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SUMMARY 

Methods are developed for describing flow and transport 

phenomena in chemical process equipment in terms of random time 

delays that are undergone by material or energy elements in 

passing through the process. 

It is shown how these methods may be applied to typical 

chemical engineering processes including exchange processes in 

packed beds, distillation and multiple reactions in complex flow 

regimes. 

A new mixing concept, dynamic dispersion, is defined which may 

be used to account, in a formal way, for the disparity that sometimes 

exists between the behaviour of a process in the steady state and 

predictions based on the axial dispersion concept. 
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1. INTRODUCTION 

The studies reported in this thesis grew out of a general 

dissatisfaction with the sort of analysis, based on diffusion theory, 

usually presented to describe mixing during flow through packed beds. 

Without going into too much detail, the diffusion theory suffers from 

mathematical complexity if any case but the simplest, one-dimensional 

diffusion in an infinite medium flowing at constant velocity,is 

attempted. This in itself does not mean that the theory is 

unsatisfactory, but there are other conceprual difficulties:: principally 

the questions of whether true backflow occurs and the associated problem 

of whether the downstream boundary has any influence. In practice 

.it does not seem that conditions at the system outlet have much influence 

on what occurs inside· the system and that backflow is unimportant, if 

not non-existent,in a variety of cases (1, 2). When the diffusion 

theory is used in these circumstances, the result is that the degree 

of true backflow predicted is small, but it does seem that an 

alternative treatment of the initial value or marching type is preferable, 

and possibily more realistic. 

More or less the same period that has seen the development of 

the various diffusion models (reviewed by Levenspiel and Bischoff (3)) 

has also seen the development of the several penetration theories 

(4, 5, 6) to explain the mechanism of transfer processes between 

phases. In these theories it is considered that the transport is due 

to the motion of 'packets' of fluid from the bulk of the: fluid to the 

interface and back again; the theories differ in the details of the 

distribution of lifetimes at the interface. The present study 

started with an attempt to apply these same ideas to the problem of 

representing the residence time distribution. In many flow situations 

there is a so-called stagnant region in which the flow rate in the 

direction of the main flow is zero or very small, but through which 
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material may circulate by diffusion or transverse flow. The time 

delay idea was to characterize mixing in terms of plug flow upon which 

is superimposed random delays which represent the random exchange 

between the flowing and 'stagnant' regions. This led fairly quickly 

to the abstraction that .there is always a minimum transit time and that 

mixing may be represented by a random delay process relative to this 

minimum (which may be zero). 

The emphasis in the chapters that follow is to look at the process 

from the point of view of its residence time distribution. We start 

with a brief description of the more common fuodels for mixing in 

chemical process equipment, most of which are in fact time delay 

models of one sort or another, followed by some of the general 

properties of distributions including a few new results. This leads 

naturally on to a number of developments made, during the course of the 

present studies, of other models. These developments were made at 

various times, but are collected together for convenience and so that 

they do not intrude into the more systematic treatment of one dimensional 

and multidimensional time delay models that follow. We shall see 

that the time delay strategy is able to treat several phenomena in a 

reasonable way and leads to a new concept of dispersion modelling, 

namely that the spreading of residence times is due to two effects one 

of which disappears in the steady state. At the present this idea 

remains speculative, but it must be remarked that most of the evidence: 

for the usual diffusion treatment is not against the new idea. Finally, 

the lines of future development are suggested. 
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2. MODELS FOR RESIDENCE TIME DISTRIBUTIONS IN CHEMICAL 

ENGINEERING. 

2.1 Introduction 

In this chapter some of the principal ideas which have been used 

to construct models of the mixing processes which occur in chemical 

process equipment will be discussed. The purpose is not to give an 

exhaustive survey of the literature but to compare and contrast the 

main themes of the literature and to show how they relate to the time 

delay idea. Comprehensive critical surveys in this field have been 

published in recent years by Levenspiel and Bischoff (1), Klinkenberg ( 2) 

and Verloop, de Nie and Heertjes (3). Also of interest is the book 

by Shepherd (4) d~scribing how techniques very similar to those 

employed in chemical engineering have been used in biological studies. 

Chemical engineering models fall into two main groups: those in 

which a·; basic unit is repeated several times with series interconnection 

and those in which a variety of units are connected together in a more 

arbitrary way. The former are essentially one-dimensional and the 

latter multi-dimensional. A similar distinction exists for models 

expressed in terms of differential equations. One-dimensional models 

have been developed in a systematic way and each model applied in a 

variety of situations. Their complexity has rather precluded this for 

multi-dimensional models, which have been analysed case by case. 

2.2 The well-mixed vessel 

The natural definition of perfect mixing is that the composition 

is everywhere the same when examined at a scale that is small compared 

with the vessel dimensions but large compared with molecular dimensions. 

This definition is not wholly satisfactory from the point of view of 

molecular interactions, but is sufficient to establish the residence 

time distribution. A material balance for a vessel of volume V through 
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which fluid flows at volumetric rate Q is: 

= V £!£o 
dt 

( 1) 

where c. ·and c are the outlet concentrations. The outlet concentration 
J. 0 

for impulsive forcing is 

Co -
v -Qt/v -e 
Q 

that is the residence time distribution is 

f(t) = I -th:: -e 't 

where ~ is the mean time. 

(2) 

(3) 

This leads to an immediate interpretation in terms of time delays:· 

there is no minimum transit time and the delays have a (negative) 

exponential distribution. Probabilistically, all flow elements present 

in the vessel at a given instant have the same chance of leaving in the 

next small increment of time. 

Many more elaborate models are constructed from well-mixed vessels 

connected together in an appropriate way; the simplest of these is 

the tanks-in-series model. 

2.3 The tanks-in-series mixing model 

When n well-mixed vessels of identical size are connected in 

series, Fig. 1, a set of n equations :the same as Eq.(1) is obtained. 

The response to an impulse, the residence time distribution, is 

f{t) -
t "'-' e -th 

(V\-1)! 'l"' 
(4) 

where ~ is the time constant per vessel. This model is of considerable 

importance for several reasons: historically, it was first discussed 

in 1918 by Ham and Coe (5) (Levenspiel and Bischoff (1) give other 

early references); it is a good qualitative one-parameter 

representation of many processes; for flow in packed beds a priori 



.................. ----------------------------------------

1 2 1-----....., n . 

Fig. l The tanks-in-series mixing model 
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estimates of n based on particle dimensions give reasonable results (1). 

A drawback of the model is that n is apparently restricted to integral 

values of n, while a measured response might lie between those for 

adjacent n-values, It is in fact possible to generalize the model to 

remove this restriction 'quite easily. This is done in Sec.?.l 

The interpretation in terms of delays is again simple:: each flow 

element undergoes n random delays and the residence time distribution is 

the distribution of the sum of n independent observations from an 

exponential distribution, In probability theory this is usually 

analysed via the characteristic function (Fourier transform) in a 

way that is analogous to the treatment using the Laplace transform that 

is familiar in chemical engineering, 

2.4 The tanks-in-series backflow model 

Sometimes it is appropriate to consider that flow occurs between 

vessels in both directions, Fig. 2. This is the case with counter-

current processes, e.g. fractionation, gas absorption, and on a 

microscale with diffusion. Several authors (6, 7, 8) have considered 

this case. The solutions of the model are not simple unless the 

number of vessels is small, 

Probabilistically the essential feature that distinguishes the 

backflow model from the simple tanks-in-series model is that the number 

of delays is not also a random quantity. Retallick (6) has given a 

probabilistic treatment of this case. 

2.5 The diffusion model 

The diffusion, or dispersion, model (9) is constructed by analogy 

with the treatment of molecular diffusion in a flowing medium. It is 

supposed that there is a diffusive flux counter to the concentration 

gradient superimposed on the bulk flow, For the one-dimensional case 



• • 

-

Fig. 2 The tanks-in-series-with-backflow mixing model 
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the flux of tracer at any section is: 

.: 1.1'" c -
(5) 

where c is the concentration at position x and time t in a stream moving 

at velocity v. The constant D is the diffusivity or dispersion 

constant. When this flux is incorporated into a material balance 

the diffusion equation for a moving medium:: 

D = 

(6) 

results. 

Levenspiel and Bischoff (1) give solutions to Eq.(6) for several 

different sets of boundary conditions. It is sometimes stated that if 

diffusion is possible in the inlet or outlet, then the residence time 

distribution is affected. The effect is in fact more serious than 

this. Eq. (5) merely identifies the flux, not which tracer elements 

cross a given axial position,so that it is not possible to determine 

an expression for the residence time distribution in the usual sense, 

The diffusion model is one of the most popular in chemical 

engineering and is widely employed in situations in which it is not 

clear why it should be employed, Klinkenberg's work (2) gives the 

impression that, whenever the residence time distribution fits a 

diffusion model response, it is both proper and desirable to use the 

model, This is only partly true, If it is only the dynamic response 

that is of interest, this approach is satisfactory. However, as so 

many mechanisms can be reduced to an 'equivalent• diffusion case, it 

follows that stimulus-response experiments cannot uniquely identify the 

mixing mechanism, The most sensitive technique for using response 

measurements to identify the mechanism is the use of the intensity 

function of Naor and Shinnar (10), This involves estimating the 



instantaneous probability of a flow element leaving the system as a 

function of its age and requires precise measurements of the response. 

The relationship between the intensity function and directly measurable 

quantities is discussed in the next chapter, 

The importance of the above observations on mechanism is that if 

some other phenomenon besides mixing occurs, the predicted system 

behaviour may well depend on how the mixing is represented, As a case 

in point, Bott and Azoory (11) have studied mixing in a wiped-film heat 

exchanger by the impulse response method and used the results to 

ascertain the extent to which the performance of the exchang~is affected 

by mixing, In a wiped-film exchanger much of the mixing is lateral 

in character and results in fluid elements taking a range of times in 

paths at a fixed axial position as is apparent from descriptions (12 1 13) 

of the flow in transparent models where the flow can be seen, The 

one-dimensional diffusion treatment attributes all the spreading of 

residence times to axial mixing and results in a conservative estimate 

of the effect of mixing in this case, In fact Bott and Azoory 

conclude that for practical operating conditions axial mixing does not 

significantly degrade performance relative to the Plug flow assumption, 

so there is no need to modify their conclusions, This may well not 

be the case for reactors, We return to this question in Chapter 8 

where mixing is interpreted in terms of two effects, axial and dynamic 

dispersion. 

Multidimensional dispersion models have been discussed by several 

workers whose results are summarized by Levenspiel and Bischoff (1), 

The main difficulty with these methods is their mathematical complexity. 

The diffusion-type models are more naturally related to random 

shuffling than delays, The equations require boundary conditions 

to be imposed at the outlet as well as the inlet, which is an important 

difference between them and time-delay models, 



2,6 The two layer (Anzelius) model 

This model is another classic, dating from 1926 (14). The 

original application was regenerative heat transfer, but other processes, 

notably fixed bed mass transfer processes such as adsorption and ·~on 

exchange, and various forms of chromatography may be similarly 

described. The theory is available in several texts, e.g. Bird, 

Stewart and Lightfoot (15) and Bateman (16). The basic idea is that 

fluid flows in plug flow and interacts with a stagnant region in such a 

way that the rate of transfer between the flowing and stagnant regions 

is proportional to the concentration difference, Fig. 3. 

As flow elements are only identified in terms of concentration, 

these assumptions are equivalent to assuming that each of the regions 

is locally well-mixed. Thus the residence time distribution is again 

the distribution of a random number of observations from an exponential 

distribution; there is also a dead time, or minimum possible transit 

time, because forward motion only takes place in the plug flow region. 

Analytical solutions of this model may be expressed in terms of Bessel 

functions (15, 16), 

It is possible to generate several mechanisms that fit the above 

process description:: it is possible that the 1 stagnant 1 region is well 

mixed and that fluid flows through in such a way that there is little 

if any nett forward motion; the interaction may be characterized by 

a transfer coefficient as in heat transfer to a packing of high 

thermal conductivity; there may be transverse flow through pores of a 

variety of sizes to generate the exponential distribution. 

2,7 The Deans-Levich Model 

The Deans-Levich model is a discrete version of the Anzelius 

model and is illustrated in Fig, 4, It was proposed by Deans (17) 

to describe flow in packed beds and later discussed further by Levich, 

Markin and Chismadzhe~ (18) as a representation of dispersion in porous 
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Fig. 4 The Deans-Levich mixing model 
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media, Deans gave the limiting (Anzelius) solution for an infinite 

number of stages while Levich and his eo-workers obtained approximate 

solutions for a large number of stages, 

this model is given later, 

The analytical solution for 

Probabilistically, the interpretation of this model in terms of 

delays is rather similar to that for the Anzelius model, except that 

orily a finite number of delays is possible and that the dead time 

(minimum delay) is zero, Again it is possible for th~ exponential 

distribution to be generated in several ways, 

2,8 The Cairns and Prausnitz (Einstein) model 

Cairns and Prausnitz (19) have employed a model originally proposed 

by Einstein (20) to describe the motion of pebbles on the bed of a 

stream. It is considered that motion takes place in a series of 

random jumps and rest phases, the jumps being of negligibly short 

duration compared with the rest phases, This situation is equivalent 

to the Anzelius model with zero holdup in the flowing region, 

2,9 ·Multidimensional models 

Mathematically, the treatment of multidimensional models is 

difficult. As a result many models with special features designed 

to represent the details of specific processes have been proposed and 

treated case by case. Many examples are given in the.reviews cited 

earlier. One of the objects in the present work was to generate a 

common method of treating multidimensional models in terms of time 

delays. Some success has been achieved in this and the methods are 

reported later, 
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3· RESIDENCE TIME DISTRIBUTIONS AND RELATED IDEAS. 

3.1 Density functions and distribution functions 

The intuitive idea of distribution is adequate for most present 

purposes. It is unfortunate that two different usages have developed, 

in physics and probability theory, for describing distributions. 

Confusion can arise because the same word has different meanings in the 

two fields. 
., 

The probability that a random variable X has a value x 

in the range Cx, x + dx) is denoted fC:x). dx. fCx) is called the 

probability density function in probability theory and the distribution 

function in physics. Correspondingly the probability that x 1 is in 

C-OO ,x) is denoted F("x) and is called the distribution function 

(probability theory) or the cumulativ~ distribution function (physics). 

In the present work the latter usag~ is adopted except that where 

the meaning is clear from the context the single word 'distribution' 

is used. 

As the various possible values of x are mutually exclusive the 

additivity rule of probabilities implies that: 

whence 

F (x) 
" _ J f (x) dx 

-"" 

f (x) = 
df(x) 
dx 

(1) 

(2) 

When the distribution function is zero for part of the range of 

x it is convenient to take this into account in the limits of the 

integral. Residence times cannot be negative so that zero is then 

the appropriate lower limit. 

Further obvious but useful properties are: 

f (x) ~ 0 (3) 

Joo fC-x.) dx - F(oo) - 1 
__ IIJ 

(4) 

F (- oo) - 0 (5) 
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and the appropriate corresponding forms when the lower limit is not 

minus infinity. 

Danckwerts (1) was the first to discuss residence time distribut~~s 

in detail, and his notation for several concepts has become widely 

accepted. Several of the ideas that follow are due to Danckwerts, 

but his notation is not followed because it is in confl:lict with the 

type of notation usually used in probabilistic analyses, It is usual 

in probability theory to use· lower case letters for density functions 

and the corresponding capital letters for distribution functions; 

Danckwerts uses capital letters for both, It is not wise to mix 

two conventions and; as the probability theory convention uses fewer 

letters, it is adopted here, 

3.2 The residence time distribution 

In general when material passes through a piece of process 

equipment, not all the material passes through in the same length of 

time. The very special case in which all elements of the material 

being processed take the same time to pass through rarely if ever 

occurs in practice, As this would occur if non-diffusing material 

passed through a straight conduit with a flat velocity profile, this 

situation is often called 'plug flow' and is a valuable concept 

because it frequently enables a limit to be put on the capabilities 

of process equipment. 

