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ABSTRACT 

The purpose of this thesis is to improve the 'art' of early capital cost estimation 

of chemical process plants. 

Capital cost estimates are required in the early business planning and feasibility 

assessment stages of a project, in order to evaluate viability and to compare the 

economics of the alternative processes and operating conditions that are under 

consideration for the plant. There is limited knowledge about a new plant in the 

early stages of process development. Nevertheless, accurate cost estimates are 

needed to prevent incorrect decisions being made, such as terminating the 

development of a would-be profitable plant. 

The published early capital cost estimation methods are described. The methods 

are grouped into three types of estimate: exponent, factorial and functional unit. 

The performance of these methods when used to estimate the capital costs of 

chemical plants is assessed. A new estimating method is presented. This method 

was developed using the same standard regression techniques as used in the 

published methods, but derived from a new set of chemical plant data. 

The effect that computers have had on capital cost estimating and the future 

possibilities for the use of the latest computer techniques are assessed. This leads 

to the fuzzy matching technique being chosen to develop a new method for 

capital cost estimation. The results achieved when using fuzzy matching to 

estimate the capital cost of chemical plants are presented. These results show 

that the new method is better than those that already exist. Finally, there is a 

brief discussion of how fuzzy matching could be applied in the future to other 

fields of chemical engineering. 
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Chapter 1 

INTRODUCTION 

This chapter introduces the research presented in this thesis. The reasons for and 

objectives of the research are described. An outline of the thesis completes the 

chapter. 

1.1 Background 

This thesis is about estimating the capital costs of chemical process plants in the 

early stages of their development. 

A process is a set of connected actions which convert raw materials into a chemical 

product. The plant is the pieces of equipment for transforming materials (reactors, 

distillation columns, etc.), connecting pipework and other material transfer devices 

and infrastructure (laboratories, storage, etc.), that make the process happen. The 

capital cost of a chemical process plant is the investment required to design, 

purchase, build, install and start up its equipment, ancillary facilities and 

infrastructure. The Cost Of Production (COP) is the cost of producing one unit of 

main product, including for example, raw materials, utilities, labour costs, 

maintenance, tax, insurance, and financial provisions. 

In the early business planning and feasibility assessment stages of a project, cost 

estimates are required in order to evaluate viability and to compare the economics 

of the alternative processes and the different operating conditions of individual 

processes that are under consideration for the plant. There is limited knowledge 

about a new plant in the early stages of process development. Nevertheless, accurate 

cost estimates are needed to prevent incorrect decisions being made, such as 

terminating the development of a would-be profitable plant. 
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1.2 Reasons for the Research 

The initial motivation for this research was the inadequacy of existing cost 

estimation methods for use in the early stages of process development and the lack 

of new estimating methods in the open literature. The last significant new method 

to be published was by Klumpar et al (1988). Significant developments in 

computers and software have been made in the years since then. For example, 

powerful computers are now commonplace and developments in the computing 

fields of artificial intelligence have produced new techniques such as neural 

networks, fuzzy logic and case-based reasoning. 

These new artificial intelligence techniques were untested as methods for estimating 

the capital cost of chemical process plants. Yet, they have properties that make them 

worthy of consideration as estimating techniques. For example, the ability to 

simulate experts' reasoning with software that aids decision making, using the same 

rules as would be used by experts (expert systems). Techniques which generate 

solutions to problems using the existing data from similar problems (neural 

networks and case-based reasoning). 

Plant data supplied by Chem Systems Limited (see section 1.3 Chem Systems Data) 

allowed a comparison of the effectiveness of existing estimating methods with the 

new techniques over a wide range of chemical plants. 
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1.2.1 Original Brief 

The original brief provided for this research as specified by Dr. D. W. Edwards 

follows:-

ECONOMIC FEASIBILITY ASSESSMENT USING PLANT COST 

DATABASES 

Evaluation of potential processes for chemicals production needs 

highly qualified and experienced people and it is time consuming 

and expensive. However, there exists a huge body of data referring 

to existing plants, which could be used to develop correlations for 

use in such evaluations - thereby saving time and money. 

A collection of existing plant capital and operating cost and process 

data has been made available to Dr. David W. Edwards. The 

number of processes is about 230. The project will be: 

1) Devise a database structure for the data, load it and run 

consistency checks. 

2) Calculate statistics for publication from the data. 

3) Develop correlations for estimating the capital and operating 

costs of industrial-scale processes from data generated in the 

laboratory. 

4) Highlight potential technical difficulties, safety and 

environmental problems in the process design. 

These aims changed during the course of the research, with the third aim broadened 

in scope to include new techniques in addition to correlation and the fourth being 

omitted. 
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1.2.2 Research Aim and Objectives 

The aim of this research is to produce as accurate a method as is possible for the 

early estimation of the capital costs of chemical plants using data available at the 

time of compiling such an estimate. The first objecti ve is to find out the capabilities 

of the existing methods using the Chem System data, the second is to develop new 

estimating techniques and finally, after comparing the different methods, nominate 

the best method for early capital cost estimation. 

Artificial Intelligence techniques were thought suitable for estimating. The field of 

AI was reviewed with the objective of finding methods which could be used as 

novel techniques for the estimation of the costs of chemical process plants. Then 

techniques which showed promise were adapted for cost estimation and tested using 

the Chem Systems data. 
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1.3 Chem Systems Data 

Process specifications, capital cost and COP data for 210 different chemical process 

plants were supplied by the chemical industry consultancy firm Chem Systems 

Limited. This Chem Systems (CS) data has two important advantages. Firstly, it 

refers to a wide range of actual plants with commercially significant products and 

processes. This is illustrated by the wide range of values found for the plant capital 

costs and COP, as shown in table l.l. 

Secondly, the data is expressed on a common basis for all the plants: a typical, large, 

modern plant, forming part of a large chemicals complex in West Germany in mid 

1988. This avoids the problem encountered with most sets of plant cost data, that of 

converting the data from different sources to a common basis. Normally, in order 

for the cost data to be standardised upon a year and location requires cost indices 

(see section 2.3) to adapt data from different years and location factors (see section 

2.4) for plants in different locations. 

The cost data was provided in computer spreadsheets with a common format and 

the process and plant data were in the form of printed process descriptions and 

flow sheets showing main equipment items. Process descriptions were available for 

166 of the plants. Some descriptions were more detailed than others and therefore 

there were variations in the number of chemical process plants for which a value 

was known for the various process specifications. 

Table 1.1 Range of Values for the CS Data 

Capital Costa Cost of Production Capacity 

(million $ US) ($/tonne of main product) (tonnes/year) 

Average 52.5 1050.4 112000 

Maximum 330.0 7719.7 990000 

Minimum 2 32.8 2250 

Standard Deviation 56.7 1048.2 144000 

a All costs are for plants constructed in West Germany in mid 1988 
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The values of the following process specifications were provided in the CS data:-

• Number offunctional units: The number of significant steps in the chemical 

plant process. 

• Capacity: The amount of product that a plant can produce 

within a given period, usually a year. 

• Throughput: 

• Maximum temperature: 

• Maximum pressure: 

• Materials of construction: 

• Phase of process: 

A measure of the amount of material passing 

through the process. 

The maximum temperature reached during the 

process. 

The maximum pressure reached during the process. 

The materials required to make the pieces of 

equipment in the plant. 

The physical state of the materials that pass 

through the plant, for example, gas, liquid, solid or 

a combination. 

The CS data set is large and diverse compared with that used in the derivation of 

other methods. The published research on chemical plant cost estimation uses the 

known data of only a few plants, averaging about 40 per method, and for some of 

the methods the data used is only for plants of a certain type. For example, Gore 

(1969) provides a method for gas phased processes. 

Estimating methods use data from plants constructed at some point in the past. 

He!1ce, there is a need to correct for the changes in costs due to inflation and other 

factors, when estimating the costs of a new plant. In this thesis the cost estimate is 

calculated for the same year as that of the data used to produce the estimate. So 

updating is avoided. The important concerns of the research in this thesis are the 

techniques used for cost estimating and not issues, such as the effects of inflation. 

A database was devised for storing the data for the chemical processes as supplied 

by Chem Systems Limited using the PARADOX relational database management 

system. 
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1.4 Outline of Thesis 

Chapter 2 introduces capital cost estimation, explains its importance and classifies 

estimates prepared during the development of a new chemical plant. 

Chapter 3 describes published early capital cost estimation methods. The methods 

are grouped into three types of estimate: exponent, factorial and functional unit. 

In chapter 4 the performance of methods used for the early estimation of capital 

costs of chemical plants is assessed. 

A new method for the early estimation of the capital cost of chemical plants is 

described in chapter 5. The methods are developed from the CS data using standard 

regression techniques. 

Chapter 6 assesses the effect that computers have had on capital cost estimating and 

then looks at how the latest computer techniques could be used in the future. 

The fuzzy matching methodology and its suitability for capital cost estimation are 

explained in chapter 7. 

The results achieved when using fuzzy matching to estimate the capital cost of 

chemical plants are presented and analysed in chapter 8. 

The final chapter discusses why fuzzy matching is a better capital cost estimating 

technique than those that already exist. There is also a brief discussion of how fuzzy 

matching could be applied to other fields of chemical engineering. 
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Chapter 2 

COST ESTIMATION 

This chapter introduces capital cost estimation, explains its importance and 

classifies estimates prepared during the development of a new chemical plant. 

2.1 Capital Cost Estimation 

Developing a new chemical process and then designing and building the plant to 

implement it takes a long time and costs a lot of money. Mter the initial idea or 

identification of business opportunity, the work starts with laboratory experiments 

and simple design studies, it proceeds through a small-scale or 'pilot' plant and 

more detailed designs. The whole undertaking culminates in the detailed drawings 

and specifications from which the plant is built. 

The capital cost of .the plant represents the expenditure of current wealth in the 

expectation of future benefits. An accurate Capital Cost Estimate (CCE) must be 

determined for a proposed plant in order to gauge the size of investment and to 

assess whether the plant can generate sufficient returns to make this investment 

worthwhile. A detailed CCE is also used for project cost control during 

construction and commissioning. 

The total capital cost investment is split into two parts, the Battery Limits Capital 

Cost (BLCC) and the Offsites. 

The BLCC corresponds to the cost of the manufacturing installation of the plant, 

including its equipment, preparation of the site and construction. The 

manufacturing installation is considered to be the part of the plant which imports 

the raw materials, utilities (such as electricity, water, fuel and refrigeration) and 

other required chemicals, catalysts and solvents. It exports the manufactured 

products and any by-products and surplus generated utilities. 
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The offsites investment covers the cost of: the equipment that produces and 

distributes the utilities (such as steam boilers and cooling towers), storage 

facilities for the raw materials and final products, roads, waste disposal facilities, 

buildings and laboratories. 

There is a problem with apportioning the cost of the offsites when the plant is part 

of a multi-plant site. These type of sites share the offsites costs, for example the 

cost of the roads from the site is split between all the plants. So the offsites costs 

for a plant in a multi-plant site is lower than those for an equivalent plant on a 

single plant site. 

Concentrating on estimating the BLCC part of the capital costs avoids the above 

problem with offsites. Hence, the capital cost estimating methods that are 

developed later in this thesis are all for the estimation of the BLCC. 

Capital cost estimates are made at various stages during the development of a 

chemical plant and are a key input to the decision whether to continue with the 

project. In the later stages of design there are well-established and accurate 

estimation methods. However, the large costs incurred while developing a new 

chemical process are a powerful incentive for using quick and accurate methods to 

estimate the capital cost and then distinguish between economic and uneconomic 

plants at an early stage. Also, methods which produce a cost estimate quickly will 

cost less to use. 

The estimates are made before project completion and with incomplete 

information, so some error is inevitable. The error decreases as more information 

becomes available about the plant during its development from an idea to a fully 

operational plant. The error of any estimate must be minimised without incurring 

too great an increase in the cost of producing the estimate. This is illustrated by 

plotting the increase in cost versus accuracy of estimate, see figure 2.1. 

The cost of an estimate with a certain accuracy is represented by the relative cost 

factor. This factor is calculated by dividing the cost of an estimate with a 

particular accuracy by the cost of developing an estimate with an accuracy of ± 
30%. For example, if an estimate with an accuracy expected to be in the range of 

±5% costs ten times that of an estimate with an accuracy of ±30%, then its cost 

factor would be 10. 
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Figure 2.1 Relationship Between Cost and Accuracy 
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Figure 2.1 shows how the cost of estimating starts to rapidly increase as an 

accuracy of 10% or better is attained (Kbarbanda and Stallworthy, 1988). 
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2.2 Classification of Capital Cost Estimates 

The American Association of Cost Engineers (AACE) published in 1958 a 

generally accepted classification of the different types of estimate with the 

accuracy that should be achievable by professional estimators. The AACE 

classification of estimates is shown in the first four columns of Table 2.1. Garrett 

(1989) has added 'realistic' error bands, which he claims should be achievable by 

the 'average engineer', and his own estimate of the cost of developing the 

estimates. He argues that his error estimates are more reasonable, particularly in 

the early stages, when professional estimators would not be involved. 

Table 2.1 shows that the 'realistic' accuracy achieved by 'average engineers' in the 

early stages of process development is poor, while the estimates are costly. Even 

the first, 'back-of-envelope' calculation can cost $5,000, while the smallest error 

realistically achievable is ±40%. The expected accuracy for the earlier estimates 

will in fact vary depending on the requirements and procedures of the company 

considering constructing the new chemical plant. This is due to the varying 

amount of information about the process that is required for an early estimate by 

different companies. 

There are numerous ways of classifying the different types of capital cost 

estimates for chemical plants (Liddle, 1978). This leads to confusion in the 

terminology, for example, Jelen and Black (1983) call the first two estimate stages 

the preliminary estimates, but the same name is used for the third estimate in the 

AACE classification. There would be less confusion if the estimates were 

classified by their purpose, as opposed to using names which have different 

meanings for different classifications (Liddle, 1978). The classifications defined 

by AACE in 1958 are used throughout this thesis. 

The techniques used to compile the various types of estimate are well documented 

in the literature and so only a brief explanation of the five AACE types of 

estimates follows. The descriptions mention: the names used in other 

classifications, how the estimate is calculated, the information that must be 

available to calculate the estimate, and the purpose of the estimate. The 

explanations are a general outline of each estimate and variations will be found 

for different companies. 
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Table 2.1 Characteristics, Accuracy and Cost of Capital Cost Estimation 

Type of Prepared by Leads to Possible Errora Possible Cost of 
Estimate Approval of Expected Realistic Estimate (89 $',) 

Order of Individual Engineer Inexpensive Study 40% 40-100% 2,000-5,000 
Magnitude 

Study Project Group Expensive Study 25% 30-50% 11,000-50,000 

Preliminary Contractor, 'Detailed Design and 12% 20-35% 50,000-200,000 
Professional Estimator Market Research 

Definitive Contractor Construction of Plant 6% 10-15% 150,000-700,000 

Detailed Contractor Continue Construction 3% 5-10% 1_5%b 

a ±Percentage of Capital Costs bpercentage of Capital Costs 

This thesis is concerned with the first two stages of the AACE system. The new 

methods described in later chapters are alternatives to the existing methods used 

when making an estimate of the capital cost in the early stages of development, 

that is the order of magnitude and study estimates. 

2.2.1 Order of Magnitude 

The Order of Magnitude is also commonly known as a 'back-of-envelope', 'seat of 

the pants', 'quickie', 'guesstimate', or 'ball park' estimate. The estimate should be 

inexpensive and quick to prepare, as the names suggest. 

Historical data for existing plants is often used to calculate this type of estimate. 

The estimate is normally an 'exponent estimate', and is calculated by using the 

'sixth tenths rule' (Williams, 1947b) or 'two thirds power law'. The capital cost of 

an existing plant, which uses the same process as the new plant, is multiplied by a 

factor calculated as the ratio of the capacities of the new and existing plants raised 

to an exponent which is on average between 0.6 and 0.7. The range of possible 

values for an exponent is between 0.5 and 1. The method is described in more 

detail in Chapter 3. However, the sixth tenths rule for overall plant costs can not 

be used when the proposed plant uses a new process. 

Another way to estimate the capital cost at this early stage is for a skilled 

estimator to find a plant for which they had previously estimated the capital cost 

or which they know about, and which is 'like' the new one. They then adjust for 
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any slight differences using various explicit or implicit 'rules' and produce an 

estimate. For example they might use the sixth tenths rule for the difference in 

capacity. This estimating method is emulated later in the thesis by fuzzy matching 

(see chapter 7). 

The 'functional unit estimates', first developed by Zevnik and Buchanan (1963), 

are also used at this stage (they are described in chapter 3). The number of main 

equipment units can be found from the plant block diagram or process flowsheets 

and then used to multiply an average unit cost calculated from other process 

parameters known in the early stages of design. 

The estimate is used as a rough screen of further interest in different process 

proposals. A high contingency of 30%, if not more, must be allowed because the 

level of error of the estimates at this stage is in the range 40-100%. 

2.2.2 Study 

The study is alternatively known as conceptual, evaluation, predesign, feasibility, 

or factored CCE. It uses 'factors' to multiply the equipment costs of the plant to 

allow for installation and ancillary equipment. Some functional unit methods are 

also used at the study stage, as they require data which is not known until this 

later stage of development. 

The first method to use factors was developed by Lang (l947b). Lang multiplied 

the total equipment cost by a single factor to produce an estimate of the capital 

cost of the plant. In other methods (Hand, 1958) different factors are used for 

different types of equipment or an overall factor is calculated by combining 

factors calculated from different process parameters (Hirsh and Glazier, 1960). 

The complexity involved with calculating the factors varies. These factorial 

methods are described in more detail in Chapter 3. 

In order to estimate the equipment costs a preliminary process flow sheet must be 

prepared that shows all the major items of equipment. Then material and energy 

balances are needed to provide the process pressures, temperatures and stream 

compositions for each major piece of equipment. Next the pieces of equipment are 

sized and their materials of construction determined. Finally, sometimes a factor 
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is determined which represents the complexity of the plant. Then with all this 

information an estimate of the equipment costs can be made. 

The sixth tenths rule has been adapted from capital cost estimation to the 

calculation of equipment costs from previously constructed pieces of equipment 

costs. An equipment list for the new plant is required and so the estimate 

produced is a study estimate. 

The accuracy of this type of estimate is expected to be around 25%, although 

Garrett (1989) maintains that their accuracy is more likely to be in the range of 

30-50%. 

The estimates found at this stage are agam used to analyse the economic 

feasibility of new processes and to compare the capital cost for different processes 

or process variations, such as a larger capacity. The company must be confident 

that the investment needed to construct the plant is affordable and will result in a 

profit. The approval for an expensive study by contractors and professional 

estimators depends on the results of this feasibility study. 

From this point in the sequence of estimates the BLCC is based upon equipment 

costs derived from quotations and contracts with manufacturers, rather than 

process data. The estimate shifts from being based on previous plant and 

equipment costs to actual equipment quotations and estimates of material and 

labour requirements. 

After this stage professional estimators and the companies that will construct the 

equipment and plant are required for the calculation of the other types of 

estimates listed in table 2.1. The development needed is of a greater detail and not 

comparable with the early estimates on which this thesis concentrates. However a 

brief description of these later stages of estimates follows for the sake of 

completeness. 

2.2.3 Preliminary 

A preliminary estimate is also know as a budget, execution or scope estimate. 
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The professional estimator requires the specifications used in the study estimate 

but in more detail. The piping and instrumentation diagra.ms must be available 

(PIDs). A plot plan is also required, including storage areas, warehouses, etc. A 

more detailed development of the plant means that the process parameters are 

more likely to be correct. This means the factors calculated from the process 

parameters are also better and so there is a higher degree of confidence in the 

capital cost estimate. Also, the major equipment costs are at least quoted over the 

phone by the equipment vendors and in some cases provided in written detail. 

The improved accuracy is sufficient for approval from the management of the 

company commissioning the plant for the provision of funds for further detailed 

design and development. 

2.2.4 Definitive 

The definitive estimate is also known as the project control estimate. 

The plant design details are almost complete and in the majority of cases finalised 

at this stage of estimate. Nearly all the quotes for major equipment will have been 

received. The construction schedule and labour costs are also calculated. 

With this level of information a definitive estimate is made with an accuracy 

within ±\O%. The funds for plant construction are authorised and the plan for 

project cost control is set. 

2.2.5 Detailed 

Detailed estimates are commonly called the final, tender, control, fixed price, firm 

price and contractors price. 

All the design, drawing and specifications are complete. An estimate is made 

based on the actual equipment costs, labour projections and a scale model. 

The accuracy of the estimate should be within ±5%. Allowing the plant 

constructors to give a 'firm' price for cost of construction to the client. This 

confirms the cost of constructing the plant. 
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2.3 Cost Indices 

A cost estimate is required before a plant is built, therefore the estimate is needed 

for the current year or some point in the near future. However, the methods used 

to estimate the capital cost in the early stages of development will have been 

derived from data for Previous years, therefore producing an estimate for that 

period in time. Cost Indices must be used to adjust for the difference in the cost of 

goods and services at the two different points in time. The cost index will nearly 

always increase the cost with time. In the case of chemical plant construction this 

will take account of increases in material prices and erection labour costs (I. 

Chem. E. and Assoc. Cost Engrs., 1988). 

The relationship used by a cost index is:-

P C H" al C [ Present value of Cost Index ] resent ost = Istonc ost x 
Historical value of Cost Index 

(2.1) 

There are different indices for different purposes and different countries. The 

malO ones are:-

United Kingdom cost indices: 

• Association of Cost Engineering (ACE) index for erected plant costs 

• Process Engineering (PE) index for plant costs 

USA cost indices: 

• Engineering News-Record (ENR) indices for building and construction costs 

• Chemical Engineering (CE) index for plant costs 

• Marshal! and Swift (M & S) index for installed equipment 

(formally know as Marshall and Stevens index) 

International cost index: 

• Process Economics International (PEI) index for plant costs 

Cost indices should only be used to update the type of costs for which they were 

specifically designed (Humphreys, 1987). For example, updating the capital cost 

of a complete plant using the M & S index would be inadvisable, as the index is 

for installed equipment costs. 
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The statistics used in the derivation of the cost index also need to be considered (I. 

Chem. E. and Assoc. Cost Engrs., 1988) as the cost index for capital costs is 

calculated by looking at the current data on relevant cost elements, such as 

environmental regulations, equipment and wages. Each of these elements is 

weighted in the calculation of the new value for the cost index. With the weights 

dependent upon the sort of plants for which the cost index is being developed. 

Therefore, applying a cost index to another types of plant will lead to a less 

accurate cost adjustment. The cost engineer makes a judgement on which of the 

available cost indices is most suitable by considering which cost elements are 

most relevant in the calculation of the capital cost for the plant under 

consideration. 

The usually accepted limit of the period over which indices can be used to correct 

costs is five years (Alien and Page, 1975). There will be a lack of confidence in 

the value for updates of over five years because indices do not take account of the 

comprehensive changes in legislation concerning environmental, health and safety 

standards, altering market conditions, technological advances, and productivity 

gains. Indices also tend to be updated about every five years and if the basis of the 

statistics used to derive them changes then misleading results may occur (I. Chem. 

E. and Assoc. Cost Engrs., 1988). 
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2.4 Location Factors 

Location Factors are used to adjust the capital cost of a plant constructed in one 

part of the world to the equivalent capital cost of an identical plant constructed in 

some other part. Location factors are available for countries and regions within 

countries. 

The location factor is for a set point in time, but a factor for a different date can 

be calculated using cost indices and exchange rates (I. Chem. E. and Assoc. Cost 

Engrs., 1988). However the use of cost indices means that changes for periods of 

longer than five years are open to doubt. 
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Chapter 3 

EXISTING METHODS FOR EARLY CAPITAL 
COST ESTIMATION 

This chapter describes published order of magnitude or study capital cost 

estimation methods. A literature survey found numerous papers on capital cost 

estimation methods. These methods can be split into three types. Those that 

estimate the capital cost of a new plant with data from operational plants, adapted 

by taking the ratio of capacities and raising by an exponent, these are called 

exponent estimates. In the second type the estimating methods use factors to 

multiply certain plant costs to produce a cost estimate for the overall plant, these 

are called factorial estimates. Thirdly, methods that use equations whose 

variables are the plant parameters known in the early stages of development and 

with the number of functional units included as one of the variables are called 

functional unit estimates. A review of the CCE methods found for each type of 

estimate follows. 

