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SUMMARY



The need for simple and well understood mathematical
models representative of the dynamics of large physical
systems has long been recognised, and has recently
attracted considerable attention.

This work was prompted by previous studies in the
department showing that the responses of complex models
of absorption columns could be represented ecually well
by much simpler models. The study has covered three

areas.

a) The reduction of order of transfer functions.
b) The reduction of order of state~variable
models.

¢) Associated topices and numerical techniques.,

A survey has been carried out on methods for
reducing state-variable models, or transfer functions,
to lower order transfer functions. A number of schemes
have been studied, including least-squares fitting in
the frequency domain, the truncation of continued
fractions, and the matching of momeﬁts. It has been
shown that in certain situations the continued fraction
and moments matching method are in fact identical.

Previous work for reducing the order of state
variable models has been reviewed and two new methods
have been proposed. Techniques bases on modal analysis

and least-squares fitting in the time domain have been



discussed. The method of moments has been extended

to deal with state variable models: it has been shown
that large multi-input - multi-output systems can
easily be approximated by smaller models and preoduce
respenses which match acceptably those of the full
systems. Similarly it has been shown that models can
be reduced to give acdeptable results by matching the
frequency response of the reduced model to that of the
full .modil.

Work on model simplification has involved the use
of many numerical techniques. Efficient methods of
computing the frequency response of large systems have
been investigated and it has been shown that a
considerable time saving can be effected by first
transforming the model to its Jordan form. The
determination of equivalent transfer functions from
state variable models has been studied. The existing
methods have been compared using large systems and a
modified scheme proposed, allowing greater accuracy
in determining transfer function coefficients with very

little additional work.
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CHAPTER 1

Introduction




1. INTRODUCTION

Recent years have seen an increase in the size
and complexity of many industrial processes And
engineering operations. These range from the building
of super-tankers and jumbo jets to the implementation
of vast hydro and nuclear power schemes. The expansion
of these industries and the advancing affluence of
the civilized world is reflected in the growth of the
process industries where the production of petroleum
spirit is linked directly to the national economy.
All engineering fields depend greatly upon human
intervention and decision making, both in the design
and operation of plants. In an attempt to eliminate
errors there has been a trend to replace, or supplement,
the operator by a control system, thus reducing the amount
of human decision making. As modern processes become
more complex,control technology must advance to
satisfy the demands placed upon it.

In the 1950's thought was given to the uses to
which computers might be put on process plants, and
the 1960's saw the implementation of the fivst D.D.C.
systems, replacing many analogue controllers with a
single computer. This however, was-only the first step.
Once the computer was installed the way was open for
realizing hitherto impossible advanced control
strategies. However, before many computer systems can

be operated effectively an accurate mathematical model

- -



of the plant being controlled is necessary. The
modelling of large plants has many problems.

Most processes are highly non-linear, some plant
items are distributed parameter systems and lead to
complex partial differential equations, while the flow
of materials involve transport delays, or dead times.
Even with the powerful computers available today such
systems, if modelled accurately, could not be solved,
let alone used for control purpéses. Tﬁus the models
must be simplified in some way.

The first simplifications are often carried out
at the modelling stage: non-linear systems are usually
linearised about their steady states: distributed
parameter systems are approximated by finite difference
modelsﬁ and time delays may be replaced by first
order lags in series. The result is a set of linear
ordinary differential equations.

Classically these equations have been transformed
to the Laplace domain to give transfer functions relating
one output to one input. For the operation of a single
control loop, or to obtain one time or frequency response
this is adequate, however, for the analysis of a
complete plant many such transfer functions are required.
An alternative approach is to convert all the differential
equations to first order and to set up a state variable
model relating all outputs to all inputs. This was
always attractive, but not possible until the wide-
spread appearance of large fast computers. Models of

this type are in general use today, and for a complete

-2 -



system analysis are used in preference to transfer
functions.

The classic theorems of linear algebra apply to
state variable models, and while theoretically simple
to manipulate, are in practice more difficult. This
difficulty lies with the model order. Consider a
36 plate distillation column: if it is conventionally
modelled with a single equation for each composition
and flow on a plate, 72 first order equations result,
giving a plant matrix of order 72 with 5184 elements.
To store this matrix requires, in most computers, 10 K
of core store, and to operate on it considerably more.
The modelling of an entire plant, or a distributed
parameter system by finite difference methods, can
lead to sets of 500 equations. Clearly with systems
of that size the storage of the model is virtually
impossible and the computational time taken in performing
analysis is prohibitive. Two additional points affect
the study of very large systems: although ostensibly
an accurate model of the process, the very size can
confuse and hinder analysis, furthermore, of the many
states in the state vector, few may be of interest,
the remainder being either unmeasurable or dummy
variables. In the case of the distillation column
referred to above, only input and output variables
are usually of interest, whilst no use is made of the
others states.

The above facts point to the necessity to be able

-3 -



to reduce . the size of state variable models and replace
a model by a system which,although of lower order,
maintains the characteristics of the original model.

The advantages of doing this will be summarised

briefly. Low order models:

a) help the understanding of complex models.
b) reduce computer storage.

¢) reduce the computational effort.

d) eliminate the need to analyse unimportant

states.

However, when reducing the system order it must be
remembered that accuracy canﬁot be sacrificed to achieve
a low order model, the results of which are meaningless.

In this thesis the problem of model simplification
will be considered. The order reduction of transfer
functions has been reviewed and a comparison made,
whilst the more interesting reduction of state variable
models has been considered in more depth, and two new
methods proposed. Some of the numerical methods

related to the study of linear systems have been examined.



CHAPTER 2

Computational techniques used




2. COMPUTATIONAL TECHNIQUES USED

Many of the methods described in subsequent
chapters will require the use of the same computat=-
ional techniques, such as the calculation of the time
or frequency response. To avoid repetition, and to give
a central record of methods used; all computational
techniques, together with details of the computer

system used, will be presénted here.

2.1 COMPUTATION OF THE TIME RESPONSE OF STATE

VARIABLE MODELS

Two methods have beeh used to compﬁte fhe
time response of state variable models: the analytic
éolution and a numerical solution. The latter will be
discussed only briefly, whilst the former will be
considered in some depth as the theory forms the basis
for a number of topies in this thesis. Time responses

have been computed using both the given methods.

2.1.1 The numerical solution

There are many different numerical methods for
solving differential equations, usually based on a
truncated Taylor's series, and descriptions of them can
be found in most texts on numerical methods ({37).
Runge-Kutta methods perform adequately for a wide cldss
of problem. The particular method used is the Gill
modification of the Runge-Kutta method {55). This

routine has been used in preference to the basic



four-point method because it requires only 3/5 of the

computer storage and minimizes rounding errors.

2.1.2 The analytic solution

The solution of

_;k Xk = Ax + Bu (2.1)

where A and B are both time invariant and u the input,

varies with time is [100):

t
x(t) = At x(o) + [ 2T Bu(ryar  (2.2)

(o]

As all the states in Eq. (2.1) are linearised and only
deviations about a steady state need be considered

x(0) = o and Eq: (2.2) reduces to

t -
x(t) = ‘f AE-T) Bu(tidr (2.3)
A ‘

The problem in Eq. (2.3) 1s the computation of the
exponential matrix eﬁ(t—r). Buffhém and Kropholler
{19) have considered the many ways of computing this
matrix. In this work it was decided to compute eét
from the Jordan canonical form (120) as efficient

eigenvalue and eigenvector routines were available

(the Q.R. transform).

2.1.3 Transformation of A to its Jordan form

Any matrix A having distinet roots (real or

complex) may be transformed into the diagonal matrix



|
1]

(2.4)

where A, are the eigenvalues of A. A is said to be
the Jordan canonical form of A In general this
transformation does not exist for systems having
multiple eigenvalues, although similar ones do. The

transformation is:

A= utau (2.5)

where the unique, non-singular, transformation matrix
may be computed in a number of ways [23], but is most
readily constructed from the eigenvectors of A in the

following manner

U = (El i u, leeenanann égn) (2.6)

where u. is the eigenvector corresponding to Ai and is

calculated from

2.1.4. Use of the Jordan form in computing eé't

The solution of the homogeneous system

X = Ax x = x(o) att =0 (2.8)

b



Bt x(0) (2.9)

is §(t)

Uy into Eq. (2.8) gives

Substituting x

*

Uy = AUy ¥y = y(o) at t = o (2.10)

1
Ic
]

v AUy = Ay (2.11)
The solution to Eq. (2.11) is

y(t) = At y(o) (2.12)

where

At (2.13)

Thus Eq. (2.13) is easily computed as it possesses
only scalar quantities on the diagonal. Eq. (2.12} is
now transformed back to the original variables by
substitution of y = U “x.

At

u Aty x(o) (2.14)

x(t)

The same method is used to solve the non-homogeneous

system, Eq. (2.1).



2.1.5 Jordan form of A with complex or repeated

eipgenvalues

The method given above applies when the
eigenvalues of A are complex, however, complex arith-
metic is involved but may be removed by use of a
further transformation. This transformation is based
on the fact that complex eigenvalues and eigenvectors
must occur in conjugate pairs and that one complex
eigenvalue contains all the information about that

pair. The Jordan matrix with complex entries is

A
(lk+i ¢k)
(A, =1 4,)
i *n_
and may be transformed to
— -
A
Mo ¢
A= Tk (2.16)
-¢k Ak
AIl




by

. and at

i<

to
U

with this form of U

13

Clearly the forms given

are a gen2ral case, and Eqgs.

special case of Eqsi (2.16, 2.18, 2.

. ' ) ) . I
[ng--..- :H}I:*'J-HE:B}E-].E}S:.... P u
| | Ri1 C! \
(g ! ever bty oenniu)
and A, At pecomes
eAlt
eakt cos ;"}kt eAkt gin ‘bkt

(2:17)

(2.18)

above for the complex eigenvalues

(2.4, 2.6, 2.13) are a

18),

When a matrix has multiple eigenvalues it may also

have, though not necessarily, multiple eigenvectors.

This leads to a singular U.

In this case transformations

of the following form may be possible.
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A, 1 0
A =Ph AR = o a1 (2.20)
_9 0 Ay
AL At 2t
oAt 0 et ter1t (2.21)
Ayt
Lo 0 el |

where P is composed of vectors, not eigenvectors,

computed from

(A - A p; = i#41 (2.22)
and p, is the eigenvector corresponding to A. A
detailed description of the above trénsformations is
given by Ogata [100).

2.1.6 Solution for the step and impulse response

Eq. (2.3) for the impulse response, with eﬁt

and U given by Eqs. (2.19, 2.18) for distinct eigen-

values is

x(t) = U elt g“l

Lrarie)

By : (2.23)

Eqn. (2.3) for the step response is

.
s -
xt) =u | Ayt puge, (2.24)
el
T At : At .
where | e~ d*corresponding to e~-, Eqn. (2.19) is
0 .

- Y -



_‘;“1 =
b c :
k k (2.25)
"¢ Dy
L %
At
and a; = et -1 (2.25a)
A{
1l At .
by = 5 3 (e*k*(¢y sin Pyt + Ay cos ¢ t) - Ak)
Ak + ¢k
(2.25b)
1 At . .
Cp *® —;—-———; (e"k (Ak sin ¢, t - ¢, cos ¢kt) + ¢k]
M+ O (2.25¢)

2.2 DERIVATION OF TRANSTER FUNCTIONS FROM STATE

VARIABLE MODELS

Two types of models are commonly used @in modern

~control theory: the transfer function

m
} b.s*
izo *
G(s) = rzl a.s) m<n (2.286)
jzo I
and the state variable model
x = Ax + Bu (2.1)

Pt i

It is often necessary to make comparisons between these

two models, which may be used to represent the same

- 12 w



system, and though of different fcrm, the two can be
related. Chen and Haas (23) have summarised the
methods available to decompose a transfer function into
state form, There is, however, no wholly accepted
method of performing the reverse operation. Two
methods have been investigated in depth: .the

Leverrier algorithm {78) , also called the Frame-
Souriau~Faddeev algorithm, and a method of E. J.
Davison (40). Method description, failings and

suggested improvements follow:

2.2.1 Davison's zero method [u0}

The state variable model, Eq. (2.1) in the

frequency domain is written:
(sI - A) x(s) = Bu(s) (2.27)

This equation for the impulse response (when Bu(s) = Bu)

mnay be solved for the jth variable using Cramer's Rule

x5(s) = - (2.28)

where |sI - Alj is |sI - A| with the jth column replaced
by Bi . Although not directly applicable to high order
systems Cramer's Rule gives the basis for Davison's
algorithm.

Eq. (2.28) requires {sI - A], the characteristic
equation of A, which may be found by determining its
eigenvalues. Davison makes |sI - élj also an eigenvalue

problem.

—13—



The zeroes of the jth variable are found by replacing
the jth column in A by IBu, where I is a large scalar

to give

all L L alj""l 1 alj#l LR L J aln

-i- 6.21 . s 0 azj-1 2 a2j+l LR a2n
A. = (2.29)

|
i

!

anl L] anj__l n al’lj+l LR ] ann

e

The zeroes of the system are included in the eigen-

values of ég. Any matrix of order n must have n
eigenvalues whereas Eq. (2.28) need not have any zeroes,

and has a maximum of n-1l: +the additiocnal roots of AT

are extraneous and not system zeroces. These extrancous
roots can be recognised by solving the problem at
different values of I' when the true zeroes maintein a

constant value and the additional roots tend to infinity.

2.2.2 A proof of Davison's method

A number of different proofs of the Davison method
have been given (43, 69, 119} but it is best understood
by applying root locus theory.

Consider the negative feedback system shown in
Fig. 2.1: it is well known that when the feedback gain
is zero (I = 0), i.e. the open loop system, that the
poles of xj(s) are given by the eigenvalues of the plant
matrix A, but when the Loop is closed the poles of the

closed loop system (the eigenvalues of ég) migrate to

- -



b'u, + — o _
— 0} _ %y (8) ' e

Figure 2.1 A block diagram for Davison's method. .
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Figure 2.2 'Two plateau effect of Davison's method



the open loop zeroes (the zerces of xj(s) ) as T 1is

inecreased to infinity.

The negative feedback loop

corresponds to the subtraction of the vector TBu

from the jth column of the matrix A.

Whilst very easily programmed the method has a

numerical problem associated with the choice of T.

2.2.3

Choice of T' in Davison's method

The following example suffices to illustrate the

problem (12).

P~

0
{0
0
0

Determine the transfer

xl(s)‘

-2 -1
-7 -1
0 -4
0 0

1%

-2

-

-l.b“

1

1

1
1]

(s+5)(s+1)(s+3)

s%4+135345052456s

function corresponding to xj.

Table 2.1 shows the determined zeroces for variable 1

for different values of T.

extraneous
r Zeroes of system root
10° ~5.00375 | =1.00225 | =3.00300 0.996009x10°
10° -5.00004 | -1.00003 | ~3.00003 0.999960x10°
107 ~4.99999 | -1.00000 | -3.00000 107
10° -5.00802 | -1.00000 | =3.00000 109
1011 | -5.32843 | -1.00000 | -3.00000 1011
10%3 | -5.00000 | -0.42857 | -3.57143 1013
I 1018 | -5.00000 | -0.u2857 | -3.57143 1015
actual
lzerces | -5.00000 | -1.00002 | ~3.00000

Table 2.1 Values of zeroes for numerical

example determined by Davison's method
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Best results were obtained for I' equal to 107.

It will
however be noted from the table that two of the POOLS

each exhibit two distinct values. TI' has been increased

27

to 10°" without any further change in the value of the

roots. Without any further information it is difficult
to know which value to select. The same difficulty arose
with other probiems, including that given by Davison.
~ Best results were always obtained when I' was equal to
107 whereas Davison had recommended a value of 1015.
Typical results follow the pattern shown in Fig. 2.2
where two distinct plateaus exist. |

The effect described above appears to be independent
of problem size but dependent upon the particular
computer and program used. This opinion is also held by
Davison who has rerun the same problem on a different
machine and obtained entirely satisfactory results for
all values of I'. His results are shown in Table 2.2.
A number of rules have been developed to check that T

has not moved into a region of instability {69).

Value of Zeros of system Extraneous
Iy ' root
10° ~1.00000 | -3.00000 | -5.00006 | 0.9996 x 10°
107 ~1.00000 | -3.00000 | -5.00000 107
109 ~1.00000 | -3.00000 { -5.00000 10?
10*Y  1-1.00000 | ~3.00000 | ~5.00000 101!
1013 [-1.00000 |-3.00000 {~5.00000 10%3
10%%  1-1.00000 | -3.00000 | -5.00000 1018
Table 2.2 Davison's estimation of zeroces for
nunmerical example c¢.f. Table 2.1
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2.2.4 Checks on the stability of Davison's method

The zeroes are included in the roots of

|s1 - A"} =0

which for variable 2 of a third order problem are the roots

of

S = ayy - by =233
= a5, g- Pb2 ~a,, = 0 (2.30)
- asl - Pb3 s~a3at

which may also be written

5 T2y by 413 S=a 0 “213

Tl T P2 Tty ta;n 5 Tap31 =0
T as by  s-ag, ~agy 0 s-ajz,
(2.31)

The second determinant has a term s on the diagonal, henﬁe

it is not possible for this determinant to contribute

to the constant term in the expansion of Eq. (2.31).

