (iii) random merging and dividing
of the more rapidly moving part of the holdup whichhas a distribution of

velocities; and (iv) molecular diffusion.

* The stagnant holdup referred to here is not the same as the static
holdup, determined by dralnlng experiments, which depends 1argely
on surface tension.
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Mechanisms, (i) and (ii) in this classification although
vhysically different have much the same effectﬁ material leaves the
relatively rapidly moving part of the holdup and returns later at the
same axial position. Mechanisms (ii) and (iii), the hydrodynamic
mechanismg, differ only in degree physically, but have different effects;
the forﬁer contributes to the spreading of residence times, whereas
the latter makes the probabilities of flow elements entering into the
other mechanisms more uniform and uncorrelated,. Molecular diffusion
as a means of axial transport is unimportant except in so far as it
allows (i), the transverse diffusive mechanism, to take place. If
this view of the mechanism of mixing in trickle flow is accepted, the
majér part of the spreading of residence times is due to random delays
with respect to the rapidly moving part of the holdup. This is to be
contrasted with the random axial shuffling that is postulated to account
for the form of the diffusion-~type models. A signifiéant difference
is that it has not been found necessary to suggest that some fluid
. elements may have negative velocities. This eliminates the difficulties
with boundary conditions that occur with the diffusion models,

To sum'up,the description that has been arrived at is:

The fluid may be considered in two parts, a relatively
‘rapidly moving part and a relatively slowly mﬁving part,
Mixing is due to random interchange between these

parts. No great error will be introduced by considering

the rapidly moving part to be in plug flow.

6.2 Probabilistic treatment

By formulating the model in the way suggested above, the analysis
has effectively been split into two parts: establishing the probability
that n delays take place (n = 0,1,2,3,.+.); 2nd determining the amount

of spreading of the residence times that these delays cause.




The stopping process

Let the probability that a flow element is delayed n times while
travelling a distance x in the longitudinal direction be pn(x). If
it is assumed thgt the conditional probability that a flow element
iz delayed in the ensuing.element dx of lengthyis constant, saycxdx,
then: |

b (xc+dx) = po() [ L — s = O(ebx)’]

4 Paea (30) ., otcbe + O (ax)* 1)

That is to say, the tracer may arrive at x + dx after being delayed
n times: by stopping n times in (0,x)} and not stopping in (x,x+dx);
by stopping n-1 times in (0,x) and once in {x,x+dx); and sc on.

These cpmpound events are mﬁtually exclusive and théir probabilities
additive. The probabilities for the compound events themselves are
obtained by multiplying the absolute probability of stopping n-j times
in (0,x) by the conditional probability of stopping-j times in (x+dx) .

Teking the limit as dx —# 0, Eg.(1) becomes

dpe = o (Pa = ), =025,
ox

A set of boundary conditions is needed before Eqs,(2) can be solved.
These ares
P, (0 = 1

P, (0) = 0, n=1, 2, 3 (3)
because it is certain that a flow element will not stop in (0,0), which
establishes po(O):and because it is impossible to stop in (0,0) which
establishes the pn(O)j n-#.O.

This set 6f equations and boundary conditions is of frequent

cceurrence in probability theory (1) and elsewhere, They are the same
for example as those for the tanks-in-series mixing model with the

first tank numbered '04'. The solutions ares
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The restarting process

The simplest assumption that may be made is that all fluid
elements in the stopped state have the same probabiiity of restarting
in next increment dt of time. Cne, but not the only, interpretation
.of this is that the 'stagnant' regions are well-mixed and all have

the same time constant t With the equal probability assumption,

D¢
then, the delay time will be exponentially distributed and the sum of

n delays will have the distribution:

h—i' ’"'t/tp
-ag" (5)

by analogy with the tanks-in-series mixing model.

¥(H

The residence time distribution

The time a flow element takes to travel a distance x is the sum
of the time the element has been delayed and the time it takes in flow.
The flow time is the same regardless of the number of delays and in
view of the plug flow assumption is constant for a given x and in fact
is proportional te x. The probability that the total delay time is
in (t,t +dt) is given by

00

g(e)de= ) puf. () e

L] (6)

where pnfn(t)dt is the probability that the delay time is in (t,t+dt)

when n stops occur, Thus the final expression for the residence time

digtribution is

fle)- 0, <k
f ~(E- L—n)/tp EO{x (b"t-ﬂ)/tl]n
fE)=e 38 (-t) v e

E-Co

NCE) I

\
\
\
\
\
\
\
.
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where to igs a dead time (the flow time).

The series in Eq(7) may be expressed in terms of a Bessel function

(2) so that::

f(£) =0, t<h

| - - (t't")/tp . ‘\
'Ht) =€ §(t-t) + € XX__ T2 ux(r—t) )
e b (E-6) &

Gamma distributed delays

Any delay distribution for which the nth convolutions are known
may be incorporated into the analysis at Eq(6). The gamma distribution
is notable in that the convolutions of gamma distributions are themselves
gamma distributions and alsc in the degree of flexibility that is
obtained with a single paraimeter (Sec.52. When the gamma
distribution of delay times is employed the result corresﬁonding to

Bq(7) is

f£)=0 , <kt

ax __( -fo)/) im (OOC v t*to)“m-l
')f(t) =€ §(t-t)+ € T ; (E) n!)r((nm) |

t 26 (9)

where-t’D is again the mean of the delay time distribution and m is the

gamma distribution parameter. Fig.1 shows the residence time
distribution for several representative parameter values, Equation (9)

is able to represent distributions that are rather more skew than the

‘usual models for flow in packed beds. This flexibility is only

achieved at the expense of extra parameters of course. Rathor has
undertaken an extensive programme of experimental work on trickle flow
in packed columns. He is studying the effect of several physical
variables for a number of configurations some of which involve

unusually high wall flow. The data are being fitted by a variety of
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models in an attempt to assess which is best. Part of this work
has been reported by Buffham, Gibilarc and Rathor (3 ) who show that
the time delay model with exponentially distributed delay times fits
the data well and ﬁonsistently.

The parameter m may be interpretéd as a measure of the degree
of randomness of the delay process. VWhen m is unity the delay
process is completely random, that is all delayed elements have the
same chance of ﬁoving on in the next time increment. As m is.increased
from unity the delay process becomes less random and the delay times
more concentrated until when m-~& the delay times are not spread
at all and the process is deterministic. When m is decreased from
unity the: delay process again becomes less random, short delays being

favoured.

6.3 Unified treatment of several time-delay models from z cell model

point of wview

The Déans-Levich and the one-dimensional time-delay models
represent the time-delay process in a similar but not identical fashion.
It will now be shown how 2 unified treatment may be given that includes
these and several other models a8 special cases. A cell model
approach is adopted and it is found that the transfer functions and
moments are established easily. This treatment is particularly
.interesting forrthe light it sheds on the interrelations between the
various models.

The unified model and its transfer function

Fig. 2 illustrates a cell model which is identical to the Deans-
Levich model except that the delay process is represented in an
arbitrary fashion by the transfer function g(s).

A Laplace transformed material balance on a tracer component in

the nth cell yields:




g(s)

TN

S — -

s | 2K [

Fig, 2 Deans~Levich model - arbitrary delay process

‘L9—
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-4
E:_:,l_(_s__) = X1 + __1;_[@5 4 X -—cxxg(s)—]
Corn(S) N |

(10)
where tO = V/Q and &= q/Q. The transfer function for the entire

N-cell dequence is

—~N
ﬁN(S) 3 1_}_%[&03 +c<x-ctx'§(s)}
_ . (1)
With the exponéntial distribution of delay times:
g(s) = (&s-1)
' (12)

the model reduces back to the Deans-Levich form immediatelyy however

the model is generalized by using the gamma distribution of delay times:

9(5) (tbs—&-i)

(13)
as before. The previous one~dimensional time delay model should
result by taking the limit as N-»=X0 of f&(s). Now

—F(S) = es(;){——t‘,,s — X+ o:xg(s)}

(1%)

because the model has been so constructed that the limiting process
does not affect the parameters of the time delay distribution. Thus
with B(s) given by Eq(13) the inverse of Eq(14) should be identical to

Eq(9). This will be confirmed later.

The moments of the impulse response
Equation (10) with §(s) teking the gamma form, Eq(13) may be

expressed:

tn Fy(s) = ~NfL [t vt )s -2 (105
+ fxx (1+i)(i+*")(-5 S _J

"j-t— (to+ozxtp)s—5 1+£)st +.‘._T
4 4 _ (15)
,TV_. [(L—o-f-axt‘)s ] — }




- 63 =

S
“a

-

by utilizing the series expansions for (1+2)% ana In{1+a) and carrying
the expansions sufficiently far to generafe terns up to 53. The low
order moments and cumulants are found by picking out the pertinent

coefficients as described in Sec. 4.3, and are:

- t°+0(xt_-b {;‘16;)
\ L 2 i (t-ydxt)z "
IR ()6 + 1 (5 >
L 2 3
Mg = RX (i+m)(i+%')t“’
3 ( + L £
2 (Yo (B +oxh ) b
+ (L m)o( (to )
3
+ & (t°+°‘xtj>
N* |
| (18)
"The moments of the distributed version of the model are found by
taking the limit as N -0 ¢
/LLll =i tO +O<DC.ti>
(19)

s (158
M= T (i+m) > (20)

Mo = o (1) (R ) 6

Equations {17) and (20) indicate that both the variance and

(21)

skewness of the impulse response increase indefinitely as m decreases
to zero, irrespective of the value of N, provided it is fixed. The
effect of changing N with m fixed is similar: decreasing N increases
the: skewness and variance, Also of significance is the skewness
relative to the variance on a dimensionless basis. This only takes a

simple form when N~»=-® : in this case




- 64 —

3 = m+2 y
/af’ 2 Cozsc m (m+i)] 2 (22)

which increases as m decreases; the skewness increases more rapidly
than the variance.

Additivity of variances

The form of Eq.(8) is interesting because it shows that the
variance is made up of two additive parts: contributions due to the
delay process and to the model being split into cells. The former is
independent of the number of cells and the latter is independent of the
delay distribution parameter and the same (cell mean~time squared
divided by number of cells) as the variance of the tanks-in-series
mixing model. So although the mixing mechanisms are not independent
in the usual sense, their effects separate in the variance. This
behaviour does not extend to the third central moment which is also
additive for indépendenf series mechanisms. The two contributions
to the variancermay be regarded as describing transverse and axial
mixing.