3.1 Exponent Estimates 

A simple sixth tenths exponent or two thirds power law method was introduced by 

Williams (1947b) for estimating the cost of equipment for a chemical plant, using 

the known cost of existing pieces of equipment and the ratio of the equipment 

capacities raised to the exponent. Williams mentioned that the exponent method 

would be suitable for estimating the capital cost of plants and this was shown to 

work by Chilton (1950). 

Exponent estimates are used in the very early stages of a process plants design and 

are therefore always an order of magnitude estimate. 

19 



c 
~ 

! 
E 
8 

Figure 3.1 Complete Plant Cost Estimating Chart 

10 100 

CapacHy (tonnes/day) 

1000 

There are two different representations of the method, one uses charts with capital 

cost versus capacity lines for particular processes (see figure 3.1). The other uses 

equations similar to equation 3.1, where the equations correspond to the lines on 

the chart. 

(
Capital cost) 
of new plant 

= (Capacity of new Plant)" x 
Capacity of old plant (

Capital cost) 
of old plant 

(3.1) 

The value of the exponent n varies between about 0.5 and I, with the value 

corresponding to the slope of the line. 

The method has been updated for charts to 1970 (Guthrie, 1974) and to 1987 

(Garrett, 1989) and for exponents to 1990 (Remer and Chai, 1990). Sixth tenths is 

a value of the exponent claimed to have general applicability, with specific 

exponents available for individual chemical processes (Rem er and Chai, 1990), 

see table 3.1. 
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Table 3.1 Example Process Exponents 

Process Product Size Range Exponent 

(1 000 tons/year) 

Acrylonitrile Acrylic Fibre 3-24 1.02 

Methanol Acetic Acid 2-64 0.59 

Hydrocarbons Acetylene 3-45 0.65 

Bauxite Alumina 34-365 0.54 

Recent analysis (Remer and Chai, 1990) has found the average exponent value 

over many processes to be around 0.67. Liddle (1992) has theoretically justified 

this two thirds power law for the cost of cylindrical vessels which keep their 

dimensional similarity by finding that the amount of material needed to construct 

the vessel increases in proportion to the two thirds power of the capacity. 

An exponent of 0.6 means that there is an economy of scale. That is, as the 

capacity of a plant is increased then the resulting increase in capital cost is not as 

great. For example, doubling the capacity would result in the capital cost 

increasing by a factor of 2°·6 or 1.6. 

The variation of the value of the exponent for specific chemical plants is 

illustrated by considering two plants at the different ends of the possible range of 

exponent values. A sulphuric acid plant has major plant items which increase in 

cost at a slower rate than the capacity, due mainly to the amount of material 

needed to build the equipment not increasing as quickly as capacity. Therefore it 

has a very low exponent of 0.54. At the other extreme, a polyethylene plant has a 

number of parallel production lines and a large increase in size requires further 

production lines. There is no economy of scale and hence such plants have a very 

high exponent of 0.97. 

However, the capacity of a plant can not be increased indefinitely and result in an 

economy of scale. The plant reaches a capacity where the pieces of equipment can 

not be fabricated or transported due to their size. Before this point is reached costs 

start to increase rapidly. Kharbanda and Stallworthy (1988) suggest that one 

exponent value is not adequate over all the possible capacities of a plant and there 

should be two or three different exponents for different capacity ranges. 
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The disadvantage of the exponent method is that it requires the capital cost to be 

known for an existing plant with a process identical to that of the new plant. 

Therefore, the method is no good for estimating the capital cost of plants with 

new processes. Also, the exponents for a specific process are calculated from the 

gradient of the line between two or more points, plotted on a graph of capital cost 

versus capacity, for operational plants using the same process. An exponent can 

not be calculated for a process when there is only one operational plant using that 

particular process. An assumption can be made that the process is average and 

therefore the exponent needed is the average of all other processes where a 

exponent has been calculated (Garrett, 1989). 

Uppal and Van Gool (1992) have found that the best accuracy obtainable from the 

exponent method is ±40%. 

Two other methods, which are similar to the exponent method, replace the 

capacity with the cost per unit of product or the yearly value of product sold (the 

turnover ratio) (Garrett, 1989). The relationship between these quantities and the 

capital cost of the plant is found from data on existing plants, as in the exponent 

method described above. These methods are only mentioned briefly as they have 

an accuracy, at best, of ±IOO% (Hill, 1956). The accuracy of the methods is poor 

because a chemical product which is cheap to produce will be estimated to have a 

low capital cost. However, the product will often be sold in large quantities and 

therefore be produced by a plant with a large capacity and a higher than expected 

capi tal cost. 
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3.2 Factorial Estimates 

Lang (l947b) introduced the first factorial method for capital cost estimating, and 

proposed a relationship between the cost of plant equipment and the capital cost 

(Lang, 1948), see equation 3.2. 

C = f. E (3.2) 

Where: C = Capital cost. 

f = Factor. 

3.10 for solid processes. 

3.63 for solid and fluid processes. 

4.74 for fluid processes. 

E = Delivered equipment costs. 

The equipment costs may be established from a mixture of quotations from 

vendors, previous equipment costs and any published data. The costs can be 

scaled up using exponents, in an identical fashion to the method described in the 

last section. The way in which the equipment cost is found will determine at 

which stage of estimation the Lang method can be applied. Quotations will mean 

using the method at the study stage, but costs from previous plants enables an 

order of magnitude estimate to be made, when the equipment list is known. 

The overall factors are in fact made up of four parts, one for foundations, 

supports, chutes, vents, insulation and installation of equipment, another part for 

piping costs, a third for construction costs, that is the civil engineering and 

buildings and the fourth for overheads. The overheads costs are for contingency, 

temporary constructions, engineering expense and engineer/contractor fees (Lang, 

1948). The factors used were calculated from the analysis of 14 preliminary 

estimates for chemical plants. 

Lang (1948) classified processes into three types:-

• Solid 

• Solid and Fluid 

• Fluid 
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Factors were then determined for each type of process. Cran (1981) suggests 

using a universal factor of 3.45, instead of classifying the plants. This factor is the 

average of the factors for the 14 plants analysed by Lang. The average factor is 

acceptable due to the statistically low number of plants making the difference in 

factors insignificant. 

The factorial method has been developed by many authors. A brief discussion 

follows, but a detailed investigation was not possible as the methods were 

complicated and are used more at the preliminary and later stages of estimation, 

rather than in the early estimating stages researched in this thesis. Also, the CS 

data does not include any equipment costs and so the methods can not be tested. 

Hand (1958) introduced the idea of considering the plant one piece of equipment 

at a time and using factors to multiply the cost for each piece to produce the 

capital cost. Guthrie (1969) also developed factors which could be used to 

multiply the base cost of equipment in order to get the installed cost. The factors 

were split into two parts, one set of factors for multiplying the total equipment 

cost and the other set consisted of factors specific to particular pieces of 

equipment, for example columns, furnaces, heat exchangers etc. Comprehensive 

data on 42 existing plants was used to derive the specific factors. 

Chilton (1960) used factors for 8 different components of a chemical plant to 

produce an estimate of plant costs from the total installed equipment costs. The 

factors were for the following components:-

• Piping 

• Instrumentation 

• Manufacturing buildings 

• Auxiliary facilities 

• Outside production lines 

• Engineering and Construction 

• Contingencies 

• Size 

The value for each factor was determined using information about the plant. For 

example, the auxiliary facilities factor would require a knowledge about where the 

plant was to be built, the facilities already provided at the site and the new 
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facilities required by the new plant. The detailed nature of this method meant that 

the estimate could only be made at an even later stage in development than the 

other factorial methods. 

Hirsch and Glazier (1960) used more component factors than Lang and introduced 

the concept that the size of the factors depends on the average cost of the basic 

equipment. With an increase in average cost leading to a decrease in the factor. 

The reason for this is that the cost of some of the components, such as the 

manufacturing of buildings cost, that make up the capital cost will not increase in 

cost due to more expensive equipment but will be a relatively smaller value. 

Miller (1965) states that the factors depend on the size of the equipment, the 

materials of construction and the ·operating pressure. Which are in effect 

accounted for by the value for the average cost of pieces of equipment in the 

process. This theory of the average equipment cost being linked to size, 

construction materials and pressures in the process is the theoretical basis of the 

functional unit methods described in the next section. The method developed by 

Miller becomes very detailed when calculating the ten parts that make up the 

overall factor. With the factor used depending on process details and the average 

cost of equipment. The ten parts to the factor were:-

• Field erection of basic equipment 

• Foundations and structural supports 

• Piping 

• Insulation of equipment 

• Insulation of piping 

• All electrical equipment 

• Instrumentation 

• Miscellaneous 

• Architecture and structure of buildings 

• Building services 

The actual values for the factors should be developed by each company that uses 

the method. Taking into account the preferred requirements, that are specific to a 

company, for the construction of a chemical plant. For example, the requirements 

for the plant layout, instrumentation techniques, degree of oversizing and 

provision of installed spares will all effect the value of the factors. 
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The stage at which the factored method is used and its resulting accuracy depend 

on how the equipment cost is established and how much detail is needed for 

determining the factors. The experience of the estimator is also important in 

selecting the best values for the factors. If Lang factors are used and the 

equipment costs are calculated from a basic flow sheet of the major equipment 

pieces then an order of magnitude estimate is possible. However, using a 

complicated method, such as that devised by Miller (1965), and equipment 

quotations from the manufacturer will provide estimates in between the study and 

detailed estimation stages. 
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3.3 Functional Unit Estimates 

Functional unit estimating methods use the values of the fundamental process 

parameters known in the earliest stages of process development to predict the 

capital cost of the corresponding plant. Examples of these parameters are the 

number of functional units, product capacity or maximum throughput (for 

processes with a low conversion reaction), reaction pressure, temperature, and 

materials of construction. These process parameters are known as the Attributes 

of the plant for the rest of this thesis. An explanation of these attributes and their 

usage, for example maximum, minimum or average temperature, are best 

illustrated by describing how they are used in each of the existing functional unit 

methods. 

Functional unit estimation can be an alternative to factorial methods, but is 

normally used to produce estimates at an earlier stage than is possible with 

factorial methods. With estimators tending towards one or the other of the 

methods, for example, Garrett (1989) prefers the factorial methods. The major 

difference between the two methods is in the way equipment costs are considered. 

The factorial method requires a value for the cost of each piece of equipment in 

the plant. Whereas, functional unit methods in effect use the values of the 

attributes for a particular plant in the derived equations to estimate the average 

cost of a unit. With the unit consisting of one or more pieces of equipment and 

auxiliaries. 

The stage at which the functional unit methods can be used to estimate depends, 

like the factorial method, on the parameters used in the equation(s). Most methods 

require data available at the study stage. 

The methods have been derived by statistical analysis of existing plant data and 

are usually expressed by a combination of equations, charts, tables and plant 

classifications. Most of these methods assume that the process route and outline 

flowsheet, that is raw materials and sequence of significant process steps to the 

product(s), has been worked out. 

The idea that the number of functional units influenced the costs of a chemical 

plant was introduced by Wessel (1953), who used the 'number of steps' in 

calculating the labour costs. Functional units (Zevnik and Buchanan, 1963) have 
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also been termed significant steps (Wilson, 1971), operating units (DeCicco, 

1968), major operating steps (Viola, 1981), process steps (Taylor, 1977), and 

process modules (Klumpar et aI, 1988), but they all represent the same basic 

concept. The term Functional Unit (FU) will be used in this thesis. 

The definition for a functional unit varies, but the following IS given as an 

example (1. Chem. E. and Assoc. Cost Engrs., 1988): 

a functional unit is a significant step in a process and includes all 

equipment and ancillaries necessary for operation of that unit. 

Thus the sum of the costs of all functional units in a process gives 

the total capital cost. 

The functional units split the process up into parts where a change occurs to the 

material passing through the plant, for example, a reaction or separation. 

However, the specific pieces of equipment which are used to achieve the change 

are not important as far as the method is concerned. Hence, these methods require 

a broad specification of the process and avoid the need to determine precise 

details about every piece of equipment. 

Determining the value for the number of functional unit attribute presents a 

difficulty. Counting the number of functional units in a process is subjective, 

because it depends on what the cost engineer takes to be a significant step in the 

process. There is no precise definition of a functional unit, and the methods use 

different definitions. 

Twelve different examples of functional unit estimation methods are described in 

their chronological order. Methods that have been updated to nearer the current 

year using cost indices have the most recent equation shown and the year of the 

original derivation stated. A cost index would be used when an estimate is 

required for a year different to that for which the method was derived, see section 

2.3. 

An analysis was made of the occurrence of the different attributes in the twelve 

functional unit methods for early capital cost estimation that are described later. 

This showed which chemical plant attributes were occurring most frequently and 
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Table 3.2 Number of Occurrences of Attributes in Functional Unit Methods 

Attribute Occurrences 

Number of Functional Units 11 

Pressure 10 

Temperature 9 

Materials of Construction 9 

Capacitv 7 

Phase of Process 6 

Throu2hput 5 

Process Type 1 

are therefore considered by other authors as the most important attributes to 

include when capital cost estimating, see table 3.2. 

The number of functional units is the most common as would be expected, 

because this is the name given to the methods after all. However, capacity and 

throughput are alternative ways of representing the volume of material passing 

through the plant and when added together total 12, making this the most popular 

attribute. 

Some process parameters in the CS data are not used in the functional unit 

estimating methods. These unused attributes were the workforce and the number 

of reaction steps, a description of these attributes is given in section 5.!.!.!. 
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3.3.1 Hill 

Hill (1956) was the first to present a short cut capital cost estimating method that 

uses something akin to functional units. However, it differs slightly from the rest, 

because a major piece of equipment in a process can be counted as one unit 

(stripper, absorber), two units (compressor) or as even more units, depending on 

the relative cost of a particular piece of equipment. The method is similar to 

factorial methods except that the installed equipment costs are estimated by 

equation (3.4). The factors developed by Chilton (1949) give the value for F. This 

method was developed for fluid processes. The equation used is:-

C =F.IEC (3.3) 

C = Capital cost in 1954 US dollars. 

F = Chilton factor to allow for piping, instrumentation, manufacturing 

buildings, auxiliaries, outside lines, engineering and construction, 

contingencies and size factor. 

IEC = Installed Equipment Cost in dollars. 

= N. [~r. 30000 (3.4) 

N Total number of units. 

Q = Capacity in million Ib per year. 
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3.3.2 Zevnik and Buchanan 

The description of this method (Zevnik and Buchanan, 1963) was the first to use 

the term functional units. The method also involves the plant capacity and factors 

for the maximum temperature, maximum pressure and materials of construction. 

It was devised for use with fluid processes. The Cost Per Functional unit (CPF) 

is read from a graph of CPF versus capacity in million lbs per year. Different 

graphs are used depending on the Complexity Factor (CF), see below. DeCicco 

(1968) and Ward (1984) developed equations for calculating the CPF (equation 

3.7), which could replace the graphical method. 

The capital cost is calculated using:-

C = 1.33 . N . CPF 

C = Capital cost in 1963 million US dollars. 

N = Number of functional units. 

CPF = Cost per functional unit, determined from a graph using the 

complexity factor CF. 

(3.5) 

(3.6) 

Ft = Maximum temperature factor is determined from a graph 

of temperature OK versus temperature factor. 

Fp = Maximum pressure factor is determined from a graph of 

pressure atm. versus pressure factor. 

Fm = Materials of construction factor is read from a table of 

construction materials and factors. 
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The method with the graphs replaced by equation is:-

C = 

C 

Q 
k 

= Capital cost in 1992 pounds sterling. 

= Capacity in tons per year. 

= 6270 Q ::; 4464 tons per year 

or 

= 4400 4464 tons per year < Q 

N = Number of functional units. 

(3.7) 

Ft = I. 80 X 10.4 (TMAJ( - 300) Temperature above ambient (300K). 

TMAJ( = Maximum temperature in K. 

or 
= 0.57 - (I. 9 x 10.2 

. TMIN ) Temperature sub ambient. 

TMIN 

= 0.1 

= Minimum temperature in K. 

. log (PMAJ() Pressure above ambient (I atm). 

PMAJ( = Maximum pressure in atm. 

or 

= 0.1 . log ( P~ ) Pressure sub ambient. 

PMIN = Minimum pressure in atm. 

Fm = Read from a table, as in the original method. 
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3.3.3 Gore 

Gore (1969) developed his method using data from gas-phase processes. The 

attributes used are: number of functional units, throughput, maximum 

temperature, maximum pressure and materials of construction. 

Gore used throughput in place of capacity and calculated this by multiplying the 

capacity by an empirically derived recycle factor (see the discussion of the 

methods developed by Bridgwater for more details on the calculation of 

throughput). The reason for using throughput is that the size of the plant, and 

therefore the cost, is more closely related to the throughput as it represents the 

amount of material passing through the plant. Whereas, the capacity only 

measures the amount of product produced. 

Gore used a volumetric basis since the size of the equipment is dependent on the 

volume and not the mass passing through the process in gas-phased processes. So 

the throughput was in lb moles per year instead of a more normal lb per year, 

because moles are proportional to the volume of a gas. The reason for this not 

being a more common unit for throughput is the difficulty in expressing the 

throughput in molar terms, because of complex minerals and materials having 

unknown molecular weights (Bridgwater, 1976). 

Although a material factor is shown in equation (3.8), the dependence was never 

evaluated because the plants from which the method was developed were 

considered to be not significantly different in this attribute. The equation that 

Gore derived was:-

C = 4680 . N . QO.62 . T X 
• 

p0.39S • Fm (3.8) 

C = Capital cost in 1967 US dollars. 
N = Number of functional units. 
Q = Throughput, million lb moles per year. 
T = Temperature factor. 

= (T=x3~300) 

Tmax = Maximum temperature in Kelvins. 

x = 
QO.206 

2.52 
p = Maximum pressure in atmospheres. 

Fm = Materials of construction factor. 
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3.3.4 Stall worthy 

Stallworthy (1970) developed a sophisticated method from the Zevnik and 

Buchanan (1963) method. In previous methods the flow had been assumed to be 

the same throughout the whole of the process. Stallworthy modified the method to 

take account of the different conditions for side streams, such as recycles. The 

temperature, pressure and materials of construction must be known for each side 

stream, resulting in the method requiring a lot of information in order to produce 

an estimate. The attributes used are capacity, number of functional units, pressure, 

temperature and materials of construction in each stream, and the ratio of stream 

flow to the flow of the main output of product. 

The equation is:-

C = 

C 
A 

S 

Ni 
Ft; 
F p, 

Fm; 

Ri 

0.0075 

A 

s 

L (Ni' Ft; • Fp; • Fm; . Ri) 
i=l 

= Capital cost in 1970 pounds sterling. 

= 6.2 X 10-5 . Q.O.65 

Q = Capacity, long tons per year. 

= Number of main product and process side streams. 

= Number of functional units in stream i. 

= Temperature factor for stream i. 

= Pressure factor for stream i. 

= Materials of construction factor for stream i. 

(3.9) 

= Ratio of flow for stream i to the flow of the main product stream. 
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3.3.5 Wilson 

Wilson (1971) uses a quite simple method, with the attributes: capacity, number 

of functional units, temperature, pressure and materials of construction. An 

investment factor is also used, which is determined from a graph of the Average 

Unit Cost (AUC) versus the investment factor. The AUC is based on the dominant 

phase of the process and the capacity. The investment factor varies between about 

1.3 and 4.1 and is analogous to a Lang factor (1 947b). The material of 
construction factor, Fm' is read from a table of factors and materials of 

construction. With the factors value varying between I (mild steel) and 2 
(titanium). The pressure factor, Fp, applies when the pressure is outside of the 

range 1-7 bars and the temperature factor, Ft' applies when the temperatures is 

outside of the range 0- 100°C. Fp and Ft are determined from a graph of the factor 

versus the pressure (psia) or temperature (0C). 

C = 10 . f . N . AUC . Fm . Fp Ft (3.10) 

C = Capital cost in early 1987 pounds sterling. 

f = Investment factor. 

N = Number of functional units. 

AUC = Average unit cost. 

= 21 . yO.675 

Y = Capacity, tons (long) per year. 

Fm = Materials of construction factor. 

Fp = Pressure factor. 

Ft = Temperature factor. 
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3.3.6 Bridgwater 

Bridgwater has been the most prolific publisher of papers in early capital cost 

estimation. All of his methods have been for liquid and/or solid phase processes. 

His first methods were published in the early seventies and were based on work 

done by Gore (1969). 

Method I (Bridgwater, 1974) states that the capital cost is independent of the 

number of functional units and only depends on throughput. This method was 

derived from effluent treatment processes. However all his subsequently 

published methods including the most recent involve functional units. 

Method 2 (Bridgwater, 1974) and method 3 (Bridgwater, 1978) were last 

mentioned in papers published in 1976 and 1981 respectively; neither are now 

used, even by Bridgwater. Method 3 correlated the capital cost to the number of 

functional units, throughput, temperature and pressure. However, the method only 

provided an equation for plants with a throughput over 60,000 tonnes/year. 

Bridgwater uses (~) to represent the throughput of the plant, where Q is the 

plant capacity and the s is the 'conversion' factor. This conversion factor 

represents the efficiency at which the reactor is converting raw materials into 

product. A value of one would mean that all of the input into the reactor is 

converted to product. This is unlikely in a chemical process and so the efficiency 

will normally be lower than one and therefore the throughput value will be higher 

than the capacity. 

The current Bridgwater method is method 4 (Bridgwater, 1978). Which is still 

used and has been updated from 1978 too 1992 by Bridgwater (Bridgwater, 

1994). The method uses less attributes than the previous two methods and is split 

into two equations. The one that is used depends on the throughput of the plant. 

He also used the same variables in a linear equation but the results were not 

improved. 
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Method 1 

C = 39. GO.83 (3.11) 

C = Capital cost in 1974 pounds sterling. 

G = Throughput, gallons per hour. 

Method 2 

C (3.12) 

C = Capital cost in 1969170 pounds sterling. 

N = Number of functional units. 

Q = Capacity, long tons per year. 

s = Reactor "conversion". 

( weight of desired reactor Product) 
= 

weight of reactor input 

T = Maximum temperature, QC. 

n = Number of functional units operating at a temperature above T. 
2 

p = 

n' = 

Maximum pressure, atm. 

Number of functional units operating at a pressure above .£. 
2 
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Method 3 (only valid for Q > 60 000 tonnes per year) 
s 

(
Q)O.665 (2j8 x 10·' .Q) C = 193. N. - e . rO.022 • p.O.064 
S 

C = Capital cost in first quarter 1975 pounds sterling. 

Q = Capacity in tonnes per year. 

e = Natural logarithm base, 2.71 

T = Maximum temperature, 0c. 
p = Maximum pressure, atm. 

Other symbols are the same as in method 2. 

Method 4 

C = k.N·(~r 

C = Capital cost in 1992 pounds sterling. 

Q = Capacity in tonnes per year. 

k = Constant. 

(3.13) 

(3.14) 

k 133300 
Q 

= :s; 60 000 tonnes per year 
s 

k = 1520 60 000 tonnes per year < Q 
s 

X 0.3 
Q 

= :s; 60 000 tonnes per year 
s 

X = 0.675 60 000 tonnes per year < Q 
s 

Other symbols are the same as in method 2. 
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3.3.7 Alien and Page 

This is a complicated estimating method (Alien and Page, 1975) and is hard to use 

in the early stages of plant design because the method requires a lot of plant data, 

some of which is unlikely to be known at this point in design. The method sets out 

to simplify the Stall worthy method by not requiring data about each stream. 

Throughput, number of functional units, maximum temperature, maximum 

pressure, and material of construction are used in the estimation of the capital 

costs. This method can be used to estimate the capital cost of a process for any of 

the material phases that are possible for a chemical plant. 

C = f DEC (3.15) 

C 

f 

DEC 

= 
= 
= 
= 
= 
N 

SF 

Capital cost in 1972 US dollars. 

Factor allowing for other costs outside DEC. 

4.76 for fluid processes. 

Delivered equipment cost. 

N . SF . BIC 

= Number of functional units. 

= State factor 

= Ft . Fp . Fm 

These three factors are calculated using Wilson's techniques. 

Ft = Maximum temperature factor. 

Fp = Maximum pressure factor. 

Fm = Mean materials of construction factor, Wilson factors 

used. 