This constant is proportional to I' and may be obtained

in practice és the product of all the eigenvalues of é+.
From Eq. (2.31), neglecting the second determinant,

it follows that

m

~-F K @ (s + 2z,) =20 (2.32)
i=1 .

where K is the system gain and z; are the system zeroes,

and the constant term in Eg. (2.32) is given by

m
~-I' K 1 z
izl
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which should equal the product of ail the eigenvalues

of éf. Therefore

m m n-m
-T' K I z., = n z. . Il e, (2.33)
j=1 1 iz1 j=1 3
m
where ej are the extraneous roots. Since I zi is a
i=1

constant in the system, for large T' the system gain is

given by

(2.34)

n
II' =
-
U

K

which is, of course, also a constant.

The extraneous root product/I and the eigenvalue
product/T provide a monitor on the choice of I'. Their
responses to different Qalues of T are shown in Fig: 2.3
Best values of the zeroes are obtained when both curves
are horizontal. On the computer system used at
Loughborough best results were always given when I equalled
107, but it must be stressed that before the method is
extensively used I' should be determined for a particular

computer and program being used.

2.2.5 Leverrier's Algorithm (78)

This algorithm has been given by many people since
it first appeared in 1840. Modified versions have been
given by Faddeev (u?), Frame [uq]} Ghani and Ackroyd
(52) , Marshall (84), Morgan (94), Rosenbrock (104),
and Souriau (111}. Bass (9) has discussed the history
of its discovery.

The solution of Eq. (2.27) is
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x(sy) = (sI - A) Bu (2.35)

whepea

-1 Adj (sI - A)
(sI - &) " = (2.35a)
{sI - 4

rearranging gives
[sI - A |. I = Adj(sI - A) . (sI - A) (2.36)
which may be written

st ... n I = (s

n
{s" = hl . n’

+ Ro_y)(sI - A)  (2.37)

where a comparison of the coefficients in s shows that
the scalars, hi’ and the matrices, gﬁ may be determined

from the following recursive scheme.

B = 4 by = sy Ry = &4 -hd1

A, = ARy hy = btr(ay) Ry = 85 - hyd

) (2.38)
Apaa s ARy Py G ;%Itr(An 1) Bhea ® Apey 7 Bl
B ARy By F % trld) Ry = A b l=0

In the absence of numerical error R will be the null
matrix.

2.2.6 A nodified algorithm (15)

Essentially the same scheme has been used but



|sI - A] has been computed from the eigenvalues of
A and Adj(sI - A)Bu is evaluated rather than Adi(sI - A).
Let

Adj(sI - A)Bu

x(s) =
|sT - Al
— —
n-1

blo + blls +  sreea. + bln—l

: (2.39)

L) n_l

no ¥ bnls + eeeee. + bnn-ls 7]

2 n

where the denominator of Eq. (2.39) is the character-
istic equation of A and a_ is unity. Let the
coefficients in +he numerator vector, Eg. (2.39) be
arranged into the following partitioned matrix

— —
b

10 11

no bnl 'll'.‘b

i

and the vectors b, obtained from the following recursion
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formula.

En*l = Bu
bp.p = Ab,,; *+a,;Bu
or by = Ab;.y +a;,,Bu i = n=2,,0 (2.41)

The proof of this scheme and the normal Leverrier

algorithm have been given (97,105).

2.2.7 Numerical difficulties and an inverse aleorithm(12)

The algorithms described above suffer from
severe numerical difficulties in the evaluation of
the polynomials. This is also true when double
precision arithmetic is used, and in some cases
triple 1ength'working must be used to evaluate the
numerator accurately. This numerical inaccuracy
is shown in Table 2.3 where column 2 shows the
coefficients of the characteristic eqdation evaluated
with the aigorithm and column 4 shows the same
coefficients determined from the eigenvalues (these
results afe computed from a 36th order model of a
distillation column (69)). There is considerable
difference, particularly in the low power of s,

It is, however, possible to solve the Leverrier
algorithm from either end of the characteristic.

equation and relate the two solutions.
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Table 2.3 Coefficientg of the Characteristlc Poly~—~

nomial, for a 36 variable dis‘tillatioxi‘

problem
 Coefhicient values
© Levertier aigorithm

MNumber Using A ' Using A~ Using Eigen values
1000 000 000 1'799 E32 1000 000 O30
1-723 878 716 E3 —-2-85) EN 1-723 878 717 E3
1-404 607 824 E6 4-526 E32 1404 607 824 E6
1208 593 986 EB —~7'187 EN2 7-208 593 988 E8
2619 827 522 ElI t-142 EM3 2619 827 52} Ell
7-186 753 624 EI3 ~1-815 E33 7-186 753 627 EI3
1:548 789 452 El6 2889 E313 . 1-548 789 463 E16
24694 410 236 El8 - 4602 E33 2694 410 287 EI8
3858 496 818 E20 7337 En3 3-858 496 820 EX0
4:614 704 6583 EN2 -1170 EM 4614 704 471 ER2
4650 257 222 E24 1869 B34 4660 257 225 E24
4007 483 317 E26 ~2-988 EM 4007 483 321 E25
2933 465 628 28 4-782 E34 2953 465 631 E28
1-874 615 830 E3g -765%9 E 1-874 615 832 E30
1028 419 199 E32 1229 E3 1-028 41+ 201 E32
4-588 518 713 E33 ~1:922 E318 4.-8838 518 717 EM
2016 377 269 E1S 5185 E3S 2016 377 275 E3S

ggnnhnngngh_—-—._._-..__ .
NARAUN=OYO YR MDD WR D ORIRA LW —D

7-220 894 699 E36
2:244 337 526 E38

6-046 961 334 E39 -

1409 361 476 E41
2:832 967 649 E42
4-889 439 103 E43
7:245 471 57Q E44
8472 298 831 E4S
2047 E47

—2025 E49

4-085 ESI

—7-898 ES3

1-531 E56
~2:972 E38
5776 E&0
—1-123 E63
2-187 E63
~4-261 E67
8:309 E69
—-1621 ET2

6710 928 546 E36
2-252 555 231 B33
6043 632 899 E39
1-409 337 162 E41
2-832 878 503 E42
‘4890 980 604 E43
7-215 943.898 E44
9039 736 094 E45
9-541 540 579 E46
8-406 781 3%0 E47
6-114 268 754 E48
3622 329 790 E49
1-720 558 026 ES0
6428 318 986 E50
1-845 364 696 ES1
3-542 583 620 ES1
6045 981 110 ES5I
6-209 156 692 ES5i
3:809 739 393 ES5f
1050 105 483 ESi

-2l -

7:220 894 045 E36
2-244 337 649 EI8
6-046 959 099 E39
1-409 365 723 Edl
2832 881 983 E42
4-390 980 047 E43
7-215 944 002 E44
9039 736 096 E4S
9-541 540 600 EAS
8405 789 408 E4T
6114 268 769 E48
3622 329 799 EA9
1-720 558 031 E50
6-428 319 004 ES0
1-845 364 702 ESI
3949 589 632 ESI
6-045 981 131 ESI
6-209 356, 714 ES1
3809 739 408 ESI
14030 105 487 ESI



If the inverse of A exists then Eq. (2.37) above,

may also be written

n~1 n-2

n . =
(S tls LI I A ] -tn)_I_ - (S :20 '!' S 21 + s 8 & + In"l)
. {(sI - A) (2.42)

where it may be shown that

ti = "hn_i/hn

- =L
R. = T. . A (2.43)
=1 n —n-i-1 —

Thus A may be inverted and the normal program used to
re-solve the problem from the opposite end of the
polynomial. This gives a second set of coefficients for
the characteristic equation based on the inverse problem.
Column 3 in Table 2.3 shows these coefficients for the
distillation problem. The computed results for the
numerator polynomial for variable 3 are shown in Table
2.4, In each of these polynomials actually used for
subsequent work the first 20 coefficients have been

calculated using A and the remainder using §~1.

2.3 Computation of the frequency response of state

variable models

The frequency response may be computed from the
state variable model, Eq. (2.1), in a number of different
ways. Eq. (2.1) may be transformed into the Laplace

domain

(sI - A) x(s) = x(o0) (2.44)
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Table 2.4

Coefficients of the 3Ird State Variable

nunerator of the 36th order distillation

problem calculated by the Leverriar algorithm

Characieristic equation calculated vsing

Characteristic squation calculated using
Newton's identitics eigenvalies
Number Using A tsing A3 Using A Using A-!
00 - 1047 276 037 E34 0-000 00 000 -~1-59t 215 60 E35
00 +1-605 399 219 EM 00 2:425 972 991 E1S5.
G0 —~2+46]1 438 059 E34 00 —~3-698 649 970 E35
o0 +3714 705 971 B 00 5-638 986 249 B35
00 —5:789 890 479 EM 00 ~8-597 248 596 E35
00 . +8-882 915 820 EM 0-G00 000 OO0 1310 746. 543 Bis

o b 5D 00 wd O W P b B e D OO0 il Oh LA Rk B e D

rupEgERYRR

kb

—1179 669 631 B30
~1-327 803 428 E13
--74028 589 371 E15
~2-330 977 704 EI8
~—35-442 691 235 EX0
—9-530 673 386 EX2
—1-301 399 350 E25
—~1-423 186 300 E27
—1-268 962 095 E29
-9-343 349 816 E30
--5-744 386 334 E32
—2963 624 565 E34
—1-289 393 383 E36
~4:742 429 774 E3?
—~1-475 861 173 BB
—3:880 752 57t E40
—38:642 871 281 E4l
~1:546 307 410 B43
~-3-633 158 214 E44

1-892 548 459 E46
~4-354 967 227 E48
+8:430 448 017 ES1
- 1646 998 349 ES53

3:218 741 635 ESS
—6:295 433 219 ES?

1-232 303 529 E39
—2:414 156 850 E62

4-733 257 588 Eot
--5287 328 903 E66

1-823 657 143 E63

~1-363 151 216 B35
+2-092 384 503 L35
~3-212 580 382 E35
+493 B74 120 EX5
~7-57% 676 049 E35
+1:164 794 183 E36
~1-790 571 518 E36
+2-753 509 384 E36
—-4:235 §72 100 E36
46-518 824 005 E36
—1-003 695 855 E37
+1:542 911 312 E37
~2:511 090 191 BE37
—=1069 922 414 E3?
--1:532 429 487 E39
—3-873 539 606 E40
—8-614 446 230 B4y
—1-605 046 23 E43
-~2-497 918 250 B
—~3-221 444 084 B45
—3-408 385 349 E46
—2921 894 253 E47
—1-997 387 6§96 B43
- 1067 602 481 B4%
-4:352 601 567 E49
-1-311 059 278 E50
~2:793 562 455 ES0
--3-943 433 139 E5¢
- 3280 251 742 BSO
—§208 631 662 BSO

—-1:179 §05 827 E10
~1:327 956 727 EI3
—74029 400 343 EIS
~2:331 246 823 BI8
—5-443 319 612 K20
~9:531 779 736 E22
~1-301 749 629 E2§
—1:423 350 615 E27
—1'269 108 592 E29
-9:349 629 357 E30
—3$:745 049 128 E32
~2963 967 698 E34
~1-289 540 286 E36
—4:743 016 497 E37
~1-475 954 14] E39
—~3-882 728 680 E40
~8-614 091 534 E4
~1-605 252 125 E43
~2-498 208 278 Ed4

- =3-221 718 343 E45

—~3:410 967 196 E47
~2:581 954 645 B47
-1-813 501 7718 E49
1-545 995 114 EX0
~3:352 506 519 ES2
6+782 629 889 ES4
—~1-374 08$ 700 E37
2-783 72) 051 B6D
~ 5639 511 027 E6l
1-142 510 347 E64

-~1-998 383 856 E36
3-046 774 159 E36
~4:645 185 006 E16
7-082 188 048 E36
—107% 776 350 E37
1646 276 355 E37
~2:510 003 514 E37
3826 916 676 E37
—35-834 812 934 E3?
8.896 257 276 E37 .
—-1-356 414 685 E38
2069 806 931 E38
--3-166 054 608 E38
4-332 957 892 E38
~2-208 776 935 E39
-3.771 043 855 E4AO
—8-631 104 119 E41
~1-604 993 472 E43
~2-498 242 750 E44
—3.221 810 564 E4S5
~3:408 979 659 E46
—2:922 231 485 E47
—1+997 618 321 E48
—1067 725 739 E4%
—4:353 104 101 E49
—=1-311 2i0 647 E50
—2:793 884 989 E50
—3943 838 634 E50
3280 630 469 ESO
~1+208 821 213 E30



and then into the frequency domain by substitation of

s = iw to give
(iwI - A) x(iw) = x(o) (2.u45)

where x(iw) is a vector having real and imaginary parts.
Frequency response analysis requires the solution of
Eq. (2.45) over a wide frequency range, or for many
different values of w. For high order systems the complex
inversion involved in the many solutions may prove a

heavy work lecad.

2.3.1 A review of previous work

Many of the stagewise problems encountered in
chemical engineering give rise to plant matrices of
special form. These are almost invariably band matrices
and very often tri-diagonal. Woods {122) has solved
Eg. (2.45) using a complex arithmetic matrix inversion
routine, whereas Bollinger (10) and Lamb and Rippin (72)
have utilized the band matrix structure to produce
computationally more efficient techniques. Bollinger
has used what is basically a Gaussian elimination on
the band elements of -the plant matrix. Lamb and Rippin
have used a method which involves plate to plate
calculations made up - the  stagewise plant being
modelled.

Shunta and Luyben (108) have made a comparison of
the stepping method and the general complex matrix
inversion methoa for band matrix systems. Four different
sized distillation columns were investigated: 6, 10, 20

and 30 plates for 65 values of frequency. Their results
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are shown in Table 2.5.

No. of Trays

Stepping time

Inversion time

(secs) (secs)

& 2.64 100.4
10 3.16 336.2
20 4,25 18%1.3
30 5.37 5654

Table 2.5 Run times for stagewise processes by the

stepping and inversion methods

These results may be summarised by the equations

Stepping time

Inversion time

i

"l.45 n

W11 n + 2
2.37

where n is the number of trays in the column. Although

the method of Bollinger was not run an estimate was

made for the 75 plate column he investigated. This gave

800 seconds for the Boliinger method compared to 10

and 40,000 seconds respectively for the stepping and

complex inversion methods.

It was thus shown, quite conclusively, that when it

is possible to use the stepping technique much computat-

ional effort could be avoided, in addition to which the

complex matrix inversion method has the disadvantage of

requiring considerable core gtore.

2.3.2 Frequency response of non~band plant matrices

When computing the frequency response of general
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systems, i.e. those with a plant matrix which is not
band~structured, the efficient methods discussed above
cannot be used and the general complex matrix inversion,
or some alternative must be resorted to.

Three methods of computing the frequency response
for all states in x, and one when only some of the states

are needed, have been investigated and compared [ll].

2.3.3 Method 1 -~ General complex matrix inversion

Eq. (2.45)
(iwl - A) x (iw) = x(o0)

may be solved using a general complex matrix inversion
program, as was done by Shunta and Luyben (108] for each
frequency considered. The routine used is based on the
Crout factorization and has been described by Wilkinson

(120).

2.3.4 Method 2 - Inversion of real matrices

An alternative to solving Eq. (2.45) directly, using com-
plex arithmetic is to rearrange the equations so that real
numbers only need be used. This may be done in a number
of ways.

Pang and Johnson (101), working on a liquid-liquid
extraction column have used the method of Lanczos (73).

If (igl ~ A)7%

is known then the problem is effectively
solved. Define two matrices Y and Z such that

1

iy + 2 = (el - A) (2.46)

and (iwI - AX(iY + 2) =1 (2.47)
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Multiplying out Eq. (2.47) and separating into real and

imaginary parts

wZ - AY = 0
(2.48)
-AZ - wY = I
which may be solved to give:
- 2 ,~1
real part Z = ~(A+ 0" A7)
. 2 "'l _1 _l (2049)
Imaginary part ¥ = =-w(A + w® A7) "A

Thus the solution by this method involves the inversion

2é"l) for each

of A followed by the inversion of (A + ®
frequency considered.

