

Simplification Of Linear Unsteady

 State Models Of Chemical
Processes

by

M. J. Bosley

Simplification Of Linear Unsteady-State Models of Chemical Processes

by

Michael john Bosley

```
A Doctoral Thesis submitted in partial fulfilment
    of the requirements for the award of
        DOCTOR OF PHILOSUPHY
        of the
        LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY
        OCTOBER, 1972.
```

Supervisor: Dr. F. P. Lees
Department of Chemical
Engineering.
(C) by Michael John Bostey.

SUMMARY

The need for simple and well understood mathematical models representative of the dynamics of large physical systems has long been recognised, and has recently attracted considerable attention.

This work was prompted by previous studies in the department showing that the responses of complex models of absorption columns could be represented eçally well by much simpler models. The study has covered three areas:
a) The reduction of order of transfer functions.
b) The reduction of order of state-variable models.
c) Associated topics and numerical techniques.

A survey has been carried out on methods for reducing state-variable models, or transfer functions, to lower order transfer functions. A number of schemes have been studied, including least-squares fitting in the frequency domain, the truncation of continued fractions, and the matching of moments. It has been shown that in certain situations the continued fraction and moments matching method are in fact identical.

Previous work for reducing the order of state variable models has been reviewed and two new methods have been proposed. Techniques baser. on modal analysis and least-squares fitting in the time domain have been
discussed. The method of moments has been extended to deal with state variable models: it has been shown that large multi-input - multi-output systems can easily be approximated by smaller models and produce responses which match acceptably those of the full systems. Similarly it has been shown that models can be reduced to give acceptable results by matching the frequency response of the reduced model to that of the full.modu.

Work on model simplification has involved the use of many numerical techniques. Efficient methods of computing the frequency response of large systems have been investigated and it has been shown that a considerable time saving can be effected by first transforming the model to its Jordan form. The determination of equivalent transfer functions from state variable models has been studied. The existing methods have been compared using large systems and a modified scheme proposed, allowing greater accuracy in determining transfer function coefficients with very little additional work.

ACKNOWLEDGEMENTS

In undertaking a research project of any length one must rely greatly on friends and colleagues, not only for providing assistance, but also a lively atmosphere in which to work. I thank them all sincerely.

I am particularly indebted to Dr. F. P. Lees, who besides suggesting what turned out to be a most interesting topic, has given valuable assistance and guidance throughout the project. My thanks are due also to Mr. H. W. Kropholler who has shown great interest in the work and given considerable help.

I would like to thank all other members of the University who assisted in any way with the work, particularly: Professor D. C. Freshwater for his support and interest; Dr. B. A. Buffham for a number of interesting discussions; Dr. R. M. Neale, now of Courtaulds Ltd, who cooperated on some of the work; the staff of the Computing Centre who have provided a fast and reliable service.

The work has been financed by the Science Research Council whom I acknowledge with thanks.
rinally, I would like to thank Julie who has helped in many ways, not the least of which was the preparation of this manuscript.
1 INTRODUC'TION 1
2 COMPUTATIONAL TECHNIQUES USED 5
2.1 Computation of the time response of
state variable models 5
2.1.1 The numerical solution 5
2.1.2 The analytic solution 6
2.1.3 Transformation of \underline{A} to its Jordan form 6
2.1.4 Use of the Jordan form in computing $e^{\text {At }}$ 7
2.1.5 Jordan form of \underline{A} with complex or repeated eigenvalues 9
2.1.6 Solution for the step and impulse response 11
2.2 Derivation of transfer functions from state variable models 12
2.2.1 Davison's zero method 13
2.2.2 A proof of Davison's method 14
2.2.3 Choice of Γ in Davison's method 16
2.2.4 Checks on the stability of Davison's method 18
2.2.5 Leverrier's Algorithm 19
2.2.6 A modified algorithm 21
2.2.7 Numerical difficulties and an inverse algorithm 23
2.3 Computation of the frequency response of state variable models 25
2.3.1 A review of previous virrsk 27
2.3.2 Frequency response of non- banc plant matrices 28
2.3.3 Method 1 - General complex matrix inversion 29
2.3.4 Method 2 - Inversion of real matrices 29
2.3.5 Method 3 - Frequency response via the cancnical form 30
2.3.6 Comparison of methods 1 - 3 33
2.4 Determination of the moments of state variable models 38
2.5 Computer system used 40
2.6 Nomenclature 41
3 THE SIMPLIFICATION OF TRANSFER FUNCTIONS 43
3.1 Characteristics of transfer functions 43
3.2 Classification of reduction methods 46
3.3 Simplification via the time response 50
3.3.1. Sinha and Pille's method 51
3.3.2. Sinha and Bereznai's method 52
3.4 Simplification via the frequency response 54
3.4.1. Mejer and Luenberger's method 56
3.4.2. Levy's method 57
3.5 Dominant roots retention 59
3.6 Continued fraction expansion and truncation 61
3.7 Simplification via the moments 63
3.8 Illustrative example 67
3.9 Choice of model and criteria of fit 69
3.10 Nomenclature 71
4 RELATIONSHIPS BETWEEN THE CONTINUED
FRACTION TRUNCATION AND MOMENTS
MATCHING METHODS OF MODEL REDUCTION 73
4.1 Relation 1 73
4.1.1 A matrix expression for the inversion of continued fractions 73
4.1.2 Moments of the general. poly- nomial transfer function 75
4.1.3 A comparison of the two solutions 77
4.2 Relation 2 79
4.3 Relation 3 80
4.4 A generalisation of the relation 82
4.5 Nomenclature 85
5 THE SIMPLIFICATION OF STATE VARIABLE MODELS 86
5.1 Retention of the dominant modes 86
5.1.1 Problem statement 1 87
5.1.2 Ordering of the system eigen- values 87
5.1.3 Problem statement 2 88
5.1.4 The problem solution 89
5.1.5 Nicholson's and Davison's method 90
5.1.6 Marshall's method 91
5.1.7 A comparison of the methods of Davison and Marshall 92
5.1.8 Chidambara's methods 94
5.1.9 Davison's modificd models 95
5.1.10 Analysis of the unretained variables 96
5.1.11 An extension of Davison's method 97
5.2 Least squares fitting in the time domain 98
5.3 Other methods of state variable reduction 101
5.4 Illustrative example 103
5.5 Nomenclature 109
6 REDUCTION OF ORDER OF STATE VARIABLE MODELS USING MOMENTS 111
6.1 Problem statement 111
6.2 Problem formulation 112
6.3 Problem solution 114
6.3.1 Exact fit 115
6.3.2 B* constrained to give correct initial rates 115
6.3.3 Least-squares solution of non- square data matrices 115
6.3.4 Constraint of B^{*} to give correct steady state and moment weighting 117
6.4 Results 118
6.4.1. Illustrative example 120
6.5 Discussion of results 121
6.6 Nomenclature 124
7 THE REDUCTION OF STATE VARIABLE MODELS BY MATCHING THE FREQUENCY RESPONSE 125
7.1 Problem statement 125
7.2 Problem formulation 126
7.3 Problem solution 129
7.4 Results 130
7.4.1 Illustrative example 131
7.5 Discussion of results 132
7.6 Nomenclature 135
8 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 136
8.1 Davison's zero method 136
8.2 A modified form of the Leverrier algorithm 136
8.3 Frequency response computation of state variable models 137
8.4 Similarities between the moments and continued fraction methods 138
8.5 Reduction of state variable models by matching the moments 138
8.5.1 Introduction of a time delay into a state model 139
8.5.2 Application of the moments method to unstable systems 140
8.5.3 Fitting part of a response only 141
8.5.4. The approximate solution of partial differential equations using moments 141
8.6 Reduction of state variable models by matching the frequency response 142
8.7 Chen's state variable method 142
8.8 Closing remarks 143
9 REFERENCES 144

APFENDIX 1

Al. 1 A listing of the Levy program
A1. 2 Solution of the illustrative example by Levy's method

A1.3 A listing of the continued fraction program
A1.4 Solution of the illustrative example by Chen and Shieh's method

Al. 5 A listing of Lees' moments program
A1. 6 Solution of the illustrative example by Lees' method

APPENDIX 2

A2.1 A listing of the program for the reduction of state variable models by matching the moments

A2.2 Mode1 1, an overdamped system, reduced by matching the moments

A2. 3
Model 2, an oscillating model, reduced by matching the moments

A2.4 Model 3, an inverting model, reduced by matching the moments

A2.5 Model 4, a binary distillation column, reduced by matching the moments

APPENDIX 3

A3.1 A listing of the program for the reduction of state variable mocie.s by matching the frequency response

A3.2 Model 1, an overdamped system, reduced by matching the frequency response

A3.3 Model 4, a binary distillation column, reduced by matching the frequency response
2.1 Values of zeroes for numerical example determined by Davison's method 16
2.2 Davison's estimation of zeroes for numerical example 17
2.3 Coefficients of the characteristic polynomial, for a 36 variable distill- ation problem 24
2.4 Coefficients of the 3rd state variable numerator of the 36 th order distillation problem calculated by the Leverrier algorithm 26
2.5 Run times for stagewise processes by the stepping and inversion methods 28
2.6 Storage and run-times for methods 1,2, and 3 33
2.7 Timings for methods 1,2 , and 3 34
2.8 Numerical comparisons of methods 1,2 , and 3 37
3.1 (1,2) Transfer function parameters 47
3.2 Simple transfer function models 48
3.3 Parameters of modified (1,2) model in illustrative example 68
4.1 Routh array for Eq. (4.21) 81
4.2 Coefficients for the reduction of the seventh order model by the comtinued fractions and moments methods 84
7.1 Illustrative example - reduced order 131 model
FIGURES PAGE
2.1 A block diagram for Davison's method 15
2.2 Two plateau effect of Davison's method 15
2.3 Stability checks on Davison's method 20
2.4 Mill Units/Frequency vs. order for systems with real eigenvalues 35
2.5 Start time in mill units vs. order for systems with real eigenvalues 36
3.1 Typical system step responses 44
3.2 Sinha and Bereznai's error criteria 53
3.3 Step responses of illustrative model 68
5.1 Illustrative example - response $x_{1}(t)$ 106
5.2 Illustrative example - response $x_{2}(t)$ 107
5.3 Illustrative example - response $x_{3}(t)$ 108

CHAPTER 1
Introduction

1. INTRODUCT:TON

Recent years have seen an increase in the size and complexity of many industrial processes and engineering operations. These range from the building of super-tankers and jumbo jets to the implementation of vast hydro and nuclear power schemes. The expansion of these industries and the advancing affluence of the civilized world is reflected in the growth of the process industries where the production of petroleum spirit is linked directly to the national economy. All engineering fields depend greatly upon human intervention and decision making, both in the design and operation of plants. In an attempt to eliminate errors there has been a trend to replace, or supplement, the operator by a control system, thus reducing the amount of human decision making. As modern processes become more complex, control technology must advance to satisfy the demands placed upon it.

In the 1950's thought was given to the uses to which computers might be put on process plants, and the 1960's saw the implementation of the first D.D.C. systems, replacing many analogue controllers with a single computer. This however, was only the first step. Once the computer was installed the way vis open for realizing hitherto impossible advanced control
strategies. However, before many computer systems can be operated effectively an accurate mathematical model
of the plant being controlled is necessary. The modelling of large plants has many problems.

Most processes are highly non-linear, some plant items are distributed parameter systems and lead to complex partial differential equations, while the flow of materials involve transport delays, or dead times. Even with the powerful computers available today such systems, if modelled accurately, could not be solved, let alone used for control purposes. Thus the models must be simplified in some way.

The first simplifications are often carried out at the modelling stage: non-linear systems are usually linearised about their steady states: distributed parameter systems are approximated by finite difference models: and time delays may be replaced by first order lags in series. The result is a set of linear ordinary differential equations.

Classically these equations have been transformed to the Laplace domain to give transfer functions relating one output to one input. For the operation of a single control loop, or to obtain one time or frequency response this is adequate, however, for the analysis of a complete plant many such transfer functions are required. An alternative approach is to convert all the differential equations to first order and to set up a state variable model relating all outputs to all inputs. This was always attractive, but not possible until the widespread appearance of large fast computers. Models of this type are in general use today, and for a complete
system analysis are used in preference to transfer functions.

The classic theorems of linear algebra apply to state variable models, and while theoretically simple to manipulate, are in practice more difficult. This difficulty lies with the model order. Consider a 36 plate distillation column: if it is conventionally modelled with a single equation for each composition and flow on a plate, 72 first order equations result, giving a plant matrix of order 72 with 5184 elements. To store this matrix requires, in most computers, 10 K of core store, and to operate on it considerably more. The modelling of an entire plant, or a distributed parameter system by finite difference methods, can lead to sets of 500 equations. Clearly with systems of that size the storage of the model is virtually impossible and the computational time taken in performing analysis is prohibitive. Two additional points affect the study of very large systems: although ostensibly an accurate model of the process, the very size can confuse and hinder analysis, furthermore, of the many states in the state vector, few may be of interest, the remainder being either unmeasurable or dummy variables. In the case of the distillation column referred to above, only input and output variables are usually of interest, whilst no use is made of the others states.

The above facts point to the necessity to be able
to reduce the size of state variable models and replace a model by a system which,although of lower order, maintains the characteristics of the original model. The advantages of doing this will be summarised briefly. Low order models:
a) help the understanding of complex models.
b) reduce computer storage.
c) reduce the computational effort.
d) eliminate the need to analyse unimportant states.

However, when reducing the system order it must be remembered that accuracy cannot be sacrificed to achieve a low order model, the results of which are meaningless.

In this thesis the problem of model simplification will be considered. The order reduction of transfer functions has been reviewed and a comparison made, whilst the more interesting reduction of state variable models has been considered in more depth, and two new methods proposed. Some of the numerical methods related to the study of linear systems have been examined.

CHAPTER 2

2. COMPUTATIONAL TECHNIQUES USED

Many of the methods described in subsequent chapters will require the use of the same computational techniques, such as the calculation of the time or frequency response. To avoid repetition, and to give a central record of methods used, all computational techniques, together with details of the computer system used, will be presented here.

2.1 COMPUTATION OF THE TIME RESPONSE OF STATE

VARIABLE MODELS

Two methods have been used to compute the time response of state variable models: the analytic solution and a numerical solution. The latter will be discussed only briefly, whilst the former will be considered in some depth as the theory forms the basis for a number of topics in this thesis. Time responses have been computed using both the given methods.

2.1.1 The numerical solution

There are many different numerical methods for solving differential equations, usually based on a truncated Taylor's series, and descriptions of them can be found in most texts on numerical methods (37). Runge-Kutta methods perform adequately for a wide cláss of problem. The particular method used is the Gill modification of the Runge-Kutta method (55). This routine has been used in preference to the basic
four-point method because it requires only $3 / 5$ of the computer storage and minimizes rounding errors.

2.1.2 The analytic solution

The solution of

* $\quad \underline{\dot{x}}=\underline{A x}+\underline{B u}$
where \underline{A} and \underline{B} are both time invariant and \underline{u} the input, varies with time is (100):

$$
\begin{equation*}
\underline{x}(t)=e^{A t} \underline{x}(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau \tag{2.2}
\end{equation*}
$$

As all the states in Eq. (2.1) are linearised and only deviations about a steady state need be considered $\underline{x}(0)=0$ and $E q .(2.2)$ reduces to

$$
\begin{equation*}
\underline{x}(t)=\int_{0}^{t} e^{\underline{A}(t-\tau)} \underline{B u}(\tau) d \tau \tag{2.3}
\end{equation*}
$$

The problem in Eq. (2.3) is the computation of the exponential matrix $e^{A(t-\tau)}$. Buffham and Kropholler (19) have considered the many ways of computing this matrix. In this work it was decided to compute e $e^{\text {At }}$ from the Jordan canonical form (120) as efficient eigenvalue and eigenvector routines were available (the Q.R. transform).
2.1.3 Transformation of A to its Jordan form

Any matrix \underline{A} having distinct roots (real or complex) may be transformed into the diagonal matrix

$$
\Lambda=\left[\begin{array}{lllll}
\lambda_{1} & & & & \tag{2.4}\\
& \lambda_{2} & & & \\
& & \cdot & & \\
& & & & \\
& & & \cdot & \\
& & & & \lambda_{n}
\end{array}\right]
$$

where λ_{i} are the eigenvalues of \underline{A}. Λ is said to be the Jordan canonical form of A In general this transformation does not exist for systems having multiple eigenvalues, although similar ones do. The transformation is:

$$
\begin{equation*}
\underline{\Lambda}=\underline{U}^{-1} \underline{A U} \tag{2.5}
\end{equation*}
$$

Where the unique, non-singular, transformation matrix may be computed in a number of ways (23), but is most readily constructed from the eigenvectors of A in the following manner

$$
\underline{U}=\left(\begin{array}{l:l|l}
\underline{u}_{1} & \underline{u}_{2} & \ldots \ldots \ldots \tag{2.6}
\end{array} \underline{u}_{n}\right)
$$

where \underline{u}_{i} is the eigenvector corresponding to λ_{i} and is calculated from

$$
\begin{equation*}
\left(\underline{A}-\lambda_{i} \underline{I}\right)_{i}=\underline{0} \tag{2.7}
\end{equation*}
$$

2.1.4. Use of the Jordan form in computing e At

The solution of the homogeneous system

$$
\begin{equation*}
\dot{\underline{x}}=\underline{A x} \quad \underline{x}=\underline{x}(0) \text { at } t=0 \tag{2.8}
\end{equation*}
$$

is $\quad \underline{x}(t)=e^{\text {At }} \underline{x}(0)$

Substituting $x=$ Uy into Eq. (2.8) gives

$$
\begin{align*}
& \underline{U \dot{y}}=\underline{A U y} \quad \underline{y}=\underline{y}(0) \text { at } t=0 \tag{2.10}\\
& \dot{\dot{y}}=\underline{U}^{-1} \underline{A U y}=\underline{\Delta y}
\end{align*}
$$

The solution to Eq. (2.11) is

$$
\begin{equation*}
y(t)=e^{\Lambda t} y(0) \tag{2.12}
\end{equation*}
$$

where

$$
e^{\Delta t}=\left[\begin{array}{lllll}
e^{\lambda_{1} t} & & & \tag{2.13}\\
& e^{\lambda_{2} t} & & \\
& \cdot & & \\
& & \cdot & & \\
& & & e^{\lambda_{n} t}
\end{array}\right]
$$

Thus Eq. (2.13) is easily computed as it possesses only scalar quantities on the diagonal. Eq. (2.12) is now transformed back to the original variables by substitution of $\underline{y}=\underline{U}^{-1} \underline{x}$.

$$
\begin{equation*}
\underline{x}(t)=\underline{U} e^{\underline{\Lambda} t} \underline{U}^{-1} \underline{x}(0) \tag{2.14}
\end{equation*}
$$

The same method is used to solve the non-homogeneous system, Eq. (2.1).

2.1.5 Jordan form of A with complex or repeated eigenvalues

The method given above applies when the eigenvalues of A are complex, however, complex arithmetic is involved but may be removed by use of a further transformation. This transformation is based on the fact that complex eigenvalues and eigenvectors must occur in conjugate pairs and that one complex eigenvalue contains all the information about that pair. The Jordan matrix with complex entries is

and may be transformed to

by

$$
\left[\begin{array}{ccccc}
1 & & & & \\
& \cdot & & & \\
& \cdot & \frac{1}{2} & -i / 2 & \\
& & \frac{1}{2} & i / 2 & \\
& & & & \cdot
\end{array}\right]
$$

and at the same time \underline{U} is transformed from

$$
\underline{U}=\left(\underline{u}_{1}: \ldots \underline{u}_{k}^{R}+i \underline{u}_{k}^{C}: \underline{u}_{k}^{R}-i \underline{u}_{k}^{C}: \ldots\left(\underline{u}_{n}\right) \quad\right. \text { (2.17) }
$$

to

$$
\underline{U}=\left(\begin{array}{l:l:l:l:l:l}
\underline{u}_{1} & \ldots & \underline{u}_{k}^{R} & \underline{u}_{k}^{C} & \ldots & \underline{u}_{n} \tag{2.18}
\end{array}\right)
$$

with this form of \underline{U} and $\underline{\Lambda}$, $e^{\Lambda t}$ becomes

Clearly the forms given above for the complex eigenvalues are a general case, and Eqs. (2.4, 2.6, 2.13) are a special case of Eqs. (2.16, 2.18, 2.19).

When a matrix has multiple eigenvalues it may also have, though not necessarily, multiple eigenvectors. This leads to a singular \underline{U}. In this case transformations of the following form may be possible.

$$
\begin{align*}
& \underline{\Lambda}=\underline{P}^{-1} \underline{A P}=\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 1 \\
0 & 0 & \lambda_{2}
\end{array}\right] \tag{2.20}\\
& e^{\underline{\Lambda} t}=\left[\begin{array}{ccc}
e^{\lambda_{1} t} & t e^{\lambda_{1} t} & \frac{1}{2} t^{2} e^{\lambda_{1} t} \\
0 & e^{\lambda_{1} t} & t e^{\lambda_{1} t} \\
0 & 0 & e^{\lambda_{1} t}
\end{array}\right]
\end{align*}
$$

where \underline{P} is composed of vectors, not eigenvectors, computed from

$$
\begin{equation*}
(\underline{A}-\lambda I) p_{i}=\underline{p}_{i}-1 \quad i \neq 1 \tag{2.22}
\end{equation*}
$$

and P_{1} is the eigenvector corresponding to λ. A detailed description of the above transformations is given by Ogata (100).

2.1. 6 Solution for the step and impulse response

Eq. (2.3) for the impulse response, with $e^{\underline{\Lambda} t}$
and \underline{U} given by Eqs. (2.19, 2.18) for distinct eigenvalues is

$$
\begin{equation*}
\underline{x}(t)=\underline{U} e^{\Lambda t} \underline{U}^{-1} \underline{B u}: \tag{2,23}
\end{equation*}
$$

Eqn. (2.3) for the step response is

$$
\begin{equation*}
\underline{x}(t)=\underline{U} \int_{0}^{t} e^{\Lambda t} \underline{U}^{-1} \underline{B u} \mathbb{k} \tag{2.24}
\end{equation*}
$$

where $\int_{0}^{t} e^{\Lambda t} d t_{\text {corresponding to }} e^{\Lambda t}$, Eqn. (2.19) is

$$
\left[\begin{array}{ccccc}
a_{1} & & & & \tag{2,25}\\
& \cdot & & & \\
& b_{k} & c_{k} & & \\
& -c_{k} & b_{k} & & \\
& & & \cdot & a_{n}
\end{array}\right]
$$

and

$$
\begin{align*}
& a_{i}=\frac{e^{\lambda_{i} t}-1}{\lambda_{i}} \tag{2.25a}\\
& b_{k}=\frac{1}{\lambda_{k}^{2}+\phi_{k}^{2}}\left(e^{\lambda_{k} t}\left(\phi_{k} \sin \phi_{k} t+\lambda_{k} \cos \phi_{k} t\right)-\lambda_{k}\right) \\
& (2.25 b) \tag{2.25b}\\
& c_{k}=\frac{1}{\lambda_{k}^{2}+\phi_{k}^{2}}\left(e^{\lambda_{k} t}\left(\lambda_{k} \sin \phi_{k} t-\phi_{k} \cos \phi_{k} t\right)+\phi_{k}\right) \\
& (2.25 c)
\end{align*}
$$

2.2 DERIVATION OF TRANSFER FUNCTIONS FROM STATE VARIABLE MODELS

Two types of models are commonly used un modern control theory: the transfer function

$$
\begin{equation*}
G(s)=\frac{\sum_{i=0}^{m} b_{i} s^{i}}{\sum_{j=0}^{n} a_{j} s^{j}} \quad m \leqslant n \tag{2.26}
\end{equation*}
$$

and the state variable model

$$
\begin{equation*}
\underline{\dot{x}}=\underline{A x}+\underline{B u} \tag{2.1}
\end{equation*}
$$

It is often necessary to make comparisons between these two models, which may be used to represent the same
system, and though of different form, the two can be related. Chen and Haas (23) have sumnarised the methods available to decompose a transfer function into state form. There is, however, no wholly accepted method of performing the reverse operation. Two methods have been investigated in depth: the Leverrier algorithm (78), also called the Frame-Souriau-Faddeev algorithm, and a method of E. J. Davison (40). Method description, failings and suggested improvements follow.

2.2.1 Davison's zero method (40)

The state variable model, Eq. (2.1) in the frequency domain is written:

$$
\begin{equation*}
(s \underline{I}-\underline{A}) \underline{x}(s)=\underline{B u}(s) \tag{2.27}
\end{equation*}
$$

This equation for the impulse response (when $\mathrm{Bu}(s)=B u$) may be solved for the jth variable using Cramer's Rule

$$
\begin{equation*}
x_{j}(s)=\frac{|s I-\underline{A}|_{j}}{|s I-\underline{A}|} \tag{2.28}
\end{equation*}
$$

where $|s I-A|_{j}$ is $|s I-A|$ with the j th column replaced by Bui . Although not directly applicable to high order systems Cramer's Rule gives the basis for Davison's algorithm.

Eq. (2.28) requires $|s I-A|$, the characteristic equation of A, which may be found by determining its eigenvalues. Davison makes $|s \underline{I}-\underline{A}|_{j}$ also an eigenvalue problem.

The zeroes of the jth variable are found by replacing the j th column in A by Γ Bu, where Γ is a large scalar to give

$$
A_{j}^{\dagger}=\left[\begin{array}{lllllll}
a_{11} & \cdots & a_{1 j-1} & r b_{1} & a_{1 j+1} & \cdots & a_{1 n} \tag{2.29}\\
a_{21} & \cdots & a_{2 j-1} & r b_{2} & a_{2 j+1} & \cdots & a_{2 n} \\
\vdots & & & & & & \\
a_{n 1} & \cdots & a_{n j-1} & r b_{n} & a_{n j+1} & \cdots & a_{n n}
\end{array}\right]
$$

The zeroes of the system are included in the eigenvalues of A_{j}^{\dagger}. Any matrix of order n must have n eigenvalues whereas Eq. (2.28) need not have any zeroes, and has a maximum of $n-1$: the additional roots of $\underline{A}_{j}^{\dagger}$ are extraneous and not system zeroes. These extraneous roots can be recognised by solving the problem at different values of Γ when the true zeroes maintain a constant value and the additional roots tend to infinity.

