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1. ABSTRACT



1, Abstract

Mathematical models have been derived on the basis of
the abstraction that material would flow uniformly, in plug flow,
through a system were it not that elements have a chance of being
delayed at all points of their passage; an element so delayed
eventually rejoins the main stream, The models are mutually differ-
entiated by their delay time distributioms,

Adfrickle flow packed bed system was used t9 test the
concepts_involved. Liquid side residence time distributions in a
1% inech diameter column packed with 1/8 x 1/8 inch ceramic Raschig
ringslwereldetermined by the method of injecting an impulse‘of a
tracer into the liquid stream, TFor different delay time distributions,
the model parameters were obtained by direct comparison of the experimental
and model responses. It was possible to obfﬁin-f é good fit of the
experimental reéponses, the model rarameters correlating well with
the operating variables,

The effect of varying the packed heights, the liquid and
the gas flow rates, the liquid viscosity and the tracer diffusivity
on the residence time distributions was investigated, The measured
and calculated liquid holdup data fitted several bubliShed correlations
very well, confirming the reliability of the experiﬁental and processing

procedures.



Part of Chapter 4 { development of the mathematical model)
and some of the preliminary experimental work contained in this thesis
forms the basis of a paper which has been accepted for publication

by the Am, Inst. Chem, Eng, Jl., and is due to appear in March 1570,



- 2. INTRODUCTION



2. Introduction

The importance of the distribution of residence times of material
in the design of process equipment depends not only on the extent of the
departure from ideality (perfect mixing or pure ﬁlug flow) but often more
significantlyron thé nature of the processing and pfocessed materials;
thié'is particularly so in ;eactor design,

Mﬁdels for non-ideal flow may be classified according to the
extent to which their parameters are determined from theoretical considerations:
at one extreme is the model that makes no.éttempt to explain the mechanism
that results in the observed behaviour bhut coﬁtents itself with providing
a description in terms of fully empirical parameters; and at the other is the
complete mathemasticael déscription based on the system geometry and a full
knowledge of the fluid mechanics and other processes involved. Models of
the second type, while having the advantage that extrapolation out of the
region of confirmed validity is safer - although not without danger - are
much harder to set up; they also tend to depend critically on such things
as geometrical details that from the broader viewpoint of process performance
are not particularly important, On the other hand semi-empirical models
'may often be applied to a wide variety of situations with the aid of
correlations of the model parameters with system constants. The division
between the two types of model is not very distinct because it is often
possible to predict the parameters themselves from the detailed systeﬁ
behaviour, Successful semi-empifical models employ an abstraction that it
is felt will lead to the same type of behaviour that is actually observed,
Diffusion theory is an example of this approach: the diffusion equation
is the semi-empirical model and the diffusion constant a parameter which
can be explained by random molecular ﬁotion.

For continuous flow systems, whose residence time distributions



do not deviate too far from plug fléw, the dispersion model( v ) is widely
used and commonly employed for the characterisation of fluid mixing in
packed beds, In this application the model, which is based on an analogy
with diffusion theory, mustlbe regarded as wholly empirical in that it says
no more about the mechanism resulting in the observed axial mixing than that
it &s the result of many repetitions of an underlyihg random processes, It
is applied to both gas and liquid phases regardless of whether the system
contains one or two fluid phases in co-current or counter—current flow;
it makes no assumptions regarding the nature and arrangement of the packing
and ignores the exis?ance of converging and diverging streams (that can be
observed in a trikle bed for example), and of the relatively stagnant
pockets that inevitably exist in the usual packed bed arrangements.

The fact that the residence time distributions resulting from
such diverse mechanisms are so similar, suggests the desirability of a general
model such as the dispersion model, rather than the more rigorous treatments
based on geometric and fluid wechanic considerations which require to be
quité &ifferent for each case., This is not to say that such specialised
approaches are unnecessary - a large number of models for particular packed
bed systems have appeared in the literature and give considerable insight
into the process studied - but that as a common mechanism will clearly
describe all these systems it should be investigated both for the purpose
of facilitating such descfiptions and in the hope that it will indicate common
physical features which predominantly influence the destribution of residence
times,

The dispersion model with only one parameter goes a long way
towards describing these distribution curves, A serious inadequacy in this
respect, however, is that it almost invariably indicates a more symmetrical

distribution than is obtained in practice; small quantities of material tend



to reside in the bed for considerably longer than the dispersion model would
suggest, resulting in a slowly decaying tail and the displacement of the peak
response to the left of the mean, The experimental results shown in
Figure: 2.1 and 2,2 are typical in this respect.

The question then becbmes: how much more need be said about
the system to account for the observed residence time distributions (R.T.D.)
without destroying the generality possessed by the dispersion model? The
analysis that follows represents an attempt to answer this question. Material
is assumed t§ pass through the bed in what would be plug flow were it not
that fluid elements have a chance of being delayed for a period of time at
all points of their passage, The parameters of this model depend on the
probability of a delay occurring at any point in the bed, the average time
for which material ié delayed and the distribution of delay times about this
average, The mechanism is analogous to that of surface renewal in the
penetration theories of mass transfer, in which fluid elements that find
their way to the surface are 'delayed' there before returning te the bulk
fluid. 1In the time-delay model this effect is distributed through the system;
bulk material flows at a uniform rate and the delayed elements have

negligible velocity in the direction of the main flow,

2.1 Scope of Present‘Work

The object of the work is to develop: models based on the time
dela& concept and to test their applicability to real physical systems;
trikle flow in packed bed has been considered,

The effect of varying packed heights, liquid properties and tracer
diffusivities on the. liquid side residence‘time distributions has been
investigated.

The gamma distributed delay times and a special case of this
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distribution, namely the exponential case, have been studied, A modified
version of the time delay model f the hopping model - which considers
direct axial displacement of delayed material has been postulated.

The transfer function solution of the time delay model is shown
to have the same form as the generalised transfer function shown by
Paynter (100) to be applicable to a broad class of linear monotone dynamic

systems,

The model fitting method of comparing directly the experimental
responses with the model solutions has been éhosen in preference to the
moment-matching method because the iatter places considerable stress on the
tail end of the distribution and this is the portion of the experimental

response curves most subjected to error,



Nomenclature

C/C0

1

t/z

concentration of tracer

initial concentratipn of tracer

normalised concen#ration

tinme

mean residence time of the fluid in the systenm

normalised time
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3. LITERATURE SURVEY



3.1 Liquid Distribution in Packed Columns

The way liquid is distributed over and how it wets column
packing has a significant effect on the performance of packed columns.
Many tgéo;etical relétionships for mass transfer are based on the
assumption that gas and liquid streams are uniformly distributed over
the cross-section of the column and are-moving in perfect counter-current
or co-current flow, Any deviation from these"ideal" conditions will
result in lowering of the column efficiency.

Investigation of liquid distribution over random packing
started as far bhack as the end of the last century, Hunter ( 2 ),
Tour and Lerman ( 3 ) studied.the distribution in a coluﬁn, packed
with coke, by feeding water at a single central point, apd collecting
thé water draining from the packing in eight troughs, eéch 6ins., wide,
The results showed an improvement in water distribution with increased
packed height, but even with 14£ft, of packing, 60% of the liquid was
collected by two central troughs, Plotting the percentage of water
ceollected in each trough against the number of trough yielded a curve
bearing a marked resemblance to the one representing the Gaussian
prdbability distribution, This observation is in: accord with _a thecry
in which it is assumed that as the liquid flows down the packing it
undergoes a series of horizontal shifts with an equal chance of moving
towards the centre or outwards to the wall, each time,

Tour and Lerman ( 3 ) carried out experiments on the
radial distribution of water iﬁ a 20in. diameter cylindrical column,
packed with coke graded to 3 to % mesh, They collected the draining
water in 16 annular troughs, again similar types of results were
obtained,

Kirschbaurm ( 4 ) and Weimann ( s ) studied distribution of

water in 110 mm, and 300 mm. columns, packed with 8 mm, and 15 mm,
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diameter rings, They found that large packing size and small column
diameter size resulted in a high proportion of liquid to flow down
the wall, Increasing the column diameter and reducing the packing
size improved the distribution, Weimann ( 5 ) recommended the ratio
to be not less than 25:1, |

Scott ( & ) studied the water distribution in a 4% in.
diameter column with a single central feed pipe, using 4in. rings
and iin. and éin. coke as packing materials, He used packed heights
from 15in, to 15ft.; #in. rings showed rapid spreading of 1liquid with
the result that a large proportion of liquid flowed down_the wall;

%in. coke is less effective in spreading thg liquid but the wall flow
was pronounced; however with é in, coke there was a marked tendency
for the liquid to return from the wall to the packing, Similar
investigations by Baker et al ( 7 ) over various packing size and
column diameters indicated the significance of column to packing
diameter ratio, with ratio of 8:1 & large proportion of liqgid flowed
down the wall, Their work also revealed the independence of liquid
distribution of air flow up to the loading point where upon it improved;
for column diameters of 3in, to 6in,, single feed points proved to be
adequate, but for larger diameter columns liquid distributors with
four or more feed points were required,

Uchida and Fujita ( 8 )} found dumped packings to give better
distribution than‘stacked packings, The best distribution was achieved
with a column to packing diameter ratio of 10:1, Viscosity and density
seemed to have no effect on liquid distribution in the range studied,

Several authors have made visual observations of the paths
fluids follow in packed columns, Baker et.al ( 7 ) noticed that the
liquid distribution becomes constant after flowing through a packed height
equal to 10 times the column diameter, However, Weimann ( 5 ) observed

a continuously changing distribution even after the liquid had flowed
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through a height equal to 40 column diameters and alsc maldistribution
at column to packing diameter ratios of 15:1 and 20:1, ZEckert ( ¢ )
propesed a minimum ratio for Raschig rings, Intalox, Berl Saddles,
and Pzll rings of 30:1, 15:1 and 15:1 respectively, -

Porter and qones (10 ) gave a quantitative mathematical
treatment and putforward a model to predict the course of fluid flow
down a packed column, The prediction of liquid distribution was
stated in terms of two factors:-

(a) a liquid spread factor

and (b) a wall factor,

The authors used techniques similar to that of Cihla and
Schmidt { 11 ) to derive a"diffusion type" equation; but used a
different set of boundary conditions which were obtained by observing
the behaviour of irrigated packed columns, Experimental investigations
proved that at small depths of packing the reduction in flow next to
the wall was overestimated by their theory which consequently
overestimated the flow at the wall, However, results indicated less
maldistribution with Pall rings and Berl saddles and suggested the
point flow in the packing and the wall flow to be determined by two
dimensionless groups,

More recently Jameson ( 12 ) also proposed a model for flow of
liquid in packed columns, It was shown that for any arbitrary distributor
- it was possible to calculate the fluid distribution, including the
wall flow, as a function of packing height as long as two empirically’
derived constants were known, In another pubiication (13 ) the
same author used the proposed model;—

(a) to calculate the proportion of total liquid flow that runs

down the walls at steady conditions

(b) to determine the depth at which a steady condition is

reached, with different initial modes of distribution
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and {c) to investigate the effectiveness of various configuration
and wall wipers,
Jameson observed a considerably reduced wall flow with small-size packings
and large column diameters, but with 4in, stoneware it was still
appreciable, In order to obtain wall flow less than 15% of the total
flow, it was recommended to use a colum to packing diameter ratio of

20:1, except for %in, Raschig rings when the ratio should be 65:1,

3,1,1. Holdup in Packed Columns

When gas and liquid flow co-currently or counter-currently
in a packed column each phase occupies a certain fraction of the void
volume, The total void volume is sum of the volume fractions

occupied by liquid phase, EL, and by the gas phase, EG ;=
B = E + E (3.1)

Experimental techniques for evaluating EL are gimple but cannot be
applied to the evaluation of EG’ therefore most of the previous work

has been concerned with evaluationkof liquid holdup, EL and hence

the determination of gas holdup, EG, with the aid of Equation (3.1).

Payne and Dodge ( 14 ) determined the holdup values of columns packed with
10mm, Raschig rings, They first determined the amount of 1liquid required
to wet the packing by pouring a known amount of liquid and collecting the
drained excess, Then the liquid flow through the column was started at

a constant rate, At steady conditions, input to the colummn was cut off
and the draining liquid collected, The drainage plus the amount required
to wet the packing was then taken as the holdup of the column, All runs were

made at zero gas rate; the authors made no attempt to correlate their data,

Fenske et al ( 15 ) reported holdups of packed beds of rivets,

14



lenghts of chain, and nails., The amount of liquid required to wet the packing
was termed. static holdup, Hst, and amount drained after cutting off the

constant input, an operating or dynamic holdup, Hop ; hence the total holdup,

Hp ¢
H, = H + H (3.2)

Simons and Osborn { 16 ) went a step further and correlated their
holdup data on spheres and broken pieces of coke with zero gas flow rate,
These authors found the operating holdup to be proportional to the mass

flow rate of the liquid phase

H, = BL (3.3)
The liquids used were water and keroéene. The value of E_ seemed

to depend on the type of liquid used, but was independent of packing

size, Uchida and Fugita (17 ) also determined the static and

dynamic holdpps using the drainage method on columns packed with

rings and broken:solids, the liquids beingrwater and oil,

Furnas and Bellinger (18 ) were-the first to investigate
the effect of gas flow rate on liquid holdup, The effect was found
to be negligible for conditions helow the flooding point in columns
packed with Berl saddles and Raschig rings, Elgin and Weiss (19 )
carried out similar wdrk, their findings were in agreement with those
of Furnas and Bellinger.

Jesser and Elgin (20 ), working with Berl saddles, glass
spheres and carbon rings, found the operating holdup, Hop , to be

proportional to the liquid mass flow rate, L, raised to some exponent, s:

H = bL (3.4)

15



Otake and Ckada's work ( 21 ) showed the operating holdup,
Hop , to depend on the mass flow rate, L, the liquid density, p,the
liquid viscosity, p,the packing diameter, dp, and packing

d , Dimensionless analysis of these variables yielded

characteristic, ak "

the following dimensionless groups for correlating the operating

holdup -

d L
a) NRel = B (3.4a)
}1
3 2 '
P) Ngay = 9, 7 (3.4b)
2
}I

The following equation correlated their data and previously published

data (2¥a) within + 15% deviation :-

0.676 ~0.44 3.8)
Hop = 1.29 . {NRel} {NGal} {ak dk} 3.

This correlation is based on data for Raschig rings, Berl saddles-

and spheres ranging in size from éin. to lin. using both water and oil,
Shulman et al ¢ 22 ) measured holdups in various packings

by weighing the entire column with a suspension system, this gave

them quite reproducible data, The total holdup data was correlated by ¢

g o kLT (3.6)
where dps is the diameter of a sphere having the same surface area
as the piece of packing, The coefficient, b, and exponent, s, are

functions of the type and size of packing, The most interesting

correlation in their work is that for static holdup, Hst :

H = a_danf (3.7



ak and m depend on the type of packing used,

Otake and Kunugita (23 ) were tﬁe first to apply the tracer
techniques in the study of holdups, They found total holdup, HT s to
be proportional to the interstitial velocity, UST, an extrapolation
of the plot of the total holdup, HT , against the iﬁterstitial velocity,
U_, to zero velocity, produced a value for the static holdup, H For

s st’

Raschig rings the following correlations were arrived at :

_ _0.038
st ‘
d
p (3.8)
and
-1
-3 du {d3 P
H = 1,79% 10 p's g {(3.9)

P
op )
M \\H ‘/
where dp is in centimeters and the Reynolds number is based on the
interstitial velocity, US . The term, ak dp , does not appear in the
above equation because only one type of packing was used,
Recently two further dimensionless equations for
calculating the liquid operating holdup, Hop , in packed columns
were described, Mohunta and Laddha (24 ) found the holdup to vary
exponentially with liquid rate, and gas counter-flow to have no
effect on the holdup up to the loading point, They proposed a generalised
correlation for operating holdup, Hop , for Raschig rings, Lessing rings,
and spherical paqkings:
e Re

H = 16.13

op z ) \¥ ¢ | (3.10)

P g
where U is the superficial velocity (based on the empty colum), N is
the packing number density and dps is as defined in Equation (3.6).
Buchanan ( 25 ) subdivided the liquid holdup into two limiting

dynamic regimes: the gravity viscosity regime at low Reynolds number

17



for which:

0.44 -0.37 : )
Hop = 8.1 (NFrl) (NRel) (3.11)

for 0,01 4NRel £10

and gravity-inertia regime at high values, for which:

0.44 =-0.20
H =
op 6.3 (NFrl) (NRel) _ (3.12)

N = Froude number,

Fr
The experimental data used in developing these correlations were for
experiments with ceramic Raschig rings only, Gelbe ( 26 ) made further
extensive studies of liquid holdups because the scatter of the measurements
still exceeded + 20%, especially at low Reynolds numbers, He arriv@d

at a more accurate correlation by suggesting that the influence of

the flowing‘film on the static holdup had not been taken into account

previously, The author proposed the following equation-for determining

. the operating holdup :

-y =g -0.33 n
f a N ‘
Hop = 1.59 dl We NGal NRel (3.13)
p NFr

where d; = hydraulic diameter of the smallest inner area of a ring.

The exponent n has a value of 1/3 for N o less than one, and 5/11

R
for NRe greater than one,

The static holdup, Hst’ which represents the difference between
the measured, total holdup and the calculated operating holdup, was expressed

dimensionless as a function of a reduced number, Xr= X/Xk, and the geometric

d in the range, 10-3< Xr-< 1. The equation applicable to all

number, a, d_,

18



the packing tested is:

-4 2
HSt = 1,67 x 10 (ak dk )7 log Xr (3.14)

Where X is a variable that gives physically correct description of the
static holdup behaviour in two different regions, namely NWe/NFr‘i'IO

and NWe/NFr 7 10.

For NWe/NFr <. 10,

X _ NWe NFr
2 6
NRe ( ak dk )
and for (3.15)
N_ /N 10 .
We' " Fr 7 N 3./1000
X - We

2 6
Npe Npp 2 90

where Xk is a common critical value corresponding to a critical Reynolds
number which determines the onset of static holdup. For all ring packings

X =1l4x 1073,

3.1.2 Mathematical Models

The complexity of fluid. patterns ( 13 , 19 , 20 ) in packed
columns makes it difficult to describe the turbulent fluid, flow
mathematically, However, consideration of several general observations
about the passage of fluid elements through a column, such as_.i the wetting
of the packing and the walls ; filling of void spaces and often the
accupulation of fluid in hollow spots, in conjunction with a possible
fluid spread theory can lead to the postulation of models that approximate
to reality., The suitability of such models is tested by comparing the model
and the system response,

Many types of model have been suggested to represent non-ideal
flow in process equipment , Some, called dispersioq models, draw analogy
between mixing and diffusional processes, Others consider flow regions

connected in series or parallel; when perfect- mixing occurs in these

19



regions - these models are called tanks—~in-series or mixing-cell models,
Some of these models account for the deviation of the real system from
plug-~flow, while others describe the deviation of the stirred tanks from the

ideal of perfect-mix flow,

3.1.2.1, Dispersion Models

In packed columns, mixing is thé result of "splitting"” of
the fluid streams as they flow around particles and the variation in
velocity across the column,

A phenomenological description of_turbulent mixing ( 27 )
gives good results for many situations: an apparent diffusivity is
defined so that a diffusion-type equation may be formulated,.and the
value of the parameter is then experimentally determined, An extensive
survey of the evaluation of the parameter for different boundary conditions
is given further on in section 3,15,

Bischoff and Levenspiel ( 28 ) have included the following

table of dispersion models for various situations.

Tables:s 3,1: Dispersion Models

Simplifying
assumpticns or
Name of model restricticns in Parameters Defining
addition to those of model differential
for model equation
General dispersion: Constant density 2C L uxe
includes chemical u 27
reaction and D, =Y. (DXIC)‘J%S-*"C (1)
source terms
General dispersion Bulk flow in axial 3;4JJLR)Q~
in cylindrical direction only. Da LR) DRIUVR) = = DLLQ) ‘M- (11)
co-ordinates Radial symmetry ! ’ 9%

mn. bgm?" A S Y
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Simplifying
assumptions or

N ¢ del restrictions in Parameters of Defining
ame ol mo addition to those model differential
for model equation
Uniform dispersion Dispersion 2L SUR)YOC
coefficients oT N AX
independent of T UR = D& (111)
position hence Dim,Diw, ULR) 2
constant Dow 2 p2E 4 (Yo
TR W OR
Dispersed plug Fluid flowing at 2C L AE
flow mean velocity, hence Dg, DL, U le %x'b . V)
lug flow =D, 26 4 UR LR =4S4+ N
plug Do 33}-\ R ok oR
Axisl dispersed No variation in }E~kU%Ei
plug flow properties in the 1)1 u aj— . (V)
radial direction ‘ = N.Ye | cav
x>

As it can be obhserved that dispersion can be described approximately
by the solutions of diffusion equation with properly chosen boundary
conditions.

Klinkenberg and Sjenitzer ( 29 ) have discussed the
necessary conditions for equivalence betﬁeen dispersion and diffusion as
far as the residence time distributions are concerned. They proposed the
idea of additive variances for the different mechanisms provided these
occur successively and independently. Howevér, these conditions are
not satisfied exactly in many real systems. Several other authors ( 29a)
have also pointed out the equivalence between diffusion model and a

series of perfectly mixed cells in limiting cases,

3.1.2,.2. Mixing-Cell Model

The series mixing-cell model was first proposed by Ham
and Coe ( 3o ). This model assumes that the packing can be

characterised by several completely mixed cells in series, See Figure 3.1,

21



sy | A A ¢

1 2 n

Figure: 3.1, Mixing-cell Model

A mass balance on a single cell results.in :-

volume of the nth cell

where Vv
n

volumetric flow rate.

If V ig the total void volume of the column, and all

the cells have equal volumes

then nv = V
n
and Vn - EZ = L
v nv nU
s
L = length of the bed

U
5

interstitial velocity
which indicates that mixing is characterised by only one parameter, n,
the number of cells in the column,

The pulse response can be found for the set of Equations
(3.16) for n = 1,2,...... . Wwith the conditions that the input to

the first tank, n = 1, is a delta function of tracer, i.e, cn#O(O) =0

and =0 (0) = e, v 5(t)
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The real time solution of Equation (3.16) for these houndary

conditions is:

c = s rlL- (t v/Vn)n—l- A (3.19)
-1
(n-1)1 Vo
Using Equation (3.17):
V = nV

Mean time - -
) t =V/v=n Vn/v

Therefore Equation (3.19) in dimensionless form becomes :

o e (3.20)

To find the parameter, n, the mean and the variance can
be found from Equation (3.20) and then_cqmpared with the mean and the

variance of experimental response curve., From Equation {(3.20)

e = 1 3.21
The mean, pn, (3.21)

and the variance, 02 = 1 (3.22)

n

The preceeding scheme for parameter evaluation is only possible for a

perfect delta function input which in practice is difficult to achieve,

Aris (31 ), Bischoff (32 ), and Bischoff and Levenspiel ( 28 )

proposed a technique utilising two measurement points for the

evaluation of the parameter, n !

v v v
M (M+1) | —« N __I.
Input Output 1 OQutput 2
Figure: 3.2.
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Considering the above set up, Figure 3.2,, the following
relationships relate the means and variances of the outputs to the

parameters for any pulse input ;

pl = pIN - pulm = 1 (3.23)
and
® = g - g2 =1 1 (3.24)
N M (N - M) n

The tanks-in-series model has been used by many workers
in the investigation of packed columms., As mentioned pfeviously if the
fluid in each void space of the column can be represeﬁted by a perfectly
mixed cell, the mixing can be represented by a series of stirred tanks each
with a size and magnitude of the particle, This has been discussed in
detail by Amundson ( 33 ); Carberry ( 34 ) proposed that the fluid
in the void is not perfectly mixed, therefore an "efficieney’ of mixing
in void space has to he introduced,

Deans and Lapidus (35 ) described a three dimensional
array of stirred tanks, called a finite stage model, that takes radial
as well as longitudinal mixing into account, By a geometrical argumesit

authors arrived at the following equation for (i,j)th tank :

dac, . C, .
1,3 + 1,3 _ Q (3.25)
dt i-1,3
j~3)C, .y + (j-z)C, . :
Qi-l = ( % 1"11-]_% G %) 1_1pJ+% (3.26)
(2) - 1)
with boundary conditions :
c, .= C
i, d o



which describe the initial condition and the inlet to bed respectively.

3.1.2.3. Comparison between Dispersion Model and Mixing-Cell Model

Several methods of comparing mixing-cell and
dispersion model have been suggested, Kramers and Alberda ( 36 ) used
the variance for the doubly infinite dispersion model :

0° = a(p/uL) (3.27)

Comparing this with mixing-cell model variance Equation (3.22) :

1 = 2(D/UL) (3.28)

However this does not apply for small number of mixers, because

n#lasD —wco.