A slightly different, and more efficient form is
obtained by first multiplying Eq. (2.45) by the conjugate

of (iwl - A):

(inI - A) x (iw) = x(o)

12

€ 621 + A%) x(iw) = ~(iwI + A)x(0)  (2.50)

Eq. (2.50) requires the inversion of a matrix containing
only real numbers but still requires a separate scolution
for each value of w investigated. Results given later

for method 2 are based on Eq. (2.50).

2.3.5 Method 3 - Frequency response via the canonical

form

Eq. (2.45)
(iwl - A)x(iw) = x(o)

may be written in the canonical form by substituting Eq.
(2.5) for A

1

(UiIUu™* - uAU™Hx(iw) = x(0) (2.51)
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where A and U are the general Jordan form and trans-

formation matrices respectively. Eq. (2.51) may also

be written

UGinI - MU x(iw) = x(0) (2.52)

(inI - MUY x(iw) = U ix(0) (2.53)

This equation is readily solved without resort to matrix

1

inversion for (iwl - A) ~ may be written out directly.

It was shown in section 2.1 that A has the general

form
Ayt
._.,.._I‘_;...._'
|"‘)“2:
oo me o e m e e ame oy
DAy 0o
1 i
A = _ . {2.54)
- e T A
:Au 1 0
I
: Ay 1
| o
and thus (iwI - A) =
‘r;" A ]
-2
A 2 R
;(im ‘13) "¢3 :
i : 03 (i =Ay)
._.__________._rl _____________
. Klw "Au) -1 0
i
(iw=A,)-1
\ 4
} (iw =)

-3 -
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The solution of Eg. (2.45) is then

1l

-1 .
x(iw) = UGl -~ A) ~ U~ x(0) (2.57)

1 is obtained by the above method without

where (iwI - A)”
recourse to any inversion at all for the considered
frequencies. Eq. (2.56) could alternatively have been
found by taking the Laplace transform of Eqs. (2.13,
2,14, 2,19, 2.21), each of the forms of A considered
earlier.

Eq. (2.57) is easily programmed and x(iw) can be
found from Eq. (2.56) using only a small amount of
complex arithmetic, and because the sigze of each block

1

in the Jordan matrix is known (iwI - A)™~ x(o) is best -

found without using matrix multiplication routines.

2.3.6 Comparison of methods 1 = 3

Methods 1 - 3 have each been applied to a series
of problems (40} and the core store used and the time
taken recorded. 33 different frequencies were considered.
This data is shown in Table 2.6. (Times are shown in

mill units, 1 mill ~ 3} sec).

fatrix Method 1 Method 2 Method 3
store | time store time store | time
10 4928 21 5184 16 11584 14
20 6848 g5 6528 L5 14400 33
30 9984 209 8540 82 18176 62
40 14272 409 11520 2 23872 111

Table 2.8 Storage and run~times for methods

1, 2 and 3
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The time taken is obviously a function of how many
frequencies are considered. For methods 2 and 3 some

is required to start the sequence and the remaining

time (and the time for method 1) is directly proportional
to the number of frequencies considered. The run time/

frequency is shown in Table 2.7 and has been plotted

in Fig. 2.4%.
Matrix Method 1 Method 2 Method 3
order
start start . start .
time time/freq time |Time/freq)” o o time/freq
10 ~ .64 2 42 6 .24
20 - 2.88 5 1.21 1y .58
30 - 6.33 10 2.18 32 .91
uo - 12.39 20 3.70 65 1.39

Table 2.7 Timings for methods 1,2, and3

The s%art time for each method is also shown in Table
2.7 and plotted in Fig. 2.5. From Figs. 2.4 and 2.5
the following time estimates for each of the methods have

been calculated.

t, = .0055 rn2-13
t, = .0139 N9 . o116 FN1°S6
t, = .0185 N2:21 4 o013 Fn-28

where I is the number of frequencies considered and N is
the system order.

Methods 1 and 2 have given identical results for
all cases tried (up to order 40), however, method 3,

although much faster than the others, especially when many
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frequencies are being investigated, has given results

which show a numerical error, due to rounding effects

when ill-conditioned systems with a wide spread of

eigenvalues are being investigated.

Table 2.8 shows

this effect for a 10th order system where the largest

and smallest eigenvalue are a factor of 10

Method 3 has, however, given satisfactory results for

mn

the well conditioned systems investigated.

Plant eigenvalues

-0.984150E 03
-0.121500E 02
~0,149999E 00

-0.328050E 03
-0.405000E 01

-0.495006E 01

~0,109350E 03
-0.135000E 01

different.

-0.364500E 02
~0.450000E 00

Methods 1 and 2 Method 3
State real iraginary Statg real imaginary
part part part part
1l 0.374159E-04 -154691E-04 1l [0.374Q16E~-O4}~154691E-04
2 0.147962E-04 -250930E-05 2 |0.147750E-0O4}|-450929E-05
3 0.503280E-05 ~308L48E~06 3 [0.503187E~05|~308198E-06
4 0.167672E-05 -351739E-07 4 10.167668E-05(-351739E~-07
5 0.558112E-06 -39LO0LE-O8 5 |0.558111E-06{~394004E~08
6 0.185914E~06 -440868E-09 6 [0.185914E~06]-u440868E-09
7 0.5819563E-07 -498459E~10 7 [0.619563E-07]~498459E~-10
8 0.206526E-07:; -582361E-11 8 |0.206526E~07|{~582361E~11
9 0.316626E-07 -276529E-11 9 |0.316626E~07|-27652%E~11
10 0.101€11E~02 -210220E~-02 10 |0.101611E-02|-210220E-02

Table 2.8 Numerical comparisons of methods
: l, 2 and 3
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2.4 DETERMINATION OF THE MOMENTS OF STATE VARIABLE

MODELS

A response curve may be characterized by statistical
parameters derived from it. The parameters usually
calculated are the area under the impulse response curve,
its mean, variance and skewness. These may alternattwdb
be called the zeroth, first, second and third moments.

The ith unnormalised moment about the obigin of an

impulse response is defined:

M s £ el seyat (2.59)

Moments may, if required, be normalized with respect
to the zeroth moment (the area under the curve) and be
taken about the mean. Expressions relating the normalized
moment to unnormalized are given by Gibilaro and Lees
(54). The Laplace transform of the same response f(t)
is defined

G(s) = fm e St f(rrat (2.60)

0

Differentiating Eq. (2.60) with respect to s gives

-]

dé(s) . f t e 5% £(e)at (2.61)
[e]

ds

which in the limit as s approaches zero is amii, the

first moment given by Eg. (2.59); or more generally

l—c-iGi(s)‘l IS Sy {2-67)
1
Lds J s=o

Thus it is shown that the moments of the response of f(t)

may be derived directly from G(s), the transfer function
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giving that response (or the Laplace transform of the
response).

Lees {75) and Gibilaro and Lees [5u4}, extending the
work of Paynter (103) have shown how application of Eq.
(2.63) to low-order transfer functions gives relatively
simple expressions relating the moments to the transfer
function parameters. Similarly Kropholler (68) has
applied Eq. (2.62) to the transformed state variable

model, Eq. (2.44).
(sI -~ A) x(s) = x(o) (2.44)

Repeated differentiation with respect to s and solving in

the limit s + o gives

« A1 .
) - - 1 -
E xi - lé ?_4_ xi‘_l 1 - l’ 2’ LI I ]
-.1 (2063)
M! = =A " x(0)
%o

where E'x- is a vector containing the ith unnormalized
i
moments of x. Eq. (2.63) may alternatively be written

- M! ’
AM +Bgs g = M (2.64)

i = Xj-)

where the elements¢k of the input vector ij j are given by
g 3

¢’k = 0 k # 3 i > 0
¢y = 1 k = j i = 0 (2.65)
¢k = (8 k = j’ i > 0

where j is the input to the system.
It has been shown that any number of moments may be
computed, by repeated application of Eq. (2.63), with

very little effort: one matrix inversion of A being all
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that is required.

2.5 COMPUTER SYSTEM USED

Most of the computational work included here was
carried out on an ICL 1904A computer, although some of

the initial work was done on a 1905 machine.

The 1904A has a core stcre of 128 K words (one word

being 24 bits organized in 4 6~bit characters) and a
magnetic drum (ICL 1964/1) of capacity 512 K words and
a transfer rate of 25 K words/second. The store cycle
time is 750 nanoseconds. Jobs have been run under the
George II operating schenme.

The program language used throughout the work has
been 1900 FORTRAN and where possible use has been made
existing routines supplied in the ICL scientifie
subroutine package, although a number of routines did
not match their specification and gave considerable

difficulties. Some ICL subroutines hare been written

of

in PLAN and run in a 15 bit address mode (compact) which

means that stores higher than 32768 cannot be accessed
and has hence placed a restriction of 32.5 K on most
programs. In some programs this has resulted in a
great deal of array movement and transfers to and from
disc.

Discs of 200 X words/cartridge have been used,
with a transfer rate of 52 K words/second. Tapes used
had a transfer time of 10.5 K words/second. Graphs
have been plotted on an ICL 1934 plotter with a step
length of .005 inch.
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2.6 NOMENCLATURE

A  plant matrix
éf Davison's modified A matrix - defined by
Eq. (2.22) |
a; denominator coefficients of transfer function
B input matrix
b; numerator coefficient of transfer functions
bj vector of numerator coefficients
e4 extraneous root in Davison's method

G(s) transfer function
h. defined by normalised coefficients of character-
istic equation

I identity matrix

i V-1
M'i ith unnormalised moment about the origin
M! vector of moments M!'., of x

m  order of numerator

n system order

P  transformation matrix
partitioned vector of P
system pole

defined by Eqs. (2.36, 2.37)

5 Laplace operator

T defined by Eq. (2.42)
t, defined by Eq. (2.42)
t  time

U matrix of eigenvectors
u. eigenvector
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(1=

fr<

(iw)

Greek:

=

forecing vector

state vector

defined by Eq. (2.46)

X transformed by U

defined by Eq. (2.46/

kth zero for j the input

indicates Laplace transform - usually of
vectors

indicates frequency transform - usually of

vectors

constant

Jordan canconical form

real part of eigenvalue

time constant

imaginary part of eigenvalue

frequency
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CHAPTER 3

The simplification of transfer functions




3. THE SIMPLIFICATION OF TRANSFER FUNCTIONS (14]

The problem of reducing the order of ffansfer
functions has only relatively recently received
attention, however, that of fitting a transfer function
to experimentally generated plant data has been considered
for much longer. The two problems are essentially
the same. Reference will be made to a number of early
methods for identifying plant data, whilst the:more
recent modelling techniques and specific methods for
system corder reduction will be discussed more fully.
Before describing simplification methods, Lonsidera—

tion will be given to the type of response and the form

of the models which are to be matched.

3.1 Characteristics of transfer functions

It is worthwhile considering the form of transient
response, resulting from an input change, on chemical
plants, as the models fitted have obviously been
influenced by them. Figure 3.1 shows some of the
commonly occurring step responsesﬁ they are the exponen-
tial, s-shaped, single-peak, oscillating, and inverting
responses. Inspection of these responses shows that,
although generated from high order models, they are
similar to those given by second order systems. It is
this fact that allows simﬁlification to take place.

Classification of the impulse response is usually
based on the mean, spread, and skewness of the curve,
or its moments. Alternatively systems may be analysed
via the frequency response, and clgssified according to

the characteristies of the amplitude ratio and phase-lag.
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Figure 3.1 Typical System Step responseg




Because of the fluid flows involved in chemical
plants there is often a time lag between a system being
forced and responding, and hence model builders have
tended to include some degree of time delay.

The transfer fundtion can take many forms, but
probably the most general is:

e T8 ? b. s
G(s) = jer 3 - m<n (3.1)

n .
El aisl

i

Although this model itself is not very common the same
model without the time delay has been widely used. Most
processes may be represented by this model if the order
of the numeratcr and denominator are carefully chosen.
For model simplification however, it is the low order
models which are of prime interest. Of particular

impértance are the (1,2) model

Gls) = K1 *Dbys) 5 (3.2)
1 + als + azs
and the (2,3) model
K(L + b.s + b,s?)
G(s) = 1. 2 (3.3)
1+as+ a252 + a353

Models of this type, whilst retaining the same general
form can represent many different responses. The type
of response obtained may be defined in terms of the
relations between the parameters, as shown in Table 3.1
for the (1,2) model. This model may dlsc be written in

the form:
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3 ' 20 ‘
sey = KA TG (3.4)

2
l+ 2'5‘5‘ + -S—,-
" “n

Towill (115) has given the step and frequency responses
of this model as functions of o and ¢+ He has also
studied the (2,3) and (3,4) models.
The transfer function may be further analysed in
terms of the poles and zeroes. The general (m,n) model
is
m

K T (s - Zj)
izl
n

I (s ~ pji?
izl

G(s) =

m<n (3.5)

The characteristics of low order models in terms of the
poles and zeroes have been described by Towill (215).
Many other special models have been used and some of the

more important are given in Table 3.2.

3.2 Classification of reduction methods

The determination of a low order transfer function
which is equivalent to a higher order model involves both
choice of model form and calculation of the parameters.
Although interesting, many of the early modelling methods
are not readily amenable to automatic computation, and
are thus not particularly important. All of the satis-
factory methods involve a large amount of arithmetic.

However, some of the early graphical methods have been
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Table 3.1 (1,2) Transfer function parameters

Bttt e . i

" Parameters System

by =0 al2 = ha, critically damped
a12 > La, overdamped
al2 < ua2 underdamped

b, < o a,? > ba invertin

1 1 2 g
a12 < ha, inverting and oscillatory

T, <by < Ty 1+ a;s + a252 = (1 + Tls)(l + T,5) side capacity

all coefficients positive and not covered by above.

a; or -a, negative

combination of lead and lag terms

unstable




Table 3.2 Simple transfer function models

of Parameters

Model ‘. Model No. No. Constraints System Reference
~T18
Ke 0 3 - - 115
1+ T,S
“T.8
ke 3 1 4 - - 54
(1 + 128)- (1 + 138)
1re_T1 S .
' n 2 y n need not - 54
(L+1,8) be an integen
Ke_Tls g < 1 underdamped
T 2¢s T =5 3 4 -1 eritically 786
1+ = ¥ =5 s - damped
n n - T > 1 overdamped
k(1 +m n.
1 4+ .5 1 s N 4 fl14n > 1 inverting 60
Tl:.-» + ;128 T2 '-—"'n
K+ 138) 5 5 T, <1 < T, side capacity 81
(1 + 1,8)(1 + T,8)
N 2 3
xe~T18 < 1 underdamped
- 5 y -1 critically 58
2 - damped
(1 ¢ 2z + 1 g ° $(1 + T,8) > 1 overdamped
Wy, W
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Table 3.2 "Cont'd ...

Model Model No. No. of Parameters Constraints System References
TTlS
Ke =" (1 + TZS)
N 7 S T, <T, <T,4 side
(L #+ 1453)(1 + TuB) capacity
K(1 - ne 15y _ 8 5 n <1 distributed 58
. parameter
1+ 125)(1 * 136) system with
distributed
parameter
forcing




updated and programs written (38}.
Available techniques may be split broadly into

two groups:

a) models obtained'by fitting parameters to data
generalized by the complex model.

b) operations directly involving the complex model.

3.3 SIMPLIFICATION VIA THE TIME RESPONSE

Methods based on fitting simple models to the computed
time response of the full model are identical to those |
used in identifying real processes. The application of
these methods is, however, easier in so far as there is
no process noise to contend with.

There are a number of quite well known specific
techniques for fitting particular predetermined models,
such as first or second order systems and equal-stages-
in-series systems, to step responses (46, 58, 61, 96).
Fitting is normally effected by comparing the normalised
response with standard sets of responses for different
parameters and interpolating for the best fit. Dead time
is matched by determining the displacement of the response
on the time scale. Similar methods are available for
fitting underdamped second order systems to oseillating
responses (46, 61]. The parameters of such systems can
be found from the period between adjacent peaks and the
peak-height decay ratio.

More general methods of fitting a transfer function
to the step respénses have been given, including the

approximation cf the response by a series of ramp functions
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and time delays (96}, and the derivation from the
response of a continued fraction expansion of the fitted
transfer function (107). The latter method will be
discussed in Section 3.6.

There 1s a large literature on the fitting of
simple models to impulse responses, the main technique
being the matching of moments (18, 53, 62, 67). This
will be considered later.

Since the digital computer has become widespread
the methods described above have tended to be replaced
by more numerate methods, usually relying upon a least-
squares fit:to some response. Sinha and co~worksrs
{2, 110) have developed two methods for fitting low order
models to the step response of the full system. A

different criteria was used for each.