2.2.2 A proof of Davison's method

A number of different proofs of the Davison method have been given $(43,69,119)$ but it is best understood by applying root locus theory.

Consider the negative feedback system shown in Fig. 2.l: it is well known that when the feedback gain is zero ($\Gamma=0$), i.e. the open loop system, that the poles of $x_{j}(s)$ are given by the eigenvalues of the plant matrix A, but when the loop is closed the poles of the closed loop system (the eigenvalues of $\underline{A}_{j}^{\dagger}$) migrate to

Figure 2.1 A black diagram for Davison's method

Figure 2.2 Two plateau effect of Davison's method
the open loop zeroes (the zeroes of $x_{j}(s)$) as Γ is increased to infinity. The negative feedback loop corresponds to the subtraction of the vector FBu from the jth column of the matrix A.

Whilst very easily programmed the method has a numerical problem associated with the choice of Γ.

2.2.3 Choice of I in Davison's method

The following example suffices to illustrate the problem (12).

$$
\underline{\dot{x}}=\left[\begin{array}{rrrr}
0 & -2 & -1 & -1 \\
0 & -7 & -1 & -1 \\
0 & 0 & -4 & -1 \\
0 & 0 & 0 & -2
\end{array}\right] \underline{x}+\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Determine the transfer function corresponding to x_{1}.

$$
x_{1}(s)=\frac{(s+5)(s+1)(s+3)}{s^{4}+13 s^{3}+50 s^{2}+56 s}
$$

Table 2.1 shows the determined zeroes for variable 1 for different values of r .

Γ	Zeroes of system		extraneous root	
10^{3}	-5.00375	-1.00225	-3.00300	0.996009×10^{3}
10^{5}	-5.00004	-1.00003	-3.00003	0.999960×10^{5}
10^{7}	-4.99999	-1.00000	-3.00000	10^{7}
10^{9}	-5.00802	-1.00000	-3.00000	10^{9}
10^{11}	-5.32843	-1.00000	-3.00000	10^{11}
10^{13}	-5.00000	-0.42857	-3.57143	10^{13}
10^{15}	-5.00000	-0.42857	-3.57143	10^{15}
actual	-5.00000	-1.00000	-3.00000	

Table 2.1 Values of zeroes for numerical
example determined by Davison's method

Best results were obtained for r equal to 10^{7}. It will however be noted from the table that two of the roots each exhibit two distinct values. I has been increased to 10^{27} without any further change in the value of the roots. Without any further information it is difficult to know which value to select. The same difficulty arose with other problems, including that given by Davison. Best results were always obtained when Γ was equal to 10^{7} whereas Davison had recommended a value of 10^{15}. Typical results follow the pattern shown in Fig. 2.2 Where two distinct plateaus exist.

The effect described above appears to be independent of problen size but dependent upon the particular computer and program used. This opinion is also held by Davison who has rerun the same problem on a different machine and obtained entirely satisfactory results for all values of Γ. His results are shown in Table 2.2. A number of rules have been developed to check that I has not moved into a region of instability (69).

Value of Γ	Zeros of system			Extraneous root
10^{5}	-1.00000	-3.00000	-5.00006	0.9996×10^{5}
10^{7}	-1.00000	-3.00000	-5.00000	10^{7}
10^{9}	-1.00000	-3.00000	-5.00000	10^{9}
10^{11}	-1.00000	-3.00000	-5.00000	10^{11}
10^{13}	-1.00000	-3.00000	-5.00000	10^{13}
10^{15}	-1.00000	-3.00000	-5.00000	10^{15}

Table 2.2 Davison's estimation of zeroes for numerical example c.f. Table 2.I

2.2.4 Checks on the stability of Davison's method

The zeroes are included in the roots of

$$
\left|s I-\underline{A}^{\dagger}\right|=0
$$

which for variable 2 of a third order problem are the roots of

$$
\left|\begin{array}{rrr}
s-a_{11} & -\Gamma b_{1} & -a_{13} \tag{2.30}\\
-a_{21} & s-\Gamma b_{2} & -a_{23} \\
-a_{31} & -\Gamma b_{3} & s-a_{33}
\end{array}\right|=0
$$

which may also be written

$$
-\Gamma\left|\begin{array}{ccc}
s-a_{11} & b_{1} & -a_{13} \\
-a_{21} & b_{2} & -a_{23} \\
-a_{31} & b_{3} & s-a_{33}
\end{array}\right|+\left|\begin{array}{ccc}
s-a_{11} & 0 & -a_{13} \\
-a_{21} & s & -a_{23} \\
-a_{31} & 0 & s-a_{33}
\end{array}\right|=0
$$

The second determinant has a term s on the diagonal, hence it is not possible for this determinant to contribute to the constant term in the expansion of Eq. (2.31). This constant is proportional to Γ and may be obtained in practice as the product of all the eigenvalues of A^{\dagger}.

From Eq. (2.31), neglecting the second determinant, it follows that

$$
\begin{equation*}
-r k \prod_{i=1}^{m}\left(s+z_{i}\right)=0 \tag{2.32}
\end{equation*}
$$

where K is the system gain and z_{i} are the system zeroes, and the constant term in Eq. (2.32) is given by

$$
-\Gamma K \underset{i=1}{n} z_{i}
$$

which should equal the product of ałl the eigenvalues of \underline{A}^{\dagger}. Therefore

$$
\begin{equation*}
-\Gamma K \underset{i=1}{m} z_{i}=\prod_{i=1}^{m} z_{i} \cdot \prod_{j=1}^{n-m} e_{j} \tag{2.33}
\end{equation*}
$$

where e_{j} are the extraneous roots. Since $\prod_{i=1}^{m} z_{i}$ is a constant in the system, for large Γ the system gain is given by

$$
\begin{equation*}
K=\frac{-\sum_{j=1}^{n-m} e_{j}}{\Gamma} \tag{2.34}
\end{equation*}
$$

which is, of course, also a constant.
The extraneous root product/r and the eigenvalue product/ Γ provide a monitor on the choice of Γ. Their responses to different values of Γ are shown in Fig. 2.3 Best values of the zeroes are obtained when both curves are horizontal. On the computer system used at Loughborough best results were always given when r equalled 10^{7}, but it must be stressed that before the method is extensively used Γ should be determined for a particular computer and program being used.

2.2.5 Leverrier's Algorithm (78)

This algorithm has been given by many people since it first appeared in 1840. Modified versions have been given by Faddeev (47), Frame (49)', Ghani and Ackroyd (52), Marshall (84), Morgan (94), Rosenbrock (104), and Souriau (111). Bass (9) has discussed the history of its discovery.

The solution of Eq. (2.27) is

Figure 2.3 Stability checks on Daviscn's method

$$
\begin{equation*}
\underline{x}(s)=(s \underline{I}-\underline{A})^{-1} \underline{B u} \tag{2.35}
\end{equation*}
$$

where

$$
\begin{equation*}
(s I-\underline{A})^{-1}=\frac{\operatorname{Adj}(s \underline{I}-\underline{A})}{|s \underline{I}-\underline{A}|} \tag{2.35a}
\end{equation*}
$$

rearranging gives

$$
|s \underline{I}-\underline{A}| \cdot \underline{I}=\operatorname{Adj}(s \underline{I}-\underline{A}) \cdot(s \underline{I}-\underline{A})(2.36)
$$

which may be written

$$
\begin{aligned}
\left(s^{n}-h_{1} s^{n-1} \ldots h_{n}\right) \underline{I}= & \left(s^{n-1} \underline{I}+s^{n-2} \underline{R}_{1} \quad \ldots\right. \\
& \left.+\underline{R}_{n-1}\right)(s \underline{I}-\underline{A})
\end{aligned}
$$

where a comparison of the coefficients in shows that the scalars, h_{i}, and the matrices, R_{j} may be determined from the following recursive scheme.

$$
\begin{array}{ll}
\underline{A}_{1}=\underline{A} & h_{1}=\operatorname{tr}\left(\underline{A}_{1}\right) \quad \underline{R}_{1}=\underline{A}_{1}-h_{1} \underline{I} \\
\underline{A}_{2}=\underline{A R}_{1} & h_{2}=\frac{1}{2} \operatorname{tr}\left(\underline{A}_{2}\right) \quad \underline{R}_{2}=\underline{A}_{2}-h_{2} \underline{I} \\
\vdots \\
\vdots \\
\underline{A}_{n-1}=\underline{A R}_{n-2} & h_{n-1}=\frac{1}{n-1} \operatorname{tr}\left(\underline{A}_{n-1}\right) \underline{R}_{n-1}=\underline{A}_{n-1}-h_{n-1} I \\
\underline{A}_{n}=\underline{A R}_{n-1} \quad h_{n}=\frac{1}{n} \operatorname{tr}\left(A_{n}\right) \quad \underline{R}_{n}=\underline{A}_{n}-h_{n} \underline{I}=0
\end{array}
$$

In the absence of numerical error R_{n} will be the null matrix.

2.2.6 A modified algorithm (15)

Essentially the same scheme has been used but
$|s I-A|$ has been computed from the eigenvalues of \underline{A} and $\operatorname{Adj}(s I-\underline{A}) \underline{B u}$ is evaluated rather than $\operatorname{Adj}(s I-\underline{A})$.

Let

$$
\underline{x}(s)=\frac{\operatorname{Adj}(s \underline{I}-\underline{A}) \operatorname{Bu}}{|s \underline{I}-\underline{A}|}
$$

$$
=\frac{\left[\begin{array}{c}
b_{10}+b_{11} s+\ldots \ldots+b_{1 n-1} s^{n-1} \tag{2.39}\\
\vdots \\
b_{n 0}+b_{n 1} s+\ldots \ldots+b_{n n-1} s^{n-1}
\end{array}\right]}{a_{0}+a_{1} s+a_{2} s^{2} \ldots \ldots+a_{n} s^{n}}
$$

where the denominator of Eq. (2.39) is the characteristic equation of A and a_{n} is unity. Let the coefficients in the numerator vector, Eq. (2.39) be arransed into the following partitioned matrix

and the vectors \underline{b}_{i} obtained from the following recursion
formula.

$$
\begin{aligned}
& \underline{b}_{n-1}=\underline{B u} \\
& \underline{b}_{n-2}=\underline{A b}_{n-1}+a_{n-1} \underline{B u}
\end{aligned}
$$

or $\quad \underline{b}_{i}=\underline{A b}_{i+1}+a_{i+1} \underline{B u} \quad i=n-2.0$ (2.41)

The proof of this scheme and the normal Leverrier algorithm have been given $(97,105)$.

2.2.7 Numerical difficulties and an inverse algorithm(12)

The algorithms described above suffer from severe numerical difficulties in the evaluation of the polynomials. This is also true when double precision arithmetic is used, and in some cases triple length working must be used to evaluate the numerator accurately. This numerical inaccuracy is shown in Table 2.3 where column 2 shows the coefficients of the characteristic equation evaluated with the algorithm and column 4 shows the same coefficients determined from the eigenvalues (these results are computed from a 36 th order model of a distillation column (69)). There is considerable difference, particularly in the low power of s.

It is, however, possible to solve the Leverrier algorithm from either end of the characteristic equation and relate the two solutions.

Table 2.3 Coefficients of the Characteristic polynomial, for a 36 variable distillation

problem

Coefficient values
Levertier algorithm

Nunber	Using A	Using A^{-1}	Using Eigen values
0	1000000000	1-799 E32	1000000000
1	1.723878716 E 3	-2.853 E32	$1.723878717 \mathrm{E3}$
2	1,404 607824 E6	4.526 E32	1.404607824 E6
3	$7 \cdot 208593986$ E8	-7.187 EJ2	7.208593988 E8
4	$2 \cdot 619827522$ E11	1-142 E33	$2 \cdot 619827523$ Ell
5	7186753624 El3	-1.815 E33	7.186753627 El3
6	1.548789462 E16	2.889 E33	1-548 789463 E16
7	2.694410286 E18	--4.602 E33	$2 \cdot 694410287$ E18
8	3.858496818 E20	7.337 E33	3.858496820 E20
9	4.614704668 E22	-1.170 E34	4.614704471 E22
10	4.660257222 E24	1.869 E34	$4 \cdot 660257225$ E. 24
11	4007183317 E 26	-2.988 E34	4007483321 E26
12	2.953465628 E28	4.782 E34	2.953465631 E 28
13	1.8746158 .30 E30	-7.659 E34	1.874 615 832 E. 30
14	$1028419199 \mathrm{E32}$	1.229 E35	1.028 41: $201 \mathrm{Ez2}$
15	4.888518713 E.33	-1.922 E3S	4.888518717 E33
16	2016377269 E3S	$5 \cdot 185 \mathrm{E} 35$	2.016377275 E3S
17	7.220894099 E36	6.710928546 E36	7.220894045 E36
18	2.244337526 E38	$2 \cdot 252555231$ E38	$2 \cdot 244337649$ E38
19	6.046961334 E39	6.045632899 E39	6.046959099 E39
20	1.409361476 E41	1409387162 E41	$1.409365723 \mathrm{E41}$
21	2.832967649 E42	2.832878505 E42	2.832881983 E42
22	4.889439103 E43	4.890980604 E43	4.890980047 E43
23	7.245471570 E44	7.215 943.898 E44	7.215 944002 E44
24	8.472298831 E45	9.039736094 E4.5	9.039736096 E4S
25	2.047 E47	9.541540579 E46	9.541540600 E46
26	-2.025 E49	8.406781390 E47	8.406789408 E47
27	4.085 E51	$6 \cdot 114268754$ E48	$6 \cdot 114268769$ E48
28	-7.898 E53	3622329790 E49	3.622329799 E49
29	1.531 E56	1.720558026 E50	1720558031 E50
30	-2.972 E58	6.428318986 E50	6.428319004 E50
31	5.776 E60	1.845364696 E51	1.845364702 ESI
32	-1.123 E63	3.949589620 ESI	3-949 589632 ESI
33	2.187 E65	6045981110 ESI	6.045981131 ES1
34	-4.261 E67	6.209356692 ES1	6.209356 .714 E51
35	8.309 E69	3.809739393 E51	3.809739408 ES1
36	-1.621 E72	1050105483 ESI	1.050 105 487 ESI

If the inverse of A exists then Eq. (2.37) above, may also be written

$$
\begin{aligned}
\left(s^{n}-t_{1} s^{n-1} \ldots \ldots t_{n}\right) I=\left(s^{n-1} \underline{T}_{0}\right. & \left.+s^{n-2} \underline{I}_{1}+\ldots+\underline{T}_{n-1}\right) \\
& \cdot(s \underline{I}-\underline{A})
\end{aligned}
$$

where it may be shown that

$$
\begin{align*}
& t_{i}=-h_{n-i} / h_{n} \\
& \underline{R}_{i}=h_{n} T_{n-i-1} A^{-1} \tag{2.43}
\end{align*}
$$

Thus A may be inverted and the normal program used to re-solve the problem from the opposite end of the polynomial. This gives a second set of coefficients for the characteristic equation based on the inverse problem. Column 3 in Table 2.3 shows these coefficients for the distillation problem. The computed results for the numerator polynomial for variable 3 are shown in Table 2.4. In each of these polynomials actually used for subsequent work the first 20 coefficients have been calculated using A and the remainder using A^{-1}.
2.3 Computation of the frequency response of state variable models

The frequency response may be computed from the state variable model, Eq. (2.1), in a number of different ways. Eq. (2.1) may be transformed into the Laplace domain

$$
\begin{equation*}
(s \underline{I}-\underline{A}) \underline{x}(s)=\underline{x}(0) \tag{2.44}
\end{equation*}
$$

Table 2.4 Coefficients of the 3rd State Variable
 numerator of the 36 th order distillation
 problem calculated by the Levexriar algorithm

Number	Characteristic equation calculated using Newton's identizics		Chatacteristic equation calculated using eigenvalues	
	Using A	Using A^{-1}	Using A	Using A^{-1}
0	0.0	-1.047 276037 E34	0000100000	-1.591 215960 E35
1	00	+1.605 399219 E34	0.0	2.425 972991 E35
2	00	-2.461 $438069 \mathrm{E34}$	0.0	--3.698 649970 E3S
3	0.0	+3.774 705971 E34	0.0	$5 \cdot 638986249$ E35
4	0.0	-5.789 890479 E34	0.0	-8.597288 596 E35
5	0.0	+8.882 915830 E34	0.000000000	1-310 $746.543 \mathrm{E36}$
6	-14179 669631 ExO	-1.363 Is 1216 E35	--1.179 805827 E10	-1.998 383856 E36
7	-1.327 803428 E13	+2.092 384503 E35	-1.327956 727 EI3	3.046774159 E36
8	-7.028 589371 E1S	-3-212 580382 E35	-7.029 400843 E1S	-4.6A5 185006 E36
9	-2.330 $977704 \mathrm{E18}$	+4.933 874120 E.35	-2.331 246823 E18	7.082188048 E36
10	-5.442 691235 E20	-7.579 676019 E35	-5-443 $319612 \mathrm{E}: 20$	-1.079 776590 E37
11	-9.530 679386 E22	+1.164 794183 E36	-9.531 $779736 \mathrm{E22}$	1.646276355 E37
12	-1.301 599356 E25	-1.790571518 E36	-1-301 749629 E2S	-2.510 003514 E37
13	- i-423 186300 E 27	+2.753 509384 E36	-1.423 350615 E27	3.826916676 E37
14	-1.268962095 E29	-4.235 872100 E36	-1.269 108 592 E29	-5.834 812934 E37
15	-9.348549816 E30	+6.518824006 E36	-9.349 629357 E 30	8.896257276 E37
16	-5.744 386384 E32	-1.003 695856 E37	-5.745049 128 E32	-1.356 414685 E38
17	-2.963 624565 E34	+1.542911 $312 \mathrm{E37}$	-?.963 967698 E34	2.069806951 E38
18	-1.289 393385 E36	-2.511 $090191 . \mathrm{E} 37$	-1-289 540286 E36	--3-166 054608 E38
19	-4.742 429774 E37	-1.069 922414 E37	-4.743 016497 E37	4.332957892 E38
20	-1.475 $861173 \mathrm{E39}$	-1.532 429487 E 39	-1.475954 141 E39	-2.208 776935 E39
21	-3.880 759571 E40	-3.873 539606 E40	-3.882 728680 E40	. 3.771043855 E40
22	-8.642 871281 E41	-8.614 $446230 \mathrm{E41}$	-8.614 091593 E41	-8.631 104119 EA1
23	$-1.546887410 \mathrm{E43}$	-1.605046223 E43	-1.605 $252125 \mathrm{E43}$	-1.604 993472 E43
24	-3.633158214 E44	-2.497 918250 EA4	-2.498 208278 E44	-2.498242750844
25	1.892548459 E46	-3.221 444084 E45	-3.221 718343 E45	-3.221 810564 E4S
25	-4.354 967227 E48	-3408585 349 E46	-3-410 967196 E47	-3.408979 699 E46
27	+8.430 $448 \mathrm{OL7} \mathrm{ESI}$	-2.921 894255 E47	-2.881 954645847	-2.922 231485 E47
28	-1.646998 349 E53	-1.997 387696 E48	-2.813 501778 E49	-1.997 618321 E48
29	3.218741635 E55	-1.057 602481 E49	1.545 99.5 314 Es0	-1.067 725739 E49
33	-6.295 433219 E57	-4.352 601567 E49	-3.352 506519 E52	-4.353 $104103 \mathrm{E49}$
31	1-232 305529 E59	-1.311059278 E50	6.782629889 ES4	-1.311210 647 E50
32	-2.414 156850 E62	-2.793 $562455 \mathrm{E50}$	-1.374 085700 E57	-2.793 884989 E50
33	4.733257588 E64	-3.943 433339 E50	2.783 725 OS1 E60	-3.943 888634 E50
34	-9.287 328903 E66	-3.280 251742 ESO	-5.639 511 027 E61	- $3 \cdot 280630469$ ESO
35	1.823657143 E69	-1.208 681 662 E50	1.142510347 E 64	-1.208821213 E50

and then into the frequency domain by substitition of $s=i \omega$ to give

$$
\begin{equation*}
(i \omega \underline{I}-\underline{A}) \underline{x}(i \omega)=\underline{x}(0) \tag{2.45}
\end{equation*}
$$

where $\underline{x}(i \omega)$ is a vector having real and imaginary parts. Frequency response analysis requires the solution of Eq. (2.45) over a wide frequency range, or for many different values of ω. For high order systems the complex inversion involved in the many solutions may prove a heavy work load.

2.3.1 A review of previous work

Many of the stagewise problems encountered in chemical engineering give rise to plant matrices of special form. These are almost invariably band matrices and very often tri-diagonal. Woods (122) has solved Eq. (2.45) using a complex arithmetic matrix inversion routine, whereas Bollinger (10) and Lamb and Rippin (72) have utilized the band matrix structure to produce computationally more efficient techniques. Bollinger has used what is basically a Gaussian elimination on the band elements of the plant matrix. Lamb and Rippin have used a method which involves plate to plate calculations made up the stagewise plant being modelled.

Shunta and Luyben (108) have made a comparison of the stepping method and the general complex matrix inversion method for band matrix systems. Four different sized distillation columns were investigated: 6, 10, 20 and 30 plates for 65 values of frequency. Their results
are shown in Table 2.5.

No. of Trays	Stepping time (secs)	Inversion time (secs)
6	2.64	100.4
10	3.16	336.2
20	4.25	1891.3
30	5.37	5654

Table 2.5 Run times for stagewise processes by the stepping and inversion methods

These results may be summarised by the equations
Stepping time $=111 \mathrm{n}+2$
Inversion time $=1.45 \mathrm{n}^{2.37}$
where n is the number of trays in the column. Although the method of Bollinger was not run an estimate was made for the 75 plate column he investigated. This gave 800 seconds for the Bollinger method compared to 10 and 40,000 seconds respectively for the stepping and complex inversion methods.

It was thus shown, quite conclusively, that when it is possible to use the stepping technique much computational effort could be avoided, in addition to which the complex matrix inversion method has the disadvantage of requiring considerable core store.

2.3.2 Frequency response of non-band plant matrices

When computing the frequency response of general
systems, i.e. those with a plant matrix which is not band-structured, the efficient methods discussed above cannot be used and the general complex matrix inversion, or some alternative must be resorted to.

Three methods of computing the frequency response for all states in \underline{x}, and one when only some of the states are needed, have been investigated and compared (11).

2.3.3 Method 1 - General complex matrix inversion

Eq. (2.45)

$$
(i \omega I-\underline{A}) \underline{x}(i \omega)=\underline{x}(0)
$$

may be solved using a general complex matrix inversion program, as was done by Shunta and Luyben (108) for each frequency considered. The routine used is based on the Crout factorization and has been described by Wilkinson (120).

2.3.4 Method 2 - Inversion of real matrices

An alternative to solving Eq. (2.45) directly, using complex arithmetic is to rearrange the equations so that real numbers only need be used. This may be done in a number of ways.

Pang and Johnson (101), working on a liquid-liquid extraction column have used the method of Lanczos (73). If ($i \omega I$ - A) $)^{-1}$ is known then the problem is effectively solved. Define two matrices \underline{Y} and \underline{Z} such that

$$
\begin{equation*}
i \underline{Y}+\underline{Z}=(i \omega \underline{I}-\underline{A})^{-1} \tag{2.46}
\end{equation*}
$$

and

$$
\begin{equation*}
(i \omega \underline{I}-\underline{A})(i \underline{Y}+\underline{Z})=I \tag{2.47}
\end{equation*}
$$

Multiplying out Eq. (2.47) and separating into real and imaginary parts

$$
\begin{align*}
& \omega \underline{Z}-\underline{A Y}=\underline{0} \tag{2.48}\\
& -\underline{A Z}-\omega \underline{Y}=\underline{I}
\end{align*}
$$

which may be solved to give:

$$
\begin{align*}
& \text { real part } \underline{Z}=-\left(\underline{A}+\omega^{2} \underline{A}^{-1}\right) \\
& \text { Imaginary part } \underline{Y}=-\omega\left(\underline{A}+\omega^{2} \underline{A}^{-1}\right)^{-1} \underline{A}^{-1} \tag{2.49}
\end{align*}
$$

Thus the solution by this method involves the inversion of \underline{A} followed by the inversion of $\left(\underline{A}+\omega^{2} \underline{A}^{-1}\right)$ for each frequency considered.

A slightly different, and more efficient form is obtained by first multiplying Eq. (2.45) by the conjugate of (iwI - \underline{A}):

$$
\begin{aligned}
& (i \omega \underline{I}-\underline{A}) \underline{x}(i \omega)=\underline{x}(0) \\
& \left(\omega^{2} \underline{I}+\underline{A}^{2}\right) \underline{x}(i \omega)=-(i \omega \underline{I}+\underline{A}) \underline{x}(0)
\end{aligned}
$$

Eq. (2.50) requires the inversion of a matrix containing only real numbers but still requires a separate solution for each value of ω investigated. Results given later for method 2 are based on Eq. (2.50).