The usual situation is that material passes through the equipment 

with a variety of residence times. This leads to the idea of a 

distribution of residence times: that is, the residence times are 

spread out and the spreading may be characterized by a density 

function, say f{t). Intuitively this seems quite reasonable, but 

there are a number of situations in which the simple idea of 

residence time fails. For example: What is meant by 'residence time' 
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when it is possible for material, once having left a system; i;o 

reenter it? These and other conceptual difficulties can be avoided 

by specifying that the system under consideration is in a steady state 

flow regime and that material only enters and leaves the system by 

bulk flow, thus ensuring that residence is a once-only event. Inlets 

and outlets that obey this condition are called (closed', Levenspiel (2), 

as opposed to 'open' boundaries at which diffusive effects prevent the 

unique determination of residence times. The distinction is comparable 

to that in thermodynamics in which diffusion across a system (control 

volume) boundary prevents an energy flux beingEplit into heae and work 

interactions (3), 

3,3 The impulse respons~ 

Imagine a quantity of tracer is introduced into the system 

entrance very quickly. It will emerge later from the system exit over 

a period of time, The results of this experiment clearly depend on 

the residence time distribution. If the flow situation is steady, 

repetition of the experiment will yield identical results, Steady 

injection of tracer may be regarded as indefinite repetition of the 

original experiment so that the result of the experiment when normalized 

to give proportions rather than concentrations is the residence time 

distribution, This conclusion is of considerable importance because 

the sudden injection of a quantity of tracer is easy to formalize 

mathematically. The Dirac delta function defined by: 

s ( t- t') ::::: ocJ 
) t = t' 

-- 0 ) t =/: t' 
OQ (6) 

s s (t -t') clt = 1 
_oo 
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is used to this end. The delta function has the advantage that it 

may be easily incorporated into the analysis of problems using integrals. 

crperational methods using integral transforms and separation of 

variables used to find Fourier series solutions are examples. These 

methods make use of the 'sifting' property; 
0() 

~ ~(t-t') cp(t)c\t ::: cp(t') 
-00 

of the delta function. 

The advantage of the impulse response as a characteristic of a 

process model is that it is usually simpler and mor~ easily found 

mathematically than other responses, although the responses to step 

and sinusoidal forcing are frequently relatively simple. Responses 

to any other forcing functions may be determined from the impulse 

response by convolution, which numerically is a reliable procedure as 

it depends on integration. If one views the impulse in terms of its 

frequency content, this also suggests a central role for the impulse 

response because the response may be regarded as one which contains 

all frequencies in equal measure. 

When the residence time distribution exists it is identical with ·,_, 

the impulse response. However the impulse response exists independently 

of the idea of residence time. 

3.4 The exit age distribution 

It is sometimes convenient to think of a system in terms of the 

distribution of exit ages. This distribution is an attribute of the 

product at an instant in time and the experiment to measure it directly 

would involve coding a steady injection of tracer with its time of 

entry. The exit age distribution is identical with the resffience time 

distribution, and the need to contrive experiments to measure the exit 

age distribution per se does not arise. 
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3.5 The internal age distribution 

The distribution of ages witlrlna piece ofequipment is not the same 

as in the effluent. If a stream containing tracer at concentration c 

enters at a steady rate a proportion F*(t) of the tracer that entered 

in (-t-dt,-t) will still be present at time zero. Thus the quantity 

witli age less than t, i.e. that entered in (-t,O), is 

t 

c Q J F * ( t') cLt' 
0 

and the proportion is 
t 

} 
0 
F~ (t') dt' 

~: F~ (t') cit' 

(8) 

The internal age distribution is obtained by differentiating this 

expression and is 

F* {t) 

f~ F~'- (t)dt 
0 

{ (t) ( 10) 

the value of the· integral being given by Eqs. (17) and (19), below. 

3.6 The intensity function 

Sometimes, in search of a mechanism, one is led to consider the 

way in which the probability that an event occurs depends on the 

period of time in which it has not occurred: on~s chances of dying 

this year depend on ones age. Thus in considering the residence 

time distribution for a stirred vessel it would be reasonable to 

attempt to relate the probability of a flow element leaving the vessel 

to, say, swirling. Age might enter the analysis in terms of the 

number of times the flow element has passed the outlet without leaving. 

Suppose that i(t)dt is the probability of a flow element of age t 

leaving the system in the time interval (t,t+dt): that.is, i(t)dt is 
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the conditional probability of leaving in Ct, t+dt), the condition being 

that the element is still present at time t. The multiplication 

rule for probabilities relates the unconditional probability to 

conditional probability as follows. 

P (A) 
so that 

or 

L(t) = 

P(AjB). P(B) 

i (t) 
F*(t) 

L ( t) clt . F * ( t) 

- ~ [~ F*(t)] 
dt 

(11) 

(12) 

i(t) is called the intensity or age-dependent risk function and has 

been advocated by Naor and Shinnar (4) and Heertjes (5) as a means 

for discriminating between residence time distributions. 

3.7 The washout function 

Suppose that a system is in the steady state, and continually 

fed with a stream containing tracer at a fixed concentration. At 

t = 0 the tracer flow is stopped but conditions are otherwise 

maintained as before; some other material is substituted for tracer 

in the feed if necessary. The quantity of tracer present in the 

system at time t is given by the washout function g(t). In principle 

g(t) contains the same sort of information as the functions that have 

been discussed previously. The properties of the washout function 

have not attracted much direct attention in the chemical engineering 

literature although the washout idea is clearly of importance in 

specifying acceptable levels of residual contamination after washing. 

An example that can be cited is the work of Tallmadge, Buffham and 

Barbolini (6, 7) on rinsing as practised in the metal finishing 
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industry, Washout functions and their properties have received 

more interest in biology in connection with perfusion and related 

techniques (8, 9). 

The forcing function implied in the definition of g(t) is a 

negative step in the input of magnitude c, where c is the original 

steady fee.i concentration. A material balance:: 

Quantity remaining at t 

- quantity which will leave after t 

gives CO 

g(t) = caft: F*(t)dt (13) 

Differentiation shows how g(t) is related to more familiar functions: 

s (t) - -cG.F*(t) (14) 

9 (t) - c G.f(t) (15) 

and division of Eq (15) by Eq (14) gives 

3 (t) ~ [ ~ ~ (t)J = -f {t) -- F"* (t) 9 (t) (16) 

The washout function shares with the impulse response the 

property that its definition does not depend on the way boundary 

conditions are specified and so it remains defined in circumstances 

where the simple definition of residence time fails. 

~xtensions of the above ideas to systems with multiple independent 

inlets are possible. 

3.8 The mean time 

The mean time for a flow system with 'closed' boundaries is the 

ratio of the volume to the flow rate. This result has been discussed 

else\<here ( 1) but the following demonstration of the result is very 
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simple and demonstrates its wide applicability. 

the steady state holdup of tracer as 

Equation (13) gives 

9 ( o) (17) 

and integration by parts shows that 

9 (0) - cQi[F• t{- f.'\ ~rdtJ (18) 

The product F•t vanishes both when t = 0 and when t -P- 00 , so that, 

in view of Eq (2), 

00 

9(0) - cQ Jo tf(t)dt cQ.I: (19) 

the integral in this equation being the mean time. For a system with 

one inlet, or several fed with tracer. at rates such that their 

concentrations are the same, the steady state concentration must be 

the same as the feed concentration and g(O) is eV. Hence 

t = v;a (20) 
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4. CHARACTERISTICS OF PROBABILITY DISTRIBUTIONS 

4.1 Moments 

The moments of a probability distribution f(x) are defined by: 

J
90 

-00 

X r {Cx) dx. 
' 

r == i, 2.,3J ... (1) 

The zeroth moment is unity; the first moment or mean of x corresponds 

to the usual notion of the arithmetic average of x, so that }1-: may 

r be interpreted as the average value of x , In addition to mean and 

average the term expectation, represented operati.bmlly E{ ) , is also 

used. For values of r greater than unity the moments about the mean~ 

QO 

f'v == J (x- )11') f(x) dx (2) 

-00 

are of rather more interest, These moments, called central moments, 

may be expressed in terms of the moments JUr' by multiplying out the 

('X.-,JJ../t factor, E~g. 

Cl() 

-J {x. 2 -2jJ-/-x:+jJ-/ 2)ft~)dx 
_oo (3) 

The second central moment is called the variance, written var(x), and 

is a measure of how spread out the f(x)' curve is. The square root 

of the variance is the standard deviation, Ci , Similarly the third 

central moment vanishes when f(x) symmetrical about ~1 1 , as do all 

odd order central moments, and is a measure of the skewness of the 

curve. 

Results corresponding to Eq(3) for the next few central moments 

are ( 1) :: I I 3 

fh = jJv:;'- 3)-t:..'fl, + 2Jvlt (4) 
I /I I I 6 1 '). 3 I 4-J'A4- = }J-4-- '"t"fl3f1 + fJ-1}-J.I - f-l-1 (5) 

I 5 I I fO I,U/:1 10 fA,(13 J../.. If fl-s == ;«s - flu fA• + f-J r _, - f'2 1 1 + f' (6) 
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When the variable is time it is usually the case that 

f(t) = o, t < 0 

so that the lower limit of the integrals may be taken as zero. 

4.2 Moment generating functions 

A generating function is a function the coefficients of whose 

power series expansion give a desired set of parameters. In 

probability theory the integral 

M (s) .;: J~ e.st{(t)dt 
_oo 

is frequently used as a moment generating function. However it is 

more convenient in the present context to use the related Laplace 

transform: 00 

f ( 5) = J e-st i (c) dt 
0 

since this is familiar and often known. 

Expanding the exponential in the Laplace transform in a power 

series yields 

(7) 

The coefficient of (-1 )r Sr /r [ is the rth moment 

Successive differentiation of Kq (7) shows that : 

[ 
d. .. J~s)] 

ct.s s=o 
- ' (8) 

a result that is also frequently useful. Corresponding rules based 

ic.lt on the exponential Fourier transform, which uses e in place of 

-st e , follow in the same way; the Fourier transform of a probability 

distribution is called a characteristic function (1). The logarithm 

of the characteristic function ~er.ates another set of coefficients, 
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the cumulants, which are close1y related to the moments and which are 

often useful in calculating low order central moments, 

4.3 Cumulants 

Instead of using 

4 f r: e LWt -f(t-)dt} 

as the cumulant generating function, it is again convenien~ for our 

purposes to use the Laplace transform, Expansion gives 

= 

( 
I 3 I I 2 IJ) S! 

- }J-3 - )A-2 ft• + }A-t 3T +.. . (9) 

The coefficients of (-1 )r Sr /r! in Eq (9) are the cumulants, :J( , and r 

comparison with Eqs (3) and (4) shows that: 

x, - f-•' (10) 

x2 = fh (11) 

:k3 = }A3 ( 12) 

Beyond r = 3 the method may still be used to find the moments, but 

the simple form breaks down (1), 
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4.4 Probability moments 

The moments of the probability rather than the time 

(13) 

have certain attractions, but suffer from the drawback of being 

difficult to evaluate and manipulate. Levenspiel (2) has pointed out 

that ~z is a measure of th~ peakedness of the distribution and suggests 

it be called the 'emminence'. Engh (3) discusses blender performance 

in terms of this function. 

4.5 The probabilistic entropy 

Shannon (4) defined the entropy for a discrete distribution as 

s, = - k L PL .tM. ~~ (14) 
( 

in his pioneering work on information theory. The entropy is a 

natural measure of the uncertainty of the outcome of an experiment 

with discrete outcomes (4, 5, 6). The uncertainty about the exact 

outcome of an experiment in which there is a continuous range of 

possible outcomes in infinite, which is reflected by the fact that SD 
becomes infinite when the attempt is made to take the limit of Eq (14) 

to obtain·the uncertainty for a continuous distribution. 

The function 
00 

Se - -k Jo f(t:)..k.f(t-)clt 

exists, however, and represents the relative uncertainty (4). 

(15) 

S is 
c 

a measure of the spread of f(t), because the wider and flatter f(t) is, 

the more uncertain in relative terms is the result of a random 

observation. 

Jaynes (?) has suggested a formalism for guarding against bias 

which is based on the entropy idea. This formalism is that. the 

entropy should be maximized subject to con~nts which express any 

known facts concerning averages and the like. When this is done one 



- 26 -

obtains the •maximally vague' (most spread out) distribution that 

fits the facts. Logicall'y this is the best choice as a working 

hypothesis and is the 'minimally prejudiced' estimate of the 

distribution. 
' 

For a flow-mixing system that obeys the mean value theorem, 

Sec.3.8, and about which nothing else is known, Jaynes formalism gives 

- Q. 
-Qtjv 

e -
V (16) 

which is the residence time distribution for a perfect mixer. Thus 

the sense in which a perfect mixer is perfect from the residence time 

distribution point of view is that it induces the maximum possible 

spread in the residence time distribution. This result and one or two 

others is proved in Appendix I. 

Although the entropy is an attractive measure of distribution 

spread, being fundamentally more suitable than the variance (see 

Appendix I), its major drawback is that it may be evaluated analytically 

for only a few very special cases, Moran (8)' has recently remarked 

on how scarce applications of the entropy idea are in probability theory 

despite the appeal of the concept. 

4,6 Additivity of moments for independent events 

Models of a serial nature are of frequent occurrence. Suppose 

that n random events with probability density functions fi(t), 

i = 1,2,3, ••• , n occur in succession and call the density function for 

the composite event f(t). This situation is familiar as n stirred 

vessels in series with residence time distributions f. (t), The 
l. 

Laplace transform of f(t) is 

"' 
f (s) - IT { (s) 

l. "' :!. (17) 
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because f(t) is then-fold convolution of the f.(t). 
l. 

logarithms: 

n 

.~ ..f(s) - .[ vk-[ (s) 
- l=-1 

and expanding ..t,.. f(s) and ~fl(~) as power series in a: 

Taking 

(18) 

which shows that the' means, variances and skewnesses are additive. 

4.7 Miscellaneous distribution characteristics. 

Many other characteristics may be defined that differ from 

distribution to distribution. Those described above are important in 

that they represent the distribution in terms of 'averages'aasaessed 

in a continuous way. Measures such as the median, the point which 

bisects the distribution; the quartiles, which divide the distribution 

into four equal areas; the location of the maximum probability; and 

the slope of the cumulative distribution function at the point at 

which it equals 0.5 are cruder measures which group the distribution 

into intervals and are consequently less discriminating. However 

these measures are usually easier to determine from experimental 

data; whether they are easily determined analytically depends on 

the mathematical form of the distribution considered. 



- 28 -

5. SOME AD HOC DEVELOPMENTS OF TIME DELAY MODELS. 

5.1 Introduction 

In this chapter a number of developments and extensions of 

existing models of the time delay type are discussed. These include 

' anal'y~cal solutions of hitherto unsolved problems, some new forms 

that were suggested by previous models and reinterpretations of 

previous models. The various topics discussed are arranged in a 

logical sequence rather than in the order in which they were developed. 

They arose during the course of the more general investigation and 

are collected together herefor convenience. 

5.2 A Generalized Tanks-in-Series Model 

The transfer function for the tanks-in-series model is: 

f(s) (1) 

in terms of actual time so that 

f (t) t ~~-· e-th 

(n-i)!'t'~ (2) 

When this model is used to describe arbitrary mixing situations it 

is convenient to use normalized time units: i.e. a time scale such 

that the mean time is unity. The rJ -domain and e -domain solutions 

are then 

e VI-I -ne 
(In e 

(V\- I)! 

(3) 

(4) 

For many situations this expression is a reasonabl~ adequate one-

parameter pepresentation (1) especially for describing the responses 
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of columns when fairly high values of n are required. However, many 

workers, e.g. (2, 3), have found the model lacking in its ability to 

describe such phenomena as mixing in stirred vessels and fluidized 

beds. Often the physical response has characteristics intermediate 

between those for two low adjacent values of n, say 1 and 2 or 2 and 3. 

Since, in the situations in which the model is usually applied, the 

parameter n has no immediate physical significance, the suggestion arises: 

is it possible to retain the form of Eq~~with non-integral values 

of n? The answer to this question is affirmative because it is 

not necessary to restrict n to integral values for Eq.(4) to have a 

valid inverse (4). If n is not integral the inverse is 

f (9) e'l-1 -1'19 nt\ e 
' (5) 

- a distribution known as the gamma distribution, 

When n is integral the distribution takes the familiar form of 

an exponential decay if n is unity and a skewed bell-shaped curve 

that becomes less skew and more peaked for progressively higher .values 

of n. This behaviour persists in the generalized form for n '? 1, 

the curves for non-integral n lying between those for integral n in 

an intuitively satisfactory way. However, when O;>'n~1 the curve 

takes a rather different form: it is infinite at 0 ~ o, decays 

rapidly at first and finally decays more slowly than an exponential 

decay. These features are illustrated in Fig. 1. 

The generalized tanks-in-series model then is an excellent 

example of the fact that the statement often made in the recent 

literature that plug flow and perfect mixing are extremes 'between' 

which all other mixing situations lie, is false. Early workers (5,6) 

did not make this mistake. Perfect mixing is an extreme in a very 

special sense - maximum spread of residence times - and can be, 

regarded as being intermediate between perfect bypassing and plug flow, 
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l·O .--..-------------------, 

0·8 

f(e) 

0·6 

0·2 

0 1·0 

e 
2·0 

Fig,l The gamma distribution, showing two types of deviation from 
perfect mixing, 
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both of which result in no spread of residence times. The natural 

measure for spread of residence times is the probabilistic entropy. 

The moments of the generalized tanks-in-series model are most 

easily found by regarding the transfer function as a generating 

function (see 4.2) and are 

r(n+r) 
n"" r(n) 

from which it follows that the variance is 

vav- (e) -1 
Y') 

(6) 

(7) 

It is apparent from Fig. 1 that the model response possesses a 

maximum only when n.>1; differentiation of Eq.5 shows that this 

occurs at 
i i--
V) (8) 

Using the gamma distribution of residence times in a series 

replication model leads back to the same model. For if the prototype 

distribution transfer function is taken as 

f1 ( s) (9) 

where ~ is not necessarily integral, and this is repeated n times 

in series, the result is 

(10) 

which is identical in form to Eq (1). 