Kramers and Alberda suggested using

1 = 2(b/UL) (3.29)
(n-1)

which does extrapolate correctly ton = 1 as D—=0Q, and is approximately
the same as for Equation (3.28) for large values of n,

Levenspiel ( 37 ) later showed that the reason for
incorrect extrapolation was that the doubly infinite vessel was not

the proper one to use for the comparison, instead closed vessel (in

which plug flow exists in the entering and leaving streams) must be used:

- 3.3
= 2(D/UL) - 2(D/UL) { 1 -e UL/D } ( )
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It is seen that n—,mas D— 0, which is the basis
for the statement that an infinite number of tanks in series is
equivalent to plug flow, but it must berigggggéggthat the total volume
is held constant in thg limiting case,

Trambouze ( 38 ) suggested two alternative methods of
comparison, One by matching the C curve at maxima for these two models
i, e,

(2n - 1)2

D/UL = on(n 1)@ -D) (3.31)

this equation does not extrapolate for D-w( and gives n = 1 for D—s 09,
and further reduces to Equation (3.28) for large values of-n,
Second method is by matching the curves at g= 1

hence

[(UL/D)2 + 2(UL/D) - 9;] - —2n (3.32)

C1+#)

Thus it is concluded that there is no unique way of matching the two

models,

3.1.3 Random Walk Models

Random walk approach was made by Baron ( 50),
Ranz ( 39 ), Beran (40 ), Scheidegger (41 ), Latiman (s51), and
de Josselin de Jong (42 ) and Saffman ( 43 )(44,45 )., The latter
two did not exactly use random walk, since a completely random
process was not considered,
Other methods based on statistical mechanics have been
probosed by Evans et al ( 46 ), Prager (47 ) and Scheidegger ( 48 ).
The random walk analysis postulates that the mixing is

caused by "splitting" or "side-stepping" of the fluid around the‘particbes

26



Thus one might imagine the mass flux to be proportional to the

particle diameter and the velocity:

3,33
D, oC Uﬁﬁ F )

Baron considered radial dispersion and assumed that when

each time a fluid element approached a particle it is deflected by an
amount + §dj, where B is of the order one-half, for n, deflections
through a passage of length, L, n = 0L , where Qis of the order of

dp
one, Thus the mean square deviation of the deflections is :

2
) 2
Ax = n de (3.34)

Using Einsteins equation for diffusion ( 52 ), and

substituting approximate values of ¢¢and 8 , he arrived at :

3
_af
DR/ Udp = —""-2—-—-

R
2
o=

(3.35)

Radial dispersion data for a packed column showed good

agreement with Equation (3.33) and confirmed the independence of D

ud
P

with flow rate, which is true for larger Reynolds numbers,
Prausnitz ( 49 ) using an approximate mixing length model
estimated the axial dispersion coefficient :
D = (7/4 d ) u/d d /4) = 7/16 U d
7/ p)/p(p/) / D

or L

o~ (3.36)
D /ud_ 7/16

which is of right order of magnitude,
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The experimental results of Scott ( 6 )} and Tour aﬁd Lerman
_( 3 ) indicated that the liquid spreading process over packing might be
a random walk type. Cihla and Schmidt ( 11 ) and Porter and Jones (10 )
suggested using diffusion theory for large number of steps in the random
walk, Le Goff and Lespinesse ( 53 ) contradicted this and pfoposed a theory
of "breferred paths".

Porter ( 54 ) proposed a rivulet model demonstrating that
there is no contradiction between diffusion and Le Goff theory of
"preferred paths" providéd that the preferred paths - called rivulets -
change direction in random manner while flowing down the column. Also
it considers column wall as a mixing and generating =zone of incoming

and outgoing rivulets,

3.1.4, Statistical Models

These models assume that mixing process consists of
"motion pﬁases" and "rest phases"”. The first model was proposed by
Einstein ( 385 ) for the motion .of pebbles in streams., This idea
was promoted by Jacques and Vermeulen ( 56 ), Cairns ( 57 ) and
Cairns and Prausnitz ( 58 ), it is assumed that the duration of a
motion phase is much smaller than that of & rest phase, For packed
columns, motion phase might be taken as the period when the fluid
element is passing through the restriction between particles, and the
rest phase as the period when the fluid element is in the void space,
This is, as a matter of fact, a time delay model with no dead time,
The probability density for any "jump" of the element will

be given :

p( x, t)dxdt=e X 4 At (3.37)
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Equation (3.37) is applied to n motion phases and n phases
after which the element is found at a relative position x and at relative
time t. Probability of finding all elements at that position is:

Piot = e~ © I_(24/x" t' ) (3.38)
the relationship between x' and x depends on the length of each step,
similarly there is a relationship between t and t'.

Comparing the above Equation (3.38) with the solution of

axial dispersed plug-flow model at any large x and t yields :

(3.39)

"
It

t
X U/DL

and

2
t’ v /D (3.40)
Cairns and Prausnitz used Equations (3.39) and (3,40)
to find the dispersion coefficients.
Giddings and Eyring ( s9 )}, Giddings ( e0 )}, and
Klinkenberg ( 61 )} have also proposed models based on similar

concepts,

3.1.5 Evaluation of Axial Dispersion Coefficient

To evaluate the dispersion coefficient, D tracer

L *
technigues have been used, This involves the injection of an identifiable
tracer into the inlet stream at a rate that varies with time, At some
ﬁoint downstream concentration is recorded with respect to time; the

. dispersion coefficient is determined by analysis of the response curves,.

For a fixed distance between the injection and measurement

points, the amount of spreading depends on the intensity of dispersion
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in the system; Levenspiel and Smith ( 62 ) first showed that the
variance, or second moment of tracer curve relates this spread to the
dispersion coefficient,

Therefore the real problem involves the derivation of
functional relationship between the variance of the tracer curve and the
dispersion coefficient, This is achieved by solving the differential
equation for concentration with dispersion coefficient as a parameter,
and finding the variahce of this theoretical expression for the boundary
conditions appropriate to the system being studied; the dispersion
coefficient for the systeﬁ is then calculated from the expression and
the experimentally found variance,

Equation (II) of Table 3.1, is put into a form required for
mathematical treatment by setting the radial terms to zero, making the,

’

velocity constant and substituting DL for DL (R) thus :

. . 2
1 -
dc + U dc e D dc + /o o(x XO) (1/R0) (3.41)
dt Ix L 3x
f(R) = 1 , Since injection is uniform over the entire plane,
R 2
o

Again reducing Equation (3.41) to dimensionless form

by - substituting :

8 = Ut/L
z = x/L
i
Pe) = UL/DL
L = length of test section
/
c = c/c0

00 is the concentration of injected tracer throughout the system,
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LIS - S 1/Pg 3+  §C z-z5)  §(8) (3.42)
d6 0z 22

Mest of the investigation from this point on has been to
solve Equation {3.42) for different boundary cenditions,
Levenspiel and Smith (62 ) took the simplest case, shown

in Figure: 3.3.

T

L

14
function input Qutput

Figure: 3.3.

This is to be an open vessel ( i.e, one where neither
the entering nor leaving fluid streams satisfy the plug flow requirements)
and a perfect delta-injection input, The first and second moments for

this case are:

Mg = 1 + 2/Pg (3.43)

02 = 2/Py + 8/P2 | (3.44)

Van der Laan ( 63 ) took the boundary conditions which

were originally introduced by Wehner and Wilhelm ( 64 )}, this

included dispersion both in the entrance and exit section;

see Figure; 3.4.
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z =0 Z = Z,
/1/////|/
|Z=Z0 Z-"'-Zm
function input Output

Figure: 3.4.
System was divided into three sections: an entrance section from Z =00

to Z

i

O (designated by subscript, a), the test section from Z = O

to 2

Ze ( no subscript), and the exit section from Z = Z@ to Z = +°0
( subscripted b), The expressions for the first moment, u1 , and second

moment, a’2 , work out to be quite complicated;:

My = 1+ 1/Ple {2 - (1-a) eppezo- (1-b) e—Pe(zl'zm)}
' (3.45)
02 = 2/Pg + 1/92 {8 + 2(1-a)(1-b) e Te?l _(1-a) o Fe%o
-p
[4 zy Py *+ 4(1+a) + (l-a) e ezé] . (3.46)

- (1-p) o Pe(Z17%m) [4(zl—zm)Pe +(14b)+(1-b) e"Pe(Zl'zm)] }

where

and

P
eb
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Equations (3.45) and (3,46) reduce to the solution of Levenspiel and
Smith for a = b = 1, for the open system,

In practice it is impossible to inject a perfect delta
function input, Aris ( 31 )} proposed a technique which is also
described in "mixing-cell models"” section 3.1,2.2. Figure : 3.2. that
eliminated the need to know the shape of the input function; any inputs
can be used as long as the initial and the final concentrations are zero,
The method is based on measuring the response at two points downstream
Injection point should be upstream before the first measurement.point
either in the entrance section or into fhe column itself:; see Figure; 3.5.

Z = Zg

2

- L

‘P
Any input Output 1 Output 2

Figure; 3,5,
First moment:

Hy = Him = Blo = 830 PgyPeniPepsZgrZysZg ) (3.47)
Variance:
5 .
? - o, - Og = P2 PgyPgyiPebrZosZmrZe ) (3.48)

gl andﬁz are conmplicated functions given by Bischoff and Levenspiel

( 28 ). A simplification of these expressions occurs when both are
meaFured." within the test section as shown in Figure:3,5, see Aris ( 31 )
and Bischoff ( a2z ).
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These expressions reduce even further for the case of an

infinite tube or where b = 1 in which case the mean and variance are:

and 02 = 2/P

Bischoff and Levenspiel ( 28 ) have also calculated mean and variance

for the following cases:

z =z Z = Zg
e
1 /W
o L -z = Zm
| 1
Any input
Qutput 1 Output 2

Figure: 3,6.
and

b ]

M

L

= Ze

Y
Any input OQutput 1 Output 2

Figure: 3.7,

Data or liquid systems have been obtained by using

pulse inputs with a single measurement point by Carberry and Bretton ( 65 )
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and Ebach and White ( 66 }, only Sater ( 67 ) used the method of two
measurement points, Sted inputs have been used by Ampilogov et al ( 68 ),
Cairns and Prausnitz ( se& ), Danckwerts( 69 ), Jacques and Vermeulen ( 56 ),
Klinkenberg and Sjenitzer ( 29 ) and von Rosenberg ( 70 ), FrequenCy'
response methods have been used by Ebach and White { 66 ), Liles and
Geankoplis ( 71 ), Kramers and Alberda {( 36 ) and Straﬁg and Geankoplis

(72),

3.1.6. Evaluation of Radial Dispersion Coefficient

In this section methods for measuring radial dispersion
will be given briefly. The technique is similar te that outlined
for the axial dispersicn coefficients, i.e. the injection of a tracer
at a point upstream and measuring its concentration at a point
downstream, however in this case tracer is injected at the centre of
the columm.

The dimensionless equation of the type (3.42) was
formed, see Bischoff and Levenspiel ( 28 ). The method of solution is
similar to.that for the axially dispersed plug-flow model, however the
method was modified to keep both the axial and the radial dispersion
térms in the equatioﬁ.

Various simplifying assumptions and boundary conditions

lead to the following results:
a) TFor the case :

*——"//lr‘/////é P

Measurement point

Towle and Sherwood ( 73 ) arrived at the following solution:
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c = Per exp -P V - r2 - g )
4 ' (3.49)
‘f + r2 :

Bernard and Wilhelm ( 74 ), Klinkenberg et al ( 75 ),

Fahien and Smith ( 76 ), Bischoff and Levenspiel ( 28 ), Jacques
and Vermeulen ( s6¢ ), Latinen ( 31 ) and Prausnitz ( 77 ), and
Blackwell t 78 ' ) considered various boundary conditions, derived
and measured radial dispersion coefficients mainiy for liquid systems,

Data on gas systems, again using a point source,
was obtained by Bernard and Wilhelm ( 74 ), Dorweiler and Fahien ( 7¢ ),
Fahien and Smith ( 76 ), and Plautz and Johnstone ( 80 ), The last authors ;
measured the dispersion coefficients for both isothermal and
non-iscthermal cases and found the two to be different at low Reynolds
numbers,

The data was plotted using the effective diameter as a
characteristic length; for fully turbulent flow, liquid and gas data
merged, although two types of systems remained different at low
Reynolds number.

There was not as much scatter in data on radial dispersion

coefficients as there was with axial dispersion coefficients,

3.1.7. Capacitance Differential Model

The measurement of dispersion coefficients in liquid flow
system made by Geankoplis et al (71 ) and other workers produced
values which were in sharp disagreement with the perfectly mixing-cell
model. Carberry and Bretton (65 ) inferred this to be due to some kind
of capacitance effect that seemed to exist., Deans and Lapidus ( 35 )

suggested that the stagnant fluid regions produced the capacitive-

effect, Now the experimental response curves of a packed column
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usually show some degree of asymmetry and "tailing} which eannot
be aqcounted for by dispersion models or mixiﬁg-cell model . 8o in
an attempt to reproduce these effects mathematical models based on the
proposed capacitive concept, incorporating different possib}e mass
transfer mechanisms, have been put~forward,

Turner (66 ) proposed two models for packed columms which

y

closely approximated to the true physical situation, The first model
considérs channéls of equal diameters and lengths but with stagnant
‘pockets of different lengths comnected to the channels through
which mass transfer takes place but only by molecular diffusion, It
was assumed that the dispersion in each channel is represented
by an axial-dispersed plug flow model, and the axial dispersion coefficient
to be equal to that for flow ip émpty tubes, however Aris ( 81 ) showed
that it is influenced by the pockets,

The second model considers channels of varying length-
and diameters and by a procedure similar to one adopted for the first
model, he obtained a set of equations,

Deans (82 )} modified the mixing-cell model to include
diffusion or mass transfer into the stagnant fluid pockets, the

mass balance equations for the nth cell becomes

*
c .-¢c = (1-4")%, & g 9 (3.50)
n=l  n e -
dT dT
mf *
f' n = ag(c ~-C ) (3.52)
n n
dT
n = L,2,.........N
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where f'is a fraction of cell volume which is non-flowing, Cn* is
tracer concentration in the fraction, a is a dimensionless mass transfer
parameter,
The author discussed the limiting behaviocur of this

model: with large values of a ~or f'approaching zero, Equations (3.50)
and (3,51) reduce to the mixing-cell model, The limit of large ﬁ
for fixed path length corresponds to a small value of length
of the mixing-cell and three-parameter reduce to a one-parameter in this
" case.
Levich et al ( 83 } showed that Deans model could represent
" the effects of "stagnhant" regions and axial dispersion independently
provided finite values of N were used and thus developed approximate
solution for large values of N. Buffbemand Gibilaro ( 84 ) presented’
the analytical solution of Deans-Levich model, extending the usefulness
of the model by enabling any value of N to be used,

| Gottschlich ( 85 ) presented a '"film" model which treated
bed capacitance by supposing the stagnant volume to occur as thin film
over the packing surface and mixing took place incompletely by
molecular diffusion:

the continuity equation was given as :

de - UgRe e E - Ee [ofe]
L 2 - - | =0 (3.53)
Ox dx ot E, ot :
The equation to describe the mass transfer in the stagnant fluid was
written as :
3 2
D ¥ _ 2%  _ 5 (3.54)
m 352 Dt
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where "q'" is average concentration in the stagnant film

DL = axial dispersion in the stagnant film,

Dm = molecular diffusivity of tracer in solution.

w = local tracer concentration in the stagnant film!
Z = distance measured from the pore wall,

- Three parameters involved are DL , the amount of liquid
in the film, and a parameter involving film thickness and diffusion
coefficient,

Other workers who have discussed differential capacitance
models are Van Deemter et al ( 86 ), they employed frequency response
methods, and Lapidus and Amundson ( 87 ) presented a double- integral
form of the solution for this model,

Most of the above workers considered dispersion to be
an integral effect of a number of mechanisms that contribute to the
axial dispersion, Generally, there are two dispefsion mechanisms
considered:

1, The fluid phase diffusion is characterised by a

dispersion coefficient containing the effect of
eddy mixing of the fluid as it flows through the
void spaces and the effect of molecﬁlar diffusion within

the fluid,

2. The finite time lag required for transfer between
fluid and particle which consists of two distinct
steps, transport across a stagnant film surrounding
the particles, and transport within the particles
which requires time to even out the concentration

gradients within the voids,

Van Deemter et al ( 86 ), modified the mass transfer work

of Lapidus and Amundson (87 ), approximated  their general soclution
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by a Gaussian solution in which the variances due to mechanism 1

and first step of mechanism 2 were found to be additive. Klinkenberg

and Sjenitzer ( 29 ) also proposed this idea of additive variances for
different mechanisms. Rosen (88 ) studied the combined effect of mechanism
2 for a concentration step input; Kasten et al ( 89 ) made a study

of the same mechanism, Deisler and Wilhelm (90 ) studied all the above
mechanisms by using steady state frequency response and presented
expressions that showed the individual contributions of the various
mechanisms to be additive, McHenry and Wilhel; (9l~) work on gases
indicated the dispersion to be due to the machanism 1 only, and that
transfer between particle and fluid does not occur; they also showed

that at high velocity, dispersion is essentially due to eddy mixing

of fluid. Gottschlich ( 85 ) subdivided eddy mixing into interstitial
velocity effects and capacitance effect of a stagnant fluid £ilm, Glaser
(92,93) and co-workers also suggested subdividing the eddy mixing in the
same manner and discussed the relative contribution of each effect.
Babcock et al ( 94 ) Hescribed a means of determining the exit

profile of a packed column in which axial dispersion of the step

input was considered as a result of all the above listed mechanisms,
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Nomenclature

Pe/Pea

surface area of packing per unit volume of bed,

sq. ft. / cu, ft,

packing charécteristic

constant in Equation (3.4), section 3.1.1.
Pekpeb’ section 3.1.5,

constant in Equation (3.3.), section 3,1.1,
concentration

normalised concentration

initial concentration

concentration

nominal packing diameter

diameter of the sphere having the same surface area as

the piece of packing, Equation (3.6.)

hydraulic diameter of the smallest inner area of a ring.
molecular diffusivity

dispersion coefficient

axial dispersion coefficient, dispersed plug flow model
axial dispersion coefficient, uniform dispersion model

axial dispersion coefficient, general dispersion model

in cylindrical coordinates

radial dispersion coefficient, dispersed plug flow model
radial dispersion coefficient, cylindrical coordinates
volume fraction occupied by the gas phase

volume fraction occupied by the liquid phase

total void volume

fraction of cell volume which is non-flowing Equation (3,50)
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H
op

st

acceleration due to gravity

operating holdup

static holdup

total holdup

number of ideal stirred tanks in series
Bessel function

number of ideal stirred tanks in series
liquid mass flow rate, 1b/hr-sq,ft.,section 3.1.1.
distance between measurement points
exponent in Equation (3.7)

exponent in Equation (3.13)

number of cells, section 3.1.2,2,

packing number density

- Froud number

Galileo number

Reynolds number

Weber number

(UL/D), dimensionless parameter
dimensionless radial position

rate of chemical reaction

exponent in Equations (3.4) and (3.6)
source term

time

velocity vector in Equations (I) to (V)
superficial velocity , Equation (3.10)
interstitial velocity

volumetric flow rate

total void volume of the packing

volume of the nth cell

43



local tracer concentration in the stagnant f£ilm

axial position measured from the start of the test section
variable in Equation (3.14)

a common critical value as defined in Equation (3,14)

a reduced dimensionless function , X = X/Xk
r

dimensionless axial variable

dimensionless mass-transfer parameter Equation(3,52)
viscosity

mean of the tracer curve at measufement poinf
density

variance of the tracer curve at measurement point
tortuosity‘factor

refers to entrance or upstream

refers to exit or downstream

refers to the end of test section

refers to single measurement point or to the second of

two measurement points

refers to the injection point or the first of two measurement

points

refers to doubly infinite tube, the open vessel
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4, TIME DELAY MODELS



4, Time Delay Models

The method of formulating models, based on a simplified
physical representation of a process has been proved to be capable of
solving problems that become too complicated when tackled by classical
methods, However, the usefulness of a model depends on how accurately
it describes the performance of a system over a reascnably wide range
of opérating conditions. The approach can be either entirely empirical,
such as is the case of tanks-in-series model, or it can be of a more
fundamental nature, actually describing the intrinsic mechanisms of the
process, for example a mathematical equation representing flow and
diffusion effects. 1In general it is desir~able to have flexihle models
applicable to a variety of situations - not necessarily exactly definiﬂg
a particularsgystem - than a more complex one accurately describing the
behaviour of one such system,

The time delay model represents a simple and a physically
plausible picture of flow in many engineering processes, the trikle flow
in packed beds is one such process,

Consider a packed bed down which liquid flows in the form
of a highly distorted film partly covering the packing; thére are stagnant
regions at points of contact in the packing, between the packing and
the walls, and on horizontal surfaces, Downward flow takes place mainly
in the f£ilm; the effect of the slow flow.in the almost stagnant regions

is to rdmove some of the liquid from the film flow and return it some

time later,

In the absence of turbulence the velocity at any point in
the liquid is constant., In principle one can imagine calculating the
time it would take for a particular fluid element to pass through the

bed from fluid mechanic considerations. Although this calculation could
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not recognise the existance of random molecular motion it is weorth
persisting with the fluid mechanic picture for the insight it provides
into the mechanism, From this point of view, as passage through the
bed is a deterministic process, it is only necessary to say where a‘fluid
element enters the bed to be able to say where and when it will leave,
If tracer is released at the hed entrance, it will travel in the film
for a short distance but soon some will enter near-stagnant regions and
be delayed until later it returns to the mainsstream. Differeﬁt tracer
elements will be delayed more or fewer times depending on the path they
take; some will pass through faster than all the others, there being

an absolute minimum transit timé through the bed. With respect to this
minimum, delay occurs because not all of the main stream moves at the
same speed, not all the paths are of the same length and so on,

The hydrodynamic time-delay model is based on this qualitative
description. The hypothesis is that it is a remsonable idealisation to
consider the flow to be made up of axial and lateral components as indicated
in Figure:4.1., Delay is due to fluid elements passing into lateral
passages and returning later at the same axial position. Stream splitting
lcauses lateral mixing so that if entry into a lateral poré ié relatively
rare "after effects" will be relatively unimportant. This?idealised by
assuming perfect lateral mixing of the main stream: at any axial position
the behaviour of particles that have been delayed is indistinguishable
from those that have not. It is assumed that all hydrodynamic mechanisms
can be accounted for in this way by suitably_choosing the distribution
of delay times,

In the analysis below it is shown how the hydrodynamic flow
model can be treated in a deterministic way by writing a differential
material balance. However, there is an immediate probabilistic
interpretation that suggests that the model applies more generally.

With the assumption of perfect lateral mixing, assigning the ratio of the

46



lateral flow to the forward flow in a differential element of bed

length amounts to assigning the probability of a given fluid element

.being delayed at that point. The return process is independent of the
stopping process. Clearly the process of diffusion into pores can be
described in a similar way by introducing extra micro-scale lateral flows
superimposed on the hydrodynamic lateral flows, The role of lateral diffusion
in the main stream is to put the assumption of perfect lateral mixing on a
sounder basis while it is assumed that the effects of axial diffusion can

he lumped into the general delay process,

4.1. Distributed Parameter Model

The basic postulate of the time-delay treatment is that the
flow can be considered as a forward flow and a lateral flow, the former
alone serving to transfer material in the axial direction, Referring
to Figure:4.1, the main forward flow rate is F and the lateral flow
raté is f per unit length. If the transit time through the lateral

passages is a constant, t a material balance over a differential length

DJ

of the main flow passage yields:

A dc(x,t) = -F dclx,t) + £ c(x,t-tD) - £ e(x,t) (4.1)
at dx
It can be seen that if the input to the bed is an impulse of tracer material
the output will be a sequences of impulses; the first occuring at the

minimum residence time t and the rest being seperated by intervals of

o]
tD' the only delaying mechanism being the fixed delay tD in the lateral
'pores'. In order to relax the condition that tD is constant it is

necessary to split £ into components with differential tD valﬁes,

a7



either in a continuous or discrete way.

% BN

Fipgure; 4.1,

4.2, Lumped Parameter or Cell Model

The notion of expressing diffusion equations in tqrms of
mixing cells has been quite fruitful, especially when the object has
been to calculate dispersion constants from first principles (es ) or
to determine liquid distribution (12 ). Basically the diffusion equation
is expressed in finite difference form and the mesh size is identified
in some way with the packing size, The same procedure can be adopted
in the present case., Figure:4.2 shows the cell model equivalent to the
fixed time-delay flow-model, The convention is adopted that an_elongated
- rectingle indicates a plug flow region and a square a perfectly mixed 'cell’.
The result of an impulse tracer input will be an output consisting of a
sequence of identically shaped pulses each delayed in time by some integer
multiple of tD' It is easy to see how the cell model can be modified
to take account of a distribution of lateral pore transit times. For
 example if the pore transit times are exponentially distributed the
appropriate modification would be to replace the lateral pore plug-flow
region with a stirred tank, Figure:4.3. This particular case with a finite

sequences of N identical units has been suggested as a model for flow

through beds of porous material (83 ), Increasing the number of units
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in the cell model to infinity, while keeping the total system volume
constant, reduces it to the equivalent continucusly distributed flow

model with the same distribution of delay times.