BIC = Basic item cost, read from graph using TP value. 

TP = Throughput, Ib mol/year. 

= CAP. FF . PF 

CAP = Total plant feed, Ib mol/year. 

FF = Flow factor. 
L N (Number of input and output streams) 

1 for each functional unit 
= 

PF = Phase factor. 

= 0.0075 + VI 
N 

N 

VI = Volume items - number of main plant items 

which operate with material in the gas phase. 
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3.3.8 Taylor 

Taylor devised a method for ICI using "Process Step Scoring" between 1972-75 

(Taylor. 1977). For each significant process step, basically another term for a 

functional unit, a complexity score is calculated. The process steps are actually 

defined by example in the paper. The complexity score for each process step is the 

sum of scores: 0, 1,2 or 3 for the following parameters: 

• Relative throughput 

• Reaction time 

• Storage time 

• Temperature 

• Pressure 

• Materials of construction 

• Explosion 

• Dust 

• Odours 

• Toxicity 

• Reaction in fluid bed 

• Distilling materials 

• Tight specifications 

• Film evaporation 

The complexity score for each step is summed to get a costliness index and from 

this the capital cost. Therefore the method requires a lot of data to be known 

about the process. The constants K and p (equation 3.16) are derived from the 

regression between capital cost and the plants costliness index and capacity:-

C = K . I . QP (3.16) 

C = Capital cost. 
K,p = Constants 

I = Costliness index. 
N 

= L,1.3 Y
' 

i=l 

N = Number of process steps. 

Yi = Complexity score calculated for process step i. 

Q = Capacity, in 1000 tonnes per year. 
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Equation for continuous process plants 

C = 298 500 . I . Q039 (3.17) 

C = Capital cost in 1992 pounds sterling. 

Equation for batch process plants 

C = 298 500 . I . QO.6 (3.18) 

C = Capital cost in 1992 pounds sterling. 

41 



3.3.9 Timms 

Timms (1980) gives two equations for inorganic and organic gas-phase processes, 

a simple one with just capacity and number of functional units and a more 

complicated one with the extra attributes: maximum temperature, maximum 
pressure and a materials of construction factor, Fm. The Fm is quoted for steel 

only and varies between 1.0 (carbon steel) and 1.3 (high grade stainless steel) 

these factors are identical to the material factors developed by Wilson (1971). 

Method 1 

C = 8 300 . N . QO.615 (3.19) 

Method 2 

C = 3860 . N . QO.639 • Fm To.o66 p.O.OI6 
max • max (3.20) 

C = Capital cost in 1992 pounds sterling. 

N = Number of functional units. 

Q = Capacity, tonnes per year. 

Fm = Materials of construction factor, Wilson factors used. 

T=, = Maximum temperature, degrees K. 

Pmax = Maximum pressure, bars. 
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3.3.10 Viola 

This method was published in 1981 (Viola, 1981) and uses a plant complexity 

factor to account for the variability of plant costs due to plant complexity, overall 

operating conditions, materials of construction and plant throughput. The capital 

cost estimate is determined from a graph of capital cost versus the complexity 

factor K, with a set of curves for different capacities. 

Viola states that the major operating steps of the plant, which are equivalent to 

functional units, are the key influence on the capital cost. The other attributes 

used are pressure, materials of construction, throughput and the fraction of steps 

in the process that are solid/fluid mixtures. The correction factor for average 

throughput and the correction factor for pressure and materials of construction are 

found by reading off the factors value from a graph of correction factor versus the 

relevant process attributes. 

This method is applicable to solid/fluid and fluid phase only plants. 

SolidIFluid plant method 

K = N . S . cp(_1 -) . (I . 0.6 . fs) 
OxN 

Fluid plant method 

K 

C 

K 

N 

S 

= N . S . cp(_I_) 
OxN 

= Capital cost is read from graph using K and capacity, graphs 

derived from 1981 data. 

= Complexity factor. 

= Number of major operating steps. 

= Correction factor for pressure and materials of construction, 

read from graph. 

(3.21) 

(3.22) 

= Input to output ratio over the whole plant, raw material to product. 

= Average throughput correction factor, read from graph. 

= Fraction of major operating steps handling solid/fluid mixtures. 
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3.3.11 Klumpar, Brown and Fromme 

The method (KJumpar et al., 1988) was designed to cater for a wide range of 

processes and capacities. The plant capacity is replaced by the average throughput 

in this method. A lot of work has also gone into the description of the process 

modules, which is another phrase for functional units. 

C = k . F . N . G V (3.23) 

C = Capital cost, the year and currency will depend on the data from 

k 

F 

N 

G 

which the k is calculated, the value given below for k is for 1981 

dollars. 

= Constant factor, given as 1.1 x 102
• 

= Complexity factor. 

= 2 . (lOT + P + M) 

T = 1.8 X 10-4 . (t - 27) 

for t ~ 27DC (hot process) 

or 

= 2.0 x 10-3 
• (27 - t) 

for t < 27°C (cold process) 

t = Temperature in DC. 

p = 0.1 . log p 

for p ~ 1 atm (pressure process) 

or 

p = 0.1 . log (~) 
for p < 1 atm (vacuum process) 

p = Pressure in atmospheres. 

M = Material of construction factor, Zevnik and Buchanan factors 

= 

= 

= 

used. 

Number of process modules. 

Average throughput, Ibs per hour. 
(Sum of all module throughputs) 

N 

Module (
Sum of all the inlet and outlet ) 

stream flowrates in the module 
= Throughput 2 
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v = Exponent 

Constant exponent = 0.57 
Variable exponent = 0.83xl + 1.05x2 + 0.59x3 + 0.47x. 

+ 0.59xs + 1.07 x, + 0.6x. + 0.83xll + 0.4x12 (3.24) 

Xi = Number of process modules of type i divided by the total 

number of process modules. 

The constants for x6 ' x,, XIO were found to be zero, meaning that the value of 

exponent v was unaffected by the number of modules of types 6, 7, and 10. 

The different types of process modules or functional units are defined in Table 

3.3:-

Table 3.3 Different Types of Functional Units 

Type Parameter Changed Example of Example of Equipment 

Operation 

I Temperature Heat exchange Heater, cooler, exchanger 

2 Pressure Compression Compressor, blower 

3 Location of solids Receiving, storing Convevor system, reclaimer 

4 Location of liquids Liquid collection Systems of tanks, pumps 

5 Particle size Comminution Crusher, ball mill 

6 Particle size distribution Screening Screen, cyclone 

7 Solid body shape Casting, briquetting Extruder, press 

8 Storage Tank farm, pond 

9 Number of streams Liquid mixing Stirred tank, kneader 

10 Phase Melting, evaporation Furnace, evaporator 

11 Phase distribution Absorption Column, dryer 

of components 

12 Composition of isotope Chemical or Reactor 

nuclear reaction 
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3.3.12 Tolson and Sommerfeld 

This method, published in 1990 (Tolson and Sommerfeld, 1990), is the most 

recent method and the most simple, using only one attribute, the capacity. The 

author's idea was to develop a method which could be used without a process 

flowsheet, but still have an accuracy in the range expected for an order of 

magnitude estimate. Therefore, necessitating the omission of all the attributes 

used in the previous methods, with the exception of capacity. 

The method is not a functional unit method. However, it is included in this section 

as the equation is of a similar form to the functional unit methods and is not an 

important enough method to merit a section of its own. 

C = 0.75 . yO.677 

C 

Y 

= 
= 

Capital cost in 1987 million US dollars. 

Capacity in million lbs per year. 
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Chapter 4 

PERFORMANCE OF EARLY CAPITAL COST 
ESTIMATION 

In this chapter the performance of methods used for the early estimation of capital 

costs of chemical plants is assessed. 

4.1 Accuracy 

The performance of the estimating methods will be assessed by the accuracy of 

their estimates. Two metrics are used in this thesis to measure the estimate 

accuracy. The first metric uses a standard percentage error, Standard Estimate 

Error (SEE), calculated by:-

SEE (%) = (
Estimated capital cost - Actual capital cost) 

x 100 
Actual capital cost 

(4.1) 

The metric is the Average Standard Estimate Error (ASEE) of the capital cost 

estimates for a set of plants. It is calculated by taking the arithmetic mean of the 

absolute values of the SEE, calculated with equation 4.1. 

AlIen and Page (1975) pointed out that equation 4.1 assigns the same significance 

to errors that are above or below the actual value by equal ·amounts. However, 

there is no limit to the size of an overestimate, but there is a limit to an 

underestimate, because a chemical plant can not have a negative capital cost. This 

means that the possible error range is from -100% to an infinitely large positive 

percentage. Therefore, if the two extremes are judged to be equally significant 

then it follows that an underestimate is a worse estimate than an overestimate of 

the same amount. 

In order to assign greater significance to underestimates Allen and Page (1975) 

recommended the use of equation 4.2 to convert the SEE for an underestimate to 
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the SEE that would be obtained for an equivalent overestimate, Equivalent 

Estimate Error (EEE). 

EEE (%) = [ 
-1 00 x Underestimate SEE] 

100 + Underestimate SEE 
(4.2) 

However, an alternative equation, see equation 4.3, can be used to calculate the 

same EEE directly from any estimated capital cost which is less than the actual 

capital cost. 

EEE(%} [
Actual capital cost - Estimated capital cost] 

.. x 100 
Estimated capital cost 

(4.3) 

The second metric is defined as the average of the SEE for the overestimates and 

the EEE of the underestimates. This is the Average Equivalent Estimate Error 

(AEEE). 

The application of this equation results in a sizeable increase in magnitude for the 

negative errors. For example, an underestimate of -50% (half the actual cost) 

would be changed to an equivalent overestimate of + 100% (twice the actual cost). 

The AEEE more accurately reflects the effectiveness of the method and indicates 

when an estimating method is achieving a low ASEE by consistently 

underestimating. 

When looking at the error of an estimate there must be some consideration of the 

error in the 'actual' costs. The actual capital cost of a plant is the capital cost 

calculated once the plant has been built and started up, but it is only as accurate as 

the accounting systems used in its calculation. Therefore, the error calculated from 

the actual cost will itself have a certain amount of error. 

The rest of the chapter analyses the accuracy of the types of estimating methods: 

exponents and functional units. The accuracy of the methods claimed by the 

original author is compared to that found by others who have tested the accuracy 

of the methods and to that found when the methods are used to estimate the capital 

cost of the process plants in the CS data. Then the methods are adapted by 

normalising and re-correlating using the CS data. 

48 



4.2 Accuracy Claimed by Authors 

The actual accuracies claimed for functional unit estimates are listed in table 4.1. 

Early capital cost estimates should have an accuracy in the range of ±30% 

(Wilson, 1971), but a more realistic figure is ±50% (Garret!, 1989). Most authors 

of methods claim that the achieved average accuracy is within the range ±30% to 

±50%. The NIA stands for information 'not available' and all the errors are 

calculated using the ASEE metric. 

The resulting accuracy of methods tested by independent sources is shown in 

addition to the accuracy claimed by each author for their own method, see table 

4.1. Alien and Page (1975) tried four different methods and found that the 

estimates produced had a lot larger error than claimed when tried on 4 different 

processes (8 plants). The Stallworthy (1970) method produced the best estimates 

with an ASEE of under ±30%, a low ±18%. Ward (1984) found the accuracy of 

the two methods he tested on 8 processes to be slightly higher than claimed, but 

still close to the desirable ±30%. 

Table 4.1 Functional Unit Methods - Quantity of Data and Claimed Accuracy 

Method No. of No. of Accuracy Claimed Ward Alien 

Processes Plants by Author & Page 

Viola 28 N/A ±15% +33% 

Gore 11 65 ±20% 

Bridgwater (3) 16 24 ±20% 

Stallworthy N/A N/A ±20% +18% 

Hill N/A N/A ±25% +500% 

Zevnik & N/A N/A ±25% ±29 ±47% 

Buchanan 

Bridgwater (4) 16 24 ±25% 

Alien & Page N/A 8 ±25% ±25% 

Klumpar et al. N/A 20 94% within ±30% 

Wilson 16 N/A 81 % within ±30% ±43% 

Taylor N/A 45 95% within 

+36%&-26% 

Tolson & N/A 40 ±37% 

Sommerfeld 

Timms 103 N/A No Accuracy Claimed 
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Some of the functional unit methods were tested by Bridgwater (1978), but for 

estimating the cost of just one plant. This does not give any confidence in a 

method as it might be very accurate for the one plant but highly erroneous for all 

others. 

A more complete analysis of the accuracy of some of these methods is found in 

the next section, where the ability of the methods for estimating the capital cost of 

chemical plants is tested on the CS data. 
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4.3 Accuracy Obtained with CS Data 

The CS data provided a large sample of chemical plant data for testing the 

published methods. Moreover, all the data was on the same basis. The results of 

the tests undertaken are presented and discussed in this section. 

4.3.1 Exponent Estimates 

Garrett (1989) published a set of charts for estimating the capital cost of chemical 

plants using the exponent method. The charts were assembled from four sources: 

Guthrie (1974), Chemical Engineering (1973/1974), Kharbanda (1979) and 

construction notices in Construction Alert, published by the journal, Chemical 

Engineering. The CS data allowed the accuracy of the charts to be tested for 79 

plants, which is a large sample size in this field of research. 

The charts were for the estimation of the capital cost of a plant in April 1987; this 

differs by only one year from the CS data, which was for 1988. Cost indices were 

used to correct for the difference in cost year. The. use of indices is acceptable for 

differences of less than five years (Alien and Page, 1975). 

The capacity was stated in tonnes per day for the charts, whereas the CS data was 

in tonnes per year. The capacity quoted in the CS data was divided by 333.33 days 

in order to convert into tonnes per day, because the CS data was for plants that 

operated for 8000 working hours per year. 

The charts being generated from various different data sources led to problems. In 

some cases the offsites had been included with the capital cost, but in others it was 

left out of the cost and it was not possible to distinguish between the two. This 

meant that on average the charts should over estimate the BLCC of the CS plants 

and underestimate the sum of offsites and BLCC. This was found to be the case 

when the results were compared. However, the average error for estimates of the 

capital costs of the CS plants made using the charts provides a general idea of the 

potential accuracy of the exponent method. 

The exponent is found by taking the gradient of the line through two or more 

points plotted on a logarithmic graph of capacity against capital cost. Therefore, 

the capacity and capital cost must be available for two or more plants with the 
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same process for an exponent to be calculated. An assumed exponent was used in 

charts by Garrett when the data was known for only one plant. The assumed 

exponent had a value of 0.64, an average found from charts developed by Guthrie 

(1974). The plants with this assumed exponent would be expected to produce less 

accurate estimates. 

The lowest ASEE was ±70% which was found using the charts to estimate the 

sum of capital cost and offsites. This was achieved with the majority of estimates 

(81 %) being underestimates of the sum of capital cost and offsites. This high 

proportion of underestimates is confirmed by the AEEE 226% for the same 

estimates. The lowest value found for the AEEE was 154% (with a corresponding 

ASEE of±81 %). This was achieved when the estimates of the capital cost without 

the offsites had been updated using a cost index. The percentage of underestimates 

was then a more normal 63% of estimates. 

The conclusion from these results is that the exponent method does not produce 

accurate estimates for the capital costs, even allowing for the fact that the charts 

might be producing an estimate for the capital costs plus the offsites in some 

cases. The best AEEE of 154% is a large average error and its ASEE of±81% is 

near to the ±100% expected by Hill (1956). 

4.3.2 Factorial Estimates 

The factorial method estimates the capital cost by multiplying equipment costs by 

factors which allow for the other costs. The CS data had no equipment costs and 

so could not be used for testing the factorial methods. 

4.3.3 Functional Unit Estimates 

The functional unit methods were tested in three ways. Firstly, the equations were 

used as stated, apart from a realignment for the difference between a method and 

the CS data in the year of construction, location and unit of currency. The second 

and third tests made allowances for the fact that the equations had been derived 

from a different set of plant data and type of processes to that of the CS data. 
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The second test normalised the methods to remove any systematic error by 

correcting the estimates so that their average is the same as that for the actual 

capital costs. While in the third test the equations and methodology remained the 

same, but the equations were re-derived using the CS data. 

Table 4.2 shows how some methods are only applicable to processes with 

specified phase(s). The phase is the state of the majority of the materials as they 

pass through the plant, that is gas, liquid, solid or a combination of these. Fluid 

means the ability to flow and therefore represents gas and liquid phases. Such 

methods should be inaccurate when applied to the whole of the CS data, which 

includes chemical plants exhibiting all the different process phases and 

combinations thereof. For a method to be applied effectively to all ofthe plants in 

the CS data requires a realignment of the method so it represents all of the 

possible process phases and combinations. This is assuming that the method is not 

of a form which is only suitable for a certain phase. 

Table 4.2 Applicable Process Phases for Functional Unit Methods 

Method Applicable Process Phase 

Hill Fluid 

Zevnik & Buchanan Fluid 

Gore Gas 

Stallworthv All Phases 

Wilson Fluid and/or Solid 

Bridgwater (1) Liquid 

Bridgwater (2) Liquid-Solid 

Bridgwater (3 & 4) Liquid and/or Solid 

Alien & Page Fluid 

Taylor All Phases 

Timms Gas 

Viola Solid-Fluid, Fluid 

Klumpar All Phases 

Tolson All Phases 
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4.3.3.1 Testing the Methods 

Some of the functional unit methods were too complicated to be used for early 

capital cost estimation. Others required data not included in the CS data and so 

could not be tested. For example, the Stallworthy (1970) method needs data on the 

process streams. The following methods were not tested for the reasons listed:-

Hill 

Gore 

Stallworthy 

Bridgwater 

Hill provided no definition of which types of equipment to count 

as 1,2 or 3 units. 

The recycle data required for this method was unavailable. Also, 

Gore requires the throughput in moles per year, which could not 

be calculated from the CS data for liquid and solid phase plants 

because their number of moles is unrelated to volume. 

Certain values were needed for each of the process streams, 

which were not in the CS data. 

Method I: The throughput attribute was unavailable in gallons 

per hour. 

Method 2: The temperature and pressure were needed for each 

functional unit. These were not in the CS data. 

Alien and Page The throughput in moles per year and the number of functional 

Taylor 

Viola 

units in the gas phase were not included in the CS data. 

The complexity score was impossible to calculate because some 

values were not in the CS data. Also, the required values would 

not normally be known in the early stages of estimation. 

The materials of construction factor requires the percentage of 

the equipment which is fabricated from the special material, this 

was not included in the CS data. 

Klumpar et al. This method required the throughput for each module, which 

was missing from the CS data. 
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This left the following seven functional unit methods to be tested:-

I) Zevnik and Buchanan (Method 2) 

2) Wilson 

3) Bridgwater (Method 3) 

4) Bridgwater (Method 4) 

5) Timms (Method 1) 

6) Timms (Method 2) 

7) Tolson and Sommerfeld 

4.3.3.2 Methods used as Stated by Author 

The CS data refers to plants constructed in West Germany in mid 1988, with the 

costs stated in US. dollars. This meant that the accuracy of methods could only be 

tested by estimating the capital cost on this basis. Most of the methods had been 

updated (I.Chem.E. and Assoc. Cost Engrs., 1988) to estimate the cost in pounds 

sterling of a plant constructed in the UK in early 1987. 

The methods were updated to allow for the difference in construction years by 

using a factor derived from an appropriate cost index for the country in which the 

method was developed. These were a cost index published by Gerrard (1994) for 

the UK, and the Chemical Engineering (CE) index for plant costs for the USA. 

Then an approximate factor of two was used as a combined factor which took into 

account the change oflocation and the currency exchange rate in 1988. The factor 

resulted from multiplying the value 1.1 for changing the location of the plant from 

the UK to West Germany (I.Chem.E. and Assoc. Cost Engrs., 1988) by the value 

1.78 for the pounds to US. dollars exchange rate (Cost Engineer Journal). 

A standard set of 79 plants was used to compare the accuracy of the methods. 

Values for all of the attributes needed for each of the methods being tested were 

known for each plant in the set. The results are presented in figure 4.1. 
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Table 4.3 Accuracy of Methods used as Stated by Author on CS data for 

plants with Appropriate Phase 

Method Phase Number of Error 

Plants ASEE(±%) AEEE 

Zevnik & Buchanan Fluid 73 391 393 

Wilson Fluid &/or Solid 79 70 107 

Bridgwater (3) Liquid &/or Solid 38 43 84 

Bridgwater (4) Liquid &/or Solid 38 143 143 

Timms (1) Gas 22 532 532 

Timms (2) Gas 22 621 621 

Tolson & Sommerfeld All Phases 79 57 162 

The accuracy obtained when using the methods as specified by the authors, but 

adjusted for year and location was very poor. The best standard error (ASEE) was 

±50% when using Bridgwater (3). However, a lot of these estimates were 

underestimates, as shown by the significant increase in the value for the equivalent 

error (AEEE), 101 %. Bridgwater (3) also had the best AEEE. 

There are three reasons why the existing methods give such high errors. 

1) The methods have been updated to refer to the same cost year as the CS data 

by Bridgwater and the author. The period between derivation of the methods and 

the CS cost year (1988) is in many cases greater than 5 years. There is also the 

possibility of inaccuracies in cost indices. This will be corrected by normalising. 

2) The CS data set is different to the data sets used to derive the existing 

methods. With the data for different years, types of plant and from different 

sources. Re-correlating the equations will correct for this. 

3) The methods were developed for a certain type of plant (fluid, gas, solid etc.). 

This problem was tackled by classifying the types of the CS plants and then 

using each method on only the type of plants for which they were developed. 

The results are displayed in table 4.3. 
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The results did improve, but were still not within the desired error range. The 

Bridgwater(3) method produced the best AEEE of 84% and the lowest ASEE of ± 
43%. The improvement was about 20% for the methods using fluid phases, but led 

to an increase in error for the methods designed for vapour phase plants. This 

might be caused by the vapour phase plants being more diverse in their attribute 

values and capital costs. Therefore, making the representation of the capital cost of 

vapour phase plants by an equation more erroneous than other phase types. 

4.3.3.3 Normalised Methods 

This test normalised the method estimates, using equation (4.4), so that the 

average of the estimates is the same as the average of the actual capital cost values 

in the CS data. This procedure removes any systematic error. 

Normalised Estimate = 
Average Actual Capital Cost 

x Initial Estimate (4.4) 
Average Estimated Capital Cost 

For example, a method is used to estimate the capital cost and then requires a cost 

index to be used to correct for the difference in the year for which the estimate was 

produced and the year for which it is required. However, the cost index value 

might not be applicable for the plants being estimated and is say only two thirds 

the value required. Therefore, all the estimates are too low and need to be 

corrected. Normalisation produces a multiplying factor of 1.5 and this corrects the 

problem with the initial estimates. The normalising factors obtained for each 

method are listed in table 4.4 and the resulting accuracies shown in figure 4.2. 

Table 4.4 Factors for Normalising Methods 

Method Factor 

Zevnik & Buchanan 0.22 

Wilson 0.85 

Bridgwater (3) 1.23 

Bridgwater (4) 0.54 

Timms (1) 0.24 

Timms (2) 0.19 

Tolson & Sommerfeld 2.07 
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Table 4.5 Accuracy of Normalised Methods used on CS data for Plants with 

Appropriate Phase 

Method Phase Number of Factor Error 

Plants ASEE (±%) AEEE 

Zevnik et al. Fluid 73 0.22 65 115 

Wilson Fluid &/or Solid 79 0.85 59 115 

Bridgwater (3) Liquid &/or 38 1.13 43 73 

Solid 

Bridgwater (4) Liquid &/or 38 0.48 48 60 

Solid 

Thnms (1) , Gas 22 0.22 80 103 

Timms (2) Gas 22 0.20 90 122 

To Ison et al. All Phases 79 2.07 78 100 

The factors used to normalise the methods varied from 0.19 to 2.07. This wide 

range of values for the factors indicates that the methods were derived from very 

different sets of data to that of the CS data, with some closer than others. 

The performance of the methods is now much more comparable to that claimed. 

For all 79 plants an ASEE of ±53% was the best achieved, the method used was 

Bridgwater(3). With 84% the lowest ABEE, using Bridgwater(4), an improvement 

of 17% on the previous lowest equivalent error achieved when using the methods 

exactly as published. 

Applying the method to only the plants with the phase type for which the methods 

were designed, again led to an improvement (ASEE of±43%, ABEE of 60%), see 

table 4.5. This improvement was a significant 24% on the best ABEE when using 

the methods exactly as published and for the correct phase. 