These observations allow one an escape from the dilemma that 

occurs when the tanks-in-series model fits data but with a value of n 

that is in conflict with prior reasoning. If the prototype mixing 

processes are not perfect the number of stages identified experimentally 

will differ from the actual number. 
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Gibilaro (7) and Gibilaro, Kropholler and Spikins (8) have 

presented RTD data for a stirred vessel that show several interesting 

features including oscillations superimposed on an almost exponential 

decay, extremely high initial responses, and rapid rise followed 

by an almost exponential decay, The generalized tanks-in-series model 

is able to represent the latter two of these in a qualitative way as 

is shown in Figs. 2 and 3. The data ar~ not fitted as well as they 

are by the more sophisticated, physically based models presented in 

the original references, but the fit is clearly a better representation 

than could be obtained from the tanks-in-series model conventionally 

interpreted, 

5.3 A Two-Constant Generalized Tanks-in-Series Model 

The success of the generalized tanks-in-series model in 

describing in a qualitativll' way a wide variety of mixing situations, 

ranging from stirred vessels showing bypass characteristics to packed 

columns, suggests that a similar model, based on comparable physical 

premises, but including another parameter could be very useful indeed. 

Suppose the unit cell is described by the transfer function 

f (s) [('C!s+i)(tt1s+1)]-i 
(11) 

that is, the unit process is equivalent to two well-mixed regions of 

different volumes in series, When n such units are combined in 

series Fig. 4, the resultant transfer function is 

f(s) = [h:·,s+i)(7is+i)]_., 
C:l2) 

or in normalized form 

f (o-) =[( 
(I .foe(.) (j 

+ i)(~ +~r (13) 
'(\ 
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0 L---~----~----~--~ 
0 0•5 .i,.O 1,.5 2·0 

i·2. 

1·0 

0·8 

Fig. 2. 

0 O·S 

Fig, 3, 

Figs. 2 and 3. The gamma distribution fitted to mixing tank 

residence time distributions, 



~ (.1-cx)V c<V (i-Ol)V c<V - (i-Ol) V o<V 

Fig 4 The two-constant tanks-in-series mixing model 
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where ~ is in effect a volume ratio and is given by 

(14) 

Had the unit process been taken as a combination of two gamma 

processes with the same index but different means, exactly the same 

form of normalized transfer function would have resulted. 

Equation (13) reduces to the usual tanks-in-series model when 

oc '""' 1 or 0 and is symmetrical about <X=' .f, Hence the range of ~ 

can be conveniently taken as 

1/'2 ~ <X ~ 1 
(15) 

When~=--f_ the model again reduces to tanks-in-series form but with 

twice as many tanks, 

As with the tanks-in-series model, it is not necessary to restrict 

n to integral values in order to invert the transfer function. The 

inverse is ( 4) : '!: 

-f (e) = .f7t n.. ( e )n (~(l-et) e ]- :z e_,e~.zO( (t-«) I.,_j f h C-101 -l) e (. 
r(n) .2cx-L Ln(.2ot-1) '"{ :lot{l-oc) s 

(16) 

The moments of the response are most easily found by expanding Eq. (13) 

as a power series in CJ• They are 

I I i tAo := L-1. = 
I I 

(17) 

/M:J. 
I 1 + 

i-20((/-0{) - V'l 
(18) 

The central moments could be established from the above results, but 

are more easily found from the cumulants: 

(20) 
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(21) 

If the moments are to be used directly in model simplification or 

to fit suitable data the simplest way to proceed is to eliminate IX {l-e<) 

between Eqs (20) and (21) to give the following quadratic for n: 

== 0 
(22) 

The value(s) of n thus found are then substituted into Eq.(20) to 

give a quadratic in 0( • To be acceptable, values of n must be 

positive and oL may arbitrarily be restricted to 0.5 .( 0{ <: 1 

remember. 

This model may well be the basis for a good general-purpose 

simplified model for if a dead time is added the transfer function 

becomes 

(23) 

a form which includes the two: 

(24) 

and 

(25) 

recently discussed for this purpose by Gibilaro and Lees (9). Also 

Myr~en (10) has successfully used Eq.(24), fitted in the s-domain, 

to approximate transient thermal conduction. 

5,4 Infinite seguences of identical stirred tanks with backflow 

The various cell models that have been previously discussed are 

capable of producing a wide variety of residence time distribution 
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shapes and can reflect the behaviour of many types of process 

equipment. There is, however, a significant aspect in which they are 

lacking: they cannot describe true backmixing. This feature can 

be introduced by incorporating flow in both directions between the 

cells, Fig.5. The characteristics of this model are very similar 

to those of the diffused plug flow model; indeed the equations that 

describe the model are the finite difference' form of the diffusion 

model, As with the diffusion model, care is required in formulating 

the boundary conditions. End cells with a stream entering or 

leaving counter to the direction of the main flow correspond to the 

'open' diffusion case while the absence of these flows corresponds 

to a ''closed 1 boundary condition, Considerable interest attaches 

to this model because not only can it be used to describe mixing in 

flow in packed beds and the like but the equations are analogous 

to those for counter-current stagewise processes. 

The backflow model has received much attention in the literature 

(11, 12, 13, 14). The analytical solutions are cumberso~ but it 

will now be shown that the solutions for infinite sequences are 

simple and provide useful approximations. Unilateral (semi-infinite) 

~nd bilateral (infinite) sequences are considered. 

Referring to Fig.5 

yields: 

51 c .... +i 

, a material balance over a typical stage 

V £!_c., 
clt (26) 

where C is the concentration in the nth stage at time t, Q is the 
n 

through-flow rate, q is the backward flow-rate and V is the stage 

volume, A convenient dimensionless form of Eq.(26) is obtained by 

setting: 

> 
, 



Q+i Q+~ Q+9. Q -1- g_ Q+.'l.., 

- !l 
0 ~ 1 9. 2 

5t 00 9.. 

Fig. 5 The tanks-in-series-with-backflow model - infinite sequence 
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where Co is a suitable constant with dimensions of concentration. 

The result of making these substitutions is: 

(27) 

The response to impulsive forcing of the zeroth cell is most easily 

obtained by taking as initial conditions: 

~n (0) = 0 , n J:. 0 

= 1 ' n =- 0 
(28) 

which identifies Co as the initial concentration in the zeroth tank. 

The boundary conditions corresponding to the two types of infinite 

!lequence discussed above are:: 

~" ("t) -- 0 , 

for the bilateral sequence and 

~ .. ('l) ~ 0' 
~-.i ('t') == 0 

for the unilateral sequence. 

n-- ±oo 

VI -=- 00 

The Laplace transform of the model equation, Eq.(26),is 

~ .. (0) 

(29) 

(30) 

(31) 

where, for the response to an impulse input of tracer to the zeroth 

stage, ~n(O) is given by Eq.(28). For a sequence that does not 

include the zeroth stage this may be written in finite difference 

form (15) as follows: 

(cx:E 2 -cr-E + 1) g., - 0 
02) 

where <5"= I+<X+S • Substituting a trial solution: 

~"' - Apn (33) 

shows that 

[ o- ± ( a-2- 4-0i) If,_ J I 2 0(. fl,'l. -
(34) 
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and consequently that the general solution of Eq.(32) is 

(35) 

When the 'constants' A1 and A2 are chosen so as to match the boundary 

condition at infinity and the special form of Eq (31) for n = o:, the 

(36) 

for the bilateral sequence, and: 

'J-Is) = ( cr--~~-tw.T' 
(37) 

for the unilateral sequence. 

The inverses of Eqs. (36) and 07) are (16>. 

(38) 

and 
-(rt-1-1)/z.. -i - (l+ol)'t' ( 

:J" ('1-) - (n+i) ex 'l e In+i 2-R't) 
(39} 

where In C ) is the nth order modified Bessel function of the first 

kind. 

The Bessel function I ( ): may be defined by:: 

[ 

n '2 Zu. ] 1 + ;::::: + +··· 
2 (21'\+:2.) 2... 4. (2Vl-1-2)(2n+t4-) (40) 

when n is integral; for large values of the argument the asymptotic 

series t 

is useful. By retaining the leading term only of each series the 

following approximations are obtained. 

Early response: 

(42) 
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• with oG l'<<n + 1: for a bilateral sequence and 

for a unilateral sequence. 

Late response or tail: 

- (1-R)"'t 
u 1\ ( 't") - .::::.e ---:r;,;:;:iiill-;:-;:::_, 
V 2 C( {n+'f-;_,)/'/..4 rn: I 

0<1:"2 
<.<( n + 2 

with 16~'f:" >> 4n2 - 1\ for a bilateral sequence and 

) - (1-.JoZY'l 
~" ( 't") _ _,_( n_+7i-J..._-:=;e~---r=::==:,... 2 0/. '" ... 3/2)/2 J ?i. 't3. 

with 16 .(ci'T >> 4Cn +- 1 )2 - l for a unilateral sequence. 

The conditions of validity in the above expressions are given 

in full because they apply for all values of n; for larger values 

(44) 

of n they can be simplified. The inequalities represent the error 

in the calculated response; for example, if the ratio of the two 

sides is lOO :• 11 the error is 1%-. 

In utilizing the stirred-tank-with-backflow model two different 

approaches may be employed, depending on the application. If the 

prob~em is couched in terms of real cells or equilibrium stages, the 

equations developed above are useful directly to obtain the response 

in terms of actual time. Alternatively the object might be to fit 

experimental data and treat n as an adjustable mixing index; normalized 

presentation is then more suitable, That is, new concentration and 

time variables, y• and 't"", are defined such that 

J~ .:1 * d-r::* = i 

and 500 '1:'¥-~-ll-cl't*""" i 
0 

This is done by finding the zeroth and first moments of Yn from yn 

and its derivative with respect to So One obtainsl> 

:1n * ( 11 + 1+0{)~"' -
1-0< 

and "t'* - (l-o< )"t" / ( n + I +oc ) 
l-Ot 
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for a bilateral sequence, whila: 

~" * - n+i 
~--1- 0(. 

and '"t* - 1- o( 

n+i 
"t" 

for a unilateral sequence. In each case j•* ('t"*) is the normalized 

response of tank n. 

The analytical solutions presented above are exact; thus if the 

behaviour of ann-tank sequence (tanks 0 to n-1) that is part of an 

infinite sequence is to represent accurately the behaviour of a 

finite n-tank sequence it is only necessary to establish conditions in 

which the concentration history of the end tanks is matched. If n 

is relatively large, the exact nature of the boundary condition becomes 

unimportant, so the analytical solutions can be expected to provide 

good approximations. As a test the impulse responses of 3--, 6- and 

12-tank sequences (n=2, 5 and 11) were calculated for cl = 0.5 using 

the bilateral equations to compare Fig.6, with the residence time 

distributions for the corresponding 'closed-end' finite case calculated 

by Roemer and Durbin. The bilateral case was chosen for this 

comparison because the equations are simpler. For the lower values 

of n there is no useful similarity between the curves, but this is to 

be expected because the models are quite different. However for 

n ~ 11 (i.e. 12 tanks) the overall agreement is reasonable and the 

agreement between the early part of the curves is very good. For 

still higher values of n the agreement will be better. 

The equations that describe stagewise separation processes are 

analogous to Eqs.(26), so that finite sequences with end tanks with 

backflow are also of interest (gas absorption). The unilateral 

approximation will predict the responses of all stages to composition 

disturbances in a feed (liquid or gas) stream to an absorber until the 

disturbance is noticeable at the other end of the column. For control 
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Fig. 6. Comparison of the bilaterally infinite backflow model 

with the calculations of Roemes and Durbin for th& 

corresponding closed-end finite case. (cl = 0.5). 
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purposes it is this early part of the response that is important. 

Similar reasoning applies to disturbances near the feed plate of a 

distillation column operating with a mixture of low relative volatility. 

In this case the equilibrium line is nearly straight and the liquid 

flow is almost the same above and below the feed plate so that the 

bilateral sequence equations may be applied. When the model is used 

in this way there is no need to be in any doubt about the validity 

of the approximation because the initial response of the remote plates 

may be calculated using the same expressiofii;, as is used. for the respons& 

of the near plates, 

5.5 The Deans-Levich model 

This model has already been introduced in a qualitative way. It 

will now be discussed analytically. Levich et al (17) give the 

transfer function as : 

-f ... (s) 
(45) 

for n stages, where: 

A. = i l) ::: p '0 - 1:. ) ) 

(1-ot)V (1-01)V a. V 
The notation is that used by Levich et al and is indicated in Fig. 7· 

Inversion of Eq.(45) yields the impulse response and the residence 

time distribution. 

A convenient technique for inverting transforms of this type 

is the use of the Laurent series to determine the residues at the 

poles. The details of the method are given in texts on operational 

calculus, e.g. that of Churchill (4), The inverse transform is the 

1" sum of the coefficients of (s-s.)- in the Laurent expansions of 
" ~ 

estf (s) about the poles s =· s., i = 1',2,3, ... , where the Laurent 
n ~ 

expansion is a series of the form: 

Ao -r Ai (s-S;)+ A, (s-s ... )~+ 
-1- A_1 (s- s .. r 1 + A-2 (s-s_. r 2 + ... 

(46) 

-------------------------------··--
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st at-As e is an entire function, the poles of e f (s) are identical with 
n 

those of fn(s) and they occur at 

(47) 

Since /\ 1 l) and ~ are real positive quantities, the poles are on 

the negative real axis and Eq,(45) may be rewritten: 

).."' S+ A [ J
V'I 

($+(I) (S+ (:~.) 
(48) 

where both r
1 

and r
2 

are positive; i,e, the poles are at s = -r1 and 

at
Considering first the pole at s == -r 1 , e f( s} may be written: 

'1"' - r;t+(S+Ii)t:( )~"~ [1 + ~]V'\ 
/1. e '0- \"; r- r; 

(49) 

at-which form is suitable for expanding e fn(s) in powers of (s+r1 ) by 

multiplying the following series: 

(s+r.)t f-' 
e ::: L 

j=C 

\<:VI 

li + S+ r; J n = ~ 
t rr-~-fi L 

\<:::0 

( 
s + Yl ) k __ n.:.:.! -~ 
'r -r-, k ~ (n- k)! 

(tt1.+~-i)! 
.,{. ~ (~-i)! 

It follows that the coefficient of (s+r1)-
1 

in the e~ansion 
st-of e fn(s) about the pole at s = -r1 is: 

A _ e-r;t(r-r;)".>-VI L{-i/n! (n+l!-l)!(v;-r;fttj 
-i - - k 

(fA- tl)"' J.' k!l! ( n-1<).1 (1"1-1)! (-r-Ya) 

(50) 

(51) 

(52) 

(53) 



- 47 -

where the summation is taken over all triples (j, k, 1) of which the 

individual members are non-negative and sum ton- 1. The summation 

is a power series in t; call this series 

n-1 

~(t) -I: ' 

then the B ; j terms, obtained by factoring out t:j are: n, 

V'l ~ (-.i/ ( .... -t--t-1)! 
Y LJ k ! ( n-k) .I .t! ( r- r; l ( r-2.- r; )1 

k+.t = Vl-j -1 

::Bn,} -

As in each term in this sum k + t has the value n-j-1, t can be 

eliminated with the result: 

n-1-j n-i-j-k( ) {-i)2n-Z- j- k .I 

(54) 

(55) 

J3n,j = 7 L 
k"o 

) I ) ( k l'i-1-j--k. k\ (n-k . (n-i-j- k ! r- r;) (~-r;) 
(56) 

Equations (53), (54) and (56) taken together give the contribution 

due to the pole at s = -r
1

• 

The contribution due to the pole at s = -r
2 

is similar and is 

easily found by interchanging r 1 and r
2 

in these equations. 

the final solution for the impulse response is: 

Hence 

f" (t) = K, .. [ ~ B .. ,j tj] e-r.t 

(57) 

where 

the )3.,)) are given by Eq, (55) and the C Yl,j are found from Eq, (55) 

by interchanging r 1 and r 2• The constants r 1 and r 2 are, from Eq,47, 
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Equation (57) is expressed in terms of actual time. 

to be determined experimentally it is usually more convenient to use 

the data in normalized form; To express Eq.(57) in normalized form 

the time is measured in units equal to the mean time and f (t) is 
n 

multiplied by the mean time to preserve the unit area property. The 

mean time is equal to the volume/flow-rate ratio for the system, 

i.e. nV/9. 
The moments of the Deans-Levich model will be established later 

when a unified treatment is given of this and several other models, 

see page 60. 

5.6 Alternative physical forms leading to the Deans-Levich model 

eguations. 