SEUTETTYT [

LA 1 2 3 | FOF 0y I—
Figure: 4.2,
rD— 1—[!— —L— ]—[:]—l
1 2 3 EE EF . N ——
Figure: 4.3,
4,3, Probabilistic Treatment

In the flow-model and the cell-model it is consddered that
at splitting nodes, which are continuoﬁsly distributed in the former case
and at discrete points in the latter case, the concentrations of the
streams into which flow. divides are equal, Conversely at merging nodes
the mixing is instantaneous and perfect. In terms of concentrations the
analysis is deterministic provided that the flows are constant. If the
input is a unit impulse the output is identical with the residence time
distribution, a concept which is meaningful without any probabilistic
interpretation, However, one can imagine a tmncer experiment.being carried
cut with a single tracer molecule, in which case the result of the
experiment would be random, A tracer experiment can be regarded as the

simultaneous performance of an extremely large number of single-molecule
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experiments, so tﬁat the measured impulse response may be regarded as a
frequency diagram for many individual molecule experiments. The usual
abstraction of probability theory is to say that a frequency diagram
constructed for a sufficiently large numbher of independent trials is:
identical with thelprobability density diagram. Conversely for a given
mathematical model the residence time distribution can be calculated by
detérmining the probability that a molecule will pass through the system
in a given time,

The probabilistic treatment of the time-delay model falls into
two independent parts: establishing the distribution of the number of
times a particle stops, and then assessing the effect of the random nature
of the stopping process itself. Generally there will be several ways
in which a tracer particle can pass through the bed in a given time;

the probabilities of these ways must finally be combined,

4,3.1. Stopping Process

Stopping is a stochastic process and the number of stops,
n, can only take non-negative integral values. Discrete random processes
of this type are the basis of many branches of applied probability
theory, for example queueing theory. The random events considered are
usually sequential in time rather than in space, but this makes no
difference to the mathematical analysis,

Two independent probabilistic approaches have been adopted

to establish the distribution of particle stopages.

Continuous approach

Referring to Figure:4.1, the proportion of tracer particles
arriving at =x that enters lateral pores in the bed zone (x,x+dx) is
(£/F)dx. This may be restated in terms of probability by saying that the
probability of a particle, which has arrived at x, entering a lateral

pore in (x,x+dx) is (f/F)dx. As there is no need to take the original
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model too literally suppose merely that the stopping probability is
adx, where (¢ 1is a constant to be identified empirically, or perhaps
related to other concepts in a separate theoretical excercise,

Now let the probability of a particle being delayed n times
while travelling a distance x be, pn(x), then the probability that a
particle is delayed n times while travelling a distance (x+dx) is
pn(x+dx). There is no reason to suppose that whether a particle is delayed
depends on whether or not it has been delayednpreviousl§; that is to
say the events are independent.

n retardations in distance (x+dx) can occur as foliows:

n in (0,x), O in (x,x+dx)

(n-1) in (0,x), 1 in (x, x+dx)

(n-2) in (b,x), 2 in (x, x+dx)
and so on,

The corresponding probabilities are obtained by multiplying

the probabilities of the constituent events, as these are independent,

Hence:
- - 2
pn(x+dx) = pn(x) (1-cdx) + pn_l(x)adx + 0 {(dx) } (4.2)
or
pn(x+dx) - pn(x) ap .(x)-¢op(x)+ 0dx (4.3)
n-1 n
dx
In the limit as dx ~— 0O
dp
_n = alp,_,-p ) (4.4)
dx

Now, it is certain that a particle is not delayed in
travelling no distance and it is impossible for a particle to be

delayed in travelling no distance.
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Therefore the initial conditions are:

pP,{0) = 1

I

pl(O) p2(0) = p3(0) = ... = 0

This set of equations is satisfied by:
-x

n
(o) e
pn(x) Tal
a result established by substituting n = 0,1,3,.. successively and

solving the resulting differential equations. Equation (4.7) indicates

n to be distributed in a Poisson distribution with parameter ox.

Discrete approach

This approach considers the physical analogue of n stirred
tanks. Consider the packed length to consist of n small sections of
each length Sx; as shown in Figure:4.1,

The probability po(X¥) of an element moving right through

the whole packed length without being delayed is:

p, (%)

11 |
o
,i_-\
= b |
(=2
= %
SR
N——

In the limit as n —po0

n
s 1
po(X) = r:!.lmlt (m)

The probability of being delayed once in a particular increment
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gx is:

ne1
1 f 8%x
Py 6%) 1+oax/n-1)] F + f &%
Inn the limit as €X—= Q0 and n —e oo
p,( §x) = limit fbx  -ox
X s F
N g OO
f x -Qx
=—2= e
F n
that is : pl(x) = Oox e O

(4.10)

(4.11)

(4.12)

The probability p2(2 £x) of two delays in two specific

increments ( both could also be in the same increment ) is:

n=2
\ (wo?
P,(2 §x) = L (az)
1+ Otx/n—2} n
In the limit as §x-s 0 and n —e o=e
n=2
2
Py(2 §x) = Llimit L (az)
Bxe 1 + ax/n-2 n
n —pw of
= (ax )2 o™
2
n
n2
The two delays can occur in —57  ways so that:
(x):‘""i = (o:x)2 o
P (X pi) = 21

Following the above procedure, a general expression
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(4.14)
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for n delays can be derived:

(4.16)

4.3.2. The Delay Process and Residence Time Distributicn

So far nothing has been assumed about the delay process
itself. 1In statistical treatment of processes in which a prototype
process is repeated many times,the final result is n;t very sensitive
to the detailed description of the prototype. In order to predict the
residence time distribution as simply as possible, the pore residence
time distribution should be simple and easily combined. In view of the
analogy between the time delay model and the surface renewal models of
steady state mass transfer and the success of those models, suitable
choices for the pore residence time distribution include the impulse
distribution - Highie's ( 96 ) model - and the exponential distribution
proposed by Danékwerts (69 ), Physically these distributions correspond
to the pores or pockets being regions of either plug-flow or perfect
mixing. This is not to say that these conditions exist physically,
but merely that the observéd behaviour can be described in this way.
For instam& a situation in which perfect mixingZibfained in the pores
is indistinguishable from plug-flow in pores where the residence times

are exponentially distributed due to the difference in lateral flow rates

and pore sizes.

4.4 Fixed Time Delays

For those ftracer elements'which make n stops in their
journey through the bed, the total delay time is the sum of n independent
observations from the pore residence time distrbution. TFor the case of

plug-flow in pores the sum of n independent observations is ntD and
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those tracer elements that are delayed n times emerge from the bed
after a residence time (t0+ntD); so that the probability of an element

emerging after t is given by:

n
p(t) = X)X (4.17)
n!
(t —to)
where n =
tD

It follows that the residence time distribution, @(t), may be

written as:

22 n
-ax (ox)
g(t) = e = 5t - t, nty) (4.18)
n=zo *
where $( ) is the Dirac delta function.

4.4.1, Exponentially-Distributed Time Delays
The exponential distribution is the case of perfect

mixing in the pores, it is given by:

$e) = o8/t ' (4.19)
D

This distribution goes under a variety of names in the
literature: in queueing theory it is known as the Erling distribution
and n is restricted to integral values; as the Gamma distribution
when this restriction does not apply - this particular case has been
presented further on in sectiond4.4.2; it is also closely related to Chi-
square distribution.

The sum of n indepenaent observations, 6, from an exponential

distribution with mean, tD’ has the probability desity function:
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-n n-1
tn 7] e e/tD

( n-1 )\

gn(e) = (4.20)
as may be established by an n-fold convolution of an exponential, or
by considering the physical analogue of n stirred tanks.

' The total delay time distribution is obtained by weighting
the gh(e) by the pn(x) and summing over all values of n. The
Jjustification for this procedure is that the probability of both being
delayed n times and being delayed for total time in the interval
(8, 8+ d8) is pn(x) gﬁ(e).de by the multiplication rule for conditional
probabilities; and as the ways of being delayed for this time in different
numbers of stops are mutually exclusive the probability regardless of
n is obtained by summing over all possible values of n, The residence
time distribution is obtained by displacing the total delay time hy

to with the result:

g(t)

]
o
o+
A
o

*
e—(ax + t /tD)

o * n
. (ax t /tD) , (4.21)
t : Z | (n- 1)1

*
where t = (t - to). The first term in the series in an impulse which
is usually negligible in practice, so that Equation(4.21) could be

expressed in terms of a Bessel function:

1

gt) 0, t <t

o]

*
- t /t *
om(ox +t /1) (ox) 1, (2, [t t (4.22)
*
t) t £
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4.4.2, Gamma-Distributed Time Delays

Corrigan et al ( 97 ) suggested the addition of a recycle
stream to the tanks-in-series model to increase the dispersion. It
enabled the responses of the tanks-in-series model to be fitted for
the values of‘ n that lie between n and (n-1). This renders. the
model more flexible especially at low values of n, It also introduced
other less desirablé .features, such as oscillating responses at low
recycle rates; van de Vusse( 98 ) has shown this to be true for values
of n > 2.

An alternative modification of the tanks-in-series model
that does not suffer from this disadvantage is to allow n to take
non-integral positive values, The inversion of a transfer function
for a tanks—-in-series model is giveﬁ by:

n-1 -t/t
£,(8) = t e D (4.23)

n - 13l
tD (n 1)t

For non-integral values of n the inversion becomes:

n-1 -t/t

£,(t) = t e D (4.24)
n
tD T'(n)

where I'(n) is a gamma function of n defined by the integral:

I'tn) = ‘[;-x -xn-l dx . (4,25)

positive
and converges for allfvalues of n.

If the distribution transfer function is taken as:

£(s) = —1 (4.26)

m
(tDs/m + 1)

where m is not necessarily an integral, then the gamma distribution
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is:

-m
)t L,
fm(t) = m e D ’ (4.26a)
I'(m)
the mean being tD regardless of the value of m,
By bllowing the reasoning given in section 4,4, for the
exponentially distributed time delays, the residence time distribution
for the present case can be obtained by displacing the total delay time
by t with the result:
o
@g(t) =o0, t < t
o0 mn 1
-(ox + mt /t.) m\ €7 (e)”
= D tq, {(m) nt (4.27)
N=o
t = to
* -
where t = t - to' The first term in the series is again an impulse

which in practice, is usually negligibly small,

4.5, Hopping Model

The hopping model is a modified time-delay model in which
delayed material.returns to the main stream at some axial distance from
the point where the delay took place. The flow mechanism suggested here
is agein quite a feasible one and bhears a resemblance to the steady state
model proposed by Porter ( 9¢ ) describing random splitting and merging
of fluid streams, The cumulative effect of the individual time delays
and hopping times is to distribute the total residence time in some way.

The probabilistic treatment of the model again falls into
two separate sections: the establishment of the distribution of the

number of complete hops a particle makes and the estimationof the random
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nature of the delay process during the hop., There are a number of ways
that particles can pass through the column whose probabilities must be

combined together,

4,5.1. Hopping Process

Consider a particle moving along a line; the probability
of the particle leaVing in an elemental length dx is @dx, which has
been shown in section 4.3, i.e. the probability of a particle starting
& hop in the element dx dis Qdx. If a particle hops at x, it moves
te (x + h), where h is the hopping distance,

lLet the probability of not hopping in a distance x bhe

not.
p(x), then the probability of hopping in distance (x + dx) is:

p(x + dx) = p (x) [1 - cdx]
and the solution as before is:
e

po(x) = e (4.28)

To find the probability of n complete hops first consider

a specific sequencer~ of hops occuring at xl,xz, ...... ,xn; see Figure:4.4
*n
h

X

2 o h
X1 h

b4

Pigure; 4.4,
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The probability, pﬁ(x); of this sequence occuring is:

p'(x) = o %1 qdx. e ‘Xz'(x1+hi§dx ...... A LR C I O
n i 2 n
‘ (4.29)
< e [x-(xn+ hﬂ
-(x - nh) n
= @ o dxldxz....dxn (4.30)
Hence the probability, pn{x), of exactly n complete hops
occuring is:
xn—f x;-—‘v x3-fy _a(x _ nh)
pn(x) = dxldx2 ....... dxnan e (4,31)
(n-)p v o

which is obtained by integrating over all possible values of xl,xz,...

X For example if the second hop occurs at x the first hop must have

2)
the second must

occured in (0O, x_- h); if the third hop occurs at x

2 3’

have occured at (h, x_~ h) and so on until finally the nth hop must have

3
occured at ({n-1)h, x - h?).

The multiple integral, Equation(4.31), is evaluated by successive

substitution:
x;-k
fdxl = X,- h (4.32)
o .
Ky~ f x;-zfv o
_ _ (5 - 2h)
f(x2 h) dx2 —fy dy = 3_2! (4,.33)
(4 ° .
XQ-‘V x‘-iﬁ
(x_~ 2h)2dx = y2 dy = ( x = Sh)3 (4,34)
—_—3 3 — y o= — g )
26 2! o 21 3!
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and so on, in general for i.¢{n

Xis~f  x-b sea=f

i+l |, i
. dx,.,..dx dx, = (x - ih) ' ' (4.35)
A \ 1 2 1 i)
(7-"')‘1 & o -4
and finally:
x=f wel Py
. izn- (n - 1)h} 2n-ld
a  =[eTs
a-0p, (0 - D! s :

(x - nh)™®

n (4.36)
thus substituting in Equation(4,31) gives:
W
; - -0(x - nh . <
pn(x) - {a(x nh)} o ( nh) . for n < x/h (4.37)
nt
If h = 0, Equation (4.37) reduces to the stopping ( time delay )
model:
n
ie. b (%) (o x) o O (4.7)
n nt

and in particular if h = x,

[l
ol

po(x)

I
[w]

pl(x)
that it is impossible to execute a complete random hop of distance

h, while travelling a total distance h.
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4,5.2. The Delay Process and Residence Time Distribution

The case of complete mixing in pores is considered here;
during each complete hop a patricle can be assumed to pass through a
perfectly mixed tank of mean time, tD, otherwise following the axial
plug-flow. For n éuch tanks the residence time distribution for an

impulse input and pure dead time, t is:

o7

n-1
(t -t.) e-(t - to)/tD

Fr{t) = =————O0 (4,38
t2 ( n =1
D :
The distribution of the number of times a particle hops
would range between 1 and n complete hops; the probability of this
distribution is given by Equation(4.37), Therefore the response of the
hopping model consistsof:
. s =-0x
Material that did not hop = e o( t = t,) 7 (4.39)
Q - h - - - - '
Material that hopped once = —S-EET———l e alx h)_g4ip- -to)/tD (4,40)
- tz
D
] _ (e
Material that hopped twice = LQ&ET——El eﬂx(x 2h)(t -t )e LEEEol (4.41)
L } D
t
D

ALl
[a(x - nhi] eﬂz(x = nh) (t - t) e-(t-t )

Material that hopped n times = ———0 (4.42)

\
e & (-1 p
D
The sum of these individual contributions is the final response:
gr(t) = E p'(x) ——o— e t (4.43)
n n 1 D
t, (n -1)!
w0 D .

Now the maximum value of the number of hops, Nmax , 1s determined by

the integer x/h; in practice both, the length, x, and the hopping distance,
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h, have finite values., After n complete hops a particle would rejoin
thé main flow stream, that is in plug-~flow, an axial distance, nh, down
stream, thus emerging earlier than the material that does not hop. This would
effect the overall residence time distribution.by varying the dead times

of individual elements, Thus modifying Equation(4,43) as follows:

ZN ~ t-t,{1-nh/x) _ t-t (1-nh/x)
d@'r(t) = p'(x) : e Tt (4.44)
n n D

t . (n-1)!

Weo D

If the hopping process is visualised as shown in Figure:4.5,
it becomes clear that the hopping probabilities cannot sum to unity, It
is due to the finite bed length; at the exit of the bed, hopping of

particle would occur outside the bed.

Exit
|
/—.-\ /'b\ /—s

<

‘Figure: 4;5.

To eliminate this complication, provision has been made by dividing each
hopping probability with the 6verall'hopping probability based on the finite
bed length and summing it over all possible values of n. Mathematically

this is achieved as follows:

= intege h
say Noax, = intes r(x/h) (4.45)
Nimax,
. {14 B - '
Overall hopping probability P ;g:pn(x) (4.46)
=0
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The new probability is now defined as:

pr'l(:f)

Py (%) = (4.47)

which sums to unity over n = Nmax

N'\‘\m!-. qui-

i.e, :E:pé(x) = }E: pn(X) 1 (4.48)

neo Ned P

I

The value of average number of hops:

Nimax,

Noy. = Ep;l(x). n - , (4.49)
Ny

and the final residence time distribution expression for the hopping

model is thus:

Nm’- .
_ _ _t-t_(1-nh/x)
FCt) =§ p:n(x) t=t,(=nh/x) N (4.50)

n
wzo tD (n'l)!

This final medification ignores the material that hops out of the bed,
Figure:4.5, whilst maintaining the unit area property of the distribution,
It makes little difference to the nature of the model response except for

cases where the average number of hops is small,

4.8, Normalisation

It is often convenient, especially when dealing with the
experimental data, to express residence time distributions in normalised
form by converfing the time scale to units of the mean time. To preserve
the unit area property of the residence time distrinbutiqn, the frequency

denéity is multiplied by the mean time,
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4.6.1, Time Delay Models

The mean or expectation is defined by:

t = E(t) =ft @(t) dt (4.51)

[}

The expectation of a sum is the sum of the expectation

of the components of sum so that:
*
E(t) = t, + E(t ) (4.52)

%
and further, because the distribution of t is made up of infinitely

n
~many distributions  with weighting factors (gf) e—ax and expectation
ntD: : \
ol
= R —E ;(O‘X)n e nt (4.53)
i W=o n! D .

a result that is independent of the delay time distribution,

Hence:

t= t_+ oxtp (4,54)
Often the mean time may be measured independently of the

residence time distribution; it is equal to the ratio of the total volume

through which flow takes place to the volumetric flow rate, If this

condition is to be met the number of adjustable parameter;E;educed by

one,

Therefore in normalised units, the model response for

fixed time delays consists of a series of impulses of strength p(t/t)
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separated by (tD/E), as indicated in Figure:4.,6,

\?LWI—.\ e 1

nt /E o
> to/ﬂ*—““““———“ D I

Figure: 4.6,

The real time response of the exponentially distributed

" delay times is given by Equation{(4.21); the mean time, t, is given by:
i= £+ Ox (4.55)

therefore : D

3

(4.56)

Substituting Equation(4.56) in Equation(4,21) expresses the residence

time distribution in normalised form:

o .-
[O‘"*TI‘E“R) t/tl , L
2Ty = e Z (ax) /(l-to/t) t /t (4.57)
o ni (n-1)1

Similarly for gamma distributed time delays Equation(4,27) becomes:

- - /E /0 (ex® |
Ki/D) = oo O T t/t ) Z(l % (4.58)

(mn) n|
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4,6,2, Hopping Model

The mean time, i, of the hopping model is

quu.
t = E pn(X) to(l- ¢n> h/x) + ¢n> t

Nzo

D

where the average number of hops ‘is, 4n> :

Neaas.

¢ny = N = ;pn(:c).--.n
-

Therefore t = t (1 - E-N ) -t N
o x " av. D av

- h
and D = 1 - to/t(1 x Nav.)

t Nav.

given by:

(4.59)

(4.60)

(4.61)

(4.62)

Substitution of Equation(4,62) in the real time expression for the hopping

model transforms it to the normalised version:

N=-|
{f/t - to/t(l - nh/x) } Nav

Nmax.

B(t) =Zp (x) .
n - W
n=e {1 - tO/E(l - nh/x Navl} (n-1)1
X e_—_. {t/t”to/t( 1_nh/}9.} Nav- {l—to/t( 1-h/x Nav .)}

-~

4.7, Conclusions

In summary, time delay and related models describe the flow in packed

beds in terms of:

(4.63)

a) Main stream axial flow that is either plug-flow (distributed

parameter case) or characterised by the tanks-in-series

model(cell model).

b) Random delays: the distribution of delays times being

conveniently described by the gamma distribﬁtion.
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¢) Return of delayed elements to the main stream at the same
axial position at which they were delayed( Time delay models), or at

some distance down stream( Hopping model),
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Nomenclature

A cross sectional area through which forward liquid flow

takes place

¢ tracer concentration

c/co normalised concentration

i if lateral liquid flow rate per unit bed length

F forward liquid flow rate
h hopping distance

gn(e) probability density function for ©
m gamma distribution parameter
n number of stops
N nunber of stages in series
N average number of stops

ave
N maximum number of hops

max

Pn(x) probability of stopping n times while travelling a distance x
p(t/t) probability of leaving the system at time t/t

t residence time in a section of bed of length x

tD average delay time

to minimum residence time in a section of bed of length x
t/t normalised time

s Laplace transform parameter

*

t t - t

o

t mean residence time
adx probability of stopping while travelling a distance dx
5] the sum of n independent observations from an exponential

distribution with mean tD
f(t),B(t) residence time distribution density function

f? ) gamma function
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5, ANALYSIS OF THE PROPOSED MODELS



5, Analysis of the Proposed Model:

Moments and related characteristic parameters.

In Chapter 4, a probabilistic description of the flow in
packed beds has been outlined, The basic concepts considered and the
overall description of the model #reso general that it can f£it many _

. physically occuring processes, There are also mathematical reasons
that emphasise the generality of the model, these are best illustrated
by first outlining a general transfer function of the model and then

analysing the transfer function to study the properties of the model,

5.1, Transfer Function Derivation: distributed parameter case

Consider the discrete cell form of the time delay model hy
visualising N well-mixed stages in series for the main flow, as
shown in Figure:5.,1, with the lateral flow of f per unit length of

bed, therefore for a bed length x, side flow for each cell is f x.

N
rl:_%l ¢ X f_:sﬁ:jl
N N

A B

Figure: 5.1,

let a transfer function F(s) characterise the delay
times in the lateral zones; the throughput flow is F and the total
holdup of the main flow region V, éo that the holdup of one cell
is y
N

A mass balance on the ith cell yvields:

X 5 X ~
FC, ,+C; £ ¢ F(s) - ¢, fg-FC, =

Zi|<

dCi
dt
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The Laplace transformation of Equation(5.1l) and rearrangement gives:

1 hif -
ci(s) 1+ N T X x F(s) + s = Ci_l(s)
. f
letting a =z
F
v
and to = F

Equation(5.2) becomes:

- -1

C.(s)
1 [tos + gx - Ox F(sﬂ

—_— = 1+

1-1(8)

Therefore the transfer function, G(s), of the whole system is:
-N

G(s) = 1+l:% tos+ax-cxxF(s)]

The distributed form of the model is obtained by allowing

N in Equation(5.4) to approach infinity:
G(s) = exp {-to s —QxX+Qx F(s)}

For reasons discussed in Chapter 4 a suitable choice for F{s) is

the transform of the gamma distribution:

F(s) = : ’
2 .
m

Expanding the expression for F(s) in Equation(5.54) and substituting
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in Equation(5.5) yields:

3

- (m+ 1)(m + 2) ax (t_s) (5.6)
Z

2
{(m+ 1) ox (t_s)
3t m

2! m

G(s) = exp ;(t0+ax tD) +

Equation(5.6) is identical in form to the generalised
transfer function of Paynter{100) who showed that a linear dynamic system
whose step response is monotonic and nondecreasing with time could be

characterised by:

G(s) = exp { - cys + czg' - c333+ ........ } (5.7)
LU it

where ey is the ith cumulant of the impulse response, Cumulants are
closely related to moments(1ol ), in fact ¢, is the mean or the first
moment about the origin, ¢o is the variance or the second moment about
the mean and Cq is the skewness or the third moment about the mean;
fourth and higher cumulants are not as simply related to the moments
Comparing Equation(5.6) and (5.7) the cumulants of the time

delay model may be written as:

cp = to+ OX tD (5.8)
(m+ 1) ax t2
€2 = P (5.9)
3
" and oy = {m+ 1) m+ 2)ax tD (5.10)
. 2
m

where m may assume any value between zero and infinity. When m is
equal to unity exponentially distributed time delay form of the model
is obtained whereas zero value of m reduces it to that of fixed delay

times.
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5.2, Parametric Coefficients

Moments and cumulants are both dimensional quantities;
it is somewhat convenient to define another two parameters which are
dimensionless, namely coefficient of variance,r, and the coefficient

of skew,Y2. Mathematically these are equivalent to:

3

vy = {cp) _ Standard deviation
- cy B Mean
Y2 = 03
3
.(02) a

Therefore for the case under study the corresponding values are:

. Va, -
[t a-v

(m + 2) \
[e:x m {(m + 1)]/"

Y-

and Y2 =

Equation{(5.14) is of interesting form, it shows the significance of
skewness relative to the variance, which increases as m decreases;
the skewness increases more rapidly than the variance, For large values

of m and Ox, skewness approaches zero,

5.3. Conclusions

A transfer function of the time delay model has been derived
for the general case.of any delay time distribution and a particular
case, but flexible one, of gamma delay times has been considered.