3.3.1 Sinha and Pille's method {110)

Sinha and Pille minimize the mean square error between
samples of the two step responses taken over a given time

interval:

i.e. Minimige J

1=

2 b

(5,0 - £ (0 )2 @)

i=1

Practically this means setting up a least squares
problem, relating input to output data at different
sampling points, the solution of which is the parameters
of the pulse transfer function. This transform is then
converted to the continuous time model. Weighting may

be effected by neglecting data points in intervals where
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a good fit is not required. The method is essentially
the same as that given by Anderson (2} for simplifying
state variable models although it has been modified,

by using a recursive algorithm, to avoid repeated matrix
inversion and the storage of vast amounts of data, thus
giving computational advantages. Chidambara (31] has

given a different least-squares method.

3.3.2 8inha and Bereznai's method [102)

The method described above minimizes the error
between the two curves at discrete points in time (see
Fig. 3.2). This has the effect of producing large errors
on the rapidly changing portion of the response and much
smaller errors at the critical portions: the peak over-
shoot and steady state. Resulting from this bias,
the large unimportant error is reduced at the expense
of small errors at critical regions of the curve.

Sinha and Bereznai have proposed the dlternative
error criteria of placing an upper and lower bound, o,
on the response throughout its length, thus reducing the
emphasis on the rapidly changing portion of the transient
response, to give a better overall approximation. The

error criteria becomes

Minimize J Max cos 8 |£i(t) - f*i(t)l (3.7)

i=1l,N

L Ee (1) - FaCt)
6. = tan + —i*l ! (3.8)
28

where S is the uniform sampling interval. The minimiza-

tion of the minimax error criteria is performed using
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small error

f(é)

£(t)

Figure 3.2 Sinha and Berenzal's error criteria




the Hooke and Jeeves pattern search. The start values
for the model parameters in the pattern search are
predicted by initially fitting a low order model to the
response, using the classical methods described earlier.
The optimum set of parameters are found and the model
order increased by one until the optimum model of the

required order is found.

3.4 SIMPLIFICATION VIA THE FREQUENCY RESPONSE.

As with identification in the time domain, many
rmethods have been suggested in the past twenty years
for obtaining a plant model from its frequency response.
Some of these methods (many are graphical) arve adequate,
where low order models of a process are required and
high accuracy is not necessary, but are not easily
adapted to computational algorithms. Strobel (112} has
listed the known methods.

Perhaps the best known method for obtaining a
transfer function from the frequency response is that
of Bode and Truxal {117) where corner frequencies are
identified from the Bode plot. Other graphical methods
are those of Ausman (8) and Linvill {80). Bode's method
has been updated by Cowherd and Cadman (38] who give a
computational algorithm for predieting each of the time
constants in a lead-lag model iterating from the simple
corner frequencies. A similar but more sophisivated
approach has been outlined by Towill and Mehdi ({118)
in which dominant roots are monitored and a simple

root substituted for all those neglected.
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Dudnikov (us) has given an explicit method based
on the expansion of the polynomial ratio transfer
function into a continued fraction and the determination
of the ensuing coefficients from a series of charts
relating the real and imaginary parts. The method has
been described by Naslin (96) .

Young (123) has shown how the coefficients of a
transfer function with only denominator dynamics may
be obtained by numerically differentiating the real and
imaginary parts of the frequency response until a
constant difference is obtained. Applying the same
differentiation to the transfer function relates the
differences to the coefficients. Process noise often
means that a constant difference will not be obtained:
in this case the best approximation to the experimental
points is used.

Chen and Philip (26) have proposed a method related
to the Bush decomposition of a polynomial. The
transfer function is considered to be made up of a series
of feedback loops, each loop increasing the function
order by one. In turn each loop is made "open circuit"
to give a lower order model which is identified from
the Bode plot. The method may be programmed and is
similar to that given by Chen and Knox (24) for identifying
systems from the time response.

A number of schemes have been given which minimize
the error between the given frezuency response and that

of the fitted model. Amongst the methods are the
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Wiener-Lee decomposition (25} and those of Meier and
Luenberger (87}, Sumner (113}, Levy (79), Kardashov
(64) and Kalyaev (63).

3.4.1 Meier and Luenberger's method (81,87}

Analogies are drawn between the model reduction
problem and the modelling of a Wiener filter. The

reduced model of order m

G*(s) = T (3.9)

S+pk

Hr~15

k=1

is to be fitted to the frequency response, G(s), by

minimizing the response difference:

i.e. 1 i 2
Minimize J = - | (a(s) - G#(s))%as
2mi Jie
1 fiw'- t r 2
== [6ts) - ] _“_5___"\35
271 . k=1 -
w10 8 + Py

Clearly the necessary conditions for solution is that

(3.10)

(3.11)

. . . i)
each of the partial derivatives 2 ) 3 , k=1, mbe
Irk 9Py

equal to zero. Performing the above differentiation leads

to sets of non-linear equations, the parameters of which

are the system poles and residues. These equations can

be solved by a number of numerical methods, although a

degree of engineering judgement is required to select

initial values to ensure rapid convergence.
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3.4.2 Levy's method (79)

A further method for the least-squares fit in
the complex plane has been given by Levy. However,
unlike Meier and Luenberger his formulation leads to
a set of linear eguations.

Let the frequency dependent polynomial ratio to be

fitted to the gencerated data G(iw) be

+ . s 2
G*(iw) = B{iw) - ...1?.0 + b-'(lm) + bp(lw)2 + (3.12)
A(ia) a, + ajlie) + az(iw)“+ ... ’
The error in the fit at frequency W) is
- . . Blim)
€ = G(iwy) —=k= (3.13)

A(iwk)

Levy has overcome the problem of minimizing the sum of
all el by multiplying Eq. (3.13) by ACiw,) and
separating the right-hand sidé of the resulting equation
into real and imaginary parts and squaring the absolute

value.

. 2 2 2 .
i A(lwk)ek| = Rk + Ik = f{G(lwk), 2387185 oo

bysbysDyeen) (3.14%)
An error function is now defined based on Eq. (3.14%)

summed over all r frequencies considered

v 2 2
J = E (Rk + I ) (3.15)

fe=l

The method of least-squares is then applied, with J
being differentiated with respect to each of the parameters

bgs by> b2, ses @3y Bp e (al being set to unity).
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The method has been widely used and is capable
of fitting some quite unusual frequency responses
(23}, but several difficulties have been noted in the
method. Sanathanan and Koerner {106) found that the
procedure described does not give a good fit if the
frequency data spans-several decades and have proposed
instead, an iterative procedure in which Eq. (3.14) is

modified by writing

Al € |AGw ), Sliey) _ Blwdp |2
A(iwk)P_l Aliwg)n-g Aliwgdp-1
a2 o2
= R+ I (3.16)

where subscript p refers to the iteration number. The
same method as used by Levy is then applied. In the
first iteration A(iwk)P_l is set to unity, which
corresponds exactly to Levy's approach, but in succeed-
ing iterations it is set equal to the previously
calculated value. The authors give an example in which
the iteratively computed parameters differ considerably
from those obtained by the Lévy method. These authors
also draw attention to the numerical difficulties
which may occur, since the least-squares estimations
are often nearly singular.

Sumner {113} has made the same criticism of the
Levy méthod but proposes a technique in which the error
is normalised with respect to |6(iw)| and the solution

found using Davidon's method.



A further modification made to the method by Payne -
(102] is to incorporate certain constraints based on
additional knowledge of the system; such as steady
state gain (represented by coefficient b,) and zero
error to a ramp function. He notes that in the
unconstrained system there is a tendency for poles to
occur in the right hand half of the complex plane and so
give unstable responses in systems known to be stable.

He reports in fact that in fitting several hundred
responses about 30% resulted in unstable systems when

no ceonstraints were used, but that the use of constraints
reduced this to 1%.

Levy has also pointed out that the formulation of
the problem does not permit the fitting of data that
might possess a pole at the origin, but gives a solution
to the problem.

The Levy technique is originally a technique for
fitting rather than simplifying models, but in fact
rarely fits a model of higher order than strictly
necessary, so that it may be regarded as a simplification

method also.

3.5 DOMINANT ROOTS RETENTION

Simple methods of reducing the order of transfer
functions are often based on discarding the less important

time constants. If the high order model . is of the form
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(1 + TjS)

G(s) =

m<n (3.17)
(1 + 7,8)

(o

He -
[ — e ) NI — -
K

it may be reduced by retaining only the dominant time

constants in the following manner

m-p
G*(S) = e_Ts jEl (1 * TjS)
n-q m=-p < n-q
T (1 + TiS)
i=1

(3.18)

where T is calculated from the discarded time constants
using the Matsubura equivalent time delay method [85].
n m
T = I T4 - I T, (3.19)
izn-g+l 1=
Besides vretaining the dominant modes the method matches
the first moment of the two models and assumes that this
adequately takes into account the neglected small time
constants.
The method of dominant mode retention has been further
developed for a computer solution by Nagarajan (95).
The largest and smallest poles of the n order system are

computed and if
largest root > smallest root x K

the largest root is divided out of the characteristic
equation, reducing it to order n-1. This procedure 1is

repeated until a system of the desired order is obtained.
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The best value of K, known as the.range ratio, is
reported to be 25, Once obtained, the parameters of

the model of required order are modified to predict an
Yoptimum model". The model is optimum in that the feed-
back error to a step input i1s minimised with respect to
the feedback error of the full model to the same input.
The method as described is rather resfricting in that it

is suitable for models with only denominator dynamics.

3.6 CONTINUED FRACTION EXPANSION AND TRUNCATION

A powerful method for the reduction of high order
transfer functions is that developed by Chen and Shieh
(27, 29) based on expanding the model into a continued
fraction and truncating this to vield a lower order
model. The property of the continued fraction is that
it converges faster than other series expansions and
furthermore contains most of the important system
characteristics in the first few terms {74). The method
is well suited to automatic computation. The transfer

funetion

b, + bls'+ b952 ¥ e

G(s) = 5 (3.20)
a, + a8 + a,8" + ...,
may be expanded into the continued fraction
G(s) = L
hy + .1 (3.21)
hors # 1
h3 + 1
hu/s +
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where the coefficients hi may be derived by application
of the Routh algorithm (118). Let Eq. (3.20) be
written as

| 2
G(s) = A1 * Boos + Apas + ... (3.22)

All + Alzs + Al3s ¥ e

and the following Routh array formed

A A A A

lLi- ™% 88

11 12 13
By B Baz Agy eeen
gy Ay By eeeeeeiens
Y P W
Agy  Agy  eeeereans

. A, (3.23)

where A, -1 s+l

3ok 5 Byezxel T By
and from the array the coefficients are formed such
that:

h, = “i,1l (3.24)
A

i+1,1

Chen and Shieh have also shown how hi may be derived from
1oﬁg division. Shieh, Chen and Huang (107) have shown
how the coefficients of the continued fraction can be
derived directly from a time or fregquency response. The
methods are basically the same as those of Chen and
Philip (26) and Chen and Knox [24) discussed earlier.
Once Eq. (3.21) has been formed simplification is
effected by prematurely truncating the fraction (after
hy, to obtain m order system),; and from this reforming

the reduced order transfer function. This may be done
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by applying the Routh algorithm in reverse (28} or by
other methods (30) .

Failure of this method occurs if at any time in
the process coefficients Ai,l and Ai,j become equal to
elements below them in the i + 1 row (in the simplest
case All = A21 and A12 = A22). Neale has shown, however,
that this can be overcome by changing the form of Eq.
(2.21) (97).

The technique has the same drawback as Levy's method
in that it is possible to produce a reduced model which
has an unstable response even though the full model is
stable. Chuang (35) has proposed that in this case a
different form of continued fraction should be used.

His method alsc gives an improved initial response.

Comparison of the poles of the original and reduced
models shows that it is only thé dominant roots, slightly
modified, which are retained. ¥

The continued fraction simplification has also been
explored by Gaisyenyuk (51) although the equations given
are not general and refer only to a 4th order model.
Different methods have been used for determining the
continued fraction coefficients. Gaisyenyuk has used
the method of Viskovatov, given by Khavonskii (66) .
However, Akin (1) has demonstrated the similarities between

the two approaches.

3.7 SIMPLIFICATION VIA THE MOMENTS

A computationally more econcinic method is to identify

a set of functions which are characteristic of the full
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model and which can be calculated directly, without
computation of the time or frequency responses, and to
match these functions to the simple transfer function
by a suitable choice of parameters in the latter. The
principal method of this type is the matching of the
moments of the impulse response.

There is quite a large literature on the fitting of
simple models to experimentally determined moments
(18, 53, 62, 67). This is straightforward in principle
but tailing and noise may cause difficulties in fitting.
The determination of low order from high order transfer
functions by matching the lower moments of the impulse
response was first suggested by Paynter (103].

The unnormalised moments Mii of the impulse response,

f(t), taken about the origin are:

0

1 . S 4d s 2
ML, = g 1 f(t)at iZo (3.25)

The Laplace transform of the impulse response, which is

the transfer function, is given by

a(s) = j e"St f(t)at (3.26)
(8]

Expanding the exponential term in Eq. (3.26) and applying
the definition of moments, Eq. (3.25) provides a

relationship between the transfer function and the moments

qt o2 t .3 -

6(s) = M: - Miis + B o UaSh... (321
o IS | 21 3'

It 1s sometimes more convenient to use cumulants

rather than moments. The relatinn between the transfer
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function and the cumulants, Ci’ is:

2 3
In{6¢s) ) = 1In(K) - c,s + S25° - C35_ 4 | (3.28)

1 21 3!
This convenience derives from the fact that taking the
logarithm of a lead-lag transfer function allows it to
be expressed as a series rather than a ratio of terms.
The method used by Paynter is to expand both the
full and simple transfer functions as polynomials and to
match the cumulants using Eq. (3.28). A similar method
has been given by Hsia {59}. An alternative approach
used by Gibilaro and Lees (54%) is to differentiate the
transfer function with respect to s rather than expand

it, utilizing the relation

i . e
FLS%EQ} = -nhw, = 1 [ a2
ds szo + 0

This equatibn is derived directly from Egs. (3.25 and
3.26) and gives a relation for the individual moments.
Numerical values of the moments are calculated from
the full model and are used to compute the values of the
parameters in the simple model.

The method, as described, allows the reduction of
a transfer function to a lower order, however it is often
required to fit the low order model to one state in a
state variable model. Lees (75, 768} has shown that the
moments of the full model may be calculated directly from
the state variable model. The method has been outlined
in section 2.4. Direct computation of the moments by
this means makes the moments method a powerful technique

of model simplification.
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Lees {77} has further extended the methed to

oscillatory and inverting systems, using models 3 and 4
of Table 3.2, and has given an algorithm for automatic
selection of the model based on the fact that oscillatory
systems have some negative moments while inverting systems
have a normalised initial response which is negative.

, The use of cumulants rather than moments has been
investigated by Kropholler (68). The relationship for

individual cumulants is:

i (3.30)

i, . .
d lnGis{} - (_1)1 C.
ds

Js=0

This is derived from Eq. (3.28) by differentiation.
Kropholler has pointed out that in dealing with systems
such as lead-lag models the use of cumulants has the
advantage that it is possible to associate a part of
each cumulant with numerator and a part with the denomin-
ator. He shows that cumulants may be obtained from the
state variable model, nét only by using Eq. (3.30) and
the standard relations between moments andé cumulants

(65) but also from

¢; = (-1 -1t (rea™d - eaal H)  sL3
1 = =3

!

]lS

where Tr(A) is the trace of the plant matrix and A
as defined by Eq. (2.29).

I1f the equations relating the moments, or cumulants,
to the parameters of the simple model are implicit or if

a larger number of moments are matched than there are

parameters, the latter cannot be calculated directly and

-
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the use of some form of minimization routine must be

used. However, this usually presents little difficulty.