2.3.5 Method 3 - Frequency response via the canonical form

Eq. (2.45)

$$
(i \omega \underline{I}-\underline{A}) \underline{x}(i \omega)=\underline{x}(0)
$$

may be written in the canonical form by substituting Eq. (2.5) for A

$$
\begin{equation*}
\left(\underline{U} i \omega I U^{-1}-\underline{U} \underline{U}^{-1}\right) \underline{x}(i \omega)=\underline{x}(0) \tag{2.51}
\end{equation*}
$$

where $\underline{\Lambda}$ and \underline{U} are the general Jordan form and transformation matrices respectively. Eq. (2.51) may also be written

$$
\begin{align*}
& \underline{U}(i \omega \underline{I}-\underline{\Lambda}) \underline{U}^{-1} \underline{x}(i \omega)=\underline{x}(0) \tag{2.52}\\
& (i \omega I-\underline{\Lambda}) \underline{U}^{-1} \underline{x}(i \omega)=\underline{U}^{-1} \underline{x}(0) \tag{2.53}
\end{align*}
$$

This equation is readily solved without resort to matrix inversion for ($i \omega I-\Lambda)^{-1}$ may be written out directly. It was shown in section 2.1 that Λ has the general form

and thus $(i \omega I-\Lambda)=$

The inverse of this matrix consists of the inverse of each of the submatrices on the diagonal

The solution of Eq. (2.45) is then

$$
\begin{equation*}
\underline{x}(i \omega)=\underline{U}\left(i \omega \underline{I}-\underline{\Lambda}^{-1} \underline{U}^{-1} \underline{x}(0)\right. \tag{2.57}
\end{equation*}
$$

where $(i \omega I-\Lambda)^{-1}$ is obtained by the above method without recourse to any inversion at all for the considered frequencies. Eq. (2.56) could alternatively have been found by taking the Laplace transform of Eqs. (2.13, $2.14,2.19,2.21$, each of the forms of Λ considered earlier.

Eq. (2.57) is easily programmed and $x(i \omega)$ can be found from Eq. (2.56) using only a small amount of complex arithmetic, and because the size of each block in the Jordan matrix is known (iUI - $\Lambda)^{-1} \underline{x}(0)$ is best found without using matrix multiplication routines.

2.3.6 Comparison of methods $1-3$

Methods 1 - 3 have each been applied to a series of problems (40) and the core store used and the time taken recorded. 33 different frequencies were considered. This data is shown in Table 2.6. (Times are shown in mill units, 1 mill $\sim \frac{1}{2} \mathrm{sec}$).

Matrix order	Method 1		Method 2		Method 3	
	store	time	store	time	store	time
10	4928	21	5184	16	11584	14
20	6848	95	6528	45	14400	33
30	9984	209	8640	82	18176	62
40	14272	409	11520	142	23872	111

Table 2.6 Storage and run-times for methods 1, 2 and 3

The time taken is obviously a function of how many frequencies are considered. For methods 2 and 3 some is required to start the sequence and the remaining time (and the time for method l) is directly proportional to the number of frequencies considered. The run time/ frequency is shown in Table 2.7 and has been plotted in Fig. 2.4.

Matrix order	Method 1		Method 2		Method 3	
	start time	time/freq	start time	time/freq	start time	time/freq
10	-	.64	2	.42	6	.24
20	-	2.88	5	1.21	14	.58
30	-	6.33	10	2.18	32	.91
40	-	12.39	20	3.70	65	1.39

Table 2.7 Timings for methods 1,2 , and 3
?
The start time for each method is also shown in Table 2.7 and plotted in Fig. 2.5. From Figs. 2.4 and 2.5 the following time estimates for each of the methods have been calculated.

$$
\begin{aligned}
& \mathrm{t}_{1}=.0055 \mathrm{FN}^{2.13} \\
& \mathrm{t}_{2}=.0139 \mathrm{~N}^{1.96}+.0116 \mathrm{FN}^{1.56} \\
& \mathrm{t}_{3}=.0185 \mathrm{~N}^{2.21}+.013 \mathrm{FN}^{1.26}
\end{aligned}
$$

where F is the number of frequencies considered and N is the system order.

Methods 1 and 2 have given identical results for all cases tried (up to order 40), however, method 3, although much faster than the others, especially when many

Figure 2.4 Mill Units/Frequency vs, order far system with real eigenvalues

Figure 2.5 Start time in mill unitg vs. order for systems with real
frequencies are being investigated, has given results which show a numerical error, due to rounding effects when ill-conditioned systems with a wide spread of eigenvalues are being investigated. Table 2.8 shows this effect for a l0th order system where the largest and smallest eigenvalue are a factor of 10^{4} different. Method 3 has, however, given satisfactory results for the well conditioned systems investigated.

Plant eigenvalues

| $-0.984150 \mathrm{E} \mathrm{O3}$ | $-0.328050 \mathrm{E} \mathrm{O3}$ | $-0.109350 \mathrm{E} \mathrm{O3}$ | -0.364500 E 02 |
| :--- | :--- | :--- | :--- | :--- |
| -0.121500 E 02 | $-0.405000 \mathrm{E} \mathrm{O1}$ | $-0.135000 \mathrm{E} \mathrm{O1}$ | -0.450000 E 00 |
| -0.149999 E OO | $-0.495006 \mathrm{E} \mathrm{O1}$ | | |

Methods 1 and 2			Method 3		
State	real part	imasinary part	State	real part	imaginary part
1	$0.374159 \mathrm{E}-04$	-154691E-04	1	0.374016E-04	-154691E-04
2	0.147962E-04	-250930E-05	2	0.147750E-04	-450929E-05
3	0.503280E-05	-308198E-06	3	0.503187E-05	-308198E-06
4	0.167672E-05	-351739E-07	4	0.167668E-05	-351739E-07
5	$0.558112 \mathrm{E}-06$	-394004E-08	5	0.5581IIE-06	-394004E-08
6	0.185914E-06	-440868E-09	6	$0.185914 \mathrm{E}-06$	-440868E-09
7	0.619563E-07	-498459E-10	7	0.619563E-07	-498459E-10
8	0.206526E-07;	-582361E-11	8	0.206526E-07	-582361E-11
9	0.316626E-07	-27E529E-11	9	0.316626E-07	$-27652 \mathrm{SE}-11$
10	0.101611E-02	-210220E-02	10	0.101611E-02	-210220E-02

Table 2.8 Numerical comparisons of methods 1, 2 and 3

2.4 DETERMINATION OF THE MOMENTS OF STATE VARIABLE MODELS

A response curve may be characterized by statistical parameters derived from it. The parameters usually calculated are the area under the impulse response curve, its mean, variance and skewness. These may aliternatively be called the zeroth, first, second and third moments. The ith unnormalised moment about the origin of an impulse response is defined:

$$
\begin{equation*}
M_{i}^{\prime}=\int_{0}^{\infty} t^{i} f(t) d t \tag{2.59}
\end{equation*}
$$

Moments may, if required, be normalized with respect to the zeroth moment (the area under the curve) and be taken about the mean. Expressions relating the normalized moment to unnormalized are given by Gibilaro and Lees (54). The Laplace transform of the same response $f(t)$ is defined

$$
\begin{equation*}
G(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{2.60}
\end{equation*}
$$

Differentiating Eq. (2.60) with respect to s gives

$$
\begin{equation*}
\frac{d G(s)}{d s}=-\int_{0}^{\infty} t e^{-s t} f(t) d t \tag{2.6I}
\end{equation*}
$$

which in the limit as s approaches zero is $4 H_{i}$, the first moment given by Eq. (2.59); or more generally

$$
\left[\frac{d G^{i}(s)}{d s^{i}}\right]_{s=0}=(-1)^{i} M_{i}^{t} \quad(2.62)
$$

Thus it is shown that the moments of the response of $f(t)$ may be derived directly from $G(s)$, the transfer function
giving that response (or the Laplace transform of the response).

Lees (75) and Gibilaro and Lees (54), extending the work of Paynter (103) have shown how application of Eq. (2.63) to low-order transfer functions gives relatively simple expressions relating the moments to the transfer function parameters. Similarly Kropholler (68) has applied Eq. (2.62) to the transformed state variable model, Eq. (2.44).

$$
\begin{equation*}
(s \underline{I}-\underline{A}) \underline{x}(s)=\underline{x}(0) \tag{2.44}
\end{equation*}
$$

Repeated differentiation with respect to s and solving in the limit $s \rightarrow 0$ gives

$$
\begin{align*}
& \underline{M}^{\prime} x_{i}=-i \underline{A}^{-1} \underline{M}^{\prime} x_{i-1} \quad i=1,2, \ldots \\
& \underline{M}^{\prime} x_{0}=-\underline{A}^{-1} \underline{x}(0) \tag{2.63}
\end{align*}
$$

where $\underline{M}^{\prime} x_{i}$ is a vector containing the ith unnormalized moments of x. Eq. (2.63) may alternatively be written

$$
\begin{equation*}
\underline{A} \underline{M}^{\prime} x_{i}+\underline{B} \phi_{j, i}=-\underline{M}^{\prime} x_{i-1} \tag{2.64}
\end{equation*}
$$

where the elements ϕ_{k} of the input vector $\phi_{j, i}$ are given by

$\phi_{k}=0$	$k \neq j$	$i \geq 0$
$\phi_{k}=1$	$k=j$	$i=0$
$\phi_{k}=0$	$k=j$	$i>0$

where j is the input to the system.
It has been shown that any number of moments may be computed, by repeated application of Eq. (2.63), with very little effort: one matrix inversion of \underline{A} being all
that is required.

2.5 COMPUTER SYSTEM USED

Most of the computational work included here was carried out on an ICL 1904A computer, although some of the initial work was done on a 1905 machine.

The 1904 A has a core stcre of 128 K words (one word being 24 bits organized in 4 6-bit characters) and a magnetic drum (ICL 1964/1) of capacity 512 K words and a transfer rate of 25 K words/second. The store cycle time is 750 nanoseconds. Jobs have been run under the George II operating scheme.

The program language used throughout the work has been 1900 FORTRAN and where possible use has been made of existing routines supplied in the ICL scientific subroutine package, although a number of routines did not match their specification and gave considerable difficulties. Some ICL subroutines ha te been written in PLAN and run in a 15 bit address mode (compact) which means that stores higher than 32768 cannot be accessed and has hence placed a restriction of 32.5 K on most programs. In some programs this has resulted in a great deal of array movement and transfers to and from disc.

Discs of 200 K words/cartridge have been used, with a transfer rate of 52 K words/second. Tapes used had a transfer time of 10.5 K words/second. Graphs have been plotted on an ICL 1934 plotter with a step length of . 005 inch.

2.6 NOMENCLATURE

A plant matrix
A † Davison's modified A matrix - defined by Eq. (2.22)
a_{i} denominator coefficients of transfer function
B input matrix
b_{i} numerator coefficient of transfer functions
\underline{b}_{i} vector of numerator coefficients
e_{i} extraneous root in Davison's method
$G(s)$ transfer function
h_{i} defined by normalised coefficients of characteristic equation

I identity matrix
i $\quad \sqrt{-1}$
M_{i}^{\prime} ith unnormalised moment about the origin
$\underline{M}^{\prime} x_{i}$ vector of moments M_{i} of \underline{x}
m order of numerator
n system order
P transformation matrix
\underline{P}_{i} partitioned vector of \underline{P}
p_{i} system pole
R defined by Eqs. (2.36, 2.37)
s Laplace operator
T defined by Eq. (2.42)
t_{i} defined by Eq. (2.42)
t time
\underline{U} matrix of eigenvectors
\underline{u}_{i} eigenvector

```
        u forcing vector
        state vector
        defined by Eq. (2.46)
        x transformed by U
        defined by Eq. (2.46)
    zjk kth zero for j the input
    (s) indicates Laplace transform - usually of
        vectors
(iw) indicates frequency transform - usually of
    vectors
```


Greek:

τ time constant
constant
Jordan canonical form
frequency
real part of eigenvalue
imaginary part of eigenvalue

CHAPTER 3
The simplification of transfer functions
3. THE SIMPLIFICATION OF TRANSFER FUNCTIONS [14]

The problem of reducing the order of transfer functions has only relatively recently received attention, however, that of fitting a transfer function to experimentally generated plant data has been considered for much longer. The two problems are essentially the same. Reference will be made to a number of early methods for identifying plant data, whilst the more recent modelling techniques and specific methods for system order reduction will be discussed more fully.

Before describing simplification methods, consideration will be given to the type of response and the form of the models which are to be matched.

3.1 Characteristics of transfer functions

It is worthwhile considering the form of transient response, resulting from an input change, on chemical plants, as the models fitted have obviously been influenced by them. Figure 3.1 shows some of the commonly occurring step responses: they are the exponential, s-shaped, single-peak, oscillating, and inverting responses. Inspection of these responses shows that, although generated from high order models, they are similar to those given by second order systems. It is this fact that allows simplification to take place. Classification of the impulse response is usually based on the mean, spread, and skewness of the curve, or its moments. Alternatively systems may be analysed via the frequency response, and classified according to the characteristics of the amplitude ratio and phase-lag.

Because of the fluid flows involved in chemical plants there is often a time lag between a system being forced and responding, and hence model builders have tended to include some degree of time delay.

The transfer function can take many forms, but probably the most general is:

Although this model itself is not very common the same model without the time delay has been widely used. Most processes may be represented by this model if the order of the numeraticr and denominator are carefully chosen. For model simplification however, it is the low order models which are of prime interest. Of particular importance are the (1,2) model

$$
\begin{equation*}
G(s) \quad=\frac{k\left(1+b_{1} s\right)}{1+a_{1} s+a_{2} s^{2}} \tag{3.2}
\end{equation*}
$$

and the $(2,3)$ model

$$
\begin{equation*}
G(s)=\frac{K\left(1+b_{1} s+b_{2} s^{2}\right)}{1+a_{1} s+a_{2} s^{2}+a_{3} s^{3}} \tag{3.3}
\end{equation*}
$$

Models of this type, whilst retaining the same general form can represent many different responses. The type of response obtained may be defined in terns of the relations between the parameters, as shown in Table 3.1 for the (1,2) model. This model may also be written in the form:

$$
\begin{equation*}
G(s)=\frac{K\left(1+\frac{2 \alpha \zeta}{\omega} s\right)}{1+\frac{2 s \zeta}{\omega_{n}}+\frac{s^{2}}{\omega_{n}^{2}}} \tag{3.4}
\end{equation*}
$$

Towill (115) has given the step and frequency responses of this model as functions of α and ζ. He has also studied the $(2,3)$ and $(3,4)$ models.

The transfer function may be further analysed in terms of the poles and zeroes. The general (m, n) model is

$$
G(s)=\frac{K \prod_{j=1}^{\mathrm{J}}\left(s-z_{j}\right)}{\prod_{i=1}^{n}\left(s-p_{i}\right)}
$$

$$
m \leq n \quad(3.5)
$$

The characteristics of low order models in terms of the poles and zeroes have been described by Towill (115). Many other special models have been used and some of the more important are given in Table 3.2.

3.2 Classification of reduction methods

The determination of a low order transfer function which is equivalent to a higher order model involves both choice of model form and calculation of the parameters. Although interesting, many of the early modelling methods are not readily amenable to automatic computation, and are thus not particularly important. All of the satisfactory methods involve a large amount of arithmetic. However, some of the early graphical methods have been

Table 3.1 (1,2) Transfer function parameters

Parameters	System
$b_{1}=0 \quad \begin{aligned} & a_{1}^{2}=4 a_{2} \\ & a_{1}^{2}>4 a_{2} \\ & a_{1}^{2}<4 a_{2} \end{aligned}$	critically damped overdamped underdamped
$b_{1}<0 \quad \begin{aligned} & a_{1}^{2}>4 a_{2} \\ & a_{1}^{2}<4 a_{2} \end{aligned}$	inverting inverting and oscillatory
$\tau_{2}<b_{1}<\tau_{1} \quad 1+a_{1} s+a_{2} s^{2}=\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)$ all coefficients positive and not covered by above. $a_{1} \text { or } a_{2} \text { negative }$	side capacity combination of lead and lag terns unstable

Table 3.2 Simple transfer function models

Model ${ }^{\text {a }}$ -	odely No.	No. of Parameters	Constraints	System	Reference
$\frac{K e^{-\tau_{1} s}}{1+\tau_{2} s}$	0	3	-	-	115
$\frac{k e^{-\tau} j^{s}}{\left(1+\tau_{2} s\right)}\left(1+\tau_{3} s\right)$	1	4	-	\sim	54
$\frac{1 e^{-\tau_{1} s}}{\left(I+\tau_{2}^{s}\right)^{n}}$	2	4	n need not be an integer	-	54
$\frac{K_{e} e^{-\tau_{1} s}}{1+\frac{2}{\omega_{n}} \zeta^{s}+\frac{1}{\omega_{n}^{2}}: s^{2}}$	3	4	$\begin{aligned} & \zeta<1 \\ & \zeta=1 \\ & \zeta>1 \end{aligned}$	underdamped critically damped overdamped	76
$\frac{\mathrm{K}(1+\eta)}{1+\tau_{1} s}-\frac{\eta}{1+\tau_{2} s}$	4	4	$\frac{\tau_{1}}{\tau_{2}}, \frac{1+n}{n}>1$	inverting	60
$\frac{K\left(1+\tau_{1} s\right)}{\left(1+\tau_{2} s\right)\left(1+\tau_{3} s\right)}$	5	5	$\tau_{3}<\tau_{1}<\tau_{2}$	side capacity	8.1
$\frac{\kappa e^{-\tau} 1 s}{\left(1+\frac{2 \zeta s}{\omega_{n}}+\frac{1}{\omega_{n}} 2 s^{2} \gamma\left(1+\tau_{2} s\right)\right.}$	6	4	$\begin{aligned} & \zeta<1 \\ & \zeta=1 \\ & \zeta>1 \end{aligned}$	underdamped critically damped overdamped	58

Table 3.2 ' Cont'd...

Model	Model No.	No. of Parameters	Constraints	System	References
$\frac{K_{e}^{-\tau} 1^{s}\left(1+\tau_{2} s\right)}{\left(1+\tau_{3}{ }^{s}\right)\left(1+\tau_{4}{ }^{\text {b }} \text {) }\right.}$	7	5	$\tau_{4}<\tau_{2}<\tau_{3}$	side capacity	
$\frac{K\left(1-\eta e^{-\tau_{1} s}\right)}{\left(1+\tau_{2} s\right)\left(1+\tau_{3} s\right)}$	8	5	$\eta<1$	distributed parameter system with distributed parameter forcing	58

updated and programs written (38).
Available techniques may be split broadly into two groups:
a) models obtained by fitting parameters to data generalized by the complex model.
b) operations directly involving the complex model.

3.3 SIMPLIFICATION VIA THE TIME RESPONSE

Methods based on fitting simple models to the computed time response of the full model are identical to those used in identifying real processes. The application of these methods is, however, easier in so far as there is no process noise to contend with.

There are a number of quite well known specific techniques for fitting particular predetermined models, such as first or second order systems and equal-stages-in-series systems, to step responses ($46,58,61,96$). Fitting is normally effected by comparing the normalised response with standard sets of responses for different parameters and interpolating for the best fit. Dead time is matched by determining the displacement of the response on the time scale. Similar methods are available for fitting underdamped second order systems to oscillating responses $(46,61)$. The parameters of such systems can be found from the period between adjacent peaks and the peak-height decay ratio.

More general methods of fitting a transfer function to the step responses have been given, including the approximation of the response by a series of ramp functions
and time delays (96), and the derivation from the response of a continued fraction expansion of the fitted transfer function (107). The latter method will be discussed in Section 3.6.

There is a large literature on the fitting of simple models to impulse responses, the main technique being the matching of moments $(18,53,62,67)$. This will be considered later.

Since the digital computer has become widespread the methods described above have tended to be replaced by more numerate methods, usually relying upon a leastsquares fit:to some response. Sinha and co-workers $(2,110)$ have developed two methods for fitting low order models to the step response of the full system. A different criteria was used for each.

3.3.1 Sinha and Pille's method (110)

Sinha and Pille minimize the mean square error between samples of the two step responses taken over a given time interval:

$$
\begin{equation*}
\text { i.e. Minimize } J=\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}(t)-f_{i}^{*}(t)\right)^{2} \tag{3.6}
\end{equation*}
$$

Practically this means setting up a least squares problem, relating input to output data at different sampling points, the solution of which is the parameters of the pulse transfer function. This transform is then converted to the continuous time model. Weighting may be effected by neglecting data points in intervals where
a good fit is not required. The method is essentially the same as that given by Anderson (2) for simplifying state variable models although it has been modified, by using a recursive algorithm, to avoid repeated matrix inversion and the storage of vast amounts of data, thus giving computational advantages. Chidambara (31) has given a different least-squares method.

3.3.2 Sinha and Bereznai's method (102)

The method described above minimizes the error between the two curves at discrete points in time (see Fig. 3.2). This has the effect of producing large errors on the rapidly changing portion of the response and much smaller errors at the critical portions: the peak overshoot and steady state. Resulting from this bias, the large unimportant error is reduced at the expense of small errors at critical regions of the curve.

Sinha and Bereznai have proposed the alternative error criteria of placing an upper and lower bound, α, on the response throughout its length, thus reducing the emphasis on the rapidly changing portion of the transient response, to give a better overall approximation. The error criteria becomes

$$
\begin{align*}
\operatorname{Minimize} J & =\operatorname{Max}_{i=1, N} \cos \theta_{i}\left|f_{i}(t)-f_{i}^{*}(t)\right| \\
\theta_{i} & =\tan ^{-1} \frac{f_{i+1}(t)-f_{i}(t)}{2 S} \tag{3.8}
\end{align*}
$$

where S is the uniform sampling interval. The minimization of the minimax error criteria is performed using

Figure 3.2 Sinha and Berenzat's error criteria
the Hooke and Jeeves pattern search. The start values for the model parameters in the pattern search are predicted by initially fitting a low order model to the response, using the classical methods described earlier. The optimum set of parameters are found and the model order increased by one until the optimum model of the required order is found.

3.4 SIMPLIFICATION VIA THE EREQUENCY RESPONSE.

As with identification in the time domain, many methods have been suggested in the past twenty years for obtaining a plant model from its frequency response. Some of these methods (many are graphical) are adequate, where low order models of a process are required and high accuracy is not necessary, but are not easily adapted to computational algorithms. Strobel (112) has listed the known methods.

Perhaps the best known method for obtaining a transfer function from the frequency response is that of Bode and Truxal (117) where corner frequencies are identified from the Bode plot. Other graphical methods are those of Ausman (8) and Linvill (80). Bode's method has been updated by Cowherd and Cadman (38) who give a computational algorithm for predicting each of the time constants in a lead-lag model iterating from the simple corner frequencies. A similar but more sophisicated approach has been outlined by Towill and Mehdi (116) in which dominant roots are monitored and a simple root substituted for all those neglected.

Dudnikov (45) has giver an explicit method based on the expansion of the polynomial ratio transfer function into a continued fraction and the determination of the ensuing coefficients from a series of charts relating the real and imaginary parts. The method has been described by Nasiin (96) .

Young (123) has shown how the coefficients of a transfer function with only denominator dynamics may be obtained by numerically differentiating the real and imaginary parts of the frequency response until a constant difference is obtained. Applying the same differentiation to the transfer function relates the differences to the coefficients. Process noise often meens that a constant difference will not be obtained: in this case the best approximation to the experimental points is used.

Chen and Philip (26) have proposed a method related to the Bush decomposition of a polynomial. The transfer function is considered to be made up of a series of feedback loops, each loop increasing the function order by one. In turn each loop is made "open circuit" to give a lower order model which is identified from the Bode plot. The method may be programmed and is similar to that given by Chen and Knox (24) for identifying systems from the time response.

A number of schemes have been given which minimize the error between the given fresuency response and that of the fitted model. Amongst the methods are the

Wiener-Lee decomposition (25) and those of Meier and Luenberger (87), Sumner (113), Levy (79), Kardashov (64) and Kalyaev (63).
3.4.1 Meier and Luenberger's method $(81,87)$

Analogies are drawn between the model reduction problem and the modelling of a Wiener filter. The reduced model of order m

$$
\begin{equation*}
G^{*}(s)=\sum_{k=I}^{m} \frac{r_{k}}{s+p_{k}} \tag{3.9}
\end{equation*}
$$

is to be fitted to the frequency response, $G(s)$, by minimizing the response difference:
i.e.

$$
\begin{aligned}
\text { Minimize } J & =\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}(G(s)-G *(s))^{2} d s \\
& =\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty \infty}\left[G(s)-\sum_{k=1}^{m} \frac{r_{k}}{s+p_{k}}\right]^{2} d s \text { (3.11) }
\end{aligned}
$$

Clearly the necessary conditions for solution is that each of the partial derivatives $\frac{\partial J}{\partial r_{k}}, \frac{\partial J}{\partial P_{k}}, k=1, m$ be equal to zero. Performing the above differentiation leads to sets of non-linear equations, the parameters of which are the system poles and residues. These equations can be solved by a number of numerical methods, although a degree of engineering judgement is required to select initial values to ensure rapid convergence.

3.4.2 Levy's method (79)

A further method for the least-squares fit in the complex plane has been given by Levy. However, unlike Meier and Luenberger his formulation leads to a set of linear equations.

Let the frequency dependent polynomial ratio to be fitted to the generated data $G(i \omega)$ be

$$
\begin{equation*}
G *(i \omega)=\frac{B(i \omega)}{A(i \dot{\omega})}=\frac{b_{0}+b_{1}(i \omega)+b_{2}(i \omega)^{2}+}{a_{0}+a_{1}(i \omega)+a_{2}(i \omega)^{2}+\cdots} \tag{3.12}
\end{equation*}
$$

The error in the fit at frequency ω_{k} is

$$
\begin{equation*}
\varepsilon_{k}=G\left(i \omega_{k}\right)-\frac{B\left(i \omega_{k}\right)}{A\left(i \omega_{k}\right)} \tag{3.13}
\end{equation*}
$$

Levy has overcone the problem of minimizing the sum of all ε_{k}^{2} by multiplying Eq. (3.13) by $A\left(i \omega_{k}\right)$ and separating the right-hand side of the resulting equation into real and imaginary parts and squaring the absolute value.

$$
\left|A\left(i \omega_{k}\right) \varepsilon_{k}\right|^{2}=R_{k}^{2}+I_{k}^{2}=f\left(G\left(i \omega_{k}\right), a_{0}, a_{1}, a_{2} \cdots\right.
$$

An error function is now defined based on Eq. (3.14) summed over all r frequencies considered

$$
\begin{equation*}
J=\sum_{k=1}^{r}\left(R_{k}^{2}+I_{k}^{2}\right) \tag{3.15}
\end{equation*}
$$

The method of least-squares is then applied, with J being differentiated with respect to each of the parameters $b_{0}, b_{1}, b_{2}, \ldots a_{1}, a_{2} \ldots$ (a_{1} being set to unity).