Fig. 8 shows the unit cell of the Deans-Levich model with all 

the extra flows that can have any physical significance added, except 

bypassing. Recycle in a process usually has the effect of 

substantially modifying the behaviour of the process. However in the 

present case recycle has only a quantitative effect1 not a qualitative 

effect. Clearly recycle from either of the vessels to itself is 

irrelevant. The overall recycle loop shown in Fig. 8 is equivalent 

to the flows shown dotted in Fig.9; these flows present no new 

features and may be incorporated into flows already present in the 

system. Thus the model of Fig. 9 may be reduced' to that of Fig. 10. 

It will now be shown that this augmented model is described by a 

transfer function of exactly the same form as the Deans-Levich model 

itself. 



- 49 -

" 
~:1, 

I I 
l I 

~ ~ 
r ' 

Fig. 8. Fig. 9. 

o(v 

f3P. 
(.1-p) p (i-t:)p 

~ 

I" Ep 

' (i- 0c:) V ' 

Fig. 10. 

Figs. 8, 9 and 10. Generalized Deans-Levich unit cells. 



-50 -

Using the notation indicated in Fig. 10, a material balance in 

the 'main' region yields: 

( 9.- ~p) c.,_ 1 + (L- €:) pc;' 

- [ (i-;8)p + j- 6p J c; - (1-CX) Vsc: 
(59) 

when transformed, and a balance on the •stagnant• region gives: 

(60) 

Now write these equations as:; 

(61) 

and 

(62) 

where 

) 

) 

C, - (1 -ft)p + 9.•- Ep ) c2 - (1-p)p 

::.D, - (1-o< )V 

- o<.V t.2 -

·G'{s) c"' G'' (s) 
-I( 

- = c ... 
) -c.,_, c..,_, 

All the constants A, B, C, D and Kmay be taken as positive because 

reversing the direction of the flows /3p and E-p simplifies the 

~;,-) G11(s) •.. model. Equations (61) and (62) are readily solved for ~(S and 

(/ (s) = 
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G 11 (s) 

A material balance at the point at which the streams leaving 

the two mixed regions come together gives: 

(65) 

Or 

(BJ.- B,) G"(s) + (c,-cJ.)G'(s) - 1 G(s) (66) 

where G (s) 

Thus 

G(s) - a,s + cto 
--~~~~-------

(b2.sz -1- b,s + bo) g_ (67) 

where the a's and b's are implied by Equations (63), {64) and (66). For 

a model consisting of n replications of the cell illustrated in Fig. 10 

connected in series the transfer function is 

(68) 

which duplicates the form of Eq (45). 
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6. ONE-DIMENSIONAL TIME-DELAY MODELS 

6.1 Introduction 

Many chemical engineering situationsare one-dimensional in the 

empirical sense that there is a predominant axial direction which is 

the average direction of flow; and that, after perhaps an entrance 

region in which the flow pattern is established, the flow pattern is 

independent of axial position in its essential features. Fl:ow in 

pipes and packed beds falls into this category as does flow in coils 

and serpentine pipes which might not at first be thought of as one-

dimensional. 

The time dela7 description is designed to apply to the residence 

time distribution in any one-dimensional situation where there is a 

main flow region which communicates in ,, s()me way with a side capacity. 

The model was first formulated to describe trickle flow in packed beds 

and this is probably as good an example as any to illustrate the 

reasoning that leads to the model. 

In trickle flow in a packed bed the liquid is spread in an 

extended film over the surface of the packing. Relatively, the flow 

is rapid in the more nearly vertical portions of the film and less 

rapid in the more horizontal parts. At points of contact between 

packing pieces and on horizontal surfaces there are stagnant regions 

through which no bulk flow occurs, but which can communicate with the 

rest of the holdup by molecular diffusion. These observations lead 

to th~ suggestion that the spreading of residence times is due to:: 

(i) random interchange between the stagnant* and moving portions of 

the holdup; (1i) random transfer to portions of the holdup which are 

in slow near-horizontal motion; (iii) random merging and dividing 

of the more rapidly moving part of the holdup whichhas a distribution of 

velocities; and (1v) molecular diffusion. 

• · The stagnant holdup referred to here is not the same as the static 
holdup, determined by draining experiments, which depends largely 
on surface tension. 
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Mechanisms, (i) and (ii) in this classification although 

physically different have much the same effect: material leaves the 

relatively rapidly moving part of the holdup and returns later at the 

same axial position. Mechanisms (ii) and (iii), the hydrodynamic 

mechanisms, differ only in degree physically, but have different effects; 

the former contributes to the spreading of residence times, whereas 

the latter makes the probabilities of flow elements entering into the 

other mechanisms more uniform and uncorrelated. Molecular diffusion 

as a means of axial transport is unimportant except in so far as it 

allows (i), the transverse diffusive mechanism,to take place. If 

this view of the mechanism of mixing in trickle flow is accepted, the 

major part of the spreading of residence times is due to random delays 

with respect to the rapidly moving part of the holdup. This is to be 

contrasted with the random axial shuffling that is postulated to account 

for the form of the diffusion-type models. A significant difference 

is that it has not been found necessary to suggest that some fluid 

elements may have negative velocities. This eliminates the difficulties 

with boundary conditions that occur with the diffusion models. 

To sum up, the description that has been arrived at is: 

The fluid may be considered· in two parts, a relatively 

rapidly moving part and a relatively slowly moving part. 

Mixing is due to random interchange between these 

parts. No great error will be introduced by considering 

the rapidly moving part to be in plug flow. 

6.2 Probabilistic treatment 

By formulating the model in the way suggested abov~ the analysis 

has effectively been split into two parts: establishing the probability 

that n delays take place (n = 0,1,2,3, ••• ); and determining the amount 

of spreading of the residence times that these delays cause. 



-54-

The stopping process 

Let the probability that a flow element is delayed n times while 

travelling a distance x in the longitudinal direction be pn(x). If 

it is assumed that the conditional probability that a flow element 

is delayed in the ensuing element dx of length, is constant, say 01c/x, 

then: 

j:>" (-x:+d-x) - p.,(x) [i- cxcl::<.- O(c!:xY] 

+ p ... -.i (x), o<clx + 0 ( &/ (1) 

That is to say, the tracer may arrive at x ~ dx after being delayed 

n times: by stopping n times in (O,x) and not stopping in (x,x~dx); 

by stopping n-1 times in (O,x) and once in (x,x~dx); and so on. 

These compound events are mutually exclusive and their probabilities 

additive. The probabilities for the compound events themselves are 

obtained by multiplying the absolute probability of stopping n-j times 

in (O,x) by the conditional probability of stopping·j times in (x+.dx). 

Taking the limit as dx ---0, Eq.(1) becomes 

n .::.:- 0,1,:2.,3,,.. 
(2) 

A set of boundary conditions is needed before Eqs 0 (2) can be solved. 

These are:-

p
0 

cor = 1; 

Pn (O): = o, n : 1, 2, 3 (3) 

because it is certain that a flow element will not stop in (O,O), which 

establishes 

establishes 

p
0

(0); and because it is impossible to stop in (o,o), which 

the p (0), n ~ 0. 
n 

This set of equations and boundary conditions is of frequent 

occurrence in probability theory (1) and elsewhere. They are the same 

for example as those for the tanks-in-series mixing model with the 

first tank numbered •o•. The solutions are: 
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f" (x) - (O(x)" e-o<?' 
n\ 

The restarting process 

The simplest assumption that may be made is that all fluid 

(4) 

elements in the stopped state have the same probability of restarting 

in next increment dt of time. One, but not the only, interpretation 

of this is that the 'stagnant' regions are well-mixed and all have 

the same time constant tD~ With the equal probability assumption, 

then, the delay time will be exponentially distributed and the sum of 

n delays will have the distribution: 

f., (t) 
t 1"1-1.. 

(n-i)! !:;." 

-t/t e :D 

by analogy with the tanks-in-series mixing model. 

The residence time distribution 

(5) 

The time a flow element takes to travel a distance x is the sum 

of the time the element has been delayed and the time it takes in flow, 

The flow time is the same regardless of the number of delays and in 

view of the plug flow assumption is constant for a given x and in fact 

is proportional to x. The probability that the total delay time is 

in (t,t + dt) is given by 
00 

9 (t)dt= .L -p.,f" (t) dt 
1"1"0 

(6) 

where p f (t)dt is the probability that the delay time is in (t,t+dt) 
n n 

when n stops occur. Thus the final expression for the residence time 

distribution is 

-f(t)- 0, 

(') _Oix.fc( t) _cr--t-.)/t»Loc [O(x(t--t.)/t)l]"} 
7 (t = e o t- " + e=--

. t-to n=i n.1 {Vl-:1.)! (7)' 
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where t
0 

is a dead time (the flow time). 

The series in Eq(7) may be expressed in terms of a Bessel function 

( 2 ) so that :: 

f(t) ~ 0 

f ( t) == e - 0("-f K { t - to) 

Gamma distributed delays 

Any delay distribution for which the nth convolutions are known 

may be incorporated into the analysis at Eq(6). The gamma distribution 

is notable in that the convolutions of gamma distributions are themselves 

gamma distributions and also in the degree of flexibility that is 

obtained with a single parameter (Sec.5~. When the gamma 

distribution of delay times is employed the result corresponding to 

Eq(7) is 

(9) 

where tD is again the mean of the delay time distribution and m is the 

gamma distribution parameter. Fig.1 shows the residence time 

distribution for several representative parameter values. Equation (9) 

is able to represent distributions that are rather more skew than the 

usual models for flow in packed beds. This flexibility is only 

achieved at the expense of extra parameters of course. Rathor has 

undertaken an extensive programme of experimental work on trickle flow 

in packed columns. He is studying the effect of several physical 

variables for a number of configurations some of which involve 

unusually high wall flow. The data are being fitted by a variety of 
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models in an attempt to assess which is best. Part of this work 

has been reported by Buffham, Gibilaro and Rathor ( 3 ) who show that 

the time delay model with exponentially distributed delay times fits 

the data well and consistently. 

The parameter m may be interpreted as a measure of the degree 

of randomness of the delay process. When m is unity the delay 

process is completely random, that is all delayed elements have the 

same chance of moving on in the next time increment. As m is increased 

from unity the delay process becomes less random and the delay times 

more concentrated until when m ..-oo the delay times are not spread 

at all and the process is deterministic. When m is decreased from 

unity tha delay process again becomes less random, short delays being 

favoured. 

6.3 Unified treatment of several time-delay models from a cell model 

point of view 

The Deans-Levich and the one-dimensional time-delay models 

represent the time-delay process in a similar but not identical fashion. 

It will now be shown how a unified treatment may be given that includes 

these and several other models as special cases. A cell model 

approach is adopted and it is found that the transfer functions and 

moments are established easily. This treatment is particularly 

.interesting for the light it sheds on the interrelations between the 

various models;. 

The unified model and its transfer function 

Fig. 2 illustrates a cell model which is identical to the Deans

Levich model except that the delay process is represented in an 

arbitrary fashion by the transfer function g(s). 

A Laplace transformed material balance on a tracer component in 

the nth cell yields: 



gCs) 

" 3)'N 
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Fig. 2 Deans-Levich model - arbitrary delay process 
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(10) 

where t = V/Q and 0( = q/Q. The transfer function for the entire 
0 

N-cell s~quence is 

{ 11') 

With the exponential distribution of delay times: 

(12) 

the model reduces back to the Deans-Levich form immediately; however 

the model is generalized by using the gamma distribution of delay times: 

as before. The previous one-dimensional time delay model should 

result by taking the limit as N--00 of ~(s). Now 

f (s) :: exp f-t0 s -0<-'C-+- 01~ g (s)} 

(13) 

{14) 

because the model has been so constructed that the limiting process 

does not affect the parameters of the time delay distribution. Thus 

with g{s) given by Eq(13) the inverse of Eq(14) should be identical to 

Eq(9). This will be confirmed later, 

The moments of the impulse response 

Equation {10) with g{s) taking the gamma form, Eq(13} may be 

expressed: 

_ -Nf£ [(to+ O(:d;)s -;~ (1 + ~)tn2S 2 

+ ~~ (t+;)(i+f;,)t/S 3
- ••. ] 

-}N2 8t0 +c<x I:D)s -1J (1 + ~) tD ~s;. + .. J4 

+ SN2. [(to+ O<X:t'D) S - ... ]
3

- ···} 
{15) 
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' -- .' 

by utilizing the series expansions for (1+a)k and ln(1+a) and carrying 

the expansions sufficiently far to generate terms up to s3, The low 

order moments and cumulants are found by picking out the pertinent 

coefficients as described in Sec. 4 .}, and are,; 

f\ ' - to + <X X. t.]) 

fl = 0(7( (l+*)t"J/"+ ~ (to+cXXtl>y 

;;-?, := ~X (_t+ ~ )( i + ~) ~
3 

+ ~ (i +~) O(X. (to+o(?C.~)tD
2 

+ .b. ( t + o(x.t;)3 N:. o 

(18) 

The moments of the distributed version of the model are found by 

taking the limit as N ~oo : 

f-' I - to + ocx.~ 
( 19) 

0(?( (i + ~) t])2 

(20) 

(21) 

Equations (1?) and (20) indicate that both the variance and 

skewness of the impulse response increase indefinitely as m decreases 

to zero, irrespective of the value of N, provided it is fixed. The 

effect of changing N with m fixed is similar: decreasing N increases 

the: skewness and variance, Also of significance is the skewnese: 

relative to the variance on a dimensionless basis. This only takes a 

simple form when N......., IXJ : in this cas~r 

- -- __ j 
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mt-2 

(22) 

which increases as m decreases; the skewness increases more rapidly 

than the variance. 

Additivity of variances 

The form of Eq.(8) is interesting because it shows that the 

variance is made up of two·additive parts: contributions due to the 

delay process and to the model being split into cells. The former is 

independent of the number of cells and the latter is independent of the 

delay distribution parameter and the same (cell mean-time squared 

divided by number of cells) as the variance of the tanks-in-series 

mixing model. So although the mixing mechanisms are not independent 

in the usual sense, their effects separate in the variance. This 

behaviour does not extend to the third central moment which is also 

additive for independent series mechanisms. The two contributions 

to the variance may be regarded as describing transverse and axial 

mixing. 

Time-domain solutions 

The inversion of a transfer function like Eq.(11) is a difficult 

task. The treatment for the Deans-Levich case, which is a simple 

form of Eq.(11), is complicated enough. Of most interest at present is 

to recover the time-domain form of the distributed model. This may 

be done by expanding Eq.(14) and inverting term-by-term: 

-t;.s -Oix.{ i -(s' + [o<::cs(s)]z } - e +OCX:S) I + ... 
2.. fCs) 

(23) 

and 

(~x)"' (t-t) - s.... 0 

n! 
(24) 

where g
0
(t) is the inverse of [g(s)] n. 
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When the gamma distribution is used for g(s), Eq.(24) becomes: 

f(t) = 0 
00 

-f{t) _ e..-"'-.<.--(t-t.)/tl> L (~)""' (O(x)" (l::-to)n .... -1. 

n & 0 tJ> V"\ ! r ( n""' ) ' 
t ~to 

by direct substitution of the inverse of ["i<s>] n: 1..e. 

(25) 

Sn {t) -
(26) 

( ) 
- O(X. 

The first term in the expansion of f t is an impulse of weight e 

at t: t as is apparent from Eq.(23), so that Eqs.(25) and (9) are 
0 

identical as it was supposed they would be. 

Special cases 

In the analysis presented above m may take any positive value 

In particular m : 1 represents an exponential deistribution of delay 

times (a Markovian random delay process) and m-P-00 represents an 

impulse distribution of delay times (a deterministic delay process). 

These cases have been discussed previously. In the trivial case in 

which the side: capacity is absent and N is finite the model reduces 

to the tanks-in-series model. It has previously been pointed out 

that the. completely random distributed version of the: model (N-~rOO , 

m~ 1) is equivalent mathematically to the Anzelius regenerator model 

so that mixing by random lateral bulk flow and by interaction between 

a plug flow region and a static region via a transfer coefficient are 

indistinguishable by tracer experiments. When the delay process is 

random and the number of cells finite (N finite, m:= 1) we have the 

Deans-Levich· model. Finally if the delay process is completely random 

and the transits between delays are extremely short (N~ao , m = 1, 

t ~ 0) the Cairns and Prausnitz (Einstein) model results. 
0 

It is possible to match the dispersed plug flow model by matching 

moments for a variety of parameter values or by any other fitting 
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technique. However the dispersion model is not a special case of 

the present model, the most important difference being that no true 

backflow is incorporated in the time delay model. 

6.4 Formulation of time-delay models in terms of integro-differential 

eguations 

It will now be shown how some of the previous results may be 

established in an alternative way that is based fairly directly on 

physical reasoning and so is capable of extension in situations where 

sufficient information is available. The usual type of unsteady state 

material balance used in chemical-engineering is applied to an element 

of 'bed'. When the mixing phenomenon is considered to be due to 

random lateral flow superimposed on forward plug flow, this balance 

may be written: 

V fk clx 
ot 

(27) -
where Q is the forward flow rate and ! is the transverse flow rate per 

unit length. 