Time~domain solutions

The inversion of a transfer function like Eq.(11) is a difficult
task. The treatment for the Deang-Levich case, whic¢h is a simple
form of Eq.(11), is complicated enough. Of most interest at present is
to recover the time~domain forﬁ of the distributed model., This may

be done by expanding Eq.(14) and inverting term-by-term:

- 2
A 1

[(s) =2

(23)

and

TORTRDIIE LD

n=0
(24)

where g (t) is the inverse of [Efs)] n
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When the gamma distribution is used for g(s), Eq.(24) becomes:

fley =0, E<bo

o0
—ax - (E-8) [y mr \nm (wx)n (t_to)nm_‘j_
t) = (__) ,
He)=e ) (B
£ 2 ts - (25)

by direct substitution of the inverse of [é(si]n:‘Le.

- (2]

The first term in the expansion of f(t) is an impulse of weight e

™ (nm) " (26)

> &

at t = t_ as is apparent from Eq.(23), so that Eqs.(25) and (9) are
identical as it was supposed they would be.

Special cases

In the analysis presented above m may take any positiﬁe value
In particular.m = 1 represents an exponential deis%ribution of delay
times (a Markovian random delay process) and m—+ represents an
impulse distribution of delay times (a deterministic delay process).
These cases have been discussed previously. In the trivial case in
which the side capacity is absent and.N is finite the model reduces
to the tanks-in-series model. It has previously been pointed out
that the completely random distributed version of the model (N—p-00 |
m = 1) is equivalent mathematically to the Anzelius regenerator model
so that mixing by random lateral bulk flow and by interaction between
a plug flow region and a static region via a transfer coefficient are
indistinguishable by tracer experiments, When the delay process is
random and the number of cells finite (N finite, m = 1) we have the
Deans-Levich model, Finally if the delay process is completely random
and the transits between delays are extremely short (N-#»X , m = 1,
t, > 0) the Cairns and Prausnitz (Einstein) nmodel results,

It is possible to match the dispersed plug flow model by matching

moments for a variety of parameter values or by any other fitting
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technique. However the dispersion model is not a special case of
the present model, the mbst_important difference being that no true

backflow is incorporated in the time delay model.

6.4 Formulation of time-delay models in terms of integro-differential

equations

It will now be shown how some of the previous results may be
established in an alternative way that is based fairiy directly on
physical reasoning and so is capable of extengion in situations where
sufficient information is available. ‘The usual type of unsteady state
material bglance used in chemical engineering is applied to an element
of ibed'. When the mixing phenomenon is considered to be due to
random lateral flow superimposed on forward plug flow, this balance

may be writtén:

Qc + (qi).Ce — @ [:C+ ?idx] ~[qx )¢

Vo % @
x, ot

where Q is the forward flow rate and q is the transverse flow rate per

unit length,

The return flow concentration c¢_ is established by considering the

R
times at which the various flow elements of which‘the return flow
consists, left the main flow. Material leaving the main streem at time

T and arriving back at time t has been delayed for a time t - 7 . It
follows that of the material arriving back at time t a proportion i
g{t-T)aT left the main stream in the time interval (7, T+ &7r). The |
average concentration GR of the returning material is obtained by

summing the products of the concentrations ¢(T") and the proportiﬁns

g(t -T)dt, it being assumed that all concentrations are zero for

negative timess

E
T E-7)clt
CﬂﬁLCL)g( ) (28)
2
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Inserting Eq.(28) into Eq.(27) and expressing the result in terms

of X and tgs, as before, gives

. tE
~ 9 4+xf c(r)g(E-t)dr-ac = &

Ax X, 2t
(29)
The integral in this equation will be recognized as a convolution
integral and the Laplace transform is:
~df , «Eg ~-wT = tosE
cix | Xo
- (30)
as the initial concentration is taken to be zero. For an impulse
response
c(o,s) =1L
(31)

so that the solution of Eq.(30) for an impulse response (the transfer
function) is
E.:exbg—hswmt+dx§@%'
(32)
which is identical to Eq.(14) as it clearly muét be because the model
is identical.

This way of developing the time delay model is rather appealing
and suggests how axial dispersion due to differencés in forward
velocities can be incorporated into the analysis. Instead of material
in the delay flow returning at the same axial position that it left
the main stream, it can be returned at a range of downstream positions.
That is to say, instead of the residence time distribution g(t) for the
delay process, we consider a bivariate distribution g (x ,t ) such
that g(x ,t )Jdx dt is the probability that an element of flow material
leaving the main stream at a given‘position returns at a time
(t ,t + dt ) later at a distance (x , x + dx ) downstream, With

this redefinition of f , the analogue of FEq.(29) is
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| . b -
— 8 4+ « c (X,T) g (-2, E-t)dedx -«c
dx o 40
= & %

ot
- (33)

It is mot proposed to develop methods based on Eq.{(33) in any
great detail; they seem to be rather too complex to be justified by
the current state of knowledge of mixing induced by complex flbws.
Nevertheless it is interesting to see iﬁ general terms how the idea
might be worked out. Before doing this it should be noted that
some of the quantities in Eq.{(33) cannot be interpreted in exactly
the same way as previously. Departures from the main flow are not
necessarily delays, they may be ‘'advances'; the side flow now
contributes to the forward flow which means that the flow terms nmust
be expressed carefully; and, as a result, ¢ is no longer the average
concentration of material moving forward at x.

In the absencé of any specific ihformation about the form of
f(x ,t ), the most suitable way to proceed in general terms is to use

the Laplace transform. Applied once the transformation leads to

_ X
—dC yo [ F(s) g (x-K,s)dt — «T = Gsc
o ° (34)

and again

— D;a -i] + otE'g — oC = E,8C
_ , (35)
for the impulse response., Rearranging to obtain an expression explicit

for ¢ we have

c(ps) = [’PH&,S "’w_o‘?] | (36)

which when inverted twice, first to recover x and then t, gives the

time-domain solution.
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7. TIME-DELAY MODELLING OF EXCHANGE PROCESSES IN PACKED BEDS,

7.1 Introduction

Recently Handley and Heggs (1) have presented experimental evidence
to show that the two-layer (Anzelius) model is adequate to describe
heat transfer in packed beds‘when the solid-phase transfer process is
rapid, e.g. thermal conduction in a metal, and that the discrepancy
that arises when the solid-phase transfer proceés is slow may be accounted
for in terms of intraparticle conduction. Almost simultanecusly
Jeffreson (2) proposed a cell model that bears a -8triking resemblance
to the Deans-Levich and | -distributed time delay cell models to
describe the same phenomenon, The effects of intraparticle diffusion
in spherical particles have been discussed by Rosen (3).

Jeffreson (2) developed his method in terms of-frequency response
analysis and suggested that time domain solutions be obﬁained numerically.
Judging by the experimental results of Handley and Heggs (1) the tiﬁe
delay model possesses enough parameters to fit thé transient response
of packed beds to temperature upsets, In this chapter the time-delay
model parameters are related to physical variables By considering the
intraparticle conduction or diffusion process. First it is shown how
the time-delay model and cell models of the Jeffreson type for heat
and mass transfer may be written in terms of analogous equations. Next
it is shown how the delay distribution parameter may be evaluated from
the particle properties by considering the transienf response of the
particles and fitting by the method of moments. Finally the quality
of the fit is aésessed by considering the higher moments. . Three
different geometrical situationsrare investigated in this way in order
to determine the influence of particle geometry. This leads to the
proposal of a dimensionless group to characterize particle shape in

termg of ‘'compactness'.




- 90 -

7.2 Models

7,2.1 The unified time-delay model

Referring back to Sec 613, the bed is considered to be composed
of N cells in series each of which consists of 2 well-mixed region of
volume V/N 2and a recycle flow whose dynamics may be represented by the

transfer function:

Es . q)
Fis) =(= +1
" (1
i,e. the gamma distribution. The material balance for the wellw

mixed portion of a typical cell is

C _ — Cn — _3:-3 C ...CE) - __\_/__ . gE..h (2)1
" N8 ( " n> N  dE

7.2.2 Heat transfer and intraparticle conduction

Following Jeffreson's description (2) in which the packed bed is
thought of as N well-mixed cells in contact with solid, a heat balance
over the fluid in a typical cell yields:

/
T —Th —hax (T,-T5) = M dT

t (3)
Intraparticle conduction is represented by:

{
V2T = 9 )
ot

and the interaction between the fluid and the packing by

K (Smc‘. Thl)s = O(';\h (Tv-\"_rnis) (3)

Bquation (5) is written in this unfamiliar way so that the pattern

of Eqys (3), (4) and (5) will be repeated by Eqs. (9), (10) and (11)

belqw.
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7e2e® Mass Transfer and intrapartiele diffusion

Proceeding as above for the corresponding mass transfer case:

Coot — Co — KX (co— KCng) = X den
" NQ( ) Ne A& ®

represents the cell mass balance,

_ s
D VQCn' = ?E'_‘ | (7)
2le

describes the: intrapartiele diffusion process, and the interaction

equation is:’

D (grod C,“' )s = k(ca- Kcass) @) i

In the above equations K is an equilibrium constant.