The method has been widely used and is capable of fitting some quite unusual frequency responses (23), but several difficulties have been noted in the method. Sanathanan and Koerner (106) found that the procedure described does not give a good fit if the frequency data spans several decades and have proposed instead, an iterative procedure in which Eq. (3.14) is modified by writing

$$
\begin{align*}
\left|\frac{A\left(i \omega_{k}\right)_{p} \varepsilon_{k}}{A\left(i \omega_{k}\right)_{p-1}}\right|^{2} & =\left|\frac{A\left(i \omega_{k}\right)_{p}}{A\left(i \omega_{k}\right)_{p-1}}-\frac{B\left(i \omega_{k}\right)}{A\left(i \omega_{k}\right)_{p}}\right|^{2} \\
& =R_{k}^{2}+I_{k}^{2} \tag{3.16}
\end{align*}
$$

where subscript p refers to the iteration number. The same method as used by Levy is then applied. In the first iteration $A\left(i \omega_{k}\right)_{p-1}$ is set to unity, which corresponds exactly to Levy's approach, but in succeeding iterations it is set equal to the previously calculated value. The authors give an example in which the iteratively computed parameters differ considerably from those obtained by the Levy method. These authors also draw attention to the numerical difficulties which may occur, since the least-squares estimations are often nearly singular.

Sumner (113) has made the same criticism of the Levy method but proposes a technique in which the error is normalised with respect to $|G(i \omega)|$ and the solution found using Davidon's method.

A further modification made to the method by Payne. (102) is to incorporate certain constraints based on additional knowledge of the system, such as steady state gain (represented by coefficient b_{o}) and zero error to a ramp function. He notes that in the unconstrained system there is a tendency for poles to occur in the right hand half of the complex plane and so give unstable responses in systems known to be stable. He reports in fact that in fitting several hundred responses about 30% resulted in unstable systems when no constraints were used, but that the use of constraints reduced this to 1%.

Levy has also pointed out that the formulation of the problem does not permit the fitting of data that might possess a pole at the origin, but gives a solution to the problem.

The Levy technique is originally a technique for fitting rather than simplifyinf models, but in fact rarely fits a model of higher order than strictly necessary, so that it may be regarded as a simplification method also.

3.5 DOMINANT ROOTS RETENTION

Simple methods of reducing the order of transfer functions are often based on discarding the less important time constants. If the high order model, is of the form

$$
\begin{equation*}
G(s)=\frac{\prod_{\substack{j=m}}^{m}\left(1+\tau_{j} s\right)}{m \leq n}\left(1+\tau_{i} s\right) \quad m \leq n \tag{3.17}
\end{equation*}
$$

it may be reduced by retaining only the dominant time constants in the following manner

$$
\begin{equation*}
G^{*}(s)=e^{-\tau s} \frac{\prod_{\substack{j=1 \\ n-q}}^{\substack{i=1}}\left(1+\tau_{i} s\right)}{\left.m-p \leq n-q . \tau_{j} s\right)} \text {. } \tag{3.18}
\end{equation*}
$$

where τ is calculated from the discarded time constants using the Matsubura equivalent time delay method (85).

$$
\begin{equation*}
\tau=\prod_{i=n-q+1}^{n} \tau_{i}-\prod_{j=m-p+1}^{m} \tau_{j} \tag{3.19}
\end{equation*}
$$

Besides retaining the dominant modes the method matches the first moment of the two models and assumes that this adequately takes into account the neglected small time constants.

The method of dominant mode retention has been further developed for a computer solution by Nagarajan (95). The largest and smallest poles of the n order system are computed and if
largest root 2 smallest root $\mathrm{x} K$
the largest root is divided out of the characteristic equation, reducing it to order $n-1$. This procedure is repeated until a system of the desired order is obtained.

The best value of K, known as the range ratio, is reported to be 25 . Once obtained, the parameters of the model of required order are modified to predict an "optimum model". The model is optimum in that the feedback error to a step input is minimised with respect to the feedback error of the full model to the same input. The method as described is rather restricting in that it is suitable for models with only denominator dynamics.

3.6 CONTINUED FRACTION EXPANSION AND TRUNCATION

A powerful method for the reduction of high order transfer functions is that developed by Chen and Shieh $(27,29)$ based on expanding the model into a continued fraction and truncating this to yield a lower order model. The property of the continued fraction is that it converges faster than other series expansions and furthermore contains most of the important system characteristics in the first few terms (74). The method is well. suited to automatic computation. The transfer function

$$
\begin{equation*}
G(s)=\frac{b_{0}+b_{1} s+b_{2} s^{2}+\ldots}{a_{0}+a_{1} s+a_{2} s^{2}+\cdots} \tag{3.20}
\end{equation*}
$$

may be expanded into the continued fraction

where the coefficients h_{i} may be derived by application of the Routh algorithm (118). Let Eq. (3.20) be written as

$$
\begin{equation*}
G(s)=\frac{A_{21}+A_{22} s+A_{2} 3 \frac{s^{2}+}{A_{11}+A_{12} s+A_{13} s^{2}+\cdots} \cdot(\cdots)}{} \tag{3.22}
\end{equation*}
$$

and the following Routh array formed

where $A_{j, k}=A_{j-2, k+1}-h_{j-2} \cdot A_{j-1, k+1}$
and from the array the coefficients are formed such that:

$$
\begin{equation*}
h_{i}=\frac{A_{i, 1}}{A_{i+1,1}} \tag{3.24}
\end{equation*}
$$

Chen and Shieh have also shown how h_{i} may be derived from long division. Shieh, Chen and Huans (107) have shown how the coefficients of the continued fraction can be derived directly from a time or frequency response. The methods are basically the same as those of Chen and Philip (26) and Chen and Knox (24) discussed earlier.

Once Eq. (3.21) has been formed simplification is effected by prematurely truncating the fraction (after $h_{2 m}$ to obtain m order system), and from this reforming the reduced order transfer function. This may be done
by applying the Routh algorithm in reverse (28) or by other methods (30) .

Failure of this method occurs if at any time in the process coefficients $A_{i, 1}$ and $A_{i, j}$ become equal to elements below them in the $i+1$ row (in the simplest case $A_{11}=A_{21}$ and $A_{12}=A_{22}$). Neale has shown, however, that this can be overcome by changing the form of Eq. (2.21) (97).

The technique has the same drawback as Levy's method in that it is possible to produce a reduced model which has an unstable response even though the full model is stable. Chuang (35) has proposed that in this case a different form of continued fraction should be used. His method also gives an improved initial response.

Comparison of the poles of the original and reduced models shows that it is only the dominant roots, slightly modified, which are retained. *

The continued fraction simplification has also been explored by Gaisyenyuk (51) although the equations given are not general and refer only to a 4 th order model. Different methods have been used for determining the continued fraction coefficients. Gaisyenyuk has used the method of Viskovatov, given by Khavonskii (66). However, Akin (1) has demonstrated the similarities between the two approaches.

3.7 SIMPLIFICATION VIA THE MOMENTS

A computationally more econonic method is to identify a set of functions which are characteristic of the full
model and which can be calculated directly, without computation of the time or frequency responses, and to match these functions to the simple transfer function by a suitable choice of parameters in the latter. The principal method of this type is the matching of the moments of the impulse response.

There is quite a large literature on the fitting of simple models to experimentally determined moments (18, 53, 62, 67). This is straightforward in principle but tailing and noise may cause difficulties in fitting. The determination of low order from high order transfer functions by matching the lower moments of the impulse response was first suggested by Paynter (103).

The unnormalised moments M_{i}^{2} of the impulse response, $f(t)$, taken about the origin are:

$$
\begin{equation*}
M!_{i}=\int_{0}^{\infty} t^{i} f(t) d t \quad i \geq 0 \tag{3.25}
\end{equation*}
$$

The Laplace transform of the impulse response, which is the transfer function, is given by

$$
\begin{equation*}
G(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{3.26}
\end{equation*}
$$

Expanding the exponential term in Eq. (3.26) and applying the definition of moments, Eq. (3.25) provides a relationship between the transfer function and the moments

$$
G(s)=M!-M!i s+\frac{M: 2 s^{2}}{2!}-\frac{M^{\prime}}{3!} 3 s^{3}+\ldots \quad \text { (3.27) }
$$

It is sometimes more convenient to use cumulants rather than moments. The relation between the transfer
function and the cumulants, C_{i}, is:

$$
\ln (G(s))=\ln (K)-C_{1} s+\underline{C}_{2} \frac{s^{2}}{2!}-\frac{C_{3} s^{3}}{3!}+\ldots \quad(3.28)
$$

This convenience derives from the fact that taking the logarithm of a lead.lag transfer function allows it to be expressed as a series rather than a ratio of terms.

The method used by Paynter is to expand both the full and simple transfer functions as polynomials and to match the cumulants using Eq. (3.28). A similar method has been given'by Hsia (59). An alternative approach used by Gibilaro and Lees (54) is to differentiate the transfer function with respect to s rather than expand it, utilizing the relation

$$
\begin{equation*}
\left[\frac{d^{i} G(s)}{d s^{i}}\right]_{s=0}=(-1)^{i_{M}^{\prime}}{ }_{i}=(-1)^{i} \int_{0}^{\infty} t^{i_{f}} f(t) d t \tag{3.29}
\end{equation*}
$$

This equation is derived directly from Eqs. (3.25 and 3.26) and gives a relation for the individual moments. Numerical values of the moments are calculated from the full model and are used to compute the values of the parameters in the simple model.

The method, as described, allows the reduction of a transfer function to a lower order, however it is often required to fit the low order model to one state in a state variable model. Lees $(75,76)$ has shown that the moments of the full model. may be calculated directly from the state variable model. The method has been outlined in section 2.4. Direct computation of the moments by this means makes the moments method a powerful technique of model simplification.

Lees (77) has further extended the method to oscillatory and inverting systems, using models 3 and 4 of Table 3.2, and has given an algorithm for automatic selection of the model based on the fact that oscillatory systems have some negative moments while inverting systems have a normalised initial response which is negative.

The use of cumulants rather than moments has been investigated by Kropholler (68). The relationship for individual cumulants is:

$$
\begin{equation*}
\left[\frac{d^{i} \ln G(s)}{d s^{i}}\right]_{s=0}=(-1)^{i} C_{i} \tag{3.30}
\end{equation*}
$$

This is derived from Eq. (3.28) by differentiation. Kropholler has pointed out that in dealing with systems such as lead-lag models the use of cumulants has the advantage that it is possible to associate a part of each cumulant with numerator and a part with the denominator. He shows that cumulants may be obtained from the state variable model, not only by using Eq. (3.30) and the standard relations between moments and cumulants (65) but also from

$$
\begin{equation*}
c_{i}=(-1)^{i}(i-1)!:\left(\operatorname{Tr}\left(\underline{A}^{-i}\right)-\operatorname{Tr}\left(\underline{A}_{j}^{\dagger-i}\right)\right) \tag{3.31}
\end{equation*}
$$

where $\operatorname{Tr}(\underline{A})$ is the trace of the plant matrix and \underline{A}_{j}^{+}is as defined by Eq. (2.29).

If the equations relating the moments, or cumulants, to the parameters of the simple model are implicit or if a larger number of moments are matched than there are parameters, the latter cannot be calculated directly and
the use of some form of minimization routine must be used. However, this usually presents little difficulty.

3.8 ILLUSTRATIVE EXAMPLE

The application of four of the main methods described is illustrated by the following example.

The simple transfer function

$$
\begin{equation*}
G(s)=\frac{b}{a_{0}+b_{1} s+a_{2} s^{2}} \tag{3.32}
\end{equation*}
$$

is to be fitted to x_{1} in the following seventh order model

$$
\begin{equation*}
\underline{\underline{x}}=\underline{A x}+B \underline{u} \tag{3.33}
\end{equation*}
$$

where
$A=\left[\begin{array}{ccccccc}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ -281350 & -3310975-2814273 & -853703 & -70342 & -4097 & -83: 64\end{array}\right]$
$\underline{B}=\quad\left(\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 375000 & -31333750\end{array}\right)^{T}$
This model in its transfer function form has been considered by Sinha (109, 110). *

The values of the parameters in Eq. (3.32) obtained by various methods are shown in Table 3.3. The programs for each method and output from each computer solution are given in Appendix 1. The parameters given for the two step response fittins methods of Sinha are those quoted by that author $(109,110)$. The parameters for

Table 3.3 Parameters of modified (1,2) model in
illustrative example

Method	b_{0}	b_{1}	a_{0}	a_{1}	a_{2}
Step response fitting (Sinh and File)	0.3302	0	2.8886	2.0954	1
Step response fitting (Sinh and Bereznai)	0.01329	0.1536	0.1196	1.3456	1
Frequency response fitting	0.562087	0	4.83695	3.6764	1
(Levy, modified)					
Continued fraction					
expansion					
(Chen and Shied)					

Method	Steady Stake	System Poles
Sinter + Rille	.114311	$-1.4443 \pm i .0969456$
Santa + Berezmai	.11120	$-.0956869-1.24991$
Levy	.116207	$-1.8382 \pm i 1.20746$
Chen + Shieh	.11112	$-.0944899-11111$

the frequency response fitting were calculated by the method of Levy as modified by Sanathanan and Koerner. The parameters were also calculated by Chen and Shieh's continued fraction expansion and Lees' moments matching of the impulse response.

The step responses given in Table 3.3 are shown in Figure 3.3. The heavy solid line represents the response of the full model and the other lines the responses of the simplified models. The simple models given by the continued fraction and moments matching methods are identical (this will be discussed in Chapter 4). The step and frequency response fitting methods do not match the steady state exactly, but the errors are very small.

3.9 CHOICE OF MODEL AND CRITERIA OF FIT

Before applying any of the model simplification methods described consideration must be given to the form of the simple model required. Some techniques, such as those of Levy and Chen and Shieh, use general polynomial functions. The form of the model does not need to be specified in advance but the degree of reduction does. Other methods such as moments matching, do require prior choice of models, though a flexible set of models may be used with an algorithm to effect selection.

Some of the methods of simplification described involve the use of quite explicit matching criteria. Thus the step and frequency response matching methods minimize the sum of the errors squared, while the moments
matching methods match exactly, wherever possible, the lower moments of the impulse response. The continued fraction method, by contrast, is not based on any such criteria, although as will be shown in Chapter 4 it is equivalent to matching the low order model moments.

It is usually desirable that the steady state gain be matched and this presents little difficulty. The other main criteria are that the time or frequency response difference be minimized. There is no renerally used method of checking the goodness of fit.

It is doubtful if much more can be said without knowing the use to which the model is to be put.
3.10 NOMENCLATURE

A plant matrix
$A_{i j}$ coefficient in Chen's Routh array
a_{i} denominator coefficient
b_{i} numerator coefficient
$C_{i} \quad$ Cumulant
$f(t)$ time response
$G(s)$ transfer function
$G(i \omega)$ frequency response
h_{i} continued fraction coefficient
J least-squares error
K transfer function gain, or range ratio
M'i ith unnormalised moment about the origin
m numerator order
N number of samples in Sinha's method
n denominator order
$p_{i} \quad$ pole
r number of frequencies fitted in Levy's method
S sample interval in Sinha's method
s Laplace operator
t time
$z_{i} \quad$ zero
Greek :
α transfer function coefficient or as defined by Fig. 3.2
ε error
ζ transfer function coefficient
θ_{i} defined by Eq. (3.8)
τ dead time
τ_{i} transfer function time constant
ω frequency
$\omega_{n} \quad$ transfer function natural frequency

Superscript:

* reduced order model

T transposed matrix

CHAPTER 4
 Relationships between the continued fraction
 truncation and moments matching methods of
 model reduction

4. RELATIONSHIPS BETWEEN THE CONTINUED FRACTION

 TRUNCATION AND MOMENTS MATCHING METHODS OF MODEL REDUCTION (13)The reduction of a seventh order transfer function to a second order model was considered as an illustrative example in Section 3.8. The reduced order models predicted by the method of moments and continued fraction truncation were the same. Although apparently satisfying completely different criteria and following vastly different computational procedures three of the four parameters agreed in all six computed digits, whilst the remaining coefficient apreed to five significant figures. This unexpected agreement would suggest a previously unforseen relationship between the two methods. This relation will be shown, in three different ways, and a generalization made which will be demonstrated numerically.

4.1 RELATION 1

4.1.1 A matrix expression for the inversion of continued fractions

A number of methods have been given for the inversion of a continued fraction $(27,28,29,30)$, i.e. deriving the transfer function

$$
\begin{equation*}
G *(s)=\frac{b_{0}+b_{1} s+b_{2} s^{2}+\cdots}{a_{0}+a_{1} s+a_{2} s^{2}+\cdots} \tag{4.1}
\end{equation*}
$$

from the known continued fraction coefficients, h_{i}. A matrix expression has been given by Chen and Shieh (28).

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots \ldots \ldots \\
0 & h_{2} & 0 & 0 & \\
0 & 1 & h_{2} h_{3} & 0 & \\
0 & 0 & h_{2}+h_{4} & h_{2} h_{3} h_{4} & \\
\vdots & & & & &
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
\vdots
\end{array}\right]=
$$

$\left[\begin{array}{ccccc}h_{1} & 0 & 0 & 0 & \cdots \cdots \cdots \\ 1 & h_{1} h_{2} & 0 & 0 & \\ 0 & h_{1}+h_{3} & h_{1} h_{2} h_{3} & 0 \\ 0 & 1 & \left(h_{1} h_{2}+h_{1} h_{4}+h_{3} h_{4}\right) & h_{1} h_{2} h_{3} h_{4} \\ \vdots & & & & \end{array}\right]\left[\begin{array}{c}b_{0} \\ b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ \vdots\end{array}\right]$

For the simplified transfer function considered

$$
\begin{equation*}
G^{*}(s)=\frac{b_{0}+b_{1} s}{a_{0}+a_{1} s+a_{2} s^{2}} \tag{4.3}
\end{equation*}
$$

and noting that

$$
\begin{aligned}
b_{2}, b_{3}, \cdots \cdots & =0 \\
a_{3}, a_{4}, \ldots \ldots \ldots & =0 \\
a_{2} & =1
\end{aligned}
$$

Eq. (4.2) may be written and partitioned as follows:

$$
\left[\begin{array}{ccc:c}
1 & 0 & 0 & 0 \\
0 & h_{2} & 0 & 0 \\
\hdashline 0 & 0 & h_{2} h_{3} & 0 \\
0 & 0 & h_{2}+h_{4} & h_{2} h_{3} h_{4}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\hdashline 1 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc:c}
h_{1} & 0 & 0 & 0 \\
1 & h_{1} h_{2} & 0 & 0 \\
\hdashline 0 & h_{1}+h_{3} & h_{1} h_{2} h_{3} & 0 \\
0 & 1 & \left(h_{1} h_{2}+h_{1} h_{4}+h_{3} h_{4}\right) & h_{1} h_{2} h_{3} h_{4}
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\hdashline 0 \\
0
\end{array}\right] \text { (4.4) }
$$

or

$$
\left[\begin{array}{c:c}
\underline{Q}_{12} & \underline{0} \tag{4.5}\\
\hdashline \underline{Q}_{21} & \underline{Q}_{22}
\end{array}\right]-\left[\begin{array}{c}
\underline{a} \\
\hdashline \underline{e}
\end{array}\right]=\left[\begin{array}{l:c}
\underline{R}_{11} & \underline{0} \\
\hdashline \underline{\underline{R}}_{21} & \underline{R}_{22}
\end{array}\right]\left[\begin{array}{c}
\underline{D} \\
\hdashline \underline{0}
\end{array}\right]
$$

4.1.2 Moments of the general polynomial transfer

function

$$
\begin{align*}
& \text { Consider the transfer function (where } a_{n}=1 \text {) } \\
& \qquad \begin{aligned}
G(s) & =\frac{b_{0}+b_{1} s+b_{2} s^{2}+\cdots \cdots+b_{n-1} s^{n-1}}{a_{0}+a_{1} s+a_{2} s^{2}+\cdots \cdots+s^{n}} \\
= & \frac{\sum_{j=0}^{n-1} b_{j} s^{j}}{\sum_{i=0}^{n} a_{i}:^{i}}=\frac{B(s)}{A(s)}
\end{aligned}
\end{align*}
$$

Let Eq. (4.7) be written

$$
\begin{gather*}
G(s) A(s)=B(s) \tag{4.8}\\
-75-
\end{gather*}
$$

and define

$$
\begin{equation*}
A_{p}(s)=\frac{d^{p} A(s)}{d s^{P}} \tag{4.9a}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{p}(0)=\left[A_{p}(s)\right] s=0 \tag{4.9b}
\end{equation*}
$$

and similarly for $B(s)$ and $G(s)$
It may be shown, by the weibnitz theoremisthat the pth differential of Eq. (4.8) is

$$
\begin{align*}
& p: \sum_{k=0}^{p} \frac{G_{k}(s) A_{p}}{k!(p-k)!}= B_{p}(s) \tag{4.10}\\
& p=0,1,2 \ldots
\end{align*}
$$

Letting $s=0$ in Eq.(4.10), in accordance with the moments definition, gives a similar expression for the moments of Eq. (4.8).

$$
\begin{aligned}
\mathrm{p}: \sum_{k=0}^{p} \frac{(-1)^{k} M^{!}}{k!(p-k)!}-\frac{A F}{p}-(0)! & =B_{p}(0) \\
p & =0,1,2 \ldots
\end{aligned}
$$

(4.11)
where M_{k}^{\prime} is the k th unnormalised moment about the origin. However, expressions may also be written for the general differentials of the numerator and denominator polynomials, $B(s)$ and $A(s)$.

$$
\begin{array}{ll}
B_{p}(0)=p!b_{p} & (4.12 a) \\
A_{p}-k(0)=(p-k)!a_{p-k} & (4.12 b)
\end{array}
$$

Substituting Eqs. (4.12) into Eq. (4.11) leads to

$$
\sum_{k=0}^{p} \frac{(-1)^{k} M^{\prime} k a_{p}^{-} \cdot k}{k!}-b_{p}=0 \quad p=0,1,2 \ldots(4 \cdot 13)
$$

which relates the transfer function coefficients to the moments, or vice versa, and if the moments are known allows the model parameters to be computed.

Eq. (4.13) is linear and is best expressed in matrix notation. For the second order model considered it becomes
$\left[\begin{array}{cc:cc}M^{\prime}{ }_{0} / 0! & 0 & -1 & 0 \\ -M^{\prime}{ }_{1} / 1! & M^{\prime}{ }_{0} / 0! & 0 & -1 \\ \hdashline M^{\prime}{ }_{2} / 2! & -M^{\prime}{ }_{1} / 1! & 0 & 0 \\ -M^{\prime}{ }_{3} / 3! & M^{\prime}{ }_{2} / 2! & 0 & 0\end{array}\right]\left[\begin{array}{c}a_{0} \\ a_{1} \\ \hdashline b_{0} \\ b_{1}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \hdashline-M_{0} / 0! \\ M^{\prime}{ }_{1} / 1!\end{array}\right]$ (4.14)

The right hand side of Eq. (4.14) is derived from the coefficient a_{2}, which is unity in the second order transfer function, Eq. (4.3). The partitioning of the above equation should be noted.

4.1.3 A comparison of the two solutions

Eq. (4.5), the matrix formulation of the continued fraction inversion, may be rearranged to a form similar to the partitioned Eq. (4.14).

Eqs. (4.14) and (4.15) are now identical in format. From Eqs. (4.4) and (4.5) it is possible, after much tedrous algebra, to write Eq. (4.15) in terms of the original coefficients, h_{i}.

Eq. (4.14) and (4.16) are identical and allow the following expressions to be given:

$$
\begin{array}{ll}
M_{0}^{\prime}=\frac{1}{h_{1}} & \text { (4.17a) } \\
M_{1}^{\prime}=\frac{1}{h_{1}{ }^{2} h_{2}} & \text { (4.17b) } \\
M_{2}^{\prime}=\frac{2\left(h_{1}+h_{3}\right)}{h_{1}{ }^{3} h_{2}{ }^{2} h_{3}} & \text { (4.17c } \\
M_{3}^{\prime}=\frac{6\left(h_{1}{ }^{2} h_{2}+h_{1}{ }^{2} h_{4}+2 h_{1} h_{3} h_{4}+h_{3}{ }^{2} h_{4}\right)}{h_{1}{ }^{4} h_{2}{ }^{3} h_{3}{ }^{2} h_{4}} & \text { (4.17d) }
\end{array}
$$

4.2 RELATION 2

The relations between the moments and h coefficients, Eq. (4.17), may be arrived at more directly but with a loss of clarity when trying to make extensions to a generalized case.

The moments of the second order model Eq. (4.3) may be written out from Eq. (4.13). They are:

$$
\begin{array}{ll}
M_{0}^{\prime}=\frac{\underline{b}_{0}}{a_{0}} & \text { (4.18a) } \\
M_{1}^{\prime}=\frac{a_{1} M_{0}^{\prime}-b_{1}}{a_{0}} & (4.78 b) \\
M_{2}^{\prime}=\frac{2\left(a_{1} \frac{M^{\prime} 1-M_{1}^{\prime}}{a_{0}}\right.}{} \quad(4.18 c) \\
M_{3}^{\prime}=\frac{3 a_{1} M_{1}^{\prime}-6 M^{\prime}}{a_{0}} I & (4.18 d)
\end{array}
$$

Chen (27) has shown how Eq. (4.3) may be written in terms of the h coefficients.

$$
\begin{equation*}
G *(s)=\frac{h_{2} h_{3} h_{4}+\left(h_{2}+h_{4}\right) s}{h_{1} h_{2} h_{3} h_{4}+\left(h_{1} h_{2}+h_{1} h_{4}+h_{3} h_{4}\right) s+s^{2}} \tag{4.19}
\end{equation*}
$$

thus

$$
\begin{array}{ll}
b_{0}=h_{2} h_{3} h_{4} & (4.20 a) \\
b_{1}=h_{2}+h_{4} & (4.20 b) \\
a_{0}=h_{1} h_{2} h_{3} h_{4} & (4.20 c) \\
a_{1}=h_{1} h_{2}+h_{1} h_{4}+h_{3} h_{4} & (4.20 d)
\end{array}
$$

Substitution of Eqs. (4.20) and (4.18) leads directly to the previously shown relationshins, Eq. (4.17).