The final form of the transfer function is such that the

cumulants of the impulse response are readily available,
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{5.14)



It is shown that the characteristics of model response
are extremely sensitive to the gamma distribution parameter, m, particularly

for small values of mnm.
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Nomenclature

C liquid concentration

Ci liquid concentration of ith cell

Ei Laplace transform of the concentration of material leaving
ith cell

Fs) Laplace transform of delay time distribution

G(s) system transfer function

i cell number, counting index

m gamma distribution parameter

N number of cells

£ lateral flow rate per unit length of bed

F throughput flow rate

s laplace transform parameter

t time

t0 dead time

tD average delay time

N ith cumulant

v volume of main flow region

x length of bed

o i/F

RG] gamma function

ith parametric coefficient
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6. Experimental Apparatus and Operating Procedure

Stimulus-response methods were employed to study the liquid
side R,.T,D, in trickle-flow packed beds, All the experimental work
was carried out on counter-current liquid-air continuous flow system,

The effect on the impulse response of varying packed lengths,
liquid and air flow rates, and liquid viscosities, was studied. Addit-
ional experiments were carried out to measure the contribution of
tracer detector R,T,D, on the overall R,T,D, of the liquid, Tracers
with different diffusivities were employed to provide some measure

of the effect of molecular diffusivity on the axial mixing process.

6.1 Packed Column

A schematic diagram of the packed column. and accessory piping
is shown in figﬁre 6.1. The column itself consisted of sections of
1%" Q.V.F, glass pipe, each section being 5 feet long. To the lower
end of the bed a 14" copper tube, 6" long, was connected. This
seqtion contained an air distributor. The distributor was constructed
of %inch copper tube; one end of this tube was sealed off and coiled .
into a shape shown in Figure 6,2, Some sixty equally spaced 1/16 inchl
holes were drilled all round the coil; the assembly was lowered in
position and soldered to the wall of the larger tube. A circular gauze
was placed on top of the distributor to act as a packing éupport.
A pipe reducer on the liinch tube was connected to the liinch glass
tube that directed the outflowing liquid into the vertical line which
carried the tracer detector,

The column was randomly packed with 1/8 x 1/8 inch ceramic
Raschig ring packings. The manufacturer's data on the‘packing is given
in Table 6.1, The packing was gently poured into the columm after
filling with water in order to avoid the danger of breakage. Broken
packing causes an increase in pressure drop and mal-distribution of the
liquid (102},
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Once the column was packed to the required height, the water was

drained off.

Table 6,1 Manufacturer's Packing Data

Packing Number of units ~Surface area of Percent free
per cubic foot packing:sq,ft/cu. ft space

/8 x 1/8 550, 000 360 69

inch Raschig

rings

A proper liquid level in the bottom of the column was
mzintained by attéching a piece of flexible polythene tube that
enabled the head, at the down stream end of the return bend to be
controlled, The effluent was passed to the drain.

| Feed water was taken off a mains header tank on the roof of
the building. It passed through a globe valve and a 1=-30 ccs/sec,
Rotameter, mounted on the column support structure. The globe valve
outlet was connected to the Rotameter via % inch polythene tubing; a
further section of the polythene tubing joined the Rotameter to the
"tee" section at the top of the columm.

Air was obtained from the compressed air supply available
in the laboratory. The mains pressure of 80 psig. was reduced to a
working pressure of about 10 psig., by means of a "Taylor" reducing
valve, To eliminate any minor fluctuations in the air pressure, a
stainless steel buffer vessel was placed between the reducing and the
air Rotameter which was comnected to the air distributor. (High pressure
tubing was used throughout)

Prior to the rumning of the column, water and air were fed to
the packing for a few hours. This ensured the final shrinkage and
settling of the packing which would othérwise result in the non-

reproducability of response data.
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Glycerine-deionised water solutions were prepared to study
the effect of varying viscosities. Glycerol of 99% purity was acquired
from Wiffins Ltd., A 200 gallom deionisation plant provided the
necessary deitnised water. Using the weight/weight % - composition (%)
chart, Figure::6.3, approximate solutions of 4cp and 7cp viscosity
were preéared. The exact magnitude of the solution viscosity was
later determined with an Ostwald viscometer. Both solutions were
stored in standard Q.V.F, spherical vessels of 200 litres capacity,
30 feet above ground level, The outlet of these vessels was
conhected to the inlet of the rotameter in place of the water line,
Before commencing a glycerine-solution run, the solution was

allowed to flow through the packed column to replace the water,

6.2, Tracers and Tracer Injection Technique

Two types of detector devices were employed, The photocell
was used during water-air impulse response experiments with the
"Nigrosine" dye solution as a tracer in the liquid phase, However,
the limited supply of the glycerine-water solution and the limited
Qorking range of the photocell at all but very low concentrations
rendered re-use of the dye-contaminated glycerine-~solution impractical;
for this purpose the conductivity cell detector was found to be
more suitable,

The tracer solutions were iﬁjected into the flow system
through the "tee" piece at the top of the packed column, by means
of a graduated 5cc¢s. hyperdermic syringe. It was found to be sufficieﬁt
to introduce only %cc. of the tracer solution; it required about
1 second for the injection, Because the time taken to introduce
the tracer is so small compared with the system mean residence time
of 160-300 secs., for the R,T.D, experiments, the tracer was assumed

to be injected as a true impulse,
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6.3 The Photo-cell Detector

6.3.1. Construction

The detector device used to measure the dye concentration in
the outflowing fluid was built around a i inch diameter, 12 inches long,
Q.V.F, glass tube,.

The detector consisted of a Mullard 90AV photo-emissive cell
and a 8,6 M ohm resistor, arranged to form the circuit shown in Figure:6.5.
On the other side of the outlet tube,was located a 6 watt filament bulb,
and the entire assembly was then fixed in a Lektrokit box. The glass
tube was clamped firmly to the detector housing to ensure a permanently
characterised detector,

Power was supplied from two transistorised power packs which
provided stabilised voltages to the bulb and the cell, A ten-turn potentiometer
was attached to the voltage adjusting knob of the bulb so that minute
alterations could be made to the base-~voltage of the detector.

Further modifications considerably improved the stability
of the instrument e.g. a vent was fixed above the bulb to prevent overheating
of the filament and also the circuit was thermally insulated,

6.3.1.1. Calibration of the Photo-cell

The celibration of the photo-cell was carried out by detaching
it from the column and clamping to & suitable support. A standard solution
containing exactly 1 gm/litre of Nigrosine dye was prepared and quantities
of this solution were diluted to the desired concentrations in a number of
graduated flasks. The lower end of the detector tube was sealed off with
a rubber bung and the diluted solutions introducéd. The output of the cell
corresponding to the solution was displayed on a digital vdtmeter and recorded,
Figuré:6.4 is the plot of the solution concentration versus

the real voltage on a semi-logarithmic scale; it shows a straight line
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Figure: 6.5. Photo-cell detector
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relationship over a reasonable concentration range. However, the
impulse response experiments were carried out in such a manner that
most of the output voltages were contained within the initial

part of the calibration curve, this part being most réliable and

reproducible,

6.3.2, Conductivity Cell

The conductivity cell was commercially manufactured by Elecfronic
Switch Gear Ltd., it contained three annular ring electrodes equally
spaced within %inch diameter bore in an epoxy resin moulding, see
Fiéure:6.6. The tubular bore was threaded at each end to enable
the cell to be mounted vertically as an integral part of the outlet
pipe. Conduction through the solution took place from within the cell
between the central electrodes and the two outer rings which were
connected to the earth terminal of the measuring instrument,

Yariation of conductivit& was recorded with the aid of an A,C,
Autobalance bridge.. Output of the Autobalance bridge was amplified
by a factor of 30 using a precisiop amplifier, Model 361 Instrument
Amplifier, manufactured by Redcor; the geﬁeral arrangement is shown in
Figure:6.7.

During the course of each run the cell was tapped lightly every
few minutes to dislodge any bubbles which might have adhered to the
céll surface,

6.3.2.1, Calibration of the Conductivity Cell

The calibration procedure was exactly similar to the one adopted
for the photo-~cell, The relationship between the output conductivity
and potassium chloride solution concentration is linear over most of the

working range as shown in Figure:6.8,

6.4. Stimulus Response Experiments

An almost identical procedure was followed for all the stimulus
e
response investigations, the only diffeynce being due to the type of

detector used.

The first part of the operating procedure involved the
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calibration of the water and air flow rotameters, The water flow
fétameter was calibrated by colleéting liquid for a fixed time over
a range of float positions; for the aif flow rotameter the exit air
was ﬁaSSBd through a gas flow meter for fixed periods of time.

6.4.1. Runs for Water-Air S#étems

To attain stabilised conditions, the photo-cell was switched
on over night; it was calibrated as described in section6,3,1.1, and
attached to the exit line, at the bottom of the columm.

The water flow rate was set to the desired value by means of
tinch needle valve and the liquid level in the detector adjusted to
minimise its holdup by manipulating the height of the flexible discharge
fubing. The system was then allowed to steady out under the desired
conditions, In the meanwhile the ocutput socket of the photo-cell
was connected to the logging equipment. This consisted of scanner
drive unit, and a multi-channel recorder that was coupled to a five
holed paper tape punching machine, The equipment was set to scan
one channel  only, at a suitable time interval,

About écc of concentrated Nigrosine dye solution was then
injected into the liquid stream with a hyperdermic syringe through
the "tee'" piece at the top of the columm. At this instance the
logger was started by pressing an external trip switch, located close
to the injection point, After thelinitial base‘line, the displayed
output was seen to pass through a peak before returning to the base~
line, when logging was termipated.

New operating conditions were then set up and the above
described procedure repeated.

6.4.2. Runs for Glycerine-Solutions

The water line to the rotameter was replaced with a line
from the glycerine-solution storage vessel. All the traces of water

were then removed by flushing the column with the solution and the
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rotameter recalibrated for each solution. The conductivity cell was
then substituted for the photo-cell and the liquid, air flow rates were
adjusted to the desired values.

Before connecting the "Autobalance Bridge" to the cell, it
wa; calibrated in a manner described in the Manual and the output
signal was suitably amplified prior to coupling it to the data
logging equipment,

Runs were performed using different viscosity solutions and
various packed lengths; the resultant tapes were procegsed to obtain
the normalised response, the mean residence time and the liquid
holdup of the system.

6.4,.3, Double Tracer Experiments

To investigate the effect of tracer diffusivity on the R,T.,D,
of the flowing liquid in the bed, both detectors were utilised
simultaneously: one to record the dye response and the other the
electrolyte response.

The liquid leaving the column was split up into two streams
and each ﬁassed through the appropriate detector,

The tracer solution used in this case was prepared by
dissolving potassium chloride in Nigrosine dye solution. The injection
and the logging procedure followed were again identical to the previously
described ones, however the logger was arranged to record two
channels, each output being logged alternately., Two bed lengths were
studied.

6.5 Stimulus Response of the Detector

The contribution of the R, T.D, of the liquid in a detector
to the overall R.T.D, in the system should be kept to a minimum. The
procedure normally rectommended (103 ) is to employ‘a detector having
a mean residence time of ten per cent or less of the system mean resid-
ence time. To ensure this, random checks were made during the

course of the present investigation,
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At the end of each run, while holding steady conditions,
tracer liquid was injected into the liquid stream entering the
detector cell; limiting the response within the detecting range of
the cell. The output was logged and the tapes processed as described
in section: 1 of Appendix : F.

6.6 Liquid Holdup Experiments

A study of the column liquid holdup was also conducted. The
operating holdup was determined at the end of each run by turning off the
liquid and air control valves and collecting the draining liquid. The

total liquid holdup was determined from the R,T.D, results.
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Every run number has been formed in terms of the
experimental conditions the run was carried out, The first letters
indicate the system itself e.g, WA means water-air system or GWA represents
glycerine-water—-air system, The digits before the decimal point
indicate an approximate length of the packed section; <first digit after
the decimal place gives the liquid flow rate in ccs per second; the second
digit after the decimal point , the run number; the last digit shows
the glycerine solution viscosity, namely zero for viscosity, u = 4,5¢cp
and 1 for viscosity, u =7.5cp. The figure in brackets shows the
inclusion of second experimental runs carried out under indentical conditions.
As an illustration take run number: GWA-~10,310(2). This represents
glycerine-water-air systems of packed height 10.5ft. , Solution viscosity
of 4,5cp, liquid flow rate of 3ccs per second. and experimental response

consisting of run 1 and 2 under these conditions,
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7. Experimental Results

The following runs were performed as described in the

preceding section,

7.1. Water-Air System

Three packed columm length viz, 5,5ft., 10.5ft,.,
and 15.5ft., were used, A total of ten runs were carried out
on each column length, These runs comprised of two runs for each
flow rate, one with water only and the other with water-air: see

Table: 1, of Appendix: A.

7.1.1, Glycerine-Water Solutions and Air System

In this section six runs were carried out on 5.5ft. length
and eight runs on 10.5ft. length column using 4, 5cp viscosity solutions
and counter-current air flow; a further eight on the 5,5ft. length
columm and six runs on 10,.5ft. length columm were carried out with

7.5cp viscosity solutions: see Table; 2, of Appendix: A,

7.1.2, Double-Tracer Experiments: Water System

As outlined in section: 6.4.3., three runs were carried out

on the 10,5ft. packed section : see Table: 3. of Appendix: A,

7.1.3. Stimulus—respoﬁse of the Detector

For each packed length, and liquid air system investigated
three runs were carried out on the detector, the procedure is outlined
in section:6.5, The liquid flow rates were selected at random :

see Table: 7.1,
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7.1.4. Liquid Holdup

Operating liquid holdup was determined ét the end of each
run as described in section:6.6. Total liquid holdup was calculated from
the system response data; all the results are tabulated in Table: 1

of Appendix: c,

7.2 Liquid Holdup Measurements and Correlations

The ﬁormalisation procedure described in section: E
requires an accurate estimate of the system mean residence time, and
hence that of the totai holdup,

Holdup measurements, made by suddenly closing the liquid
inlet valve and draining the packing, were always smaller than found
from the mean residence time, This indicated that part of the total
holdup had been retained in the hed, Figure:7,1).shows the plots of the

total holdup, H against the liquid flow rates, F, for various operating

T ?
conditions, To confirm the reliability of the response experiments,calculated-
total holdup values have been compared with the published correlations,

A review of literature, -section:3,1.1,, reveals a number
of dimensionless correlations of total, operating and static holdup,
Three such correlations, whose accuracy ranges between + 20 to + 6

per.cent, have been selected to fit the present data,

i) The Otake and Okada (21 ) correlations :
Equation (3.5 ) is reported by these authors:

0.676 ( N )-0.44 Ca d )

H = 1.2905 (N ) Gal x %%

op Rel

0.676 ( N )-0.44 Ca d )

Let =
R (N ) Gal k 'k

Rel

Figure: 7.2])l,shows three plots of total, H versus R.

T ’

each line corresponds to a. . different viscosity liquid, It demonstrates
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that the data points follow a straight line, the slope of each line
being approximately 1.2. An extrapolation to zero flow rate provides

values for static holdup:

For water po= 1.0cp Hst =..0,080
Glycerine/water n = 4.5c¢cp Hst = 0,116
Glycerine/water mo= 17.5¢p Hst = 0.165

ii) Mohunta and Laddha (24 ):
These workers proposed the following correlation,

Equation (3,10 for operating holdup only:
i =1

N v° N
H = 16,13 2 k
op g

Figure:7.3.l represents the present data correlated by the
above equation,

iii) Gelbe (26 ) very recently correlated his data and
data obtained by several other authors by the following

relationships:

-5 -0.3 o

/d’ Yo [
op } Ga [ Re]

for N n

Re = 1/3
and N > 1 n = 5/11
-4 2
Hst = 1,67 x 10 (2y dk )T log X,
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Operating and static holdup were calculated according to
Equations (3.13)(3,14) respectively, Plots of'HT ( pI¢ )] )
versus NRel are shown in Figure:7.4, 1. |

An inspection of Figureé: 7.24 7.3}, and 7.4\shows the data to

fit all three correlations within the prescribed range and deviation:

thus confirming the reliability of the data and the processing techniques,

7.3. Results of Impulse Response Tests

All experimental data has been converted to normalised
response form and presented in Appendix: B , the normalisation
procedure is outlined in Appendix: E
In this section experimental responses have been plotted
and the effect of varying.packed lengths,changing liquid viscesity,
the effect of liquid and gas flow rates and the influence of tracer diffusity

on the liquid side R,T.D, have been investigated,

7.3.1. Effect of Liquid and Gas Flow Rates

Figures:7.1. to 7.5.Vare the experimental response .
curves for thé water-air system; these illustrate liquid side R,T.D,
as functions of the air flow rates. Each set of two runs corresponds
to the three packed lengths studied, It can be seen that for all
cases the gas fléw rates have negligible effect on the liquid side
R,T,D.
Figures:7.1 to 7.4. also show the influence of varying
liquid threoughput on the liguid side R.T.D. For low liquid flow
rates the response appears to be strongly asymmetrical, however as the
flow rate increases the skewness becomes less pronounced, At high liquid

flow rates the curves are almost symmetrical and of Gaussian appearance,
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7.3.2. Effect of Varying Packed Héight

Figures : 7.6, 7.7 and 7.8 show experimental response
curves of the liquid side R,T.D, as a function packed height under
otherwise identical conditions., An increase in packed height results
in reduced dispersion of material {( on a normalised basis ) thus

more symmetric curves,

7.3.3, Effect of Liquid Viscosity

Glycerine-water solutions were used to study the effect
of varying liquid viscosities on the 1liquid side R.T.D, Figures: 7.9
and 7,10 are two sets of typical response curves, Plots show the R,T,D,
of water and solutions of viscosity 4.5cp and 7.5¢cp under similar
operating conditions; two sets of graphs are given for two different
packed heights, 1In both cases the more viscous solutions produce
higher dispersion of material, enhancing the asymmetric "tailing" effects;
an increase of packed height damps down this effect giving more symmetric

curves,

7.3;4. Role of Molecular Diffusion

The contribution made by the molecular diffusion of the
tracer material in the deftermination of liquid side R,T.D, was investigated
by a double tracer technique as has been outlined in section : 6.4, 3.

'Figures 7.11 and 7,12 are representative of such studies, Although

the tracers employed had widely different coefficients - potassium chloride
has diffusion coefficient 0f2x|633£j04), while Nigrosine dye hasanZS%los) -
the normalised response curves do not show any dissimilarities; thus

indicating a negligible effect on the overall dispersion coefficient,
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7.3.5. ZEffect of Detector R.T,D, on the Overall R,T,D,

All the R,T.,D,s have been measured outside the column.
The liquid R,T.D, of the detector was determined as described in section:

6,5, and the results are given in Table: 7,1 below,

Table: 7.1, Mean Residence Time of the Photocell Detector,

10.5 feet Column,.

Liquid Flow Mean Residence Mean Residence
Rate. Time of the Time based on the
ces/min, Detector, Qverall Meantime,
secs,

2 2.6 . 0086

3 1.8 .0086

4 1.1 . 0062

5 0.9 . 0052

4] 0.5 . 0034

The mean residence time of the detector was found to be negligibly
small, between 0.34 to 0,86 % of the total mean residence time of the

column.
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Nomenclature

akdk packing characteristics
d; hydraulic diameter of smallest inner area of a ring
c/C normalised concentration
dk’dp nominal packing diaﬁeter
g acceleration due to gravity
Hop operating holdup
HSt static holdup
HT total holdup
n exponent
N ' packing number density
U superficial velocity
N Froud number ’
Fr
N Galileo number
Ga -
N Reyndlds number
Re
Weber number
N,
We
t/t normalised time
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8, EVALUATION OF MODEL PARAMETERS FROM

THE EXPERIMENTAL RESPONSE CURVES



8, Evaluation of Model Parameters from Experimental Response Curves

To establish how accurately a model represents a system, it is
necessary to compare the model and the system impulse response for a
suitably chosen parameter values, Several methods have been used over
the years; frquency response techniques and the method of matching
moments are two such metﬁods,

The method of matching moments has been probably the most widely
used one, The moments provide a way of characterising a probability
distribution without making any assumptions to its nature; since the
impulse responsé of a system has been shown to be such a distribution
(10), it can be easily characterised by moments, However, due to the
practical difficulty of measuring the higher order moments it is only
suitable to match the low frequency regions of the response curve,

The direct comparision of the experimental and model response is
basically a very tedious and time consuming procedure- the frequency
response technique falls in this class -~ but the availability of
efficient computational facilities expel these problems; and it is
becoming more common in use,

In the case of simple one-or two-parameter models it has been
found possible to estimate the parameters by making use of simple and
easily measured curve characteristics such as the peak height, span
at the half or one-third of the height, and the "dead time' as indicated
by the normalised time at which the normalised concentration attains
a definite and detectable valug.

The method described last has been used to fit the exponential
delay time model and for the remaining models direct method of comparison

has been found to be more appropriate to use,
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8.1, Curve Fitting Procedure for Exponential Delay Time Model

To evaluate the response of the model, precise values of the
normalised dead time, to/;, and the parameter, Gx, are required, While
in principle the dead time and peak height can be used to determine
these values, in practice the true dead.time is unobservable due to
the insensitivity of the detector at very low tracer concentrations,

To overcome this difficulty, an apparent dead time, t;/%, has
been défined. It is taken to be the time at which the normalised conc-
entration reaches 0.05; to relate tﬁis to the true dead timé, two sets
‘of curves have been prepared. Figure:8.1 relates the peak height to.
fhe apparent dead time and Figure:8.2, the true dead time to the
apparent dead time; both for different values of Ox.

To cbtain the model parameters to/€ and (x, the apparent dead
time, té/%, and the peak height are obtained from the normalised
response curve, Figure:8,1 is then used to obtain a value for Qx.

This value of @x is then used to determine the true dead
time, - to/E, from Figure:8,2,

For example, consider run numbers W-10,41 aﬁd WA-10,42, the
apparent dead time is obtained by plotting more accurately the initial
portion of the response curve, its value at which the normalised
concentration reaches 0,05 is 0.700, The peak height for‘this
particular run is 3,10; Figure:8.1 gives a value of (x equal to
13,2, which is.then used, together with the apparent dead time of 0,700
to read off the value of true dead time from Figure:8,2, it is equal
to 0,660,

The model parameter values are listed in Table: 1 fo 3 of
Appendix: D , for all the runs carried out during the present

investigation,
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estimation of model parameters from the peak

height and the apparent dead time, té/%
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The exponentially distributed time delay model:
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8.2 Curve Fitting Procedure for Gamma Delay Times and Hopping Model

The method of direct comparison of the model and system response
curves can be carried out provided an explicit real time solution of the
model is possible, .When such a solution is available, then a curve fitting
criterion such as the least squares would give the desired parameter values.

In section 8, it was pointed out that the mathematical
evaluation of theltime-domain solution of the model may be a time consuming
process especially when summation of series or the evaluation of some special
function-which might present computational problems is required. Moreover,
during the performance of curve fits, many model solution evaluations for
the intermediate values for each iterative function minimisation might be
necessary before it actually converges to the best final values, An optimisatic
technique, in which least square criterion is incorporated, is usually
employed for function minimisation, Many optimisation procedures are avail~

m) e
able. Rosenbrock's method was chosen, firstly as it minimises,function of
several variables when variables are restricted to a region and éecondly
a library subroutine o# the method was readily accessible,

The overall curve fit procedure is summarised below:

From the initial estimates of the parameters, first N values
are calculated and compared with the corresponding data points, The least
square criterion was then used and the parameter values adjusted by the
oﬁtimisation subroutine to minimise the function,

Calculated parameter values for all the curve-fits are
presented in Tables} 4, 5.and 6 for the gamma-distributed delays and
in Tables: 7, 8 and 9 for the hopping model, AIl tables are given in

Appendix: D.
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Nomenclature

X distance

t - time

to true dead time

té apparent dead time

t mean residence time

t/E normalised time

to/f normalised true dead time

té/z normalised apparent dead time
o number of stops per uﬁit‘length
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9, COMPARISON OF THE EXPERIMENTAL RESULTS OF

DYNAMIC TESTS WITH THE PROPOSED MODELS



9. Comparison of Experimental Results of Dynamic Tests with the Proposed Models

In this section experimental responses have been compared
with those of the proposed models for different operating conditions,
liquid properties and packed lengths,

The normalised response curves are presented in Appendix: B,

2.1, Time Delay Model with Exponentially Distributed Delay Times

The curve fitting procedure described in section 8,1
is used for this case ahd‘the model scolutions obtained by the computer
program which is given in Appendix : F.