The change of variable C* = KC puts the equations into the form:

~C, — kax *Y _V de (9) 1
Cnmi = Cn —-“—-‘!?\l (Ch"ch,s) '“N"é‘ a‘;cn ‘
DV e* = 3 (10)

J

and
D (grod ¢.*)s = Kk (Ca=Cus) ()

7.2.4 General equations

Equations (2), (3) and (9) are of similar form. It ie convenient

to adopt: |

U

n—

U, — XX ! - t u
u p— — D 1 4
] " N ( n “')5) N jt— (‘12)

to represent all these equations. The reason for explicitly
|
preserving both x and N is that this retains x when N is made indefinitely ;

large in an expression for the bed as a whole. The heat and mass
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diffusion equations, Eqs.(4) and (10), and the interaction equations,

Egs.(5) and {(11) are also similar and become in the new notation:

2 ! f
U = auw\ '
Vv .“ 3 | (13)
and
™ ! ' {
& (grcxd Lin )S = .]< (L,Lh" un’g ) (1)

The transfer function derived from Eq.(12) is:

. -1
G, (s) = 51 +.N1.-.[tos + AX — KX F(s)] 15)

where F(s) is the transfer function relating the particle surface

potential uil s to the fluid potential, U, while the transfer function
]

for the bed as a whole is

-N
G (S) =§1_+—Il—!-[tos+ooc—ozx F(s)] "

When N is made infinitely large, Eq.(16) becomes

G(S) = exb{-—tns -~o<x+ocacF(5)} (17)

This result is of some practical importance because in the particular
case where F(s) derives from the gamma distiribution, i.e. is given by

Eq.(1), Eq.(17) has the relatively simple inverse (9):
o

—oze —m (E-E0) /6 m Jm(fxx))(t"‘tb))m‘i

G(t) =€
j=0

= O) t' < to (18)

As the Anzelius treatment is successful for well-conducting
packings and the discrepancies are of degree rather than kind when the
packing conducts poorly (1) this generalization provides a useful tool

to deal with intraparticle transport resistance.
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743 Particle transfer functions and moments

7.3.% The range of packing geometries used in chemical engineering
operations is so wide &and some of the shapes so bizarre that
systematically evaluating the transfer functions would be a stupendous
task. Jeffreson (2) has presented transfer functions based on
eigenfunctiocn exﬁansions for tﬁé sphere and right circular cylinder.
The transfer functions for plates with insulated edges, cylinders with
insulated ends and spheres are found below in terms of transcendenﬁal
functioﬁé.. Each of these cases may be describéd uéiﬁg‘a single.5pace
variable if the temperature of the fluid surrounding it is uniform,
Further, these shapes represent two extremes and an intermediate
case and so illustrate the range of possible behaviour. 'The ﬁoments,
found via the cumulants fromte power series expansion of the
logarithm of the transfer‘function. are used to fit the gamma
distribution to the particle surface temperature impulse response and
to assess the effects of geometry. The moments normalized with respect
to the mean are also found. |

In the stated geometries the diffusion equation takes the forms::

= ® ajé: = ,Qﬁy
DY u y* 9t | (19)

(20)

(21)

(plate)
BVW = ® {t“' N W
r —
or# T Y

(cyliﬁder)

SAVAIVY "%5'@-'4.3- M- W
ari r or ot

(sphere)

In addition to the boundary condition, Eq.(14), the fact that the
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gradient of the potential vanishes at the medial plane or axis or
centre of the particles is used to solve these equations. It transpires
that the normalizad moments are simple functions of groups of the type
(yéK%B) or (r gK%b). As the ability of a bed to transfer heat or mass
between phasés depends largely on the interfacial area and as the
capacity of the bed depends on the packing volume, it is useful to

~ take as a charaéteristic packing dimension the ratio d of the packing
volume to its area, Thus a group

Nu = di/D

is defined: it is a modified Biot number.

7e3.2+. The plate
The transform of Eq.(19)

9 W = s’
cla? | (22)

for zeroc initial concentration has a solution;

T = AlS) cosh (S -

which has zero gradient at y = O and so corresponds to a slab of

il

thickness 2yg. Introducing Eq.(23) into (transformed) Eq.(14) and

rearranging yields

a = A(s) c«osh’/?;: Ys + @ sinhg Ys (2l

The transfer function is, from Eq (23) and (24)

- | -1
F(s) = %LS =31 +'\[3_5;__§ tanhE‘js (25)

Expanding the hyperbolic tangent using the power seriess "7l

3
tanh z = =z — % + .‘.Z'_zs—~....
3 15

and substituting into Eq.(25) gives
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-1
- L -1 Hs + Z -
Fls) = §1+J< [ 95 -5 £ ?.fzs = J} ‘ (26)

When this expression is expanded yet again using

e loz 1 3
du (1+2) = 2 7% *3%

the result is

da F(s) = 55+[_3_ii T ]s’
5

2 3xE 2x*
~[2 9 14" L ys® |
EF RS- =) E

as a power series in s.
Thus the moments, obtained from the cumulants as previously-

are:

Y e
/u"":{'“t’ | (28)

pa [5 %~ 1] 6

p-2[& 2 e

and the normalized moments expressed in terms of the modified Biot

(29)

and
(30)

number are

2
L, 1 3 Bt 51

, = 2[14-131-«-—?5’—&’]

(32)



7+3+3 The cylinder

The transformed solution of Eq.(20) that has zerc gradient at r =

w =l B(s) L?E r} | . (33)

Substituting this into the flux boundary condition, Eq.(14), gives

- ,.fs& | 1:_§.. 3]}
A = B(S)f [F SJ A 1 ,/;r
s0 that the transfer function is |

0 - BB L] L[] o

Performing the indicated division using the first few terms:

INES = 1+lzre L 254,

-is

(34)

| _ 4 64
_ Loz, 1 _u
L(z) = L+352 TR

of the series expansion of the: Bessel functions leads to:

' -1
r(s)=§1+_£[§_.s _Lost, d rss'i’]
XL2 16 $ 9% & (36)

and, the logarithm of the transfer function is:

_in® 1 6 1L 5|s".
96 x&* 32 XKD 24 x3 (37)
as a power series in s.
The moments are
(38)

(39)

0



: 2,,2 ' |
1 "X 3 X 3
= R )= 1= 42 3= 4] \
/LL3 4 9 4 9 | _ (40)
while the normaslized moments are:
)%Z = | + Bl
| (41}
. - . |2'
), = 2p+_§_BL+BL
2 | (42)
in terms of the Biot number,
703.40 The Sghere
When the substitution U=ul¥ is made, Eq.(21) becomes:
2
$ oV - dv
Jr? at : _ (43)
and the-zero gradient boundary condition becomes V= 0O at r-='o 50

that the solution comparable to those found previously is

W8 - Cgpnfs'r
Y~ r P (44)

Proceding as before, the transfer function:

F'(s):{iﬂé% +_____'V-;% cotk@r‘s} @s)

is obtained.

The power series expansion of the hyperbolic cotangent is (14):

_ 4 z* _z*  22z° |
coth =z = __51+ﬁ_. + L2 _ .. )

Z 3 45 945

which when used in a comparable set of expansions to those used for

the slab leads to:

. | -1
5.3

F(s) = 1+_i.ﬂfs_§—-'-——§f§_2+_7:_i@s_:]
x| 3 45 9 45 g7 [0
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and

A F(s) = — 55 +L 5
33X ASxP 18x*

L n" 1 _@_’_]Ss
945 k%z T [35 ¥ 8l X°

(48)
Hence the moments are
] —_— D .
/Uz = [2G —l—i:l tbz
(50)
X, 36X ]y
5 091 3 ® (51)
and the normalized moments are: |
Y, = ;l.+§-:Bi_ | o (52)
S .
. .2
» =2 1+2.BL+.......54:BL]
3 [ 5‘ 35 (53)

7.4 Fitting the @amma distribution to the particle dynamic response.

The gamms distribution has two parameters, tD and m. It is of
fundamental importance to fit the mean tD because otherwise the
conservation law (mass or heat) will be viodlated. This has been
anticipated in the analyses above by using the symbol tD for the mean
time of the delay process in every case. Thus in the overall impulse

response, Bq.(18) one sets

tb = ﬁ& .JZL*
XK Xk K Ao | (54)
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The second parameter m may be fitted in a variety of ways of
which the most convenient is to match variances. Gibilaro and Lees (4?)

have shown that moments-matching produces reasonable fits of functions

roughly of the sort used here, VMyréen (B5) gives an alternative
method. The normalized central moments of the gamma distribution ares
Y o= mt
2 = - (55)

-2
2)3 = ,2m (56)

80 that the transient diffusion phenomenon is approximated by setting

L = L+ jé.:fgi
o _ 3 (57)
Ym .
(plate)
= + Bi
i =1 ‘ (58)
42}
(eylinder)
1 - t1+8 B )
-~ 5 | | (59
(sphere)
in view of Egs. (31), (#1) and (52), Eguations (57), (58) and (59)
may be représgnted conveniently by
L = L+gBi
m (60)

in which ﬁ is a factor that depends on the packing geometry.l An
extreme range of packing configurations is cbvered by relatively small
range - less than twofold - of/8 . For most packings, being less
compact than the sphere, but not so extended as a plate, a value of/3
close to unity seems appropriate. Even for packed beds of spheres

the particle-particle contacts make part of the surface area inaccessible

to fluid and so effectively inecrease the volume to area ratio.
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The method described above matches the mean and variance of fhe
intraparticle diffusion process to those of the gamma distribution. The
quality of the fit obtained can be judged by comparing the third
central moments. From Egq.{(56) the third moment of the fitted curve

will be twice the square of the second moment. For the three geometries:'

2

i

o | .
2 i+%—’ B"+%—"B‘ (61)

| (plate)
2 _ + 2 BL + B
2 2 (1 - (62)

(eylinder)

2 vt = 2[1"‘%’BL+§5§B¢2] (63)
(sphere)
These expressions are quite similar in form to Egs. (32), (42) ana (53)
which indicatés a reasonable fit, as the third moment is a severe test.
As would be expected, the more rapid the intraparticle transfer
process the better the fit, because the: fitting method is exact for
the exponential distribution obtained for the particle response when

the diffusivity is infinite. (Bi = 0)

7.5 Model response goodness-of-fit

The.analyses above show that the gamma distribution fits the
particle reponses quite well, The overall responses for a model
taking into account intraparticle diffusion and the corresponding time
delay model, fitted as described, will match better because of fhéir
tendency towards being Geussian. Again the third moment provides a
sensitive test; the mean and second moment will antomatically match
exactly. As the time domain solution is available, Eq.(18), for the

distributed. time - delay model (N-»o0), it is the goodness-of-fit of
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this case that will be discussed. The moments are determined from
Eq.{17) via the cumulants. This is done by applying the binomial
expansion to Eqs.(26), (36) and (47) and substituting the resulting

series in s into:

I G(s) = —tos—;ccx+o<xF(S)

(64%)
to obtain: | |
b G(s) = — (to+axby)s + xxbf [2+-%—B‘L]§_j.
| | | . 3 2_._ (€5)
- Go:x.t;,,‘? [14-%—13&.4—%’83}%
| (66)
(plate) |
In G(s) = -_-(t_b—ro(xt‘b)s + axty? [2 +Bi %
i, T o Lom.2]s
--'chxtzb [i+6 'BL"'—-B—’B-I.]—é—!-
. ' (67)
(cylinder)
I G(E) =~ (tronts)s + xct® |2+ §8 5
s[1 .63, & L8 p2]S
— 6oty [1+ S’B“- 35 AJ 3\ s

| (sphere)
In each case the coefficients ofs%S!in the above equationé are the first
moment and the second and third central moments réspectively of the
model response.