3.8 ILLUSTRATIVE EXAMPLE

The application of four of the main methods described
is illustrated by the following example.
The simple transfer function

b + bls
G{s) = o 2
a, + a;8 + a,s

(3.32)

is to be fitted to Xq in the following seventh order model

1o
"

& = _A_}_{_ + _B-E (3.33)
where
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
O 0 0 0 1 0 0
0 0 0 0 0 1 O
O 0 0 0 O 0 1
:281350 ~3310975~2814273 -853703 -~70342 ~4097 -83$6u_

B= (0 0 0 0 O 375000 -31333750)"

This model in its transfer function form has been
ccnsidered by Sinha (109, 110). 3k

The values of the parameters in Eq. (3.32) obtained
by various methods are shown in Table 3.3. The programs
for each method and output from each computer solution
are given in Appendix 1. The parameters given for the
two step response fitting methods of Sinha are those

quoted by that author (109, 110) . The parameters for
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Table 3.3 Parameters of modified (1,2) model in
i1llustrative example
Method bo bl a, a,
Step response fitting 0.3302 0 2.8886 12,0854
(Sinha and Pille)
Step response fitting | 0.0132% 0.1536 0.1196 “1.3u456
(Sinha and Bereznai)
Frequency response 0.562087 0 4.83695 3.676L
fitting
(Levy, modified)
Continued fraction 0.0110442 {0.129899({0.0893976|1.14643
expansion
(Chen and Shieh)
Moments fitting 0.0110436 [0.129899(0.099396711.14643
(Lees)
g-;-t\vu.-\' ?\.“-—Q__ Wk ~ VLY L0864 4
Cinhs ¥ Beemyay o T 0956%6T — 1 L4991
6L DY = - ¥1¥L L CV-2oq4e
Chown +Shizh Sy - oY% — Log Ty
Fum V‘DM AL Seo ¢ (=




Fig. 3.3 Step responses of illustrative model

Full model

Step response fitting (Sinha and Pille)

Step response fitting (Sinha and
Bereznal)

Frequency response fitting (Levy)
Continued fraction expansion (Chen and

Shieh) and moments fitting (Lees)




the frequency response fitting were calculated by the
method of Levy as modified by Sanathanan and Koerner.
The parameters were also calculated by Chen and Shieh's
- continued fraction expansioh and Lees' moments matching
of the impulse response.

The step responses given in Table 3.3 are shown
in Figure 3.3. The heavy solid line represents the
response of the full model and the other lines the
responses of the simplified models. The simple models
given by the continued fraction and moments matching
methods are identical (this will be discussed in
Chapter 4). The step and frequency response fitting
methods do not match the steady state exactly, but the

errors are very small.

3.9 CHOICE OF MODEL AND CRITERIA OF FIT

Before applying any of the model simplification
methods described consideration must be given to the
form of the simple model required. Some techniques, such
as those of Levy and Chen and Shieh, use general
polynomial functions. The form of the model does not
need to be specified in advance but the degree of
reduction does. Other methods such as moments matching,
do require prior choice of models, though a flexible set
of models mayrbe used with an algorithm to effect
selection.

Some of the methods of simplification described
involve the use of quite explicit matching criteria. Thus
the step and frequency resﬁonse matching methods

minimize the sum of the errors squared, while the moments



matching methods match exactly, wherever possible, the
lower moments of the impulse response. The continued

fraction method, by contrast, is not based on any such
criteria, although as will be shown in Chapter 4 it is
equivalent to matching the low order model moments.

It is usually desirable that the steady state gain
be matched and this presents little difficulty. The
other main criteria are that the time or frequency
response difference be minimized. There is no generally
used method of checking the goodness of fit.

It is doubtful i1f much more can be said without

knowing the use to which the model is to be put.
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3.10 NOMENCLATURE

plant matrix

coefficient in Chen's Routh array
denominator coefficient

numerator coefficient

Cumulant

time response

transfer function

frequency response

continued fraction coefficient
least-squares error

transfer function gain, or range pratio
ith unnormalised moment about the origin
numerator order

number of samples in Sinha's method
denominator order

pole

number of frequencies fitted in Levy's method
sample interval in Sinha's method
Laplace operator

time

zero

transfer function coefficient or as defined by Fig. 3.2

error

transfer function coefficient
defined by Eg. (3.8)

dead time

transfer function time constant

frequency
- -



w transfer function natural frequency

Superscript:
% reduced order model
T transposed matrix
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CHAPTER U

Relationships between the continued fraction

truncation and moments matchihg methods of

model reduction




4, RELATIONSHIPS BETWEEN THE CONTINUED FRACTION

TRUNCATION AND MOMENTS MATCHING METHODS OF MODEL
REDUCTION (13)

The reduction of a seventh order transfer function
to a second order model was considered as an illustrative
example in Section 3.8. The reduced order models
predicted by the method of moments and continued
fraction truncation were the same. Although apparently
satisfying completely different criteria and following
vastly different computational procedures three of the
four parameters agreed in all six computed digits,
whilst the remaining coefficient agreed to five
sipnificant figures. This unexpected agreement would
suggest a previously unforseen relationship between
the two methods. This relation will be shown, in three
different ways, and a generalization made which will

be demonstrated numerically.

4.1 RELATION 1

4.1.1 A matrix expression for the inversion of

continued fractions

A number of methods have been given for the
inversion of a continued fraction [27,28,29,30) , i.e.

deriving the transfer function

2
G*(S) - 20 + b]S + b28 S

(4.1)

2
a + ] + LK B B )
o alo a25 +
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from the known continued fraction coefficients, hi.
A matrix expression has been given by Chen and

Shieh (28).

l O 0 O 48 8 9 0 8 ao
0 h2 0 0 ap
0 1 h2h3 0 a, =

0 0 h,+h, h2h3hu a,
hy 0 ‘ 0 0 teereans b
1 hih, 0 0 b
0 hl-}-h3 hlh2h3 0 b
0 1 (h1h2+h1hu+h3hu) hthhBhu b
(4.2)

For the simplified transfer function considered

g#(s) = 2o+ P18 (4.3)

2
dg + a8 + a,s

and noting that

b2’ ba’ L N I R I I B ] : 0
g3 By y  ereenes = 0
a2 = 1

Eg. (4.2) may be written and partitioned as follows:
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1 0 0 3 o aq
F._..___._._..._._.-_..__.{h ______ - — =
'
0 0 h2h3 | 0 1
L'0_ 0 h2+hq " h2h3hu_ _O__‘
hl Q 0 : 0 bo
1 . Byl 0 .0 b1l .owy
___________ .—-.——.——-——--..-—.——-}....——-.--_—— e -
1
0 hl+h3 h1h2h3 i 0] 0
_9 1 (h1h2+h1hu+h3hu) ; hlhzhahg_ _O_,
or
|—-n , |
R Bia i 2 118 (4.5)
R = R SR _ .
! 3
Q1 | Bar 1 g 2]
- L -
4,1.2 Moments of the general polynomial transfer
function
Consider the transfer function (where a, = 1
2 n-l
c(s) = b, + bys + bps™ + ceeeetb, 48 (4.6)
a, + a8 + a252 T oerees 480
n-1
. 7 b.s?
j=0 3 - B(s) 4.7)
n i A(s)
_I a;s
izo
Let Egq. (4.7) be written
G(s)A(s) = B(s) (4.8)
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and define

aPa(s)
A ———— 4.,
p(s) " (4.9a)
and A o) = [Apcsi]s=o (4.9b)

and similarly for B(s) and G(s)

It may be shown, by fhé.lLéibnitz theorem,; “that the
pth differential of Eq.(h.s)is

, § Sils) Ay (d),

p! = B,(s) (4.10)
kzo k! (p-k)! %

p = 0,1,2 ...

Letting s = © in Eq.(%4.10),in accordance with the
moments definition, gives a similar expression for the

moments of Eq. (4.8).

k .
p! § £:}2-_ﬁgk?é£~Kgal; = B (o)
K=o k! (p-k)! P

p = 0,1,2 ...
(4.11)

where M'k is the kth unnormalised moment about the
origin. However, expressions may also be written for
the general differentials of the numerator and denomin-

ator polynomials, B(s) and A(d).

B = b .
p(o) P bb (4.12a)

Ab-k(O) = (p-k)! a (4.12b)

p-k

Substituting Eqs. (4.12; into Eq. (4.11) leads to

(*1)k M

k=o k! P

-5 -
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which relates the transfer function coefficients to
the moments, or vice versa, and if the moments are
known allows the model parameters to be computed.

Eq. (4.13) is linear and is best expressed in
matrix notation. For the second order model considered

it becomes

[ wr /o 0 -1 0, Ja | | o

My /1 Mg/0! 0 -l a 0

I S LT T
Mp/2t AL )0 o b, -M' _/0!

Mgst w2t oo Iny ||y

The right hand side of Eq. (4.1%) is derived from the

coefficient a,, which is unity in the second order

2
transfer function, Eq. (%.3). The partitioning of the

above equation should be noted.

4.1.3 A comparison of the two solutions

Eq. (4.5), the matrix formulation of the continued
fraction inversion, may be rearranged to a form similar

to the partitioned Eq. (4.14).
(4.15)

31 7 Q11

t

=T _a_
;=

T

-1 . -1 _ -1 o S R
Ry1 7 Qua Q9p @3 RpiRyy T Q)i 2| [ B [Riy T Qe

Egs. (4.14) and (4.15) are now identical in format. From
Eqs. (4.4) and (4.5) it is possible, after much tedious
algebra, to write Eq. (4.15) in terms of the original

coefficients, h; .
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1 0
h
-l -];
h, %h h
1 P 1
by 4 hy 1
3 2n 2
-(hy 2hy+hy2h, +2hihghy +hg?h)) hy + hg
3, 2 32
hy 'h,%h,%n, hy *n,%h,

|
E -1 0
|

|

13

|

1

: 0 -1
|

i

|

|

I

e e e
|

l

)

, 0 0
|

|

!

;

!

! 0 0
1

|

1




Eg. (4.14) and (4.16) are identical and allow the

following expressions to be given:

M'O = 1’. ('4-173)
h
1
M'y = ——k (4.17b)
l = 2 .
hy“hy
MY = 2(hy + h3) ((.17¢)
2 3, 7,
1 g By
6(h2h., +h. 2h, +2h. hah, +h22h, )
M'3 = 1 #2781 8y 17348y 7H3 My (4.174)
TR N
n, *h,*h %h,

4.2 RELATION 2

The relations between the moments and h coefficients,
Eq. (4.17),may be arrived at more directly but with a
loss of clarity when trying to make extensions to a
generalized case.

The moments of the second order model Eq. (4.3)

may be written out from Eq. (4.13). They are:

Mfo - Eo (u.18a)
do
! -
M= aM'o = b ‘ (4.28b)
. aO
1 ] - 1
M, s 2CaiMty - M'g) (4.18¢)
aO
t - 1
M, = 3a)Mi, = 6M, (4.18d)
a

o
Chen (27) has shown how Eq. (4.3) may be written in

terms of the h coefficients.
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h,.h,h + (h, + h,)s
G%(s) = 2384 2 i (4.19)

2
hlh2h3h4 + (h1h2+h1hu+ hahu)s + s

thus
b, = h2h3hu (4.20a)
bl‘ = h2 + hu (4.20b)
a, = hjhyhohy (4.20c)
a; = h1h2 + hlhl+ + h3hu (4.204)-

Substitution of Eqs. (4.20) and (4.18) leads directly

to the previously shown relationships, Eq. (4.17).

4.3 RELATICN 3

The second order transfer function, Eq. (4.3)
may be written as an infinite series in terms of its

noments

2 ) El353

i . a0

0! 1! 2! 3!

1 T 1
gr(s) = Mo . Mhs | Mogs

(4.21)

This may be considered to be a numerator, having a
denominator of unity, and may, using the expressions
given in Chapter 3 be written out into Chen's form of
the Routh Array, (because Eq. (4.21) is an infinite
series the Routh Array also has an infinite dimension,
however, sufficient terms to calculate up to h” only

are shown here)
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- t ) -Mt 1
M'o M‘l M 2/2. M 3/3.
- 1 1
-1 (Mtl) 1 ﬂ_z _E_ -3
M's M, oo2! MY, 3!
-Mt l+£4_.'..0.l:4_'.2
M'y21:

~(1+MI My Mg
1 1 t
MY 2! 34

Table 4.1  Routh array for Eg. (4.21)

Applying the definition for the coefficients

(4.22)

leads once again to expressions relating the moments to

hy, this time however, in terms of the moments.

h, = (4.23a)
1 o
Q
2
| ]
h., = Mol (4.23b)
2 M
1
M|12
Ry * MY M 42 4 MY 2y (-230)
ot 1t H ol 9

2!
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) 2 2
g ? e o 2oy
1§
h, = 2 (4.23d)
(L MM, | MM
21 31

4.4 A GENERALIZATION OF THE RELATION

It was shown numerically in section 3.8 that the
two methods of model simplification gave the same
results when reducing a seventh order model to second
order, and it has been demonstrated above why this
must be so. Thus it has been shown that the continued
fraction method, besides satisfying its criteria of
retaining the dominant terms of an expansion, also
has the physical significance of matching exactly
the lower monents of the impulse response of the full
and reduced models. The question arises, however, is
this a special case or will all order reductions give
identical results?

The answer to the above guestion, as far as is
known, is that it is not a special case and is true
for all orders. It has however, been extremely
difficult to prove this rigorously. The second order
case has been demonstrated for simplicity but much of
the tedious algebra has been omitted. The third order
case, which has been analysed and proven, is consider-
ably more complex. It has therefore been impossible
to set up an inductive proof.

From the symmetry of the problem and the systematic -

nature of the equations (e.g. Egs. (4.%),(4.14), ‘and the
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Routh Array), and from many manipulations of them it
is apparent that such explicit relations will exist
for all orders of reduction and the two methods,
neglecting numerical errors, will always predict

the same reduced model.

The generalization has been borne out by extending
the illustrative problem of Chapter 3 and reducing it to
all possible lower orders. The fesults are given in
Table 4.2. The same model was predicted fof all
orders examined, including fourth order which is an
unstable solution. In this investigation it was also
shown the moments method as formulated in Eq. (4.9
ig numerically unsound and leads to singular
equations for higher order problems. This led
Kropholler to propose an alternative moments formu-
lation, upon which the results of Table 4.2 are
based. This solution has been given by Bosley et

al. (13).
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Denominator
Model Order. 86 SS 54 53 52 sl Const.
7 83.64 3097 7043472 853703 2814270 3310875 281250
6 i BL4. 734 1189.94 15032.5 49951 58971.4 50,0.81
5 - 1 19,4511 306.276 1066.48 1289.69 109,787
¥ L - - 1 -12.9594 -565.4U26 -92.0323 -7.9178
3 - - - 1 y,08491 5.28328 .451958
2 - - - - 1 l.14643 .0993976
Numerator
Model Order s6 55 su s3 52 s1 Const.
7 0 0 0 0 0 375000 31250
B - -. 000715 ,059776 -2.0716 -21.3603 £§79.31 556.757
5 - - 000155 . 0358564 ~-3.63307 1lu6.08 12,1986
L - - - ~-.078537 1.561u48 -10.4624 -.878755
3 - - - - ~0U95536 .538481 .0502175
2 - - - - - .129899 .0110442
* unstable system
Table 4.2 Coefficients for the reduction of the seventh order

model by the continued fractions and moments methods




4.5 NOMENCLATURE

A.. element in Chen's Routh Array

Ap(s) defined by Eq. {(4.9)

a defined by Eqs. (4.4) and (4.5)
a; transfer function coefficient
b defined by Eqs. (4.4) and (4.5)
b, transfer function coefficient
e defined by Egqs. (4.4) and (4.5)

G(s) transfer function

he continued fraction coefficient
I identity matrix
Mﬁk kth unncrmalized moment about the origin
n system order
Qij defined by Eqs. (4.4) and (4.5)
Bij defined by Egs. (4.4) and (4.5)
8 Laplace operator
Superscript:
* reduced order system.
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CHAPTER 5

The simplification of state variable models




5. THE SIMPLIFICATION OF STATE VARIABLE MODELS

Compared with the classio{theory of control the
state representation of processes is a relatively
recent development and has only been made possible by
the availability of large fast computers. Consequently
there has been proportionally less work on the order
reduction of state models than on transfer functions.

Two completely different methods appeared about
the same time: one based on the modal analysis of the
system and the other on a least-squares fit in the
time domain. Despite other methods being developed
these approaches are still the backbone of the work
and will be developed in some depth. Other methods, some
resulting from extensions of these methods, will be
discussed less fully. The classification given in
Chapter 3 for methods ©f reduction and system presponses
applies equally to state variable models. An

illustrative example will be giwven.

5.1 RETENTION OF THE DOMINANT MODES

A number of methods of reducing the order of state
variable models by retention of the dominant modes have
been proposed. They all, however, follow basically the
same analysis and most of the theory was developed by
a group at Cambridge led by Professor T.¢. Coeales .
The workers in this group were Mann, Marshall, Nicholson
and Davison.' The work of Davison is the best known
(39). Following the publication of Davison's work some

lengthy correspondence appeared between Chidambara
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and Davison [32, 33, 34, R2) in which little was added

to the work (other than confusion).

$.1.1 Problem statement 1

The nth order system

X = Ax + Bu (5.1)

is to be reduced to the mth order svstem
x* = A%x% ¢ B¥y (5.2)
Eq. (5.1) can always be written in the form

x = U AUl x +Bu (5.3)

where A is the Jordan canenical form and U is the
eigzenvector matrix. In the following analysis it will

be assumed that all eigenvalues are real and distinct and
lie in the left hand half of the complex plane, hence A
is diagonal, but much of the analysis can be extended

to the general canonical form.

A can always be partitioned

A (5.4)

where A, contains the m dominant eigenvalues (i.e.
those with the smallest modulus, or largest time constant),

and &2 the remainder.