The return flow concentration eR is established by considering the 

times at which the various flow elements of which the return flow 

consists, left the main flow. Material leaving the main stream at time 

~ and arriving back at time t has been delayed for a time t - ~ • It 

follows that of the material arriving back at time t a proportion 

g(t- 'L)dt: left the main stream in the time interval ('?", 'r"i' d-r). The 

average concentration qR of the returning material is obtained by 

summing the products of the concentrations c(~) and the proportions 

g(t -~)d~, it being assumed that all concentrations are zero for 

negative times: 

er<. 
(28) 
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Inserting Eq.(28) into Eq.(27) and expressing the result in terms 

of llG and t 0 , as before, gives 

/; 

- ~ + <X 1 C (T) 9 (1:--'t) d'l- otC 
a.x:. a 

The integral in this equation will be recognized as a convolution 

integral and the Laplace transform is : 

- ctc + 
clx 

as the initial concentration is taken to be zero, 

response 

c ( 0, .5) i 

For an impulse 

(29) 

(30) 

(31) 

so that the solution of Eq,(30)' for an impulse respo~se (the transfer 

function) is 

(32) 

which is identical to Eq.(14) as it clearly must be because the model 

is identical. 

This way of developing the time delay model is rather appealing 

and suggests how axial dispersion due to differences in forward 

velocities can be incorporated into the analysis, Instead of material 

in the delay flow returning at the same axial position that it left 

the main stream, it can be returned at a range of downstream positions. 

That is to say, instead of the residence time distribution g(t) for the 

delay process, we consider a bivariate distribution g (x ,t ) such 

that g(x ,t )dx dt is the probability that an element of flow material 

leaving the main stream at a given position returns at a time 

( t , t + d!t ): later at a distance (x , x +: dx ) downstream. With 

this redefinition of f , the analogue of Eq.(29) is 
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- O(C 

(33) 

It is not proposed to develop methods based on Eq.(33) in any 

great detail; they seem to be rather too complex to be justified by 

the current state of knowledge of mixing induced by complex flows. 

Nevertheless it is interesting to see in general terms how the idea 

might be worked out. Before doing this it should be noted that 

some of the quantities in Eq.{33) cannot be interpreted in exactly 

the same way as previously. Departures from the main flow are not 

necessarily delays, they may be 'advances'; the side flow now 

contributes to the forward flow which means that the flow terms must 

be expressed carefully; and, as a result, c is no longer the average 

concentration of material moving forward at x. 

In the absence of any specific information about the form of 

f(x ,t ), the most suitable way to proceed in general terms is to use 

the Laplace transform. Applied once the transformation leads to 

and again 

(35) 

for the impuls~ response. Rearranging to obtain an expression explicit 

for c we have 

c ( p,s) {36) 

which when inverted twice, first to recover x and then t, gives th~ 

time-domain solution. 
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7. TIME·DELAY MODELLING OF EXCHANGE PROCESSES IN PACKED BEDS. 

7.1 Introduction 

Recently Handley and Heggs (1) have presented experimental evidence 

to show that the two-layer (Anzelius) model is adequate to describe 

heat transfer in packed beds when the solid-phase transfer process is 

rapid, e.g. thermal conduction in a metal, and that the discrepancy 

that arises when the solid-phase transfer process is slow may be accounted 

for in terms of intraparticle conduction. Almost simultaneously 

Jeffreson (2) proposed a cell model that bears a .Stt:l:king resemblance 

to the Deans-Levich and r -distributed time delay cell models to 

describe the same phenomenon. The effects of intraparticle diffusion 

in spherical particles have been discussed by Rosen (3). 

Jeffreson (2) developed his method in terms of frequency response 

analysis and suggested that time domain solutions be obtained numerically. 

Judging by the experimental results of Handley and Heggs (1) the time 

delay model possesses enough parameters to fit the transient response 

of packed beds to temperature upsets. In this chapter the time-delay 

model parameters are related to physical variables by considering the 

intraparticle conduction or diffusion process. First it is shown how 

the time-delay model and cell models of the Jeffreson type for heat 

and mass transfer may be written .in terms of analogous equations. Next 

it is shown how the delay distribution parameter may be evaluated from 

the particle properties by considering the transient response of the 

particles and fitting by the method of moments. Finally the quality 

of the fit is assessed by considering the higher moments. Three 

different geometrical situations are investigated in this way in order 

to determine the influence of particle geometry. This leads to the 

proposal of a dimensionless group to characterize particle shape in 

terms of 'compactness'. 
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7.2 Models 

The unified time-delay model 

Referring back to Sec &·.~, the bed is considered to be composed 

of N cells in series each of which consists of a well-mixed region of 

volume V/N and a recycle flow whose dynamics may be represented by the 

transfer function: 

i,e. the gamma distribution. The material balance for the well-

mixed portion of a typical cell is 

y_ 
NG 

den 
cLt 

7.2.2 Heat transfer and intraparticle conduction 

(1) 

(2) 

Following Jeffreson's description (2) in which the packed bed is 

thought of as N well-mixed cells in contact with solid, a heat balance 

over the fluid in a typical cell yields: 

T. -T. - ha:x. ( T" - -r:,:s) ::::- V dTn 
n-;l.. n -

NG.p1C-f N& d.t (3) 

Intraparticle conduction is represented by:: 

o(l V'). -r;, I - 9T.,' (4) - -
()I; 

and the interaction between the fluid and the packing by 

CAT ( .sr-ad Th' )s - o<,-h {1: -~:s) 
A (5) 

Equation (5) is written in this unfamiliar way so that the pattern 

of Eqs (3), (4) and (5) will be repeated by Eqs. (9):, (10) and (11) 

below. 
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7.2.3 Mass Transfer and intraparticle diffusion 

Proceeding as above for the corresponding mass transfer case: 

CVI-1 - c ... 

represents the cell mass balance, 

y 
NG. 

describes the intraparticle diffusion process, and the' interaction 

equation is::· 

In the above equations K is an equilibrium constant. 

(6) 

(7) 

(8) 

The change of variable c• = KC puts the equations into the form: 

-c.., - ka.'X. (c - C *s) 
N Q, n "'' 

and 

7.2.4 General equations 

_V --NQ. 
clch 
clt 

(9) 

(10) 

( 11) 

Equations (2), (3) and (9) are of similar form. It is convenient 

to adopt: 

(12) 

to represent all these equations. The reason for explicitly 

preserving both x and N is that this retains x when N is made' indefinitely 

large in an expression for the bed as a whole. The heat and mas~ 
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diffusion equations, Eqs.(4) and (10), and the interaction equations, 

Eqs.(5) and (11) are also similar and become in the new notation: 

(13) 

and 

The transfer function derived from Eq.(12) is: 

G, (s) = [1 +* [t.s + o<x.- o<x. F(s~ r1 

(15) 

where F(s) is the transfer function relating the particle surface 

potential ui1 to the fluid potential, u., while the transfer function ,s 1 

for the bed as a whole is 

GN (s) = ft +-if [ t,S+o<X- "'"' F(s)J rN 
(16} 

When N is made infinitely large, Eq.(16) becomes 

(17) 

This result is of some practical importance because in the particular 

case where F(s) derives from the gamma distribution, i.e. is given by 

Eq.(1), Eq.(17) has the relatively simple inverse (9): 

G (t) - e-"'~-y.,{t-to)/t.D t(~)j"'(qx)'(t-ttiw.-i t ~to 
j'"o t; j!r(jrn) ' 

(18) 

As the Anzelius treatment is successful for well-conducting 

packings and the discrepancies are of degree rather than kind when the 

packing conducts poorly (1') this generalization provides a useful tool 

to deal with intraparticle transport resistance. 
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7.3 Particle transfer functions and moments 

7.3.1 The range of packing geometries used in chemical engineering 

operations is so wide and some of the shapes so bizarre that 

systematically evaluating the transfer functions would be a stupendous 

task. Jeffreson (2) has presented transfer functions based on 

eigenfunction expansions for the sphere and right circular cylinder. 

The transfer functions for plates with insulated edges, cylinders with 

insulated ends and spheres are found below in terms of transcendental 

functions. Each of these cases may be described usirlg a single space 

variable if the temperature of the fluid surrounding it is uniform. 

Further, these shapes represent two extremes and an intermediate 

case and so illustrate the range of possible behaviour. The moments, 

found via the cumulants from~ power series expansion of the 

logarithm of the transfer function, are used to fit the gamma 

distribution to the particle surface temperature impulse response and 

to assess the effects of geometry. The moments normalized with respect 

to the mean are also found. 

In the stated geometries the diffusion equation takes the forms: 

(19) 

(plate) 

(20) 

(cylinder) 

(21) 

(sphere) 

In addition to the boundary condition, Eq.(l4), the fact that the 
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gradient of the potential vanishes at the medial plane or axis or 

centre of the particles is used to solve these equations. It transpires 

that the normalized moments are simple functions of groups of the type 

(y si<./Ii) or ( r sJ(/f)). As the ability of a bed to transfer heat or mass 

between phases depends largely on the interfacial area and as the 

capacity of the bed depends on the packing volume, it is useful to 

take as a characteristic packing dimension the ratio d of the packing 

volume to its area. Thus a group 

Nu = dl(/J.) 

is defined: it is a modified Biot number. 

7.3.2. The plate 

The transform of Eq.(19) 

s u.' 
(22) 

for zero initial concentration has a solution: 

-, A(s) cosh[f ~ u == (23) 

which has zero gradient at y = 0 and so corresponds to a slab of 

thickness 2Ys• Introducing Eq.(23) into (transformed) Eq.(14) and 

rearranging yields 

u. (24) 

The transfer function is, from Eq (23) and (24) 

F(s) -
-I 

Us 
u. 

(25) 

Expanding the hyperbolic tangent using the power series~ ', · ., 

z. - s z - .... 
15 

and substituting into Eq.(25) gives 
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(26) 

When this expression is expanded yet again using 

~ {i+Z) -, _ i z.Z + j_...,. 3 _ - ..... z 3.... . .. 

t'he result is 

as a power series in s, 

Thus the moments, obtained from the cumulants as previously' 

are: 

(28) 

(29) 

and 

(30) 

and the normalized moments expressed in terms of the modified Biot 

number are 

.V;z = 1 + ~ B~ 
(31) 

2 [ i + B~ +-
2 Si. =J ))3 - ~ 

(32) 
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7.3.3 The cylinder 

The transformed solution of Eq.(20) that has zero gradient at r = 0 

is 

Substituting this into the flux boundary condition, Eq,(14), gives 

(34) 

so that the transfer function is 

F(s)- fi +~ 1, [Jf~ j I. [.Jfr. Jri (35) 

Performing the indicated division using the first few terms: 

I() (z:) - 1 + ! z.t + J:._ z4--+ 
4- 64-

. ' ' 

I, (z) = ' ' . 
of the series expansion of th~Bessel functions leads to: 

F(s)-= ~1 + ~[~ _J:_ r:s3s2 + J:_ rss-s3]2-i 
~ J<. 2 16 ~ 96 ~ J (36) 

and, the logarithm of the transfer function is: 

iM. F(s) = -r;s+fr;3 + 
2J<. LibX$ 

as a ROwer series in a. 

The moments are 

?,'- -2X 

= [~:k 
2..8 

l... 
32 

rs 2 Jsa 
<iJX:ll 

r:s lj. + j,_ 
:X.2$:J 24 

v:l] 3 ...:L- s ... 
X" (37) 

{38) 

(39) 
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while the normalized moments are': 

'1 - .i + 'Bi.. ..Vz. 

in terms of the Biot number. 

7 .3.4. The Sphere: 

When the substitution tf=u!~ is made, Eq.(21) becomes: 

a-v--at 
and the zero gradient boundary condition becomes 1t= 0 at r= 0 so 

that the solution comparable to those found previously is 

-V 
r 

C (s) SlV\h IT r 
r ~£)" 

Preceding as before, the transfer function: 

F(s) == 5 i-~ + ~ coth f£ r. l l fs.k X ~F s s 
is obtained. 

The power series expansion of the hyperbolic cotangent is ( 14:-): 

coth z: = _L~ i+ ~- ztt. + 2.z:
6 

-···} 

z l 3 45 911-5 

(40)\ 

(41) 

(42) 

(44) 

(45) 

(46) 

which when used in a comparable set of expansions to those used for 

the slab leads to: 

vss I --3 45 
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and 

~ F(s) - - Ys 5 -3X: 

.... _L 
135 

Hence the moments are 

and 

I tS tj) )11 - ::: -3X 

j-J-2. = [2rsx ~ i] ~2 
5~ 

_ 2 [6 r;/xz ~ 1.. r;x 
?3 - .35 JJ .t 5 ~ 

the normalized moments are:: 

= .i + §.]5L 
5 

.... i]t; 3 

= 2 [i .... .i 'Bl. + ~ 'Bi.:~] 
5 35 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

7,4 Fitting the Samma distribution to the particle dynamic response. 

The gamma distribution has two parameters, tD and m. It is of 

fundamental importance to fit the mean tD because otherwise the 

conservation law (mass or heat) will be violated, This has been 

anticipated in the analyses above by using the symbol tD for the mean 

time of the delay process in every case, Thus in the overall impulse 

response, Eq.(18) 9ne sets 

et -
k-k 
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The second parameter m may be fitted in a variety of ways of 

which the most convenient is to match variances. Gibilaro and Lees ( 4:) 

have shown that moments-matching produces reasonable fits of functions 

roughly of the sort used here. ; M~r~en ( !5>) gives an alternative 

method. The· normalized central moments of the gamma distribution are:: 

-i rn (55) 

so that the transient diffusion phenomenon is approximated by setting 

1 
rm 

i -m 

1 -m 

::. 

-

l. + !::.. :BL 
3 

.L + 'Bi. 

i +.§.:Si. 
5 

in view of Eqs. (31), (41) and (52). 

may be represented conveniently by 

i -

(plate) 

(cylinder) 

(sphere) 

Equations (57), (58) and (59) 

in which fo is a factor that depends on the packing geometry. An 

(57) 

(58) 

(59) 

(60) 

extreme range of packing configurations is covered by relatively small 

range - less than twofold - of ~ • For most packings, being less 

compact than the sphere, but not so extended as a plate, a value of f 
close to unity seems appropriate. Even for packed beds of spheres 

the particle-particle contacts make part of the surface area inaccessible 

to fluid and so effectively increase the volume to area ratio. 
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The method described above matches the mean and variance of the 

intraparticle diffusion process to those of the gamma distribution. The 

quality of the fit obtained can be judged by comparing the third 

central moments. From Eq.(56) the third moment of the fitted curve 

will be twice the square of the second moment. For the three geometries: 

2 J>: :::: 2. [ i + ~ BL + ~ B~ 2.] (61) 

(plate) 

(62) 

(cylinder) 

2 [1. + ¥- J3L+ ~J3~2] (63) 

(sphere) 

These expressions are quite similar in form to Eqs. (32), (~2) and (53) 

which indicates a reasonable fit, as the third moment is a severe test. 

As would be expected, the more rapid the intraparticle transfer 

process the better the fit, because th~ fitting method is exact for 

the exponential distribution obtained for the particle response when 

the diffusivity is infinite. (Bi = O) 

7.5 Model response goodness-of-fit 

The analyses above show that the gamma distribution fits the 

particle reponses quite well. The overall responses for a model 

taking into account intraparticle diffusion and the corresponding time 

de lay model, fitted as described, will match better because of their 

tendency towards being c'GaUssian. Again the third moment provides a 

sensitive test; the mean and second moment will automatically match 

exactly. As the time domain solution is available, Eq.(18), for the 

distributed, time - delay model (N --oo), it is the goodness-of-fit of 

-----·--
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this case that will be discussed. The moments are determined from 

Eq.(17) via the cumulants. This is done by applying the binomial 

expansion to Eqs.(26), (36) and (47) and substituting the resulting 

series ins into: 

k_ G(s) - tos - D(X + C(X F(s) (64) 

to obtain: 

~ G(s) = (to + otx. t]>) s + o<::d:·J)z ~ + 3:. Bj s~ 
.3 2.'. 

(6.5) 

- 6 cxx.t; 3 ~ + 3-..:Bt. + ~ 13i.2J sJ 
3 15 3! 

(66) 

(plate) 

l....G(s) - -(to-rc<x.t-b)s + O(.X.~2 [:2.+13i.J~ 
' 

3 [i 7 'B i 2] s 3 - 6 o<.x. ~ + - l. + - 'B..i. -6 3 3! 
(67) 

(cylinder) 

(68) 

(sphere) 

In each case the coefficients of sj/J! in the above equations are the first 

moment and the second and third central moments respectively of the 

model response. 

The distributed unified time-delay model moments 

M' I 
:: 

are: ' '. ' . 