The distributed unified time-delay model moments are: .. :

/
M, = E, + wxe b (69)
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™,

]

X (j +%) & o

2 3 _

= ax [1+L )1+ %4 (71)
M (L2 )1+ 25

Substituting into these expressions the fitted values of m, Egs (57,

(58) and (59), shows that the first and second moments are correct and

that:

Mg = 6 ot [1 +:9{?3L +%’Bxﬂ | (72)

(plate)

M, = Gux[i + Ba + —%—'B,az] - (73

(cylinder)

My = Gotx [i + js* Bi+ %Bﬁ] | (74)
(sphere)
for the fitted model, The similarity of the dependence on Bl of
these aﬁproximate third moments and the exact third moments, the

coefficients of\SfKS[, in Egs (66), (67) and (68) is striking,

7.6 Characterization of particle shape

The above analysis indicates that the volume to surface area ratio
plays a significant role but does not completely characterise the
packing elements, Another parameter ﬂ has already been suggested, but
g0 far has only been related to thermal transients. However it does
appear that this parameter depends on shape. The strategy of using
the time délay model as an approximation would be improved if fQ could
be predicted directly from the particle shape. Probably a single
measure of particle shape will be adequate for this purpose as the
dependency of the: solution on j3 is relatively weak, the thermal

properties already being accounted for in the Biot number.
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The (volume)l?/\( area),d,is more a measure of size than shape because
a particle of any shape can have a specified value of d, As B is
dimensionlegs it is appropriate to search for another quantity with
the dimension of length to combine with 4 to‘form a dimensionless
shape number, Particles differ in their compactness or the accessibility
of their interiors in diffusive transport, so the shape number might
reasonably be expected to be a measure of compactness if it is to be
used a& the basis of a method of predicting /3 « If a particle is
compact it has a highly curved surface, which suggests the use of the
surface curvature to define the second characteristic dimension. The
areal average surface curvature is proposed for this purypose.

The radius of curvature of a plane curve at a point on the curve
is

ar—

)O = »&m d.G'
ds =0 de

(75)
where dO is the angle included by normals drawn at the ends of an are
of length 4. Clearly this meets the natural requirement of
reducing to the radius for a circular arc. Local curvature is the
reciprocal of radius of curvature, A plane may be drawn at many
§rientations and contain the normal to a surface, so0 a surface in
general has many radili of normal curvaturé. The maximum and minimum
normal curvatures occur in mutually perpendicular planes (6) and are
called the. principal normal curvatures l/p‘ and |/p2 . The mean of these
curvatures

L =4 ( L4

P 2\ P P (76)
is at least an approximate measure of the mean nofmal curvature over
all directions at a point on a surface. The curvature in a normal

plane making an angle with the plane of o is (6)
P

1 = s’d . sl (72)
(#) P P
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and in the plane making an angle 9$ with the plane of f%

_._‘{:-. ¢+£ = . szp + Cos’
Joif ( 2 ) P 323 » (78)

Thus the average of two curvatures in mutually perpendicular normal

planes is always %k,by adding Eqs. (77) and (78), and it follows that
‘ N _
Eq.(76) gives the normal curvature averaged over all directions. The

areal average curvature then is defined by

<5EL7N> . 51_-5 s ()%l +/-§2 % | . (79)

and the shape factor is defined by
- l
= 3 d. <""‘
r ox

where the factor 3 has been introduced to give ¥ the value unity for

(80)

a sphere. It is interesting to note that the coefficients; 0, i/r‘
and %/r; of the second terms in the Laplacians in Eqs.(19), (20) and (21)
have an immediate interprelation in terms of areal average curvatures,
which also points to curvature as a cﬁaracteristic of particle shape.
The appropriateness of ¥ as a measure of compactness is seen in Table 1
where the different shapes are in a plausible order. In calculating
the figures in this table, sharp edges are taken into account by

congidering the edge to be curved and taking the limit as the edge

radius is reduced to zero., This procedure was suggested by Hilliard (7)

and independently by Beresford (8). For convex particles the mean
normal curvature is closely related (7) to the mean caliper diameter
(the average distance over all orientations between parallel tangent

planes)

-dc ) 2§?'c- <7IS;> | ‘ (81).

and to a variety of other averages including the mean perimeter and
mean area of intersection of the particle by a plane (9) and the mean
curvature averagedover all directions (10). Hilliard (7) gives a

table of formulae for caliper diameter, surface area and volume that
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Table 1 Compactness, /)’, of some simple shapes.

Shape
Infinite lamina, thickness 2a _ a ) 0
Infinite equilateral triangular prism NG?Q. s 0.4535
face width 2a. B 6a
Infinite square prism, & Z 0.5889
face width 2a. 2 Ba
Infinite regular hexagonal prism, \[Sq .
face width 2a v 12a 0.6802
Infinite cylinder, r A 0.7500
radius r 2 2v
-4
Regular tetrahedron, WQ;Q ﬁ?(¥t~$ec 5) 0.6759
edge 2a. 3 24,
Cube, o s 0.785k
~ edge 2a 32 Ha
Parallelepiped, 2a 7. 0,7540
edges, 2a; 2a; la. 5 Sa
Parallelepiped, . a 57t 0.736%
edges 2a; ka; l4a. 2 224
Sphere, \
radius r Y —_ 1.0000
3 v
 Cylinder with spherical caps, 5r 3 0.9375
Cylinder length 2r, radius r, 12, v

cap radius r.
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enables U to be calculated for simﬁle shapes and some more complex
shapes such as spheroids and polyhedra. De .Hoff (10) describes a
stereological counting method for determining the average surface
curvature of particulate material from the tangents made with random
lines, Technigques for determining d for complex shapes in a similar
way are better known and are based on the fact that the mean chord
length, 1, is given by (9; 11% |
L = 4-VP/S = dd

(82)
The use of the parameter 4 in predicting the effect 6f shape on |
transient diffusioﬁ and other phenomena is to be the subject of a
future inveétigatioﬁ. At present corresponding values of f? and
T are known only for the three simple 'one-dimensional' geometrieé.
However in view of the fairly weak dependencefof the approximale time
delay analysis on F}, the curve in Fig.?T is offered as an interim

correlation.
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Fig. 1. Suggested relation between the transient diffusion shape

faétorp' and the compactness 9 .
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: ;
8., DYNAMIC DISPERSION -~ A FORMAL APPROACH TO TRANSVERSE MIXING

8.1. The dynamic dispersionequation

In the ”pneaeding chapter methods have been developed which enable
random transverse mixing to be treated in a variety of ways., A feature
that these methods share is that the possibility of fluid being
segregated into moving and stagnant regiclis is recognized directly. It
will now be shown how similar results may be established in a formal
way that is‘parallel in many respects to the usual formal one-
dimensional treatment of the diffusion model.

If the diffusion idea were not so strongly entrenched one might,
when presented with an impulse response for, say, flow in a packed
bed, suggest that the flux depends on the time rate of change of the

concentration gradient in a linear way:

f = VC+E§—E-

The constant E may be called the 'dynamic dispersivity' because

(1)

it represents the spreading of residence times as a dynamic pheromenonj
it has the dimension of length. By incorporating Eq.(1) into a

material balance we obtain’

J%c 9% , O¢ =
e VXL + & =0
E x93t v dx at (2)

as the:analogue'of the one-dimensional diffusion equation for a flowing
medium, This, the dynamic dispersion equation, has fhe ability to
describe spreading of residence times as already mentioned, but needs
only one boundary condition so that only inlet conditions need be

specified.

8.2 Some solutions of the dynamic dispersion equation

Equation (2) is simplified if the dimensionless space and time

variables:
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7('=x/E- and T‘:’.Vt/f.
are employed; it becomes:

2
C —
0%¢ L ¢ 4 ¥ -0
‘9}f317 é)T' 37C , (%)
An impulse response solution can be.found by incorporating an
ingtantaneous plane source at X = 0, T = 0 into Eq.(3) and

using transform methods. With the source added Eq.(3) becomes:

Q% 409 X o §(r)E(x)

gxor 9T X ()
Applying the Laplace transform twice, first to eliminate T and
introduce S and seccndly to eliminate -7( and introduce P s

yields:

-4
E (pS) = [(S+i)(b+§'§‘f)] |
' (5)

Recovering X by inverting with respect to P gives the transfer

function::

—_ S
C(X,8) = s_%:fexlj ~ S+l 'x}
| (6)

and a second inversion gives the impulse response or Green's functions

c = e“pHT)Io (ZW)

(7)

Alternatively the impulsive forcing can be described by the boundary

conditions
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¢C + é& = E;(t)
| 3’(‘ X=0 _ (8)

This again yields Eq. (6) as the transfer function.,
A slightly different type of forcing is to make an impulsive change
in the concentration at 7L=., 0 instead of in the flux. The transfer

funetion is then

—_ 3
(%8) = e - ST
and the corresponding response is

= eﬂ(ﬂx){ (-?f(.)vzfl (2’/_???) + &(7)

Equations (7)Y and (10) are established using the transform pairs:

e < T, (24at)

(9)

(10)

|
S (11)

and

{12)

ea/s__iA . (%)'/1:[‘ (2&)

which are standard (1)

8.3 Extensions of the dynamic dispersion model

If it is imagined that mixing only takes place in a fraction.OC
of the length X , there will be a dead time of (1 —K)X, Thus
replacing X by XX in the transfer function and then multiplying
by the transform of the dead time gives the partial plug flow versions

of Eq. (6)¢

O
h

_ l exf: _ ;‘iz ~ (L-«) XS

S+1

(13




and of Eq. (9):

E = expg——‘ ocff -- (1*“)745}

S
(14)
The time-domain solutions are obtained by replacing ){ by WX in
Egs. (7) and (10) and displacing T by (1 —X)% .
The equation
Poec 8% _ 9 -2 =9
x> oXOT X T
x x (15)

takes into account both axial and dynamic dispersion. One more
boundary condition is required to obtain a:edution and so there are

a great many possibilities‘as is the case with the diffusioﬁ equation.
This model will not be expldred further analytically except to note
that while transfer functions can be obtained for the various cases
without a great deal of difficulty, the inversion of the trénsfer

functions is difficult.