The conclusion is that normalising the methods did considerably improve the 

accuracy of the existing methods examined. 
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4.3.3.4 Re-correlated Methods 

The third way of checking the methods was to use the same attributes and 

methodology, but to re-correlate the equations using the CS data. The accuracy of 

the re-correlated methods is shown in 'figure 4.3. The re-correlation was made 

using the statistical facilities available in the spreadsheet Quattro Pro. 

Comparing the results for the re-correlated methods to the normalised methods 

showed the ASEE to be improved by less than 1 % on average over all the 

methods. Whereas, the AEEE was on average improved by over 10%. The reason 

for this difference is that normalisation improves the estimate errors, but still 

leaves some large underestimates, which have a large error in the AEEE. The re

correlated equation is a better fit to the data and avoids large errors and therefore 

has a much better AEEE. 

Bridgwater (4) uses one of two possible equations, depending on the capacity of 

the plant be estimated. This method was simplified to one equation by re

correlating and resulted in a minimal loss of accuracy. 

The lowest AEEE for all 79 plants was 74% using the Bridgwater (3) method, 

compared with 101 % for the same method used exactly, and the lowest AEEE of 

84% after normalisation for the Bridgwater( 4) method. 

Re-correlating the methods using only the CS plants with the appropriate phase for 

the method resulted in an average improvement of ±2% for the ASEE, and 12% 

for the AEEE, see table 4.6. However, there was an improvement of only one 

percent for the lowest AEEE, to 59%, and an increase of ±4% was found for the 

lowest ASEE, when using either of the Bridgwater methods. 

Methods Timms (1) and (2) ",ere found to be better when re-correlated for all 

plants than for the gas phased plants for which it had been developed. Again, this 

is probably due to the gas phased processes being varied and difficult to represent 

with an equation derived by regression. 
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Table 4.6 Accuracy of Methods Re-correlated with CS Data for Plants with 

Appropriate Phase 

Method Phase Number of Error 

Plants ASEE (±%) AEEE 

Zevnik & Fluid 73 73 104 
Buchanan 

Wilson Fluid &/or Solid 79 64 96 

Bridgwater (3) Liquid &/or 38 47 59 

Solid 

Bridgwater (4) Liquid &/or 38 47 59 

Solid 

Timms (1) Gas 22 77 101 
Timms (2) Gas 22 75 96 

Tolson and All Phases 79 63 85 

4.3.3.4.1 New Equations for Methods 

The new equations derived by re-correlating are listed for each of the methods. 

Every equation which was re-correlated using the CS data is shown. The 
subsidiary equation, such as the ones for producing temperature factors Ft, were 

not re-correlated as the procedure for deriving them was unknown. 

The following equations will provide the capital cost in US. dollars of a chemical 

plant constructed in West Germany in 1988:-

Zevnik & Buchanan 

C = 9981. N : QO.436 • IO(F, + Fp + Fm) (4.5) 

Wilson 

c = 11025 . N . V°.44S • Fm . Fp . Ft (4.6) 
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Bridgwater (3) 

C = 70227. N . e(1.66. 10· . Q) (
Q

S

)0393 
T-O.157 • P -0.06 (4.7) 

Bridgwater (4) 

C k . N . (;r (4.8) 

k 17816 
Q 

~ 60 000 tonnes per year 
s 

k 3214 60 000 tonnes per year < Q 
s 

X = 0.443 
Q 

~ 60 000 tonnes per year 
s 

X = 0.586 60 000 tonnes per year < Q 
s 

The method was simplified to one equation for all throughputs with the AEEE 

increasing by only three quarters of a percent:-

k = 51 730 

X = 0.331 

Timms (1) 

C =20 967 . N • Q0434 

Timms (2) 

C = 6 187 . N • Q05 . Fm • T~~57 . p:~6 

To1son & Sommerfe1d 

C = 4.565 . V0429 

4.3.3.5 Methods with Materials Of Construction Omitted 

(4.9) 

(4.10) 

(4.11) 

The Materials Of Construction (MOC) attribute was used in three methods 

(Zevnik and Buchanan, Wi1son and Timms (2». There is an amount of uncertainty 

about the MOC data. The reason for this being that the CS data MOC were too 
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general or, in most cases, absent. Therefore, the MOC had to be found in available 

encyclopaedia of chemical processes which were again vague about the details. 

Also, the best method (Bridgwater (3)) did not use the MOC attribute. Therefore, 

the methods that did use the MOC were re-correlated without the MOC as an 

attribute and the results are presented in table 4.7. These results are for re

correlation using all the CS plants. 

However, the results are on average better by ±4% for the ASEE and 3% for the 

ABEE, when without the MOC. Indicating that either the materials of construction 

gathered from the CS data is not accurate or that the MOC is an unnecessary 

attribute in a method for estimating the capital cost. 

The results were very similar for the re-correlation using plants of the desired 

phase for the methods. 

Table 4.7 Accuracy of Methods without MOC attribute 

Method WithMOC WithoutMOC 

ASEE (±%) AEEE ASEE (±%) AEEE 

Zevnik et al. 72 102 67 98 
Wilson 64 96 58 92 

Timrns (2) 58 85 56 83 
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4.4 Existing Methods Conclusions 

Pre-design methods have generic disadvantages. The existing methods use 

equations which have been derived from the data available to the researcher and 

the lack of published, up-to-date plant cost data is a serious problem. According to 

Tolson and Sommerfeld (1990) data has been published by Zimmerman (1965), 

Haselbarth (1967), Guthrie (1969, 1970), and Drayer (1970), but none has 

appeared since. An indication of how hard it is to find plant data was given by 

Tolson and Sommerfeld (1990) who estimated the costs for certain processes and 

then asked for the reader to tell them if the estimates were correct. 

Most of the authors have used plant cost indices to update the cost data that they 

used to the year in which their method was published. The models that they 

derived must be further updated to the present day in order to use them now. 

However, the usual limit to the period for using indices to update is five years 

(All en and Page, 1975); it is not possible to update costs by 20 to 30 years and be 

confident in the results. This is because indices do not take account of the 

comprehensive changes in legislation concerning environmental, health and safety 

standards, altering market conditions, technological advances, and productivity 

gains. Indices also tend to be updated about every five years and if the basis of the 

statistics used to derive them changes then misleading results may occur. 

Even when the information available to the researcher is up to date, it will usually 

only be for a small number of processes, of a similar type, normally depending on 

the phase of the process. There is often too little data for the correlation to be 

statistically significant - most methods are derived from data for less than forty 

plants, see table 4.1. 

Many of the methods require arbitrary decisions about the process, where the basis 

for making the decision is not clear. These decisions are often about so-called 

'investment' or 'complexity' factors. Other methods cannot be used in the initial 

stages of design, which is the purpose of these methods, because they require 

design data that is not available then. For example, Stallworthy (1970) and Taylor 

(1977) developed methods that required a block flowsheet with a mass balance 

and the temperature, pressure and materials of construction for each block. 
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Figure 4.4 Comparison of Accuracy and Method of Best Result for each Test 
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Some methods have several equations, with the one used depending on the value 

of a particular process attribute. For example, Zevnik and Buchanan (1963) used 

different equations depending on the capacity, the change over point was at a 

capacity of 4464 tons per year. At this capacity, and with identical values for the 

rest of the attributes, two different values for the estimate are produced, with the 

higher estimate being 1.45 times that of the lower. This begs the question, which 

equation is best when the capacity is around the value at which the equation 

changes. 

Another problem is that some methods use graphical methods to provide factors, 

for the pressure, temperature and materials of construction. This is more time 

consuming than putting the figures into an equation. Although Ward (1984) 

changed the graphical factors used by Zevnik and Buchanan (1963) into equations. 

The average error of the methods were found to be a lot higher than that claimed 

by the authors. It seems that the results for the methods are good when tested with 

the data they were derived from, but when applied to new data the results achieved 

are disappointing. 

The average errors for the existing methods when estimating the capital cost of all 

the CS plants were high. The best AEEE of 74% was obtained by re-correlating 

the third Bridgwater method with the CS data, and achieved in the same way was 

the lowest ASEE of ±53%. The Bridgwater methods were found to produce the 

best results in all three of the different tests performed on the existing methods, 

see figure 4.4. 

A reason for the inaccuracy of the methods when estimating the capital cost of the 

chemical plants in the CS data is that the methods were applied to all types of 

plants. Whereas, most of the methods strictly apply to specific types of chemical 

plants, for example Zevnik and Buchanan (1963) developed their method for fluid 

processes and so care must be exercised to only use the methods for estimating the 

costs of plants with the same type of process. Estimates made for plants which are 

of a different type must be treated with some scepticism. Analysis of the methods 

accuracy when using the correct phase did produce a lower ASEE of ±47% and an 

AEEE of 59% when using the Bridgwater methods, but was for only 39 plants. 
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The results presented in this chapter leads to the following recommendations:-

1) The third Bridgwater method should be used. 

2) The equation used should be the one developed by re-correlating with the 

CS data. 

3) Do not use the materials of construction part in existing methods. 

4) The error of the estimate is expected to be high. 
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Chapter 5 

NEW REGRESSION BASED ESTIMATION 
METHODS 

New methods for the early estimation of the capital cost of chemical plants are 

described in this chapter. The methods are developed from the CS data using 

standard regression techniques. 

5.1 Development of the New Methods 

Equations relating capital cost to the values of plant attributes were derived from 

regression analysis on the CS data, using the Minitab and Quattro Pro computer 

programs. Regression produces an equation that can be used for estimating the 

capital cost by finding the equation with the best fit for the available data. This is 

achieved by looking at the deviation of the lines and curves represented by an 

equation from the data points, and taking the equation with the least total square of 

the deviations. 

The resulting equations were of the following form for multiple linear regression:-

Capital cost = ao + alx l + a 2x 2 + ........... + anxn 

and for multiple non-linear regression:-

Capital cost = ao • x a, 
I 

X a, 
2 ............• Xn 

a, 

(5.1) 

(5.2) 

In these equations the ao, aI' .... , an are the constants or exponents found by the 

regression analysis. The Explanatory Variables (EV) are the variables used in the 

regression equation to predict the value of the Dependent Variable (DV). In this 

chapter the DV is the capital cost and the EV are chosen from the attributes in the 

CS data. The EV are represented by XI' x2 ' .••• , xn and therefore, the number of 

different EV used in the regression is n. 
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The EV used in the regression are an important consideration when developing a 

new method for estimating the capital cost. The accuracy and usability of a 

method will depend on the EV that are chosen and the point in chemical plant 

development at which they are known. 

In previous methods the number of functional units has not been included in the 

non-linear regression, in that it has always had a power of one, it was included in 

the EV in this analysis. 

Some of the previous methods use graphs to produce the values for inclusion in 

the method equations. The value included in the equation is found from a graph 

where the attribute is the abscissa. However, these were the older methods and 

with computerisation of methods this approach has become a lot less attractive. 

Regression is used to produce methods with equations that do not require the use 

of graphs. 

5.1.1 Explanatory Variables 

An analysis of the occurrence of the different attributes in the twelve functional 

unit methods, described in chapter 3 (table 3.3), gives an idea of which chemical 

plant attributes other authors have decided are suitable and important EV. 

Capacity and throughput are alternatives for the representation of the amount of 

material passing through the plant and one or the other is used in all 12 of the 

functional unit methods. Making this in effect the most popular attribute, above 

the number of functional units. 

New capital cost estimating equations were derived by using the values in the CS 

data for the attributes used in the existing methods. New attributes were also tried 

as EV in the development of the new methods. These new attributes are discussed 

in the next section. 

Forward selection was used to derive the new regressIOn based estimation 

methods in this chapter. Forward selection is a technique for the selection of the 

attributes to be used as EV in the equation for estimating the capital cost. 

71 



Forward selection starts with a regression using only one EV. A regression is done 

for every possible variable as the sole EV. A variable is then selected using the 

statistical information (described later in the chapter) provided by the regressions 

or by looking at the accuracy of the capital cost estimation of the resulting 

equation. Next, each of the remaining unselected EV is added to the selected EV 

in the regression and the results are again analysed to decide which pair of EV is 

chosen. The addition of EV continues until there is no significant improvement in 

the regression. 

5.1.1.1 New Attributes 

The CS data included some attributes which had never been used in previous 

methods for capital cost estimation of chemical plants. These new attributes were 

tried because they were available and untried. 

The new attributes were:-

• Workforce 

• Number of Reaction Steps 

The workforce is a figure representing the number of operators and supervisors on 

a plant, with higher paid workers counting pro rata to their salary. The formula 

used to calculate the total workforce for mid 1988 is shown (5.3). The figures 23 

300 , 28 200, and 54 700 are the annual salaries of the labourers, forepersons and 

supervisors. For example, every foreperson counts as 1.2 labourers due to their 

higher salary. 

[
28200J Workforce = No. of Labourers + 23300 x No. of Forepersons 

[
54700J 

+ 23300 x No. of Supervisors (5.3) 

However, there must be some doubt about using this attribute because the stage in 

plant development at which the workforce would be known is not clear. If the 

workforce numbers are unknown in the initial project stages, then this attribute is 

of no use for early capital cost estimation. 
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The number of Reaction Steps (RS) was also considered for use as an attribute. A 

reaction step corresponds to a distinct chemical reaction in the route from raw 

material to product. 

An important consideration in the calculation of the number of reaction steps in 

each plant are cases of two or more identical reactors in parallel. These cases were 

counted as one reaction step because the identical reactors are required to increase 

the plant capacity due to size limits on the equipment, and are not another stage in 

the reactions of the process. Therefore, the number of reaction steps are for some 

plants lower than the actual number of reactors. 

The number of reaction steps were tried as a new attribute because reactors are 

normally the most expensive components of a chemical plant and more reaction 

steps indicates greater complexity. Therefore, the capital cost should be related 

more to the number of reaction steps than to the number of functional units. For 

example, two plants are constructed from the same equipment apart from one plant 

having two agitators and the other a reactor. The cost of including a reactor in a 

chemical plant would be greater than for two agitators. Therefore, the plant with 

the reactor will have the highest capital cost, but an estimating method using the 

number of functional units will produce a higher estimate of the capital cost for 

the plant with the agitators. 

The number ofreaction steps attribute was tried as an alternative to the number of 

functional units and also in combination. 

5.1.2 Analysis of Regression 

The effectiveness of the prediction of the DV by the EV for a regression equation 

was analysed using four statistical methods. 

Firstly, the coefficient of determination (R2) was calculated from the sum of the 

squares of the differences between the estimated values and the average values of 

the DV, divided by the sum of the squares of the differences between the DV 

values and the average values of the DV (Spiegel, 1972). The coefficient evaluates 

how much the variability of the DV is explained by the EV. If the coefficient of 

determination is close to zero then the equation is a poor representation, but if the 

value is close to one then the fit is good. The coefficient of determination is 'large' 
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and impressive when the value is greater than 0.8 (Coates, 1993). However, this 

can be achieved by simply having a lot of EV. This trap is avoided by using an 

adjusted coefficient of determination which takes into consideration the number of 

EV. 

Secondly, the f-test is used to see whether the DV is dependent on the EV. This 

can not be assumed from the coefficient of determination which indicates that the 

regression equation is a good model of the variation. The f-test involves finding 

the f value and checking that it is in the range expected when there is a 

dependency between the EV and DV. 

Thirdly, a plot of the residuals is made by plotting the residual values against the 

values of an EV. A plot of the residuals is required for each of the EV used in the 

regression. The residual is the difference between the capital cost as estimated by 

the equation and the actual value. A pattern or structure shows that a relationship 

between the EV and the DV is not being used to full effect, no pattern or structure 

means a good model. 

Finally, the importance of each particular EV in the regression equation IS 

provided by the t-ratio. A table of the t distribution provides the range of t-ratio 

values that an EV will have when not needed in a regression. The t-ratio is 

calculated for each EV and if it is within the range then that EV is discarded from 

the equation. This method is used especially when deciding during forward 

selection whether an EV has a significant influence or should be omitted. 
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5.2 New Regression Equations 

The results of the regressions using the EV described earlier are presented in this 

section. The regression equations were derived using the same 79 processes as in 

chapter 4. Firstly, the type of regression to use was selected, the choice being 

between linear or non-linear. 

5.2.1 Linear Regression versus Non-linear Regression 

Linear regression was found to produce equations whose representation of the DV 

was not as good as those produced with a non-linear regression using the same 

EV. The reason for this is that linear regression tries to represent the relationship 

between the DV and the EV with a straight line and in most situations this is not 

the best possible model of the relationship. However, non-linear regression uses 

the natural logarithm of the dependant variable and the EV. This results in the 

relationship being modelled by a curve, which in most cases is a better 

representation. 

To examine whether linear or non-linear regression equations are the most suitable 

for capital cost estimation required all of the attributes in the CS data to be 

regressed in turn, both linearly and non-linearly, as the sole EV for the capital cost 

DV. The results for linear regression are shown in table 5.1 and non-linear 

regression in table 5.2. 

Table 5.1 Linear Relationship of Capital Cost to Individual Attributes 

EV Code R' (%) ASEE(±%) AEEE (%) 

Workforce W 27 82.7 94.0 

Capacity Q 41 79.3 91.3 

Number of Functional Units N 3 110.7 130.1 

Materials of Construction Fm 2 114.7 135.2 

Maximum Temperature Tmax 4 116.4 135.2 

Maximum Pressure Pmax 0 119.4 139.5 

Number of Reaction Steps R 0 122.7 142.6 

Throughput TP 0 121.6 142.0 

Throughput (process Water) TPpw 0 120.8 141.1 
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Table 5.2 Non-Linear Relationship of Capital Cost to Individual Attributes 

EV Units Code R' (%) ASEE (:1-%) AEEE{%) 

Workforce - W 38 59.4 83.7 

Capacity tonnes/year Q 36 62.8 85.2 

No.ofFU - N 14 73.3 108.7 

MQC - Fm 3 75.5 121.1 

Max. Temp. K Tmox 3 76.3 120.4 

Max. Press. Bars Pm.. 1 82.5 122.0 

No.ofRS - R 0 78.5 124.4 

Throughput TP 0 81.4 124.6 

Throughout (PW) TPpw 0 81.3 124.5 

Comparing the average accuracy of the regression equations presented in tables 

5.1 and 5.2 reveals that the capacity results in the regression equation with the 

most accurate estimates when using a single EV. For the linear regression the 

ASEE was ±79% and the ABEE was 91%. Non-linear regression resulted in an 

ASEE of ±59% and an ABEE of 84% for the workforce. 

The comparison between the accuracy of the estimates for each attribute's 

equations derived by linear regression and non-linear regression revealed that non

linear regression always produced better equations. This is further illustrated by 

Figure 5.1. 

These results justified no further linear regression analysis, and the development 

of the new methods by concentrating on the use of non-linear regression. 
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Figure 5.1 Comparison between Linear and Non-linear Regression 
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Table 5.3 New Regression Accuracy for CS Data Attributes including 

Workforce 

EV No. of Attributes ASEE (±%) AEEE(%) 

S2,W 2 36.9 50.0 

Q,W,N 3 35.5 46.8 

Q, W,N, Fm,R 5 35.6 46.1 

5.2.2 New Method using Non-linear Regression 

The next stage in the development of the new methods was to use more EV in the 

regression. Forward selection started with capacity and then other attributes were 

added one at a time, with the effects analysed in a manner identical to the earlier 

analysis. All the attributes were tried, but only the cases where the addition of 

another EV resulted in an improvement are shown in table 5.3. 

The effect of using T mID< and P mID< in the regression analysis was to slightly increase 

the error. The equation for the most accurate regression for the ASEE (±36%) 

used capacity, workforce, and number of functional units, see equation 5.4. 

Capital Cost = 14765 . Q04 . WO .• 07 . NO.2S4 (5.4) 

The most accurate equation for the AEEE (46%) used the three attributes in 

equation 5.4, plus the MOC factor and the number ofreaction steps, see equation 

5.5. 

Capital Cost = 20952 . Q0.38 . wD·757 . ~.26 • Fml.29 . R(·1.45) (5.5) 

The exponent value for the reaction steps in equation 5.5 means that the capital 

cost decreases as the number of RS increases. This is surprising and difficult to 

explain. 

An equation was also developed that only used the attributes occurring in existing 

methods. This was to make sure that an estimator using one of the existing 

methods could use one of these new methods. For example, the workforce would 
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Table 5.4 New Regression Accuracy for CS Data Attributes without 

Workforce 

EV No. of Attributes ASEE(%) AEEE (%) 

Q,N 2 48.9 69.1 
Q, N, Pmax 3 48.7 68.5 

Q, N, P max' Tmax 4 48.6 68.5 

Q, N, Pmax ' Tmax , Fm 5 46.4 65.8 

probably not be available to an estimator, especially when it was not required for 

the method that they currently used. The results of the analysis when not including 

workforce and number of reaction steps are shown in table 5.4. 

Without the workforce a considerably higher error was found, approximately 20% 

for the equivalent accuracy. The reason for the effectiveness of work force could be 

due the values being calculated from the capital costs, but the CS data is from 

actual plants and therefore the workforce should be known. Also, statistical 

analysis showed that the workforce was not as strongly related to the capital cost 

as would be expected for a value calculated from the capital cost. Another 

possibility is that higher value plants have a larger workforce. The reasons for this 

could be: 

1) An expensive plant IS complicated and reqUires a large workforce when 

operating. 

2) The stream-time of the plant IS increased by taking more preventative 

maintenance. 

3) Provision against costly failures. 

The main problem with using the workforce in capital cost estimating techniques 

for the early stages of design is the likelihood that it would be unknown, and for 

this case the lack of a method for estimating the workforce values. 
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The equation for the most accurate new regression method (equation 5.6) that does 

not use either of the workforce or number of reaction steps is shown below: 

Capital Cost = 55882 . Q0.44 • NO.486 • T 0.038. P -0.02. F 0.341 
max max m (5.6) 
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5.3 New Methods Conclusions 

Two new regression based methods are proposed. One incorporates the attributes 

previously used in the existing methods (equation 5.6) and the other uses new 

attributes (equation 5.4 and 5.5). This precaution is taken in case anyone wishing 

to use these methods does not have the data needed for the new attributes. 

Equations derived by non-linear regression gave better estimates, as expected, 

which meant that the new equations are of the same form as existing methods. 

However, the proposed methods in this chapter differ from existing methods in the 

following three ways:-

• The equations are derived from 79 plants, which is more than has been 

used in previous methods. 

• The number of functional units does not have to use an exponent value of 

one. 

• New attributes are used in the regression. For example, reaction steps and 

workforce. 

The best accuracy attained by the new estimating equations was ±36% for the 

ASEE and 46% for the AEEE when including the new attributes, and ±46% for 

the ASEE and 66% for the AEEE when only using attributes that have previously 

appeared in published methods. The accuracy obtained with the inclusion of the 

new attributes was on average 23% better than the best accuracy achieved when 

using the existing methods in chapter 4, and the average improvement was 9% 

when only using attributes found in existing methods. 
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Chapter 6 

CAPITAL COST ESTIMATION USING 
COMPUTERS 

This chapter assesses the effect that computers have had on capital cost estimating 

and then looks at how the latest computer techniques could be used in the future. 

6.1 Current Use of Computers 

Capital cost estimating packages for computers have been under development 

since the late sixties and are now commonplace in industry. Computerisation of 

capital cost estimation speeds up the estimating process and improves the 

accuracy of the calculations for the estimator. The ready access to a database of 

existing plant costs, preferably the company's own records, is important because 

knowledge about previously constructed plants can greatly improve the accuracy 

of early estimates. 

ICI produced the first major commercially available program, FACTEST. The 

program applied a series of factors to each main plant item, accounting for the 

level of process and construction sophistication. Different factors were used for 

erection, piping, instrumentation, electrical, civils and lagging. The factors were· 

found from historical data for about 100 projects. The leading commercially 

available packages are now produced by learus; QUESTIMATE, which was the 

market leader in 1991, costs items and avoids the factorial approach for bulk items 

(Gerrard, 1991). However, there are a lot of other commercially available products 

which mostly use the factorial method. 