(69) 



D<X (1 +~) i;2 (70) 

<XX (i+~)(i+~)~3 
(71) 

Substituting into these expressions the fitted values of m, Eqs (57\ 

(58) and (59), shows that the first and second moments are correct and 

that: 

(plate) 

(cylinder) 

(sphere) 

for the fitted model. The similarity of the dependence on :Bi.' of 

these approximate third moments and the exact third moments, the 

coefficients of s3/31., in Eqs (66), (67) and (68) is striking, 

7,6 Characterization of particle shape 

(72) 

(73) 

(74) 

The above analysis indicates that the volume to surface area ratio 

plays a significant role but does not completely characterise the 

packing elements, Another parameter ~ has already been suggested, but 

so far has only been related to thermal transients. However it does 

appear that this parameter depends on shape. The strategy of using 

the time delay model as an approximation would be improved if f3 could 

be predicted directly from the particle shape, Probably a single 

measure of particle shape will be adequate for this purpose as the 

dependency of the: solution on J3 is relatively weak, the thermal 

properties already being accounted for in the Biot number. 
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The (volume)/{ areo/,d, is more a measure of size than shape because 

a particle of any shape can have a specified value of d. As~ is 

dimensionless it is appropriate to search for another quantity with 

the dimension of length to combine with d to form a dimensionless 

shape number, Particles differ in their compactness or the accessibility 

of their interiors in diffusive transport, so the shape number might 

reasonably be expected to be a measure of compactness if it is to be 

used as the basis of a method of predicting j3 , If a particle is 

compact it has a highly curved surface, which suggests the use of the 

surface curvature to define the second characteristic dimension. The 

areal average surface curvature is proposed for this purpose. 

The radius of curvature of a plane curve at a point on the curve 

is 

f 
(75) 

where da is the angle included by normals drawn at the ends· of an are 

of length dO". Clearly this meets the natural requirement of 

reducing to the radius for a circular arc, Local curvature is the 

reciprocal of radius of curvature. A plane may be drawn at many 

orientations and contain the normal to a surface, so a surface in 

general has many radii of normal curvature. The maximum and minimum 

normal curvatures occur in mutually perpendicular planes (6) and are 

called the principal normal curvatures I jp, and I/ p,_ • The mean of these 

curvatures 

i - i(1 -t- i) 
2 p, ~ (?6) 

is at least an approximate measure of the mean normal curvature over 

all directions at a point on a surface. The curvature in a normal 

plane making an angle ~ with the plane of p
1 
is (6) 

+ (77) 
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and in the plane making an angle ~ with the plane of f'z 

1.. - + p (~+~) 
(?8) 

Thus the average of two curvatures in mutually perpendicular normal 

planes is always %0Nby adding Eqs. {??) and {78), and it follows that 

Eq.(76l' gives the normal curvature averaged over all directions. The 

areal average curvature then is defined by 

< 1.. > = J:_ I r ( .i + 1:.. ) ds 
PN 25 Js p, P2 (79) 

and the shape factor is defined by 

(80) 

where the factor 3 has been introduced to give ~ the value unity for 

a sphere. It is interesting to note that the coefficients; 0, i/~ 

and-2/r; of the second terms in the Laplacians in Eqs.(19), (20) and (21) 

have an immediate interpr~tion in terms of areal average curvatures, 

which also points to curvature as a characteristic of particle shape. 

The appropriateness of 1' as a measure of compactness is seen in Table 1 

where the different shapes are in a plausible order. In calculating 

the figures in this table, sharp edges are taken into account by 

considering the edge to be curved and taking the limit as the edge 

radius is reduced to zero. This procedure was suggested by Hilliard (?) 

and independently by Beresford (8). For convex particles the mean 

normal curvature is closely related {?) to the mean caliper diameter 

C'the average distance over all orientations between parallel tangent 

planes) 

s 
2.7l (81) 

and to a variety of other averages including the mean perimeter and 

mean area of intersection of the particle by a piane (9) and the mean 

curvature averagedover all directions (10). Hilliard (?) gives a 

table of formulae for caliper diameter, surface area and volume that 
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Table 1 Compactness, QC, of some simple shapes, 

Shape 

Infinite lamina, thickness 2a 0. 0 0 

Infinite equilateral triangular prism r{3o.. ?r 0.4535 -face width 2a, 6 6a. 

Infinite square prism, 2:. 
zr_ 0,5889 

face width 2a, 2. '3a. 

Infinite regular hexagonal prism, {3a. ?r -face width 2a - 12c.. 0,6802 2 

Infinite cylinder, r .L 0.7500 
radius r 2 2r 

Regular tetrahedron, .{6o. {3 (1r-secj~) 0.6759 
edge 2a. 1'2. 4a. 

Cube, a. 1L 0.7854 -edge 2a 3 *' 
Parallelepiped, 2a. 2!:. 0.7540 - Sa. edges, 2a; 2a; 4a, s 

Parallelepiped, 0. 5?r 0.7363' 
edges 2a; 4a; 4a, - 32a. 2 

Sphere, 
radius r V' I 1,0000 

3 I"' 

Cylinder with spherical caps, 5r- 3 0.9375 
Cylinder length 2r, radius -r, IZ. A-v-
cap radius r. 
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enables T to be calculated for simple shapes and some more complex 

shapes such as spheroids and polyhedra. De.Hoff (10) describes a 

stereological counting method for determining the average surface 

curvature of particulate material from the tangents made with random 

lines, Techniques for determining d _for complex shapes in a similar 

way are better known and are based on the fact that the mean chord 

length, 1, is given by (9j 11~ 

1. 4-cL 

The use of the parameter ~ in predicting the effect of shape on 

transient diffusion and other phenomena is to be the subject of a 

future investigation. At present corresponding values of ~ and 

(82) 

r are known only for the three simple· tone-dimensional t geometries. 

However in view of the fairly weak dependence: of the approximate time 

delay analysis on j3, the curve in Fig,1' is offered as an interim 

correlation. 
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0·6 .___ _ ____,'-------L----L----L--_J 

0 0·2. 0·6 0·8 i·O 

Fig, 1, Suggested. relation between the transient diffusion shape 

factor f> and the compactness '?f • 
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8. DYNAMIC DISPERSION A FORMAL APPROACH TO TRANSVERSE MIXING 

8.1. The dynamic dispersioneguation 

In the --p:ceoeding chapter methods have been developed which enable 

random transverse mixing to be treated in a variety of ways. A feature 

that these methods share is that the possibility of fluid being 

segregated into moving and stagnant regions is recognized directly. ~t 

will now be shown how similar results may be established in a formal 

way that is parallel in many respects to the usual formal one-

dimensional treatment of thee diffusion model. 

If the diffusion idea were not so strongly entrenched one might, 

when presented with an impulse response for, say, flow in a packed 

bed, suggest that the flux depends on the time rate of change of the 

concentration gradient in a linear way: 

( 1) 

The constant E may be called the 'dynamic dispersivity' because 

it represents the spreading of residence times as a dynamic phenomenon; 

it has the dimension of length. 

material balance we obtain•. 

+V 9c. 
ox:. + 

By incorporating Eq.(1) into a 

(k -at \2) 

as the' analogue of the one-dimensional diffusion equation for a flowing 

medium. This, the dynamic dispersion equation, has the ability to 

describe spreading of residence times as already mentioned, but needs 

only one- boundary condition so that only inlet conditions need be 

specified. 

8.2 Some solutions of the dynamic dispersion equation 

Equation (2) is simplified if the dimensionless space and time 

variables: 
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1- - ::c/E. and "'r _ Vt/f-

are employed; it becomes: 

ale 
-t- dC -t- ac ;:: 0 - - -axar at' ax (3) 

An impulse response solution can be found by incorporating an 

instantaneous plane source at ?< = o, 1r =· 0 into Eq.(3) and 

using transform methods. With the source added Eq. (3) becomes: 

.3c -
d/( 

(4) 

Applying the Laplace transform twice, first to eliminate r and 

introduce S and secondly to eliminate ;X and introduce p , 
yields: 

(5) 

Recovering X by inverting with respect to p gives the transfer 

function:: 

c(x)s)-
s 

S+i 
(6) 

and a second inversion gives the impulse response or Qreen's function: 

c :::; e 

Alternatively the impulsive forcing can be described by the boundary 

condition:: 
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re+ ck J 
L at- "~"' o 

s {t) 
(8) 

This again yields Eq, (6) as the transfer function, 

A slightly different type of forcing is to make an impulsive change 

in the concentration at 'J- =· 0 instead of in the flux. The transfer 

function is then 

and the corresponding response is 

Equations (7) and (10) are established using the·. transform pairs: 

and 

I a./s 
-e. 
5 

o..(s 
e i 

which are standard (1) 

8,3 Extensions of the dynamic dispersion model 

(9) 

(10) 

(11) 

(12) 

If it is imagined that mixing only takes place in a fraction C( 

of the length '(. 1 there will be a dead time of (1' -c<>/(, Thus 

replacing 'f.. by o('j.. in the transfer function and then multiplying 

by the transform of the dead time gives the partial plug flow versions 

of Eq. (6):: 

c { 
/ 

' e<SX. 
exp - S+.i 

(13) 

-
.S+i 
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and of Eq. (9): 

rxs'j.. ( ) } S+1 - 1-0<: )ZS 

The time-domain solutions are obtained by replacing J(. by o<l( in 

Eqs. (7) and (10), and displacing 7'" by (1 -<Xl/( • 

The equation 

ac -~X 
takes into account bo~h axial and dynamic dispersion. One more' 

(14) 

(15) 

boundary condition is required to obtain a:a:il.ution and so there are 

a great many possibilities as is the case with the diffusion equation. 

This model will not be explored further analytically except to note 

that while transfer functions can be obtained for the various cases 

without a great deal of difficulty, the inversion of the transfer 

functions is difficult. 

8,4 Discussion 

From what has previously been said it is apparent that the 

formalism of introducing dynamic dispersion leads to tractable 

mathematics and impulse response expressions that appear quite 

reasonable. For conditions in which the relative amount of dispersion 

is small, i.e. long beds, small D and/or E, the dynamic and axial 

dispersion models are more or less equivalent in the residence time 

distributions they predict. This is because E 9 2c/'JX~t and 

-D d1C /S)L1 represent similar effects for impulse responses as most 

of the tracer is observed at position X at time ... x;v, Thus if 

values of E and D are each determined for an impulse response for a 

long bed, they will be related by 
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EV ~ D 
(16} 

Several of the expressions developed above for the residence time 

distribution are identical in form to those derived previously for 

random exchange models, Equation (7) is identical with the Einstein 

statistical model used by Cairns and Prausnitz (2), Equation (10) is 

equivalent to the random time-delay model with exponentially distributed 

time delays, Giddings (3) has derived forms equivalent to both 

Equations (7) and (10) in his theory of chromatography, Indeed 

Giddings'' work makes clear the distinction between the' two types of 

boundary condition, Equation (7) describes a situation in which the 

tracer is initially all present in the stationary phase (stagnant region) 

at the bed entrance, whilst Eq. (10) describes injection of tracer into 

the moving phase (flowing region) at the bed entrance. 

This equivalence between the two dispersion models disappears when 

another phenomenon besides mixing occurs, For example, consider that 

the tracer is being consumed by a first order reaction; then: 

]) ()2.C V~ - -kc :::: Jc - -oX 4 ax Jt 
(17) 

and 

f azc + Vac -t .k.c - - ~c -ax 'Jt dX at 
(18) 

describe the combined effects of mixing and reaction in the two cases, 

The steady state forms of Eqs, (17) and (18) are quite different: 

-V~ 
cbc 

--
(19) 

and 



-V ctc 
dx (20) 

although the residence time distributions are similar if the parameters 

obey Eq, (16). 

A physical explanation of this is that D represents a mixing 

mechanism which always tends to even out the concentration whereas E 

does not and so has no effect on the steady state reaction rate, which 

is the same as in plug flow. Bischoff (4) has recently presented 

calculations of the exit concentration for steady state operation of 

a tubular reactor in which fully developed laminar flow exists, 

together with corresponding results for the one-dimensional axial 

dispersion equation based on the Taylor (5) expression for D. Table 1 

presents these results, as conversions, together with the corresponding 

plug flow (pure dynamic dispersion) conversions. The exact 

conversions lie more or less midway between the conversions for the 

two models. Clearly the mixed axial and dynamic dispersion •cmodel 

Eq. (15), could represent both the residence time distribution and, 

combined with a reaction term, the conversion in a laminar flow reactor. 

A final point to note is that the velocity must be in the positive 

direction of x. Equation (1) as it stands does not survive the 

simultaneous reversal of the signs of x and V. This may be corrected 

by replacing E by EV/ jvj. 

The concept of dynamic dispersion allows models in which the 

underlying mixing mechanism is transverse in nature to be constructed 

with the same facility as using the conventional dispersion model. 

Dynamic dispersion is not necessarily equivalent to axial diffusion 

but is best regarded as an additional mechanism that only makes itself 

felt in dynamic situations. Conversely if all the mixing mechanisms 

are characterised by a single diffusion constant determined from dynamic 

-- ·- _________ ___j 
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f3 
0.25 

25 

z "" L 

0.2 

o.4 

0.6 

o.8 

1'.0 

0.2 

o.6 

1.0 

0.02 

0.05 

0.10 
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Conversion for first order reaction in 

laminar flow tubular 

R1, 

0.1 

0.2 

0.3 

o.4 

0.5 

1.0 

1.0 

2.5 

5.0 

z + 
L 

Axial 

Dispersion 

0.093 

0.1?8 

0.255 

0.324 

0.388 

0.583 

0.924 

0.9860 

Fe 
21+ 

reactor 

Conversion 

Exact 

0.094 

0.179 

0.256 

0.325 

0.388 

0.595 

0.927 

0.9865 

0.579 

0.856 

0.972 

Dynamic 

Dispersion 

0.095 

0.191 

0.259 

0.330 

0.394 

0.632 

0.950 

0.9993 

0.632 

0.918 

0.9993 
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experiments and predictions about other effects in the steady state 

are then made~they may be erroneous. 

Dynamic dispersion is a powerful formalism for use in the 

'building block' approach to model construction that complements the 

more usual axial dispersion idea. 
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9, NETWORK COMBING THEORY 

9,1 Introduction 

In this chapter methods are developed for solving models in which 

exponentially distributed time delays are considered to take place 'at 

arbitrarily arranged locations in space, with instantaneous transmission 

between locations, according to a probabilistic pattern. This can 

be regarded as a multidimensional extension of some of the previous 

methods. The time-delay strategy is again adopted and it will be 

seen that this leads to a theory of continuous-time Markov processes 

in a particularly simple way. Some applications of the method to 

familiar problems drawn from chemical engineering will be given. The 

cell model interpretation of the present scheme is a number of well-mixed 

stages with arbitrary steady flows between all the stages. For the 

time being it will be assumed that the time constants for all the 

vessels are the same and that the system has but one inlet and one 

outlet, These restrictions will be lifted later, as will the 

restriction of exponential mixing characteristics for the special case 

whereo each vessel has the same characteristics, 

The arrangement of cells is referred to as a network. If a 

tracer particle endowed with the power of being able to tell when it 

passed from cell to cell in the network and a knowledge of chemical 

engineering were to pass through the network, it would report to an 

observer stationed at the outlet that it had passed through a sequence 

of so many well-mixed stages, It would of cours~ give different 

assessments on different passes through the network, so the network is 

equivalent to a parallel arrangement of strings of vessels in series 

with appropriate flows through the strings and the volumes of the 

vessels in each path such as to make all the time constants equal. 

Thus an arbitrary network may be 'combed' to give a simpler parallel

series form whose dynamic response properties are identical to those 
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of the original network, Figs. 1 and 2. It is much easier to 

determine the residence time distribution and related properties for 

the combed network than for the original network. Clearly the first 

problem to be attacked is to assess the probability of passing through 

the system with n delays as this is the weighting factor for the 

n•vessel path in the combed network. 

9.2 Network combing and the residence time distribution (egual time 

constants) 

Taking the cell view for the moment, number of stages 1 ,2,3, •.• ,N 

starting with the cell the feed enters and ending with the cell the 

outflow leaves from; apart from these, no other restriction is 

necessary in the numbering; call the outlet itself N+1. 

Let: 

= volume of vessel i 

= flow through vessel i 

= flow through system 

qij = flow from vessel i to vessel j 

Then, the total flow through a given vessel is the sum of all the 

leaving flows : 

N-+i ~(( = 0 

L Q~ - S . .'i gN-ti ,N+L Q 
' - ( 11) 

j= 1 9,N+.i,j := 0 
As the time constants are presumed the same, the Vi and Qi are related 

in pairs by 

(2) 

The probability that. when a move occurs it is from i to j, assuming th~ 

tracer to be in i already, is 



Fig. 1 A Network 

~ • 
~ 

.. 

~ ' 

' 

~ ~ 
···~ 

I I 

Fig. 2 The combed network 
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(3) 

Now let the probability that a tracer element arrives in vessel i 

after the nth move on its journey through the network be si(n), then 

the probability it reaches j after n+1 moves is Sj(n..,1h In general 

it will be possible to reach vessel j from all the other vessels and 

i!. (n+H' is 
J 

related to s.(n) by 
l. 