4.3 RELATION_3

The second order transfer function, Eq. (4.3) may be written as an infinite series in terms of its moments

$$
\begin{equation*}
G *(s)=\frac{M^{\prime} 0}{0!}-\frac{M^{\prime} 1 s}{I!}+\frac{M^{1} 2 s^{2}}{2!}-\frac{M^{\prime} 3 s^{3}}{3!}+\ldots \tag{4.21}
\end{equation*}
$$

This may be considered to be a numerator, having a denominator of unity, and may, using the expressions given in Chapter 3 be written out into Chen's form of the Routh Array, (because Eq. (4.21) is an infinite series the Routh Array also has an infinjte dimension, however, sufficient terms to calculate up to h_{4} only are shown here)

$$
\begin{aligned}
& \begin{array}{llll}
1 & 0 & 0 & 0
\end{array} \\
& M_{0} \quad-M_{1} \quad M_{2} / 2!\quad-M_{3}^{\prime} / 3! \\
& \frac{I}{M_{0}^{\prime}}\left(M_{1}^{\prime}\right) \quad \frac{-1}{M_{0}^{\prime}} \frac{M^{\prime}}{2!} 2 \quad \frac{I}{M_{0}^{\prime}} \frac{M^{\prime}}{3!} \\
& -M^{\prime} I^{+}+\frac{M^{\prime}}{M^{\prime}} 0 \frac{M^{\prime}}{2!} 2 \\
& \frac{-\left(1+M^{1} 1\right) M^{\prime} 2}{M_{0}^{1}{ }^{2!}}+\frac{M^{1}}{3!} 3
\end{aligned}
$$

Table 4.1 Routh array for Eg. (4.21)

Applying the definition for the coefficients

$$
\begin{equation*}
h_{i}=\frac{A_{i, 1}}{A_{i+1,1}} \tag{4.22}
\end{equation*}
$$

leads once again to expressions relating the moments to h_{i}, this time however, in terms of the moments.

$$
\begin{align*}
& h_{1}=\frac{1}{M_{0}^{\prime}} \tag{4.23a}\\
& h_{2}=\frac{M^{\prime} o^{2}}{M_{1}^{\prime}} \tag{4.23b}\\
& h_{3}=\frac{M_{1}^{\prime} I^{2}}{-M^{\prime} O^{\prime} I^{2}+\frac{M^{\prime}}{-o_{1}^{2} I^{\prime}} 2} \tag{4.23c}
\end{align*}
$$

$$
\begin{equation*}
h_{4}=\frac{-M_{0}^{\prime} M_{1} 1^{2}+M_{0}^{\prime}{ }^{2} \frac{M^{\prime}}{2!}}{\left.-M_{1}^{\prime} \frac{\left(I+M^{\prime}\right.}{2!} 1\right)^{\prime}{ }_{2}+\frac{M^{\prime}}{0} \frac{M^{\prime}}{3!} 1 M^{\prime} 3} \tag{4.23d}
\end{equation*}
$$

4.4 A GENERALIZATION OF THE RELATION

It was shown numerically in section 3.8 that the two methods of model simplification gave the same results when reducing a seventh order model to second order, and it has been demonstrated above why this must be so. Thus it has been shown that the continued fraction method, besides satisfying its criteria of retaining the dominant terms of an expansion, also has the physical significance of matching exactly the lower monents of the impulse response of the full and reduced models. The question arises, however, is this a special case or will all order reductions give identical results?

The answer to the above question, as far as is known, is that it is not a special case and is true for all orders. It has however, been extremely difficult to prove this rigorously. The second order case has been demonstrated for simplicity but much of the tedious algebra has been omitted. The third order case, which has been analysed and proven, is considerably more complex. It has therefore been impossible to set up an inductive proof.

From the symmetry of the problem and the systematic nature of the equations (e.g. Eqs. (4.7), (4.14), and the

Routh Array), and from many manipulations of them it is apparent that such explicit relations will exist for all orders of reduction and the two methods, neglecting numerical errors, will always predict the same reduced model.

The generalization has been borne out by extending the illustrative problem of Chapter 3 and reducing it to all possible lower orders. The results are given in Table 4.2. The same model was predicted for all orders examined, including fourth order which is an unstable solution. In this investigation it was also shown the moments method as formulated in Eq. (4. i/4) is numerically unsound and leads to singular equations for higher order problems. This led Kropholler to propose an alternative moments formulation, upon which the results of Table 4.2 are based. This solution has been given by Bosley et al. (13).

Denominator								
Model Order	s^{7}	s^{6}	s^{5}	s^{4}	s^{3}	s^{2}	s^{1}	Const.
7	1	83.64	4097	70342	853703	2814270	3310875	281250
6	-	1	64.734	1189.94	15032.5	49951	58971.4	50.0 .81
5	-	-	1	19.4511	306.276	1066.49	1289.69	109.787
4	-	-	-	1	-12.9594	-65.4426	-92.0323	-7.9178
3	-	-	-	-	1	4.08491	5.28328	.451958
2	-	-	-	-	-	1	1.14643	.0993976

1	Numerator Model Order	s^{6}	s^{5}	s^{4}	s^{3}	s^{2}	s^{1}	Const.
1	7	0	0	0	0	0	375000	31250
	6	-	-. 000715	. 059776	-2.0716	-21.3603	6579.31	556.757
	5	-	-	. 000155	. 0358564	-3.63307	146.08	12.1986
	4	-	-	-	-. 078537	1.56148	-10.4624	-. 879755
	3	-	-	-	-	-0495536	. 598481	. 0502175
	2	-	-	-	-	-	. 129899	. 0110442

[^0]Table 4.2 Coefficients for the reduction of the seventh order model by the continued fractions and moments methods

4.5 NOMENCLATURE

Aij element in Chen's Routh Array
A_{p} (s) defined by Eq. (4.9)
a defined by Eqs. (4.4) and (4.5)
$a_{i} \quad$ transfer function coefficient
b defined by Eqs. (4.4) and (4.5)
b_{i} transfer function coefficient
e defined by Eqs. (4.4) and (4.5)
$G(s)$ transfer function
$h_{i} \quad$ continued fraction coefficient
I identity matrix
M. ${ }_{k} \quad k t h$ unnormalized moment about the origin
n system order
$Q_{i j}$ defined by Eqs. (4.4) and (4.5)
R_{ij} defined by Eqs. (4.4) and (4.5)
s Laplace operator

Superscript:

* reduced order system.

The simplification of state variable models

5. THE SIMPLIFICATION OF STATE VARIABLE MODELS

Compared with the classiantheory of control the state representation of processes is a relatively recent development and has only been made possible by the availability of large fast computers. Consequently there has been proportionally less work on the order reduction of state models than on transfer functions.

Two completely different methods appeared about the same time: one based on the modal analysis of the system and the other on a least-squares fit in the time domain. Despite other methods being developed these approaches are still the backbone of the work and will be developed in some depth. Other methods, some resulting from extensions of these methods, will be discussed less fully. The classification given in Chapter 3 for methods of reduction and system responses applies equally to state variable models. An illustrative example will be given.

5.1 RETENTION OF THE DOMINANT MODES

A number of methods of reducing the order of state variable models by retention of the dominant modes have been proposed. They all, however, follow basically the same analysis and most of the theory was teveloped by a group at Cambridge led by Professor J.F. Coales The workers in this group were Mann, Marshall, Nicholson and Davison. The work of Davison is the best known (39). Following the publication of Davison's work some lengthy correspondence appeared between Chidambara
and Davison $(32,33,34,42)$ in which little was added to the work (other than confusion).

5.1.1 Problem statement 1

The nth order system

$$
\begin{equation*}
\dot{\underline{x}}=A \underline{x}+B \underline{u} \tag{5.1}
\end{equation*}
$$

is to be reduced to the mth order system

$$
\begin{equation*}
\underline{\dot{x}}^{*}=\underline{A^{*} x^{*}}+\underline{B * u} \tag{5.2}
\end{equation*}
$$

Eq. (5.1) can always be written in the form

$$
\begin{equation*}
\underline{\dot{x}}=\underline{U} \underline{\Lambda} \underline{U}^{-1} \underline{x}+\underline{B u} \tag{5.3}
\end{equation*}
$$

where Λ is the Jordan canonical form and \underline{U} is the eigenvector matrix. In the following analysis it will be assumed that all eigenvalues are real and distinct and lie in the left hand half of the complex plane, hence Λ is diagonal, but much of the analysis can be extended to the general canonical form.
Λ can always be paritioned

$$
\Lambda=\left[\begin{array}{ll}
\Lambda_{1} & \tag{5.4}\\
& \Lambda_{2}
\end{array}\right]
$$

where Λ_{1} contains the m dominant eigenvalues (i.e. those with the smallest modulus, or largest time constant), and $\underline{\Lambda}_{2}$ the remainder.

5.1.2 Ordering of the system eigenvalues

Of course in general Λ in Eq. (5.4) does not possess the system eigenvalues in ascending modulus order. Eqs. (5.1) and (5.3) can always be put into this form by
applying permutation matrices. Let Λ^{\prime} contain the n eigenvalues in random order and Λ the same eigenvalues in modulus ascending order, and let P be the permutation matrix that achieves that ordering.

$$
\begin{aligned}
& \underline{\dot{x}}=\underline{U} \underline{\Lambda}^{\prime} \underline{U}^{-1} \underline{x}+\underline{B u} \\
& \underline{P \dot{x}}=\underline{P U P}^{-1} \underline{P \Lambda}^{\prime} \underline{P}^{-1} \underline{P U}^{-1} \underline{P}^{-1} \underline{P x}+P B u(5.6)
\end{aligned}
$$

Let $\underline{y}=\underline{P x}$ and $\underline{\Lambda}=\underline{P \Lambda^{\prime} P^{-1}}$
therefore

$$
\dot{\underline{L}}=\left(\mathrm{PUP}^{-1}\right) \underline{\Lambda}\left(\underline{P U}^{-1} \underline{\mathrm{P}}^{-1}\right) \underline{y}+\underline{\mathrm{PBu}}
$$

It may be noted that the states in \underline{x} have also been ordered. Hereafter it will be assumed that all systems have been graded into the form of Eq. (5.7).
5.1.3. Problem statement 2

Eq. (5.) $\quad \underline{\dot{x}}=\underline{A x}+\underline{B u}$
by letting

$$
\begin{equation*}
\underline{x}=\underline{U z} \text { and } \underline{V U}=I \tag{5.9}
\end{equation*}
$$

may alternately be written

$$
\begin{align*}
& \dot{\dot{x}}=\underline{U \Lambda V \underline{x}}+\underline{B u} \tag{5.10}\\
& \underline{\dot{z}}=\underline{\Delta z}+\underline{V B u} \tag{5.11}
\end{align*}
$$

Let Eqs. (5.8) - (5.11) be partitioned in accordance with Λ, Eq. (5.4) thus

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{5.12}\\
\dot{\underline{x}}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\underline{A}_{1} & \underline{A}_{2} \\
\underline{A}_{3} & \underline{A}_{4}
\end{array}\right]\left[\begin{array}{l}
\underline{x}_{1} \\
\underline{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
\underline{B}_{1} \\
\underline{B}_{2}
\end{array}\right] \underline{u}
$$

$$
\left[\begin{array}{l}
\dot{\underline{x}}_{1} \\
\dot{\underline{x}}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\underline{u}_{1} & \underline{U}_{2} \\
\underline{U}_{3} & \underline{U}_{4}
\end{array}\right]\left[\begin{array}{ll}
\underline{\Lambda}_{1} & \\
& \underline{\Lambda}_{2}
\end{array}\right]\left[\begin{array}{ll}
\underline{v}_{1} & \underline{v}_{2} \\
\underline{v}_{3} & \underline{v}_{4}
\end{array}\right]\left[\begin{array}{l}
\underline{x}_{1} \\
\underline{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
\underline{B}_{1} \\
\underline{B}_{2}
\end{array}\right] \text { (5.13) }
$$

$$
\left[\begin{array}{l}
\dot{\underline{z}}_{1} \tag{5.14}\\
\dot{\underline{z}}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\underline{\Lambda}_{1} & \\
& \underline{\Lambda}_{2}
\end{array}\right]\left[\begin{array}{l}
\underline{z}_{1} \\
\underline{z}_{2}
\end{array}\right]+\left[\begin{array}{ll}
\underline{v}_{1} & \underline{-}_{2} \\
\underline{v}_{3} & \underline{v}_{4}
\end{array}\right]:\left[\begin{array}{l}
\underline{\underline{B}}_{1} \\
\underline{B}_{2}
\end{array}\right] \underline{\underline{u}}
$$

$\left[\begin{array}{l}\underline{x}_{1} \\ \underline{x}_{2}\end{array}\right]=\left[\begin{array}{ll}\underline{U}_{1} & \underline{U}_{2} \\ \underline{U}_{3} & \underline{U}_{4}\end{array}\right]\left[\begin{array}{l}\underline{z}_{1} \\ \underline{\underline{z}}_{2}\end{array}\right]$

$$
\left[\begin{array}{ll}
\underline{v}_{1} & \underline{v}_{2} \tag{5.16}\\
\underline{v}_{3} & \underline{v}_{4}
\end{array}\right]\left[\begin{array}{ll}
\underline{U}_{1} & \underline{U}_{2} \\
\underline{U}_{3} & \underline{U}_{4}
\end{array}\right]=\left[\begin{array}{ll}
\underline{I} & 0 \\
\underline{0} & \underline{I}
\end{array}\right]
$$

5.1.4 The problem solution

The impulse response for the full system may be written out from Eq. (5.13) as

$$
\left[\begin{array}{l}
\underline{x}_{1} \\
\underline{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\underline{U}_{1} & \underline{U}_{2} \\
\underline{U}_{3} & \underline{U}_{4}
\end{array}\right]\left[\begin{array}{ll}
e^{\Lambda_{1} t} & \\
& e_{2} t
\end{array}\right]\left[\begin{array}{l}
\underline{G}_{1} \\
\\
\\
\underline{G}_{2}
\end{array}\right] \underline{u}(5.17)
$$

where

$$
\left[\begin{array}{l}
\underline{G}_{1} \tag{5.18}\\
\underline{G}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\underline{v}_{1} & \underline{v}_{2} \\
\underline{v}_{3} & \underline{v}_{4}
\end{array}\right]\left[\begin{array}{l}
\underline{\mathrm{B}}_{1} \\
\underline{\mathrm{~B}}_{2}
\end{array}\right]
$$

and in particular for x_{1} as

$$
\begin{equation*}
\underline{x}_{1}=\underline{U}_{1} e^{\Lambda_{1} t} \underline{G}_{1} \underline{u}+\underline{U}_{2} e^{\underline{\Lambda}_{2} t} \underline{G}_{2} \underline{u} \tag{5.19}
\end{equation*}
$$

Eq. (5.19) may be integrated to give the step response.

$$
\underline{x}_{1}=\underline{U}_{1} e^{\Lambda_{1}{ }_{\underline{\Lambda}}^{1}}{ }^{-1} \underline{G}_{1} \underline{u}+\underline{U}_{2} e^{\Lambda_{2}} \underline{\underline{\Lambda}}_{2}^{-1} \underline{G}_{2} \underline{u}-\underline{U}_{1} \underline{\Lambda}_{1}^{-1} \underline{G}_{1} \underline{u}-\underline{U}_{2} \underline{i}_{2}^{-1} \underline{G}_{2} \underline{u}
$$

5.1.5 Nicholson's and Davison's method $(98,39)$

These methods although published separately are the same, however: Nicholson (98) gave the method as an appendix only, whilst Davison (39) has given a much more thorough treatment.

Consider the free systems associated with Eq. (5.12) and (5.14)

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{\underline{x}}_{1} \\
\dot{\underline{x}}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\underline{A}_{1} & \underline{A}_{2} \\
\underline{A}_{3} & \underline{A}_{4}
\end{array}\right]\left[\begin{array}{l}
\underline{x}_{1} \\
\underline{x}_{2}
\end{array}\right]} \tag{5.21}\\
& {\left[\begin{array}{l}
\dot{\underline{z}}_{1} \\
\dot{\underline{z}}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\underline{\Lambda}_{1} & \\
& \underline{\Lambda}_{2}
\end{array}\right]\left[\begin{array}{l}
\underline{z}_{1} \\
\underline{z}_{2}
\end{array}\right]} \tag{5.22}
\end{align*}
$$

Solution of Eq. (5.22) is

$$
\left[\begin{array}{l}
\underline{z}_{1} \tag{5.23}\\
\underline{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
e^{\underline{\Lambda}_{1} t} & \\
& e^{\Lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
\underline{z}_{1}(0) \\
\underline{z}_{2}(0)
\end{array}\right]
$$

However as $\underline{\Lambda}_{2}$ contains only large negative eigenvalues $e_{2}{ }^{t}$ may effectively be considered as zero. Rewriting Eq. (5.22)

$$
\left[\begin{array}{l}
\underline{z}_{1} \tag{5.24}\\
\underline{z}_{2}
\end{array}\right]=\left[\begin{array}{l}
e^{\hat{A}_{1} t} \\
\end{array}\right]\left[\begin{array}{l}
z_{1}(0) \\
\underline{z}_{2}(0)
\end{array}\right]
$$

or in particular $\underline{z}_{2}=\underline{0}$
Retaining x_{1} from Eq. (5.21) gives

$$
\begin{equation*}
\dot{x}_{1}=\underline{A}_{1} \underline{x}_{1}+\underline{A}_{2} \underline{x}_{2} \tag{5.26}
\end{equation*}
$$

and from Eqs. (5.15) and (5.25)

$$
\begin{equation*}
\underline{x}_{2}=\underline{U}_{3} \underline{U}_{1}^{-1} \underline{x}_{1} \tag{5.27}
\end{equation*}
$$

Substitute into Eq. (5.26) to give

$$
\begin{equation*}
\dot{\underline{x}}_{\underline{I}}=\left(\underline{A}_{1}+\underline{A}_{2} \underline{U}_{3} \underline{U}_{1}^{-1}\right) \underline{x}_{1} \tag{5.28}
\end{equation*}
$$

but if $\underline{x}^{*}=\underline{x}_{1}$
then

$$
\begin{equation*}
\underline{A}^{*}{ }_{D A V}=\underline{A}_{1}+\underline{A}_{2} \underline{U}_{3} \underline{U}_{1}^{-1} \tag{5.30}
\end{equation*}
$$

In the above analysis the fact that Eqs. (5.12) and (5.14) are not free systems is ignored. Further a reduced order B matrix has not yet been derived.

The solution to Eq. (5.13) is

$$
\left[\begin{array}{l}
\underline{x}_{1} \\
\underline{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\underline{U}_{1} & \underline{U}_{2} \\
\underline{U}_{3} & \underline{U}_{4}
\end{array}\right]\left[\begin{array}{ll}
e^{\Lambda_{1} t} & \\
& e^{\Lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
\underline{G}_{1} \\
\underline{G}_{2}
\end{array}\right]
$$

or in particular

$$
\begin{equation*}
\underline{x}_{1}=\underline{U}_{1} e^{\Lambda_{1} t} \underline{G}_{1} \underline{u} \tag{5.32}
\end{equation*}
$$

c.f. the standard form

$$
\begin{equation*}
\underline{x}=\underline{U} e^{\Lambda t} \underline{U}^{-1} \underline{B u} \tag{5.33}
\end{equation*}
$$

it may be concluded that the B matrix sought is

$$
\begin{equation*}
\underline{B}^{*}{ }_{D A V}=\underline{U}_{1} \underline{G}_{1} \tag{5.34}
\end{equation*}
$$

5.1.6 Marshall's method (82)

Marshall's approach is different from Davison's
in that he assumes $\underline{\underline{\dot{z}}}_{2}=$ ㅇ
instead of

$$
\underline{z}_{2}=0
$$

The basis for this is that the fast modes act and die quickly and thereafter play no part in the responses: they may therefore be approximated by a constant step. Setting $\dot{\underline{Z}}_{2}$ to zero in Eq. (5.14) yields

$$
\begin{align*}
\underline{0} & =\underline{\Lambda}_{2} \underline{z}_{2}+\underline{G}_{2} \underline{u} \tag{5.37}\\
\text { or } \quad \underline{z}_{2} & =-\underline{\Lambda}_{2}^{-1} \underline{G}_{2} \underline{u} \tag{5.38}
\end{align*}
$$

However from Eqs. (5.15) and (5.16) it may be shown

$$
\begin{equation*}
\underline{z}_{2}=\underline{v}_{3} \underline{x}_{1}+\underline{v}_{4} \underline{x}_{2} \tag{5.39}
\end{equation*}
$$

Equating Eqs. (5.38) and (5.39) and solving for \underline{x}_{2} gives

$$
\begin{equation*}
\underline{x}_{2}=\underline{-V}_{4}^{-1} \underline{V}_{3} \underline{x}_{1}-\underline{V}_{4}^{-1} \underline{\Lambda}_{2}^{-\underline{I}_{G_{2}}} \tag{5.40}
\end{equation*}
$$

Writing Eq. (5.12) for x_{1} only

$$
\begin{equation*}
\dot{\underline{x}}_{1}=\underline{A}_{1} \underline{x}_{1}+\underline{A}_{2} \underline{x}_{2}+\underline{B}_{1} \underline{u} \tag{5.41}
\end{equation*}
$$

substitute \underline{x}_{2} from Eq. (5.40)

$$
\begin{equation*}
\dot{\underline{x}}_{1}=\left(\underline{A}_{1}-\underline{A}_{2} \underline{V}_{4}^{-1} \underline{v}_{3}\right) \underline{x}_{1}+\left(\underline{B}_{1}-\underline{A}_{2} \underline{V}_{4}^{-1} \underline{\Lambda}_{2}^{-1} \underline{G}_{2}\right) \underline{u} \tag{5.42}
\end{equation*}
$$

c.f. the standard form

$$
\begin{equation*}
\underline{\underline{x}}^{*}=\underline{A}^{*} \underline{x}^{*}+\underline{B} * \underline{u} \tag{5.43}
\end{equation*}
$$

it may be concluded

$$
\begin{align*}
& \underline{A}^{*} * \operatorname{MAR}=\underline{A}_{1}-\underline{A}_{2} \underline{V}_{4}^{-1} \underline{V}_{3} \tag{5.44}\\
& \underline{B} * M A R=\underline{B}_{1}-\underline{A}_{2} \underline{V}_{4}^{-1} \underline{\Lambda}_{2}^{-1} \underline{G}_{2} \tag{5.45}
\end{align*}
$$

5.1.7 A comparison of the methods of Davison and Marshall Davison gives

$$
\begin{align*}
& \underline{A}^{*} \mathrm{DAV}=\underline{A}_{1}+\underline{A}_{2} \underline{U}_{3} \underline{U}_{1}-1 \tag{5.46}\\
& \underline{B}^{*} \mathrm{DAV}=\underline{U}_{1} \underline{G}_{1} \tag{5.47}
\end{align*}
$$

Marshall gives

$$
\begin{align*}
& \underline{A} * M A R=\underline{A}_{1}-\underline{A}_{2} \underline{V}_{4}^{-1} \underline{V}_{3} \tag{5.48}\\
& \underline{B} *{ }_{\text {MAR }}=\underline{B}_{1}-\underline{A}_{2} \underline{V}_{4}^{-1} \underline{A}_{2}^{-1} \underline{G}_{2} \tag{5.49}
\end{align*}
$$

It is, however, by use of the relations given in Eqs. (5.12) and (5.16) possible to show for both models

$$
\begin{equation*}
\underline{A}^{*}=\underline{U}_{1} \underline{\Lambda}_{1} \underline{U}_{1}^{-1} \tag{5.50}
\end{equation*}
$$

and that

$$
\begin{equation*}
\underline{B}_{M A R}^{*}=\underline{B} *_{D A V}+\underline{A}^{*} \underline{U}_{2} \underline{\Lambda}_{2}^{-1} \underline{G}_{2} \tag{5.51}
\end{equation*}
$$

Marshall (82) points out that his method always gives the correct steady state whilst that of Davison does not. Davison in reply (41) concedes this fact but points out the error may only be small and should be smaller as the reduced order is increased. In the same paper Davison shows that in some cases, whilst Marshall's method gives the correct steady states it does not give a good representation of the transient responses.