Figﬁres: 9.1 through 9 1pare the experimental responses
under varying situations with the solid line representing the model solution,
The results are typical of each set of runs: the sharp initial rise is
well fitted and the slowly decaying long time response of the model comes
close to thet obtained in practice. However, the paeition of the peak

decay
and the sUbsequentAof the model response represents a more symmetrical
distribution than that obtained experimentally, These characteristics
are common in all! the curve fiis for this two parameter model,

Tables: 1 to 3 of Appendix : D , Summarise thé results
of the complete set of experimental runs carrvied out during this investigation.
It is interesting to note that the parameter,(, which measures the ratio
of the 1gtera1 flow rate per unit length to the axial flow rate remains
remarkably constant, independent of packed height for one type of fluid:
the average value of @ and its variation with the liquid viscosity is

given in Table:2.1 below:

Tables 9,1, Variation of <« with the liquid viscosity

Type of f£luid Viscosigg of fluid o Standard
M deviation
Water 1,00 1.30 0.04
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Figure: 9,2, Comparison of the experimental response and
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Figure: 9.8, Comparison of the experimental response and

the exponential model solution.
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Figure: 9,10, Comparison of the experimental response and

the exponential time delay model solution.
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T ype of fluid Viscosity of fluid a Standard deViation

H CP
Glycerine~solution 4,50
1.89 : 0.07
Glycerine~solution © 17.50
Tables: 1D to 3D also provide the corresponding term in the dispersion

medel, D, which show considerable scatter and no clear trend being
discernable,

The value: of parameter to/% increases with the increasing
liquid flow rates, . The time delay model postﬁlates that the main flow
region is in plug-flow and the holdup correlations of section 7.2 indicate
the static holdup to be constant., If the plug-flow assumtion is reasonable
then ;he true dead time to/;’ determined from the model fitting procedures,
correlate in some @anner with the operating holdup Hop' of the column,
Figurer =9, 11shows the plots of dead time, to/%, versus the operating
holdup, Hop’ for both water and glyecerine-solutions., Both results can

. be correlated by a straight line relationship, each line corresponding
to one type of fluid,

The correlations are strictly applicable to the present

column and packing geometry: thus for exponentially distributed case:

For water-air system:

to/t

0.465 + 1,2 H (9.1)
op

For glycerine-solutions:

t /t
o

n

0.290 + 1.2 Hop (9.2)

Thus for the system studied, it is only a matter of
determining the operating holdup, under the operational conditions,
to calculate all the corresponding model parameter values, the parameter

@ being constant for each fluid type.
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To test the applicability of the above proposed correlation,.
values of the dead time to/E, were obtained for a number of runs and
the response curves plotted and compared with corresponding parameter values
already determined, Figures:9.12,9.13 and9.14,9,15 are two sets of such
compared runs; It can be seen that both curves fit the experimental curve

quite well,

9.2, Time Delay Model with the Gamwa Distributed Delay Times

The curve fitting procedure for the three-parameter model
described in section 8.2, required the minimisation of a function, A
considerable amount of time and work is saved if the boundary limits are
set in the search method before eﬁbarking on the actual procedure.

These boundary limits consist of a set of upper and lower
l%kely values of the optimisation parameters, in the present case namely
x, m and to/E, which can be set by examining the shape of the experi-
mental responses and the time-domain solution of the model,

It can be seen from the experimental response curves,
and has been in fact pointed out in Chapter 8, that the precise values of
the true dead time , to/z, cannot be read off the curves, however it can
be predicted to lie within a certain possible range. For example by
examining the normalised response curves of the 5§feet packed column for
water-air system; all the curves start between dead time values of 0,55
and 0.65, clearly dead time must lie at the outset between a value of 0,50
and 0,70. These values are takemn as the lower and upper limits of the
parameter, to/z, with the initial starting values chosen arbitrarily
as 0.60,

In section 5,3, it was pointed out that the skewness of
the response curve of the gamma distributed delay time model increases as
m approaches the limit of zero, and the model reduces to the exponentially

distributed time delay form for m equal to unity. Since the aim of the
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Figure: 9.13, Comparison of the experimental, the correlated

and the exponential time delay model responses.

132



O GWA-5,410(2)
v Response via correlatign
Response via model

Parameters via correlation:
ax
t /t
0

30 Parameters via direct method

10.4.
0.54

]

]

ox
t /%
O/t

11.0
0.578

|

I

C/C0

1.0

4\0_\‘

! | | ]
0.7 1.0 1.3 1.6

t/t

Figure: 9.14, Comparison of the experimental, the correlated
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third parameter is to increase the skewness, it is only necessary to
limit the possible values of m between O and 1,

Theoretically the upper and lower limit of the parameter
ox areocand 0; if the range is fixed as such the search programme
would be unduely prolonged. 1t would be worthwhile to narrow this range;
an estimate can be based on the previously determined values of this
‘ﬁarameter for the exponential case, thus for shorter length of columns
these were taken as 20 and 1; for the longer packed sections as 50
and 1, However, if during the course of the parameters search either
of the limits exceeded, these were appropriately readjusted $o a new set
of values,

It is usually assumed that -all - experimental work
inherits a certain amount of error from the experimental techniques
employed, sometimes’it is incorporated during data processing, The calcula-
tion of the mean residence time suffers from such unavoidable faults,

In the holdup section 7,2, the possibility of introducing +4 % error

in the determination of the mean time was indicated. It is therefore quite
reasonable to include this parameter as one of the variablesin the
optimisation procedure; The upper and lower 1limits of the mean time were
based on the- + 4% experimental error; values of 1.04 and 0,96
respectively were chosen as the mean is equal to unity,

Following the above scheme, all the curve fitting was
carried out and the parameters evaluated, Figures:9,16 through9,25 show
how the response of this model compares with the response obtained for
different runs under varying cperating conditions, \It can be observed
‘that most parts of the curves are well fitted except for the initial rise.
During the course of curve fitting, minimisation function failed to
converge especially when a number of data points were selected at the
very beginning ef the curve., The fault was revealed when the model

solution was analysed,
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The overall model response consists of all:

the material thatdid:notistop: = eﬂxx éo(t - to) (9.3)
* m=-1 *
the material that stopped once = (m/tD)m (t) £%%l e (onetmt /tD) (9.4)
I'(m)
*
[o% - -
the material that stopped twice = (m/tD)2m (t )2m %Qx)z e (ox+mt /tD) (9.5
I'C2m) 21l

= s e 4

(t*)mn-l(ax)n e-(0x+mt*/tD)

» the material that stopped n times = (m/’cn)mn
I'(nm) nl

‘l-o..l'l(9.6)

Fof values of mn <1, plots of individual contribution would appear as

shown in Figure: 9,26 in exaggerated form:
0.24
0.48

0.72
0.96

1.20
1.44

c/C
o

t/t -
© t/t
Figure; 9.26

The sum of these individual contributions is the final response, It is
the

clear that at{beginning of the response curve, model response may - look

Iikw as represented by the broken line,

To alleviate this flaw, data points were picked further

along the response curves, The evaluated model parameters are listed
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in Table: 4D to 6D for all the runs, Again the value of the parameter
ax, remains virtually constant for every packed length and a pamticular
liquid.

The parameter m does not appear to change by a large
amount under varying operating conditions, The sensitivity of the model
~ response to this parameter, m, has been tested by determining the gamma
distribution curves for the values of m of 0.4, 0,5, 0.6 which are the
two extremes and one intermediate vélue. Plots are shown in Figure:z: 9,27

moreover Figure:g,K 2g8shows the plots of the model responses of the

three respective values of m for fixed values of the parameter, Ox,
and the dead time, td/E, The initial rise and the most part of the decaying
response is not affected over this range of values of m , however the
peak height is somewhat increased,

It can be assumed that the value of m, is, for all
practical purposes, constant over the range of studied conditions; an
average of 0,49 has been calculated,

Table:9,2 summarises the results of each parameter,

Table: 9.2 Parametric values of gamma distributed delays

Type of fluid ‘ Viscosity of fluid o: Standard deviation
p cp
Water 1.0 1.39 0.06
Glycerine-solution 4.5
1.98 0.20
Glycerine-solution 7.5

It is interesting to note.that the value of « is not affected by the
change of viscesity from 4.5 ¢p to 7.5 ¢p, the dependency on viscosity

apparently ending somewhere between 1 and 4.5 cp.
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Again the dead time, to/;’ increases with increasing
liquid flow rates, and the corresponding correlations for the gamma
distributed delay time model were alsc obtained, see Figure:9.29 for the
respective plots,

The correlations are as follows:
For water-air system:

t = 0.595 .6
to/t 10 Hop (9.7)

For glycerine-solutions:
t /T =0.495 +0.6 H (9.8
0/ op ( )
Figures: 9.30, 2.3land 9.32,9335how the comparison of the two curve-
fits, one corresponding to the set of parameters obtained by the opti-
the
misation technique and the other by the use of above correlations, again

it is seen that quite good predictions can be made for all the system-

responses,

9.3, Hopping Model

The upper and lower limits of the model parameters are
again estimated as described for the gamma-distributed delay time model-
in section 9,2,

The hopping modél includes direct axial displacement of
material in its formulation, which the last model could not incorporate.
The original form of the time delay model coﬂsidered the spreading
mechanism via the.main plug-flow region to be only due to the retention
of the material in the stagnant pockets for an interval of time. The
hopping model postulates this assumption but superimposes the hopping

effect of the fluid elements which are moved : - forward during this
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retention transition phase and then rejoin the main stream further along,
hence resulting in the speeding and delaying of the emgrgence of the

material, The overall effect of this mechanism is to improve the initial
sharp rise of the response curve normally encountered in practice without
introducing the impulse effects of the gamma-distributed delay time model.

A comprehensive set of tables of the evaluated hopping
model parameterslare included in Appendix: D , Tables: 7, 8 and 9 .

The resulis show the parameter, ¢, to incre;se with the increasing liquid
flow rates for the shorter length columm viz, 5% ft, column, For 103 ft,
and 15% ft. column lengths ¢ remains reasonably constant over the range
of operating conditions studied. However, the magnitude of the parameter
h, namely the hopping distance, during the water-air runs, increases with
the increasing liquid flow rates for all packed lengths, but remains
constant for a particular length at high liquid viscosities, decreasing
in value for longer columns,

Figures: 9,634 throughg®8 shew how the hopping model
responses compare with the experimentally determined responses of the
systems studied, The hopping model adequately defines the systems, fitting
well to the initial part, the peak and subsequent decaying portion of
the curve,

An attempt was also made swridr to correlate the hopping
model parameters mith the 6perating variables, Although the relaticnships
were established between a number of variables, see Figures:9,49,9,50 but
not any generally applicable correlation could be arrived at as in the case
of other time delay models, For éach colum length and the type of fluid,
liquid flow'rateé were found to be proportional to the hopping distance
and the dead time, The hopping distance alse varied proporticnally with
the dead time for each packed length and the type of fluid.

Nevertheless the overall picture suggested by the

comparison of results with the hopping model is as follows:
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Figure: 9,34, Comparison of the experimental response and
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the hopping model sblution.

160



3.0

1,0

B WA-10.61(2)

Model response

Model parszmeters:

[ |
& = 1,01
t /Tt = 0.742
o '

n

t/t
Figure: 9,38, Comparison of the experimental response and
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a) In the shorter length column a large proportion of the liquid
flowed next to the wall of the column, resulting in an increase of
the lateral liquid flow per unit length as the liquid flow rates
increased, However, in longer length columns, the liquid at the wall
has the chance of returfing to the packing thus averaging out the
lateral flow to a constant value,

b) The frequency of mixing of the departed fluid elements with the main
stream increases with ah increaéé of liquid flow rate, shortening the
hopping distance; The results show that as the Reynolds number, NRe’

increases from 1.49 to 4.5 the hopping distance,h, decreases froﬁ

a value of 0,25 to 0.125.ft, Over the same working liquid flow rates

the viscous solutions produced a constant hopping distance for a fixed

bed length: giving an average value of 0,1 ft, for 5% f£t, column
and 0,2 ft, for 104 ft. column. This indicates that the viscous forces

out weigh the gravitational forces only appearing when the fluid

elements have trvelled a long distant,

9.5, Conclusions
The response of the time delay models and the hopping
model have beenlcompared with the experimentally obtained responses,
It has been found that the exponentially distributed delay time model
fits well the initial part of the curve, however the peak position and
the decaying portion of the curve is displaced to the right of the exper-
imental response, indicating the model response to be more symmetrical,
The gamma distributed delay time model reproduces most
parts of the response curve but fails to fit the initial rise of the curve
due to the inherent nature of the modél around that portion.

The parameters of the both above models have been correlated
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and simple relationships put forward. These expressionskprovide an
assesment of the model parameters from the operating conditions.

The hopping model also accountis for the asymmetry of the
response curves, its response fitting quite well all the parts except for
the "tail"” end of the curve, The model parameteré could not be correlated
as is in the previous cases and the direct method of éomﬁarison remained
the only method for parameter evaluation,

It is concluded that the time delay model with the gamma
distributed delays is the best representative of the considered models as
it compares well with the experimental responses and its parameters are

easily correlated with the system variables,

174



Nomenc lature

x distance
c tracer concentration
' C0 initial tracer concentration
C/C0 normalised concentration
m gamma distribution parameter
t time
to dead'time
t mean residence time
t/; normalised time
to/€ normalised dead time
0 number of stops per unit length
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10, Discussion

The proposed models are now compared, gqualitatively with other
pubiished formulations to which they bear similarity.

Quantitative comparisons of the above results with the diSpersion
model are given in section 10.2,

Sections 10.3 and 10.4 summarise respectively the conclusions

and suggestions for further work.

10,1 Comparison with Other Models

In this section we examine hoﬁ the time delay approach is
related to previous models of similar intent, The principsl distinguishing
features of the time~delay model are that it is one-dimensional spatially,
uncomplicated by boundary conditions, and based on a mechanism that is
non-specific in terﬁs of physical properties, fhe object in formulating
a model with these characteristics is to enable a wide variety of processes
to be treated in the same way by suitably choosing the parameters. The
ultimate aim is to make a priori predictions of the parameters in particular
cases,

The diffusion model of Levenspiel and Smith (62 ) has as its
underlying mechanism shuffling of flow elements backwards and forwards
relative to the main stream, Negative flow-element velocities are not
precluded, In contrast the time delay approach assigns a constant
velocity or zero velocity to a particle at any instant. The effect is
that'although a floﬁ element is moving either slower or faster than
the averége velocity the conceptional difficulties of the diffusion model,
do not afise, These problems are of identification: it is not possible
to establish the magnitude of the flux from the concentration, because

an instrument sensing concentration cannot distinguish the direction in
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which flow elements are travelling., Even if both the concentration and its
gradient are measured, the resulting net flux estimate includes the effects
of flow elements moving in both directions. The result is that boundary
conditions cause gxwe difficulty and the impulse response and the residence
time distributions are not the same, Except, that is, in the special case
where the diffusion mechanism does not operate across the boundary, the
so-called closed-closed case., Mathematically the particular time delay
derivations presented above are less complex than the solutions of moving
diffusion eduations. A further advantage is that a second parameter is
introduced in a natural way which enables the skewness of the residence
time distributions to be adjusted for a fixed variance, Klinkenberge's
method of édding variances (29 ) can be used to introduce a second parameter
into the one-~dimensional diffusion model to achieve a similar result,
A dead time is combined with diffusive mixing so that to obtain the same
value of the relative variance a higher dispersion number, and conseguently
more skewness, is required., Physically the interpretation is that the
diffusive mixing précess operates for a time equal to the elapsed time
less the dead time, An alternative procedure is to consider that the
mixing process only operates for a proportion of the elapsed time, This
idea may be incorporated into the mathematics merely multiplying time in
the diffusion equation by a constant, but boundary condition problems
remain, Which meithod to adopt should be dictated by the process considered,
The time delay approach is more natural for tri%le flow,

The earliest wqu on " column dynamics was the investigation
of heat transfer between a flowing medium and the packing. The classical
model cosiders plug flow of the fluid and heat exchange between the solid and

fluid at a rate propoftionuY to the difference of their temperatures, each
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of which is uniform at a particular axial position. The soclution of this

problem was due to Anzelius (106) and now appears in most texts on heat

transfer. This model becomes a fluid mixing model on replacing enthalpy

by concentration, and considering the two phases to be identical, The

model so obtained is identical with the time delay model with exponentially

distributed delays, the reason being that, as they are characterised only

by their concentrations, the 'phases''are tacitly assumed to be locally

well mixed - precisely the assumptions of the exponential time delay model,

Giddings 'coupling' theory {107) of'chromatography leads to the same

Bessel function solution and is close’ - in spirit to the time delay approach.
A third model that is worthy of mention is the Deans cell

model (82 ), This is a modification of the well-known tanks-in-series model

in which the effects of 'stagnant' regions are taken into account by

attaching to each cell a second well-mixed cell through which fluid recycles,

It isogarticular interest in the present context because it can be reduced

to either the Gaussian or Bessel function form by suitably choosing the

limiting process, If the number of étages is increased while keeping the

volume and the flows constant the stages become progressively more like

well-stirred tanks and the responsé curve more Gaussian and finally plug

flow, Alternatively the number of stages may be increased keeping the

volume and the interstage flows constant and reducing the recycle flows

proportionately to the inverse of the number of stages., When this is done

the time constant for the delays in the 'stagnant' regions is constant

and in the limit the exponential time delay ( or Anzeluis ) model results,

10.2 The Proposed Models

The comparison of the experimental and the model responses in
Chapter 9 clearly indicate a reasonably good quantitative predicting

ability of the proposed models, To observe the superiority of the proposed
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models on the merit of their simplicity over other modelsfh%ne-dimensional
dispersion model has been considered. The solutions of the dispersion
model having the same peak response and the corresponding solutions of the
delay—time model with the exponentially distributed delay times are plotted
through a number of experimental response curves, see Figures: 10,2 through
10.6 - the dispersion numbher was obtained with the aid of Figure:; 10.1.
The latter model, although the least representative of the other proposed
versions, still representa & considerable improvement in describing the
responses,

For the two delay-time.distributions and the hopping models
considered, the constency of  over the widely varying conditions
in all these cases seems particularly striking and emphasises the suitability
of the model.

The model, although semi-empirical in application, results from
a reasonable interpretation of flow behaviour in packed bed systems., The
miking‘mechanism can be variously ascribed to lateral bulk flow - as would
appear to predominate in the physical system here considered, lateral
diffusion and even to physical adsorption at the solid/solid interface,
The form of the model remains identical, the total effect of these different
mechanisms being lumped together in the parameter ox and the distribution
of delay times,

If the postulated random stopping process really exists the
effect of the distribution of delay times could be considerable as indicated
by Figure:10.7. The average number of stops, équal’to 7 ox:, for both
cases jllustrated is 10 but the curves are significantly different,
However, if it is not required that ox be the same for both cases, very
similar responses can be obtained by suitably adjusting this parameter;

the variants of the model are thus difficult, if not impossihle, to
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Figure: 10.4, Comparison of the experimental, the exponential
time delsy model and the dispersion model ‘
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Figure: 10.5. Comparison of the experimental, the exponential

time delay model and the dispersion model responses,
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Figure: 10.6, Comparison of the experimental, the exponential

time delay model and the dispersion model
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Figure: 10.7. Time delay model: normalised response-
ax = 10 ; to/z = 0.62
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identify solely on the basis of residence time distributions; this is
analogous to the situation encountered in surface renewal processes where,
as here, the mechanism can be usefully applied regardless of the distribution
of life times of surface elements ( 1o0g).
The gamma distribution delay times version of the model represents
distributions which are more skewed than the responses of other models,
but this flexibility has been achieved at the expense of an extra parameter.
The parameter m provides a measure of the randomness of the
delay process. The delay process is completely random for m equal to
unity - equalising the chance of all the dealyed elements to move on from
the transitional delayed state in the next time increment, When value of
m is greater than unity, the randomness of the delay process decreases,
favouring longer delays. In the limit as m — e0 the spreading due to
the delay times reduces approaching zero, hence approaching plug flow,
The randomness of the delay brmceés ris., also reduced for m less than unity,
but in this case short delays are favoured and responses become more skewed,
The inability of the time delay models to predict the initial
part of the response curve wés pointed out in Chapter 4, This is due to the
fact that the modei attributes axial mixing sclely to the delay process so
that no material can emerge from the bed earlier than that which travels
undelayed in the main stream, Except for this inadequacy at the initial
part of the response, the model fits the experimental curves very well and
the parameters are well correlated-with the operating holdup measurements,
The inclusion of the direct axial displacement of the delayed
material in the formulation of the hopping model enables the initial
portion of the experimental response to be well fitted: material can by-
pass some of the main flow region, thus leading to more gradual rise in the

initial response.
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In Chapter 5 moments of the model responses were obtained,
whilst in principle it is an easy matfer to determine the model parameters
by the method of matching moments, it is preferable to .use either the
parameter-matching method, aescribed for the two-parameter model or the
optimisation routine employed for the three-parameter models. The moment-
matching method places undue weight on the tail of the response curves,
Although the models have been used purely for describing experimental
response curves, it may be often possible to make predictions concerning
the axial mixing on the transportlprocesses; this requires some knowledge
of the location of the most probable delay zones in relation to the transport
interface: elements delayed close to this interface are 1likely to be of
primary significance while for systems where the delays occur in isclation
from the transfer surface, the steady state behaviour may be virtually
unaffected by the delay process. There is some evidence to suggest that
this latter situation occurs in packed distillation columns. Kropholler
et al (109) measured liquid side distributions and tried to incorporate
their effect, by means of a dispersion term, in the equations for a packed
batch distillation columm. It was found, however, that the dispersion model
poorly represented their results; and as subsequent steady state experiments
showed the mass transfer to be well represented by & plug flow model, the
authors chose to ignore the axial mixing effect on the column dynamics.
The time delay model resolves this apparent anomaly: adding a mass transfer
term to Egquation ( 4.1) represents the liquid side situation; it will be
seen thaf-in the steady state (L, H.S, = 0 ) the axial mixing does not affect
the mass transfer although the effect on the dynamics could be considerable.
This applies not only to the simple impulse distribution of Equation (4.1 )

but any distribution of delay times,
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10.3 Conclusions

A plausible abstraction of flow bhehaviour in a packed bed column
leads. to a simple probabilistic model for describing the residence time
distributions.

Although applied exclusively to liquid side distributions in a
counter-current gas/liquid packed bed system, the model lends itself to a
variety of physical situations.

All the models were found to fit the responses under widely
varying conditions.of operation. The degree of %oodness-of-fif'of any model
depended on its complexity; ranging from reasonable fits for thé two
parameter model to extremely good fits for the hopping model. Except for
tge initial sharp rise of the experimental response curve, the gamma -
distributed delay time form of the time-delay model provided the best
predidtions especially when the decaying ' tail' end of the responses are
compared,

A general transfer fuction of the model was also presented and
the effect of varying the model parameter studied via the system moments,
obtained from this transfer‘fuction.

The experimental and data processing techniques employed proved
satisfactory and the liquid holdup data conformed within the prescribed
deviation t® several previously established correlations.

The flexibility and mathematical simplicity of the models studied
make them an attractive alternatives to the one-dimensional dispersion
model which does not account for the skewed distribution that coccurs in
practice and which on elaboration leads to unwiedly analysis, Many other
multiparameter models are available but their mathematical complexity limits
their usage.

The effect of increasing the packed height was to reduce the

dispersion while an increase of liquid viscosity promoted dispersion, An
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increase in liquid flow rate also produced less dispersion and the gas
flow rates had no observable effects on the liquid side residence time
distributions.

The experiments to investigate the role of molecular diffusion
on the overall residence time distribution of the system did not reveal

any noticable effect.