5.1.2 Ordering of the system eigenvalues

0f course in general A in Eq. (5.4) does not possess
the system eigenvalues in ascending modulus order. Egs.

(5.1) and (5.3) can always be put into this form by
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applying permutation matrices. Let A' contain the n
eigenvalues in random order and A the same eigenvalues
in modulus ascending order, and let P be the permutation

matrix that achieves that ordering.

% = _qy_g“l_;_g_ + Bu (5.5)
P = PUP™l A’ PTT PUTT P7'Px + PBu (5.6)
Lety = Px and A = PA'P™Y
therefore

g = eueha eulehy 4+ PR (5.7)

It may be noted that the states in x have also been
ordered. Hereafter it will be assumed that all systems

have been graded into the form of Eq. (5.7).

5.1.3. Problem statement 2

Eq. () % = £&x + Bu (5.8)
by letting
x = Yz and VU = I (5.9)

may alternately be written

% UAV¥ + Bu (5.10)

%2 = Az + VBu (5.11)

Let Eqs. (5.8) - (5.11) be partitioned in accordance
with A, Eq. (5.4) thus

3] 8, 1, [-Z‘—l . 1B u (5.12)

1
Xq L#g éﬂ_ lﬁz Ez

- 88 -



Xy Uy Y 1y Vi Yy 1% e
. = u  (5.13)
P R R P R S
- - - - - -
> A z v, ¢ B
2l L h S IR LN (5. 18)
Z ﬁz 49 !3 Eq : Eg
L - Ju 4 U
x4 ] U, u,] [z.]
et A e B (5.15)
| Xy Ys Uy ez
V. v U. U I o
p S I e ecd I £ (5.16)
vy Y| Uy b 0 1

5.1.4 The problem soluticn

The impulse response for the full system may be

written out from Eq. (5.13) as

. Aot - _
%] F.l G| [e 2 e
- ALt u (5.17)
_52 Lg3 Yy e=1 lgz =
where
G Vv v B
il R D B (5.18)
8, ¥Yg Yy | B
and in particular for Xy as
- At Aot A
X3 = Yy e=t G u o+ Uy em2- G, (5.19)

Eq. (5.19) may be integratdd to give the step response.

- — -
tgu - uATe,u - UATY

= Ayt, -1 Ayt -
X - _g.le_l .1}-1 -(.:". -t.'.l. + 223”2 A ety oy | __l__ . =palo

23 ~2

(5.20)

G

—
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5.1.5 Nicholson's and Davison's method {98,39)

These methods although published separately are
the same, however. Nicholson [98) gave the method as an
appendix only, whilst Davison {33] has given a much

more thorough treatment.

Consider the free systems associated with Eg. (5.12)

and (5.14)
X A A |
AL R =2) Ay (5.21)"
q?.(_g_ _..A..3 éq_ _252_
- rA - .
Z z
o (7L =1 (5.22)
Z A Z
| -~2 | & -2 C—Z
Solution of Eq. (5.22) is
.2'_1 = e.lllt
At (5.23)
Z, e~ _

However as gz contains only large negative eigenvalues

eézt may effectively be considered as zero. Rewriting

Egq. (5.22)

~ -
2, el1t | z,(0)
= (5.24)
z z,(0)
or in particular 3z, = 0 . (5.25)
Retaining Xy from Eq. (5.21)gives
X, = _A_lzc_l + _5_2_}52 (5.26)
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and from Eqs. (5.15) and (5.25)

- -1
x, = UU, 7 x (5.27)

Substitute into Eq. (5.26) to give

. - ) - 1

%, = (&) + AULU Tx, (5.28)
but if x* = x,; (5.29)
then -1

A%pav = By * A U0 (5.30)

In the above analysis the fact that Eqs. (5.12) and
(5.14) are not free systems is ignored. Further a
reduced order B matrix has not yet been derived.

The solution to Eq. (5.13) 1is

e&lt

=S U, U, 1

5 U Y, 22 &,
or in particular

El‘ = gleﬁlt Gu - (5.32)
c.f. the standard form

x = U At g"l Bu (5.33)

it may be concluded that the B matrix sought is

= U.G (5.34)

B U8

5% pav

5.1.6 Marshall's method (82)

Marshall®s approach is different from Davison's

in that he assumes 2, = O (5.35)

tl

instead of o (5.36)

%z,
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The basis for this is that the fast modes act and die
quickly and thereafter play no part in the responses:

they may therefore be approximated by a constant step.

Setting 22 to zero in Eq. (5.14) yields
0 = Az, + Gu (5.37)
or Z, = =A -1 G,u {5.33)
29 fp  ZpM .

However from Egs. (5.15) and (5.16) it may be shown

2 =V (5.39)

Z, = Vgxy + ¥

JyXo

Equating Egs. (5.38) and (5.39) and solving for Xq gives

-1 1

- - - -1
Ez = Xq E3§1 Eq ﬂz EQ (5.%0)
Writing Eq. (5.12) for x; only
_351 = él-}-{-l + é2§2 + -B--ly- (5.41)

substitute x, from Eq. (5.40)

lA 'lG Ju

. ) -1 . -
X, = (A - AN, ﬁa)ﬁl * (El B8y TAy TGy
¢c.f. the standard form (5.42)
E* - A;’e x* + _B..*E ( 50""3)

it may be concluded

B'war T A1 7 A¥y T (5.44)
-1, -1 (5.45)
% = -
B¥uar By - &Y, "4, 75,

5.1.7 A comparison of the methods of Davison and Marshall

Davison gives

sl

A pav T A4 * U500 (5.48)
& =
B* L,y U6, (5.47)

- G2 o

-



Marshall gives

Afyar = Ay T B, Y, (5.48)

"
b -
t

-1, -1
¥
B By - A0, Ay TS,

=~ MAR

1
uv]
¥

(5.49)

It is, however, by use of the relations given in Egs.
(5.12) and (5.16) possible to show for both models

A® = U.A i

A 14,9 (5.50)

and that

1g

&
B B g,

- % y -
B*ar = E¥pav * &% UsA, (5.51)

Marshall {82} points out that his method always gives
the correct steady state whilst that of Davison does
not. Davison in reply (41) concedes this fact but
points out the error may only be small and should be
smaller as the reduced order is increased. In the same
paper Davison shows that in some cases, whilst Marshall's
method gives the correct steady states it does not give
a good representation of the transient responses.

Fossard (48) has shown explicitly, both algebraically
and numerically, what differences there are between
the methods. The step responses for the solution,

Davison's and Marshall's methods are:
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Aot 1 1

- —l -
E - - —
X*exacr = G187t h) Ty + UsemtTAy TG, - Uihy T8y - A, TG,
(5.52)
2 = Aty -1 - -1
Xpay = UpemT 4y TGy LSS
(5.53)
Art, -1 -1 -1
F3 - _.1 - @l - -
X*MAR Uye="7A; 78y Uphy 7By = Uoh, TG,
Ayt =1, . =1
Upe=17U; TUghy T8
(5.54)

Inspection of Eqs. (5.52) - (5.54) shows exactly why the
two methods differ and why they both deviate from the
solution. Davison's method cannot give the correct
steady states due to the absence of the term gzgzgz.

Similarly Marshall's method will have the correct steady

state but a wrong transient portion caused by the ineclusion

Mty "1y p ~1g

of the term U Uy "Ush, TG,

1

5.1.8 Chidambara's methods {32,33,34,43)

Following publication of Davison's method Chidambara
questioned a number of points, the most valid of which
was the steady state deviation. The letter was followed
by a further eight in which Chidambara proposed two
methods, Davison modified his method to give the correct
steady state, and finally an alternative method was
proposed by Davison.

Chidambara's first method {32), based upon the
solution, Eq. (5.14), with the same assumption as used

by Marshall (2 = o), leads to the set of equations:

-9 -



2y, = Alﬁl + 915 (5.55a)

z, = =-p, L6 (5.55b)
& = = T -

£ = El - ..1'_{1::'_1 + 9_252 (5.55¢)

the step response for which is

. - Aqt, =1, _ -1 - -1
X¥opp = Uje=tTAy TG, - UjA, 76, - U,A, TG, (5.58)

This step response compares favourably with that of the
solution, Eq. (5.52), however, the reduced model set,
Eqs. (5.55) do not consitute an acceptable form of state

variable model (32, Author's reply).

Chidamhara's cecond method is identical to that

of Marshall. This similarity has been shown by Fossard
{u8).

5.1.9 Davison's modified models ([33,42)

In answer to Chidambara's critiecism of his steady
state errors Davison proposed two new nmethods., In order
to do so it was necessary to relax the constraints
on the form of the model and allow, like Chidambara, a
more complex form.

The first form (33) was:

(5.57a)

I
‘._I
11
e
=
Ed
ot
+
w3
e

x%

- -1
x; + (A*"1B% -(A"°B} )u  (5.57b)

where [é-lg]l indicates the product[é”lg]partitioned as
before. Eqs. (5.57) merely adds the respective steady

state errors to each state over its entire range.



The second form (42) was:

Y, = 3 % .
%y é}ﬁl + B#%u (5.58a)
x* = Dx (5.58b)

when the diagonal matrix D is

- (5.59)

and ¢ 1is the ratio of the reduced steady state to the
correct value of X Clearly for this model to be
adequate a different modifying matrix D is required for

each input.

5.1.10 Analysis of the unretained variables

It has been shown that with each of the methods

s - ~1
A% = U AUy (5.60)

clearly this implies that the partiticned eigenvector
matrix U, must be h0n~singﬁ1ar. As the system eigen-
vectors possess one arbitrary set this is not generally
the case and the matrix U must be partitioned to ensure
that the determinant of Y is large. Both Davison and
Nicholson (42,98} advise that in order to ensurc this,
physically different variables must be retained (e.g. a
pressure and temperature instead of two temperatures).

However in satisfying this condition a variable of interest
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may be lost.

e.g. Consider

- and x* = x, (5.61)

where variable X, may be of interest. In crder to
analyse such variables additional equations are required.

These are

-1
X = Ualy Tx (5.62)
Spay 0 L 7L
. .y ™1 _ -1, =1
Xomar = Yy TV¥axy - ¥V TA, “Gou (5.63)
-1, -1
= X -V, A, G, u (5.63a)
S2pay H =2 =2 =

5.1.11 An extension of Davison's method [71)

The above methods are based upon retaining only
the dominant modes and discarding the short time constants
in the reduced model. The short time constants only
contribute to the initial transient response and then
play no part. The effect of neglecting these constants
is to give a good overall approximation of the respense
at the expense of the early response. lHowever, in some
situations fhis may not be satisfactory (e.g. for control
purposes this is the most important part of the response).
Kuppurajulu and Elangovan (71) realising this have

proposed that the eigenvalues be split into.three greoups
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(not necessarily of equal size) any two of which can
be neglected when workinz with a particular part of

the curve only.

5.2 LEAST SQUARES FITTING 1IN THE TIME DOMAIN

In 1987 Anderson proposed a new method(2) which did
not require the modal analysis of the unreduced system,
but rather the full time res?onse of all retained
outputs for all inputs. Anderson has shown how his
method applies to vector difference equations and stated
that it may be extended to continuocus time systems.

This extension has been given by Chandrasekharan and
Balakrishnan (20).
The nth order model, Eq. (5.1), is to be reduced to

the mth order system

x% = A* x* 4+ B#y (5.64)

— e —

where chosen states from the vector x make up the reduced
state vector x%.

Eq. (5.64) for input uy; may be written out at
intervals of a sampling interval T to give a set of

K+l equations

X,%(0) = A%x,*(0) + B*u, (o)
: (5.65)
X *(KT) = A%x, *#(KT) + B*u, (KT)
which may be partitioned to give
> aha i [ o - v 1
(51“(0): ......,.;Elﬁ(kT)) = éh(ﬁl*(o): e,

X, % (k1)) + E*(El(o)! vees fgl(kT)] (5.66)

-y



or

X % =  ARY. 4 .
Xy A*X, % + B, (5.67)

Eq. (5.67) exists for all different system inputs, Uy eves

Yy and may be similarly partitioned to give

L PRt} o= ARy ..l X5%) +
Bi(Uui oe..ily)  (5.88)
or Q = A*R + B¥3 (5.69)
= (A% ! B*) E;:J (5.70)
Q = TWw (5.71)

where Q is order m, (K+1)J

L
u

(A%} 3%} is order m, (m + J)

W o= [%] is order (m + J), (X + 1)J

The matrices Q and W which are composed according to
the above equations are built up from vector %X and x for
the selected output variables to be retained for all the

inputs and times considered, and Eq. (5.71) is solved thus:

A:’.‘T 3
- - -rT i T
pel| = ¥ Q (5.72)

—_

where superscript + indicates the generalized matrix
pseudninverse.

Some points must be considered in the use of Eq.
(5.71,;. The sampling period T must be at least smaller
than the smallest time constant and the overall period

KT longer than the longest time constant. For most systems
=99 -



these two points imply a large number of samples

(i.e. X is large) and

(m+d) # (K+1)J (5.73)

therefore matrix W is singular and the inverse does not
exist. However a pseudoinverse does exist (86) which is
the best possible solution to Eq. (5.71) in a least-squares
sense. A good deal has been written about the geometrical
interpretation of Eq. (5.71} in an attempt to clarify its
meaning, however, this author believes that to discuss
a least~squares solution is adequate and readily under-
stood.

Nicholson has commented upon the large amount of
core store that would be reqiured for a system with a
wide range of eigenvalues and a number of inputs, (99).
Anderscn has shown how this may be reduced by post-
multiplying Eq. (5.71) by the transpose of W (3}.
Anderson has also shown how the method can be modified
if certain elements in A* or B¥ are knoun (4}, and how
welghting of the least-squares solution may be effected
(5). This is done by merely including additional samples,
some of which may be repeats, in the area in which
emphasis is to be placed. In the same paper it is shown
how small steady state errors may be eliminated.

Anderson has implemented all of the above modifications
in the simplification of 19th and 31st order boiler models
for both the discrete and contiruous cases (6}. These

were compared to the same reductions by Nicholson's
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method. Chandrasekharan and Balakrishnan {20) have
compared the continuous formulation to Davison's
reduction for a fifth order model. Their example will

be used in Section 5.4.

9.3 OTHER METHODS OF STATE VARIABLE REDUCTION

There are in the literature a number of other methods
of reducing the order of state variable models. Some
of these are rigid mathematical extensions of the modal
methods, whilst others are based on statistical analysis
of the system step response, or engineering judgement
applied either at the modelling or solution stage.

Mathematical extensions of the the modal methods have
been made by Mitra [89,90,91,92,93] and Wilson (121}.
Both these methods minimise a performance index which
measures the merits of retaining different sets of eigen-
values. A functional between the outputs of the full and
reduced models is minimised, leading to a non-linear
matrix equation which may be itesratively solved to give
the reduced system parameters. In the case where there
is only one input or output and the eigenvaluesrare
specified the analysis leads to a linear problem. Chen
(22} has noted that both methods may lead to steady state
errors and that for a large plant the computations involved
may be extremely complex.

Brown (17] has proposed a method, which unlike all
others, minimizes the difference between the time rate of

change of the reduced and full models, and not the time
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response error (i.e. minimize (% - g*)z). However,
the model fitted by Brown is not the normal state form
but has time varying parameters, i.e. the model fitted

is
% = A%(L) x* 4+ B%(t)u

The parameters are found from the covariance matrixlof
the combined state and input vectors in a system simula-
tion to a random input. Other time varying solutions
have been given by Graham and Strauss (" 57) and Freund

{ 50).

A different statistical approach is that of Tether
(114) who has indicated that work carried out on the
minimum order of state variable models, can be extended
to model simplification in the casa of 1ihear models.
For continuocus time systems the method isequivalent to
determining the transfer function matrix or impulse
response which has a finite number of terms in the series
expansion equal to those in the full model expansion.

Methods have been developed by Aoki (7} and Kuo and
Wei (70) which have been given the names aggregation and
lumping. TFrom the full model it is necessary to isolate
states which behave similarly and are readily decoupled
from each other. New states are added to the model
which are direct linear combinations of the lumped and
eliminated variables. Kuo and Wei have shown how
lumping can bte applied to monomolecular reactions and

in particular the interconversion of butene isomers.
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Coggan and Wilson t36] did a similar thing at the
modelling stage and effectively lumped together five
trays in a distillation column and modelled them as
one.

Marshall {83) has developed a method different to
all those above based on applying the Leverrier algorithm
to the state equations to give the transfer function
matrix. The relevant rational terms of this matrix are
then reduced by neglecting unimportant roots to give a
reduced order transfer matrix which can be converted
back to the state equations. The effect of neglecting
roots is followed on a visual display unit.

Chen has shown {21,22) how the coﬁtinued fraction
expansion and truncation may be extended to the
multivariable case.