Fossard (48) has shown explicitly, both algebraically and numerically, what differences there are between the methods. The step responses for the solution, Davison's and Marshall's methods are:

$$
\begin{align*}
& \underline{x}_{E X A C T}=\underline{U}_{1} e^{\Lambda_{1} t_{\Lambda}} \underline{1}_{1}^{-1} \underline{G}_{1}+\underline{U}_{2} e^{\Lambda_{2} t} \underline{\Lambda}_{2}{ }^{-1} \underline{G}_{2}-\underline{U}_{1} \underline{\Lambda}_{1}{ }^{-1} \underline{G}_{1}-\underline{U}_{2} \underline{\Lambda}_{2}{ }^{-1} \underline{G}_{2} \\
& \underline{x}^{*}{ }_{D A V}=\underline{U}_{1} e^{\Lambda I t_{\Lambda}}{ }_{-1}^{-\underline{G}_{1}} \quad-\underline{U}_{1} \underline{\Lambda}_{1}{ }^{-1} \underline{G}_{1} \tag{5.52}\\
& \underline{x}_{M A R}^{*} \quad=\underline{U}_{1} e^{\Lambda_{1} t} \underline{\Lambda}_{1}{ }^{-1} \underline{G}_{1} \quad-\underline{U}_{1} \underline{\Lambda}_{1}{ }^{-1} \underline{G}_{1}-\underline{U}_{2} \underline{\Lambda}_{2}{ }^{-1} \underline{G}_{2}- \\
& \underline{U}_{1} e^{\Lambda_{1} t_{U_{1}}}{ }^{-1} U_{2} \underline{\Lambda}_{2}{ }^{-1} \underline{G}_{2} \tag{5.54}
\end{align*}
$$

Inspection of Eqs. (5.52) - (5.54) shows exactly why the two methods differ and why they both deviate from the solution. Davison's method cannot give the correct steady states due to the absence of the term $\underline{U}_{2} \underline{\Lambda}_{2} \underline{G}_{2}$. Similarly Marshali's method will have the correct steady state but a wrong transient portion caused by the inclusion of the term $\underline{U}_{1} e^{\Lambda_{1} t} \underline{U}_{1}{ }^{-1} \underline{U}_{2} \underline{\Lambda}_{2}{ }^{-1} \underline{G}_{2}$.
5.1.8 Chidambara's methods $(32,33,34,43)$

Following publication of Davison's method Chidambara questioned a number of points, the most valid of which was the steady state deviation. The letter was followed by a further eight in which Chidambara proposed two methods, Davison modified his method to give the correct steady state, and finally an alternative method was proposed by Davison.

Chidambara's first method (32), based upon the solution, Eq. (5.14), with the same assumption as used by Marshall ($\underset{\dot{z}}{=}=0$), leads to the set of equations:

$$
\begin{align*}
& \underline{\underline{z}}_{1}=\underline{\Lambda}_{1} \underline{z}_{1}+\underline{G}_{1} \underline{u} \tag{5.55a}\\
& \underline{z}_{2}=\underline{\Lambda}_{2}^{-1} \underline{G}_{2} \tag{5.55b}\\
& \underline{x}^{*}=\underline{x}_{1}=\underline{u}_{1} \underline{\underline{E}}_{1}+\underline{U}_{2} \underline{z}_{2} \tag{5.55c}
\end{align*}
$$

the step response for which is

$$
\begin{equation*}
\underline{x}^{*} \text { CHD }=\underline{U}_{1} e^{\Lambda_{1} t_{\Lambda_{1}}}{ }^{-1} \underline{G}_{1}-U_{1} \underline{\Lambda}_{1}^{-1} G_{1}-U_{2} \underline{\Lambda}_{2}^{-1} \underline{G}_{2} \tag{5.56}
\end{equation*}
$$

This step response compares favourably with that of the solution, Eq. (5.52), however, the reduced model set, Eqs. (5.55) do not consitute an acceptable form of state variable model (32, Author's reply).

Chidambara's second method is identical to that of Marshall. This similarity has been shown by Fossard (48).

5.1.9 Davison's modified models $(33,42)$

In answer to Chidambara's criticism of his steady state errors Davison proposed two new methods. In order to do so it was necessary to relax the constraints on the form of the model and allow, like Chidambara, a more complex form.

The first form (33) was:

$$
\begin{aligned}
& \underline{\dot{x}}_{1}=\underline{A}^{*} \underline{x}_{1}+\underline{B} * \underline{u} \\
& \underline{x}^{*}=\underline{x}_{1}+\left(\underline{A} *-\underline{B}_{\underline{B}} *-\left(\underline{A}^{-1} \underline{B}_{1}\right) \underline{u}(5.57 b)\right.
\end{aligned}
$$

where $\left[\underline{A}^{-1} \underline{B}\right]_{1}$ indicates the product $\left(A^{-1} B\right)$ partitioned as before. Eqs. (5.57) merely adds the respective steady state errors to each state over its entire range.

The second form (42) was:

$$
\begin{align*}
& \dot{\underline{x}}_{1}=\underline{A}^{*} \underline{x}_{1}+\underline{B}^{*} \underline{u} \tag{5.58a}\\
& \underline{x}^{*}=\underline{D x}_{1} \tag{5.58~b}
\end{align*}
$$

when the diagonal matrix D is

$$
\underline{D}=\left[\begin{array}{llll}
\mathrm{d}_{1} & & & \tag{5.59}\\
& d_{2} & & \\
& \ddots & & \\
& & \ddots & \\
& & & d_{m}
\end{array}\right]
$$

and d_{i} is the ratio of the reduced steady state to the correct value of x_{i}. Clearly for this model to be adequate a different modifying matrix \underline{D} is required for each input.

5.1.10 Analysis of the unretained variables

It has been shown that with each of the methods

$$
\begin{equation*}
\underline{A}^{*}=\underline{U}_{1} \underline{\Lambda}_{1} \underline{U}_{1}^{-1} \tag{5.60}
\end{equation*}
$$

clearly this implies that the partitioned eigenvector matrix \underline{U}_{2} must be non-singular. As the system eigenvectors possess one arbitrary set this is not generally the case and the matrix \underline{U} must be partitioned to ensure that the determinant of \underline{U}_{1} is large. Both Davison and Nicholson $(42,98)$ advise that in order to ensure this, physically different variailes must be retained (e.g. a pressure and temperature instead of two temperatures). However in satisfying this condition a variable of interest
may be lost.
e.g. Consider

$$
\left[\begin{array}{l}
\underline{x}_{1} \tag{5.61}\\
\underline{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
- \\
x_{4} \\
x_{5}
\end{array}\right] \text { and } \underline{x}^{*}=\underline{x}_{1}
$$

where variable x_{4} may be of interest. In order to analyse such variables additional equations are required. These are

$$
\begin{align*}
\underline{x}_{2} & =\underline{U}_{3} \underline{U}_{1}^{-1} \underline{x}_{1} \tag{5.62}\\
\underline{x}_{2 M A R} & =-\underline{v}_{4}^{-1} \underline{v}_{3} \underline{x}_{1}-\underline{v}_{4}^{-1} \underline{\Lambda}_{2}^{-1} \underline{G}_{2} \underline{u} \tag{5.63}\\
& =\underline{x}_{2}-\underline{v}_{4}{ }^{-1} \underline{\Lambda}_{2}^{-1} \underline{G}_{2} \underline{u} \tag{5.63a}
\end{align*}
$$

5.1.11 An extension of Davison's method (71)

The above methods are based upon retaining only the dominant modes and discarding the short time constants in the reduced model. The short time constants only contribute to the initial transient response and then play no part. The effect of neglecting these constants is to give a good overall approximation of the response at the expense of the early response. However, in some situations this may not be satisfactory (e.g. for control purposes this is the most important part of the response). Kuppurajulu and Elangovan (71) realising this have proposed that the eigenvalues de split into three groups
(not necessarily of equal size) any two of which can be neglected when working with a particular part of the curve only.

5.2 LEAST SQUARES FITTING IN THE TIME DOMAIN

In 1967 Anderson proposed a new method (2) which did not require the modal analysis of the unreduced system, but rather the full time response of all retained outputs for all inputs. Anderson has shown how his method applies to vector difference equations and stated that it may be extended to continuous time systems. This extension has been given by Chandrasekharan and Balakrishnan (20).

The nth order model, Eq. (5.1), is to be reduced to the mth order system

$$
\begin{equation*}
\underline{\dot{x}}^{*}=\underline{A}^{*} \underline{x}^{*}+\underline{B} * \underline{u} \tag{5.64}
\end{equation*}
$$

where chosen states froin the vector x make up the reduced state vector x^{*}.

Eq. (5.64) for input \underline{u}_{1} may be written out at intervals of a sampling interval T to give a set of Krl equations

$$
\begin{align*}
& \dot{\underline{x}}_{1} *(0)=\underline{A} * \underline{x}_{1} *(0)+\underline{B} * \underline{u}_{1}(0) \\
& \vdots \tag{5.65}\\
& \vdots \\
& \underline{x}_{1} *(K T)=\underline{A} * \underline{x}_{1} *(K T)+\underline{B} * \underline{u}_{1}(K T)
\end{align*}
$$

which may be partitioned to give

$$
\begin{aligned}
& \left.\left(\underline{\underline{x}}_{1} *(0): \ldots \ldots\right)_{\underline{x}_{1}} *(k T)\right)=\underline{A} *\left(\underline{x}_{1} *(0): \ldots \ldots .\right. \\
& \left\{\underline{x}_{1} *\left(k I^{\prime}\right)\right)+\underline{B}^{*} *\left(\underline{u}_{1}(0)!\dot{\prime} \cdots \dot{f}_{1}(k T)\right)(5.66)
\end{aligned}
$$

or

$$
\begin{equation*}
\underline{\underline{X}}_{1} *=\underline{A} * \underline{X}_{1} *+\underline{B} * \underline{U}_{1} \tag{5.67}
\end{equation*}
$$

Eq. (5.67) exists for all different system inputs, $\underline{u}_{1} \ldots$ \underline{u}_{J}, and may be similarly partitioned to give

$$
\begin{aligned}
& \left(\underline{\underline{x}}_{1} *!\quad \ldots \ldots!\dot{\underline{x}}_{\mathrm{J}} * *\right)=\underline{A}^{*} *\left(\underline{X}_{1} *!\ldots \ldots!\underline{x}_{J}^{*}\right)+ \\
& B *\left(\underline{u}_{1} ; \ldots . \underline{U}_{J}\right) \quad \text { (5.68) }
\end{aligned}
$$

or $\underline{Q}=\underline{A} * \underline{R}+\underline{B} * \underline{S}$
$=\left(\underline{A} *: \underline{B}^{*}\right) \quad\left[\begin{array}{l}\underline{R} \\ \frac{S}{S}\end{array}\right]$

$$
\begin{equation*}
\underline{Q}=\underline{T} \underline{W} \tag{5.71}
\end{equation*}
$$

where Q is order $\mathrm{m},(\mathrm{K}+1) \mathrm{J}$

$$
\begin{aligned}
& \underline{T}=\left(\underline{A}^{*}: B^{*}\right) \text { is order } \mathfrak{m}, \quad(m+J) \\
& \underline{W}=\left[\frac{R}{\underline{S}}\right] \text { is order }(m+J), \quad(K+1) J
\end{aligned}
$$

The matrices Q and \underline{W} which are composed according to the above equations are built up from vector \dot{x} and \underline{x} for the selected output variables to be retained for all the inputs and times considered, and Eq. (5.71) is solved thus:

$$
\left[\begin{array}{l}
\underline{A}^{*} \tag{5.72}\\
\underline{B}^{T}
\end{array}\right]=\underline{V}^{T H} Q^{T}
$$

where superscript \dagger indicates the generalized matrix pseudoinverse.

Some points must be considered in the use of Eq. (5.71). The sampling period T must be at least smaller than the smallest time constant and the overall period $K T$ longer than the longest time constant. For most systers
these two points imply a large number of samples (i.e. K is large) and

$$
\begin{equation*}
(m+J) \neq(K+1) J \tag{5.73}
\end{equation*}
$$

therefore matrix \underline{W} is singular and the inverse does not exist. However a pseudoinverse does exist (86) which is the best possible solution to Eq. (5.71) in a least-squares sense. A good deal has been written about the geometrical interpretation of Eq. (5.71) in an attempt to clarify its meaning, however, this author believes that to discuss a least-squares solution is adequate and readily under.. stood.

Nicholson has commented upon the large amount of core store that would be reqiured for a system with a wide range of eigenvalues and a number of inputs, (99). Anderson has shown how this may be reduced by postmultiplying Eq. (5.71) by the transpose of $\underline{W}(3)$. Anderson has also shown how the method can be modified j.f certain elements in A^{*} or B^{*} are known (4), and how weighting of the least-squares solution may be effected (5). This is done by merely including additional samples, some of which may be repeats, in the area in which emphasis is to be placed. In the same paper it is shown how small steady state errors may be eliminated.

Anderson has implemented all of the above modifications in the simplification of 19 th and 31st order boiler models for both the discrete and contiruous cases (6). These were compared to the same reductions by Nicholson's
method. Chandrasekharan and Balakrishnan (20) have compared the continuous formulation to Davison's reduction for a fifth order model. Their example will be used in Section 5.4.

5.3 OTHER METHODS OF STATE VARIABLE REDUCTION

There are in the literature a number of other methods of reducing the order of state variable models. Some of these are rigid mathematical extensions of the modal methods, whilst others are based on statistical analysis of the system step response, or engineering judgement applied either at the modelling or solution stage.

Mathematical extensions of the the modal methods have been made by Mitra $(89,90,91,92,93)$ and Wilson (121). Both these methods minimise a performance index which measures the merits of retaining different sets of eigenvalues. A functional between the outputs of the full and reduced models is minimised, leading to a non-linear matrix equation which may be iteratively solved to give the reduced system paraneters. In the case where there is only one input or output and the eigenvalues are specified the analysis leads to a linear problem. Chen (22) has noted that both methods may lead to steady state errors and that for a large plant the computations involved may be extremely complex.

Brown (17) has proposed a method, which unlike all others, minimizes the difference between the time rate of change of the reduced and full models, and not the time
response error (i.e. minimize $\left(\underline{\dot{x}}-\dot{\underline{x}}^{*}\right)^{2}$). However, the model fitted by Brown is not the normal state form but has time varying parameters, i.e. the model fitted is

$$
\dot{x}^{*}=\underline{A}^{*}(t) \underline{x}^{*}+\underline{B} *(t) \underline{u}
$$

The parameters are found from the covariance matrix of the combined state and input vectors in a system simulation to a random input. Other time varying solutions have been given by Graham and Strauss (57) and Freund (.50).

A different statistical approach is that of Tether (114) who has indicated that work carried out on the minimum order of state variable models, can be extended to model simplification in the casa of linear models. For continuous time systems the method is equivalent to determining the transfer function matrix or impulse response which has a finite number of terms in the series expansion equal to those in the full model expansion.

Methods have been developed by Aoki (7) and Kuo and Wei (70) which have been given the names aggregation and lumping. From the full model it is necessary to isolate staies which behave similarly and are readily decoupled from each other. New states are added to the model which are direct linear combinations of the lumped and eliminated variables. Kuo and Wei have shown how lumping can be applied to monomolecular reactions and in particular the interconversion of butene isomers.

Coggan and Wilson (36) did a similar thing at the modelling stage and effectively lumped together five trays in a distillation column and modelled them as one.

Marshall (83) has developed a method different to all those above based on applying the Leverrier algorithm to the state equations to give the transfer function matrix. The relevant rational terms of this matrix are then reduced by neglecting unimportant roots to give a reduced order transfer matrix which can be converted back to the state equations. The effect of neglecting roots is followed on a visual display unit.

Chen has shown $(21,22)$ how the continued fraction expansion and truncation may be extended to the multivariable case.

Finally, it has been shown in a recent paper by De Sarkar and Dharma Roo (44) how the geometric properties of the Lyapunov function may be utilized in reducing the order of state variable models.

5.4 ILLUSTRATIVE EXAMPLE

Some of the methods described earlier will be illustrated by the following example (20). . The same example will be used in Chapters 6 and 7.

The fifth order model

* The problem posed requires that moriobles $x_{1} x_{2} x_{3}$ be andysed by the reduced model.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
-3.67 & 0 & -1.333 & 0 & 1.333 \\
0 & -5.44 & 2.28 & -2.28 & 2.28 \\
-1.333 & 2.28 & -3.86 & 1.19 & -1.52 \\
0 & -2.28 & 1.19 & -4.19 & 1.19 \\
1.333 & 2.28 & -1.52 & -1.52 & -3.86
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]+\left[\begin{array}{l}
9 \\
6 \\
6 \\
3 \\
6
\end{array}\right]
$$

is to be reduced to a third order model, the first three state variables being of interest. The following reductions were obtained
Davison's method:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{ccc}
-1.006 & 0 & 0 \\
.6557 & -2.6719 & -.656193 \\
1.3368 & -.3 .28096 & -2.34381
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right]+\left[\begin{array}{l}
3.003 \\
2.99785 \\
9.0029
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{cc}
-1.33065 & -.665832 \\
-1.9985 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right]}
\end{aligned}
$$

Marshall's method:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{ccc}
-1.006 & 0 & 0 \\
.6557 & -2.6719 & -.656193 \\
1.3368 & -.328096 & -2.34381
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right]+\left[\begin{array}{l}
4.20863 \\
1.81897 \\
5.99487
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lll}
-1.33066 & -.665832 & 1.33166 \\
-1.9985 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right]+\left[\begin{array}{l}
2.39403 \\
3.59442
\end{array}\right]}
\end{aligned}
$$

Anderson's method:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lrr}
-3.51427 & 1.94234 & -2.14407 \\
-.003909 & -2.01141 & -.001475 \\
-1.36951 & .00966 & -2.46844
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
8.99372 \\
5.9998 \\
6.00166
\end{array}\right]
$$

The response for x_{1}, x_{2} and x_{3} for full model and each of the above reduced models are shown in Figs. 5.1, 5.2 , and 5.3 respectively.

5.5 NOMENCLATURE

A plant matrix
B input matrix
D Davison's modifying matrix, defined by Eq. (5.59)
d_{i} reduced steady state/full steady state for variable i

G defined by Eq. (5.18)
I identity matrix
J number of inputs
K number of samples in Anderson's method
m reduced system order
n full system order
P permutation matrix
Q defined by Eqs. (5.68) and (5.69)
S defined by Eqs. (5.68) and (5.69)
I defined by Eqs. (5.70) and (5.71)
T sampling interval in Anderson's method
t time
U matrix of eigenvectors or as defined by Eqs. (5.66) and (5.67) for Anderson's method
u forcing vector
$V \quad$ inverse of U
W as defined by Eqs. (5.70) and (5.71)
X as defined by Eqs. (5.66) and (5.67)
x state vector
y crdered state vector, Px
$\underline{z} \quad \underline{U}^{-1} \underline{\underline{x}}$

Greek:

Λ Jordan canonical form
Λ^{\prime} ordered $\Lambda, \underline{P A P}^{-1}$

Superscript:

* reduced system
\dagger pseudoinverse

Subscript:
$\underline{U}_{i j}$ indicates partitioning of \underline{U}
CHD Chidambara's model
DAV Davison's model
EXACT exact model
MAR Marshall's model

CHAPTER 6
The reduction of order of state variable models
using moments

6. THE REDUCTION OF ORDER OF STATE VARIABLE MODELS

USING MOMENTS [16]

Lees $(54,75,77)$ has shown how complex models may be simplified using the method of moments. This method has been discussed in depth in Chapter 3. However, the same method may easily be extended to the state-variable case and may be used for simplifying multi-input-multi-output systems. The derivation of moments from the state variable model has been described in Chapter 2.

6.1 PROBLEM STATEMENT

The nth order state variable model

$$
\begin{equation*}
\underline{\dot{x}}=\underline{A x}+\underline{B u} \tag{6.1}
\end{equation*}
$$

is to be reduced to the mth order model

$$
\begin{equation*}
\dot{\underline{x}}^{*}=\underline{A}^{*} * \underline{x} *+\underline{B} * \underline{u} \tag{6.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underline{A} \text { is the plant matrix (} n, n \text {) } \\
& \underline{A}^{*} \text { is the reduced plant matrix }(m, m) \\
& \underline{u} \text { is the forcing vector (order } p \text {) } \\
& \underline{B} \text { is the input matrix (} n, p \text {) } \\
& \underline{B^{*}} \text { is the reduced input matrix }(m, p \text {) } \\
& \underline{x} \text { is the state vector (order } n \text {) } \\
& \underline{x} * \text { is the reduced state vector (order } m \text {). } \\
& \text { In many models a large number of the states are not }
\end{aligned}
$$

required as outputs but contribute significantly to the responses of the outputs. These variables may be considered redundant. As an example, in a distillation column feed and product stream variables are important in the dynamic analysis of the column whilst compositions and temperatures on the intermediate plates are extraneous. The extraneous variables are considered to be redundant.

This method seeks to reduce the order of the problem by neglecting the redundant variables whilst maintaining the original responses of the non-redundant variables to all the plant inputs. The reduced state vector, x^{*}, is thus composed from the elements of \underline{x} making use of the physical knowledge of the plant item. The order p of the forcing vector is not reduced, because it is assumed that all the inputs should be retained in the reduced model.

The matrices \underline{A}^{*} and \underline{B}^{*} must be found from the moments of the individual responses of all states to all inputs.

6.2 PROBLEM FORMULATION

The Laplace transform of Eq. (6.1) for an impulse is

$$
\begin{equation*}
s \underline{x}(s)=\underline{A x}(s)+\underline{B u} \tag{6.3}
\end{equation*}
$$

It was shown in Chapter 2 that the moments are given by differentiating this transform and setting s equal to zero, to give

$$
A \underline{m}_{j, i}+\underline{B} \Phi_{i, i}=-i \underline{m}_{j, i-1}
$$

where $\underline{m}_{j, i}$ is the nth order vector of unnormalised ith moments about the origin of the state x corresponding to the j th input and $\Phi_{j, i}$ is given by

$$
\begin{aligned}
\Phi_{j, i} & =\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right] \text { for } i>0 \\
& =\left[\begin{array}{ll}
0 \\
1 \\
\vdots \\
\vdots \\
0
\end{array}\right] \begin{array}{l}
\text { (1 in the jth row }) \\
\text { for } i=0
\end{array}
\end{aligned}
$$

Similarly Eq. (6.4) may be written in terms of reduced matrices

$$
\underline{A} * \underline{m}^{*}{ }_{j, i} * \underline{B} * \Phi_{j, i}=-i \underline{m}_{j}^{*}, i-1
$$

If the moments of the full and reduced models are matched exactly, the elements of $\underline{m}^{*} j, i$ are identical to those elements of \underline{m}_{j}, i which correspond to the states retained in $x^{*}:$ if the match is not exact, the two sets of elements are only approximately equal.

Eq. (6.5) may be written for all the p forcing functions considered

$$
\begin{align*}
& \underline{A}^{*} \underline{m}^{*} 1, i+\underline{B}^{*} \underline{\Phi}_{1, i}=-i \underline{m}^{*} 1, i-1 \\
& \vdots \tag{6.6}\\
& \vdots \\
& \underline{A}^{*} \underline{m}_{p, i}^{*}+\underline{B}^{*} \underline{\phi}_{p, i}=-i \underline{m}_{p, i-1}
\end{align*}
$$

and augmented to give in partitioned form

$$
\begin{equation*}
\text { or } \underline{A}^{*} \underline{M}_{i}^{*}+\underline{B}^{*} \Phi_{i}=\underline{S}_{i} \tag{6.8}
\end{equation*}
$$

Eq. (6.8) may be written for all the I moments considered in additon to the zeroth ($i=0,1, \ldots$)

$$
\begin{align*}
& \underline{A}^{*} \underline{M}_{0}+\underline{B}^{*} \underline{\Phi}_{O}=\underline{S}_{\circ}^{*} \tag{6.9}\\
& \vdots \\
& \vdots \\
& \underline{A}^{*} \underline{M}_{I}+\underline{B}^{*} \underline{\Phi}_{I}=\underline{S}_{I}
\end{align*}
$$

which may be similarly augmented to give
where M^{*} and S^{*} are order ($M, P(I+1)$)

$$
\Phi \text { is order }(p, P(I+1))
$$

6.3 PROBLEM SOLUTION

It has been shown above that knowing the moments of the selected states for all inputs allows the matrices \underline{M}^{*}, Φ, and \underline{S}^{*} to be built up in Eq. (6.11), which may in turn be solved to give \underline{A}^{*} and \underline{B}^{*}. However it may be solved in a number of ways depending upon the number of inputs and the assumptions made in the solution.

$$
\begin{align*}
& \text { (6.10) } \\
& \text { or } \underline{A}^{*} \underline{M}^{*}+\underline{B}^{*} \underline{\Phi}=\underline{S} * \tag{6.11}
\end{align*}
$$

$$
\begin{aligned}
& =-i\left(\underline{m}^{*} 1_{1, i-1}: \ldots . \underline{m}_{p, i-1}\right) \quad(6.7)
\end{aligned}
$$

6.3.1 Exact fit

Eq. (6.11) may be rewritten in partitioned form

$$
\left[\begin{array}{l:l}
\underline{A}^{*} & \underline{B}^{*}
\end{array}\right]\left[\begin{array}{c}
\underline{M}^{*} \tag{6.12}\\
\hdashline \underline{\underline{\Phi}}
\end{array}\right]=\underline{S^{*}}
$$

or $\quad \underline{\mathrm{V}}=\underline{\mathrm{S}}$:
Rearranging

$$
\begin{equation*}
\underline{H}^{T} \underline{V}^{T}=\underline{S} * T \tag{6.14}
\end{equation*}
$$

Solving for V in this manner produces a reduced model, the moments of which match exactly all fitted moments of the complex model, including the zeroth or steady state.

6.3.2 B^{*} constrained to give correct initial rates

If it is assumed that the complex and simple models must have the same rate of change at time zero, then since the initial rate is given by B, \underline{B} * may be constructed from the elements of B corresponding to the chosen states.

Eq. (6.11)

$$
\underline{A} * \underline{M} *+\underline{B} * \underline{\Phi}=\underline{S} *
$$

but if B^{*} is known

$$
\begin{align*}
& \underline{A} * \underline{M}^{*}=\underline{S} *-\underline{B} * \Phi . \quad \underline{T} \tag{6.15}\\
& \underline{M} * T \quad \underline{A} * T=\underline{T}^{T} \tag{6.16}
\end{align*}
$$

Solving (6.16) matches not only the moments but also the actual rates of change of each variable.
6.3.3. Least-squares solution of non-square data matrices

The following discussion is based on section 6.3.1.
but applies equally to section 6.3.2.
Assuming \underline{H} is a square matrix Eq. (6.14) may be solved to give

$$
\begin{equation*}
[\underline{A} *: \underline{B} *]^{T}=\underline{v}^{T}=\left(\underline{H}^{T}\right)^{-1} \underline{S^{*}} *^{T} \tag{6.17}
\end{equation*}
$$

Consider the dimensions of the matrix \underline{H}

$$
\underline{H}=\left[\begin{array}{c}
M * \tag{6.18}\\
\underline{\underline{\Phi}} \\
\underline{-}
\end{array}\right]
$$

M* * is order ($m, p(I+I)$)
Φ is order ($\mathrm{p}, \mathrm{p}(\mathrm{I}+1)$)
To apply Eq. (6.17) H must be square and the following equality exists:

$$
\begin{equation*}
m=p I \tag{6.19}
\end{equation*}
$$

Eq. (6.19) shows that the model can only be reduced to an order equal to the product of the number of moments fitted and the number of inputs. This rule will however lead to conflicting results: e.g. a 9th order model with 5 inputs (39) by matching three moments and the zeroth must be "reduced" to a 15 th order model. Clearly the rule, Eq. (6.19) cannot in general apply.