8.4 Discussion

From what has previously been said it is apparent that the
formalism of introducing dynamic dispersion leads to tractable
mathematics and impulse response expressions that appear quite
reasonable. For condifiona in which the relative amount of dispersion
is small, i.e. long beds, small D and/or E, the dynamic and axial
dispersion models are more or less equivalent in the residence time
distributions they predict. This is because E 03¢/2x0E and
-D g’C/QbL’ represent similat effects for impulse responses as most
of the tracer is observed at position X at time ~X/V. Thus if

values of B and D are each determined for an impulse response for a

long bed, they will be related by
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EV ~ D N
{16}

Several of the expressions deveioped above for the residence time
distribution are identical in form to those derived previously for
random exchange models. Equation (7) is identical With the Einstein
statistical model used by Cairns and Prausnitz (2). Equation (10) is
equivalent to the random time-delay model with exponentially distributed
time delays. GiddingsA(B) has derived forms equivalent to both |
Equations (7) and (10) in his theory of chromatography. Indeed
Giddings"' work makes clea; the distinction between the two types of
boundary condition, Equation (7) describesd a situation in which the
tracer is initially all present in the stationary phase {stagnant region)
at the bed entrance, whilst Eq. (10) describes injection of tracer into
the moving phase (flowing region) at the bed entrance.

This equivalence between the two dispersion models disappears when
another phenomenon besides mixing occurs. For example,.consider that

the tracer is being consumed by a first order reaction; then:

P~y e = K

X o
0xX ox pla (1)
and
éiig_ -+ E%E = - Eﬁ;
E g TV 5+ ® T
(18)

describe the combined effects of mixing and reaction in the two cases.

The steady state forms of Eqs., (17 and (18) are quite different:

(19)



"“V QQ = “]QC
dx (20)

although the residence time distributions are similar if the parameters
obey Eq. (16). o

A physical explanation of this is that D represents a mixing
mechaniém which always tends to even out the.concentration whereas B
does not énd so has no effect on the steady state reaction rate, which
is the same as in plug flow, Biséhoff (4) has recently presented
caleculations of the exit concentration for steady state operation of
a tubular feactér in which fully developed laminar flow exists;
together with corresponding results for the one-dimensional_axial
dispersion equation based on the Taylor (5) exﬁression for D, Table 1
| presents these results, as conversions, together with the corresponding
plug flow (pure dynamic dispersion) conversions. The exact
conversions lie more or less midway between the conversions for the
two models, Clearly the mixed axial and dynamic dispersion wmodel‘
Eq. (15), could represent both the residence time distribution and,
cdmbined with a reaction term, the conversion in a laminar flow reactor.

A final point to note is that the velocity must be in the positive
direction of x. Equation (1) as it stands does not survive the
simultaneous reversal of the signs of x and v. This may be corrected
by replacing E by EV/ [V‘. |

The concept of dynamic dispersion allows models in which the
underlying mixing mechanism is transverse'in nature to be constructed
with the same faéility as using the conventional dispersion model,
Dynamic dispersion is not nedessarily equivalent to axial diffusion
but is best regarded as an additional mechanism that only makes itself
felt in dynamic situations. Conversely if all the mixing mechanisms

are characterised by a single diffusion constant determined from dynamic
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TABLE T Conversion for first order reaction in

laminar flow tubular reactor

Conversion
Axial Dynamic
P ZSL'E R, Dispersion Exact Dispersion
0.25 0.2 0.1 0,093 0,094 0.095
0. 0.2 0.178 . 0.179 0.191
0.6 0.3 0.255 0.256 0.259
0.8 Ok 0.324 0.325 0.330
1.0 0.5 0.388 0.388 0.394%
2.5 0.2 1.0 0.583 0.595 0.632
0.6 3,0 0.924 0,927 0.950
1.0 5.0 0.9860 0.9865 0.9993
25 0.02 1.0 0.545 © 0.579 | 0.632
0.05 2.5 0.792 . 0.856 0.918
0.10 5,0 0.936 0.972 0.9993
2 + Pe kZ
B =i R Mo
M
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experiments and predictions about other effects in the steady state
are then madeythey may be erroneous.
Dynamic dispersion is a powerful formalism for use in the

‘building block' approach to model construction that complements the

more usual axial dispersion idea.
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9. NETWORK COMBING THEORY

S.1 Introduction

In this chapter methods are developed for solving models in which
exponentially distributed time delays are considered to take place at
arbitrarily arranged locations.in space, with instaﬁtaneous transmission
between locations, according to a probabilistic pattern. This can
he regarded'és a multidimensional extension of some of the previous
methods. The time-delay strategy is again adopted and it will be
seen that this leads to a theory of continuous-~-time Markov processes
in a particularly simple way. Some applications of the method to
familiar problems drawn from chemical engineering will be given.  The

(ell model interpretation of the present scheme is-a number of well-mixed
stages with arbitrary steady flows between all the stages., For the
time heing it will be assumed that the time constants for all the
vessels are the same and that the system has but one inlet and one
outlet., These restrictions will be lifted later, as will the
restriction of exponential mixing chafacteristics for the special case
where: each vessel has the same characteristics,

The arrangement of cells is referred té as a network. If a
fracer particle endowed with the power of being able to tell when it
pagssed from cell to cell in the network and a knowledge of chemical
engineering were to pass through the network, it would report to an
§bserver stationed at the outlet that it had passed through a sequence
of so many well—mixed stages, It would of course: give different
assessments on different passes through the network, so the network is
equivalent to a parallel arrangement of strings of vessels in series
with appropriate flows through the strings and the volumes of the
veséels in each path such as to make all the time constants equal,
Thus an arbitrary network may be ‘combed' to give a simpler parallel-

series form whose dynamic response properties are identical to those
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of the original network, Figs. 1 and 2. It is much easier to
determine the regidence time distribution and related properties for
the combed network than for the original network. Clearly the first
problem to be attacked is to assess the probability'of passing throuéh
the system with n delays as this is the weighting factor for fhe |

nevessel path in the combed network.

9.2 Network combing and the residence time distribution (equal time

constants)

Taking the cell view for the moment, number of stages 1,2:3,...,N
starting with the cell the feed enters and ending with the cell the
outflow leaves from; apart from these, no other restriction is

necessary in the numbering; call the outlet itself N«1.

Let:
Vi = volume of vessel i
Qi = flow through vessel i
g = flow through system
qij = flow from vessel i to vessel j

Then, the total flow through a given vessel is the sum of all the

leaving flows:

Q. =Z i, Guat,N+L = @ (1
g_mi,j = O.

As the time congtants are presumed the same, the V, and Qi are related

i
in pairs by

T =W /Q’L (2}

The probability that when a move occurs it is from i to j, assuming the

tracer to be in i already, is




Fig. 1 A Network

Fig. 2 The combed network
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o= 35/ o
Now let the probability that a tracer element arrives in vessel 1
after the nth move on its journey thrdugh the network be Si(n), then

the probability it reaches j after n+1 moves is 8,(n+1)., 1In general |

J

it will be possible to reach vessel j from all the other vessels and

‘Sj(_n+1")} is related to s,(n) by

N
s;(n+l) = > rysa(n)
(=1

which takes account of all possible moves. Equation (4 ) will be

(4)

recognised as a vector-matrix product and can be written more briefly

§ (ﬂ-!'i) =§(n)-§ (5)

where a single underscore indicates a vector and a double underscore

a matrix, S being the vector of elements 5; and R being the matrix

of elements ¥;,. In the theory of Markov processes (i,2)_§-is the state
probability vector and R is the transition matrix,.or more specifically
(2) the imbedded transition matrix, Successive application of Eq;(5)

starting with S(0) yields

Sy =s©).B" ©

As the tracer must intially be in the cell the feed enteré, which we

have chosen to number '1',

_S_(O) - [1>O’O*"'] (7)

The final element, $N+T; of S gives the probability of the tracer

having left the system after n moves have tsken place, i.e.
i
Sne (n) = 2 : P
=)

where F)n is the probability of leaving the system in exactly n moves.

(8)

Equation (8) shows that




N
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bn = 5N+;(ﬂ) "'SN+lﬁ”“1) - (9)
go that the pn'may be determined from Eqs.(6) and (7).
(n)

Thus the flow Q in the nth strand of the combed network is

(») |
A = 5.8
and the residence tinme distribution'for the nth strand is
- N 9 -
= t: e '
#% (t) (11)

(=)t T

as each strand is n vessels in series, Sec 2.3,

(10)

The system residence time distribution is

L ~E/r

] t'f\“"e
JL(t) = ———— * tt)n
Yl
h=1 (n DT (12).

by summing the components due to the strands given above. In Eq.(12)

the lower limit is n = 1l because tracer must be delayed at least once

in its passage through the system. A finite value of P, corresponds
to a portion of the inflow bypassing the system and is best accounted

for separately.

9.3 Internél compositions

In addition to the residence time distribution, the internal
compositions in the network are also of interest. It is not possible
to determine the internal compositions in exactly the same way as the
regidence time distribution because of tﬁe difficulties involved in
determining the residence time distribution at a point through which
recycle,rwhich must be considered in an arbitrary network, can occur,

An alternative way of looking at the transition process which is

more useful in establishing the internal probabilities, is to consider
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random delays occurring sequentially in time and to.alldcate these
spatially by the transition process. When this view is adopted,
one considers that delays are always taking place and their relevance is
determined by the transition probabilities -~ delays occurring outside
the system are irrelevant. The internal composition in a vessel of
the network is directly related to the probability that a single fracer
element is present in that vessel, Thus establishing the probability
that the tracer is in a given vessel at time t solves the problem of
finding the concentration-time history in all its essentials.