Finally, it has been shown in a recent paper by
De Sarkar and Dharma Rao (44} how the geometric
properties of the Lyapunov function may be utilized in

reducing the order of state variable models.

5.4 ILLUSTRATIVE EXAMPLE

Some of the methods described earlier will be
) , =
illustrated by the following example {20). The same
example will be used in Chapters 6 and 7.

The fifth order model

¥ Tl pollen pmed mae A wedles xox g
LA. cﬁmvkbkkk LD l** l*Lbth GKQLJ“
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is to be reduced to a

EN (~3.67 0 -1.333 0 1.333]  [x4] 9]
X, 0 -5.44 .2.28 -2.28 2.28 X, 5
xy | =|~1.333 2.28 -3.86 1.19 =1.52 xqf + |6
X, 0 ~2.28  1.19 -4.13 1.19 X, 3
%5 | | 1.333 2.28 -1.52 ~1.52 -3.86 xs| |6

third order model, the first three

state variables being of interest.

reductions were obtained

The following

Davison's method:

- .

Xy -1.006 ) 0 Xy 3.003
x, | = .6557 -2.6719 - .656193 X, | + |2.99785
X 1.3368 -2.28096 ~2.34381 x 9.0029
51 | 5
xé} [‘-1.33055 - 665832 1.33155:J ki
x3J L“-l.9985 0 1 Xy,
X5
Marshall's method:
— o P —_— — S —
X -1.0086 0 0 ‘ x 4,20863
1 1
X, | = .6557 ~2,6719 - .656193 %,| + |1.81897
Xg 1.3368 - .328096 -2.34381 Xe 5.99487
o — _ -
Xy ~1.33066 — .665832_ 1.33166 x,| |2.39403
= +
%3 | _‘;1.9935 0 ‘1 REL" ng.sguugj
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Anderson's method:

— 9 —
Xq -3.51427 1.9423Y4
RN .003909 ~2.01141
X4 -1.36951 . 00966
L L

——a

=2.18407
- 001475

~2.46844

—

(-

8.99372

5.9998

6.00166

The response for Xy X, and X4 for full model and each

of the above reduced models are shown in Figs. 5.1,

5.2, and 5.3 respectively.
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5.5 NOMENCLATURE

A plant matrix

B input matrix

D Davison's modifying matrix, defined by Eq. (5.59)

di reduced steady state/full steady state for
variable i

] defined by Eq. (5.18)

I identity matrix

J number of inputs

K nunber of samples in Anderson's method

m reduced system order

n full systen order

P permutation matrix

Q defined by Egs. (5.68) and (5.69)

S defined by Eqs. (5.68) and (5.69)

T defined by Egs. (5.70) and (5.71)

T sampling interval in Anderson's method

t time

U matrix of eigenvectors or as defined by Egs.
(5.66) and (5.67) for Anderson's method

u foreing vector

v inverse of U

W as defined by Egqs. (5.70) and (5.71)

X as defined by IEgs. (5.66) and (5.67)

X state vector

¥y crdered state vector, Px

z U
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Greek:

A Jordan canonical form

A'  ordered A, E&?-l

—

Superscript:

* reduced system

* pseudoinverse

Subscript:

U;y indicates partitioning of U
CHD Chidambara's model
DAY Davison's model

EXACT exact model

MAR Marshall's model
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CHAPTER &

The reduction of order of state.variable models

using moments




6. THE REDUCTION OF ORDER OF STATE VARIABLE MODELS

USING MOMENTS Y.\e)

Lees (54,75,77) has shown how complex models may

be simplified using the method of moments. This method

has been discussed in depth in Chapter 3. However, the

same method may easily be extended to the state-variable

case and may be used for simplifying multi-input-

multi-output systems. The derivation of moments

from the state variable model has been described in

Chapter 2.

©.1 PROBLEM STATEMENT

is to

where

The nth order state variable model

X = Ax + Bu (6.1)

be reduced to the mth order model

5{* - é*.}-(;'g + EJ:H (6- 2)

is the plant matrix (n,n)

(o
-
[#3]

A* is the reduced plant matrix (m,m)

u is the forcing vector (order p)

B is the input matrix (n,p)

B* is the reduced input matrix (m,p)

x 1is the state vector (order n)

.E* is the reduced state vector (order m).

In many models a large number of the states are not
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required as outputs but contribute significantly to

the responses of the outputs. These variables may be
considered redundant. As an example, in a distillation
column feed and product stream variables are important

in the dynamic analysis of the column whilst compositions
and temperatures on the intermediate plates are
extraneous. The extraneous variables are considered

to be redundant.

This method seeks to reduce the order of the
problem by neglecting the redundant variables whilst
maintaining the original responses of the non-redundant
variables to all the plant inputé. The reduced state
vector, x*, is thus composed frmm the elements of x
making use of the physical knowledge of the plant item.
The order p of the forecing vector is not reduced, because
it is assumed that all the inputs should be retained
in the reduced model.

The matrices A*¥ and B* must be found from the moments

of the individual responses of all states to all inputs.

6.2 PROBLEM FORMULATION

The Laplace transform of Eq. (6.1) for an impulse
is
sx(s) = Ax(s) + Bu (6.3)
It was shown in Chapter 2 that the moments ere given
by differentiating this transform and setting s equal

to zero, to give

é@j,i + E_ﬁ:} ] = -1 m-,-__ (60”’)



where ms 3 is the nth order vector of unnormalised
—J
ith moments about the origin of the state x corresponding

to the jth input and Qj 1 is given by
3

0
Qj i = 0 for i > o
3
0
- -
0
. s = (1 in the jth row)
j,1 1
. for 1 = o
LO

Similarly Eq. (6.4) may be written in terms of reduced

matrices

% : 3 = =i
éf I_n_%:. i " _B_: ij,i - lEi’t_

5 j,i-l (6.5)

If the moments of the full and reduced models are matched
exactly, the elements of m*j,i are identical to those
elements of Ej,i which correspond to the states retained
in x*: if the match 1is not exact, the two sets of
elements are only approximately equal.

Eq. (6.5) may be written for all the p forcing

functions considered

. ) "'i II‘* .
,l - —'1,1 - l,l'_l

*
A% m¥,

‘Pe e eRa

>
7
g
+
=
Ps
-5~
H |

.-i me

tp,i —Epai"l (6.8



and augmented to give in partitioned form

E ]

% [ b & ‘ o .
Arlmty o1 oeen tmt ) BE(ey leenes ey )
i i
= -1 % . TR 3 . *
i{m*) 5ead {mey 5] (BT
& 1 % - %, ) N
or A% Mx. + B¥ b, Sk, (6.8)

Eq. (6.8) may be written for all the I moments considered

in additon to the zeroth (i = 0, 1, .... I)

b2
B
1=
-
o

+ E:’r -q, = §.:':- (6.9)

lb LK R B R N ]
o

=
b4

H

L

|

-4

t

H

which may be similarly augmented to give

Av(ir _faeee.iMe) o+ BE (B ... deg) = (Sofeeee 18)
(6.10)
or A% M* 4+ PB% § = S* (6.11)

where M* and S$% are order (m, p(I+l))

¢ is order (p,p{I+1))

6.3 PROBLEM SOLUTION

It has been shown above that knowing the moments
of the selected states for all inputs allows the matrices
M*, ¢, and S* to be built up in Eq. (6.11), which may
in turn be solved to give A®* and B*. However it may be
solved in a number of ways depending upon the number of

inputs and the assumptions made in the solution.
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6.3.1 Exact fit

Eq. (6.11) may be rewritten in partitioned form

[;é* g Es’e] Mk]

~--1 = 8% (6.12)
¢
o d
or vV H = g% (6.13)
Rearranging
BT yT = gaT (6.1%)

Solving for V in this manner produces a reduced model,
the moments of which match exactly all fitted moments
of the complex model, including the zeroth or steady

state.

6.3.2 B* constrained to give correct initial rates

If it is assumed that the complex and simple models
must have the same rate of change at time zero, then
since the initial rate is given by B, B* may be
constructed from the elements of B corresponding to

the chosen states.

Eq. (6.11)
é* Hﬁ + E* 2 - §:
but if B* is known
A% M%* = S% - B#0, = T (6.15)
or MrT  pxT = T (6.16)

Solving (6.16) matches not only the moments but also the
actual rates of change of each variable.

6.3.3. Least-squares solution of non-square data matrices

The following discussion is based on section 6,3.1.
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but applies equally to section 6.3.2.
Assuming H is a square matrix Eq. (6.1%) may be

'solved to give

-
-
[— | _—

-

' =T . _ :
[as Dme | = T (A7) Tee? (a1m)

Consider the dimensions of the matrix H

H = ..—:.] (6.18)

M* is order (m, p(I+1])

2 is order (p, p{I+l))

To apply Eq. (6.17) H must be square and the following

equality exists:

m = plI : (6.19)

Eq. (6.19) shows that the model can only be reduced to
an order equal to thelproduct of the number of moments
fitted and the number of inputs. This rule will
however lead to conflicting results: e.g. a 9th order
model with 5 inputs [39).by matching three moments and
the zeroth must be 'reduced" to a 15th order model.
Clearly the rule, Eq. (6.18) cannot in general apply.
It has been shown above that in general the matrix
H is not square and an alternative method is required.
The linear least-squares method of Golub {56) has been
used. However as with any least-squares method unequal
weighting of variables can occur. This weighting can

take three forms:
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a) high moments tend to be numerically dominant
to lower moments, or vice versa.

b) states may have a differént order of moment;
e.g. a flow variable would normally be greater
in value than a composition.

¢) the same state may have a different order of

moments for different inputs.

Tt is important that each of these weightings is
eradicated and in particular that the correct steacdy

state is maintained.

6.3.4 Constraint of B to give.corfect steady state

and moment welghting

It is usually desirable that on foreing the
simplified model it reaches the correct steady state.
The steady state is given by setting 1 = 0 in Eq.
(6.5).

A% m* + B ¢,
Js0 - '2:]30

"
1o

(6.20)

or for all inputs

t

o ! - - ]
B# @-1,01”“' :Q'Pao) = é*(g*lgot.....:m"‘p,ol (6.21)

or

K
B w
—_—

i

8, ~A% ¥ (6.22)
and ¢ _ is an identity matrix.

Eq. (6.22) may be substituted into Eq. (6.11) to give
AR(ME - M %) = gE (6.23)

or é b -F— = _S- E
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and A% is given by solving

pl arT o gaT (6.24)

Eq. (6.24) has been solved one column of A*T and §*T
at a time, thus minimising the least-squares error for
each variable singly, and avoiding unequal weighting,
the rows of ET being each time normalised with respect

to the corresponding element in sT

, thus avoiding
weighting for high moments and different inputs. Once

A* is calculated B* may be found from Eq. (6.22).

The use of the substitution discussed above and solution
of this pair of equations ensures that the reduced model

maintains the correct steady state.

6.4 RESULTS

Each of the solution schemes discussed above have
been investigated.

The exact solution of section 6.31 was found to
give good results when reducing a 6th order model to
3rd order with one input. However, when reducing the
size of large models the constraint on the order to
which a system could be reduced, Eq. (6.19) as discussed
in Section 6.3.3 was found to be too restricting. The
solution scheme was therefore discarded.

The solution of section 6.3.2. was similarly
rejected. It was found that the initial rate of change
was matched for a very brief period only, and thereafter

the reduced model found its own rate of change. Further-
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more this scheme would not correctly fitlthe steady
state as the two requirements cbnflict. The least-
square solution of Section 6.3.% performed well and
four examples will be given. The following is a summary

of the numerical runs: presented.

"

1. Reduction of a 12th order model with 2 =
inputs, the responses of which.are overdamped,
to a -4th order model by matching up to the

4 th moment,

2. Reduction of 12th order model with 2 inputs,
the responses of which are oscillatory, to
a 4th order model by matching up to the

hth ﬁoment.

3. Reduction of a 12th order model with 2 inputs,
the responses of which are inverting, to a
Uth order model by matching up to the uth

moment, .

4. Reduction of an 1lth order model of a binary
distillation column with 2 inputs to a 4th

order model by matching up to the 4th moment,

The numerical data and the time responses of these
models can be found in Appendix 2. The progranm used
can also be found there. The above models will be

referred to as Models 1l-4 respectively.
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6.4.1 TIllustrative example

The fifth order model used as an example in
Chapter 5 has been reduced to a third order model by
matching the zeroth and first three moments using the
method of Séction 6.3.4, élthough because of the small
dimensions involved it constitutes an exact fit.\ Details
of the full and reduced models are shown below. Time
responses are not shown as those of both the full and
reduced models were virtually coincident throughout
their entire length.

Reduced Meodel -

e p—

-2.88298 1.18666 -1.86676
A% = |- ,000764 ~-2.01513 - .000752
-1.52746 .198686 -2.53747
- |
8.72778
B% =
- 5.99897
| 6.067
| 6.08793

Details of the full model A and B are given in Chapter

5 -

Eigewvalues:

Full Model -1 -2 -3 -5 -9
Reduced Model =1.01276 -2.01556 =-4.40716
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Moments

State 0 1 2 3
1 4.18353 3.20679 5.99491 17.6u49Y4
2 2.97534 1.47595 l.ueuy? 21.795
3 . 105975 -1.77303 -4.89153 -16.2368

(full and reduced models have the same moments)

6.5 DISCUSSION OF RESULTS

Method 6.3.4 has been found to be the most reliable
method and to give the most acceptable results. All
results presented in Appendix 2 are based upon this
method. Methods 6.3.1 and 6.3.2. have been presented
as background to the method.

It may be seen from the data and figures given
that the reduced systems retain the important character-
isties of the full system. There is usually a very
close fit between the actual moments and those fitted
to the responses (usually to three figures in the fourth
momentJ). Further the eigenvalues of A% are well repres-
entative of the eigenvalues of A and may well be the
deminant values from the latter. Analysis of the
figures shows that there is godd agreement between the
actual and the fitted time response. In the case of
oscillating and inverting systems the peak heights of
the reduced system tend to be less than that of the

full.
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It may be seen from those figures which show the
response of the last variable in a series that the
reduced order curve tends to oscillate about the full
model zero time steady state. These variables being
the last in a series tend to be characterised by a large
inherent time delay, or its equivalent in lags in series.
The process of of order reducticn involves the elimination
of many of these lags, and therefore the reproduction
of the time delay is not entirely satisfactory. The
oscillation of the initial part of the response about
the base line is rather similar in behaviour to that of

the Pad€ approximation to a time delay.

G(s) = 1- -%ts
1 + .57s

The moments matched in the examples are the
zeroth and the next four. Experience in the use of
the method suggests this is usually the best choice,
although good results are often obtained matching one
less moment.

Important characteristics of this method of
simplification are that the correct steady states are
obtained, that the reduction is effected according to
a definite criterion, namely the matching of moments,
and that there are no restrictions on the inputs and
outputs which can be retained. This does not appear to
be true of methods based on modal analysis. There is no
restriction on the order of the reduced model, though,
as with other methods, the latter cannot be expected to

represent well the full model if the order is reduced
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too low. The method has definite computational
advantages over other methods in that a complete time
or frequency response is not needed (this may be
prohibitive with very large systems), nor are the
eigenvalues and vectors required. It is needed only
to invert the full plant matrix to obtain the system
moments.

The method cannot be applied to systems where the
output to a step response is not bounded to a steady-
state value, but increases indefinitely, and where
the moments are therefore infinite.

It has been shown that the method of moments may
be used to reduce the order of state variable models
and that the reduced order models give acceptable
responses. The method is not presented as a substitute
for existing methods but rather as a possible alter-

native.
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6.6 NOMENCLATURE

A plant matrix

B input matrix

F  defined by Eq. (6.23) and (6.24)
G(s) transfer function

H defined by Egqs. (6.12) and (6.13)
I number of moments fitted

i ith moment

3 jth input

H* defined by Eq. (6.10) and (6.11)

. vector of ith moments of x for the jth input
m reduced system order

n full system order

p number of inputs to system

s

% defined by Eqs. (6.10) and (6.11)

s Laplace operator
T defined by Eq. (6.15)
u foreing vector
V  defined by Eqs. (6.12) and (6.13)
X state vector
Greek:

T time delay
$ defined by Egs. (6.10) and (6.11)

Qj,i defined by Egq. (6.4)
General:

x(s) Laplace transform of x

M*. partitioned matrix from M*
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CHAPTER 7

The reduction of state variable models by matching

the frequency response




7. THE REDUCTION OF STATE VARTABLE MODELS BY

MATCHING THE FREQUENCY RESPONSE

A number of methods were presented in Chapter 3
for fitting a low order transfer function to ;.higher
order model. Many of these methods were based on
minimizing the error in the frequency domain between
the two models, usually by a least-squares approach.
Frequency methods have not, however, been used for
reducing the order of state variable models.