However, the usefulness of the available computerised methods is questioned by 

Kharbanda and Stall worthy (\ 988), because the currently commercially available 

programs do not try to emulate the 'feel' and judgements made by a skilled 

estimator. There is no great improvement in the accuracy of the estimates over the 
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manual techniques (Baldwin and Oteifa, 1991). Skilled estimators, operating in 

areas where they have experience and easily available data, can achieve the 

accuracy required in the early stages of plant development with little effort. An 

estimator tends to evaluate the importance of the figures for each attribute 

subconsciously, relying on a 'feel' for the situation under consideration (Pearce, 

1989). Hence, capital cost estimating is considered more of an 'art' than a science. 

For example, the estimator would use the information about the costs for existing 

plants that have similar values for the key attributes to infer the capital cost of the 

proposed plant. Some of these key attributes are shown in table 6.1. 

Imitating the way a skilled estimator approaches estimating requires the inclusion 

of their expertise in the method. This is difficult for a computer to emulate and 

leads to an expectation of computers being unsuccessful in improving the accuracy 

of estimates. Liddle and Gerrard (1975), and Kharbanda and Stallworthy (1988) 

state that a computer may be able to achieve this with the development of modern 

Artificial Intelligence (AI) techniques. The AI possibilities are looked at in the 

remainder of this chapter. 

Table 6.1 Key Attributes 

Capacity Operating conditions 

Materials of construction Safety considerations 

Materials processed Control and operation 

Unit operations Environmental impact considerations 

83 



6.2 Estimating and Artificial Intelligence 

The name AI was first suggested by John McCarthy during the late fifties. There 

is no clear cut definition of AI, but it is fundamentally a field of science aimed at 

conferring intelligence on machines (computers) - a concept introduced by Turing 

(1947). In this context intelligence is best summarised by a list of its characteristic 

features (Parmar, 1986): judgement, comprehension, reasomng, concept 

formation, response selection, adaptation, creativity. 

AI techniques aim to represent knowledge in some form and then use it 

intelligently to solve problems. The knowledge can be acquired from human 

experts and then consists of heuristics, which are rules developed as a result of 

experience. An AI system which uses heuristics provided by experts to solve 

problems is called an expert system. Other AI systems solve problems by using 

knowledge that is represented by standard formats for data. Examples of these AI 

techniques are neural networks and case-based reasoning. These two ways of 

providing solutions can be combined. The initial solution is determined from the 

knowledge in the standard data and this is then modified with the aid of heuristics 

due to experts. The type of knowledge needed (data, heuristics or a combination) 

and the mechanism that uses this knowledge to solve the problem depends on the 

AI technique. 

There is a lot of current research into the various methods covered by the field of 

AI. A survey of the most relevant methods and their suitability for capital cost 

estimation follows. Each AI method is described separately. However, when 

developing an Al system the best results are nearly always achieved by 

constructing a system that combines a number of techniques. For example, 

systems developed in this thesis combined different methods. Therefore, an 

understanding of the methods available is important. 

6.2.1 Expert Systems 

Expert Systems (ES) attempt to computerise experts' experience and how it is 

used. They are normally used to offer advice or make a diagnosis about a problem. 

The first ES were DENDRAL (Feigenbaum, 1971) and MYCIN (Shortliffe and 

Buchanan, 1975), which diagnosed medical problems and prescribed therapy in a 
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very specific problem area. For example, MYCIN was for bacterial infections. 

They use hundreds of rules gathered from experts such as:-

IF (condition, infection is primary-baceremia) AND 

(condition site of culture is sterile) 

THEN (diagnosis, the identity of the organism is bacteriods) 

Each rule is a semi-independent packet of knowledge. These rules once developed 

can be used to solve new problems. This requires an inference engine. There are 

different possibilities for the mechanism of the engine. One example is forward 

chaining, which searches through the rules in the knowledge base, in order to find 

which ones have conditions like those in the new problem under consideration and 

from these produces a diagnosis. 

ES are used for classification and diagnosis. The fact that they use rules provided 

by human experts means that they are often useful in areas where experts are 

scarce, such as cost estimating. However, for capital cost estimation the required 

final output is a number, rather than the diagnosis which an ES usually generates. 

ES have been used in costing for providing advice. Noble and Tanchoco (1990) 

developed a prototype ES that shows the potential economic implications of 

different design alternatives. ES have helped to reduce the amount of data required 

by a computer package to produce a cost estimate, since an expert system can infer 

some of the necessary data. This results in a time saving rather than improving the 

accuracy, and enables estimates to be made earlier. ES have been used in this 

fashion for estimating construction costs of buildings, ELSIE (Ashworth, 1988) 

and Oil and Gas installations, TOPEX (Greffioz et ai., 1993). 

ES are complicated to set up and require the co-operation of experts to produce the 

rules for capital cost estimating. This would require help from expert cost 

estimators, who are in short supply. Even if the experts were available to help, it 

would be difficult to explain their 'feel' for decision making and each expert would 

have their own methods. 
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6.2.2 Artificial Neural Networks 

Biological nervous systems are believed to consist of neurons interconnected in a 

network. The neurons are believed to have no central control and are activated by 

chemicals released between neurons. The activation of the neurons enables the 

nervous system to work in the way that it does. This set up of neurons is called a 

neural network. 

Artificial Neural Networks (ANN) are attempts by computer scientists to copy the 

working of the nervous system, by creating a simulation of the structure of the 

brain on a computer. However, because no one fully understands how the neurons 

work and due to the incredible complexity in their elementary structure an ANN is 

a simplistic representation of the nervous system. McCulloch and Pitts (\943) 

started neuro-computing with their paper about a neural network that simulated 

the visual system of a frog in 1943. Rosenblatt (\958) stimulated the interest in 

ANN with the development of the PERCEPTRON system for recognising 

patterns. However, the interest in this field dwindled after Minsky and Papert 

(\969) showed that the PERCEPTRON could only recognise a limited classes of 

patterns. Hopfield (\982) inspired the current research into ANN by showing them 

to have emergent features when PERCEPTRONs were combined together. That is 

features that were not built into the system, but arose out of the basic 

configuration of an ANN. These were associative memory and error correction, 

indicating that perhaps ANN were approaching the working of the human brain. 

A basic description of ANN is given by the neural network news group (\995): 

An ANN is a network of many very simple processors ("units"), 

each possibly having a (small amount of) local memory. The units 

are connected by unidirectional communication channels 

("connections"), which carry numeric (as opposed to symbolic) 

data. The units operate only on their local data and on the inputs 

they receive via the connections 

In most applications the neural network is given a set of input patterns from which 

an output is produced, these are called the input and output layers. Hidden layers 

of nodes are used between the input and output layers, all of which are connected 
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in a network, with the interconnections weighted. An example of such an ANN is 

shown in figure 6.1. 

Figure 6.1 Three Layer Artificial Neural Network 

Input 
Lciyer 

Hidden 
Layer 

Output 
Layer 

The actual and desired outputs are compared, and a more accurate set of weights 

for the interconnections is learned using iterative mathematical processes, such as 

back-propagation, driven by the error resulting from the current set-up. This 

training continues until a minimum error is achieved for the set of input patterns. 

The main disadvantages of the learning in ANN is when the error-surface contains 

local minima and the training finishes at one of these points, missing the global 

mInimum. 

The use of ANN is advantageous when there is a lot of example data, and rules are 

unavailable or hard to successfully apply to the problem. Neural networks have the 

ability to teach themselves through training on the input data and do not require 

complicated mathematical models. This makes neural networks suitable for cost 

estimation when a set of historical data is available for training, thereby removing 

the need for regression equations. For example, in the estimation of the capital 
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cost of a chemical plant the input pattern values would be for the capacity, number 

of units, operating temperature, and pressure and the output would be the capital 

cost (Gerrard, 1994). 

Even though ANN produces good estimates, which is the major concern of the 

cost engineer, there are reservations about using an ANN to produce a successful 

estimating system. One of these is that the explanation for how the ANN has 

produced its estimate is not clear. For example, in figure 6.1 the top input node in 

the input layer has three weights on its interconnections. Comparing these weights 

with those for the second input would not give any indication of which input has 

the biggest influence on the output value, due to the complicated nature of the 

combined effect of the weights. A cost estimator would have more confidence in a 

method with an explicit methodology and, even better, exhibiting properties that 

they would expect. For example, the capacity input influencing the capital cost 

output more then the operating temperature. 

6.2.3 Case-Based Reasoning 

. -The first Case-Based Reasollillg (CBR) system was developed by Kolodner 

(1983a, b) and was called CYRUS. CBR was applied to planning the travel and 

meetings of ex-US secretary of state Cyrus Vance. Since then many systems have 

been developed to solve various problems. 

The generally accepted definition of CBR is: 

A case-based reasoner solves new problems by adapting solutions 

that were used to solve old problems (Riesbeck and Schank, 1989). 

CBR is a cyclical process comprising of the four 'REs' (Aamodt and Plaza, 1994): 

1 RETRIEVE the most similar case(s) 

2 REUSE the case(s) to attempt to solve the problem 

3 REVISE the proposed solution if necessary 

4 RETAIN the new solution as a part of a new case 

The first stage relies on the development of a standard case representation, with a 

case normally comprising of the problem, the solution and the result of the 
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solution. Also, there needs to be an effective matching algorithm for finding the 

most similar case to the new problem. The best matching case that is retrieved is 

used as a solution. With a large number of cases, a high similarity should exist 

between the retrieved and new cases. However, when there is a prominent 

difference between the values for the new problem and the retrieved case, then an 

adaptation is made to the solution provided by the retrieved case. The adaptation 

of the solution is accomplished by applying rules or formulae made available by 

the system. The new solution is retained in the case database. 

Instead of trying to come up with rules, formulae or the weights in an ANN to 

calculate a value for an unknown variable from input data, CBR finds the existing 

case that is most similar to the new problem and uses this as the basis for 

producing the estimate. For example, the combination and arrangement of plane 

parts being heated in a large autoclave changes the heating characteristics of the 

autoclave and may lead to parts being ruined. The effect of different loads of parts 

on the autoclave are too complicated to be modelled. However, using CBR to 

select a set up of parts which was similar to previously successful loads led to a 

higher success rate for loads (Hennessy and Hinkle, 1992). 

An advantage of CBR is that experts' knowledge is not required. CBR systems are 

very simple to develop and bypass the need to derive equations to model the 

problem; this is especially useful for very complicated problems which are not 

susceptible to mathematical modelling. 

There are no published examples of CBR applied to capital cost estimating, even 

though the advantages of using CBR for capital cost estimating seem to outweigh 

the disadvantages. There is no need for the elicitation of information from experts, 

as problems can be solved without a full understanding. There is no need to make 

a decision about which of the many formulae for early capital cost estimation 

should be used. For the best results, data for numerous plants is required and the 

effectiveness of the CBR improves with an increase in the number of past cases in 

the database. This means CBR is dependent on the number of cases available. In 

capital cost estimating the data is scarce and the number of new plants built each 

year is small and so the database of cases can not be built up over a short period of 

time. Meanwhile, the existing data is gradually getting out of date. 

CBR is similar to the fuzzy matching method described in chapter 7. 
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6.2.4 Fuzzy Set Theory 

Fuzzy Set Theory (FST) was first proposed by Zadeh (1965), and was initially an 

adaptation of standard crisp set theory. Fuzzy sets allowed a value to have partial 

membership of a set. This allowed the treatment of imprecisely defined knowledge 

in an exact mathematical way. FST is described in more detail in the introduction 

to fuzzy matching in chapter 7. 

Initially, the mathematical properties of FST were investigated, and eventually 

applications of this new area of AI were tried. FST was developed into fuzzy logic 

which interprets statements using fuzzy sets. For example, what is the truth of a 

statement such as Bob is tall and old, given Bob has a height of 7ft and is 37 years 

old? Fuzzy sets have to be developed to assign the membership of 7ft in the set tall 

and 37 years old in the set old. The two values then have to be combined to give a 

truth value to the statement about Bob. 

Fuzzy logic is used with fuzzy rules in fuzzy expert systems. Fuzzy rules are of 

the form: 

IF (condition, fuel input is high) 

THEN (diagnosis, engine speed is much greater than 100rpm) 

There are three parts to a fuzzy expert system: 

Fuzzification 

2 Inference 

3 Defuzzification 

The first part takes the input values, such as Bob is 7ft, and then assigns a fuzzy 

value by using a fuzzy set for height. For example, the fuzzy value for Bob being 

tall might be 0.99 and would be calculated by using a fuzzy subset of height that 

gives a fuzzy value for tallness. Then the inference engine evaluates the combined 

effect of the fuzzy valued inputs and the fuzzy rules, using fuzzy logic, and 

produces a fuzzy-valued output. The third part of the system then uses a 

defuzzification method to produce useful output, for example a fuzzy expert 

system controlling the speed of an engine would produce an output such as 82rpm. 
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Another area of FST is fuzzy matching, and is a method for assessing the degree 

of similarity between two entities given a set of facts about each of them. Fuzzy 

matching is discussed in detail in chapter 7. 

Applications of fuzzy expert systems are found in control and pattern recognition. 

However, the main commercial application of fuzzy expert systems is in fuzzy 

control for systems which are complicated and difficult to model, such as cooling 

systems (Hakata and Masuda, 1990). Fuzzy controllers are now used in everyday 

household items such as washing machines, air conditioning, video camcorders, 

toasters, and many others. FST has also been used as a tool for handling 

uncertainty in AI systems (Henkin and Harrison, 1988). FST has been used in 

chemical engineering for simulation (Dohnal and Hartmann, 1981), reliability 

(Babinec and Dohnal, 1981) and commercial applications are available for process 

control (Leigh and Wetton, 1983). 

Applications of FST in cost engineering include using fuzzy mathematics to allow 

for uncertainty in values used for the calculation of cash flow (Buckley, 1987) and 

investment (Lin et aI., 1990). FST has also been applied to capital cost estimating 

by Turunen (1984, Turunen et aI., 1984). This involved developing the standard 

factorial and functional unit methods using fuzzy expert systems. The process 

parameter values normally inserted into the formulae were allowed to be fuzzy 

values. Therefore, 'linguistics' could be used to describe the process parameters 

when there was uncertainty about exact values in the early stages of design. For 

example, a cost estimator might look at the design and decide that the operating 

temperature will be low for the process. Fuzzy rules developed from experts were 

used in the inference to produce an output. The fuzzy expert system then 

defuzzified the output to the estimate for the capital cost. No conclusion was made 

on the accuracy of the method for capital cost estimation due to insufficient testing 

of the method. 

The advantages of using FST for capital cost estimating are its ability to handle 

uncertainty in the process parameters during the early stages of a process design 

and for the representation of the complicated and ill-defined relationships between 

process parameters and capital cost. However, the knowledge of experts was vital 

in preparing the fuzzy rules and, as for the traditional methods a lack of cost data 

hindered development. 

6.2.5 Genetic Algorithms 
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The initial idea for Genetic Algorithms (GA) is credited to Holland (1962) and the 

actual term was given to an application for game playing developed by Bagley 

(1967). GA are a method for computers to develop a solution to a problem using 

nature's principle of survival of the fittest. 

A GA starts with a population of randomly created sets of values, or 

'chromosomes', which could be used as a possible solution to a problem. Each 

chromosome is tested by a fitness function which indicates its effectiveness as a 

solution to the problem. A second population of chromosomes, 'the next 

generation', is developed from this first population. The chromosomes from the 

first generation are selected at random, but with the probability of a chromosome 

being selected being related to the quality of its solution as judged by the fitness 

function. The selected chromosomes are then paired randomly and a certain 

percentage recombined, using various techniques for the crossing over of their 

values, to create two new chromosomes. There is also a chance of a randomly 

selected value being inserted in to the chromosome, this is called a mutation. Also, 

a few of the best chromosomes from the first generation are kept unchanged in the 

next generation. The new population is tested and then in an identical fashion 

another generation of chromosomes is produced. This continues until a specified 

number of generations has been tried or the chromosomes have converged on a 

solution to the problem. 

GA have found applications in solving problems which are difficult to solve with 

traditional methods, such as scheduling, sequencing, machine learning and 

optimisation. They are particularly good for finding global optima in a very hilly 

space (Come et aI., 1993). 

GA have not been applied in the cost estimating field, but could have potential in 

finding the optimum values for the constants and powers of the equations used by 

the functional unit methods. 
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6.3 Conclusion 

A review of AI techniques and their application to estimating is provided in this 

chapter. Some methods have been used previously for cost estimating, but others 

appear to be untried as estimating methods. 

A decision was made to develop fuzzy matching for cost estimating for reasons 

explained in the next chapter. Genetic algorithms were also used during the 

research in an attempt to improve the time taken to develop the optimum set-up 

for the fuzzy matcher. 

It is also worth pointing out that there is a similarity between fuzzy matching and 

case based reasoning. Both are based on finding the existing case that is most like 

the new problem. In fact, Fuzzy matching could be used for the retrieval part of 

CBR. 
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Chapter 7 

FUZZY MATCHING 

The fuzzy matching methodology and its suitability for capital cost estimation are 

explained in this chapter. 

7.1 Methodology and Suitability 

An estimate for the cost of a chemical plant can be made by using the principle 

that similar plants have similar costs. Ideally an existing plant would be found that 

has the same capacity and process, and therefore identical pieces of equipment, as 

the chemical plant under development for which a capital cost estimate is required. 

The cost of the existing plant would be multiplied by the relevant cost index and 

location factors to produce a capital cost estimate for the new plant. However, in 

the majority of cases there will not be such an existing plant and so the estimator 

must determine which of the existing plants is the closest 'match' to the new plant. 

Then the cost of the available existing plant is used as a basis for the estimate for 

the new plant. 

An estimator assesses the similarity of plants by considering the closeness of the 

values for the attributes of the new and existing plant and the relative importance 

of each attribute to the capital cost. The attributes used must influence the capital 

cost of a plant, such as design specifications, operational data, capacity, 

equipment, materials of construction, etc. 

The experience of the estimator, aids in the judgement of which plants are similar, 

and in the adjustment made to the capital cost value of the existing plant to allow 

for the different characteristics of the new plant. Fuzzy matching provides a way 

of computerising the method used by an estimator to decide which chemical plants 

are similar. 
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Fuzzy matching is a development of fuzzy set theory, and is a method for 

assessing the degree of similarity between two entities given a set of facts about 

each of them. Fuzzy matching defines a continuous scale of similarity between the 

two extremes of an exact match and no match at all. 

For example, Chung and Inder (1992) used fuzzy matching to assess how similar 

the geological formations in an area under exploration are to those formations in 

an area where petroleum had already been discovered. Further, more costly 

exploration would only be sanctioned in cases where there was a sufficient 

similarity. 

The ability of fuzzy matching to assess the degree of similarity between two 

entities gives it an advantage over conventional database operations, which can 

only find an exact match between entities. An exact match is unlikely over a 

number of attributes with known values, especially for entities with a wide range 

of possible values for each of their attributes, such as chemical plants. Very few 

plants would have identical values for each of the different attributes. For 

example, only one case of two plants having exactly the same values for five 

attributes was found amongst 90 plants. An exact match might be found on one or 

even two of the attributes, but not on all of them. 

Also, to manually work through a lot of plants and find the best match for a new 

plant would be slow and the quality of the decision would depend on the skill of 

the expert. Fuzzy matching allows the computerisation of this decision making 

procedure. 

Fuzzy matching has not been used for estimating before, but the arguments for 

using this technique as a new method for estimating are strong. 

7.1.1 Fuzzy Matching Example 

To illustrate fuzzy matching an example from every day life follows. The data 

used is hypothetical. Someone might decide to sell their house, but for what price 

should it be_sold? In order for them to decide the sale price of their house t~ey 

would have to look at the prices of other houses on the market. Finding a house of 

the same size in terms of the number of rooms and garden area should give a good 

idea of the value of the house. However, when a house is put on the market and it 
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attracts no interest or gets five offers in a week, then it becomes apparent that the 

wrong price must have been assigned. This implies that some of the details 

available for a house that are influential to the cost have been omitted. A likely 

candidate is location, which, for fuzzy matching purposes, is represented by the 

insurance band. Then, with this attribute having a numeric value, like the other 

attributes, allows an assessment of the 'closeness' between values. 

The data available consisted of three attributes: the number of rooms, garden size, 

and the insurance band. This information and the price was known for four sold 

houses. This and the details of the house for sale are shown in table 7.1. 

Fuzzy matching does not require the person trying to sell the house to know 

anything about house prices. The method determines which already sold house is 

most like the one for sale. A membership function is used to assign a value which 

measures how similar the match is between two values for an attribute. The 

similarity value varies between zero for no similarity and one for a perfect match; 

the details of how this works are explained later. Table 7.2. shows that the match 

value for each attribute and the total of these values for the fuzzy matching 

between the four sold houses and the house for sale. 

Table 7.1 House Data 

House No. of Rooms Garden Size Insurance Band Cost 

(m2) (£) 

For Sale 10 100 1 ? 

Sold 1 5 100 4 30000 

Sold 2 8 400 1 65000 

Sold 3 6 200 2 45000 

Sold 4 9 0 2 60000 
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Table 7.2 Results of Fuzzy Matching 

House No. of Rooms Garden Size Insurance Band Match Value 

Match Value Total 

Sold I 0.83 1.00 0.00 1.83 

Sold 2 0.93 0.00 1.00 1.93 

Sold 3 0.86 0.66 0.66 2.20 

Sold 4 0.96 0.66 0.66 2.30 

The fourth sold house has the highest match value total and so its sale price gives 

an initial idea for the price of the house for sale, that is 60 000 pounds. The match 

value total of 2.3 is quite close to the maximum of three and so the sold house is 

similar to the one for sale. 

With no knowledge about what affects the price of a house all three attributes will 

be viewed as having the same effect. However, it is likely that some attributes will 

have a far larger effect on the price of the house than others. For example, maybe 

the number of rooms would be a lot more important than the size of the garden. 

Weighting the match values for the attributes according to their influence on the 

price is one way to allow for the relative importance of each attribute. 
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7.2 Application of Fuzzy Matching to Capital Cost Estimation 

In the following sections the fuzzy matching method is described in detail and the 

important development issues are discussed. Attention is paid to the application of 

fuzzy matching to capital cost estimation, with the specific results of this 

application shown in the next chapter, chapter 8. 

Fuzzy matching attempts to imitate the techniques used by a skilled estimator 

when estimating the capital cost of a chemical plant. Fuzzy matching for capital 

cost estimation finds the existing plant that is the closest match to the new plant 

and then uses the cost of this closest match as the estimate. 

7.2.1 Membership Functions 

The essential concept of fuzzy matching is the quantifying of closeness or 

goodness of fit between two attribute values. This value is called the Match Value 

(MV) and is calculated by the Membership Function (MF), which is sometimes 

also known as the characteristic function. 

In classical set theory an element is either a member of a set or it is not a member, 

that is, it is a non-member. However, this representation can not be used in many 

situations. The classic example is the concept of tallness, which is a linguistic 

variable. If someone is 7 ft in height they are tall, while if their height is 5 ft they 

are not tall. However, what about the range of heights in between? A 

representation is needed for a value which is partly in a set, this is the basis of 

fuzzy set theory. 

Fuzzy set theory introduces degrees of membership. A member of a set is given a 

value I and a non-member 0 and values in between represent an intermediate 

degree of membership. 

In fuzzy matching the theory is used in a slightly different form. The problem is 

not vagueness in human terminology, for example tallness, but the uncertainty of 

the relationship between two values for the same attribute. For example, is the 

capital cost of an existing plant with a capacity of 50 000 tonnes per year worthy 

of consideration as the basis for a capital cost estimate for a new plant of capacity 

70 000 tonnes per year. 
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The goodness of fit for an attribute value of the new plant, the target, to values of 

the same attribute for known plants, the data, must be quantified. This requires a 

membership function for rating the goodness of fit between data and target. The 

match value is on a scale of between one and zero, with one indicating a perfect 

match and zero showing that the values for the attribute are so far apart that no 

relation can be inferred between capital costs of the two plants on the basis of this 

attribute. 

The membership function, MF(d, t, b), is defined by a set of equations. When 

comparing numeric attributes, d is the data value, t is the target value, and b is the 

Shape Parameter (SP). The shape parameter defines the range of data values 

which have a MF value higher than zero for a given target value. 

Let there be p attributes, identified by a subscript i and let there be a match value, 

MFi, for each attribute i. Furthermore, let the database contain data for q existing 

plants, identified by a subscript j. Typical MF are piece-wise, continuous 

functions, MFi(dij,ti,bi), with values on the interval [0,1]. MFj{dij,ti,bi) measures 

how close the value of attribute i for existing plant j, that is dij. is to the value of 

attribute i for the new plant, that is ti. The shape parameter, bi, has a SUbscript, 

because in general the value is different for each attribute. 