Looking at the system at time t the probability that n moves have

occurred in (0,t) is

n —t/T
Pﬁ(t) :F]i:i (—%) e H n = 031323"'

In the ordinary tanks-in-series model this is the probability that

(13)

the tracer has reached the (n#+1)th tank., Now think of the network

as being combed between vessel 1 and vessel i. In general, 0,717,250+
delays can occur on & path between vessel 1 and vessel i and these

can be fepresented by a combed network. The probability of being in
vessel i affer n transitions is si(n) so that the.probability of being
in vessel i at time t by a route involving n delays is si(n)Pn(t). The
total probability of being in vessel i at t is obtained by summing

over all ni

o0

Si(t) = Z s; (n) B (t)

" (1)

Substituting Eq.(13) into Eq.(14) and writing the result in the evident

L

S -§> & (&) s

n
n=o

vector form:

(15)

which becomes:
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S(t) = .S(O)% Zo Jm (%)"‘ & e—-‘C/'t-
. | | (16)

The usual definition of the exponential function can be carried over

-into matrix representations (3) so that Eq.{(16) may be wriftenz
__E,_t'/’l‘ .
S() =s(0)e”™ e
‘ . (17)
In Bqs.(16) and (17), S(0) in derivation refers to n=0, but clearly
the initial condition is the same whether expressed in terms of n or
t so no confusiéon: can result.

The compositions are found from Eq.{17) by writing the probabilities
as
S,;(l:‘) = M , A =1,2,...,N
V, ¢ (0) | (18)
KPcor;esponding form may bhe défined for the outlet state N+1 by imagining

an initially empty reservoir into which the system discharges,

Snii (t) = Qt cas (E) (19)
V, ¢ (0)

9.4 Moments

The moments are useful reponse curve characteristics and also find
use in model fitting techniques as has beeﬁ previously discussed.
It is of some interest, then, that it is possible to establish quite
simple expressions for the moments for network models. The rth moment

vector of §(t) is defined by:
_!\./..{?' = [/ufi’/’ufz:'--:}’lfN]
)
- [ ersie)de
(o)

Substituting Eq.(16) into Eq.(20) and recognizing that:

J, mF)ea5) <1

(20)

(21)
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leads to:

ra+i = (V\-&-r‘)'. n
Mr'""" T .S(O); T E

The zeroth moment occupies a special‘place in . the theory because it

(22)

gives the steady state corresponding to indefinite repetition of the

original impulse input:
. o0
n
j\_ilo = T§(O) z __@
n=p (23)

which sums in the present case where E,i‘ a stochastic matrix to give,

_1 |
Mo = 7 5(0) (;__[”g) (24)

An alternative formulation of the moment vector is possible in
terms of a recursion relation. Equation (22) may be written for the

{r+1)th moments as:

oo ' &0
P ) +V'4-i), mH l n
Mesy =T 2§(0)5Z; - m) R+ (”i)z (“;:”'),S
mz : vl !

(25)
where m = n-1, Comparison of the two series in Eg.(25) with Eg.(22)

shows that:

Mm-i = m”ig * (r+i)TMr (26)

which may be rearranged to:

Moy = (r+1)T M, (_I_‘“E)pi

Repeated application of this recursion rule starting with M , Eq.(24),

(27)

yields the following alternative to Eg.(22):

vr+1

)-\-/Ir - Tr+i S(o)f(::g__g)-i} (26)
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Further, as (;-g)”1 is the sum of the infinite matrix geometric series:

r+i

| o |
M, = rtz"5(0) Z R™r (29)

9,5 BHBon-egual time constants and network modification

The preceding analyses apply to the rather restricted case in
which all the time constants are equal, Clearly nétwork combing
becomes a much more powerful technique when this festriction is removed.
This is accomplished by replacing a network with arbitrary time |
constants by a modified network with the same state probability vector S,
but with a modified transitibn matrix 5}. If a reéycle loop with
zero holdup is added to a_well-stirred vessel, there is no observable
effect because material is removed from the vessel and then remixed
with material of the same compdsition. " A material balances

quei — (G +3u)ci = Vi %% (50)

over a stage with recycle rate a5 illustrates this; the term 244%4
cancels out. It will be recalled that the time constant 7-in the
previous analysis is the ratio of a vessel volume to the flow rate

through it. In the present case set

= VJ:/Q,;

the transition probabilities depend or the flows exactly as before,

(31)

Now a set of arbitrary constants q;4 DAy be added into the flow matrix
without affecting the system dynamics. By analogy with Egs.(1), (2)

and (3), pseudo-values of Q9 T4 and *13' which we write as Qi‘ 'ri‘

and fij*, nay be defined for the modified flow matrix:




- 104 -

N

-
N

)=
T¥* = N /Qi* - (33)

e g = A4 /g% o
¢ (34)
The effect this has on the-time constants is particularly interesting;
it enables T& to be replaced by any valge ’rif that is smaller than
the original value. This enables a set of Ti"values to be chosen,
by suitably specifying the Qg9 which.are all egual. The simplest
and best choice for this common value is the sﬁallest value of 11,
say T,  With this choice, the modified transition probabilities are

given by:

STRANE i o 7.qy (35)
) * —

QL Vi

* »
N > il Y G (36)

& —_
*® ,
Qi T
Thege operations have no effect on the state vector and all the
equations for the equal time-constant case apply with the matrix Ez
replaced by the matrix R* of elements rli* and ﬂﬁd*
b . L]

9,6 More general initial conditions and multiple outlets

So far it has been assumed that only one stream enters the system.
This assumption is not necessary and was introduced to simplify the
description; the analysis applies for any initial condition. Indeed

the probabilities siCt) may be interpreted as absolute quantities of mass
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or energy or any other conserved entity, i.e., all that is required is

that Ned

S‘{ (t) = constaht . (37)
(=0 ‘
The si(O) may then be allocated according to the nature of the physical

situation, Most situations in-which there ig more than one feed
stream fall into one of two categofies:- manifolded systems in which a
common stream is split between severaIVVessels in a specified way;

and independent-inlet systems in which in practice several inlets are

independently manipuvlated. The former is best dealt with by allocating

the initial probabilities in proportion to the inlet flows; and the
latter by considering the responses to forcing the various inlets
separately, és the responses so determined may then be-combined in any
desired proportion. |
Multiple ocutlets may be dealt with in—gxactly the same way by
defining more states N+2, N+3, etc. However this increases the

dimension of the matrix R and so is to be avoided if possible.

9.7 Computation

Particularly in the case of the internal probabilities computation
poses some problems. The direct use of Eq.(16) is unsatisfactory
because for each time value considered many'matrix-multiplications are
required. An alternative method is to make use of the fact that, as
with ordinary exponentials, matrix exponentials converge in a few terms

if the argument is small. Thus, from Eq,{16), we can write

k ,
S({:+At) = _S(t) Z nl! (%@) Eh e__AL-/'r

- n=g (38)

where k depends on the value of the finite time increment zﬁt which has
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elapsed since t,. This equation may be written

S (eva) = S0 T (%)

TT (At) = ¥y L(&)R

h=0 (40)

(39)

where:

is a new transition matrix. (Compare the: form of Eq.(39) with Eq.{5)).

As usual, if the series is converging rapidly the first term beyond
the truncation point (n=zk) is a measure of error involved. A balance
exists between the size of step L&t and the number of terms retained
in the series. Equation (39} can be used as the basis for a computer
routine to solve network probleﬁs, but may result in too small an
increment size, or equivalently, to§ large a value of k. This defect
may be overcome by making use of the fact that successive squaring

generates high powers rapidly., Equation (39) is replaced by

S (e+0At) = S(t) [lr (At)Y

il

(1)
where ¥ is chosen to be a suitable: power of two, so that the new.
transition matrix:

’ 4
(a6) = [T (a0)]
= (42)

may be evaluated by squaring. The computing effort may also be
redpced by increasing the time interval in the later stages of the:

calculation.

948 More general time delay distributions
The residence time distribution may be established when the
transient mixing characteristics in all the vessels are the same, In

practice it is necessary for the convolutions of the prototype

distributions to be available. Several distributions with relativély
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simple convolutions are given in Chapter b ., The analysis is the same
as on p.97 for exponential distributions and the residence time

distribution is

flt) = i.{ Dafu6) (43)

where f (t) is the n-fold convolution of the prototype distribution and
the 1 are found as before. It is tacitly assumed that thetransition
probabilities do not depend on residence time within the individual
vessels. This assumption ig not necessarily true for non-exponential
distributions as it is a conse@uence of the perfect mixing assumption
made in the previous analysis. In practice the truth of otherwise

of this assumption depends on the exact nature of the interconnections.
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10. APPLICATION OF NETWORK COMBING TECHNIQUES TO CHEMICAL ENGINEERING
PROBLEMS,

10.1 Introduction

The network combing theory presented in the previous chapter
amounts to a theory for solving sets of first ordey differential

equations of the foliowing form:

bli_ﬂ_gl = "'Qaﬂi +Qtztjz+qh353+~--+ QINHN
€

b, = QuYs —%Y2 +Qz3Yat+-. T QanYn (1)
dt . ,

...........

by dyn = GniYr+ Az Yo + Oz Yat .. TGN
dt

Q; = Qij _ (2)
J=t

in which the a's and b's are either all positive or all negative. The

bi correspond to Vi in the previous chapter, the a, to Qi’ the aij to

i

qji and the Yy to Cye Notice that the a subscripting which is

conventional in this context is the transpose of the q and r subscripting

 which seemed natural before. .

It is the relation, Eq.(2), between the co-efficients that confers
gpecial properties on the system of equatioﬁs and permits the
probabilistic interpretation or interpretation in terms of the flow
of a conserved quantity, In this chapter the generélity and power
of the methods previously developed are illustrated by setting up
equations describing several familiar problems in chemical engineering
in network combing form, These examples are chosen'as being somewhat

less obvious applications than flow in networks of stirred vessels.
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10,2 First-ordepr chemical reaction in a flow system

Consider a reactor that can be adequately characterized‘as a flow
network as far as flow is concermned, and suppose: that the flows and
volumes have been identified. If the temperature is constant a

materiel balance on a reacting component yields, for a typical vessels

Vi da = G — c — KV )
T Zg.,g | | ’

where K is the reaction velocity constant. Thug if we set

/ .
Qi = Q& +KW (4
and g_i)N'-H = S_L')N'H -+ KV.;\. (5)

the problem is cast into flow-mixing form and the methods already

!
developed apply when Qi and qi,Nﬁ1 are replaced by Qi and q 1,N«ﬁ-

Apart from reactors per se a possible application of the above
method is the aﬁplication to tracer experiments with short-lived
‘radio active tracers.