10.4. ,§gggestions_for Further Work

Thé developmeﬁt ;f fhe time delay models and their subsequent
applicafion to a real sysfeﬁ i.e.‘the trickle flow in paqked bed, has
revealed the potentialities of these models, It appears that systems with
high lateral flow can be adequately described by the time delay model with

one of the delay time disffibution, sﬁch as scraped surface thin-film
equipment or flow ‘through filter cakes, The latter case has been-investigated
'by solving the basic hydrodynamic equations which lead to elaborate solutions,
The present approach of developing timeldelay models is useful, for the

basic conéepts involved are simple and realistic and the mathematical

analysis is not tedious, Once the model parameters are correlatable with
various system geometry, the fluid properties and other operating variables,
these correlations can be employed to predict the system performance without
experimentation. However, to prove the e#istance of the postulated mecha-

nisms, more subtle experiments such as the carrying out of reactions with

non-linear kinetics are required.
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Nomenclature

D/UL

o+ 1

t/t

to/t

distance

dispersion number
time

mean residence time
dead time
normalised time

normalised dead time
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Table: 1, WATER-AIR SYSTEM
5% feet Packed Height
Run No, wW-5.21 WA-5, 22 w=5,31 WA=-5, 32 W-5.41‘ WA-5.42 W-5.51 WA-5. 52 w-5.861 WA=-5.62
Liquid 120 120 180 180 240 240 300 300 360 360
flow rate
ces/min.
Gas flow 0 1 0 1 0 1 0 1l O 1
rate 1/min.
104 feet Packed Height
Run No. W-10.21 WA=-10,22 W-10.31 WA-10, 32 Ww~10.41 WA-10.,42 w-10, 51 WA-10, 52 W-10,61 WA-10,62
Liquid flow
rate 120 120 180 180 240 240 300 300 360 360
ces/min, '
Gas flow 0 1 ) 1 0 1 0 1 0 1
rate 1/min,
154 feet Packed Height
Run No. W-15,21 WA~-15,22 W-15,31 WA-15,32 w-15.41 WA-15.42 W-15,51 WA-15,52 w~15.61 WA-153.62
Liquid flow
rate 120 120 180 180 240 240 300 300 360 360
ccs/min,
Gas flow o 1 o 1 0 1 0 1 o 1

rate 1/min,
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Table: 2, GLYCERINE-WATER-AIR SYSTEM
Solution Viscosity = 4.5 ¢p.

5% feet Packed Height
Run No, Gw-5.210 GWA-5, 220 GW-5,310 GWA=-5, 320 GW-5.410 GWA-5,420
Liquid flow
rate 120 120 180 180 240 240
ccs/min,
Gas-flow rate o 0.5 o 0.4 0 0.3
1/min.
10% feet Packed Height
Run No. GW-10. 210 GWA-10, 220 GW=-10.310 GWA-10,320 GW-10.410 GWA-10.420 GW-10, 510 GWA-10, 520 GW-10,610
Liquid flow
rate 120 120 180 180 240 240 300 300 360
ces/min.,
Gas flow rate

0 0.2 0 0.2 (o] 0.2 0 0.2 0

1/min,

193



Table: 2. GLYCERINE-WATER-AIR SYSTEM
Solution Viscosity = 7.5 cp.

5% feet Packed Height
Run No, GW-5.211 GW-5, 221 Gw-5.311 GW-5,321 GW-5.411 GW-5.421 GW-5, 5611 GW-5, 521
Ligquid flow
rate 120 120 180 180 240 240 300 300
ces/min,
104 feet Packed Height
Run No, GW-10, 211 GW-10, 221 GW-10, 311 GW-10, 321 GW-10.411 GW-10,421 Gw-1¢, 511 GW-10, 521
Liquid flow _
rate 120 120 180 180 240 240 300 300

ces/min,
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Table: 3.

104 feet Packed Height

DOUBLE =~ TRACER EXPERIMENTS

Tracers used * i) Potassium Chloride
ii) Nigrosine Dye

Run No,

DTW-10. 21-COND.

DTwW-10, 22-PHOT, DTW-10,.41-COND. DTW-10,42-~PHOT.

DTW-10. 51~-COND,

DTW-10. 52-PHOT.

Liquid flow
rate
ces/min,

120

120 240 240

300

300

Photo-cell
detector,

Conductivity

cell
detector.
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NORMALISED EXPERIMENTAL RESPONSE

COLUMN SPECIFICATIONS

Diameter : 1% inch

Packed Height 5% feet

Type of Packing Used Ceramic Rschig Rings

Size of Packing

X l inch
8

w|-

WATER - ATIR RUNS,



Run No,

w-5.21

t/-

0.592
0.611

0.631
0.650
0.669
0.689
0.708
0.727
0.747
0.766
0.785
0.805
0.824
0.843
0.862
0.881
0.901
0.920
0,940
0.959
0.978
1.036
1.075
1,113
1.152
1.191
1,229
1.268
1.307
1,326
1.364
1.403
1.442
1.480
1.654
1.800

C/Co

0.031
0.056

0.165
0.308
0.465

~ 0,657

0.860
1,090
1,348
1,574
1,772
1,940
2.036
2.126
2.180
2,180
2.180
2.126
2,066
1,969
1.881
1.567
1.354
1.142
0.987
0.829
0.706
0.584
0.495
0.448
0.377
0.325
0.279
0.239
0.103
0.050

196

Run No.

WA-5.22

ol R A ﬁ H H H M B H 2 H M= = 0 0 0 0 0 Q0 O 0 0 0 0 o ©

t/=

. 568
. 606
. 645
.683
.721
.750
. 798
.836
.855
.874
.894
.932
.970
. 008
.047
.085
.123
.162
. 200
.238
. 276
.315

. 353
.391

430
468

. 506
. 925
. 564
. 602
. 640
. 700
.800

C/Cq

0.019
0.111
0.319
0.6850
1.079
1.528
1.875
2.074
2.124
2.141
2.124
2.018
1.856
1.674
1.457
1.273
1.101
0.933
0.784
0.673
0. 568

-0.481

0.408
0.353
0.303
0.262
0.231
0.212
0.183
0.162
0. 143
0.110
0,090



Run No.

w-5.31

t/-

0.612
0.662
0.711
0.761
0.786
0.811
0.835
0.860
0.885
0.909
0.934
0.959
0.984
1,034
1,083
1.133
1.183
1.232
1.282
1.331
1.381
1.431
1.480
1.530
1.580
1.630
1.700
1.800

C/Cq

0,031
0.295
0.796
1.448
1.723
2,005
2,186
2.268
2.303
2.275
2.213
2,085
1.953
1.666
1.330
1.084
0.866
0.676
0.532
0.427
0.334
0. 270
0.218
0.180
0.142
0.124
0.090
0.050

197

Run No.

WA-5.32

t/-

0;620
0. 669
0.717
0.765
0.814
0.862
0.886
0.910
0.935
0.939
0,983
1,007
1,030
1.056
1,080
1.104
1.152
1.201
1.249
1,297
1.346
1,394
1.442
1,481
1.539
1.587
1.630
1,700
1.800

C/CO

0.077
0.331
0.798
1,437
1.927
2.235
2. 290
2. 290
2.236
2.122
2.000
1.855
1.723
1.578
1.415
1.270
1.038
0.839
0.658
0.544
0.435
0.345
0.277
0.172
0.160
0.140
0.120
0.080
0.040



Run No.

W-5,41

t/-

0.651
0.709
0,737
0.766
0.785
0.823
0.852
0.881
0.910
0,938
0.967
0.9956
1,025
1.053
1.082
1.111
1,139
1,197
1.254
1,312
1,369
1,427
1.455
1,513
1,570
1.628
1.685

C/Co

0,052
0.468
0.935

.663
.975
235
.456
.456
456
352
. 131
.975
1,728
1,559
1,351
1,143
0.884
0.689
0,468
0.325
0.221
0,208
0.117
0,104
0,065
0,013

HON RN NN NN e

198

Run No.

WA-5.42

t/=

0.644
0.673
0.701
0.729
0.758
0.815
0.843
0.871
0.900
0.928
0.957
0.985
1.014
1.042
1.070
1.099
1,127
1,184
1.241
1,288
1,355
1,411
1.440
1.500
1,554
1.610
1.640

c/c

0.040
0.250
0.450
0.801
1.201
1,922
2,252
2,442
2,482
2.452
2,282
2.132
1.972
1.722
1.561
1.371
1,211
0.961
0.681
0.520
0.370
0.280
0. 250
0. 200
0.120
0.090
0.040



Run No.

W=-5.21

/=

0.675
0.711
0.747
0.784
0.820
0.856
0.892
0.928
0.964
1.000
1.034
1.073
1,109

'1.145

1.181
1.217
1,254
1,290
1,326
1,362
1.398
1.434
1.471
1,507
1,543
1,579
1,600

C/Co

0,077
0. 360
0;842
1.403
1.948
2,347
2.605
2.605
2.475
2,245
1.970
1,656
1,403
1.160
0.944
0.748
0.624
0.497
0. 383
0.330
0. 260
0.214
0.174
0.122
0,099
0,077
0,050

199

Run No,

WA~5.52

t/=

0.645
0.679
0.714
0.748
0.783
0.818
0.852
0.887
0.921
0.956
0.990
1.025
1.059
1.094
1,128
1,163
1,197
1,232
1,267
1,301
1.336
1.370
1.405
1,439
1.474
1.508
1.600

C/Co

0.058
0.255
0.619
1.100
1.652
2,120
2.425
2,552
2.484
2,316
2.064
1.805
1.510
1.299
1.079
0. 907
0.731
0.619
0,515
0,457
0.387
0.311
0.280
0.236
0.211
0.180
0.070



Run No.

W-5.61

t/-

0.668
0.686
0.705
0.724
0.743
0,761
0,780
0.798
0.817
0.836
0.854
0.873
0.892
0.910
0.929
0.947
0.966
0.985
1.003
1.022
1.041
1,059
1,078
1.115
1.152
1.190
1.227
1.264
1.301
1.357
1,395
1,432
1,470
1,525
1,600

c/c

0,051
0.123
0,278
0.500
0.756
1.038
1,358
1.730
1.985
2,246
2.457
2.630
2,730
2,742
2.684
2,639
2,502
2,368
2,202
2.027
1.856
1.719
1.511
1.260
0.989
0.804
0.651
0.538
0.416
0.305
0.232
0.195
0.159
0.132
0.060

200

Run No,

WA-5.62

t/=

0.647
0.666
0.684
0.721
0.758
0,777
0.795
0.814

0.833
0.8351

0.870
0.888
0.907
0,925
0.944
0.962
0.981
1.000
1,037
1.074
1,111
1.148
1,185
1,222
1,259
1,297
1,334
1.371
1,408
1,445
1,482
1,538
1,575
1.612
1,700

c/c

0.034
0.097
0.204
0.548
1,105
1,440
1.733
2.001
2.252
2.434
2,588
2,638
2.664
2,607
2,563
2.434
2.292
2.133
1.812
1,497
1.222
0. 987
0.805
0.649
0.51&
0.431
0.3842
0,290
0.425
0.204
0.167
0. 140
0.113
0.092
0,030



COLUMN SPECIFICATICNS

Diameter 1} inch

Packed Height : 10} feet

Type of Packing used Ceramic Raschig Rings

Size of Packing : x

inch

00|
0| bt

WATER - ATR RUNS



Run No,

W-10.21

t/<

0.667
0.693
0.720
0.746
0.772
0.799
0.825
0.851
0.878
0.904
0.930
0.956
0.983
1.009
1,035
1.062
1,088
1.114
1.140
1,167
1,193
1.219
1, 246
1.272
1,298
1.324

1,351

1.377
1,403
1.460
1.509

C/Cq

0.041
0.136
0.355
0.696
1.133
1.557
2.007
2.390
2.633
2.772
2.758
2.649
2.499
2.281
2.007
1.775
1,557
1.338
1.133
0.970
0.806
0.683
0.587
0.519
0.423
0.355
0.314
0.246
0. 205
0,150
0.096

201

Run No,

WA-10.32

t/=

0.685
0.712

0.738
0.765
0.791

0.804

0.818
0,831
0,844
0.857
0,871
0.884
0.897
0.910
0.963
0.99%90
1,016
1.043
1.069
1.096
1,122
1,149
1,175
1,202
1,228
1,255
1,281
1,307
1,334
1,360
1,387
1.466
1.506

C/Co

0,044
0.220

0.484
0.857

1,275
1.560
1.824
2.066
2.262
2.417
2,593
2,769
2.857
2.857
2,791
2.593
2,351
2,088
1,824
1.560
1,363
1,121
0.923
0.835
0.681
0.523
0. 505
0.418
0,330
0. 308
0.220
0.132
0.066



Run No.

W-10.31

t/-

0.682
0.722
0.763
0.803
0.823
0.843
0.864
0.884
0,904
0.924
0.944
0.965
0.985
1,005
1.025
1.045
1,066
1,086
1.126
1,146
1.167
1.187
1,227

1, 268

1,308
1,348
1.389
1.429
1.520

C/Co

0,059
0,295
0,768
1,556
1,930
2,324
2.639
2.875
3.033
3.052
2.954
2.796
2.658

2,422

2.166
1,950
1,772
1,556
1.162
1,004
0.9086
0.748
0.610
0.433
0.374
0,293
0,197
0.118
0.059

Run ¥No,

202

WA=10. 32

t/E

0.698
0.734
0.769
0.804
0.821
0.839
0.857
0.874
0.892
0. 909
0.944
0.962
0.980
0.997
1,032
1.067
1.103
1,138
1.173
1.226
1.261
1.296
1.331
1,366
1,436
1,489
1.542
1.600

c/c

0.032
0. 287
0,797
1.451
1.818
2,153
2,456
2.663
2.838
2,932
2,982
2,902
2,790
2.599
2.216
1.834
1.514
1.180
0.989
0.686
0.494
0.415
0.351
0. 233
0.175
0.112
0,048
0.032



Run No,

W-10.41

t/<

0.702
0.738
0.773
0.809
0.826
0.844
0.862
0.879
0.897
0.915
0.932
0. 950
0.968
0.985
1.003
1.021
1.038
1,074
1.109
1.144

1.180

1.215
1.250
1,286
1.321
1,356
1.39%2
1.462
1,533

c/c

0,041
0,371
0.885
1,523
1,873
2.202
2,511
2.696
2,861
3.0035
3.005
2.923
2.840
2.696
2,532
2.346
2,202

1.770

1.441
1.194
0,947
0.700
0.535
0.473
0.371
0.226
0,200
0,141
0,041

Run No.

WA-10,42

203

t/~

0.705
0.720
0.755
0,770
0.785
0. 800
0,810
0.825
0.846
0.851
0.870
0.898
0.910
0.935
0,970
0.985
1,020
1,065
1.0%0
1,125
1,160
1.180
1,230
1,300
1,355
1,480
1.510

c/c

0,060
0.226
0.550
0.770
1.050
1.400
1,650
1.874
2,212
2,410
2,740
2.930
3.000
3.000
2,860
2,700
2. 340
1,950
1.620
1.270
1,030
0.780
0,530
0. 370
0.225
0.120
0,000




Run No.

W-10.51

t/;

0.687
0.710
0.734
0,757
0,780
0,792
0.804
0.815
0.827
0,838
0.850
0.862
0,874
0.885
0,897
0,908
0.920
0.932
0,946
0,967
©.990
l.013
1.036
1,095

1.153

1,200
1,305
1,409
1,503

c/c

0,048
0.144
0.264
0,552
1,008
1,225
1.417
1.681
1,993
2,186
2,474
2.642
2.858
3.026
3.146
3.146
3.218
3.218
3.122
2,930
2.667
2,337
2.089
1,489
0,936
0.648
0.3386
0.144
0.072

204

Run No.

WA-10. 52

t/=

0.869
0.712
0.733
0.708
0.781
0.815
0.838
0,861
0,884
0.907
0.919
0,930
0.941
0.933
0.965
0.988
1,011
1.034
1.057
1.080
1.114
1.149
1,183
1,218
1,241
1,287
1.3%0
1,505

C/Co

0,040
0.137
0.337
0.636
1.035
1.783
2.282
2.681
2.968
3.130
3.130
3.130
3.080
3.018
2.918
2.681
2,419
2.120
1.821
1,571
1.235
0.985
0.773
0.586
0.524
0.374
0.187
0.070



Run No,

w-10,61

t/<

0.720
0.732
0.740
0.748
0.756
0.764
0.788
0.828
0.840
0.848
0.856
0.864
0.872
0.880
0.888
0.892
0.896
0.904
0.908
0.916
0.924
0.936
0.960

-+ 0,976

0,984
1.000
1.020
1.060
1.100
1.152
1,180
1.200
1,240
1,280
1.320
1.380
1,449
1.500

C/C0

0,084
0. 105
0. 168
0.252
0.357
0.441
0.840
1.701
2,016
2.184
2,373
2,520
2.689
2.857
2,941
3.045
3.021
3.130
3.214
3.214
3.298
3.277
3.193
3.1092
3.024
2,857
2,542
2,016
1.533
1.0982
0.846
0.756
0.525
0.441
0.336
0. 168
0. 105
0,080

205

Run No.

‘WA-10.62

t/=

0.725
0.754
0.774
0,802
0.834
0.862
0.866
0.878

. 0,880

0.902
0.914
0.922
0,930
0.950
¢, 970
0.990
1.003
1.080
1,127
1.171
1,199
1,231
1,280
1,316
1.380
1.500

c/c

0,094
0.281
0,566
1.054
1.804
2,460
2,554
2.835
2,999
3.116
3.187
3.304
3.300
3.280
3. 160
2.990
2.810
1.781
1,336
0,961
0,773
0.562
0,398
0.280
0.168
0.075



Diameter 1% inch

..

Packed Height 153 feet

.

Type of Packing Used Ceramic Raschig Rings

Size of Packing H x

1,
8 inch

{DIH:

WATER - AIR RUNS



Run No..

w-15.21

e N

t/=

0.724
0. 740
0.756
0,771
0,787
0.803
0.819
0.834
0.842
0.858
0.874
0.890
0. 905
0,921
0,937
0.9852
0,968
0.976
0.992

024
.039
.063
. 087

1.126
1,189
1,252
1,207
1,347
1.402
1.457
1.504
1.552
1.607

.102

c/c

0.041
0.148
0.321
0.562
0.875
1,206
1,685
2.107
2.242
2.667
2,988
3.217
3.352
3.413
3.382
3.261
3.115
3.002
2.784
2,579
2,347
2,140
1,828
1,538
1,368
1,162
0.754
0,487
0.335
0.277
0.189
0.134
0.101
0,074

0,054

Run No,

WA-15,22

206

t/=

0.721
0.738
0.756
0.774
0.792
0.810
0.827
0.845
0.863
0,881
0.898
0,917
0.925
0.934
0.943
0.961
0.979
0.997
1,015
1.032
1,050
1.077
1,113
1.139
1.166
1.184
1.211
1.264
1.309
1.344
1.407
1.451
1,496
1,549
1,603

c/C

0.063
0.190
0,388
0,706
1.071
1.521
1,972
2,425
2.796
3.066
3,282
3.312
3.370
3.310
3,282
3.094
2.915
2.681
2,449
2.186
1.961
1.634
1,255
1,046
0.857
0.751
0.633
0.449
0,340
0.274
0.190
0.151
0,113
0,082
0,057



Run No.

W-15,31

t/<

0.755

0.776
0.797
0,819
0.840
0.851
0,861
0.872
0,883
0,823
0,904
0.925
0.936
0.947
0.957
0,918
1,010
1,042
1,106
1.160
1.245
1.287
1,330
1,373
1,426
1.479
1.554
1,607

C/Co

0.056
0.320
0.713
1.234
1,900
2,253
2,547
2,855
3.161
3.391
3.537
3,724
3.743
3.705
3.630
3.391
2,905
2.360
1.538
0.943
0.467
0.331
0.231
0.165
0.099
0.046
0.035
0.013

Run No.

WA-15,32

207

t/=

0.748
0,769
0;790
0.812
0.833
0.843
0.854
0.864
0.875
0.886
0.986
0. 907
0.917
0.928
0.938
0.959
0. 870
0.991
1,012
1,044
1,076
1.107
1.150
1.192
1,255
1,308
1.350
1.403
1.445
1,581

C/Co

0.029
0.222
0. 567
0.978
1,568
1,927
2,282
2.616
2,938
3,197
3.468
3.662
3.720
3.800
3.800
3.700
3.573
3.247
2,891
2,311
1,783
1.336
0.978
0.683
0.422
0,292
0.232
0.164
0.115
0.039



Run No.

W-15,41

t/-

0.765
0.791
0.818
0.844
0,857
0,871
0.884
0.897
0.910
0.9224
0,950
0.963
0.990
1,030
1.069
1.109
1,148
1.188
1,228
1,281
1,333
1.373
1,428
1.479
1,545
1,598
1,651
1,677
1.717
1,743

C/Co

0,059
0.321
0.930
1.969
2,566
3,070
3.472
3.833
4.027
4,030
3.885
3.714
3.273
2,503
1.802
1,288
0.913
0,685
0,506
0.321
0.231
0.177
0.124
0,094
0.065
0.045
0.033
0,026
0,018
0.013

208

Run No.

WA-15,42

t/=

0.765
0.791
0,817
0.844
0.857
0.870
0.884
0,897
0.910
0.923
0.950
0.976
1,002
1,029
1,069
1,108
1,148
1,187
1,227
1,267
1,293
1,333
1.386
1.438
1.505
1,557
1.597
1.650
1,703
1,957

C/C0

0,060
0.322
0,930
1.968
2.565
3.068
3.469
3.831
4,025
4,098
3.883
3.485 .
3.012
2, 504
1.802
1,288
0.914
0.680
0, 807
0. 337
0.294
0.232
0.165
0.112
0,079
0,060
0,047
0,034
0,020
0.008



Run No,

w=-15.51

t/<

0.754
0.784
0.814
0.845
0.875
0.890
0.905
0.920
0,935
0.951
0.966
0.966
1.026
1,056
1. 102
1,147
1.208
1,253
1.298
1.344
1,389
1,419
1.450
1,495
1.525
1.571
1,616
1,661
1,752

c/C

0.019
0.256
0.815
1,766
2,905
3.357
3.705
3.947
4,056
4,040
3.911
3.433
2.801
2,223
1.430
0.948
0.564
0.381
0.268
0.195
0.141
0.112
0,099
0.065
0.0583
0,042
0.030
0,019
0.007

209

Run No,

WA-15,52

t/-

0.754
0.785
0.815
0.845
0.860
0.875
0.8%0
0.906
0.921
0.936
0.951
0.966
0,996
1.042
1,087
1,132
1.183
1.193
1,253
1.314
1.374
1.450
1,495
1,556
1,601
1,647
1.692
1,753

C/C0

0.018
0.255
0.815
1.766
2.300
2.900
3.358
3,707
3,949
4,058
4.040
3.914
3.435
2.506
1.653
1.085
0.808
0.632
0.381
0.243
0.158
0.099
0.064
0.041
0.029
0.023
0.012
0.006



Run No.

W-15.61

t/=

0,781
0.815
0.849
0.866
0.883
0.200
0.917
0.934
0.951
(.968
0,985
1.037
1.088
1,122
1.156
1,207
1.241
1,275
1,309
1.360
1,411
1.445
1,479
1,513
1,548
1,599
1,633

C/C0

0,067
0. 557
1,582
2,243
2.926
3. 541
3.998
4,270
4,270
4,230
3.979
2.832
1,760
1,231
0. 901
0, 357
0.423
0.312
0,233
0.144
0,096
0,067
0,048
0,029
0,020
0,010
0,001

210

Run No.

WA-15,62

t/=

0,782
0.8186
0.850
0.867
0.884
0.901
0.918
0.935
0.952
0.968
1,038
1,072
1,106
1.123
1,157
1.174
1,208
1,225
1.259
1,310
1,345
1,379
1,430
1,498
1,515
1,566

C/C0

0.056
0,535
1.544
2.1986
2.902
3.505
3.966
4,230
4,270
3.946
2,852
2,120
1.516
1,260
0.925
0.776
0.571
0,476
0.348
0.212
0,156
0,098
0.056
0,023
0,012
0.001



COLUMN SPECIFICATIONS

Diameter 1% inch

e

Packed Height 5% feet

Type od Packing Used Ceramic Raschig Rings

Size of Packing x inch

1x1
g8 8

GLYCERINE - WATER - AIR RUNS,

VISCOSITY = 4, 5cp,



Run No,

GW-5, 21
AM=4,5¢p

t/=-

0.520
0.550
0.575
0.610
0,650
0.685
0.701
0.729
0.771
0.826
0,909
1,034
1,075
1.103
1.158
1.186
1.227
1.269
1,366
1.400
1.600
1,800

c/C

0,085
0.180
0.343
0.420
0,680
0.720
1,030
1.163
1,429

1,850

1.961
1.562
1,429
1,163
1.030
0.807
0.764
0.631
0.498

0.366

0.233
0.001

211

Run No,

GWA-5, 22

}1:4. 5Cp

t/<

0.525
0.565
0.600
0.646"
0.672
0.686
0.712
0.725
0.752
0.792
0.818
0.858
0.885

0.911 .

0.951
0.991
1.044
1,084
1.097
1,137
1.176
1.190
1.230
1.256
1.376
1.495

1.681

1.801

c/C

0,090
0.265
0. 400
0. 540
0,728
0.915
1.103
1,197
1,385
1,667
1.854
1,548
1.9848
1,940

1,854

1.667
1,348
1,291
1,197
1.00%

0.915

0.822
0.728
0.633
0. 446
0.352
0.164
0,002



Run No.

GW-5.31
M =4.5¢cp

t/=

0.660
0.668
0.705
0.761
0,836
0.9211
0.286
1.042
1,098
1.173
1,229
1.266
1.380
1.470
1,540
1.600
1.700
1,800

c/cC

0.155
0.462
0.797
1,301
1.804
2.140
1.972
1,804
1.468
1.133
0.965
0.797
0.461
0.380
0. 340
0. 300
0.240
0.120

212

Run No.