7.2.1.1 Possible Membership Functions 

There are many different membership functions, and some are mentioned by 

Chung and Inder (1992), and Zadeh (1975). Generally, the function will approach 

one when the data is close to the target and decrease to zero as the data deviates 

above or below the target value. 

The following figures show three typical membership functions and the equations 

that describe them. The function in figure I is called a flat MF in this thesis. The 

general shapes of the two other membership functions shown in figures 7.2 and 

7.3 are known as the ramp and curve shaped MF. The curve MF was defined by 

Zadeh (1975). 
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Figure 7.2 Ramp Membership Function 
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Figure 7.3 Curve Membership Function 
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7.2.2 Shape Parameter Optimisation 

A method that uses fuzzy matching must be 'tuned' using the existing plants before 

being used to estimate the capital cost of new plants, if accurate estimates are to be 

achieved. The tuning is accomplished by finding the fuzzy matching set-up that 

provides the minimum average error when 'estimating' the capital cost for the 

existing plants using the other plants in the data set. An important part of the fuzzy 

matching set-up is the SP values which define the range of each MF. A technique 

for finding the set of shape parameter values that produces the optimum estimates 

is needed. The following sections describe the methods that are available. 

7.2.2.1 Optimising Algorithm 

The problem was to find the global minimum value of the average error. The 

average error behaves as a function whose variables are the shape parameters for 

each attribute. 

E04JAF is a optimising routine III the NAG FORTRAN library (National 

Algorithm Group Ltd., 1986). This routine starts at a point defined by the. user, 

which is in this case a set of values for the shape parameters. Then, by looking at 

the gradient and curvature of the function, points are generated using a quasi

Newton algorithm that are intended to converge on a local minimum. This method 

only requires the value of the function at various points. 

7.2.2.2 Combinations 

Another technique was adopted in which the average error was evaluated for as 

many different combinations of shape parameter values as possible and then the 

combination with the lowest average error selected. These combinations were 

obtained by selecting a minimum and maximum value for the shape parameters 

and an increment for varying between these two values. The size of the increment 

will alter the number of combinations tried. A compromise is required between 

getting an accurate estimate and the number of combinations evaluated, because 

the running time of the program increases dramatically with a large number of 

combinations. 
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The effect of the size of the increment value is shown by the number of 

combinations and the running time as shown in table 7.3. A minimum of zero and 

maximum of three were chosen for the shape parameters limits and four attributes 

were used. 

Table 7.3 Effect of Step Increment 

Increment No. of Running Time 

Combinations (minutes) 

1.5 81 <I 

I 256 <I 

0.5 2401 I 

0.25 28561 10 

0.2 65536 25 

0.1 923521 300 

Note how a small increment value results in a long run time. An increment for the 

shape parameter of between 0.2 and 0.25 is practical, with a good balance between 

on one hand as small an increment as possible and the" resulting lower average 

error, and on the other, a practical limit on the time taken by the computer to 

process all the calculations. The running time of 10 to 25 minutes may seem short, 

but the addition of only a few more attributes to the fuzzy matching results in the 

running time increasing to days. 

The number of calculations required to find the ASEE for one set of shape 

parameter values is large when using 90 plants and four attributes. Each plant 

comparison requires the calculation of 4 match values when there are four 

attributes, and these values are then summed equalling 5 calculations. This means 

that, in order to find the best match and the error of the estimate for one plant 446 

(89 x 5 + I) calculations are needed. Therefore, for all 90 plants and the 

calculation of the ASEE there are 40141 (90 x 446 +1) calculations, and this is 

for just one set of shape parameter values. 
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7.2.2.3 Genetic Algorithms 

Exhaustively trying all the combinations of shape parameters was a very simplistic 

and slow way of optimising the fuzzy matcher. Genetic algorithms were another 

optimisation technique that was considered. This method tries a set number of 

randomly generated combinations of shape parameter values. The combinations 

with the lowest average error are then used in producing new combinations. GA 

were tried because they can be effective at finding optimum set-ups and avoiding 

local minima. 

7.2.2.4 Asymmetric Membership Functions 

Asymmetric MP were developed in pursuit of a lower AEEE. Such functions are 

steeper to the left of the target value than to the right. The reason for this approach 

is that having a data value less than the target value is more likely to result in an 

underestimate when the capital cost increases as the attribute value increases. The 

asymmetric MP assigns proportionally higher match values to data values which 

are greater than the target value. Therefore, existing plants with attribute values 

above the target value are more likely to be the best match, and so underestimates 

will be avoided and the AEEE improved. 

7.2.3 Selecting the Best Match 

Determining the best match for a new plant requires that the match values for the 

attributes be combined to produce a number that can be used to rank the match 

between each existing plant and the new plant, this number is called the Total 

Match Value (TMV). 

7.2.3.1 Unweighted Total Match Value 

The simplest way to quantifY how closely an existing plant matches the new plant 

is to sum the MPi( dij,ti,bi) for all the attributes and take the existing plant with the 
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highest total of MFi values as the best match (7.2). In this method the best match 

has been detennined using unweighted attributes. 

(7.2) 

7.2.3.2 Weighted Total Match Value 

Unweighted evaluation of the best match does not take into account attributes 

having a different degree of influence on the capital cost. For example, the capital 

cost might be affected more by the capacity than the maximum temperature -

intuitively, capacity will affect every part of a plant, but the maximum temperature 

only applies to certain pieces of equipment. Consider a new plant found to have 

identical attribute values to those of two existing plants for all but one attribute in 

both cases. With the total match value the same in each case, but the non-identical 

attribute is capacity in one case and maximum temperature in the other. Then the 

existing plant with the identical capacity is the best match, but the fuzzy matcher 

views them as identical best matches. 

One way to account for the different influence that attributes have on the capital 

cost is to weight the membership function values in the sum thereof. With larger 

weights, wi, indicating greater importance. The equation that now calculates the 

match value total for an existing plant using a weighted sum of the MFi is (7.3). 

p 

max L w;MF; (d;j, t;, b;) 
J"l, .. ,q i=1 

(7.3) 

Ways of assigning values to the weights, w;' are discussed III the following 

sections. 
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7.2.3.2.1 Expert Assessment 

One possible method is to ask experts to assign values. This was not possible in 

this research because no expert estimators were available. 

7.2.3.2.2 Assessment of Attribute Influence on Estimation Performance 

Another method is to assess the relevant importance of each attribute by trying 

fuzzy matching with only one attribute. The resulting average estimate gives the 

strength of the relationship between that attribute and the capital cost. The average 

estimate achieved can be used to assign a value for the weight of each attribute, 

with the lower the average estimate when matching with one attribute resulting in 

the higher the weighting for that attribute. 

7.2.3.2.3 Combinations 

For th~ best estimate the weights must be optimised to produce the lowest average 

error. One option for finding the weights was to try different combinations of 

weights and assess which produced the best results. The combinations were 

generated in the same way as for the shape parameter optimisation. For example, 

weight combinations could be chosen from 0 to 1 in steps of 0.1, allowing an 

attribute to out-weigh another attribute by up to ten times. The resulting 

weightings for the minimum average error could be capacity, 0.7, maximum 

temperature, 0.3, etc. 

7.2.3.2.4 Genetic Algorithms 

The use of genetic algorithms to generate the weights was also tried. The same 

program that was developed for the generation of the shape parameter values 

using genetic algorithms was used. The results-are discussed in the next chapter. 
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7.2.4 Attributes 

A database containing the details of existing plant attributes and capital costs was 

required in order to develop fuzzy matching techniques for capital cost estimation. 

Attributes included in the database should be ones that distinguish plants and have 

a bearing on plant cost. For example, the colour of the plant is irrelevant - unless 

some colours are a lot more expensive than others! Whereas, the capacity of a 

plant will have a major influence. However, the attributes must be available to a 

cost estimator at the stage of plant development when the estimate is required. 

The decision on which attributes to use in the fuzzy matching requires a 

knowledge of their influence on the capital cost of a chemical plant. The 

frequency of the use of attributes in existing methods for early capital cost 

estimation shows the importance assigned by others to different attributes, see 

table 5.1. 

Estimates with large errors will be investigated to see if there is a common cause, 

which may lead to the consideration of an attribute not previously anticipated as 

being important in estimating the capital cost. 

The format of the attribute must also be considered. Numeric attributes, such as 

capacity, can be fuzzy matched using equations. However, linguistic attributes 

need to be assigned a numeric value by experts or by experimentation. For 

example, the materials of construction for a new plant is stainless steel and for an 

existing plant carbon steel. It is not possible for a computer or indeed a human to 

judge similarity without knowledge of these terms. 

The attributes that were used in fuzzy matching, and the reasons why, are 

discussed in the next chapter. 

7.2.5 Match Values 

The match value represents the similarity between the data and target values for 

attributes. The total match value is the overall combination of match values for all 

of the attributes. The meaning of these match values needs to be considered. 
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7.2.5.1 Minimum Attribute Match Value 

Firstly, the possibility of not allowing a plant to be a best match when one of the 

membership function values was below a certain level, for example 0.25. It could 

be better to ignore a plant as a possible match when any of its attribute match 

values are under a defined level. This would especially be the case for important 

attributes, such as capacity. 

7.2.5.2 Total Match Value Versus Average Error 

The TMV quantifies the closeness of the plant used for the estimate to the new 

plant. The TMV value shows the quality of the match between the two plants, and 

should therefore provide some confidence in the estimate. Correlating the TMV 

for the best match against the accuracy will show if higher match values result in 

lower errors. 
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7.3 Capital Cost Estimating Example of Fuzzy Matching 

To clarify the method consider a simplified example. An estimate of the capital 

cost for a new plant is needed and the following attribute values are known: 

number of functional units, capacity, temperature, and pressure. The fuzzy 

matcher was used to find the two best matching plants with the results presented in 

table 7.4. The membership function used was a ramp, see figure 7.2. The matches 

were ranked by non-weighted summation of match values, according to equation 

7.2. The shape parameter values were: 

1. 75 Number of functional units 

I Capacity 

0.5 Temperature 

1 Pressure 

The highest total of match values was 3.13, out of a possible maximum of 4. The 

capital cost estimate is the capital cost of this best match and has an error of 7%. 

The size of the difference between the total match value of the best match and the 

maximum possible total match value indicates how similar the new process plant 

is to previously constructed plants. A large difference means that none of the 

existing plants have similar process details to the new plant. 

Table 7.4 Example of Best Match 

Attribute Target Best match 2nd Best match 

(units) Value Value MV Value MV 

Functional unit 24 38 .67 11 .69 

Capacity (tonnes/y) 50000 40000 .80 65000 .70 

Temperature (K) 643 753 .66 473 .47 

Pressure (bar) 1.0 1.0 1.00 1.0 1.00 

TOTALMV 3.13 2.86 

Capital Cost ($106 1988) 68.00 73.00 25.74 

Error (%) 7.40 -62.10 
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Chapter 8 

PERFORMANCE OF FUZZY MATCHING 

The results achieved when using fuzzy matching to estimate the capital cost of 

chemical plants are presented and analysed in the following chapter. 

8.1 Implementation 

A database of existing chemical plants with known attributes and capital costs was 

provided by the CS data and was used to test fuzzy matching. One of the plants in 

the database is taken to be a target (new) plant for which a cost estimate is required. 

Fuzzy matching then finds which of the remaining (existing) plants in the database 

is the best match. The capital cost of the best matching existing plant is taken as the 

estimate for the new plant. This procedure was followed for each plant in the 

database and the overall accuracy of the capital cost estimates was assessed using 

the metrics described in chapter 4, that is the average standard estimate error 

(ASEE) and the average equivalent estimate error (AEEE). 

The first fuzzy matching programs were authored in the application language (PAL) 

of a relational database, PARADOX. The program was found to run for days when 

there were many combinations of shape parameters (SP) and weights tried in the 

optimization of the fuzzy matching method. In an effort to reduce the running time, 

the method was converted from PAL to PC FORTRAN, but the high number of 

calculations meant it still took twelve or more hours for the programs to run on a 

Pc. However, the run time for the FORTRAN program was found to be a lot shorter 

on a Hewlett-Packard 9000, especially when a limited access machine was used. 

The final running time was reduced from days to hours by using these more 

powerful computers. 
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8.2 Initial Fuzzy Matching Set-up 

One of the purposes of this chapter is to describe the development of the fuzzy 

matching technique. In order to accomplish this an initial set-up for fuzzy matching 

is defined in this section. Then the development of the fuzzy matching method from 

this starting point is shown in the following sections of this chapter. 

The first decision for the initial set-up was which database of plants to use. There 

were two alternatives to choose from, a database of 79 plants which had already 

been used for testing existing methods and deriving new regression methods in 

chapters 4 and 5, or a larger database of 90 plants. The database that included the 

largest number of plants from the CS data was chosen for testing fuzzy matching, 

and consisted of 90 process plants. The values were known for the following 

attributes: capacity, throughput, number of functional units (No. of FU), maximum 

temperature (Max.T), maximum pressure (Max. P), workforce, number of reaction 

steps (RS), process phase and materials of construction (MOC). From this set of 

attributes a Standard Set of Attributes (SSA) were chosen: capacity, number of 

functional units, maximum temperature and maximum pressure. This particular set 

of four attributes were chosen as they are the most frequently occurring attributes in 

the existing methods for early capital cost estimation. The SSA are the initial set of 

attributes used in the fuzzy matching, with the attributes that are not included in the 

SSA investigated after the fuzzy matching technique has been refined. Four 

attributes were chosen because the run time for the fuzzy matcher was then hours 

rather than days. 

An initial set-up for the combinations of SP values to be tried when searching for an 

optimum average error was required. The variables that define the combinations of 

SP values are the minimum and maximum for the values, and the increment that sets 

the values to be tried between the minimum and maximum. The initial set-up for the 

SP values was 0-5(0.25), with the 0-5 showing the minimum and maximum, and the 

value in brackets the increment. This set-up was chosen to be used with the SSA due 

to the resulting run time for the fuzzy matching program, which was around an hour. 

Also, when the SP values are shown in a table they are the set of values that 

produced the lowest average estimating error, with the first figure the SP value for 

the ASEE and the value in brackets for the AEEE value, for an example see table 

S.l. 

The best match was initially selected by un weighted addition of the match values. 
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Any alteration to this initial set-up will be mentioned in the discussion of the fuzzy 

matching experiments that follows. Any alteration to this initial fuzzy matching set

up that will be used from the point it is mentioned and onwards will be in italics. 
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8.3 Membership Functions 

The membership function that fuzzy matching will use for the rest of this thesis was 

the first requirement. The MFs defined in chapter 7, section 7.2.1.1, were compared 

using the initial set-up for the fuzzy matcher. The fuzzy matching was carried out 

using the flat, ramp and curve membership functions. The results are shown in 

table 8.1. 

Table 8.1 Comparison of Estimating Accuracy for Different MF 

Membership Best Performance SP ASEE AEEE 

Function Capacity No.ofFU Max. T Max.P (±%) (%) 

Flat 0.75 (0.25) 0.75 (0.50) 0.25 (0.50) 0(0) 62 123 

Ramp 1.00 (0.75) 1.75 (1.75) 0.50 (0.75) 0(0) 47 73 

Curve 1.50 (0.25) 2.00 (1.25) 0.75 (0.50) 0(0) 48 78 

The flat MF produced poor estimates. Fuzzy matching with this MF is similar to 

finding an exact match, but there are ranges of values over which attributes are 

considered to be identical. Hence, the number of existing plants that have attribute 

values that are deemed to be 'identical' to the target attribute value of the new plant 

is increased. The problem with this membership function is that two different values 

for the same attribute that are within the range of the flat MF will be assigned the 

same match value, which is one. Even though one of the values will normally be 

closer than the other to the target value. 

The fact that the ramp MF gave slightly better results than the curve MF is a 

significant finding, because the curve MF is computationally more intensive than 

the ramp. The curve MF is defined by four equations over different portions of the 

data range, whereas the ramp only uses two. This means that the simpler ramp MF 

can be used, with shorter running time than the curve MF and yet with no loss of 

accuracy. 

Therefore, the ramp is used as the MF in all the remaining fuzzy matching 

experiments in this chapter. 

The ramp and curve MF would be expected to have similar SP values for the 

combinations that produced the near optimum average error, due to the relatively 
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similar shapes of the MF. This is seen to be true for the SP values shown in table 8.1. 

The best performance SP values are said to be near optimal because the 

combinations of SP values that are tried search a grid of points, and so the global 

optimum is missed when it is in a space between the grid points. 

The set of SP values that produced the best performance for the fuzzy matcher lead 

to some interesting conclusions. The maximum pressure SP value is zero for each 

of the membership functions in table 8.1, yet the SP value for the number of 

functional units is 1.75, when using the ramp MF. This indicates that maximum 

pressure is not as an important attribute as the number of functional units and the 

other attributes when fuzzy matching plants for CCE, because it only contributes to 

the MV total when the target and data values for the maximum pressure attribute are 

identical. This conclusion is proved later when the maximum pressure was not 

included in the set of attributes used for fuzzy matching, and the resulting increase 

in the average error was the smallest obtained by leaving one of the SSA out of the 

fuzzy matching. 
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8.4 Shape Parameter Optimization 

The most effective method for Optimising the SP values for the fuzzy matcher was 

investigated after the selection of the ramp as the membership function. 

The significance of the SP value is not that clear. Increasing the SP value for an 

attribute leads to an increase in the match value for a particular data point, but the 

difference in the match values for two data values within the range covered by the 

MF will decrease. Therefore the differentiation between plants due to this attribute 

will decrease, but the match value total will increase. This situation is complicated 

by data values with a zero match value, where the difference in match value will 

also increase relative to a data value within the range of the MF. The point is that 

increasing the SP value will make the MV higher for this attribute, probably giving 

the attribute more effect on the selection of the best match, but it must be mentioned 

that the attribute's MV for other plants will also increase and so the effect is not as 

significant as you might think. Also, an SP value of 0 means that when the data 

value is the same as the target value there is a strong influence for this attribute, as 

the match value equals one, but all the other data values are viewed in the same way, 

as completely different and with a match value of O. Therefore, a SP value of 0 does 

not mean that an attribute can be left out of the fuzzy matching, unlike a value of 0 

for a weight which does mean this. 

8.4.1 Optimising Algorithm 

The E04JAF optimising routine was used to try and find the global minimum for the 

average error. However, this method did not improve upon the lowest average error 

found by the combination method. The reason being that the average error function 

is discontinuous with many local minima. Therefore, when the E04JAF optimising 

routine is given a randomly generated starting point for the SP values, then the 

method will move to a point that is a local minimum for the average error. The 

discontinuous nature of-the average error function is illustrated by a three 

dimensional plot of the average error versus values for the shape parameters for two 

attributes, capacity and the number of functional units, see figure 8.1. 
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Figure 8.1 Three Dimensional Plot of Average Error versus SP Values for Two 

Attributes 
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8.4.2 Combinations 

The membership functions size is defined by the SP value. This means that the MF 

will assign a match value to attribute values that are further from the target value as 

the SP value increases, and the MV will increase for attributes that already have a 

MV. ,The values that must be considered for the set-up that generates the different 

combinations of SP values are the minimum, maximum of the range of values tried 

and the increment to be used in the selection of the values in between. 

As discussed in chapter 7, the SP values are chosen to minimise the average error 

of the estimates. A wide range for the SP values was used, in order to reduce the 

chance of missing the global minimum for the average error and the corresponding 

best performing combination of SP values, as a wide range ensures that the 

combinations tried cover a large area of the average error function, and therefore 

include the region where the global minimum exists. Also, the use of as small an 

increment as is possible for the SP values when creating the different combinations 

will improve the chances of finding the global minimum. However, there does have 

to be a limit to the increment and range, because otherwise the number of 

combinations becomes very large and the time required for the calculations takes 

too long for the computer to accomplish in a reasonable time scale. A compromise 

has to be sought between the running time and the number of combinations tried. 

Firstly, the range of the SP values to be used was investigated by varying the 

maximum possible value for the SP, while keeping the increment at the same value 

of 0.25. Table 8.2 presents the near optimum accuracy achieved with different 

ranges when using the standard set-up for the fuzzy matcher. The maximum value 

found for a SP, out of the values for the attributes in' the SSA for the optimum 

Table 8.2 Shape Parameter Ranges 

SPRange Maximum SP Value ASEE AEEE Time 

in Optimum (±%) ( %) (minutes) 

o to I 1.00 49 80 I 

Oto 2 1.75 47 73 2 

o to 3 1.75 47 73 10 

o to 5 1.75 47 73 60 

o to 10 1.75 47 73 920 
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accuracy is also shown. 

The minimum error for the ASEE and AEEE is found with a range of 0-2, further 

increases in the range only result in an increase in the run time. A decision was made 

from the results in table 8.2 to decrease the maximum value for the SP range from 

5 to 3 as the standard set-up for the fuzzy matcher. The maximum SP value in a 

combination for a minimum average error was 1.75, which was too close to 2 for 

this to be the maximum SP value ever attainable. However, when the number of 

matched attributes increases, which dramatically increases the number of 

combinations, then lowering the maximum from 3 to 2 should be considered. 

The set-up for fuzzy matching will now have a SP range of 0-3. 

The next attempt to refine the fuzzy matching involved the increment used in the 

generation of the SP combinations. The SP range was still 0-5 for this fuzzy 

matching, but the highest SP value in an optimum case was 2.1, which agrees with 

the decision to change the SP range to 0-3. 

Table 8.3 shows that the lower the increment the lower the minimum average error, 

but the run time increases rapidly as the increment gets smaller. However, using an 

increment of 0.1 or 0.2 resulted in too long a run time. Therefore, the SP increment 

for the fuzzy matcher set-up was kept at 0.25. However, the lowest possible average 

error would be found by using the lowest possible increment. 

Table 8.3 Shape Parameter Increments 

-Increment ASEE (±%) AEEE(%) Time (minutes) 

I 54 82 4 

0.5 48 80 9 

0.25 47 73 60 

0.2 45 73 150 

0.1 45 71 3600 

The SP set-up is 0-3(0.25) for the following experiments. 
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8.4.3 Genetic Algorithm 

A genetic algorithm was developed and used, in place of the combination method, 

for finding the best performing set of SP values. The results are shown in table 8.4. 

Table 8.4 Genetic Algorithms versus Combinations 

Method Best Performance SP ASEE AEEE 

Capacity No.ofFU Max.T Max.P (±%) (%) 

GA 1.38 (0.91) 1.99 (2.16) 0.64 (0.81) 2.63 (2.08) 48 83 

Combination 1.00 (0.75) 1.75 (1.75) 0.50 (0.75) 0(0) 47 73 

Clearly, with the ASEE ±1O% higher, the results are not as good as for the 

combinations. However, when a larger number of combinations need to be tried 

later, due to the addition of weighting and extra attributes, then the GA could be 

used in place of the combination method. The argument for this is that the run time 

will not increase as rapidly as for the combinations and the results produced were 

not that far off the combinations minimum average error. The time taken to find the 

GA results was ten minutes, as compared with an hour for the combination method. 

The SP values were similar for the first three attributes in the SSA. However, the SP 

values for the maximum pressure was not zero, as previously, and was in actual fact 

the highest SP value. 

8.4.4 Asymmetric Membership Function 

The membership function used was altered from the standard ramp MF to an 

asymmetric MF, but with the rest of tbe standard set-up for the fuzzy matcher 

unaltered. The results are shown in table 8.5. 

Table 8.5 Average Errors for Asymmetric MF 

MF ASEE(±%) AEEE(%) 

Ramp 47 73 

Asymmetric Ramp 56 78 
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It is apparent that biasing the membership function does not result in an 

improvement in the accuracy. The ASEE was expected to increase, but the AEEE 

should have improved, with the asymmetric membership function more likely to 

over estimate the capital cost. However, table 8.5 clearly shows that there was no 

improvement for the AEEE, with in fact a 5% increase in the error that occurred. 
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8.5 Selecting the Best Match 

The fuzzy matcher had been selecting the best match by totalling the match values 

without weights. There now follows a description of the investigation into the use 

of weights in the selection of the best match. 

8.5.1 Weighted Total Match Value 

The MV of the attributes are weighted to reflect the relative importance of different 

attributes. A method has to be developed for finding the weights, that optimises the 

error of the fuzzy matching estimates. 