The extension to spatial dependence of the velocity constant,
by virtue of temperature variation for example, follows immediately

by replacing K by a set of constants Ki'

10,3 Arbitrary sets of first order reactions in a well-mixed reactor

A set of first-order homogenous reactions is specified by a
matrix K of velocity constants Kij; Kij represents the conversion
(flow) from one chemical species to another. - All the species occupy

the same volume so that:

J

where c, is the molar concentration of the ith species. This problenm

is cast into the standard form by setting
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Vi = | | (8)

J

o= -L/Q-i (10)

The initial state vector is set at the initial molar concentrations of
the various species and the method gives the subsequent molar concentratioms

simultaneously. Fredrickson (1) has discussed the triangular reaction

7\
BR==—0¢(C

scheme !

from a probabilistie¢ point of view, Schemes such as this may be used

to represent non-linear kinetics (1).

10.4 Network reactors with complex linear kinetics

The results of the foregoing sections may be combined to give a
treatment of a netrwork reactor in which an arbitrarily complex system
of first order reactions occurs. The‘problem is essentially one of
notation, but, with care, this problem too can be cast into flow-mixing

fornm. A balance on a typical vessel yields:

VL d'ckn. Z ﬂ_JL ij - Q- Chei

(11)

+V Z Kee ™ Vi Ky Cii
£



where €y = nolar concentration of component k in vessel i,
and Kkl = reaction velocity constant for conversion of component k

into component )

with 'Kk=ZKH Ky =0

The state of the system can be thought of in terms of a matrix
rather than a vector. However, many transitions between states are
now preohibited:: it is not possible to make simultaneous transitions

between chemical and physical states; that is, the probability of a

transition in which both subscripts, i and k, change is zero.

The concentration variables may be expressed in terms of a singlé
subscript by using the pattern in Table 1. In effect the system is
now defined in terms of quasi-vessels which, borrowing a term used by

biologists (2), may be called 'compartments'. The compartment index

where M is the number of components.

A is of the form:
(12)

Table 1., Conversion of ¢, ; to single subscripting

Vessel 1 2 N Red
Component ‘ , |
Compartment o
T T M1, (N-1)M+1 NM+% ‘
2 z M+2 (Na1)M+2 NM+2 |
3 3 M+3 (Ne1)M+3 NM+3
M M M M (Ns1IM

As an appfOpﬁiate value of A can be generated for each (k,i) !

pair it must be possible to express Eq.(11) as: ‘
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doy = 5 "\ Cu — Q" |
\ Ys AN Cm 5y C 1
where VA ie the volume of compartment A '

q/\lxk represente physical or chemical flow from M to A
and Q,)\’ accounts for all the removal mechanisms from compartment.

Examination of Eqs.(11) and (12) shows that:

Vi =V , k=1,2,3,..M (1)

= k""(j"l)M
9 b e fi-OM (150

= ,f-;- (l"i)M
Qi = YaKay /; = k+ (i-1)M (15b)

Qa

9_;\4>~=0 , t=k,i= (15¢)
/ | C
quv=0 {+k,v*) (154)
{
@' = B+ WK (16)

Calculating the compartmental volume and outflow vectors, [V‘\] and
L‘Ql\’] presents no problems, but calculating the flow matrix, [q; ],
Tt
requires careful organization. The procedure is as follows: (i) set
[q“;u] = 0 so that Egs. (15¢) and (15d) are automatically accounted
for; (ii) for each value of k in turn, examine L—qi;j] term by ternm
. . /

and enter the elements qij in the appropriate places in Eq Aﬁ] as
specified by Eq.(15a); (iii) for each value of i, examine the [Kkl]
matrix term by term, calculate the q’{(u ,» Egs. (14) and (415b),and enter
the results at the appropriate places in [q;ﬁ] .

It should be noted that the subscripts in Egs.(15) are transposed;

this is so that these quantities appear in these equations in exactly

the same way as in the material balance eguations,
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When the compartmental volume and outflow vectors and the
compartmental flow matrix have been c¢alculated, the problem is in a
fofm suitable for treatment using the methods developed in the previous
chapter. If desired the A inéexing may be converted back fo the
(x,i) form aﬁd all the physical quantities may ﬁe recovered after the
probabilistiq calculations havé been carried out,

Again spatial variatioﬁ of the velocity constants is easily taken
into accotint. The velocity constants might be written as {kkli]‘ il.e,
Kkli is the constant for conversion of k intd 1 in the ith vessel. If
this variation is due to temperature the K's may be expressed:

| - Ext /RT; | |
Kkh = Akpe / 7

presumably. In any case Eg.(15b) may still be employed.

10,5 Binary distillation

Digtillation is a non-linear process usually, because the
curvature of the equilibrium line means that the coefficients in the
material balance equations depend on composition. Two important
cases exist in which siﬁple linearized analysis is appropriate:
distillation with low relative volatility and the dynamie¢ response
of a system in the steady state to small perturbations.. A less
important case where linearization is satisfactory is operation over
" a limited composition range, The response of a distillation column
to perturbation; important in control theéry, will now be consgidered
in network combing terms. It will be assumed that the molar vapour
and liquid flow rates and holdups are time independent and that the
~ vapour and liquid streams leaving a given tray are in equilibrium. It
will not be necessary to make any assumption concerning the tray-to-tray
variation of the flows and holdups.

A material balance on a typical tray gives
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where
/ i
Vi Vi = 1liquid, vapour molar hoeldup of tray i
]
' "

q s Q = liquid, vapour molar flow rates of sheams leaving
the trays indicated by the subscripts {counting -
upwards)

XK. = mole fraction of a specified component in liquid,
vapour.

Introducing the substitutionss::

= - 4 = Ys+ Jr
x = Xs ro. J7 (19)

which represent the steady state and-transient parts of x and y, shows
that the transient part satisfies Eq.(18). TFow suppose that in the

vicinity of(xi, yil

Yy = XxX+8 (20)

then clearly the transient parts are related by

(21)
Using this result to eliminate y from Eq.(18):
H / .
(OC(" v‘, -+ \/c ) ..d_?-g
ot
P \ + J n !
= Kirg Qiot Lot + Qi Tiwt — (%" + Qi ) % (22)

which, remember, applies to deviations from the stead& state, Equation

(22) is of exactly the same form as the equation for a well-mixed stage
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so that the results of the previous chapter apply. The time constants

are given by:

'u‘l
O{l\li -+ \&

" ! ' :
% Qi + 9 (23)
and the transition probabilities by:

g = ouqi’ /(" +8') i+l
iy = aa'/(%ﬁ;"ﬂli') , j=t-1 (24)

It is a feature of the method that it automatically takes into account

?{ =

such features as side streams and multiple feeds, and tray-to-tray
variations of holdup and flows if these are cbmposition independent.
This case is of course a generalization of the tanks-in.series-with-

backflow model which was discussed earlier.

10,6 Solution of partial differential equations

Partial differential equations involviﬁg a complex gpatial ternm
and a single time derivative occcur in most.branches of engineering and
physics, The finite difference approximating equationg take the same
form as the dynamic equations for a network of stirred véssels'and s0
network combing nethods apply directly to their solution. As an
illustration consider transient diffusion or conduction in two space

dimensions

§_ie+?__’_.f~) -
D It 9y ob

(25)
The set:
:]22. (Ci-l-l,) + C[—l,j + C".‘),)-'H -t C(;j"'i — CJ,]) = _9_5_,;,"

of differential difference equations, where the subscripts indicate

mesh points and h the mesh size, is a representation of Fgq.(25) that
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is correct to third differences. A flow network with equal and
opposite flows between all adjacent tanks would be described by a similaf
set of equations. Soc it follows immediately that the methods already
developed apply after the double i,j subscripting has bgen replaced
by a single subscripting scheme.

The method hae not yet been explored as a means of solving
partial differential equations, but appears to possess several important
advantages. | The numbering syétem that replaces the i,j system is
completely arbitrary so that geometry is unimportant: three-dimensional
and awkwardly shaped regioﬁs aré treated easily. Perhaps a more
significant adventage is that higher order finite difference
approximations are again treated in exactly the same way, Finally it
should be noted that the time variable is not finite differenced and =2
frequent éause-of instability in numerical solutions is the finite

differencing of the time variable.
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11 FUTURE DEVELOPMENTS

11.1 One-dimensional time delay models

The one-dimensicnal time delay meodels developed in this work
have great flexibility as far as the delay process is concerned, but
are deficient in two respects. -~ First, the mechanism for transfer into '
the delayed state is always completely random, and, secondly, the
point of return is the same as the point of departure from the main
strean, These considerations are not of crucial importance as long
as the models are used to fit dynamic responses, but they do matter
if an éttempt is to be made to relate the delay process to more detailed
mechanisms.

The treatment of the stopping process as being only partially
random would probably best be treated in terms of an intensity function
| with respect to distance travelled, An approach that tskes both the
objections mentioned into account is the treatment in terms of integral

equations (Sec. 6.3).

'11.2 Particle characteristics and thermal transients

The particle shape factor suggested in Sec. 7.6 is of sufficient
interest to warrant further study in a number of'applicatiqns. A
start has already been made on extending the work on thermal transients
te more: complex shapes to see whether the tentative cofrelation between
}3 and Y suggested in See. 7.6 is valid, It is interesting that the
defipition of ¥ does not depend on the particle being discrete, or
finite or convex. It follows that a value of 7 exists for most
geomefrical shapes including the vold spaces in porous media, Perhaps

' Qf or other similarly-based parameters may be used for correlating

flow of fluids in complex regions.
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11.3 Dynamic dispersion

The dynaﬁic dispersion idea, although speculative, clearly
poses questions that need be answered. The argument that the conversion
for a first order reaction depeﬁds only on the residence time
distribution is frequently profed by showing that the transfer function
and the conversion equations have identical mathematical form,  However
this depends on the model on which the trénsfer function is based having
only first time derivatives. It is intended to attempt to:devise

direct éxperiments to test the dynamic dispersion idea,

11.4 Network combing

There are two directions in which it would be useful to extend
the network combing methed: to multicomponent situations ‘and to systens
involving nonlinear features. It is planned to work on both of these
aspects, because success would lead to a method of immense %alue in
chenmical engineering design.