Sj (rl+i) = t 
(= i 

which takes account of all possible moves. 

(4) 

Equation (. 4.) will be 

recognised as a vector-matrix product and can be written more briefly 

5 (vHi) = S(n).R 
(5) 

where a single underscore indicates a vector and a double underscore 

a matrix, S being the vector of elements s. and R being the matrix 
l. -

of elements fij• In the theory of Markov processes (1 1 2) S is the state, 

probability vector and R is the transition matrix, or more specifically 
== 

(2) the imbedded transition matrix. Successive application of Eq; (5) 

starting with S(bl' yields 

(6) 

As the tracer must intially be in the cell the feed enters, which we 

have chosen to number '1 1
1 

s (0) = [1)0,0, ... ] 
(7) 

The final element 1 sN+1,, of E, gives the probability of the tracer 

having left the system after n moves have taken place, i.e. 

" 
SN+L ( Yl) = L ph 

(8) 

where p n is the probability of leaving the system in exactly n moves. 

Equation {8) shows that 
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Pro - SN+I ( n) - SN+I (n-i) 

so that the p may be determined from Eqs.{6) and (7), 
n 

(9) 

Thus the flow Q(n) in the nth strand of the combed network is 

and the residence time distribution for the nth strand is 

th-le-th 

(n··-i)! T"' 
as each strand is n vessels in series, Sec 2.3. 

The system residence time distribution is 

00 

f(t) = 2: 
n=1 

t ,_, e-th 

(n-i) .l '"l" 

by summing the components due to the strands given above. 

(10)1 

(11) 

( 12) 

InEq,(12) 

the lower limit is n = 1 because tracer must be delayed at least once 

in its passage through the system, A finite value of p corresponds 
0 

to a portion of the inflow bypassing the system and is best accounted 

for s~parately. 

9.3 Internal compositions 

In addition to the residence time distribution, the internal 

compositions in the network are also of interest. It is not possible 

to determine the internal compositions in exactly the same way as the 

residence time distribution because of the difficulties involved in 

determining the residence time distribution at a point through which 

recycle, which must be considered in an arbitrary network, can occur. 

An alternative way of looking at the transition process which is 

more useful in establishing the internal probabilities, is to consider 
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random delays occurring sequentially in time and to allocate these 

spatially by the transition process. When this view is adopted, 

one considers that delays are always taking place and their relevance is 

determined by the transition probabilities - delays occurring outside 

the system are irrelevant. The internal composition in a vessel of 

the network is directly related to the probability that a singletracer 

element is present in that vessel. Thus establishing the probability 

that the tracer is in a given vessel at time t solves the problem of 

finding the concentration-time history in all its essentials. 

Looking at the system at time t the probability that n moves have 

occurred in (O,t) is 

Vi == O,.i,Z, ... 
(1'3) 

In the ordinary tanks-in-series model this is the probability that 

the tracer has reached the (n+1)th tank. Now think of the network 

as being combed between vessel 1 and vessel i. In general, 0,1,2, ••• 

delays can occur on a.path between vessel 1 and vessel i and these 

can be represented by a combed network. The probability of being in 

vessel i after n transitions is si(n) so that the probability of being 

in vessel i at timet by a route involving n delays is si(n}Pn(t). The 

total probability of being in vessel i at t is obtained by summing 

over all n1· 

GlO 

sJt) = L s.\ en) -rn (t) 
(14) 

h"'O 

Substituting Eq.(13) into Eq.(14) and writing the result in the evident 

vector form : 

s {t) 
(15) 

which becomes: 
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00 

S(t) =S(o){~ I -V)\ 

-th: 
e 

(16) 

The usual definition of the exponential function can be carried over 

into matrix representations (3) so that Eq.(16) may be written: 

( ) 
gt/T -th 

S (t) = S 0 e . e 
(17) 

In Eqs. (16) and (17), S(O) in derivation refers to n=O, but clearly 

the initial condition is the same whether expressed in terms of n or 

t so no confusion·. can result. 

The compositions are found from Eq.(17) by writing the probabilities 

as 

'Vi_ c.Jt) 
v, c, (0) (18) 

K corresponding form may be defined for the outlet state N+1 by imagining 

an initially empty reservoir into which_ the system discharges: 

9.4 Moments 

Q. t CN-1-1 (t) 
v,c,(O) 

(19) 

The moments are useful reponse curve characteristics and also find 

use in model fitting techniques as has been previously discussed. 

It is of som~ interest, then, that it is possible to establish quite 

simple expressions for the moments for network models. 

vector of ~(t) is 

M,.. -

defined by: 

[ 1u.Y':I. '/Uy-z, •.. , flt'N] 
QC) 

S e 5 re-) dt 
0 

Substituting Eq.(l6) into Eq.(20) and recognizing that: 

J ooo ~! ( t Y' e-t h d {-~) = i 

The rth moment 

(20) 

(21) 
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leads to: 

00 

== T V"+i S(O) L 
1"1 "'0 

(n+r)\ R" 
rd - (22) 

The zeroth moment occupies a special place in the theory because it 

gives the steady state corresponding to indefinite repetition of the 

original impulse input: 
00 

L"S(O) [ 
= 

~=o (23) 

which sums in the present case where R is a stochastic matrix to give; 
= 

Mo (24) 

An alternative formulation of the moment vector is possible in 

terms of a recursion relation. Equation (22) may be written for the 

(r+1)th moments as: 

tJ,., • ~ ,., § (o)~ t, (w~ 7i)'i+ (r +i) t, (";;~)I ~·} 
(25) 

where m"' n-1. Comparison of the two series in ~q.(25) with Eq.(22) 

shows that: 

(26) 

which may be rearranged to: 

(27) 

Repeated application of this recursion rule starting with M , Eq.(24), 
-o 

yields the following alternative to Eq.(22): 

(28) 
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Further, as (!-~)- 1 is the sum of the infinite matrix geometric series: 

(29) 

9.5 Non-egual time constants and network modification 

The preceding analyses apply to the rather restricted case in 

which all the time constants are e~ual. Clearly network combing 

becomes a much more powerful techni~ue when this restriction is removed. 

This is accomplished by replacing a network with arbitrary time 

constants by a modified network with the same state probability vector ~. 

but with a modified transition matrix R*. 
"" 

If a recycle loop with 

zero holdup is added to a well-stirred vessel, there is no observable 

effect because material is removed from the vessel and then remixed 

with material of the same composition. A material balance: 

V.;, ci.C;. 
dt (30) 

over a stage with recycle rate qii illustrates this; tha term qii ci 

cancels out. It will be recalled that the time constant ~in the 

previous analysis is the ratio of a vessel volume to the flow rate 

through it. In the present case set 

v.~.; Q.{ 
(31) 

the transition probabilities depend on the flows exactly as before. 

Now a set of arbitrary constants ~·. may be added into the flow matrix 
J.J. 

without affecting the system dynamics. By analogy with E~s.(1l, (2) 

and (3), pseudo-values of Q.i, "t i and -r.ij, which we write as Q.i* '7" • 
' i 

and ~j•, may be defined for the modified flow matrix: 
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N 

Q,* - L: ,S_..<j (32) 

j=• 

1:'·'* = v, I Qt .{ 
(33) 

and if 
5lij IQ/" V':·. -~J (34) 

The effect this has on the time constants is particularly interesting; 

it enables ~i to be replaced by any value ~i· that is smaller than 

the original value, This enables a set of 't'i* values to be chosen, 

by suitably specifying the qii' which are all equal, The simplest 

and best choice for this common value is the smallest value of ~i' 

say'( m' 

given by: 

With this choice, the modified transition probabilities are 

rcj * 5L lj '(",_, 9. i.j -
Q_* 

-
Vi 

(35) 

Qi * - Qi * i - T..., r. .. 
l( - = Qt -

(i, 

(36) 

These operations have no effect on the state vector and all the 

equations for the equal time-constant case apply with the matrix R 
= 

replaced by the matrix ~· of elements y-ii. and rij •• 

9,6 More general initial conditions and multiple outlets 

So far it has been assumed that only one stream enters the system. 

This assumption is not necessary and was introduced to simplify the 

description; the analysis applies for any initial condition, Indeed 

the probabilities siCt) may be interpreted as absolute quantities of mass 
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or energy or any other conserved entity, i.e. all that is required is 

that 

[ s;,{t) = constant (37) 
("'0 

The si(O) may then be allocated according to the nature of the physical 

situation. Most 'situations in which there is more than one feed 

stream fall into one of two categories: , manifolded systems in which a 

common stream is split between several vessels in a specified way; 

and independent-inlet systems in which in practice several inlets are 

independently manipulated. The former is best dealt with by allocating 

the initial probabilities in proportion to the inlet flows; and the 

latter by considering the responses to, forcing the various inlets 

separately, as the responses so determined may then bec,combined in any 

desired proportion. 

Multiple outlets may be dealt with in exactly the same way by 

defining more states N+2, N+3, etc. However this increases th~ 

dimension of the matrix R and so is to be avoided if possible. 
= 

9.7 Computation 

Particularly in the case of the internal probabilities computation 

poses some problems. The direct use of Eq.(l6) is unsatisfactory 

because for each time value considered many matrix multiplications are 

required. An alternative method is to make use of the fact that, as 

with ordinary exponentials, matrix exponentials converge in a few terms 

if the argument is small. Thus, from Eq,(l6), we can write 

(38) 

where k depends on the value of the finite time; increment At which has 
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elapsed since t, This equation may be written 

S (t+L\t) - S(t) TI ( ~t) 
wherec 

1} (i\t) 
-At/r 

- e 
k 

[ 
~=o 

1 
n! 

(39) 

(40) 

is a new transition matrix. (Compare ,thet form of Eq,{39) with Eq,{5})), 

As usual, if the series is convertting rapidly the first term beyond 

the truncation point (n=k) is a measure of error involved, A balance 

exists between the size of step ~t and the number of terms retained 

in the series, Equation (39) can be used as the basis for a computer 

routine to solve network problems, but may result in too small an 

increment size, or equivalently, too large a value of k. This defect 

may be. overcome by making use of the fact that successive squaring 

generates high powers ~apidly. Equation (39) is replaced by 

s (t) [ ~ ( tlt)].t 
(41) 

where £ is chosen to be a suitable· power of two, so tha.t the new 

transition matrix: 

(42) 

may be evaluated by squaring, The computing effort may also be 

reduced by increasing the time interval in the later stages of the· 

calculation, 

9.8 More general time delay distributions 

The residence time distribution may be established when the 

transient mixing characteristics in all the vessels are the same, In 

practice it is necessary for the convolutions of the prototype 

distributions to be available. Several distributions with relatively 
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simple convolutions are given in Chapter? • The analysis is the same 

as on p.97 for exponential distributions and the residence time 

distribution is 
00 

f(t) - L: 'P" fJt) (43) 
1'\-"'i 

where fn(t) is the n-fold convolution of the prototype distribution and 

the p are found as before. 
n 

It is tacitly assumed that thetransition 

probabilities do not depend on residence time within the individual 

vessels. This assumption is not necessarily true for non-exponential 

distrib.utions as it is a consequence of the perfect mixing assumption 

made in the previous analysis. In practice the truth or otherwise 

of this assumption depends on the exact nature of the interconnections. 
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10, APPLICATION OF NETWORK COMBING TECHNIQUES TO CHEMICAL ENGINEERING 

PROBLEMS, 

10,1 Introduction 

The network combing theory presented in the previous chapter 

amounts to a theory for solving sets of first order differential 

equations of the following form: 

b, ~· = - o., ~1 + a,:z. ~2 + a13 :J3 + ... -t- a," .'JN 

ott 

b~ ~ ::. 02, ~~ - 0.2 jz + 023lj3 + · · · -t- 0.2.N YN 
dt 

........... 
bN d~N - qNI ~I -t- QN'J. ~l. -f- Ql\13 '::j3 + · .. -aN<jN 

dt: 

N 

a· ~ - L Qjj 

j=-1 

(1) 

(2) 

in which the a's and b's are either all positive or all negative. The 

bi correspond to Vi in the previous chapter, the ai to Q1 , the aij to 

Notice that the a subscripting which is 

conventional in this context is the transpose of the q and r subscripting 

which seemed natural before, 

It is the relation, Eq.(2), between the co-efficients that confers 

special properties on the system of equations and permits the 

probabilistic interpretation or interpretation in terms of the flow 

of a conserved quantity. In this chapter the generality and power 

of the methods previously developed are illustrated by setting up 

equations describing several familiar problems in chemical engineering 

in network combing form. These examples are chosen•as being somewhat 

less obvious applications than flow in networKs of stirred vessels. 
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10,2 First-order chemical reaction in a flow system 

Consider a reactor that can be adequately characterized as a flow 

network as far as flow is concerned, and suppos~ that the flows and 

volumes have been identified. If the temperature is constant a 

material balance on a reacting component yields, for a typical vessel:: 

= > : 9_jt q, - Q..l C.t - K VA c ~ 
J 

where K is the reaction velocity constant. Thus if we set 

and 

the problem is cast into flow-mixing form and the methods already 
I I 

developed apply when Qi and qi N .1 are replaced by Q. and q . N •· 
' +. l. J.' -tt-, ·• 

Apart from reactors per se a possible application of the above 

method is the application to tracer experiments with short-lived 

radio active tracers. 

The extension to spatial dependence of the velocity constant, 

by virtue of temperature variation for example, follows immediately 

by replacing K by a set of constants Ki. 

10,3 Arbitrary sets of first order reactions in a well-mixed reactor 

A set of first-order homogenous reactions is specified by a 

matrix~ of velocity constants ~ij; ~ij represents the conversion 

(flow) from one chemical species to another, All the species occupy 

the same volume so that: 

= L KjiCj 

j 

0) 

(4 )' 

(5) 

(6) 

where ci is the molar concentration of the ith species. 

is cast into the standard form by setting 

This problem 
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(7) 

= 1 (8)' 

(10) 'C'· 
' 

The initial state vector is set at the initial molar concentrations of 

the various species and the method gives the subsequent molar concentratlimB 

simultaneously. Fredrickson (1 ) has discussed the triangular reaction 

scheme ; 

A 

/' B C 

from a probabilistic point of view. Schemes such as this may be used 

to represent non-linear kinetics (1). 

10.4 Network reactors with complex linear kinetics 

The results of the foregoing sections may be combined to give a 

treatment of a neUwork reactor in which an arbitrarily complex system 

of first order reactions occurs. The problem is essentially one of 

notation, but, with care, this problem too can be cast into flow-mixing 

form. A balance on a typical vessel yields: 

d.ck. 
- l 
dt 

+ Vi L l<.t~ - Vt K tk c ki 

J 

( 111) 
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where cki ~ molar concentration of component k in vessel i, 

and Kkl = reaction velocity constant for conversion of component k 

into component i 

with 

The state of the system can be thought of in terms of a matrix 

rather than a vector. However, many transitions between states are 

now prohibited:: it is not possible to make simultaneous transitions 

between chemical and physical states; that is, the probability of a 

transition in which both subscripts, i and k, change is zero. 

The concentration variables may be expressed in terms of a single 

subscript by using the pattern in Table 1. In effect the system is 

now defined in terms of quasi-vessels which, borrowing a term used by 

biologists (2), may be called 'compartments'. The compartment index 

A. is of the form: 

>.. = -k + (i-i)M 

where M is the number of components. 

Table 1. Conversion of cki to single subscripting 

Vessel 
Component 

11 

z 

3 

M 

1 

2' 

3 

M 

2 

Compartment 

M+2 

M+3 

2M 

N 

(N-'t)M+1 

(N-1 )M+2 

(N-1)M+3 

NM 

NM+3 

(N-t>1 )M 

As an appropriate value of ')... can be generated for each (k,i) 

pair it must be possible to express Eq.(11) as: 

(12) I 
I 

I 

I 



- 112 -

V). ~~>- ,. L 9.~,._ c~ - Q ,.' c>-
"" where V>. is the volume of compartment A 

(13) 

q~~ represents physical or chemical flow :from ~ to ~ 

and Qj accounts for all the removal mechanisms from compartment. 

Examination o:f Eqs, ( 11) and C12) shows that: 

I 
9_ M>- ;: 

I 
~u~~ ... 

G>-, .., 

0 ) 

0 ) 

f'., k-¥ (j- i)M 
t. ... k~(L-i)M 

p = ~+ (i-OM 
t. "" k+ li-i)H 

{:.k)iej 

~:t:k,l*J 

Qi + v)l k'k 

(14) 

(15a) 

(15b) 

(15c) 

(15d) 

(16) 

Calculating the compartmental volume and outflow vectors, [V>.] and 

['~~] presents no problems, but calculating the flow matrix, [ q ~I"J, 

requires careful organization. The procedure is as follows: (i) set 

[q{l"] ~~so that Eqs, (15c) and (15d) are automatically accounted 

for; (ii) for each value of k in turn, examine [qij] term by term 

and enter the elements qij in the appropriate places in [ q ~I"'] as 

specified by Eq.(15a); (iii) for each value of i, 

I 
matrix term by term, calculate the q ..\1" 1 Eqs. (14) 

the results at the appropriate places in [q~l"] . 

examine the [~1] 
and (15b),and enter 

It should be noted that the subscripts in Eqs.(15) are transposed; 

this is so that these quantities appear in these equations in exactly 

the same way as in the material balance equations. 
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When the compartmental volume and outflow vectors and the 

compartmental flow matrix have been calculated, the problem is in a 

form suitable for treatment using the methods developed in the previous 

chapter. If desired the A. indexing may be converted back to the 

(k,i) form and all the physical quantities may be recovered after the 

probabilistic calculations have been carried out. 