It has been shown above that in general the matrix \underline{H} is not square and an alternative method is required. The linear least-squares method of Golub (56) has been used. Howeven as with any least-squares method unequal weighting of variables can occur. This weighting can take three forms:
a) high moments tend to be numerically dominant to lower moments, or vice versa.
b) states may have a different order of moment; e.g. a flow variable would normally be greater in value than a composition.
c) the same state may have a different order of moments for different inputs.

It is important that each of these weightings is eradicated and in particular that the correct steacy state is maintained.
6.3.4 Constraint of B^{*} to give correct steady state and moment weighting

It is usually desirable that on forcing the simplified model it reaches the correct steady state. The steady state is given by setting $i=0$ in Eq. (6.5).

$$
\begin{equation*}
\underline{A}^{*} \underline{m}_{j, 0}+\underline{B} * \Phi_{j, 0}=\underline{0} \tag{6.20}
\end{equation*}
$$

or for all inputs

$$
\underline{B} *\left(\underline{\underline{I}}_{1,0}: \cdots \cdots \dot{\Phi}_{p, 0}\right)=-\underline{A}^{*}(\underline{m}^{*} 1,0: \cdots \underbrace{}_{p, 0}) \quad(6.21)
$$

or

$$
\begin{equation*}
\underline{B} * \Phi_{0}=-\underline{A}^{*} \underline{M}_{0}^{*} \tag{6.22}
\end{equation*}
$$

and $\Phi{ }_{o}$ is an identity matrix.
Eq. (6.22) may be substituted into Eq. (6.11) to give

$$
\begin{equation*}
\underline{A} *\left(\underline{M} *-\underline{M}_{0}^{*}\right)=\underline{S}^{*} \tag{6.23}
\end{equation*}
$$

or $\quad \underline{A}^{*} \underline{E}=\underline{S} *$
and A^{*} is given by solving

$$
\begin{equation*}
\underline{E}^{T} \quad \underline{A}^{*}=\underline{S}^{T} \tag{6.24}
\end{equation*}
$$

Eq. (6.24) has been solved one column of $\underline{A}^{* T}$ and $\underline{S} *^{T}$ at a time, thus minimising the least-squares error for each variable singly, and avoiding unequal weighting, the rows of F^{T} being each time normalised with respect to the corresponding element in \underline{S}^{T}, thus avoiding weighting for high moments and different inputs. Once A * is calculated B^{*} may be found from Eq. (6.22). The use of the substitution discussed above and solution of this pair of equations ensures that the reduced model maintains the correct steady state.

6.4 RESULTS

Each of the solution schemes discussed above have been investigated.

The exact solution of section 6.31 was found to give good results when reducing a 6 th order model to 3rd order with one input. However, when reducing the size of large models the constraint on the order to which a system could be reduced, Eq. (6.19) as discussed in Section 6.3 .3 was found to be too restricting. The solution scheme was therefore discarded.

The solution of section 6.3.2. was similarly rejected. It was found that the initial rate of change was matched for a very brief period only, and thereafter the reduced model found its own rate of change. Further-
more this scheme would not correctly fit the steady state as the two requirements conflict. The leastsquare solution of Section 6.3 .4 performed well and four examples will be given. The following is a summary of the numerical runs presented.

1. Reduction of a 12 th order model with 2 inputs, the responses of which are overdamped, to a 4 th order model by matching up to the 4 th moment.
2. Reduction of 12 th order model with 2 inputs, the responses of which are oscillatory, to a 4 th order model by matching up to the 4 th moment.
3. Reduction of a 12 th order model with 2 inputs, the responses of which are inverting, to a 4 th order model by matching up to the 4 th moment. :
4. Reduction of an llth order model of a binary distillation column with 2 inputs to a 4th order model by matching up to the 4 th moment.

The numerical data and the time responses of these models can be found in Appendix 2. The program used can also be found there. The above models will be referred to as Models l-4 respectively.

6.4.1 Illustrative example

The fifth order model used as an example in Chapter 5 has been reduced to a third order model by matching the zeroth and first three moments using the method of Section 6.3 .4 , although because of the small dimensions involved it constitutes an exact fit. Details of the full and reduced models are shown below. Time responses are not shown as those of both the full and reduced models were virtually coincident throughout their entire length.

Reduced Model

$$
A^{*} *=\left[\begin{array}{lrl}
-2.88298 & 1.18666 & -1.86676 \\
-.000764 & -2.01513 & -.000752 \\
-1.52746 & .198686 & -2.53747
\end{array}\right]
$$

$$
\underline{B}^{*}=\left[\begin{array}{l}
8.72778 \\
5.99897 \\
6.06793
\end{array}\right]
$$

Details of the full model \underline{A} and \underline{B} are given in Chapter 5.

Eigenvalues:

Full Model	-1	-2	-3	-5	-9
Reduced Model	-1.01276	-2.01556	-4.40716		

Moments

State	0	1	2	3
1	4.18353	3.20679	5.99491	17.6494
2	2.97534	1.47595	1.46442	21.795
3	.105975	-1.77303	-4.89153	-16.2368

(full and reduced models have the same moments)

6.5 DISCUSSION OF RESULTS

Method 6.3.4 has been found to be the most reliable method and to give the most acceptable results. All results presented in Appendix 2 are based upon this method. Methods 6.3.1 and 6.3.2. have been presented as background to the method.

It may be seen from the data and figures given that the reduced systems retain the important characteristics of the full system. There is usually a very close fit between the actual moments and those fitted to the responses (usually to three figures in the fourth moment; . Further the eigenvalues of A * are well representative of the eigenvalues of A and may well be the dominant values from the latter. Analysis of the figures shows that there is godd agreement between the actual and the fitted time response. In the case of oscillating and inverting systems the peak heights of the reduced system tend to be less than that of the full.

It may be seen from those figures which show the response of the last variable in a series that the reduced order curve tends to oscillate about the full model zero time steady state. These variables being the last in a series tend to be characterised by a large inherent time delay, or its equivalent in lags in series. The process of of order reduction involves the elimination of many of these lags, and therefore the reproduction of the time delay is not entirely satisfactory. The oscillation of the initial part of the response about the base line is rather similar in behaviour to that of the Pade approximation to a time delay.

$$
G(s)=\frac{1--5 \tau s}{1+.5 \tau s}
$$

The moments matched in the examples are the zeroth and the next four. Experience in the use of the method suggests this is usually the best choice, although good results are often obtained matching one less moment.

Important characteristics of this method of simplification are that the correct steady states are obtained, that the reduction is effected according to a definite criterion, namely the matching of moments, and that there are no restrictions on the inputs and outputs which can be retained. This does not appear to be true of methods based on modal analysis. There is no restriction on the order of the reduced model, though, as with other methods, the latter cannot be expected to represent well the full modei if the order is reduced
too low. The method has definite computational advantages over other methods in that a complete time or frequency response is not needed (this may be prohibitive with very large systems), nor are the eigenvalues and vectors required. It is needed only to invert the full plant matrix to obtain the system moments.

The method cannot be applied to systems where the output to a step response is not bounded to a steadystate value, but increases indefinitely, and where the moments are therefore infinite.

It has been shown that the method of moments may be used to reduce the order of state variable models and that the reduced order models give acceptable responses. The method is not presented as a substitute for existing methods but rather as a possible alternative.

6.6 NOMENCLATURE

A plant matrix
B input matrix
F defined by Eq. (6.23) and (6.24)
$G(s)$ transfer function
H defined by Eqs. (6.12) and (6.13)
I number of moments fitted
i ith moment
j jth input
H* defined by Eq. (6.10) and (6.11)
$\underline{m}_{j, i}$ vector of i th moments of \underline{x} for the j th input
m reduced system order
n full system order
p number of inputs to system
S* defined by Eqs. (6.10) and (6.11)
s Laplace operator
I defined by Eq. (6.15)
u forcing vector
V defined by Eqs. (6.12) and (6.13)
x state vector

Greek:
τ time del.ay
Ф defined by Eqs. (6.10) and (6.11)
$\phi_{j, i}$ defined by Eq. (6.4)
General:
$\underline{x}(s)$ Laplace transform of \underline{x}
M*i partitioned matrix from M^{*}

CHAPTER 7

The reduction of state variable models by matching the frequency response

7. THE REDUCTION OF STATE VARIABLE MODELS BY

MATCHING THE FREQUENCY RESPONSE

A number of methods were presented in Chapter 3 for fitting a low order transfer function to a higher order model. Many of these methods were based on minimizing the error in the frequency domain between the two models, usually by a least-squares approach. Frequency methods have not, however, been used for reducing the order of state variable models.

The method of Levy (79) is one of the best frequency methods for reducing the size of a transfer function and an attempt has been made to extend the analysis to the multi-dimensional case. Whilst theoretically attractive no acceptable results have been obtained, in addition to which, for very high order problems a considerable anount of computational effort is required in the solution of the many simultaneous equations. The method was discarded and an alternative sought. One such feasible method is presented here.

7.1 PROBLEM STATEMENT

The nth order state variable model with p inputs

$$
\begin{equation*}
\underline{\dot{x}}=\underline{A x}+\underline{B u} \tag{7.1}
\end{equation*}
$$

is to be reduced to the mth order model with p inputs

$$
\begin{equation*}
\underline{\underline{x}}^{*}=\underline{A}^{*} \underline{x}^{*}+\underline{B}^{*} \underline{u} \tag{7.2}
\end{equation*}
$$

by matching the frequency response of selected states
where:

```
x}\mathrm{ is the nth order state vector
x* is the mth order reduced state vector
A is the ( }n,n\mathrm{ ) plant matrix
A* is the (m,m) reduced plant matrix
B is the ( }n,p)\mathrm{ input matrix
B* is the (m,p) reduced input matrix
u}\mathrm{ is the pth order forcing vector.
```

The method is similar to that discussed in Chapter 6, for reducing state variable order by matching the moments, in that variables whose responses are of no interest are considered to be extraneous and redundant. System order reduction is effected by neglecting redundant variables whilst maintaining the original responses of the non-reciundant variables to all inputs. It is considered desirable that the reduced order model should maintain all the original inputs. In this case the reduced model, or the matrices \underline{A}^{*} and \underline{B}^{*}, must be found from the full model frequency response.

7.2 PROBLEM FORMULATION

Eq. (7.1) may be transformed into the Laplace domain

$$
\begin{equation*}
s \underline{x}(s)=\underline{A} \underline{x}(s)+\underline{B} \underline{u}(s) \tag{7.3}
\end{equation*}
$$

and by letting $s=i \omega$ into the frequency domain

$$
\begin{equation*}
i \omega \underline{x}(i \omega)=\underline{A} \underline{x}(i \omega)+\underline{B} \underline{u}(i \omega) \tag{7.4}
\end{equation*}
$$

Let \underline{u}_{j}. be the unit vector selecting the j th input to the system, with the unity scalar being in the j th position in the vector.

Eq. (7.4) may be written for each of the p inputs

$$
i \omega \underline{x}_{1}(i \omega)=\underline{A}_{1}(i \omega)+\underline{B}_{1} \underline{u}_{1}(i \omega)
$$

$$
\begin{equation*}
\vdots \tag{7.5}
\end{equation*}
$$

$$
i \omega \underline{x}_{p}(i \omega)=\underline{A}_{\underline{x}}(i \omega)+\underline{B}_{\underline{u}}(i \omega)
$$

and augmented to give in partitioned form

$$
\begin{gathered}
i \omega\left(\underline{x}_{1}(i \omega) \ldots \underline{x}_{p}(i \omega)\right)=\underline{A}\left(\underline{x}_{1}(i \omega): \ldots \underline{x}_{p}(i \omega)\right)+ \\
\underline{B}\left(\underline{u}_{1}(i \omega): \ldots \dot{u}_{p}(i \omega)\right)
\end{gathered}
$$

However $\left(\underline{u}_{1}(i \omega) ; \ldots \ldots \underline{u}_{p}(i \omega)\right.$) is a square diagonal matrix and post-multiplying Eq. (7.6) by its inverse gives each of the frequency responses normilised with respect to its input, and using the transformation

$$
\begin{equation*}
\underline{x}(i \omega)=\left(\underline{x}_{1}(i \omega) \ldots \ldots \underline{x}_{p}(i \omega)\right)\left(\underline{u}_{1}(i \omega) \ldots_{\underline{p}}(i \omega)\right)^{-1} \tag{7.7}
\end{equation*}
$$

gives

$$
\begin{equation*}
i \omega \underline{X}(i \omega)=\underline{A} \underline{X}(i \omega)+\underline{B} \tag{7.8}
\end{equation*}
$$

where $X(i \omega)$ is a (n, p) matrix with complex elements. Let $\underline{x}(i \not)$) be separated into its real and imaginary parts

$$
\underline{x}(i \omega)=\underline{r}+i \phi
$$

where clearly \underline{E} and Φ are both (n, p) real matrices. With Eq. (7.9) substituted Eq. (7.8) becomes, for a particular frequency ω_{k}

$$
\begin{equation*}
i \omega_{k}\left(\underline{r}_{k}+i \Phi_{k}\right)=\underline{A}\left(\underline{r}_{k}+i \Phi_{k}\right)+\underline{B} \tag{7.10}
\end{equation*}
$$

Eq. (7.10) can also be written for the reduced model

$$
\begin{equation*}
i \omega_{k}\left(\underline{r}^{*}{ }_{k}+i \Phi^{*}{ }_{k}\right)=\underline{A}^{*}\left(\underline{\underline{r}}_{k}{ }_{k}+i \Phi_{k}^{*}\right)+\underline{B} * \tag{7.11}
\end{equation*}
$$

where $\underline{\underline{r}}{ }_{k}$ and $\underline{\underline{y}}{ }_{k}$ are (m, p) matrices containing the real and imaginary parts of the frequency response of the vector x^{*} corresponding to the selected states from \underline{x}, and if an exact fit is obtained they will agree exactly to the equivalent elements in \underline{r}_{k} and ϕ_{k}, and for an approximate fit there will only be approximate agreement.

Eq. (7.11) may be separated into its real and imaginary parts to give:

$$
\begin{align*}
\omega_{k} \underline{r}_{k}^{*} & =\underline{A} * \Phi^{*}{ }_{k} \tag{7.12}\\
-\omega_{k} \underline{\phi}^{*} k & =\underline{A} * \underline{r}_{k}^{*}+\underline{B} * \tag{7.13}
\end{align*}
$$

B^{*}, the input matrix, affects the gain of the system and is always obtainable from the full system steady states, which are generally known. The steady states are given at zero frequency.

$$
\begin{equation*}
\text { If } \omega_{0}=0 \tag{7.14}
\end{equation*}
$$

then from Eq. (7.13) $\underline{B}^{*}=-\underline{A}^{*} \underline{E}^{*} 。$
Substituting into Eq. (7.13) gives

$$
\begin{equation*}
-\omega_{k} \Phi^{*} k=\underline{A}^{*}\left(\underline{r}_{k}^{*}-\underline{r}_{0}^{*}\right) \tag{7.15}
\end{equation*}
$$

Eq. (7.15) relates the plant matrix to its real and imaginary parts and can be written for all K fitted frequencies.

$$
\begin{align*}
& -\omega_{1} \Phi^{*}{ }_{1}=\underline{A}^{*}\left(\underline{r}_{1}^{*}-\underline{\underline{r}}_{0}^{*}\right) \\
& \vdots \tag{7.16}\\
& \vdots \\
& -\omega_{K} \Phi^{*}{ }_{K}=\underline{A}^{*}\left(\underline{r}^{*}{ }_{K}-\underline{r}_{0}^{*}\right)
\end{align*}
$$

which may be augmented and written in partitioned form

$$
-\left(\omega_{1} \Phi^{*} 1_{1}^{\prime} \ldots:_{k} \Phi^{*}{ }_{K}\right)=\underline{A}^{*}\left(\underline{\underline{r}}_{1}-\underline{\underline{r}}_{0}^{*}: \ldots \underline{\underline{r}}_{K}^{*}-\underline{\underline{r}}_{0}^{*}\right)
$$

or

$$
\begin{equation*}
\Phi^{*}=\underline{A}^{*} \underline{R}^{*} \tag{7.18}
\end{equation*}
$$

where \underline{R}^{*} and Φ^{*} are (m, pK) matrices.

7.3 PROBLEM SOLUTION

It has been shown above that the matrices Φ^{*} and R* can be built up from the known frequency responses of the full system for the selected states of x retained in x^{*}. Eq. (7.18) may be solved to give \underline{A}^{*} and Eq. (7.14) to give the input matrix \underline{B}^{*}, based on ensuring that the model has the correct steady states. Eq. (7.18) may be solved in the form:

$$
\begin{equation*}
\underline{R}^{* T} \quad \underline{A}^{* T}=\underline{\Phi}^{* T} \tag{7.19}
\end{equation*}
$$

The method is similar to that of Anderson (2) in that to ensure an adequate fit for all inputs and selected outputs a vast amount of data will be required in fitting over many frequencies. Thus in general the matrices. R* and Φ^{*} will not be square. Clearly the solution problem is very similar to that of Anderson and also the moments state variable order reduction, and the same method has been used for solving Eq. (7.19): the linear least-squares method of Golub (56).

As with the moments method steps have been taken to minimise the effect of unequal weighting in the problem. Unequal weighting is due to:-
a) low. frequencies having a larger (numerically) frequency response than the high frequencies.
b) some system outputs being numerically dominant.
c) outputs responding dissimilarly to different inputs.

The effect of weighting in Eq. (7.19) has been eliminated by solving $A * T$ and $\Phi * T$ one column at a time thus minimizing the error for each variable singly, the rows of $R * T$ being each time normalised with respect to the corresponding scalar element in $\Phi * T$, thus avoiding weighting for different frequencies and inputs. This is the same procedure as employed for the moments problem.

7.4 RESULTS

A l2th and llth order problem, each with two inputs,
have been reduced to fourth order models by matching the frequency response in the manner outlined above. The problems have been described in Chapter 6. They are the system of overdanped stirred tanks and the binary distillation column. Computational details and the time responses for each of these systems can be found in Appendix 3. A listing of the program used is also given in Appendix 3.

The illustrative example considered in Chapter 5 has also been analysed and will be given here.
7.4.1 Illustrative example

The 5 th order problem, described in Chapter 5 has been reduced to a third order model. The reduced model and computational details are shown in Table 7.1. The time responses for the retained variables are not given as the full and reduced model responses, for all variables, were coincident throughout the entire fitted range.

Table 7.1. Illustrative example-reduced order model

Variables retained	1	2	3

Frequencies fitted:

.0001	.0002	.0004	.0007
.001	.002	.004	.007
.01	.02	.04	.07
.1	.2	.4	.7
1	2	4	7
10	20	40	70
100	200	400	700

Table 7.1. Cont'd...

$$
\begin{array}{rlr}
\underline{A} * & =\left[\begin{array}{lrr}
-3.1485 & 1.4866 & -2.0978 \\
-0.0008 & -2.0154 & -0.0025 \\
-1.4657 & 0.1295 & -2.4863
\end{array}\right] \\
\underline{B^{*}} * & =\left[\begin{array}{l}
8.9711 \\
6.0002 \\
\underline{6} .0101
\end{array}\right] & \\
\text { Eigenvalues }=-1.0320 & -2.0173 & -4.6009
\end{array}
$$

7.5 DISCUSSUN OF RESULTS

It may be seen from the responses given in Appendix 3 that there is in general good agreement between the full and reduced order model responses. Two points may be noted in particular:
a) the steady state is always correctly fitted.
b) inherent system dead times are not always fitted closely. This has been commented upon in Chapter 6 and what was written there applies. However the responses in Appendix 3 snow that two variables with large dead times have been very closely fitted and are a better fit than given by the moments match. Other responses are typical of the moments match in that they oscillate about the dead time.

Analysis of the full and reduced system eigenvalues shows that the latter are well representative of the former.

The method has associated with it a number of
computational difficulties - these are all connected with the frequency range ovei which the model is to be fitted. Practice has shown that it is very difficult to find out over what range a model should be fitred. Clearly the fit should start near the steady state frequency. The difficulty is accentuated by the fact that each variable requires a different frequency range. This is particularly true of variables which have a large inherent time delay. One method of selecting a range is to relate the system time constants to a frequency. A large and small eigenvalue were selected and multiplied by 2π to give a start and finish frequency. This does however, involve a degree of judgement in selecting the eigenvalues. Before stating this as a criterion in selecting the frequency range more experience is recessary and a lot more models need to be fitted. Of course an alternative is to blanket fit, i.e. use a large number of frequencies. This, however, involves the same difficulty as experienced by Anderson (2) in that the arrays Φ^{*} and R^{*} become very large and the procedure computationally inefficient. It is thought that the good fit of the time delays referred to above is due to fitting over a wide range.

It has been shown that state variable models may be reduced in order by matching the frequency responses $i_{1}=$ care is taken in choosing the frequency ranges. It has the advantage over modal methods that the eigenanalysis
is not required and that variables of interest can be retained in the reduced model without an additional equation. It has the disadvantage however, that the complete frequency response is required, which may in the case of very large systems prove impractical.

7.6 NOMENCLATURE

A plant matrix
B input matrix
i $\sqrt{-1}$
K number of frequencies fitted
m reduced system order
n full system order
p number of inputs
R defined by Eqs. (7.17) and (7.18)
\underline{r}_{k} real part of $\underline{x}\left(i \omega_{k}\right)$
s Laplace operator
u forcing vector
$\underline{u}_{i} \quad$ unit vector for the ith input
$\underline{X}(i \omega)$ defined by Eq. (7.7)
Greek:
\pm defirsed by Eqs. (7.17) and (7.18)
Φ_{k} imaginary part of $\mathrm{x}\left(\mathrm{i} \boldsymbol{w}_{\mathrm{k}}\right)$
ω frequency

Superscript:

* reduced system

T transposed matrix

Transforms:
$\underline{x}(s)$ Laplace transform of \underline{x}
$\underline{x}(i \omega)$ frequency transform of x

8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Each of the main points raised in previous chapters will be concluded here. A detailed discussion can be found with each separate topic.

8.1 DAVISON'S ZERO METHOD

Use of the Davison method for determining, the zeroes of state variable models has shown that there is a difficulty concerned with the choice of the constant r. The value, 10^{15}, recommended by Davison has been shown to be inapplicable to some computer systems, and moreover if this value is used there may be significant errors in the predicted zeroes. If Γ is increased from 10^{3} to 10^{30} and an individual zero monitored it is found to exhibit two distinct plateaux and a region of instability. The first plateau always gives the correct zero (at Loughborough when $\Gamma=10^{7}$). As high a value of Γ as possible should be used before the unstable region is reached. To assist in noting this region two methods of monitoring the system stability have been developed.

8.2 A MODIEIED FORM OF THE LEVERRIER ALGORITHM
 It has been shown that use of the Leverrier

 algorithm to find the numerator polynomials of the trarsfer function matrix can lead to numerical errors when systems of high order are analysed. These errors are not apparent when working with systems up to about tenth order. The algorithm has, however, been reformulated in terms of the inverse plant matrix, when the resulting.polynomial coefficients are simply related to those derived from the standard algorithm. Clearly the inverse problem suffers from the same numerical difficulties as the forward: but it has been shown that solving one problem from either end of the characteristic equation gives two sets of coefficients which may be combined to give one acceptable set: some coefficients being drawn from the forward, and some from the reverse problem.

8.3 FREQUENCY RESPONSE COMPUTATION OF STATE VARIABLE MODELS

A comparison has been made between the different methods of computing the frequency response of a state variable model. It has been shown that where an efficient eigenvalue routine exists, and the response is required over many frequencies, definite savings in computational time can be made by first transforming the model to the Jordan canonical form thus eliminating the need to invert a matrix, possibly complex, for each frequency considered. The method does however, require more core store than others. Solution by this method can sometimes lead to numerical inaccuracies in systems with a wide spread of eigenvalues. These errors may possibly be eliminated by placing double precision working in critical parts of the program.

An area needing further investigation is the performance of the method when analysing systems with
complex or multiple eigenvalues. To date only real systems have been examined.

8.4 SIMILARITIES BETWEEN THE MOMENTS AND CONTINUED FRACTION METHODS

It was shown numerically in Chapter 3 that these two methods when applied to a seventh order model predicted the same second order model, and it was demonstrated in Chapter 4 why this must be so. Thus the continued fraction method satisfies not only its own criterion but also has the physical significance of matching the lower moments of the impulse response. It is believed that the second order model is not a special case but that relationships of the form shown in Chapter 4 exist for all orders of model, provided that the moments method is applied to a model of the type fitted by Chen's method. It has however, at the time of writing, been impossible to rigorously prove this.

8.5 REDUCTION OF STATE VARIABLE MODELS BY MATCHING

THE MOMENTS

The moments method of reducing the order of transfer functions has been successfully extended to the order reduction of state variable models. The reduced model retains the main characteristics of the full one, "although in the case of systems with large inherent time delays the reduced model does not always closely fit the full one over the initial response. This
deviation is thought to be an inevitable outcome of simplification. The method has the advantage over some others in that there is a free choice of variables retained, and further, that neither the time or frequency response, nor an eigen-analysis are required. The reduced models represent well the fuli models for the inputs investigated, impulse and step functions. Other forcings of the reduced model have not been examined.

There are arising from the moments work a number of possible extensions.