Aﬁother application which it is planned to investigate is
polymerisation kinetics. The compartmental idea seems particularly

appropriate to emulsion polymerisation.
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NOMENCLATURE

As a vériety of similar processes have.bgen treated by different
methods a single common system of nomenclature would be unwieldy. The
spirit of the notation is the same throughout the thesis but the exact
meanings of symbols differ from chapter to chapter. A list of the

symbols in each chapter follows.

Chapter 2

¢ concentration

S50 C4 concen?ration of matefial entering, leaving a
well-mixed vessel

D diffusivity or dispersion constant

£(t) residence time distribution

n number of vessels

qQ flow-rate

t time

v velocity or volumetric flow-rate per unit
cross-~sectional area

v ' volume

x distance

j? mMaterial flux

T mean time

Chapter 3

c concentration

£f( ) distribution (density) function, residence time
distribution

FCG ) (cumulative) distribution function, residence time
cumulative distribution

*( ) 1 - F( )

gl washout function




Chapter I
£(t)

f(x)
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internal age distribution
intensity function
flow-rate

time, mean time

volume

unrestricted wvariable

Arbitrary function

residence time distribution

distribution in general

flow-rate

order of moment or cumulant

Laplace transform parameter

relative entropy, continuous distribution
entropy, discrete distribution

residence fime

vessel volume

variable in general

rth cumnlant

rth central moment

rth moment about the origin

rth probability moment

arbitrary function of s, Eg.{(35)

Laurent series coefficients, Eq.{46)
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E(C )
f£(t)

G(s)
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B,1Cq1CpeD 0 E,

1 2
extended Deans-Levich model parameters,
defined following Eq.(62)

1D44b,

extended Deans-Levich model transfer function
coefficients, Eq.{(67)

Deans-Levich time-domain coefficient, Eq.(56).
concentration of stream leaving nth cell
constant with dimensions of concentration
Deans=Levich internal concentrations

Deans~Levich time-domain coefficients, Eq.(56) with
Ty Tp interchanged

finite difference operator
residence time distribution

extended Deans~Levich transfer function

‘G'(sfy G'"(s) transfer functions for extended Deans-Levich internal

i,
InQ )
e ky 1
Kyr Xy
m

n

Psq

compositions

counting index, poles of Laplace transform.
nth order modified Bessel function of the first kind.
counting indices

constants, defined following Eq.(57)

gamma distributiop parameter

counting index, model stages

flow-rates, Deans-Levich model

flow-rate in backflow model

through-flow rate

order of moment

Laplace transform parameter

time

stage volume

c/Co, dimensionless concentration

normalized concentration, defined following Eq.(4%)

'F]/(T]A—ﬂ;) volume ratio, two-constant generalized
tanks-in-series model,




- 123 -

oL 9 /(g-\- Q.) backflow ratio, backflow model

-

R

volume ratio, Deans-Levich models
flow parameter, extended Deans-Levich model

lD/Q(V s Deans-Levich model

2

gamma function
Flow parameter, extended Deans-Levich model
normalized time

ﬂ/(l""u)v, Deans-Levich model

central moment

moment

X ¢z o> o o

P/(l -%)Y, Deans-Levich model

X

roots of finite difference subsidiary equation,
backilow model

®
>
[

o Laplace transform parameter, normalized time basis
| + X+S, backflow model
T - time-constant per vessel, tanks-in-series model.
T (@‘Fi)t/\/ backflow model dimensionless time
» | :
T normalized time, backflow model
TUT?- vessel time constants, two constant tanks-in-series

model

T3 dead time
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; Chapter 6
c concentration
f(t) residence time distribution
fn(t) distribution of the sum of n delay times
f(tY residence time distribution for N-cell model
g(t) delay time distridbution
Inf' ) nth order modified Bessel function
n number of delays
N number of cells
n ganma distribution parameter
P, probability of n delays
q ~ transverse flow: per unit length
] through~flow rate
t time
to dead time
ED mean delay time:
v volume
x distance
x, ' length
(o4 mean number of stops per unit length
S{ ) Dirac delta function
r1( ) gammalfunction
}4V rth central moment
ﬁAyl _ rth moment
Chapter 7
a bed interfacial area per unit length

A(s),B(s5),C(5s)
: uwndetermined functions of s.

Bi modified Biot number




c concentration

Q

1 GS, fluid, s0lid specific heat
particle characteristic dimension,
particle mean caliper diameter

mass diffusivity

diffusivity ('.D or e(-r)

gg o IR

F(s) particle transfer function or recycle:transfer_function.

G(s) distributed model transfer function

GN(S)l cell model transfer function (Gq(sl-zltransfer function
for one cell)

h heat transfer coeffiecient

i, counting indices

1,C ) 1,0 ) .
zeroth, first order modified Bessel function of the
first kind.

k mass transfer coefficient

K concentration ratio equilibrium constant.

1 ~ mean sector length of particle

m gamma distribution parameter

Mql'Mg'M3 model impulse response mean and second and third
central moments

N numﬁer of cells

q lateral flow rate per unit bed length

Q throughput flow rate

r radial coordinate of c¢ylinder or sphere

5 Laplace transform parameter

5 particle surface area

t tine (toz‘V/Q; ty = mean delay time)

T temperature

u | potential (T, ¢ or c*)

v ur

Y bed void volume

V% particle volume

x axial position, bed length
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Yy distance from medial plane of plate.

z dummy variable in standard expansions

X a/Qy hCL/Qp_FC{_ or kC\./Q

Xy thermsl diffusivity
| P the.rmal shape factor

v geometrical shape factor
r‘( ) gamma function. 11

K Kk or Q‘(—;—"\/X

'P'l particle impulse response first moment and second
M’ ’#'{3 and third central moments (/L{,': tD)

l) Y particle impulse response second and third
il *  normalized central moments

fl+,/3s fluid, =so0lid density

p’pl’Pz’ Pn  radii of curvature

& curve length

Subszribls

“ ith cell

£ recycle flow ‘
S

solid surface
Superseripts
~ (overbar) Laplace: transformed variable

/ (prime)  s0lid phase
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Chagfer 8
c Concentration
D axial dispersioﬁ constant
DM _ molecular diffusivity
D/VE
B ' dynamie dispersion constant
In( ) nth order modified Bessel function of the first kind
k first order reaction velocity constant
p Liplace transform parameter (removes ) )
P, Peclet number (VZ /D)
R tube radius
R, rate group (kZL/V)
s laplace transform parameter (removes )
t time
v velocity. (or average velocity)
% distance
2y, léngth of tubular reactor
ZL* dimensionlésé reactor length (Pe/24)
« fraction of volume in which plug flow occurs
/B kRz/L(»DM
() Dirac delta function

dimensionless time  (Vt/EY

ft-
fzg tracer flux
7( ,

dimensionless distance (x/E)



- 128 -

Chapter 9

ci(t) concentration in ith vessel at time t

£(t) network residence time distribution

fn(t) residence time distribution for sequence of n stages.

i,J ~indices referring to vessels

k gsummation limit

1 integer (power of 2)

m n+ 1

M, vector of rth mbments

n nﬁmber of vessels on path through network

N number of vessels in network

P, probability of traversing network by an n-vessel
path

Pn(t) | probability of n vessel-towvessel moves in time t

qij vessel-to-vegsel flow-rate

qQ ' nett flow-rate through network

Qi flow-rate through ith vessel

Q(m) flow-rate in nth strand of combed network

r- order of moment

Iy transition probability (i to j)

R transition matrix (of elements rij)

Si state probability

S state probability vector

t time

Vi volume of ith vessel

/iv;L rth moment of response of ith vessel

I transition matrix, Eq(39).

1} ith vessel time constant

Tw\ min ('z-( )
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Chapter 10

The notation of Chapﬁer 10 is basically the same as that in
Chapter 9, but special notation used in the applications is explained

where it is used.
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APPENDIX I - SOME PROPERTIES OF THE ENTROPY OF RESIDENCE
TIME DISTRIBUTIONS

The relative entropy of a continuous distribution defined over
(0,©) is
o0
S = - | OO
) ' (1)
S is a measure of the spreéd of a residence time distribution, that
is to say it expresses the degree to which materisl entering the process
at different times is mixed. In some circumstances this seenms,
subjectively at least, to be a criterion of mixing performance. This
leads to the guestion: What is the nature of the residence time
digtribution that maximizes the spreading of residence times? In
mathematical terms, the problem is to find the function f£(t) that

maximizes S subject to

((4eat -4

(2)
” V
elE)dt = =

f" a (3)

The firgt of these conditions is necessary because f{(t) im a
distribution and the second is always true for systems with 'closed!
boundaries, Sec. 3.8, Finding f(t) is a trivial exercise in

variational calculus (1), The Euler-~Lagrange equation is
g (i & put = puf) = 0

whereéfA, and }Jl are undetermined parametere (Lagrangian multipliers).

(4)

The solution of Eq.{4#) that satisfies Egs.(2) and (3) is

AV
f(6) = %e (5)
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so that the maximum spread mixer is the same as the mixer that is
perfect in the usual sense.
The form of Eq.{1) is such that, for most of the theoretical

residence time distributions that occur in chemical engineering, it is

very difficult to find S analytically. An exception is the gamma
distribﬁtion '
n-t ~-€
RORR
V\
(6)
Substituting Eg.(6) into Eq.(1)
00 .
- -—t
S _‘_-l-(" f t"'e [(V\-l)vfmt—-t"'é"*rﬂ("‘):ldt
W/,
| - |
- w-1 -t |
= n+ u£~\[ﬂ (V\) —_— e ~£~\t'Cit' .
I"(V\-l)
The integral in Eq.(?7) may be found in tables of laplace transforms

and is
b 4]

j ety bae = M) YR)

: 0 (8)
where )b'(h) - d (‘i‘vxr(ﬂ))

is the digamma function (2).

|
(7)

Thus
S = n+JMP(V\) - (V'\"i) 'YJ-(V\)
(9)
If the entropy is to be used as a distribution characteristic for
fitting purposes it is useful to have the entropy based on normalized

time unitsy

S = m o+ du (1) = m = (2-1) P )
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