GWA-5.32
}A=4.5‘cp

t/=

0.700
0.710
0.748
0,785
0.842
0.899
0.974
1,106
1,162
1,200
1.294
1,379
1.435
1.452
1,502
1,590
1.675
1.700
1.800

c/c

0,130
0.800
1,097
1.3892
1.974
2,266
1,974
1.681
1.389
1,097
0.804
0,629
0,462
0,420
0. 350
0.300
0.272
0.240
0. 200



Run No,

GW-5.41
Al =4.5 cp

t/z

0.6350
0,700
0,754
0.769
0.801
0.856
0,890
0.911
0,943
0,989
1.045
1,070
1,145
1.1920

- 1.250

1,320
1,355
1.405
1.430
1.515
1.600

C/C0

0,060
0. 460
0.989
1,253
1.510
2,044
2,300
2, 540
2,308
2,140
1.925
1.730
1.350
1.128
0.720
0,320
0. 300
0.270
0, 200
0,155
0.105

213

Run No.

GWA-5.42
/u=4. 5'cp

t/=

0,691
0.714
0,730

0.738

0,762
0.785
0.793
0. 809
0,840
0,872
0.887
0.903
0.927
0,982

1,055

1,115
1,200
1,282
1.310
1.352
1,440
1,492
1.530
1,580

C/Co

0. 349
0. 549
0. 749
0.948
1.148
1,348
1,547
1,747
1,943
2,146
2,345
2.520
2,346
2,146
1.800
1.505
1.100
0. 460
0.460
0 315
0. 200
0. 180
0.120
0. 100



COLUMN SPECIFICATIONS

Diameter : 1% inch

Packed Height 5% feet

Ceramic Raschig Rings

Type of Packing Used

1l x

Size of Packing 1x1
8 8

inch

GLYCERINE - WATER SOLUTION RUNS,

VISCOSITY, = 7,5¢cp



Run No,

GW-5.21
A =7.5 ep

t/=

0.566
0.600
0.612

- 0.624

0.647
0.659
0.682
0.705
0.717
0.752
0.763
0.798
0.821
d. 868

0,902 -

0.937
0.972
1.019
1.042
1.112
1.135
1.158
1,205
1,240
1.274
1,333
1.400
1.472
1.750

c/Co

0.089
0,177
0. 265
0.354
0. 531
0.619
0.885
1.062
1,239
1,504
1,593
1,858
1,946
1.560
1.946
1,858
1,769
1,504
1,327
1,061
0,973
0.885
0.708
0.619
0,531
0.442
0.354
0.265
0,088

- 214

Run No.

GW-5,22

}L=7.5 cp

t/-

0.571
0.618
0.641
0.653
0.665
0.688
0.711
0.735
0.758
0.782
0.805
0.829
0.840
0.900
0.934
0.969

- 0,993

1,016
1,051
1,122
1.204
1.309
1.415
1.614

c/c

0, 141
0. 282
0.423
0. 3565
0,706
0, 847
1,129
1.411
1,552
1,693
1,835
1,875
1,975
1,900
1,835
1,693
1.552
1,411
1,270
0,988
0,706
0.430
0.282
0.141



Run No,

GW-5,31

/;1=7.5 cp

t/z

0.600
0.630
0.665
0.729
0,783
0.837
0.890
0.903
0.980
1.015
1.060
1. 100
1. 245
1,305
1.415
1,515
1.550
1.615
1.840

c/c

0, 140
0.320
0. 500
0.744
1.116
1.859
2.040
2,030
1,910
1.720
1,495
1,325
0.680
0,562
0.353
0.240
0. 260
0, 200
0.140

215

Run No.

GW-5,32

,}}=7.54cp

0.830
0.662
0.690
0.710
0,740
0.770
0.815
0.840
0.875
0.955
1.0l10
1.035
1,105
1,150
1,230
1,300
1,390
1,460
1,590
1.640
1,780

C/C0

0.240
0.405
0.600
0.805
1.205
1,620
1.825
2,000
2,030
1.960
1.820
1.620
1.210
1.050
0.760
0.600
0.425
0.315
0.225
0.200
0.160



Run No,

GW-5.41

/Ll =7.5 cp

t/=

0.631
0.671
0.691
0.711
0.731
0,791
0,850
0.910
0.930
0.949
0.989
1,049
1,089
1.149
1,189
1,249
1,309
1.345
1,400
1,500
1.600

c/C

0,355
0. 533
0,710
1,065
1,420
1.775
1,953
2.130
2.130
1,953

1.775

1.420
1,243
1,065
0.888
0.710
0,533
0,533
0.400
0. 360
0.320

216

Runn No.

GW-5.42

/}L:?.S Ccp

t/=

0.600
0.610
0.669
0.690
0,731
0.752
0.834
0.875
0.895
0.936
0.977
1,039
1,080
1,141
1l.162
1.223
1,346
1.428
1,525

1.809

C/Co

0.305
0,383
0.575
0.766
1,149
1,341

1,916

2,110
2.110
1.916
1,724
1.533
1.341
1,149
0.958
0.766
0.575
0,383
0.290
0.220



Run No,

GW=-5.51

‘ /u =7.5.cp

0.658
0.703
0.729
0.753
0.777
0.801

- 0.824

0.848
0.872
0.896
0.910
0.979
1.086
1.109
1.133
1.157
1,181
1.205
1.276
1.371
1,466
1.510
1.600

C/Co

0.184
0,552
0.736
1,104
1,471
1,655
1.839
2. 200
2, 250
2. 300
2, 300
2,200
1.655
1,471
1,287
1. 104
0.920
0.736
0.552
0.368
0.184
0. 160
0. 140

217

Run No,

GW=5_.52

‘}L=7.5rcp

t/-

0.680
0,715
0.739
0.763
0.812
0.836
0.859
0.884
0.9%08
0. 980
1,030
1.077
1,125
1.173
1,221
1,342
1.415
1.500
1,600

c/c

0,333
0,666
0,998
1,331
1,664
1,996
2,200
2.300
2.300
2.200
1.994
1.664
1.331
0,998
0.666
0.333
0,320
0. 200
0.141



COLUMN SPECIFICATIONS

Diameter 1% inch

-

Packed Height 10} feet

Type of Packing Used Ceramic Raschig Rings

Size of Packing X inch

1X1
8 8

GLYCERINE =~ WATER - AIR SOLUTION RUNS

VISCOSITY, fh= 4,5cp



Run No.

GWw-10.21

A4 =4.57cp

t/-

0,660
0.672
0,687
0.717
0.732
0.747
0,769

0.782°

0.814
0.822
0,837
0.852
0.867
0.882
0.887
0.934
0,979
1,002
1,025
1,047
1.077
1,107
1.137
1,189
1,227
1,257
1,301
1,406
1,504
1.571

C/CO

0.060
0.161
0.282
0.484
0.767
0.807
1,130
1.412
1.775
1.8%96
2.098
2,219
2.380
2,420
2, 580
2,541
2,420
2,259
2,050
1.936
1.614
1.452
1,251
0.968
0,767
0,605
0,484
0,322
0,161
0,120

218

Run No.

GWA-10, 22

/J.=4. 5«¢cp

t/=

0.642
0.657
0.679
0.693

0.708

0.730
0.745
0.752
0. 767
0,774
0.796
0.818
0.840
0,855
0,884
0,913
0,928
0.986
.030
. 060
.111
. 147
1,184
1,235
1.301
1,353
1,469
1,505

c/C

0.142
0.189
0.330
0.377
0.519
0.755
0,944
1.132
1,274
1.321
1,699
1.840
2,076
2,217
2.450
2.599
2.406
2,217
1,840
1,463
1.274
1,132
0.896
0.708
0,519
0.330
0.189
0.130



Run No.

GW-10. 31

}l =4,5¢p

t/=

0.696
0.737
0.768
0.788
0.819
0.840
0.881
0.912
0.994
1.045
1.107
1,179
1.210
1,271
1,323
1.340
1.441
1.500
1.605
1.713
1.823

c/c

0,289
0,385
0.771
1,060
1,542
1,927
2,601
2,698
2,601
2.216
1,445
1,156
0,771
0.674
0, 507
0. 290
0.210
0. 182
0.150
0. 100
0.090

219

Run No,

GWA-10, 32

/AL=4.5fcp

t/=

0.700
0.744
0.764
0.774
0,784
0,805
0.815
0,835
0,845
0.875
0,916
0,931
0.996
1,037
1,087
1,118
1,158
1,239
1,289
1,360
1,451
1.502
1,583

C/Co

0,150
0,507
0.797
0.869
1.158
1,376
1.665
1.955
2.245
2.534
2,700
2,705
2.607
2.245
1,738
1,448
1.159
0,579
0.507
0. 289
0.271
0,201
0.180



Run No.

GW-10.41

/}L=4.5cp

t/-

0.741
0.765
0.777
0.802
0.814
0.826
0.851
0.875
0.899
0.924
1,046
1.070
1,107
1,156
1.217
1.241
1.260
1.315
1.370
1,415
1,501
1,540

C/C0

0.311
0.725
1,139
1,242
1.656
2,070
2.381
2.483
2.800
2.795
2,381
2,070
1,553
1,242
0.828
0.725
0.414
0.311
0.300
0. 250
0.175
0. 140
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Run No,

GWA-10.42

/Ab=4_5cp

t/=

0.740
0,751
0.775
0.789
0.835
0.871
0.919
0.928
0.991
1,016
1,087
1,123
1.171
1,207
1,243
1.302
1,339
1,400
1,430
1,480
1,532

C/Co

0.300
0.623
0.935
1,480
1.870
2.493
2.805
2,805
2.493
2.410
1,792
1,247
1,168
0.856
0.623
0.545
0,312
0,234
0.210
0.180
0,141



Run No,

GW-10, 51

/u. =4.,5'¢cp

t/;

0,689
0.717
0.731
0.745
0,759
0.773
0.800
0.814
0.842
0,883

0.911

0.925
0.939
1,008
1,050
1,105
1,133
1.175
1,216
1,244
1.286
1,327
1,400
1.505
1.600
1.600

C/Co

0.130
0,246
0.575
0,657
0.986
1,314
1,643
1,889
2.218
1,547
2.630
2.900
2,632
2,300
1.889
1,561
1,314
0.986
0.904
0.657
0.570
0,329
0.246
0.150
0.150
0,090

221

Run No,

GWA-10, 52

M=4,5cp

t/-

0.705
0.724
0.751
0,779
0.792
0.806
0.834
0.888
0.902
0.925
0,957
1,040
1,067
1,095
1,136
1,191
1.246
1.383
1.432
1,499
1.530
1.600
1.650

c/C
o

0.240
0,354
0.620
1.083
1.477
1,576
1.871
2.364
2,758
2,807
2.659
2,364
1,970
1.871
1.576
1,083
0,690
0,394
0.212
0.181
0.130
0,110
0.080



Run No,

GW-10,61

,A‘= 4,5¢p

t/-

0.741
0.763
0.773
0.784
0.827

.0.848

0.880
0.901
0.912
0.940
0.965
1,008
1,051
1,083
1.125
1.189
1,211
1,307
1.403
1.502
1,613
1,700

C/C0

0.429
0.751
0.859
1.181
1,717
2,146
2,468
2,576
2.898
3.005
2,890
2.578
2,146
2.039
1.610
1.181
0.856
0.429
0.322
0. 200
0. 100
0,080
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COLUMN SPECIFICATIONS

Diameter : 14 inch

Packed Height : 103 feet

Type of Packing Used : Ceramic Raschig Rings
Size of Packing : %x % inch

GLYCERINE - WATER SOLUTION RUNS.

VISCOSITY, M= 7.5cp



Run No,

GW-10.21
}L =7.5cp

t/=

0.672
0.692
0.705
0.732
0.759
0.773
0.793
0.806
0.826
0.847
0.853
0.874
0.894
0 %01
0.914
0.968
0.9985
1.008
1.022
1.049
1,136
1.163
1.204
1,224
1,251
1,332
1,358
1,440
1.547
1,574

C/Co

0.083
0.222
0.443
0.665
0.969
1,191
1,551
1,772
1,994
2.215
2,298
2.437
2.520
2.550
2. 540
2,437
2,298
2,187
2,077
1,883
1.218
1,080
0.886
0.775
0.637
0.442
0.332
0.194
0.111
0,083

223

Run No.

GW-10, 22

/}L=7.5cp

t/;

0.691
0.704
0.716
0.729
0.742
0,755
0.781
0.806
0.838
0.877
0.896
0.928
0,999
1,018
1,044
1,085

" 1,165

1.185
1,249
1,304
1,364
1,456
1,502
1.600

c/C

0,169
0. 394
0.451
0.676
0.845
1.127
1.521
1.747
2,197
2,423
2. 500
2,423
2. 254
1.972
1,803
1. 524
0.902
0.845
0.676
0.394
0.225
0.169
0.111
0.080



Run No.

GW-10.31

/J- =7.5¢ep

t/=

0.693
0.702
0,721
0.748

0.767

0.776
0.794
0.812
0.831
0.849
0.858
0.895
0.913
0.932
0.996
1.051
1.078
1,124
1,169
1,206

1,279

1,326
1,417
1,548
1,600

C/Co

0.141
0.188
0.376
0.753
0.241
1,129
1.458
1.646
1.882
2.070
2.211
2.446
2.634
2,634
2,587
2,023
1.882
1,505
1.082
0,941
0,517
0. 376
0.188
0.141
0.100

Run No.

GW-10, 32

/}b=7.5cp

224

t/-

0,723
0,741
0.769
0.815
0.861
0.888
0.898
0.925
0.544
0.980
1,017
1,063
1,081
1,146
1,219
1,265
1.366
1, 486
1.521
1.635
1,700

c/c

0.280
0.490
0.840
1,610
2,170
2,450
2.520
2,610
2.620
2.520
2.450
2.170
1,960
1,330
0.770
0.490
0.280
0.210
0.160
0.110
0.100



Run No,

GW-10.41

’}L=7.5cp

t/~

0,715
0.737
0,748
0.770
0.792
0.813
0.846
0.889
0.9%01
0.955
1.009
1,075
1,108
1,140
1.184
1,249
1,282
1,369
1,489
1,552
1,632

C/Co

0,191
0.447
0.702
0,957
1.404
1,723
2.233
2.488
2,750
2.480
2,233
1,978
1,723
1,404
1,148
0.638
0.447
0.383
0,128
0,110
0,100

Run No,

GW-10,42

/l-b =7. 5¢cp

225

t/~

0.721
0,755
0.778
0.801
0.812
0.835
0.857
0.9203
0,925
1,027
1,084
1,118
1.175
1,220
1,265
1,333
1,357
1.424
1.600

C/Co

0.156
0,468
0.858
1.403
1.481
2.027
2,105
2,729
2,729
2.651
2.105
1.715
1.170
0,858
0.546
0.468
0.233
0.156
0.110



Run No,

GW-10, 51

M =7.5cp

0.685
0.711
0.749
774
.813
851
877
.902
0.928
0.966
0.992
1.030
1,055
1.068
1.094
1.119
1.170
1.209
1,247
1,278
1.362
1,451
1,500

© o 0O o O

C/CO

0,120
0.255
0,837
1,016
1,794
2,212
2,451
2,690
2.850
2,690
2.511
2,271
1.973
1,734
1.554
1.256
1.016
0.837
0,598
0.538
0, 299
0.120
0. 100

228

Run No,

GW-10, 52

J}L =7.5cp

t/-

0,708
0.734
0.772
0,798
0,823
0.861
0,887
0.912
0.925
0.963
1,028
1,065
1,103
1,141
1.192
1,243
1,307
1,358
1.421
1.521

c/c

0.256
0.683
1.024
1.365
1,706
1,962
2.389
2.730
2.805
2,645
2.389
2.048
1,621
1.280
1.024
0.683
0.597
0.341
0.256
0.180



COLUMN SPECIFICATIONS

Diameter : 1% inch
Packed Height : 104 feet
Type of Packing Used : Ceramic Raschig Rings
Size of Packing : 1x 1 inch
8 8

DOUBLE - TRACER RUNS,



Run No.

DTW -10.21
COND

t/-

0.680
0,706
0.733
0.747
0.767
0,780
0.801
0.821
0.84]
0.861
0.875
0.881
0.909
0,940
0.972
1,003
1,023
1.071
1.098
1.152
1.179
1,213
1,233
1.287
1,314
1.456
1,577

C/C0

0,060
0.131
0.394
0.591
0.919
1.182
1.510
1,904
2,298
2,495
2,695
2,756
2,820
2,720
2. 560
2,429
2,232
1.773
1.510
1.051
0.919
0.722
0.591
0.460
0.394

0.197

0,080

Run No,

DTW-10, 22
PHOT

227

t/-

0.690
0,707
0,727
0.741

0.755

0.775
0,795
0.815
0.829
0.856
0.870
0.883
0.903
0,910
0,958
0.978
0.998
1.039
1.052
1,066
1,140
1,181
1,208
1,255
1.296
1,357
1,540

c/c

0,080
0.187
0,389
0, 500
0.667
1.058
1.446
1.835
2,057
2,502
2.669
2.780
2.820
2,820
2,700
2,613
2,391
2.002:
1.85%0
1.779
1.112
0,890
0,723
0.556
0.445
0.333
0.110



Run No,

DTW-10.41
COND

t/-

0.707

0.733

0.750
0.768
0.7%4
0.811
0.837
0.854
0.880
0,828
0,907
0,915
0.949
0,976
0.993
1.011
1,037
1.054
1.080
1,149
1,175
1,236
1.271
1.384
1.444
1,505
1,600

C/Co

0.089
0.268
0.447
0.670
1,161
1,563
2.144
2,501
2,903
3.082
3.120
3.120
3.080
2.859
2,680
2,457
2.189
1,965
1.653
1,027
0.893
0.581
0.447
0.223

"0,179

0.134
0,089

Run No.

DTW-10,42
PHOT

228

t/=

0.693
0.711
0.736
0.771
0.805
0.831
0.857
0.874
0.882
0.891
0.908
0.917
0. 943
0.977
1.003
1.037
1,063
1.089
1,132
1,158
1.278
1.347
1.425
1,468
1,537
1,600

c/cC

0,083
0.125
0,334
0.792
1,543
1,918
2.627
2,877
2,961
3.003
3.086
3.126
3.003
2,752
2.460
2,043
1,751
1,502
1,126
0.959
0,417
0,292
0, 208
0, 187
0,125
0,083



APPENDIX



LIQUID HOIDUP CORRELATION DATA




Run No. (HT)exp. (Hop. Jexp, (NRe)L X Y ./
W-5.21 0.146 0.119 1,490  0,0687  0.,0075 1.940
WA-5, 22
ngé?;z 0.196 0.163 2.230  0.0903  0.0101 2.520
ﬁ;fgfiz 0.209 0,182 2.970  0.1100 o.o;zs 2,780
ﬁ;fg?éz 0.228 0.201 3.710 0.1280  0,0148 2,950
ﬁ;féééz 0.240 0.213 4,460  0.1450 0,0170 3.180
5;326?;2 0.165 0. 140 1.490  0.0687  0.0075 2.200
ﬁ;igé?%z 0,175 0.150 2.230  0.0903  0.0101  2.320
nggé?iz 0.196 0.171 2.970  0.1100  0.0125 3.130
$;1?5?§2 0.236 0,211 3,710  0.1280 0.0148 3,240
3;5?6?;2 0.245 0.220 4.460  0.1450  0.0170 3,240
$;f§g?§2 0.165 0. 140 1.490  0.0687  0,0075 2,180
ﬁ;ifg?éz 0,183 0.158 2.230 0.0903 0.0101 2,430
ﬁ;iig?iz 0.198 0.173 2.970  0.1100 0,0125 2,630
ﬁ;ifg?éz 0.214 0.189 3.710  0.1250  0,0148  2.840
ﬁ;fig?éz 0.229 0.204 4.460  0,1450 0.0170 3,030
gﬁ;fg?égo 0.248 0.190 0.370  ©0.0917  ©0,0106 1,450
gﬁgfgfégo 0.251 0.193 0.550  0.1210 0.0143 1,470
Eﬁgfgfigo 0.266 0.208 0.730  0.1470  0.0177 1.550
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Run No, (HT)exp, (Hop. Yexp. (NRe)L X v ”
gﬁgfgb?;go 0.219 0.161 0.370  0.0917 0.0106 1,280
2$;f?a?§§o 0.241 0.183 0. 550 0.1210  0,0143 1.410
gg;igé?igo 0.266 0.208 0.730  0.1470  0.0177 1,550
gﬁiffé?égo 0.299 0,241 0.920  0.1700 = 0,0211 1.740
gﬁ:i;j;i 0.262 0.172 0.230  0.0960  0.0121 1.150
Sﬁig;géi 0.293 0.203 0.340  0.1230  0.0163 1.280
gng::;i 0.314 0.224 0.450 0.1530 0.0201 1.380
e 0.327 0.237 0.560  0.1780  0.0236  1.430
ngigjﬁgi 0.251 0.161 0.230  0.0960  0.0121 1.100
gg:igﬁ géi 0.269 0.179 0.340  0.1230  0,0163 1,180
§$2i8;3§} 0.302 - 0.211 0.450  0.1530  0,0201. 1.320
GW-10. 511

GW-10. 521 0.323 0.233 0.560  0.1780  0.0236 1.410

X = dimensionless groups in OTAKE and OKADA ( 21 ) correlation:
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Y = dimensionless groups in MOHUNTA and LADDAH'S ( 24 ) correlation:

and

Z = dimensionless groups in GELBE'S ( 26 ) correlation:
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APPENDIX



TIME DELAY MODEL

Exponentially distributed time delays.