Three methods for finding the weights were tried. Firstly, looking at the accuracy 

when fuzzy matching with just one attribute, in order to give an insight into the 

relative importance of each attribute. Secondly, trying different combinations of 

weights to produce the best estimates. Thirdly, using genetic algorithms to find the 

weights. 

8.5.1.1 Assessment of Attribute Influence on Estimation Performance 

. Fuzzy matching was tried with just one attribute to gauge an idea of the relative 

importance of each attribute. Cases will often occur, when using one attribute, 

where none of the other processes attribute values are within the range set by the SP, 

especially for low SP values. This problem is avoided by taking the best match to 

simply be the existing process with the attribute value nearest to the target value. 

The weights required for equation 7.3, which was described in chapter 7 for 

allowing weights to be used in fuzzy matching, are shown in table 8.6. The results 

Table 8.6 Single Attribute Matching and Derived Weights 

Attribute ASEE AEEE 

(±%) Wj (%) Wj 

Capacity 88 1.14 110 0.91 

No.ofFU 110 0.91 150 0.67 

Max Temperature 118 0.85 198 0.51 

Max Pressure 121 0.83 198 0.51 
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clearly show that the capacity attribute has the lowest average error when fuzzy 

matching with a single attribute, and is therefore the most closely related to the 

capital cost. The weights shown in table 8.6 were calculated by dividing 100 by the 

ASEE and the AEEE for the attribute. The reason for dividing by the average error 

was an arbitrary decision to make the weights inversely proportional to the average 

error, making the lowest averages have the highest weighting. Dividing by one 

hundred produced weights with values of around one. Then the weights were used 

with the SSA, the ramp MF and the set of SP values that produced the lowest 

average estimates for the combinations from the SP set-up of 0-3(0.25). 

The derived weights resulted in an increase in the averag'e errors when compared to 
\ 

unweighted fuzzy matching, as seen in table 8.7. The increase was ±8% for the 

ASEE and 15% for the AEEE. This method for deriving the weights was not used 

after these results. 

Table 8.7 Effect of Derived Weights 

Weights ASEE (±%) AEEE(%) 

None 47 73 

Derived 55 88 

8.5.1.2 Combinations 

The next method was to find the near optimum weights by enumerating 

combinations in the same way as for the SP values optimization. 

Firstly, the range for the values of the weights to be used was investigated. This 

involved varying the maximum possible value for the weight while keeping the· 

increment at the same value of 0.25, in an identical fashion to that used to test the 

ranges for the shape parameter values. Table 8.8 presents the optimum accuracy 

achieved with different ranges and using the standard set-up for the fuzzy matcher, 

apart from the SP value being set to unity for all attributes. 
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Table 8.8 Weight Ranges 

Weight Range Maximum ASEE AEEE Time 

Ratio (±%) ( %) (minutes) 

o to I 4 53 87 I 

o to 2 8 53 81 4 

o to 3 5 49 76 40 

Oto 5 4.67 49 73 120 

o to 10 5.2 48 73 1500 

Table 8.8 shows that the use of weights, with an SP value of unity, produces as 

nearly as good a match as that produced by trying different combinations of SP 

values, ±I % higher for ASEE, but the same for the AEEE. The larger the range the 

better the estimate, but on the other hand the run time becomes longer. As for the 

SP, a range of 0-3 seems to result in the right balance between accuracy and run 

time. 

The interpretation of the value of a weight is much clearer than that of a SP value. 

The ratio between the values of the weights for attributes shows the effect of one 

attribute in relation to another in the selection of the best match. This difference in 

value is called the ratio for the following discussion. For example, an increment of 

0.25 with a maximum of one for the range allows an attribute to have weights 

between 0.25 and I, and so the maximum ratio is 4, and for a 0.05 increment the 

maximum ratio increases to 20. The largest ratio for a near optimum set of attribute 

weights was 8, and so long as the increment and range allow this figure to be 

possible then the combinations of values considered are suitable. For example, 0-

2(0.25) or 0-1(0.1) are suitable set-ups for the range and increment of the weights. 

In fact, the maximum of the range can be viewed as a constant and the increment 

used as the only variable for the set-up. This is achieved by keeping the range set at 

0-1, and then varying the increment.. For example, using 0.05 would in effect result 

in the same combinations of weights being tried as for a weights set-up of 0-5(0.25). 

Therefore, for the increment experiments the range of values for the weights was 

kept at 0-1. The rest of the set-up for the fuzzy matching was standard, with the 

SSA, a ramp MF and with the SP values all set at one. 

The range of possible values for the weights when fuzzy matching is from 0 to J. 

124 



The results for the variation of the weight increment are shown in table 8.9. Again, 

the lower the increment the lower the average error. However, as mentioned 

already, a balance between accuracy and run time must be made and so an increment 

of 0.1 for a range of 0-1 is best. This also allows a maximum ratio of 10 which 

encompasses the greatest difference found in a near optimum case. 

Table 8.9 Weight Increments 

Step Maximum ASEE (±%) AEEE(%) Time (minutes) 

Ratio 

1 1 78 ·118 <1 

0.5 2 56 87 <1 

0.25 4 53 87 1 

0.2 5 53 84 2 

0.1 8 49 81 20 

0.05 4.67 49 73 120 

Looking at the values of the weights for the lowest average errors showed that the 

values of the weights for the pressure attribute to be the lowest and therefore 

reinforced the view of it being the least important attribute of the SSA. The 

maximum temperature had the highest value when only varying the weights. 

The next fuzzy matching enumerated combinations of both SP and weight values. 

The set-up for the fuzzy matching used the SSA, ramp MF, and a SP set-up of 0-

3(0.25) and weights set-up of 0-1 (0.2), with the resulting running time being 2 days. 

Table 8.10 shows that the average error is reduced by a combination of weighting 

the attribute MF values in the summation and by optimising the attributes SP values. 

The addition of weighting improved the average accuracy of the ASEE by ±5% and 

the AEEE by 7% when compared to equal weighting for each attribute. Thus, 

showing the importance of weighting in fuzzy matching. 
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Table 8.10 Effect of Both SP and Weights on Average Error 

Variant Attribute ASEE AEEE 

Capacity No.ofFU Max.T Max.P (±%) 

None SP 1 1 1 1 78 

W 1 1 1 1 

SP SP 1.00 (0.75) 1.75 (1.75) 0.50 (0.75) 0.00 (0.00) 47 

W 1 1 1 1 

SP 1 1 1 1 48 

Weights W 0.275 (0.225) 0.25 (0.175) 0.65 (0.35) 0.125 (0.075) 

SP& SP 1.25 (1.50) 2.00 (2.00) 0.50 (0.50) 0.25 (1.25) 42 

Weights W 0.80 (1.00) 0.80 (0.80) 1.00 (0.60) 0.60 (0.20) 

8.5.1.3 Genetic Algorithms 

Genetic algorithms (GA) were used in an attempt to replace the combination 

method that has been discussed previously. The GA approach for the selection of 

the weight values for the attributes is based on the approach used for the SP values. 

The range for the SP values was 0-3, and 0-1 for the weights, so that a comparison 

between GA and combinations could be made. 

The results for the GA approach are not as good, as seen in table 8.11, with the 

ASEE ±7% worse and the AEEE 13%. However, the run time for the combinations 

was 2 days as compared to 1 hour for the GA. The GA used was only a trial one 

written by the author, with a commercially available package the average error 

achieved would be improved upon. 

Table 8.11 Comparison of Combinations and Genetic Algorithms 

Variant Attribute ASEE AEEE 

Capacity No.ofFU Max.T Max.P (±%) (%) 

Comb SP 1.25 (1.50) 2.00 (2.00) 2.00(2.00) 0.25 (1.25) 42 66 

W 0.80 (1.00) 0.80 (0.80 0.80 (0.80 0.60 (0.20) 

GA SP 2.84 (2.59) 2.81 (2.00) 0.85 (1.29) 1.59 (0.53) 49 79 

W 0.72 (0.48) 0.46 (0.22) 0.58 (0.65) 0.24 (0.02) 
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8.6 Attributes 

The attributes used when fuzzy matching must be selected with the production of 

the estimate and its accuracy in mind. Attributes that are not available in the early 

stages of plant design, and those that have no influence or even a small influence on 

the capital cost should be omitted from the fuzzy matching method. For example, 

the workforce is viewed as inappropriate because it is not known in the early stages 

of process development. Also, pressure is a possibility for omission from fuzzy 

matching as it was found to be less influential than the other SSA. This is in 

contradiction to the existing methods which all include pressure. 

Some attributes are process classifications such as batch/continuous and materials 

of construction. These attributes required different methods for calculating their MF 

values as their values are linguistic, in contrast to the numeric values of the other 

attributes considered. Linguistic means that the value is a word with no numeric 

value and is an assignment to a class derived for that attribute. For example, the 

material of construction for an ammonia plant is stainless steel. 

The effects of each attribute in the data supplied by CS when fuzzy matching are 

discussed in the following sections. 

The set-up used when fuzzy matching was of the standard form, with the new 

attributes added to the SSA. The ramp membership function was used. The set-up 

for the shape parameters was 0-3(0.25), unless stated otherwise. However, weights 

as discussed in the last section were left out of the fuzzy matching to prevent 

excessive run times, with the set of attributes that produced the best average error 

used with weights in the final results presented in the conclusion. 

8.6.1 Capacity 

Existing capital cost estimation methods have not always included the capacity, 

replacing it with a more complicated, but related quantity, throughput. Throughput 

is a measure of the amount of material passing through the process, whereas the 

capacity is the amount of product leaving the plant. 

There are two reasons that the throughput might be a better attribute for matching 

plants. Firstly, some plants will require several tonnes of raw materials to produce 
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a tonne of product, while in others a tonne of raw material can produce a tonne of 

product. Two such plants could have the same capacity and so be assigned the same 

match value for the capacity attribute. However, the first plant would have larger 

pieces of equipment due to the larger volume of material moving through at least 

some parts of the plant, and therefore have a higher capital cost. Secondly, the size 

of equipment can be affected by a large recycle. The throughput is a way of 

representing both these situations. 

Throughput was calculated from the CS data by dividing the amount of raw material 

entering into the plant by the amount of products and useful co-products coming out 

of the plant. The throughput can not be lower than one. However, there were cases 

where the throughput was calculated to be less than one, normally when air was a 

major raw material and the consumption was not specified in the CS data. For these 

cases the throughput was assumed to be one. 

One point to note is that there were two different sets of throughput figures, one 

considered raw material throughput and the second included the amount of process 

water. This was necessary as the process water is used in the reactions, and so 

should be considered a raw material. 

A comparison of the performance of fuzzy matching for these three different 

attributes is shown in table 8.12. The SSA were used for the capacity results and 

then each of the two different throughputs were used in turn in place of the capacity. 

Table 8.12 Capacity versus Throughput 

Attribute ASEE (±%) AEEE(%) 

Capacity 47 73 

Throughput 76 138 

Throughput (process water) 57 108 

Capacity was found to give the best accuracy, by ±IO% for the ASEE and 35% for 

AEEE, and so was used in all further fuzzy matching. The capacity gives better 

results because it is a more accurate figure, while the throughput was susceptible to 

errors in its calculation from the CS data because some details were missing, such 

as the amount of air required and size of recycles in the process. 

128 



The importance of each attribute in the SSA needed to be considered. This 

assessment was achieved by removing each of the four SSA from the fuzzy matcher 

in turn, and then analysing the effect on the lowest average error which was then 

found. The results are shown in table 8.13. 

Table 8.13 Effect of Attributes in SSA on Fuzzy Matching 

SP Value for Attribute ASEE AEEE 

Capacity No.ofFU Max. T Max.P (±%) (%) 

I (1.75) 1.75 (1.75) 0.5 (0.75) 0(0) 47 73 

- 1.25 (1.5) 1.75 (1.00) 1.75 (1.75 77 135 

2.00 (0) - 0.25 (0.25) 0.75 (0) 53 103 

2.75 (0) 1.00 (2.75) - 1.25 (2.50) 65 119 

2.00 (1.25) 2.00 (2.00) 0.50 (0.50) - 52 82 

Leaving out the capacity resulted in the largest increase in the average error. The 

increase for the ASEE was a very large ±30% and an even larger increase of 62% 

for the AEEE. 

The capacity should be included in the set of attributes for fuzzy matching. 

8.6.2 Number of Functional Units 

The definition of a functional unit varies from one person to the next, but in this 

work the number of functional units were calculated for the CS data by counting the 

pieces of equipment in the process diagrams that were of the type as defined by the 

I. Chem. E. Assoc. Cost Engrs. (1988), see chapter 3 for the definition. The number 

of functional units for each process was calculated from the CS data by the author 

and also during the course of an undergraduate final year project. This allowed a 

check to be made on the figures by subtracting one set from the other and looking 

closely at any plants where there was a large difference. This resulted in a few 

changes and a new amalga!p.ated and more representative set of values. This 

combined set of values for the number of functional units was found to produce the 

lowest average error. 

The importance of the number of functional units attribute when fuzzy matching is 
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shown in table 8.13. This attribute has the third largest effect on the average error 

of the four SSA, with the ASEE relatively unaffected with an increase of ±6%, but 

a large increase of 30% for the AEEE. 

The number of functional units should be included in the set of attributes for fuzzy 

matching. 

8.6.3 Maximum Temperature 

The temperature attribute for a chemical plant represent the temperatures 

encountered during the chemical process. The value of the temperature attribute was 

determined in two ways. Firstly as the maximum process temperature and secondly 

as the mid point of a range if one was quoted in the CS data. Taking the maximum 

value was found to give the best results. This was expected because equipment has 

to be constructed to cope with the maximum possible temperature. 

Again, table 8.13 shows the importance of the maximum temperature attribute when 

fuzzy matching. This attribute results in the second largest increase in the best 

average error. The ASEE increased by ±18%, and the AEEE by 46%, which are 

large increases. 

The maximum temperature should be included in the set of attributes for fuzzy 

matching. 

8.6.4 Maximum Pressure 

The pressure attribute represents the pressures found within the process plant. The 

maximum pressure was the best way to determine the attribute values, as was the 
/ case for the temperature. 

However, it was noticeable that the SP value for the pressure attribute was often 

zero. The interpretation of this result was that the pressure attribute was not so 

important. This was backed up by the accuracy found when fuzzy matching was 

undertaken with the omission of the pressure attribute from the SSA, see table 8.13. 

Leaving out the pressure attribute resulted in the smallest increases of ±5% and 9% 

for the ASEE and AEEE respectively. Therefore, the pressure attribute is not so 
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important when usmg fuzzy matching for capital cost estimation. This was 

surprising, given that pressure determines the type of vessel and its wall thickness, 

both of which are directly related to capital cost. The reason for its insignificance is 

unclear. 

The use of the pressure attribute when fuzzy matching is just about worthwhile. 

8.6.5 Workforce 

The correlation results in chapter 5 implied that the capital cost was strongly related 

to the size of the workforce, with the reasons for this discussed at that point. 

However, it is not possible to use the workforce in a method for early capital cost 

estimation because the labour requirements are not normally known in the early 

stages of plant development, which is when the fuzzy matching estimation 

technique is designed to be used. The success of the attribute as an important 

parameter when estimating the capital cost of a plant is worth remembering. Even 

though there is some doubt about the stage in the process development at which the 

workforce is known. 

Table 8.14 shows the effect of adding the workforce to the SSA. The improvement 

in the average errors is large, ±11 % for the ASEE and 15% for the AEEE. 

Table 8.14 Workforce 

Attributes ASEE(±%) AEEE(%) 

SSA 47 73 

SSA+Workforce 36 58 

The worliforce attribute should be used, if available, when fuzzy matching. 

8.6.6 Number of Reaction Steps 

A reaction step in a process is a distinct chemical reaction that requires a dedicated 

reactor in the corresponding chemical plant. The important consideration when 
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counting the number of reactors is that some plants have a reaction step that uses 

reactors in parallel in order to increase the plant capacity due to size limits on the 

equipment. One reaction step might have two or more identical reactors, which 

should not be counted separately. 

The number of reaction steps in each process were counted, with parallel reactors 

counted as one reactor. The number of reaction steps was then used instead of the 

number of functional units and also in addition to the SSA. The ASEE and AEEE 

obtained when matching with these sets of attributes are presented in table 8.15. The 

number of functional units attribute produced slightly lower average errors than 

when replaced by the number of reaction steps, by 2% for the AEEE. However, 

when both attributes were used a reasonable improvement in the average errors of 

±6% and 5% for the ASEE and AEEE respectively resulted. 

Table 8.15 Functional Units versus Reaction Steps 

Attribute ASEE (±%) AEEE(%) 

No.ofFU 47 73 

Reaction Steps 47 75 

Both 41 70 

These results led to the number of reaction steps being included as afuzzy matching 

attribute. 

8.6.7 Process Phase 

The process phase is the physical state of the materials that pass through a plant, for 

example, vapour, liquid, solid or a combination. Plants may be classified by the 

dominant phases. There were five different types of dominant process phase in the 

CS data plants: vapour, liquid/vapour, liquid, liquid/solid, solid. 

The membership functions described in chapter 7 are only suitable for numeric 

values and are therefore unsuitable for the linguistic values of the process phase. 

Two slightly different methods were tried in place of these membership functions. 

Firstly, when an exact match was made between the process phase values for the 

132 



data and target plants, then a value was added to the match value total. In effect the 

value used weighted the importance of the phase attribute. The value added was 

varied as for the combinations and weights. Also considered were the phases nearest 

to the target phase. For example, a liquid phase process has something in common 

with both a liquid/vapour and a liquid/solid. Therefore some sort of match value is 

warranted, but of a lesser value than an exact match. The value added for the nearest 

phase was varied in a similar way to the value for the exact matches. 

The set-up for the values tried for the exact match was 0-3(0.25), as used previously 

for the shape parameters values. The set-up for the variations in values tried for the 

nearest phase was 0.2-0.8(0.2), this used a smaller range to prevent long run times. 

The process phase was added to the SSA used in the fuzzy matching. Table 8.16 

shows the results for the cases where the phase is not considered, then with only an 

exact phase match, and thirdly with the nearest phases given a match value. The 

process phase attribute did lead to a small improvement of 3% for both the ASEE 

and the AEEE when the exact and nearest phases were considered. 

Table 8.16 Process Phase 

Phase Nearest Phase ASEE (±%) AEEE (%) 

SSA 0 0 47 73 

SSA + Exact Phase 0-3(0.25) 0 47 71 

SSA + Exact Phase 0-3(0.25) 0.2-0.8(0.2) 44 70 
& Nearest Phase 

However, the improvement was too small to merit the addition of the process phase 

attribute to fuzzy matching, and the extra run time that would result. 

8.6.8 Materials of Construction 

The materials of construction (MOC) usually appears as a plant parameter in the 

traditional methods. However, the MOC was often missing from the CS data. The 

following chemical engineering encyclopaedias: Sittig (1967), Ullmann (1988), and 

Kirk-Othmer (\ 992) were used to provide the MOC for the plants in the CS data. 
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The MOC attribute has linguistic values such as: Hastelloy C, stainless steel and 

carbon steel. The membership function had to be replaced by another method to 

quantify the similarity between the attribute values for the purpose of cost 

estimation. This was possible in two ways, firstly as for the process phase attribute, 

or secondly by the conversion of the linguistic values into numeric values. 

Zevnik and Buchanan (1963) and Wilson (1971) derived factors for the MOC, for 

use in their correlation-based estimating techniques. Wilson (1971) developed a 

method that used the MOC as a multiplying factor, with a carbon steel plant 

providing the base cost. For example, when estimating the cost of two plants which 

are identical to each other, except for one being constructed from titanium and the 

other of carbon steel, the Wilson method would use all the other necessary plant 

attribute values in an equation to produce the base cost estimate and then multiply 

by the relevant MOC factor. Therefore, the titanium plant would cost twice as much 

as the carbon steel plant. Table 8.17 shows the Wilson factors. 

Table 8.17 The Wilson Factors 

Wilson Factor Material of Construction 

1.00 Carbon steel 

1.28 Stainless steel( 400 series) 

1.5. Stainless steel(300 series) 

1.54 Hastelloy C 

2.00 Titanium, Tantalum 

These factors were used as numeric values for the MOC attribute, which is then 

suitable for fuzzy matching in the same way as the other attributes. The attribute 

values are for the relative cost of building a plant containing that particular MOC. 

When there was more than one MOC for a plant, then a decision had to be made on 

how to combine the factors for the different MOC to produce the attribute value. 

The possibilities are to either choose one of the MOC attribute values (factors), or 

calculate a composite value. The first method selected the largest MOC factor out 

of those for the MOC used in the plant. For the second method the factor values for 

all the MOC used in the plant were totalled, and thirdly a mean factor value was 

calculated by totalling the factors and then dividing by the number of different 

materials. Alien & Page (1975) state that in their traditional method, taking the 

134 



mean MOC factor led to an improved accuracy. This is a different result than for 

temperature and pressure, where the maximum is best. The results are shown in 

table 8.18. 

Table 8.18 MOC Results 

Attributes ASEE(±%) AEEE(%) 

SSA 47 73 

SSA + Largest Wilson MOC 46 74 

SSA + Total Wilson MOC 46 74 

SSA + Mean Wilson MOC 46 74 

SSA + Largest Zevnik & Buchanan MOC 52 80 

SSA + Largest Zevnik & Buchanan MOC 53 80 

SSA + Mean Zevnik & Buchanan MOC 51 79 

The factors developed by Wilson (1971) produced the more accurate estimates, and 

made a very slight improvement on the ASEE for the SSA. The overall 

improvement in accuracy by the addition of the MOC attribute was ±I % for the 

ASEE, but increased the AEEE by I %. The method for calculating an attribute 

value when there was more than one MOC made little difference. In fact 87% of the 

plants had only one quoted MOC, and so the value for the attribute is normally 

unchanged by taking the maximum, mean or total. 

The best way of calculating the MOC attribute would have been to have used the 

fraction of the plant made up of each material to calculate a weighted mean. 

However, this was impossible with the CS data process descriptions, because the 

proportions of each material from which the plants were constructed was unknown. 

The MOC attribute was not used when fuzzy matching. 
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8.7 Match Values 

The match value represents the similarity between data and target values of an 

attribute when fuzzy matching. This section investigates the meaning of a match 

value for a particular attribute and for the overall match value, which is the total of 

the match values for a combination of the attributes. 

8.7.1 Minimum Attribute Match Value 

A desired condition when selecting the Best Match (BM) between a new plant and 

a data plant is that the values for each attribute are close. This could be achieved if 

the fuzzy matcher only selects a plant as the best match when each of the attribute 

match values is above a certain minimum value. However, there then might not be 

an existing plant that matches sufficiently on all the attributes to satisfy the 

constraint, and so no matching plant is found. This is especially true when low SP 

values are used in conjunction with high minimum match values. 

A minimum match value was used for four attributes, with the results shown in table 

8.19. The fuzzy matcher used the SSA, with a ramp MF, a SP set-up of 0-3(0.25), 

and no weights. The columns titled No. with BM show the number of plants that had 

a best match for the minimum MV constraints. The average error is only calculated 

for the plants with a best match. 

Table 8.19 Minimum Match Value for All Attributes 

Min.MV ASEE(±%) No. with BM AEEE(%) No. with BM 

0 47 90 73 90 

0.25 49 83 87 84 

0.50 46 84 86 83 

0.75 65 81 105 80 

The table shows that the error increased with each increase in the minimum MV, 

apart from for the ASEE when the minimum MV was 0.5. However, the 

improvement in the ASEE was only ±1 %, and was for only 84 plants. 

This approach did not improve the fuzzy matching technique. The fact that a 
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minimum MV constraint makes the results of fuzzy matching worse, indicates that 

the SP value allows for the importance of each attribute. For example, a high SP 

value for an attribute will mean that most of the target plants will have a high MV 

for that attribute. 

There is a possibility that a plant with a low match value for capacity, but with a 

high MV for all the other attributes will be selected as the best match. However, if 

capacity is the most important attribute, then this might not be a good plant to select 

as a best match. Therefore, to avoid this the MV for a particular attribute has to be 

above a designated value. This idea uses a similar methodology to weighting, which 

would prevent this situation by increasing the relative size of a match value for an 

attribute by increasing the size of its weight. The set-up for the fuzzy matcher was 

the same as for the minimum MV for all of the attributes, with the results shown in 

table 8.20. 