Again spatial variation of the velocity constants is easily taken 

into account. The velocity constants might be written as [ISt1i}; i.e. 

!Stli is the constant for conversion of k into 1 in the ith vessel. If 

this variation is due to temperature the K's may be expressed: 

presumably. In any case Eq.(l5b) may still be employed, 

10,5 Binary distillation 

Distillation is a non-linear process usually, because the 

curvature of the equilibrium line means that the coefficients in the 

material balance equations depend on composition. Two important 

cases exist in which simple linearized analysis is appropriate: 

distillation with low relative volatility and the dynamic response 

of a system in the steady state to small perturbations. A less 

important case where linearization is satisfactory is operation over 

a limited composition range, The response of a distillation column 

to perturbation, important in control theory, will now be considered 

in network combing terms. It will be assumed that the molar vapour 

(1?) 

and liquid flow rates and holdups are time independent and that the 

vapour and liquid streams leaving a given tray are in equilibrium. It 

will not be necessary to make any assumption concerning the tray-to-tray 

variation of the flows and holdups. 

A material balance on a typical tray gives 



- 114 -

11 

Vi ~i 
clt 

+ 
I V clx· -\ _ .. 

c(t 
" !V-1 j-4-1 

(18) 

where 
I " vi v. 

J. 
= liquid, vapour molar holdup of tray i 

I 1/ 
q • q ~· liquid, vapour molar flow rates of stteams leaving 

the trays indicated by the subscripts (counting 

upwards) 

x,y = mole fraction of a specified component in liquid, 

vapour. 

Introducing the substitutions: 

'X. == Xs + :::( r ' (19) 

which represent the steady state and transient parts of x and y, shows 

that the transient part satisfies Eq.(l8)'. 

vicinity of (xi, yi): 

Now suppose that in the 

(20) 

then clearly the transient parts are related by 

(21) 

Using this result to eliminate y from Eq.(l8): 

+ Vi I ) 

/I 

O(..i- ' ,9.l-l 'X' ..i -I 
(22) 

which, remember, applies to deviations from the steady state. Equation 

(22) is of exactly the same form as the equation for a well-mixed stage 
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so that the results of the previous chapter apply. The time constants 

are given by: 
11 I 

et· V +V· 
1t 

... ~ o\ -= /1 I 
(23) ()(~ 9_i. + ~~ 

and the transition probabilities by: 

0( L ~li 11 I ( o<,_. g_.i'' + g_i' ) . 
i.+i rij ::: J = ) 

'/( /1 ') 
. i-i (24) nj - S.t eX.;,~;. + .5J..i ) J "' 

It is a feature of the method that it automatically takes into account 

such features as side streams and multiple feeds, and tray-to-tray 

variations of holdup and flows if these are composition independent, 

This case is of course a generalization of the tanks-in-series-with-

backflow model which was discussed earlier. 

10•6 Solution of partial differential eguations 

Partial differential equations involving a complex spatial term 

and a single .time derivative occur in most branches of engineering and 

physics. The finite difference approximating equations take the same 

form as the dynamic equations for a network of stirred vessels and so 

network combing methods apply directly to their solution. As an 

illustration consider transient diffusion or conduction in two space 

dimensions: 

= 
(25) 

The set: 

(26) 

of differential difference equations, where the subscripts indicate 

mesh points and h the mesh size, is a representation of Nq.(25} that 
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is correct to thi~d differences. A flow network with equal and 

opposite flows between all adjacent tanks would be described by a similar 

set of equations. So it follows immediately that the methods already 

developed apply after the double i,j subseripting has been replaced 

by a single subseripting scheme. 

The method has not yet been explored as a means of solving 

partial differential equations, but appears to possess several important 

advantages. The numbering system that replaces the i,j system is 

completely arbitrary so that geometry is unimportant: three-dimensional 

and awkwardly shaped regions are treated easily. Perhaps a more 

significant advantage is that higher order finite difference 

approximations are again treated in exactly the same way. Finally it 

should be noted that the time variable is not finite differenced and a 

frequent cause of instability in numerical solutions is the finite 

differencing of the time variable. 
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11 FUTURE DEVELOPMENTS 

11.1 One-dimensional time delay models 

The one-dimensional time delay models developed in this work 

have great flexibility as far as the delay process is concerned, but 

are deficient in two respects. First, the mechanism for transfer into 

the delayed state is always completely random, and, secondly, the 

point of return is the same as the point of departure from the main 

stream. These considerations are not of crucial importance as long 

as the models are used to fit dynamic responses, but they do matter 

if an attempt is to be made to relate the delay process to more detailed 

mechanisms. 

The treatment of the stopping process as being only partially 

random would probably best be treated in terms of an intensity function 

with respect to distance travelled. An approach that takes both th~ 

objections mentioned into account is the treatment in terms of integral 

equations (Sec. 6.3). 

11.2 Particle characteristics and thermal transients 

The particle shape factor suggested in Sec. 7.6 is of sufficient 

interest to warrant further study in a number of applications. A 

start has already been made on extending the work on thermal transients 

to more, complex shapes to see whether the tentative correlation between 

J3 and 'Q suggested in Sec. 7.6 is valid, It is interesting that the 

definition of 1 does not depend on the particle being discrete, or 

finite or convex. It follows that a value of '0 exists for most 

geometrical shapes including the void spaces in porous media, Perhaps 

~ or other similarly-based parameters may be used for correlating 

flow of fluids in complex regions. 
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11.3 Dynamic dispersion 

The dynamic dispersion idea, although speculative, clearly 

poses questions that need be answered. The argument that the conversion 

for a first order reaction depends only on the residence time 

distribution is frequently proved by showing that the transfer function 

and the conversion equations have identical mathematical form. However 

this depends on the model on which the transfer function is based having 

only first time derivatives. It is intended to attempt to devise 

direct experiments to test the dynamic dispersion idea. 

11.4 Network combing 

There are two directions in which it would be useful to extend 

the network combing method: to multicomponent situations ·and to systems 

involving nonlinear features. It is planned to work on both of these 

aspects, because success would lead to a method of immense value in 

chemical engineering design. 

Another application which it is planned to investigate is 

polymerisation kinetics. The compartmental idea seems particularly 

appropriate to emulsion polymerisation. 
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NOMENCLATURE 

As a variety of similar processes have been treated by different 

methods a single common system of nomenclature would be unwieldy. The 

spirit of the notation is the same throughout the thesis but the exact 

meanings of symbols differ from chapter to chapter. A list of the 

symbols in each chapter follows. 

Chapter 2 

c 

ci' c 
0 

D 

f(t) 

n 

Q 

t 

V 

V 

X 

f 
1" 

Chapter 3 

c 

f( } 

F( ) 

F•( ) 

g( ) 

concentration 

concentration of material entering, leaving a 
well-mixed vessel 

diffusivity or dispersion constant 

residence time distribution 

number of vessels 

flow-rate 

time 

velocity or volumetric flow-rate per unit 
cross-sectional area 

volume 

distance 

material flux 

mean time 

concentration 

distribution (density) function, residence time 
distribution 

(cumulative) distribution function, residence time 
cumulative distribution 

t - F( ) 

washout function 
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h( 

i{ 

Q 

t, t 

V 

X 

rp( 

Chapter 4 

f(t) 

f'(x) 

Q 

r 

B 

X 

) 

) 

) 

Chapter 5 

A1, A2 

Ai 
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internal age distribution 

intensity function 

flow-rate 

time, mean time 

volume 

unrestricted variable 

arbitrary function 

residence time distribution 

distribution in general 

flow-rate 

order of moment or cumulant 

Laplace transform parameter 

relative entropy, continuous distribution 

entropy, discrete distribution 

residence time 

vessel volume 

variable in general 

rth cumulant 

rth central moment 

rth moment about the origin 

rth probability moment 

arbitrary function of s, Eq.(35) 

Laurent series coefficients, Eq.(46) 
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A1,A2,B1,B2,C1,C2,D1,E2 
extended Deans-Levich model parameters, 
defined following Eq, (62) 

ao,a1,bo,b1,b2 

B n, j 

c n 

c 
0 
I 

c c n 

c n,j 

E( ) 

f(t) 

G(s) 

" 
n 

extended Deans-Levich model transfer function 
coefficients, Eq. (67} 

Deans-Levich time-domain coefficient, Eq,(56), 

concentration of stream leaving nth cell 

constant with dimensions of concentration 

Deans~Levich internal concentrations 

Deans-Levich time-domain coefficients, Eq,(56) with 
r11' r 2 interchanged 

finite difference operator 

residence time distribution 

extended Deans-Levich transfer function 

· G 1 ( s)\ G11 ( s), transfer functions for extended Deans-Levich internal 
compositions 

i 

I C n 
) 

j 1 k, 1 

K1' K2 

m 

n 

p,q 

q 

Q 

r 

s 

t 

V 

y 

• y 

0( 

counting index, poles of Laplace transform. 

nth order modified Bessel function of the first kind. 

counting indices 

constants, defined following Eq.(57) 

gamma distribution parameter 

counting index, model stages 

flow-rates, Deans-Levich model 

flow-rate in backflow model 

through-flow rate 

order of moment 

Laplace transform parameter 

time 

stage volume 

c/C
0

, dimensionless concentration 

normalized concentration, defined following Eq.(44) 

'1', / ( "t',-+ 1"1.) volume ratio, two-constant generalized 
tanks-in-series model. 



r( ) 

e 

j-t' 
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backflow ratio, backflow model 

volume ratio, Deans-Levich models 

flow parameter, extended Deans-Levich model 

p jot. V , Deans-Levich model 

gamma function 

Flow parameter, extended Deans-Levich model 

normalized time· 

.9,/(1-~X)V, Deans-Levich model 

central moment 

moment 

p/(1-0I)Y, Deans-Levich model 

roots of finite difference: subsidiary equation, 
backflow model 

Laplace transform parameter, normalized time basis 

\-+IX-I-S, backflow model 

time-constant per vessel, tanks-in-series model. 

(Q+~)t /V backflow model dimensionless time 

normalized time, backflow model 

vessel time constants, two constant tanks-in-series 
model 

dead time 
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c 

f(t) 

fn {t) 

fN(t)' 

g(t) 

I C ) 
n 

n 

N 

m 

t 

X 

Chapter 7 

a 
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concentration 

residence time distribution 

distribution of the sum of n delay times 

residence time distribution for N-cell model 

delay time distribution 

nth order modified Bessel function 

number of delays 

number of cells 

gamma distribution parameter 

probability of n delays 

transverse flow: per unit length 

through-flow rate 

time 

dead time 

mean delay time 

volume 

distance 

length 

mean number of stops per unit length 

Dirac delta function 

gamma function 

rth central moment 

rth moment 

bed interfacial area per unit length 

A(s),B(s),C(s) 
undetermined functions of s. 

modified Biot number 

--------------------------------
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c 

cf, c 

d 

d c 

D 

$) 

F(s) 

G(s) 

GN(s) 

b 

i,j 

k 

K 

1 

m 

N 

q 

Q 

r 

s 

s 

t 

T 

u 

V 

V 

Vp 

X 

s 
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concentration 

fluid, solid specific heat 

particle characteristic dimension, 

particle mean caliper diameter 

mass diffusivity 

diffusivity 

particle transfer function or recycle' transfer function. 

distributed model transfer function 

cell model transfer function (G1(s) =transfer function 
for one cell) 

heat transfer coefficient 

counting indices 

) 
zeroth, first order modified Bessel function of the 
first kind. 

mass transfer coefficient 

concentration ratio equilibrium constant. 

mean sector length of particle 

gamma distribution parameter 

model impulse response mean and second and third 
central moments 

number of cells 

lateral flow rate per unit bed length 

throughput flow rate· 

radial coordinate of cylinder or sphere 

Laplace transform parameter 

particle surface area 

(t = V/Q; 
0 

tD = mean delay time) 

temperature 

potential (T, c or c•) 

ur 

bed void volume 

particle volume 

axial position, bed length 



y 

z 

re ) 

P+,fs 

p)p,,pl)pN 

IS 
S"bs~ ri pi-s . 
-'\.. 

s 

Superscripts 
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distance from medial plane of plate. 

dummy variable in standard expansions 

thermal diffusivity 

thermal shape factor 

geometrical shape factor 

gamma function 11 

particle impulse response first moment and second 
and third central moments ( /"(• '= tD) 

particle impulse response second and third 
normalized central moments 

fluid, solid density 

radii of curvature 

curve length 

ith cell 

recycle flow 

solid surface 

(overbar) · Laplace: transformed variable 

1 (prime) solid phase 
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c 

D 

E 

I ( 
n 

) 

k 

p 

p 
e 

R 

R1 

s 

t 

V 

X 

ZL 

z -1' 

L 

~ 

f 
S() 
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Concentration 

axial dispersion constant 

molecular diffusivity 

D/VE 

dynamic dispersion constant 

nth order modified Bessel function of the first kind 

first order reaction velocity constant 

Laplace transform parameter (removes )ll 

Peclet number (VZL/DM) 

tube radius 

rate group (kZ~V) 

Laplace transform parameter (removes~) 

time 

velocity (or average velocity) 

distance 

Hngth of tubular re-actor 

dimensionless reactor length (Pe/24) 

fraction of volume in which plug flow occurs 

Dirac delta function 

dimensionless time (Vt/E) 

tracer flux 

dimensionless distance (x/E) 
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c. (t) 
~ 

i,j 

k 

1 

m 

M 
-r 

n 

N 

p (t) 
n 

r . 

t 

TI 

1-( 
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concentration in ith vessel at time t 

network residence time distribution 

residence time distribution for sequence of n stages. 

indices referring to vessels 

summation limit 

integer (power of ~ 

vector of rth moments 

number of vessels on path through network 

number of vessels in network 

probability of traversing network by an n-vessel 
path 

probability of n vessel-to-vessel moves in time t 

vessel-to-vessel flow-rate 

nett flow-rate through network 

flow-rate through ith vessel 

flow-rate in nth strand of combed network 

order of moment 

transition probability (i to j) 

transition matrix (of elements rij) 

state probability 

state probability vector 

time 

volume of ith vessel 

rth moment of response of ith vessel 

transition matrix, Eq(39). 

ith vessel time constant 

min (.7( ) 
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Chapter 10 

The notation of Chapter 10 is basically the same as that in 

Chapter 9, but special notation used in the applications is explained 

where it is used. 

J 
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SOME PROPERTIES OF THE ENTROPY OF RESIDENCE 
TIME DISTRIBUTIONS 

The relative entropy of a continuous distribution defined over 

(0, 00 ) is 

s = 
(1) 

S is a measure of the spread of a residence time distribution, that 

is to say it expresses the degree to which material entering the process 

at different times is mixed. In some circumstances this seems, 

subjectively at least, to be a criterion of mixing performance, This 

leads to the question: What is the nature of the residence time 

distribution that maximizes the :spreading of residence times? In 

mathematical terms, the problem is to find the function :£( t·) that 

maximizes S subject to 

(2) 

" -Q 
(3) 

The first of these conditions is necessary because f(t) is a 

distribution and the second is always true for systems with 'dlosed 1 

boundaries, Sec. 3.8. Finding f(t) is a trivial exercise in 

variational calculus (1), The Euler-Lagrange equation is 

(4) 

where' fl.• and fl, are undetermined parameters (Lagrangian multipliers). 

The solution of Eq.(4) that satisfies Eqs.(2) and (3) is 

Q. 
V 

- Q.t/v 
e 

(5) 



- 136 -

so that the maximum spread mixer is the same as the mixer that is 

perfect in the usual sense. 

The form of Eq,(1) is such that, for most of thee theoretical 

residence time distributions that occur in chemical engineering, it is 

very difficult to find S analytically, An exception is the gamma 

distribution 

1 (t-) -

Substituting Eq. (6) into Eq. C1 )' 

s = -J_ [
10 

t"-'e-t [c~~~-~).t..t -t _.£...r{~~~)]dt 
r("') () 

The integral in Eq.(7) may be found in tables of Laplac~ transforms 

and is 

where 

00 l t"-'e.-t~t-~t 
0 

:: 

d (~r(n)) 

is the digamma function (2). 

Thus 

(6) 

(8) 

(9) 

If the entropy is to be used as a distribution characteristic for 

fitting purposes it is useful to have the entropy based on normalized 

t im~r, unit s :c 

(10) 
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