Table: 1 , 5% feet Packed Height
Mean Dispersion Apparent True
Run No. |Time No. Qead_Time Dead_Time ox a
t mins, D3UL t/t t/ t
o o
w=-5.21 2.333 0,0174 0.662 0.630 7.2 1,31
WA=-5.22
W-5. 31 .
WA-5. 32 2.017 00,0150 0.670 0.643 7.5 1,36
w-5,41
WA=5. 42 1.670 0,0132 0, 700 0.680 7.3 1.32
W-5.51
WA-5. 52 1.420 0.0124 0,710 0.693 7.2 1.31
w-5,61
WA-5. 62 1,275 0,0106 0.720 0.705 7.2 1,31
iw-5.211 4,170 0,0245 0.522 0.480 11,0 2.00
GWA~-5,.221
GW-5.311 .
GWA-5.321| -9-000  0.0196 0. 568 0.540 10,0 1.82
GW-5,411
GWA-5.421 2,470 00,0184 0. 580 0,554 10,5 1.92
GW-5, 511
GWA-5. 521 2,100 0.0166 0,604 0. 580 10,2 1,90
GW-5.210
GWA-5. 220 3.940 0.0200 0.515 0,475 11.5 2.10
GwW-5,310
GWA=5. 320 3.000 0.0170 0.600 0, 580 10.0 1,82
GW-5.410
GWA-5.420 2,120 00,0150 0,612 0.578 11.0 2.00
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Table: 2 , 10% feet Packed Height
Mean Dispersion Apparent True
Run No. Time No. D,ead_Time Dead_Time ox x
t mins, D/UL to/ t t/t
(o]
W-10, 21 .
wa-10,22 | 2-97 0.0098  0.670 0.624 13,0 1.24
W-10, 31
WA-10.32 | °-°° 0.0088 0.690 0.652 13.0  1.24
Ww-10, 41
wa-10,42 | 2:97 0.,0082 0.700 0.660 13,2 1.26
Ww-10. 51
WA-10. 52 2,87 0.0078 9.715 0.672 13.0 1.24
W-10.61 .
WA-10. 62 2,48 0,0074 0.725 0.685 13.3 1,27
GW-10.210
aw-10.220| 97 0.0124 0.612 0.480 20.8 1,98
GW-10. 310
GW-10. 320 5.00 0.0108 0,640 0,520 21,0 2.00
GW-10, 410
GW-10. 420 4.00 0.0100 0.652 0.936 20,7 1,99
GW-10, 510
GW-10. 520 3.60 0,0094 0.664 0.556 20.8 1.98
GW-10.610
’ 3.1
aw-10.620| >+ 1° 0.0088 0.672 0. 568 20.8 1,98
GW-10, 211
cw-10.221| 7-60 0.0126 0.616 0.488 20.7 1.97
GW-10, 311
cw-10.321| °+3° 0.0120 0.628 0. 500 21,0  2.00
GW-10.411
GW-10.511 3 99 0.0088 0.652 0. 540 20.7  1.97

GW-10, 521




Table: 3 , 15% feet Packed Height

Mean Dispersion Apparent True
Run No. | Time No. D’ead_Time Dead Time ax Q

t mins. D/UL t/t t/t

o] [0
W-15, 21
wA-15.22] 7+40 0.0068 0.715 0.636 20.5 1,32
4

w-15,31
WA-15, 32 5.48 0.0056 0.735 0. 650 - 20.5 1.32_
W-15,41 )
WA-15, 42 | 4-46 0,0050 0.748 0.668 21.0  1.35
Ww-15, 51 .
WA-15, 52 3.85 0.0046 0,757 0.679 21,0 1.35
W-15,61
wa-15.62 [ 3-*2 0.0041 - 0.774 0.708 20.0  1.30
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TIME DELAY MODEL

Gamma distributed time delays,




Table; 4 , 5% feet Packed Height
Dead Time Normalised
Run No. ox m t o/ t Mean Time,
w-5.21 7 50 s50
WA-5, 22 . 0. 0.660 0.995
W-5.31
WA-5.32 7.50 0.520 0.665 0.995
W-5.41
WA-5, 42 8.00 0.550 0.678 0,995
W-5.51 .
WA-5. 52 8.00 0.530 0.691 0.995
W-5.61
WA-5.62 8,00 0. 550 0.716 0.995
GW-5. 210
GWA=5. 220 11.10 0.600 0.550 0.985
GW-5. 310
GWA-5,320 11.96 0.574 0.605 1,004
GW-5.410
3
GWA-5. 420 11.9 0.578 0.614 1.003
GW-5. 211
GWA-5,221 11.25 0.450 0. 569 0.982
GW-5.311
GWA-5.321 10.98 0.486 0,604 1,008
GW~5.411
GWA-5,421 10.00 0.420 0.622 0.994
GW-5. 511 5 o cso .
GWA-5, 521 10.1 0.5 0. 0.99
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Table: 5 , 104 feet Packed Height

Dead Time Normalised
Run No, ox m to/ t Mean Time,
w-10, 21 15.00 , = 0.500 0.665 0.995
WA-10, 22
ﬁ;iﬁé?gz 15.00 0. 500 0.675 0.992
$;E?6?12 15.00 0.500 0,685 0.992
xxgé.séz 13.0 0. 500 0.695 0.980
ggi?é?éz 15.00 0, 500 0.705 0.990
ggzig: 3;3 20.00 0,521 0. 550 0.990
8%8: gég 20,00 0.500 0.602 0.992
gg:ig::;g 20.95 0.450 0.625 0.985
Sﬁiigiﬁii 20.97 0.450 0. 569 0.985
10321 | 20.01 0.490 0.602 1.002
g;ﬂv’:ig: g;i 20.10 0.460 0.622 0.990
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Table: 6 , 153 feet Packed Height

Dead_Time Normalised
Run No, ox m tO/ t Mean Time.
w-15.21
WA-15. 22 21.00 0.350 0.690 0.980
W-15.31
WA-15, 32 21.50 0.400 0.705 0.982
W-15.41
WA-15,42 21.00 0.400 0.718 0.980
Ww-15.51 ‘
WA-15. 52 21.C0 0.400 0.728 0,980
W=15,61 .
WA-15.62 22.00 0.400 0.739 0.987
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HOPPING MODEL




Table: 7 , 5% feet Packed Height

Run No, a Hopping Distance t/ t Normalised
h ° Mean Time,
ngé?;z 1.24 0.103 0.655 0.980
ggfé?;z 1.44 0,075 0.680 0.985
ngé?iz 1.53 0.057 0.667 0.987
WAsS. 52 1.67 0.050 0.675 0.987
ngé?;z 2.30 0.090 0.680 0.985
gx;?é?;go 2.35 0.110 0.480 0.981
gngé?;go 2.23 0.100 0. 592 1.000
gngéfigo 2.28 0.106 0.621 1.000
gngé?;;l 2.30 0. 100 0. 520 0. 980
gﬁgfé?iél 2.30 0. 100 0,538 0.980
gx;féééél 2,90 0.107 0. 565 0.985
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Table: g , 1l0% feet Packed Height

Run No, o4 Hopping Distance to/ t Normalised
' h Mean Time,
w-10, 21 1.03 0.200 0.704 0.980
WA-10, 22
$;i26?;z 1.05 0.179 0.718 0.980
ggi?b?iz 1.05 0.161 0.726 0.980
ﬁgigb?;z 1.06 0.143 0.734 0.980
$;f?6?§2 1.01 0.125 0. 784" 0.980
gﬁ:ig;ﬁ;g 2.20 0.250 0.636 0,985
§$118:§$3 2.20 0.216 0.646 0.986
ngg: 20 2.20 0.185 0.662 0.988
gg:ig:g;i 2.30 0,250 0.600 0.982
gﬁiigigii 2.30 0.213 0.625 0.991
ngv:iggi 2.22 0.226 0.641 0,982
gﬁ:ig:g;i 2.20 0.210 0.655 0.982
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Table: 9

, 15% feet Packed Height

Run No, o Hopping Distance t/t Normalised

h ° Mean Time,
ﬁiﬁ?ié 1.003 0.230 0.742 0.980
:;;isaéz 1.002 0.200 0.755 0.980
ﬁ;‘c{‘sﬂz 1,004 0.180 0.763 0.980
v‘:;ié.s;z 1.005 0.162 0.769 0.981
gﬁ-l-i.s?elsz 1.005 0.141 0.777 0.982
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APPENDIX ........



Programme for the Normalised Response Curves and the Truncation Point

During an impulse response experiment, the ocutput of the
photo or conductivity cell detector was logged at a suitably chosen
time interval on.punched paper tape, The print out was typically as
given below:

Photo cell detector: the logged data,

+ 0620 + 0620 + 0620 + 0600 + 0340 + 0500 + 0400

etc.

Conductivity cell detector: the logged data,

- 0010 - 0Clo - 0010 - 0050 - 0070 - 0100 - 0180

etc,

The second data tape contained the following:

liquid flow rate F

logging time interval t

calibration curve intercépt

calibration curve slope

The computation is straight forward. Before proceeding to
the actual calculation the truncation of the response curve is required
in order to save computational time and to avoid introducing any
errors due to the tail end of the response,

An ideal truncation point is reached when the response
returns “to the base line, however, this point varies from one curve to the
next. Thus a suitable truncation criterion should fit all the experimental
responses,

A computatiénal procedure was devised to find the peak position
of the response curve; it was found that on doubling the number of
readings reached at this point, the response had invariably returned

to the base line.
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The readings are then converted into concentrations units
ahd stored; the area between the successive pairs of points is computed
using the trapezoidal rule; the moments of these areas about the origin
are also computed and cumulative record is kept of these moments and
areas until the truncation point is reached. The first moment i.e.
the mean time and the system total holdup is then calculated and printed
out. The stored concentrations are then converted to normalised
concentrations using the previously calculated area and the corresponding
normalised time ihe calculatéd mean time of the system - and both

normalised quantities printed out after every three time intervals,
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COMPUTER PROGRAMME FOR THE NORMALISED

RESPONSE,



N

MNR-NORMAL IZED RE SPONSE

Jv 1
ni1=0
ne=0
V1=-700
v2=0

né =0
n3=21
Va4=0

STOP
Vi12=TAPE 1

STYOP
v21=TAPE *

¥1) vh3=-1XVN3
n3=n3+1
-5, VN32610

=6

5) vh3=610
=6

6) VN3=-VNn3
n2=neg+1

-2, VN33V1
-3

2) h2=nz2+n}
n1=0
V1=VR3+V4
Na=n2x2

-1

3> Nt=ni1+
~45 N2zh4
~1

4y VN3=-1XVN3
ns=n4-1%

vz22=0
v1=0

v2=0
V3=140.54
V4=21.94
V8=+475

n1 =22

7y N1=N1+]
ng =N6 +1
v5=LOGVN1
V5=V5XV4
V5 =V3-v5
-8, 0>Vy5
-9

8) V5=0

9y yni1=vs
VA=VRI+/(=1+N1)
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VT7=0.25%XV6
V1=v1+V7
VI=v7TXVS8
vas=ve+y9
VB=VE+0.5
-7, N6 #NS
vi10o=vasvi
Vi1=V1/vV10
Vi3 =vioxvia

TEXT
HOLDUP

MEAN T IME
PRINTVO, 3042
PRINTV13, 3052

TEXT -
N =T IME N-CONC.

Vi4=3

nt =20

1t0) Ni=N1+7
V15=v14/Vv10
vie=vialrsvil
PRINTV 15, 3064
PRINTV 16, 4044
V14=V14+3.5
=10, N53N1
(-0
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APPENDIX ,,..,... F



COMPUTER PROGRAMMES FOR:

1., TFixed delay times: time delay model
2. Expeonentially distributed delay times: time delay model

3. Gamma distributed delay times: time delay model
4, Hopping model

5. Rosenbrock's optimisation method



N
TIME DELAY MODEL - FIXED TIME DELAYS

JV1

ni=11
STOP
Vi=TAPE2
V3 =2.9999
Va=]

VS =EXPMV 1
V6 =v5
Vvi=ys
Vvii1=vs

1> Nt=N1+1
VI=VIXV7
VI=VT/V4
Vvht=v7

Ve =V6 +V 7
-2, V62V3
Va=y4+1}
-1

2) ¥8=0

vo=0

V3=t-v2
V3=v3rsvi
va=v3s2
VS=vo+y3
V10=2Xv3
ng=12 .

3) VA=V (=-1+N12)+VN2
V4= 4%V 3
VEB=VB+V4
V4=V4XVS

V=V 9+v 4
VS=Y5+V 10
N2zna+1

-3, Nz2#EN1
V4=V9rVeg
VY5=VE/V4
n3=11

Va=ve

4) VI=Vb6/Va
VB=Vn3svs
PRINTV7, 3043
PRINTVS, 4043
nN3=n3+1
Va=Va+V 10

-4, N3#n2
(-
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N
T IME -DELAY MODEL-- EXPONENTIAL

Jv 1
STOP
PV 1=TAPE

TEXT
ALPHA-X TO

PRINTV 1, 3083
V0=.9999
ve=t
V3=EXPMV1
Va=v3
v5=v3
1HVS=V1Xv5
XPV5=y5/v2
V4=V4+V5
-2,V453Vv0
Vo=V 2+]

-1

2)V4=TAPE2
PRINTV4, 4042
VO=TAPE
VI=1-v4
va=vorvi
vio=visveo

V6 =0

TEXT .
NORM=TIME NORM=CONC

3vT7=1

vi1=1

vg=0

43V 11=V11XV10
Vi12=Vv7TXV7
vii=vitsvie
Vi2=vV11Xv1
VI3a=Vv7-1
=6,V6=0
V14=L.0Gve
V14=V 14xv 13
ViS=vVarsvo
TIXV14=v14-V 15
V14=KXPV 14
ViZ2=V12xv14
VE=vg+v12
VI=VT+]

-4, V2>y¢7
VB=VEBXV3
VIS=Vs +V 4
PRINTV 15,3044
PRINTVB,4123
V6 =V6 +V5
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~3,V05V6
-9
63V14=0
-7

(-

247



12344

“FORTRAN G118,M. N. RATHOR GAMMA DISTRIBUTED TIME DELAVS

210

20

21

NO TRACE

MASTER CURVE FIT '

DIMENSION X(9),G(18),H{18),A¢90),D(9),E¢9),W(1000)
COMMON T,.DELTAT,NW.,A1,A2, AS AL,AS,A6,A7,AB,NNN
Ata=_S7719165 .

AP?= 98820589

A3a= 89705694

Ala 01820686

ASa=_75670408

A=, 48219939

A7=-_19352782

ARz, 035868343

READ(1,210)NNN

FORMAT(14)

RFAD(1,20)T.DELTAT

READ(1,210N,KMAX  NW,M

"READ(1I20)<X(I)ll‘1'N)l(G(I)lI=1'N)I(H(I)II’1vN)

FORMAT(S00FO0.0)

READ (4,200 (W(TI),Ia1,NW)
FORMAT(414) '
IPRINT=O

Bim=1,

NGx2*M

NAaN*(N+1)

CALL PXSéD(N!M:KMAX:IPRINTrBJ FsX+GoHsWsNU,NA, NG,A:D,E)

STOP
END




6va

70

72
73

74

SUBROUTINE CALXGH(N,M,IT,.F,X,G,H ,W)
DIMENSION X(9y, G(18).H(18).u(1000)
COMMON T.,DELTAT . NW,AY,A2.A3,A4,AS5,.A6,A7 A8, NNN
WRITEC(Z,70)% (1), Xt2), x(SJ.X(A)
FORMAT(4G14. 4)

XH=T

IFX¢t?1,71.72

CONTINUE

IE(x(2)Y?1,71, ?3

CONTINUE

TECX(3Y?1,71.74

CONTINUE

IF(X(3).GE.1.9G0 10 74

Y= 000#EXP (X (1))
BIs(XC1)aX(2)/7(X{4)=X(3)))

21=3%,

PNaY,

KaNW+1

DN S 1=1,10000

Al=l

Z1azZ1«X(1)/AJ

PNaPN+21 '

veX{(2)Y*AJ

CALL GAMMA(Y1.,V)
UfK)=ALOG(Z1)+V*ALOG(B1) ~ALOG(Y1) =X (1)
TECCPN=Y)Y.GT.0.YGO TO 12

K=+

Ntal«+q

F=0.

Yi=0,



-09g

pO 400 1=1,NW
KaNW+9
C1aBI*(T=X(3))
SUMa0, -
IF(X(3)=T)76,78,78
74 CONTINUE ' o
oo 11 J=1.NY
Al=)
BaW(K)~C1
VaX(2)%Ad=1, '
CP2=8+v+ALOG(T=-X(3))
S=EXp(L2)
KoK+
SUMasUM+S
11 CONTINUE
WRITE(2,70)T,UW(LI),SUM
Z2SUM
Gn vo 79
78 220,
73 CONTINUE -
Ya(2-W(1))**2
YiavisY
TFCABS(I=NNN) LE,1)Y=21000_»y
FaF+Y ' :
T=T+DELTAT
100 COANTINUE
GO TO 75
71 F=100.,
TaT+DELTAT
75  TaxH '



198

WRITE(2,70)F,vi
RETURN
EMD

 SUBROUTINE GAMMAC(Y1.P)

COMMON T,DELTAT.NW,A1,A2,A3,A4,A5,A6,A7,AB/ NNN
x{t’1

I=INT(P)

1F(1-1)1,3,4

Yap

bn 5 J=1,1

Yay=1,

[F(Y. LT, 1. )GO TO 7

XGmX4xY

"GO 10 ?

Y=p=1.

Gh TO0 7

Y=p

X4z1./p '
Y1aq. +Y*(A1+Y*CA2+Y*(A3*Y*(A4*Y*(A5+Y*(A6+Y*(A7+A8*Y)))))))
Yiasyi=Xd

RETURN

END



849%g

*FORTRAN G148,M. N, RATHOR.HOPPING MODEL MULTIFIY

240

20
21

101

NN TRACE

MASTER CURVEFIT

DIMENSION X(9), G(18>.H(18).A(90).oc9) E(9)Y,W(1000)
COMMON T,DELTAT.NW,HT.NNN

READ(1,210)NNN

FORMAT(I4) '

READ(1,20)T,DFLTAT /HT

READ(1,21IN, KMAX / NW:M '

READ(1,200(XC) + 1w, N) v CGCTIY,1m1,N), <H<1).1-1 N)
FORMAT(900F0.0)

FORMAT(414)

READ(1,20)(WCT),Ia1,NW)

IPRINT=O

Bla=1,

NGa2wM

NAzN+*(N+1)

FORMAT (4814, 4)

WRITE¢2,101)G¢1),6¢2),6(3>,6(¢&)

WRITECZ2,401YH (1), H(2) , H(3),H (&)

CALL PXSéD(N:MuKMAX;IPRINT:BJ F. X G H:W,NW,NA.NG,A,D,E)

S$TOP
END




- 898

70

SUBROUTINE CALXGHC(N M, IT.F,X,G,H, W)
DIMENSION X(g)iG(18)lH(18)lU(1000)
COMMON T,DELTAT . NW,HT.,NNN

FORMAT (4G4, 4)

Z10=0, _

URITE(Z:?O)X<1) X(2Y o X (32, X4

XHaT

IF(X(1),LE,0..0R,X¢2).LE. 0., OR.X(3).LE.0.)GO TO 71

IF(X(2). LE..0001)GO TO 71
FNHAX'HTIX(Z)

NMAX=FENMAX

2129,

2220,

PN=D,

KaNW+1

PNN=0,

nO 5 1%1,NMAX

At=l

22=222+AL0GCAD)

Z1aX (1) w{HT=AT*X{2))
1f¢21,LE.1.0E~10)2721=21.0E~10
212A1#AL0G(21)~21~22
Z18EXP(21)

PNaPN+21

WeKY=21

K=K+1

PNNSPNN*Z1*AI

PNNapPNN/PN

TAUR(X (L) =X (3 Y+ (1. =X (2)*PNN/HT))/PNN
KaNW+1



21

oo O

15

50

NSTART==1
FNMAX=,002/FNMAY
NEWaK

21=a%,

Al=q,

DO 12 Iat.NMAX
21221/ (TAU*A])
WINEW)=Y(K) /PN
TR{W(NEW)=FNMAX)H,6,8
IF{NSTART=-0)7.7,9
WINEWIBW(NEW) +21
NEWaNEW+1
IF{(NSTART.LE.O0)NSTART=!
Atal}

KaKk+1

GO T0 1

NMAX=a]=1

Y120,

F=0.

232X (3)#X(2)/HT

DO 100 I=1,NW
KaNu+1

22a TtmX(3)

SUMs0

po 119 J=NSTART.NMAX
Alaj

TTRZ22+4Z3%A)
tF¢(TT)Y50,50,52

$=0,

60 T0 51



qQCq

100

71
75

Z13(AJ=1.)*ALOG(TT)=TT/TAU
SaW(KI*EXP(Z1)

SUMaSUM+§

KoK+

Ya(SUM=W(I))#»2

Yiaylay ‘
WRITEC(2,70)T,W(1),5UM
IFCABSCI=NNN) . Le.1)vy=10G00, »y
FaF+yY

T=T+DELTAT

GO v0 75

#2100, -

TaXH -

WRITE(2,70)F.,Y1

RETURN

END



29Gg

201

202
204

203

SUBROUTINE PXS6D(N,M,KMAX,IPRINT,BJ,F,X,G,H,W,NW,NA,NG,A,D,E)
DIMENSION B(ZD;U(E)cA(NA) D(NYE(N), G(NG) H(NG):X(H):U(NN) '
CALL PXS6CI(N,L,IT,ICOUNT,NA,R,A,E) '

CALL CALXGH(N.M,IT,F,X¢G,H,W) : '

CALL PXS6C3(NM.L., IT-ICOUNT INDIC, KMAX+NA /NG BJ!F:U ArDsEsGrH I X)
G0 TO (202,204,209),INDIC

CALL PXS4C2{(N,L.,NA/,B,A.D) -

CALL PXS6CA4(N,M,L,IT, ICOUNT.IPRINT !NDIC KMAX,NA,BJ,B,U,A,D,E,X)
GO TO (20%,203),INDIC

RETURN

END



Leg

" SUBRQUTINE PXSECT1(N,L,IT,ICOUNT,NA,B,A,E)

DIMENSION B(2Y,A(NAY,E(N)
EXPF{X) 2EXp(X)
LOGF(X) = ALOG{X)
SINF(X) = SINOD
COSF(X) = COS(XY
ATANF(X) =ATAN(X)
SQRTF(X) B SQRT(X)
ABRSF(X) 'ABS(X)
B(1)=0,

B¢2)=0,

ICOUNT=0

Do 1L=10N
AtLy=0,1

EcLy=0,

Kai

DO 1 KR=1uN

K=K+N

A(g)=0,

Ie¢L~KR)Y1 3,1
ACKY=Y, |

CONTINUE

L=N

1T=1

WRITE(2,2)
FORMAT(SX:50HpXs6C  MAXIMUM Op MINIMyM OF A CONSTRAINED FUNCTION)
RETURN

END



89%

106

104

41

103
105

31
29

w O~ W

SUBROUTINE PXSAC2(N,L/NA,B,A,D)
DIMENSION B(2),A(NAY,D{N) o
SARTF(XIASQRT (XD

LeN=1 .

J0=1

KaN«JO+N :
A(KYZD(N)*ALK)

KR=L

KeN+*JO+KR
ACKYSDCKRY*ACK) +ACK+1)
KR=KR=1
TECKRY103,103,104
JOsJOo+1 :

ho 29 L'1u2

B(L)=0,

K=l

bo 31 JT=1.N

KeieN
BOLY=A{K)*A(K)+B(L)
BeLY=SQRTF(B(L})
B(2Yy=RC2)/BCL)

Jo=1 .

L=1

IF(L=J0)43,7,43
BN=0. :

KadO

pn 44 KRm1,N

KzK+N

JSaK=L



6S3

La

- 45

46

4?7

BOSA(K)*ACJISI+BO

K=J0

PN 45 XR=1,N
K=kK+eN
JS=K~1 . _
AtK)==A(JS)+*BO+A(K)
Lo+t R
60 7O 6

Ral,

K= ' .
DO 46 JT=1,N
KakeN :
BN=A(K)*A(K)+RO
BOaSQRTE(BO)
K=J0

Ab=4%,/BO

DO 47 JT=a1 N
K=K+N
A(KY=AD*A(K)
JomJo+
IF(N"JO)8I5I5
RETURN

END



098

"SUBROUTINE PX§6C3(N:M:LrIT:ICOUNT;INDIC KMAK NA:NG BJ,F.U,A,D,E,G;
TH)
DIMENSION U(Z)rA(NA);D(N);E(N).G(NG);H(NG):X(M)
ARSF(X) ®ABSOX)
UeIT)aF#*BJ
15219
102 TF(GCIS)~ X(IS))61 22 22
61 TF(X(1S)=H{1S8))h2,22,22
62 IF(UC1I)=UCIT))E3,63,16
63 KraM+18§
GN=(.9999%G(1S)+0, 0001*H(IS)
HO=2G(1S)Y+H(1IS)Y=G0
IF(GO=~X(I8))64,64,24
64 TE(X(IS)=HO0YE5,65,26
65 G(KRrR)=U(1)
H(KRY=UC(1)
98 IS=1S+1
IF¢IS=-MY102,102,29
21 1FLIT=2)166,14,166
166 17=2
66 INDIC=2
60 TO0 1014
22 IF (I1T=2)23,16,23
23 URITE(2,99)
99 FORMAT(4ZHINITIAL VALUES OF X NOT WITHIN CONSTRAINTS)
GO TO 66
24 1F (IT=1)68,23,638 ,
68 GO={GO=X{IS8))/{(G0=-G(IS))
: HO=UCETY=G(KR)
25 BOa(=2,%G0+4,)Y*G0~3,




198

26
6?7

16 _
“po 56 I8=1.N

56

57
17
58

59

18
60

UCIT)=BO»GORHO+UCIT)

G0 TO 98
IFCIT=1)67,23,67
GOS(X{IS)=HO)/(H(1S)=HD)
HO=UCITI=H(KR) .

G0 70 25
IR(UC1)=U(2))54,54, 16

- GO=xABSF(E(L))

1F(GO=1.355,55,15

E(LY=1.,5

DLY=D{L)+ALL)
Uctry=u(2)
ACLY=3,.#»A(L)
G0 10 17
KR=1L

KRaKR+N
X(IS)=-A(KR)*A(L)+X(IS)
AcLy==0.5%A(CL) :

IF (ECLYN17,57,57 .
ECL)==E(L)

IFCICOUNT= N*KMAX)SS:SB-éé
po 59 1s=1,N

IF CECIS)*+1.)59, 59 18
CONTINUE

INDIC=1

G0 TO 101

IF (L-N}60,12, 60
L+

60 TO 13



G9%

?6

101

L=1

K=t .

no 76 KR=1,N

K=K+N '
XCKRY=ZA{LY*ACK) +X% (KR)
1COUNT=]COUNT+1

It=2

INDIC=3

RETURN

END




SUBROUTINE PXSA6C4 (N, MvaIT:ICOUNT IPRINT-INDIC;KMAX NA,BJsBoU,AsD,
1E Xy :
DIMENSION B(2>,u(2),A(NA), D(N).E(N).X(M}

" Bo=aBJ*UCT)

£939
-l
=
w

53

105

IFCIPRINT)33,48,33
WRITE(2, 102}IrOUNT'BO B{(1).,R(2)
DO 49 L=m1+/M
WRITE(2,503)X (L)
IF(ICOUNT=N¥KMAX)50,50,9
IFCIT=1311,9,11 ‘
INDIC=2

GO T0 105
FORMAT(15,2(8Xx.,E12. 5),F20 5)
FORMAT(8X,E12.5)

Do 52 Lat,N

D(LY=0, :

E(L)"-'ou

L=

K=

b .53 KR=1,N

KaKkeN _
XCKRYZA(CL) *ACK) + X (KR)
!rOUNT=!COUNT+1 '

1T=?

INDIC=1

RETURN

END
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