Table 8.20 Minimum Match Value for Attribute in SSA 

Minimum Match Value 

Attribute 0.25 0.5 

ASEE No. BM AEEE No. BM ASEE No.BM AEEE No. BM 

Capacity 46 90 79 90 47 90 79 90 
NoofFU 46 90 74 90 46 90 73 90 

MaxT 45 89 72 89 44 89 71 89 
MaxP 51 90 85 90 51 90 83 90 

The average error improved slightly for the number of functional units, by ± 1 % for 

the ASEE. The biggest improvement in the average error was for the maximum 

temperature attribute, with a minimum MY of 0.5. The ASEE improved by ±3%, 
form ±47% to ±44%, and the AEEE improved by 2%, from 73% to 71 %. However, 

the number of plants for which a best match was found was reduced from 90 to 89. 

Therefore, this method was left out of the final fuzzing matching methodology 

because the small improvement was outweighed by the failure to estimate the cost 

for all plants. 
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8.7.2 Total Match Value Versus Average Error 
I 
I 

The total matc.h value quantifies the similarity between the plant used for the 

estimate to the 'new plant, therefore it should provide an indication of the accuracy , 
of the estimate: Regressing the best match value against the accuracy of the estimate 

should show if a higher match value means a better accuracy, and hence fuzzy 

matching is working as hypothesised. The total match value can then be used for 

assigning a degree of confidence to the estimate. If a perfect match is found over all 

the attributes and the estimate is nevertheless inaccurate, then some attributes must 

be missing which have a bearing on the quantity being estimated; this was expected 

in this case because only attributes known in the early stages of process 

development were being used. 

The best fuzzy matching results for the 90 plants, which is described in the final 

section, was used to investigate the relationship between the total match value and 

the error for an estimate. 

Non-linear regression produced the equations that best represented the relationship. 

However, the coefficient of determination (R2) value was 0.2 for the relationship 

between the total match value and the SEE and the EEE. This means that there is a 

lack of confidence in the relationship derived by the regression. The equations were: 

7331 SEE = ~-=-::.=--
TMV5.83 

EEE = 
13620 

TMV7.04 

(8.1) 

(8.2) 

According to both equations the error will decrease as the TMV increases, and so 

the conclusion is that the TMV does give an indication of how good the estimate 

will be. However, the representation of the relationship is questionable due to the 

low coefficient of determination for these equations. 
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8.8 Conclusion & Comparison of Accuracies 

In this section the best results for fuzzy matching are discussed. A comparison is 

made between the accuracy obtained for the existing, new correlations and fuzzy 

matching methods. 

The lowest average error achieved with fuzzy matching using 90 processes, not 

using the workforce attribute, was for the SSA plus the number of reaction steps. 

The set-up details for the fuzzy matcher are that the membership function was a 

ramp, with SP set-up 0-2(0.25) and weights set-up 0-0.99(0.33). This set up was 

chosen to reduce the running time, which was still two weeks, to calculate the ASEE 

and AEEE for all possible combinations of SP and weights. The resulting accuracy 

was ±39% for the ASEE, and 64% for the AEEE. The complete details for the SP 

and weight values that produced the best fuzzy matching results for the 90 plants are 

shown in table 8.21. These results put the fuzzy matching estimates somewhere 

between an order of magnitude and a study estimate, based on the realistic estimate 

figures shown in Table 2.1. 

Table 8.21 Best Fuzzy Matching Result 

Attribute ASEE AEEE 

Capacity No.ofFU Max.T Max.P No.ofRS (±%) (%) 

SP 0.75 (1.00) 1.25 (1.25) 0.75 (0.50) 0(0) 0.50 (0.75) 39 64 

W 0.99 (0.99) 0.99 (0.99) 0.99 (0.66) 0.99 (0.66) 0.33 (0.33) 

Table 8.22 compares existing methods, new correlations and fuzzy matching. The 

existing estimating methods developed by Bridgwater produced the best accuracy 

of ±61 % and 89% for the ASEE and AEEE respectively for the 90 processes. A 

correlation equation, derived using regression on the CS data was also used for 

estimating the capital cost and the average error over all the processes was ±53% 

for the ASEE and 77% for the AEEE, which meant that the fuzzy matching 

Table 8.22 Lowest Errors Obtained For Different Techniques 

Technique ASEE(±%) AEEE(%) 

Existing methods 61 89 

New Correlation 53 77 

Fuzzy Matching 39 64 
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technique produced better estimates by ±14% for the ASEE, and 10% for the AEEE. 

Fuzzy matching is not always the best estimation technique. For example, when 

using two variables, the correlation equations perform better than fuzzy matching 

with two attributes. For three attributes/variables the estimates are better when using 

fuzzy matching for the ASEE, but are worse for the AEEE by 2%. Fuzzy matching 

does much better than regressions for four or more attributes, see table 8.23. In the 

columns headed fuzzy of table 8.23 are the average errors obtained when fuzzy 

matching with the various combinations of attributes are presented. The columns 

headed regression list the average errors obtained using equations in terms of the 

same attributes for the capital cost that have been derived by regression. The set-up 

for the fuzzy matching used a ramp MF, SP value combinations, and weight 

combinations. 

Table 8.23 Average Errors for Fuzzy Matching and New Correlations 

Attributes ASEE (±%) AEEE (%) 

No. Used Fuzzy Regression Fuzzy Regression 

2 Capacity & No. ofFU 71 56 113 79 . 
3 SSA without Max P 48 55 80 78 

4 SSA 42 55 66 78 

5 SSA& RS 39 53 64 77 

Finally, the number of plants in the database is an important consideration. 

Intuitively, there is a greater chance of finding a close match, and hence a more 

accurate estimate, when fuzzy matching with as many plants as are available in the 

database. The results for the 90 plant test database have already been discussed, but 

a 79 plant database was used to test existing methods and new regressions in 

chapters 4 and 5. The average estimate errors obtained for this database are 

presented in table 8.24, and compared with the database of 90 plants. 

Table 8.24 Number of Plants Effect on Fuzzy Matching 

Number of Plants ASEE(±%) AEEE(%) 

79 45 77 

90 39 64 
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The average error was improved by ±6% for the ASEE and 13% for the AEEE when 

using the larger of the two databases. 

Fuzzy matching should use the maximum number of existing plants that are 

available. 
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Chapter 9 

CONCLUSIONS AND FURTHER APPLICATIONS 

This final chapter has a brief discussion of how fuzzy matching could be applied in 

other fields of chemical engineering. Finally, there is a discussion on the conclusions 

from the application of fuzzy matching to capital cost estimation. 

9.1 Further Applications of Fuzzy Matching 

A brief discussion follows of two possible further applications of fuzzy matching in 

chemical engineering. Fuzzy matching could also be applied to many other fields of 

research. 

9.1.1 Plant Design and Modifications 

Most designers copy and modify what is known to have worked. This is why many 

chemical processes have a similar arrangement of equipment. This methodology is not 

surprising when the amount of money that would be wasted on a plant that was non

operational is considered, and the potentially dire health, safety and environmental 

consequences of design faults. The human copying and modification process requires 

selection, from memory and/or documentation, of a flowsheet or flowsheet fragment 

which either achieves the current design aim or which may be modified to achieve it. 

Fuzzy matching could provide a tool for helping a designer fmd suitable designs to use 

when developing a chemical plant. 

Also, a chemical company is now more likely in the UK to redesign (retrofit) an 

existing chemical process rather than construct a new plant. The reasons for this are the 
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large amount of capital required to construct a new plant, especially when compared 

with plants constructed abroad and the current economic situation. 

Retrofitting a plant might to be necessary for various reasons:-

1) New regulations regarding the performance of plants. For example, a new 

environmental regulation on emissions of S02. 

2) A change in the requirements of the output from the plant. The most common 

being an increase in the amount of main product. The flowrates through the plant are 

increased and result in some of the current equipment being inadequate - the 

'debottlenecking problem'. 

3) In order to upgrade the plant equipment. This is normally a consequence of the 

changes required to the plant by the two previous points. However, an upgrade could 

also reduce the operating costs. 

The redesign of the plant and its process will require a modification of the existing 

equipment and/or installation of new pieces of equipment. Consideration of the 

alterations is difficult and involves:-

1) An understanding of the performance of the existing process and equipment. 

2) Selecting the equipment that needs altering for the required changes in the plant 

to be possible. 

3) A simulation of the effects of the redesign on the rest of the process. 

The records for previous plant modifications are kept, because an alteration can have a 

significant effect on the operation of a plant and its safety. These records include all the 

details of the redesign, its effect on the plant operations, and the cost. 

Access to details of an identical or similar redesign from a database of past retrofits of 

plants could assist by providing the starting point for redesign. This could be achieved 
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by using fuzzy matching. The recorded modifications made, the results and costs of the 

past retrofit found to be the most similar could then be used when considering the new 

retrofit. 

9.1.2 Fault Diagnosis 

When a chemical plant operator realises that there is a problem in the way the plant is 

operating they try to correct this with a set of actions. An operator could produce a 

solution to the problem more quickly and more successfully if they have experience of 

the problem or a similar problem in that plant or other similar plants. 

If a database of previous cases of operating problems and their solutions were available 

then fuzzy matching could be used to fmd which cases in the database were most like 

the current predicament (similar to case-based reasoning). The selected cases are then 

used to aid the operator in their decision on what set of actions to take. This is a different 

approach to that of expert systems which use rules to infer solutions from the 

characteristics of the problem. 
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9.2 Conclusion 

The results obtained using fuzzy matching for. capital cost estimation are very 

promising. The accuracy obtained is better than that obtained using both regression 

equations derived from the CS data and traditional pre-design methods. The accuracy 

obtained is within the band that a professional estimator would expect to achieve in the 

early stages of plant design. 

The cost of a study estimate in 1989 was between $11,000 and $50,000. This is the class 

of estimate that has an expected accuracy which is comparable to the best average error 

achieved by fuzzy matching of ±39%. Since fuzzy matching involves merely entering 

data into a computer program, it would be a lot cheaper to use when estimating in the 

early stages of design. 

The accuracy improves as a match is found using more plant attributes. However, some 

attributes are more important than others, for example capacity seems more influential 

than pressure. Weighting of the attributes to reflect their importance as predictors of 

capital cost also improves accuracy. A ramp shaped characteristic function used to 

quantify match closeness produced the best results. 

An advantage of fuzzy matching is that there is no need to analyse a set of data to 

develop correlation equations for the capital cost, nor to decide how to group the data 

in order to refine the equation for particular types of process. The fuzzy technique may 

be thought of as finding a specific capital cost formula for each process. 

As Uppal and Van Gool (1992) state, a method that uses the information available in 

the idea stage of capital cost estimation as well as the details that become available in 

the late stages of capital cost estimation would be valuable as it would avoid the 

discontinuities of cost estimating at different stages. Fuzzy matching can handle the 

inclusion of new plant specifications when they are found during the development of 

the plant. With the new plant specification included as an extra attribute in the fuzzy 

matching. Obviously using a larger number of different attributes will increase the time 

taken to find the optimum set-up for the fuzzy matcher, but this will be compensated 

for by the increased accuracy. 
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Furthennore, the total of the match values for the best match plant quantifies its 

closeness to the target process and therefore provides an indication of the confidence in 

the accuracy of the estimate. 

Once fuzzy matching has selected the existing plant most like the new plant then its 

capital cost is taken as the capital cost estimate for the new plant. However, an expert 

would modify the capital cost of the existing plant in line with any significant process 

differences in order to make it a better estimate for the capital cost of the proposed 

plant. Clearly the capacity is an important detenninant of cost, and there is a widely 

accepted rule for making adjustments, that is the exponent rule. Williams (1947) well 

known 0.6 rule is commonly used to estimate the capital cost of a new plant that uses 

the same process as an existing plant, but has a different capacity. When the best match 

has a different capacity from that of the new process, this rule was used to adjust the 

capital cost of the existing plant. However, this technique was found to make the 

estimates worse when tried for the CS data plants. 

Fuzzy matching is eminently suitable for computer implementation. Fuzzy matching 

works with a conventional database of actual costs and process parameters. All the 

usual database functions are available: new data is simply added and out of date or 

incorrect data can be deleted or revised. Such changes do not require re-correlation of 

equations or re-plotting of graphs, as would be the case with existing pre-design 

methods. The method requires minimal estimating effort, once historic plant cost data 

is to hand. 

Fuzzy matching makes no assumptions about relationships between capital cost and 

process parameters and no arbitrary decisions, apart from the number of functional 

units, must be made about the plant, it merely mirrors the professional estimators 

technique of using past experience. Therefore, fuzzy estimates are more easily justified. 

Fuzzy matching is consistent with our intuitive view of the influence of plant attributes 

on the capital cost. 

If its potential is realised, fuzzy matching could be an important new method for capital 

cost estimation in the initial stages of process design 
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APPENDIX 

Listing of Fuzzy Matching Program 
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C Fuzzy Matching Program 

C Define the number of chemical plants used when fuzzy matching (NoP) 
PARAMETER (NoP=90) 

C Define the number of attributes in the data file (NoAF) 
PARAMETER (NoAF=23) 

C Define the number of attributes used when fuzzy matching (NoAU) 
PARAMETER (NoAU=5) 

C Define which attributes are to be used (n*) 
PARAMETER (nl=9, n2=14, n3=12, n4=13, n5=6) 

C Define the size of the increment for shape parameter combinations (SI) 
PARAMETER (SI=O.2) 

C Define the maximum value for a shape parameter (SM) 
PARAMETER (SM=2) 

C Define the size of the increment for weight combinations (WI) 
PARAMETER (WI=O.33) 

C Define the maximum value for a weight (WM) 
PARAMETER (WM=O.99) 

C Define the membership function used (MF) (1 - FLAT, 2 - RAMP, 3 - CURVE) 
PARAMETER (MF=2) 

C Set up the arrays and parameters 
REAL TotS, TotE 
DOUBLE PRECISION SetSA, SetEA 
DOUBLE PRECISION w(NoAF), d(NoP,NoAF) 
DIMENSION MP(NoP,NoP), PEr(NoP) 
DIMENSION targ(NoAF), rang(NoAF), p(NoAF) 
DIMENSION SEr(NoP), EEr(NoP) 

C Read the data from an ASCII data file and into an array 
OPEN (UNIT=IO, 
*FILE='CSdata.txt', 
*STATUS='OLD') 
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WRITE (6,637) CHAR(13) 
637 FORMAT (I' Reading data file, please wait ",Alj) 

i = I 

70 READ (lO,*,ERR=60) (d(i,j), j=I,NoAF) 

i = i + 1 

C Check that the data file has the expected number of records 
IF (i.LE.NoP) GO TO 70 

PRINT*,'Only ',NoP,' data points allowed' 
GOT099 

60 PRINT*,'Somethings Wrong' 

99 CLOSE (unit=lO) 

C Set up some initial variable values 
NoLSA=1 
NoCom=D 
BSA=500 
BEA=500 

C Define the weights 
DO wl=D,WM,WI 
w(l)=wl 

DO w2=D,WM,WI 
w(2)=w2 

DO w3=D,WM,WI 
w(3)=w3 

DO w4=D,WM,WI 
w(4)=w4 

DO w5=D,WM,WI 
w(5)=w5 

C Define the shape parameters 
DO spl=D,SM,SI 
DO sp2=D,SM,SI 
DO sp3=O,SM,SI 
DO sp4=D,SM,SI 
DO sp5=D,SM,SI 
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C Initialise the variable values for the set of shape parameters and weightings 
NoCom=NoCom+ 1 
TotS=O 
TotE=O 
NoWBM=NoP 

C For each plant find which of the other plants is the best match when Fuzzy 
Matching 

DOk=l,NoP 

C Initialise variable values for the plant 
NoBM=l 
BMV=O 
MP(k,NoBM)=O 
PEr(k)=O 

C Store the plants attribute values, the target values 
targ(l )=d(k,n 1) 
targ(2)=d(k,n2) 
targ(3)=d(k,n3) 
targ( 4 )=d(k,n4) 
targ(5)=d(k,n5) 

C Set up the range of the membership function using the shape parameters 
range I )=(sp 1 )*targ( 1) 
rang(2)=(sp2)*targ(2) 
rang(3)=(sp3)*targ(3) 
rang(4)=(sp4)*targ( 4) 
rang(5)=(sp5)*targ(5) 

C Calculate the match value for every other process 
DO m=l,NoP 

C Check that you are not matching the same processes 
IF (m.NE.k) THEN 

C Initialise the variable values for the plant being matched 
PMV=O 
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C Store the attribute values for the plant being matched to the target values 
p(l)=d(m,nl) 
p(2)=d(m,n2) 
p(3)=d(m,n3) 
p(4)=d(m,n4) 
p(5)=d(m,n5) 

C Calculate the match value for each attribute 
DO n=I,NoAU 

C Calculate match value for Curve membership function 
IF (MF.EQ.3) THEN 

IF (targ(n).EQ.p(n)) THEN 
AMV=I.O . 

ELSE 
IF (targ(n).GT.p(n)) THEN 

IF (p(n).LE.(targ(n)-rang(n))) THEN 
AMV=O 

ELSE 
IF ( ( p(n).GT.(targ(n)-rang(n))) 

* .AND. (p(n).LE.(targ(n)-«rang(n))I2)) ) ) THEN 
AMV=2*«(p(n)-targ(n)+rang(n) )I rang(n) )**2) 

ELSE 
AMV=I-2*«(p(n)-targ(n))/ rang(n) )**2) 

END IF 
END IF 

ELSE 
IF ( pen) .GE. (targ(n)+rang(n)) ) THEN 

AMV=O 
ELSE 

IF ( (p(n).GT.(targ(n))).AND. 
*(p(n).LE.( targ(n)+( (rang(n))12 ) ) ) ) THEN 

AMV=I-2*( «p(n)-targ(n))/ rang(n) )**2) 
ELSE 

AMV=2*«(p(n)-targ(n)-rang(n))/rang(n))**2) 
END IF 

END IF 
END IF 

END IF 
ELSE 
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C Calculate match value for Ramp membership function 
IF (MF.EQ.2) THEN 

IF (targ(n).EQ.p(n» THEN 
AMV=l.O 

ELSE 
IF (targ(n).GT.p(n» THEN 

IF (p(n).LT.(targ(n)-rang(n))) THEN 
AMV=O 

ELSE 
AMV=(p(n)/rang(n»+«rang(n)-targ(n»/rang(n» 

END IF 
ELSE 

IF (p(n).GT.(targ(n)+rang(n») THEN 
AMV=O 

ELSE 
AMV =« -I )*p(n) )/(rang(n) )+( (rang(n)+targ(n) )/rang(n» 

END IF 
END IF 

END IF 
ELSE 

C Calculate match value for Flat membership function 
IF «p(n).GE.(targ(n)-rang(n»).AND.(p(n).LE.(targ(n)+rang(n»» THEN 

AMV=l.O 
ELSE 

AMV=O 
END IF 

END IF 
END IF 

C Calculate total match value 
PMV=PMV +(w(n)* AMV) 

END DO 

C Check if total match value is highest and record best match 
IF (PMV.GT.BMV) THEN 

NoBM=1 
BMV=PMV 
MP(k,NoBM)=m 

ELSE 
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.. C Calculate the average error when two or more best matches 
IF (PMV.EQ.BMV) THEN 

NoBM=NoBM+1 
MP(k:,NoBM)=m 

END IF 
END IF 

END IF 
END DO 

C Initialise the variable values for the errors 

SEr(k)=O 
EEr(k)=O 

C Calculate average error of best matches for new plant 
DO 1=I,NoBM 

C Calculate standard estimate error 
PEr(k)=«d(MP(k,I),8)-d(k:,8»/d(k,8»* 100 
SEr(k)=( (SEr(k)*(I-1) )+abs(PEr(k:) ))/1 

C Calculate equivalent estimate error 
IF (PEr(k).LT.O) THEN 

EER(k)=«EER(k)*(1-1» + « 100*( -l)*PEr(k»/(l OO+PEr(k»)))n 
ELSE 
EER(k)=( (EER(k)*(I-1) )+PEr(k:) )/1 

END IF 
END DO 

C Count the number of plants without any best match 
IF (BMV.EQ.O) THEN 

NoWBM=NoWBM-1 
END IF 

C Total the error for estimates 
TotS=TotS+SEr(k) 
TotE=TotE+EEr(k) 

END DO 
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C Calculate the average error for combination 
IF (NoWBM.EQ.O) THEN 

SetSA=IOOO 
SetEA=lOOO 

ELSE 
SetSA=TotS/(NoWBM) 
SetEA= TotE/(N 0 WBM) 

END IF 

C Save the weightings and shape parameters for lowest ASEE 
IF (SetSALT.BSA) THEN 

BSA=SetSA 
bwsl=wl 
bws2=w2 
bws3=w3 
bws4=w4 
bws5=w5 
bspsl=spl 
bsps2=sp2 
bsps3=sp3 
bsps4=sp4 
bsps5=sp5 

ELSE 

C Count the number of combinations that produce the lowest ASEE 
IF (SetSAEQ.BSA) THEN 

NoLSA=NoLSA+ I 
END IF 

END IF 

C Save the weightings and shape parameters for lowest AEEE 
IF (SetEALT.BEA) THEN 

BEA=SetEA 
bwel=wl 
bwe2=w2 
bwe3=w3 
bwe4=w4 
bwe5=w5 
bspel=spl 
bspe2=sp2 
bspe3=sp3 
bspe4=sp4 
bspe5=sp5 
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ELSE 

C Count the number of combinations that produce the lowest AEEE 
IF (SetEA.EQ.BEA) THEN 

NoLEA=NoLEA+1 
END IF 

END IF 

END DO 
END DO 
END DO 
END DO 
END DO 
END DO 
END DO 
END DO 
END DO 
END DO 

C Write to file the results of fuzzy matching 

OPEN (7, FILE='resuluxt', 
*STATUS='new', FORM='FORMATTED') 

WRITE(7,90) NoCom, NoWBM, NoBM, NoLSA, 
*BSA, bwsl, bws2, bws3, bws4, bws5, bspsl, bsps2, bsps3, bsps4, bsps5, 
*BEA, bwel, bwe2, bwe3, bwe4, bwe5, bspel, bspe2, bspe3, bspe4, bspe5 

90 FORMAT(I7, 3(,,',F3.0), ',',F7.3, 1O(,,',f6.3), ',',F7.3, 1O(',',f6.3» 

CLOSE(7) 

C End program 
STOP 
END 
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NoP 
NoAF 
NoAU 
n* (ni, n2, ... ) 
SI 
SM 
WI 
WM 
MF 
NoLSA 

NoLEA 

NoCom 
BSA 
BEA 
w* (wl, w2, .. ) 
sp* (spl, ... ) 
NoB M 
BMV 
PMV 
AMV 
NoWBM 
TotS 
TotE 
SetSA 
SetEA 
bws* (bwsl, .. ) 
bsps* (bspsl,.) 
bwe* (bwel, .. ) 
bspe* (bspel,.) 

Variables 

Number of chemical Plants in the data file 
Number of Attributes in the data File 
Number of Attributes Used when fuzzy matching 
Numeric position of attribute in data file 
Shape parameter Increment 
Shape parameter Maximum value 
Weight Increment 
Weights Maximum value 
Membership Function used 
Number of different SP and W combinations that have the 
Lowest Standard error Average 
Number of different SP and W combinations that have the 
Lowest Equivalent error Average 
Number of different SP and W Combinations 
Best Standard error Average 
Best Equivalent error Average 
Weight values 
Shape Parameter values 
Number of Best Matches 
Best Match Value total 
Plants Match Value total 
Attributes Match Value 
Number of Plants With Best Match 
Total Standard error for a set of SP and W 
Total Equivalent error for a set of SP and W 
Sets Standard error Average 
Sets Equivalent error Average 
Best weights for standard error 
Best shape parameters for standard error 
Best weights for equivalent error 
Best shape parameters for equivalent error 
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w(a) 
MP(a,b) 
PEr(a) 
targ(a) 
d(a,b) 
rang(a) 
pea) 
SEr(a) 
EEr(a) 

Arrays 

Weights 
Position of the Matching Plant in data file 
Percentage Error of best match(es) 
Target values for the plant finding a match 
Data in the data file 
Range of the membership function 
Data for the plant matching 
Standard Error 
Equivalent Error 
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