The method of Levy (79) is one of the best
frequency methods for reducing the size of a transfer
funetion and an attempt has been made to extend the
analysis to the multi~-dimensional case. Whilst
theoretically attractive no acceptable results have
been obtained, in addition to which, for very high
order problems a considerable amount of computational
effort is required in the solution of the many
simultaneous equations. The method was discarded

and an alternative sought. One such feasible method

is presented here.

7.1 PROBLEM STATEMENT

The nth order state variable model with p inputs

X = Ax + Bu (7.1)

is to be reduced to the mth order model with p inputs

k% = Adxd o+ Bfy (7.2)

by matching the frequency response of selected states
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Where:

is the nth order state vector

1%

x* is the mth order reduced state vector

I

is the (n,n) plant matrix

e
%

is the (m,m) reduced plant matrix

is the (n,p) input matrix

|

{w
Fod

is the (m,p) reduced input matrix

is the pth order forcing vector.

o

The method is similar to that discussed in Chapter 6,

for reducing state variable order by matching the moments,
in that variables whose responses are of no interest

are considered to be extraneous and redundant. System
order reductior is effected by neglecting redundant
variables whilst maintaining the original responses

of the non-recundant variables to all inputs. It is
considered desirable that the reduced order model should
maintain all the original inputs. In this case the
reduced model, or the matrices A* and B*, must be found

from the full model frequency response.

7.2 PROBLEM FORMUTLATION

Eq. (7.1) may be transformed into the Laplace

domain

sx(s) = A x(s) + B u(s) (7.3)

and by letting s = iw into the frequency domain

ivw x(iw) = A x(iw) + B u(iw) (7.4}
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Let uy be the unit vector selecting the jth input

to the system, with the unity scalar being in the jth

position in the vector.

Eq. (7.4) may be written for each of the p inputs

i x,(iw) A x,0Gw) + B u,3ie)

. (7.5)
iw _)gl;(im) = Ax Gw) + Bu (i)
and augmented to give in partitioned form
io(xy(Ge)} «oeee ix () = __A-[_El(im);.....f_)_c_p(im)) +

By, (iw)} .....Egp(iw}]

(7.8)

. However [gl(im)é .......igp(im)) is a square diagonal

matrix and post-multiplying Eq. (7.6) by its inverse
gives each of the frequency responses noraclised with

respect to its input,’ and using the transformation

XG0 =[xy G eeees X G0) (uy Godi e o)) 7
(7.7)
gives

ief(iw) = Ax(iw) + B (7.8)

where X(iw) is a (n,p) matrix with complex elements.

Let X(im} be separated into its real and imaginary parts

X(iw) = r + 1 ¢



where clearly r and ¢ are both (n,p) real matrices.
With Eq. {7.9) substituted Eq. (7.8) becomes, for a

particular frequency W)

i (o + 3 ¢) =Aln +1ig) +B (7.10)

Eq. (7.10) can also be written for the reduced model

iwk[g*k +i Q*k} = A% (E*k + 1 ¢% ) + B*
(7.11)

where p#* and 9% are (m,p) matrices containing the real
and imaginary parts of the frequency response of the
vector x* corresponding to the selected states from x,
and if an exact fit is obtained they will agree exactly
to the equivalent elements in r; and ¢, , and for an
approximate fit there will only be approximate agreement.
Eq. (7.11) may be separated into its real and

imaginary parts to give:

Wy r* A% ¢ * (7.12)

® * %
o A% p k * B (7.13)

|
=
e
<
*
n

B%, the input matrix, affects the gain of the system
and is always obtainable from the full system steady
states, which are generally known. The steady states

are given at zero frequency.

If w, =0
then from Eq. (7.13) B% = =A% p& (7.14)
Substituting into Eq. (7.13) gives
- & - % % - &%
Wy % A% (p% - p*)) (7.15)
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Eq. (7.15) relates the plant matrix to its real and

imaginary parts and can be written for all K fitted

frequencies.
-0y 9*1 - é*(g*l - 3*0)
: i (7.16)
-wk Q*K = éﬁ(E*K - E:’Eo)

which may be augmented and written in partitioned form

. . i
“{ml Q*l; L3 S A ;wk Q_*K] = é*(z*l - I‘* ' .....:E*K - r*

or

g% = A% R* (7.18)

where R* and 9* are (m,pK) matrices.

7.3 PROBLEM SQOLUTION

It has been shown absve that the matrices $* and
R¥* can be built up from the known frequency responses
of the full system for the selected states of X
retained in x*. Eq. (7.18) may be solved to give A#*
and Eq. (7.14) to give the input matrix B*, based on
ensuring that the model has the correct steady states.

EqQ. (7.18) may be solved in the form:

R¢T  asT = gaT (7.19)
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The method is similar to that of Anderson {2} in that to
ensure an adequate fit for all inputs and selected
outputs a vast amount of data will be required in fitting
over many frequencies. Thus in general the matrices

R* and ¢* will not be square. Clearly the solution
problem is very similar to that of Aﬁééfsoh and also

the moments state variable order reduction, and the

same method has been used for solving Eq. (7.19):the
linear least-squares method of Golub (56).

As with the moments method steps have been taken
to minimise the effeect of unequal weighting in the
problem. Unequal weighting is due to:-

a) low - frequencies having a larger (numerically)

frequency response than the high -
frequenc{es.

b) some system outputs being numerically

~dominant.

¢) outputs responding dissimilarly to different

inputs.

The effect of weighting in Eq. (7.19) has been
eliminated by solving A*T and ¢*T one column at a time
thus minimizing the error for each variable singly,
the rows of E*T being each time normalised with respect
to the corresponding scalar element in ¢#T, thus
avoiding weighting for different frequencies and inputs.
This is the same procedure as employed for the moments

problem.

7.4 RESULTS

A 12th and 11th order problem, each with two inputs,



have been reduced to fourth order models by matching
the frequency response in the manner outlined above.
The problems have been described in Chapter 6. They
are the system of overdamped stirred tanks and the binary
distillation column. Computational details and the time
responses for each of these systems can be found in
Appendix 3. A listing of the program used is alsec
given in Appendix 3.

The illustrative example considered in Chapter

5 has also been analysed and will be given here.

7.4.1 Illustrativz example

The 5th order problem, described in Chapter 5
has been reduced to a third order model. The reduced
model and computational details are shown in Table 7.1.
The time responses for the retained variables are not
given as the full and reduced model responses, for
all variables,were coincident throughout the entire

fitted range.

Table 7.,1.fllustrative example-reduced order model

Variables retained 1 2 3

Frequencies fitted:

.0001 . 0002 . 0004 . 0007
.001 .002 .00h .007
01 .02 . Ol .07
.1 2 4 .7

1 2 4 7

10 20 40 70
100 200 400 700
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Table 7.1, Cont'd ...
-3.1u485 1.4866 -2.0978
ax = |-0.0008 -2.0154 -0.0025
- 1 -1.4657 0.1295 ~2.4863 |
8.9711
B* = [6.0002
6.0101 !
Eigenvalues= -1.0320, ~2-01%2 -1 - o

7.5 DISCUSSZON OF RESULTS

It may be seen from the responses given in Appendix

3 that there is in geﬁeral good agreement between the

full and reduced order model responses. Two points may

be noted in particular:

a)

bl

the steady state is always correctly

fitted.

inherent system dead times are not always

fitted closely. This has been commented

upon in Chapter 6 and what was written there
applies. However the responses in Appendix

3 show that two variables with large dead

times have been very closely fitted and are

a better fit than given by the moments match.
Other recponses are typical of the moments match

in that they oscillate about the dead time.

Analysis of the full and reduced system eigen-

valuzs shows that the latter are well representative of

the former.

The

method has associated with it a number of
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computational difficulties - these are all connected
with the frequency range c¢ver which the model is to be
fitted. Practice has shown that it is very difficult
to find out over what range a model should be fitted.
Clearly the fit should start near the steady state
frequency. The difficulty is accentuated by the fact
that each variable requires a different frequency range.
This is particularly true of variables which have a
large inherent time delay. One method of selecting a
range is to relate the system time constants to a freq~
uency. A large and small eigenvalue were selected and
multiplied by 2m to give a start and finish frequency.
This does however, involve a degree of judgement in
selecting the eigenvalues. Before stating this as a
criterionin selecting the frequency range more experience
is rnecessary and a lot more models need to be fitted.
Of course an alternative is to blanket fit, i.e. use
a \urat number of frequencies. This  ,however, involves
the same difficulty as experienced by Anderson (2] in
that the arrays ¢* and R* become very large and the
procedure computationally inefficient. It is thought
that the good fit of the time delays referred to above
is due to fitting over a wide range.

It has been shown that state variable models may be
reduced in order by matching the frequency responses i.J
care is taken in choosing the frequency ranges. It has

the advantage over modal methods that the eigenanalysis

- 133 o



is not required and that variables of interest can be
retained in the reduced model without an additional
equation. It has the disadvantage however, that the
complete frequency response is required, which may

in the case of very large systems prove impractical.
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7.6 NOMENCLATURE

A plant matrix

B input matrix

i /-1

K number of frequencies fitted
m reduced system order

n full system order

D number of inputs

R defined by Eqs. (7.17) and (7.18)
r,  real part of x(iw,)

s Laplace operator

u forcing vector

u. unit vector for the ith input

X(iw) defined by Eq. (7.7)

& defired by Egqs. (7.17) and (7.18)
¢, imaginary part of x(ivw)

W frequency

Superscript:
& reduced system

T transposed matrix

Transforms:
x(s) Laplace transform of x

x(iw) frequency transform of x
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CHAPTER 8

Conclusions and suggestions for further work




8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Each of the main points raised in previous chapters
will be concluded here. A detailed discussion can be

found with each separate topic.

8.1 DAVISON'S ZERO METHOD

Use of the Davison method for determining the
zeroes of state variable models has shown that there is
a difficulty concerned with the choice of the constant

T'. The value, 1015

y,recommended by Davison has been
shown to be inapplicable to some computer systems,
and moreover if this value is used there may be
significant errors in the predicted zeroces. If T is

30 and an individual zero

increased from 103 to 10
monitored it is found to exhibit two distinet plateaux
and a region of instability. The first plateau always
gives the correct zero (at Loughbor0ugh when TI' = 107).
As high a value of T as possible should be used before
the unstable region is reached. To assist in noting

this region two methods of monitoring the system

stability have been developed.

8.2 A MODIFILED FORM OF THE LEVERRIER ALGORITHM

It has been shown that use of the Leverrier
algorithm to find the numerator polynomials of the trarsfer
function matrix can lead to numerical errors when systems
of high order are analysed. These errors are not
apparent when working with systems up to about tenth
order. The algorithm has, however, been veformulated
in terms of the inverse plant matrix, when the resulting

- 136 -



polynomial coefficients are simply related to those
derived from the standard algorithm. Clearly the
inverse problem suffers from the same numerical
difficulties as the forward, but it has been shouwn
that solving one problem from either end of the
characteristic equation gives two sets of coefficients
which may be combined to give one acceptable set:

some coefficients being drawn from the forward,.

and some from the reverse problem.

8.3 FREQUENCY RESPONSE COMPUTATION OF STATE VARIABLE

MODELS

A comparison has been made between the different
methods of computing the frequency response of a state
variable model. It has been shown that where an
efficient eigenvalue routine exists, and the response
is requifed over many frequencies, definite savings
in computational time can be made by first transforming
the model to the Jordan canonical form thus eliminating
the need to invert a matrix; possibly complex, for each
frequency considered. The method does however, require
more core store than others. Solution by this method
can sometimes lead to numerical inaccuracies in systems
with a wide spread of eigenvalues. These errors may
possibly be eliminated by placing double precision
working in critical parts of the program.

An area needing further investigation is the

performance of the method when analysing systems with
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complex or multiple eigenvalues. To date only real

systems have been examined.

8.4 SIMILARITIES BETWEEN THE MOMENTS AND CONTINUED

FRACTION METHODS

It was shown numerically in Chapter 3 that these
two methods when applied to a seventh order model
predicted the same second order model, and it was
demonstrated in Chapter 4 why this must be so. Thus
the continued fraction method satisfies not only its
own criterion but also has the physical significance
of ma*tching the lower moments of the impulse response.
It is believed that the second order model is not a
special case but that relationships of the form shown
in Chapter 4 exist for all orders of model, provided
that the moments method is applied to a model of the
type fitted by Chen's method. It has however, at the
time of writing, been impossible to rigorously prove

this.

8.5 REDUCTION QOF STATE VARIABLE MODELS BY MATCHING

THE MOMENTS

The moments method of reducing the order of
transfer functions has been successfully extended to
the order reduction of state variable models. The
reducéd model retains the main charactéristics of the
full oné,; although in the case uf systems with large
inherent time delays the reduced model does not always
closely fit the full one ‘cver th¢ ianitial response. This
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deviation is thought to be an inevitable outcome of
simplification. The method has the advantage over
some others in that there is a free choice of variables
retained, and further, that neither the time or frequency
response, nor an eigen-analysis are required. The
reduced models represent well the fulli models for the
inputs investigated, impulse and step functions.
Other forcings of the reduced modei have not been
examined.

There are arising from the moments work a number

of possible extensions.

8.5.1 Introduction of a time delay into a state model

One failure of the state variable model is its
inability to adequately represent a time delay. The
usual method of introducing a delay is to model it with
a series of first order lags. This does, of course,
increase the order of the model proportionally. It
is proposed that it may be possible to include a
delay based on the moments state variable simplification
method.

The effect of inecluding a delay in a model is to
shift the response to the right on the time scale.
Moments computed about the mean of an impulse response,
other than the first, are obviously unaffected by such
a shift and remain constant. Thus if the vectors of
system moments for each input are computed, as
described in Chapter 2, and then normalised about the

mean the effect of including a time delay is to add it
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to the first moment only. The vectors may then be
conver fced:” back to unnormalised moments about the
origin and formulated as described in Chapter 6.

The problem is solved and A%, which may or may not be
reduced, is the plant matrix with the time delay

included.

8.5.2 Application of the moments method to unstable

systems.
One criticism of the moments method is that it

cannot be used to reduce systems which may possess a

pole on, or to the right of, the complex axis. It

is thought that application of the shifting theorem

may reriedy this by moving the eigenvalues so that they

all lie in the left half of the complex plane.

By moving the eigenvalues an amount o and

substituting

g = &%t x (8.1)
the non stable system

x = Ax + Bu (8.2)

may be transformed to the stable system

¥y = (A+ ally + et Bu (8.3)

where the input has been mcdified to take account of the
shift. Such a scheme for reduction is only possible
if the system will respond accurately to a response

other than the fitted impulse.
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8.5.3 Fitting part of a response only

It was reported in Chapter 5 that by carefully
grouping, and selecting, the system eigenvalues,
Davison's method can be used to fit accurately only
that portion of a response which is of interest,
other parts being less closely fitted. It is proposed
that such a fit be effected using the moments method,
by making use of a generalized Laplace transform

F(s) = sz e”St f(trat (8.4)
T
where the only difference to the normal transform is
the integration interval.

If an anaiysis identical to that of the moments
methoad, for either a transfer function or state variable
model, is carried out, it is found that moments
corresponding to the finite integration interval can be
computed quite simply from the moments of the infinite
response, the cut off points, and the full model para-
meters. It is proposed that the simplified model be

fitted to these "finite moments".

8.5.4 The approximate solution of partial differential

equations using moments

If the moments method can be used to approximate
transfer functions (the transform of an ordinary differ-
ential equation (ODE)) can it also be used to approximate

the transform of a partial differential equation {(PDE)?
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Whilst PDE s are usually difficult to solve

their solutions often gives rise to the standard
responses, varying quite simply with the space para-
meter. The moments will also vary with this parameter
in a similar manner. Clearly if the distribution of
moments is known, they can be found at any point and

a simple model fitted to them, thus giving a time
solution at that point in space. As a PDE may be
transformed to an ODE the distribution of moments

ir. space is generally known.

8.6 REDUCTION OF STATE VARIABLE MOTELS BY MATCHING

THE FREQUENCY RESPONSE

It has been shown that a state variable model can
be successfully reduced to a lower order by matching the
frequency response of the reduced model to that of the
full model. The method is straightforward but does
require the storage of a lot of numerical data. Like
the moments method the fit to inherent system time delays
is not always satisfactory.

More work is required to find over what frequency
range a particular model should be fitted and also
whether or not the reduced model responds well to

inputs other than step and impulse.

8.7 CHEN'S STATE VARIABLE METHOD

It has not been possible to investigate Chen's
state variable method and therefore little can be
concluded. As the author had, however, reached a
similar point in his work some time ago but discarded
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the method because of the difficulty of handling
multiple inputs, other than by a least