8.5.1 Introduction of a time delay into a state model

One failura of the state variable model is its inability to adequately represent a time delay. The usual method of introducing a delay is to model it with a series of first order lags. This does, of course, increase the order of the model proportionally. It is proposed that it may be possible to include a delay based on the moments state variable simplification method.

The effect of including a delay in a model is to shift the response to the right on the time scale. Moments computed about the mean of an impulse response, other than the first, are obviously unaffected by such a shift and remain constant. Thus if the vectors of system moments for each input are computed, as described in Chapter 2, and then normalised about the mean the effect of including a time delay is to add it
to the first moment only. The vectors may then be converłed back to unnormalised moments about the origin and formulated as described in Chapter 6. The problem is solved and A^{*}, which may or may not be reduced, is the plant matrix with the time delay included.

8.5.2 Application of the moments method to unstable systems

One criticism of the moments method is that it cannot be used to reduce systems which may possess a pole on, or to the right of, the complex axis. It is thought that application of the shifting theorem may renedy this by moving the eigenvalues so that they all lie in the left half of the complex plane.

By moving the eigenvalues an amount α and substituting

$$
\begin{equation*}
\underline{\dot{y}}=e^{\alpha t} \underline{x} \tag{8.1}
\end{equation*}
$$

the non stable system

$$
\begin{equation*}
\underline{\dot{x}}=\underline{A x}+\underline{B u} \tag{8.2}
\end{equation*}
$$

may be transformed to the stable system

$$
\begin{equation*}
\dot{\underline{~}}=(\underline{A}+\alpha \underline{I}) \underline{y}+e^{\alpha t} \underline{B u} \tag{8.3}
\end{equation*}
$$

where the input has been modified to take account of the shift. Such a scheme for reduction is only possible if the system will respond accurately to a response other than the fitted impulse.

8.5.3 Fitting part of a response only

It was reported in Chapter 5 that by carefully grouping, and selecting, the system eigenvalues, Davison's method can be used to fit accurately only that portion of a response which is of interest, other parts being less closely fitted. It is proposed that such a fit be effected using the moments method, by making use of a generalized Laplace transform

$$
\begin{equation*}
F(s)=\int_{T_{1}}^{T_{2}} e^{-s t} f(t) d t \tag{8.4}
\end{equation*}
$$

where the only difference to the normal transform is the integration interval.

If an anaiysis identical to that of the moments method, for either a transfer function or state variable model, is carried out, it is found that moments corresponding to the finite integration interval can be computed quitie simply from the moments of the infinite response, the cut off points, and the full model parameters. It is proposed that the simplified model be fitted to these "finite moments".

8.5.4 The approximate solution of partial differential equations using moments

If the moments method can be used to approximate transfer functions (the transform of an ordinary differential equation ($O D E$)) can it also be used to approximate the transform of a partial differential equation (PDE)?

Whilst PDE s are usually difficult to solve their solutions often gives rise to the standard responses, varying quite simply with the space parameter. The moments will also vary with this parameter in a similar manner. Clearly if the distribution of moments is known, they can be found at any point and a simple model fitted to them, thus giving a time solution at that point in space. As a PDE may be transformed to an ODE the distribution of moments ir. space is generally known.

8.6 REDUCTION OF STATE VARIABLE MOLELS BY MATCHING THE FREQUENCY RESPONSE

It has been shown that a state variable model can be successfully reduced to a lower order by matching the frequency response of the reduced model to that of the full model. The method is straightforward but does require the storage of a lot of numerical data. Like the moments method the fit to inherent system time delays is not always satisfactory.

More work is required to find over what frequency range a particular model should be fitted and also whether or not the reduced model responds well to inputs other than step and impulse.

8.7 CHEN'S STATE VARIABLE METHOD

It has not been possible to investigate Chen's state variable method and therefore little can be concluded. As the author had, however, reached a similar point in his work some time ago but discarded
the method because of the difficulty of handiing multiple inputs, other than by a least-squares method, it would be interesting to know how Chen has overcome the problem. Further, in view of the similarity between the continued fraction and moments transfer function work it would be of interest to know what, if any, comparisons can be made between the state variable methods.

8.8 CLOSING REMARKS

This work has shown that linear mathematical models can be successfully approximated by models of lower order, not only using rigid mathematical methods, some of which are alien to the engineer, but by making use of principles more readily understood.

There is still considerable interest in the field of model simplification and there remains a great deal more work still to be done, particularly in the area of non-linear and time varying systems. What is certain is that it is a fascinating topic!

1. Akin, J.E., A note on control system model simplification, Int. J. Control, 14, 5, 989-993, (1971).
2. Anderson, J.H., Geometrical approach to the reduction of dynamical systems, Proc. IEE 114, 7, 10141018, (1907).
3. Anderson, J.H., Computational difficulty associated with the reduction of dynamic systems, Electronics Letters, ${ }^{3}, 10,469$ (1967).
4. Anderson, J.H., Reduction of dynamical systems when certain elements of the reduced system matrices are specified, Electronics Letters 3, 11, 504 505, (1967).
5. Anderson, J.H., Adjustment of the responses of reduced dynamical systems, Electronics Letters 4 , 4, 75 - 76, (1968).
6. Anderson, J.H. and Kwan, H.W., The systematic reduction of complex process models; Two case studies, Int. Conf. on Computer Aided Design, Southampton, 15 - 18 April, (1969).
7. Aoki, M., Control of large scale dynamic systems by aggregation, IEEE. Trans. Automatic Control, AC-13, 3, (1968).
8. Ausman, I.S., Amplitude frequency response analysis and synthesis of unfactored transfer functions, ASME Trans., paper 62-NA-98, (1963).
9. Bass, R.W. and Gura, I., High order system design via state-space considerations, JACC preprints, p 311 Rensselaer Polytechnic, New York (1965).
10. Bollinger, R.E., Predictin fractionator dynamics using a frequency domain solution technique, Symp. on Computer and Mathematics for Engineering applications in industry, St. Louis (1968).
11. Bosley, M.J., Computation of frequency response from the state equations, Loughborough Univ. Chem. Eng. J., 5, 20-22 (1970).
12. Bosley, M.J., Kropholler, H.W., Lees, F.P. and Neale, R.M., The determination of transfer functions from state variable models, with comments by E.J. Davison and R.S. Morgan. Automatica 8, 213-218, (1972).
13. Bosley, M.J., Kropholler, H.W. and Lees, F.P., On the relation between the continued fraction expression and moments matching methods of model reduction, Submitted to Int. J. Control.
14. Bosley, M.J. and Lees, F.P., A survey of derivation of simple transfer functions from high order state variable models, Automatica, in press.
15. Bosley, M.J. and Lees, F.P., Methods for the reduction of high order state variable models to simple transfer functions models, IFAC Symp. on Digital Simulation of Continuous Processes, Gyor, Hungary, paper Bll, (1971).
16. Bosley, M.J. and Lees, F.P. The reduction of the order of state variable models using the method of moments, Submitted to Chem. Eng. Sci.
17. Brown, R.F., Reduction of order of linear state equations, Electronics Letters 4, 19, 416-417, (1968).
18. Buffham, B.A. and Gibilaro, L.G., A generalization of the tank in series mixing model, AIChE Journal 14, 5, 805-806, (1968).
19. Buffham, B.A. and Kropholler, H.W., Evaluation of the exponential matrix, Symp. on On-line computer methods relevant to Chemical Engineering, Univ. Nottingham, Sept. (1971).
20. Chandrasekharan, P.C. and Balakrishnan, K.V., Reduction of order of linear dynamic systems, J. Inst. Engineering (India), Electronics and Telecommunications 52, pt. EII, 1, 43 - 45 (1971).
21. Chen, C.F., A matrix cauer model in multivariable systems analysis and design, 4th UKAC Control Convention, Multivariable control system design and applications, 66 - 70, Manchester, 1-3 Sept., (1972).
22. Chen, C.F. Model reduction of multivariable control systems by means of matrix continued fractions, 5th IFAC World Congress, Paris, preprint 35.1, 12-17 June, (1972).
23. Chen, C.F. and Haas, I.J., Elements of Control Systems Analysis, Prentice-Hall, Englewood Cliffs, N.J. (1968).
24. Chen, C.F. and Knox, A.E., An identifier, Int. J. Electronics, 24, 6, 521-533, (1968).
25. Chen. C.F. and Philip, B.L., Graphical determination of transfer function coefficients of a system from its frequency response, IEEE. Trans. on Applications and Industry 82, 42-45, (1963).
26. Chen, C.F. and Philip, B.L., Accurate determination of complex root transfer functions from frequency response data, IEEE Trans. Automatic Control AC-10, $356-358$, (1965).
27. Chen, C.F. and Shieh, L.S., A novel approach to linear model simplification, Int. J. Control $\underline{8}$, 6, 561 - 570, (1968).
28. Chen, C.F. and Shieh, L.S., Continued fraction inversion by Routh's Algorithm, IEEE Trans. Circuit Theory CT-16, 2, 197-202, (1969).
29. Chen, C.F. and Shieh, L.S., An algebraic method for control system design, Int. J. Control 11, 5, 717-739, (1970).
30. Chen, C.T., A formula and algorithm for continued fraction inversion, Proc. IEEE 57, 10, 1780 1781, (1969).
31. Chidambara, M.R., Two simple techniques for the simplification of large dynamic systems, Proc. Joint Automatic Control Conf., Boulder, Colorado, 669 674, (1969).
32. Chidambara, M.R. and Davison, E.J., On a method for simplifying linear dynamic systems, IEEE Trans. Automatic Control: AC-12, 119 - 121, (1967).
33. Chidambara, M.R. and Davison, E.J., Further remarks on simplifying linear dynamic systems, IEEE Trans. Automatic Control AC-12, 213 - 214 (1967).
34. Chidambara, M.R. and Davison, E.J. Further comments on a method for simplifying linear dynamic systems, IEEE Trans. Automatic Control AC-12, 799-780,(1967).
35. Chuang, S.C., Application of continued fraction method for modelling transfer functions to give more accurate initial transient response, Electronics Letters 6, 26, 861-863, (1971).
36. Coggan, G.C. and Wilson, J.A., Approximate models and the elimination of bias in on-line estimation of industrial processes, Preprints B.C.S./Inst. Ch.E. Syinp. On-line computer methods relevant to Chemical Engineering, 136 - 150, 22 Sept., (1971).
37. Conte, S.D., Elementary Numerical Analysis, McGraw Hill Book Co., New York, (1965).
38. Cowherd, W.F. and Cadman, T.W., Numerical prediction of transfer functions, Instruments and Control Systems 42, 5, 109-113, (1969).
39. Davison, E.J., A method for simplifying linear dynamic systems, IEEE Trans. Automatic Control AC-11, 1, $93-101,(1966)$.
40. Davison, E.J., The numerical solution of large systems of linear differential equations, AIChE, Journal 14, 1, $46-50$, (1968).
41. Davison, E.J., The simplification of large linear systems, Control 12, 418-419, (1968).
42. Davison, E.J., A new method for simplifying large linear dynamic systems, IEEE Trans. Automatic Control VAC-13, 214 - 215, (1968).
43. Davison, E.J., On the calculation of zeroes of a linear constant system, IEEE Trans. Circuit Theory CT-18, 1, 183 - 184, (1971).
44. De Sarkar, A.K. and Dharma Rao, N., Dynamic system simplification and an application to power system stability studies, Proc. IEE 119, 7, 904-910,(1972).
45. Dudnikov, E.E., Automatika i Telemekhanika 20, 5, 576, (1959).
46. Evans, W.R. Control system dynamics, McGraw-Hill Book Co., New York, (1954).
47. Faddeev, D.K. and Faddeeva, V.N., Computational methods of Linear algebra, Freeman, London,(1963)
48. Fossard, A.J., Sur la simplification des modeles lineaires, Automatisme, 15, 4, 141-147, (1970).
49. Frame, J.S., Matrix functions and applications, Pt. IV. Matrix function and constituent matrices, IEEE Spectrum I, 123-131, (1964).
50. Freund, E., The reduction of multivariable systems Proc. 5th Hawai Int. Conf. on System Science, Honolulu, Hawai, 10 - 12, ll-13 Jan, (1972).
51. Gaisyenyuk, B.S., The reduction of the order of a transfer function in autcmatic systems (in russian), Is vestiyn Vyshikh Uchebnikh Zavyedyenii-Electromechanika 11, 1241-1246, (1969).
52. Ghani, F. and Ackroyd, M.H., Computing transfer functions from state space matrices, Electronic Letters, 7, 17, 487-489, (1971).
53. Gibilaro, L.G., Models for mixing in stirred vessels, Ph.D Thesis, Loughborough University of Technology, (1967).
54. Gibilaro, J..G. and Lees, F.P., The reduction of complex transfer function nodels to simple models using the method of moments, Chem. Eng. Sci. 24 , 85-93,(1969).
55. Gill, S., A process for the step by step integration of differential equations in an automatic digital computing machine, Proc. Camb. Phil. Soc., 47, 96-108, (1950).
56. Golub, G., Numerical methods for solving linear leastsquares problems. Numerische Mathematik 7, ISS3, 206-216, (1965).
57. Graham, E.U. and Strauss, J.C., Simplification of dynamic system models using parameter estimation, Proc. 2nd Princeton Conf. on Information Systems and Science.
58. Farriott, P., Process Control, McGraw-Hill Book Co., New York, (1964).
59. Hsia, T.C., On the simplification of linear systems IEEE Trans. Automatic Control AC-17, 372 - 374 , (1972).
60. Iinoya, K. and Altpeter, R.J., Inverse responses in process control, Ind. Eng. Chem. 54, 7, 39-43, (1962).
61. Johnson, E.F., Automatic process control, McGraw-Hill Book Co., New York, (1962).
62. Johnson, J.L., Fan, L.T. and Wu, Y.S., Comparison of moments, s-plane and frequency response methods for analyzing pulse testing data from flow systems, Ind. Eng. Chem. Proc. Des. Dev. 10, 425-431, (1971).
63. Kalyaev, A.V., Computing the transient response in linear systems by the method of reducing the order of the differential equation, Automatika i Telemekhanika 20, 9, 1141-1150, (In English), (1959).
64. Kardashov, A.A., An analysis of the quality of an automatic control system by the method of lowering the order of the differential equation, Automation and Remote Control 24, 8, 978-988, (1963).
65. Kendall, M.G. and Stuart, A., The advanced theory of statistics, Vol. 1, 67-71, Charles Griffin, London, (1958).
66. Khovanskii, A.N., Application of continued fractions and their generalization to problems of approximate analysis, Technical-Theoretical Literature Publishers, Moscow, (1956).
67. Klinkenberg, A., Distribution of residence times in a cascade of mixed vessels with backmixing, Ind. Eng. Chem. Fund. 5, 283-285, (1966).
68. Kropholler, H.W., The determination of relative variance and other moments for generalized flow networks or system transfer functions, Ind. Eng. Chem. Fund. 9, 3, 329-333, (1970).
69. Kropholler, H.W. and Neale, R.M., Determination of the zeroes of a transfer function, 2nd IFAC Symp on Multivariable Technical Control Systems, Dusseldorf,(1971).
70. Kuo, J.C.W. and Wei, J., A lumping analysis in monomolecular reaction systems - Analysis of the exactly and approximately lumpable systems (2 papers), I \& EC Fund. 8, 1, 114-133, (1969).
71. Kuppurajulu, A. and Elangovan, S., System analysis by simplified models, IEEE Trans. Automatic Control AC15, $234-237,(1970)$.
72. Lamb, D.E. and Rippin, D.W.T., A theoretical study of the dynamics and control of binary distillation columns, 53rd annual AIChE meeting, Washington,(1960).
73. Lanczos, C., Applied analysis, Pitman, London, (1957).
74. Lapidus, L., Digital computation for chemical engineers, 346 - 354, McGraw-Hill Book Co., New York, (1962).
75. Lees, F.P., The determination of the moments of the impulse response of chemical processes from the basic transformed equations. Chem. Eng. Sci. 24, 1607-1613, (1969).
76. Lees, F.P., Unsteady state models of gas absorption columns, Ph.D. Thesis, Lovghborough University of Technology, (1969).
77. Lees, F. P., The derivation of simple transfer function models of oscillating and inverting processes from the basic transformed equations using the method of moments, Chem. Eng. Sci. 26, 1179-1186, (1971).
78. Leverrier, U.J.J., Sur les variations seculaire des elements des orbites, J. Math.,(1840).
79. Levy, E.C., Complex curve fitting, IRE Trans. Automatic Control AC-4, 37 - 43, (1959).
80. Linrill, J.G., The selection of network functions to approximate prescribed frequency characteristics, Tech. Dept. 145, MIT Research Lab. of Electronics, Cambridge, Mass., (1950).
81. Luenberger, D.G. and Meier, L., Approximation of linear constant systems, Joint Automatic Control Conf., Seattle, Wash., Aug l7-19, 728-735, (1966).
82. Marshall, S. A., An approximate method for reducing the order of a linear system, Control 10, 642-643, (1966).
83. Marshall, S. A., The reduction of the order of linear dynamical systems, Inst. Meas. Control/ United Simulation Council meeting on Reduction of system models to usable dimensions, CEGB London, 16 Nov, (1971).
84. Marshall, S.A., Remarks on computing the zeroes of large systems, IEEE Trans. Automatic Control AC-17, 261, (.1972).
85. Matsubura, M., On the equivalent deadtime, IEEE Trans. Automatic Control AC-10, 464-466, (1965).
86. Mayne, D., An algorithm for the calculation of the pseudo-inverse of a singular matrix, Computer J. 9, 312-317, (1966).
87. Meier, L. and Luenberger, D.G., Approximation of linear constant systems, IEEE Trans. Automatic Control AC-12, 585-588, (1967).
88. Melsa, I. L., Computer programs for computational assistance in the study of linear control theory, McGraw Hill Book Co.., New York, (1970).
89. Mitra, D., On the reduction of complexity of linear dynamical models, UKAEA, Rep. R520, Winfrith, (1967).
90. Mitra, D., On the reduction of complexity of linear dynamical models - computer studies, UKAEA Rep. R535, Winfrith, (1967).
91. Mitra, D., The reduction of complexity of linear time invariant dynamical systems, IFAC World Congress, Warsaw, 19-33, (1969).
92. Mitra, D., W matrix and the geometry of model eigenvalue and reductions, Proc. IEE 116, 6, 1101 1106, (1969).
93. Mitra, D., Analytical results on the use of reduced models in the control of linear dynamical systems, Proc. IEE 116, 8, 1439-1444, (1969).
94. Morgan, B.S., Sensitivity analysis and synthesis of multivariable systems, IEFE Trans. Automatic Control AC-11, 3, 506-512, (1966).
95. Nagarajan, R., Optimum reduction of large dynamic systems, Int. J. Control 14, 6, 1169-1174, (1971).
96. Naslin, P., Dynamics of linear and non-linear systems, Blackie, London, (1965).
97. Neale, R.M., The dynamics of multistage systems, Ph.D Thesis, Loughborough University of Technology (1971).
98. Nicholson, H., Dynamic optimisation of a boiler, Proc. TEE 111, 8, 1479-1499, (1964).
99. Nicholson, H. and Anderson, J.H., Geometrical approach to reduction of dynamical systems, Proc. IEE 115, 2, 361-363, (1968).
100. Ogata, S., State Space Analysis of Control Systems Prentice-Hall, Englewood Cliffs, N.J., (1967).
101. Dang, K.H. and Johnson, A.I., The determination of theoretical frequency response of some stagewise processes, Can. J. Chem. Eng. 47, 477-482, (1969).
102. Payne, P.A., An improved technique for transfer function synthesis from frequency response data, IEEE Trans. Automatic Control AC-15, 480-483, (1970).
103. Paynter, H.M., On an analogy between stochastic processes and monotone dynamic systems, in G. Malker (ed.) Regelungstechnik moderne theorien und Ihre verwendbarkeit, R. Oldesbourg, Verlag, 243 250, (1956).
104. Rosenbrock, H.H., Transfer matrix of linear dynamic systems, Electronics Letters 1 , $95-96$, (1965).
105. Rosenbrock, H.H. : State Space and multivariable theory, Nelson, London, (1970).
106. Sanathanan, C.K. and Koerner, J., Transfer function synthesis as a ratio of two complex polynomials, IEEE Trans. Automatic Control AC-8, 56-58, (1963).
107. Shieh, L.J., Chen, C.F., and Huang, C.J., Simple methods for identifying linear systems from frequency and time response data, Int. J. Control 13, 6, 1027 - 1039, (1971).
108. Shunta, J.P. and Luyben, W.L., Comparison of stepping and general complex matrix inversion techniques in calculating the frequency response of binary distillation columns, Ind. Eng. Chem. Fund. 8, 4, 838-840, (1969).
109. Sinha, iv.K. and Bereznai, G.T., Optimum approximation of high-order systems by low-order models, Int. J. Control 14, 5, 951 - 959, (1971).
110. Sinha, N.K. and Pille, W., A new method for the reduction of dynamic systems, Int. J. Control 14 , 1, 111-118, (1971).

1ll. Souriau, J. M., Une methode pour la decomposition spectrale et l'inversion des matrices, C. R. Acad. Sci. 227, 1010 - 1011, (1948).
112. Strobel, H., On a new method of determining the transfer function by simultaneous evaluation of the real and imaginary parts of the measured frequency response, 3rd IFAC Conf., London, paper 1F, (1966).
113. Sumner, A., A method of fitting rational transfer functions to frequency responses, Proc. Inst. Mech. Engrs. 179, Pt. 3H, 132-137, (1964-65).
114. Tether, A.J., Construction of minimal linear state-variable models from finite input-output data, IEEE. Trans. Automatic Control AC-15, 427-436, (1970).
115. Towill, D.R., Transfer function techniques for control engineers, Iliffe, London, (1970).
116. Towill, D.R. and Mehdi, Z., Prediction of the transient response sensitivity of high order linear systems using low order models, Measurement and Control 3, Tl - T9, (1970).
117. Truxal, J.G., Control system synthesis, McGrawHill Book Co., New York, (1955).
118. Wall, H.S., Analytic theory of continued fractions, 182, Van Nostrand, New York, (1948).
119. White, G.W.T, The calculation of pole-zero patterns for process control problems, Trans. Soc. Instrument. Tech., 18, 3, 118 - 122, (1966).
120. Wilkinson, J.H., The algebraic eigenvalue problem, Oxford Univ. Press, (1965).
121. Wilson, D.A., Optimum solution of model reduction problems, Proc. IEE 117, 6, 1161-1165, (1970).
122. Woods, R.M., The frequency response of multicomponent distillation columns, Trans. Inst. Chem. Engrs. 45, T190-T195, (1967).
123. Young, J.F., Determination of transfer function coefficients, Control, 10, 5, 246 - 248, (1966).

APPENDIX 1

Al. 1 A listing of the Levy program.

```
MASTER LEVY UITH S/K MODS
?F91. TNGT(200)
#FA! IAMOA(40), IMAG(?00)
GOMDIEX C?
)rME*STON WL(200),S(40),W(200),D(200),T(41),U(40),A(1600)
):MENSTON R(40), X(40),AA(9600)
VENEUSION RT(2OO)
EgHT\\IVNCE (AA(1),IMAGT(1)),(AA(201),RT(1))
GOMMON VOPDINT
```

```
C**********************************************************************
C
C TUIS DOOGRAM PEADS IN FREQUENCY RESPONSE DATA AND EITS TO IFA
C. TOANSFFQ FIINCTION (POLYNOMIAL RATIO) BY A LEAST SQUARES TVPE
C METHOD. THE PROGRAM IS BASED ON THE LEVY METHODIREF...
                            SANATHANAN % KOERNFR,IEEE TRANS V. AC-8:P.56.JAN 196
DATA २FQUIRED
IRUH=NHMRER OF OIFFERENT ORDER PRANSFER FUNGTION TO BE FITTED
TO FACH CREQUENCY RESPONSE.
VE=NIMMER OF FREQUENCIES CONSIDERED
MONF. .. FREQUENCY RESPONSE DAPA MAY EITHER GE READ IN AS THF REAL
AVO fPASI|SAY PARTS (HODE=O) OR AS THE AMPLITUED RAFIO AND DMASE
)PFFERPNCE(MOOF#G)
    |FRED!!ENCY
    マZOEAI PART(MODEZO) OR AMPIITUDE RATIO(MODEEY)
    IGAGzi*AGINAPY ART (MONEFO) OR PHF PHASE DIFFERENCE(MODEEq)
    Y=ATDE: OF FME NUMERATOR DOLYNOMIAL.
    #ENG"%O DF DENOMINATOR POLYNIMIGL
    NTTEO!IMGFR OF ITTERATIONS TO BF MADE
    BONGRAM WRITTEN BY:
    M.J. BOSIFY,
    DEPT. CHEMICAL FNGINEERINO,
    LOUGMRODOUGM UNIVERSIYY OF TECHNOLOGY.
e
```



```
r
C.TIT GEETION READS IM DATA OCONVERTS IT TO THE REQIJRED FORM
P AUN :AOYTES A DATA CHFCK
r
    {FAD(9,69)!日t!N
    0EGD(9.B4)NF
    :RAO(9.KM)NODF
```



```
    \GDRYVT#0
    J口{YF(:.72)
    lF(f1)NF.FO.O)GO TO 120
    NGBG!NT:!
3nit. CALL IEVVG(D,INAG,W,NF)
```



```
            ,10t7F(?,18)
            0^74 1:9,NF
        7h &!ITF(?,75)I,R(I),IMAG(I),W(I)
            \becauseO!TF(?.20Sn)
            Din zInO KIQ=1,IRUN
            OFAD(4.GY)M,N,NIT
            H口!TF(?,20NA)M,N
```

```
    On 1 k=?,NF
    ! &((K)=9
r
r
r
THIS SFCTION COMPITES PHE SUMMATIONS SITIU，ANO LAMDA
On 110 ITER＝9，NIT
\(\downarrow=-1\)
ก0 \(21=1: 2+N+1\)
da－J
S（t）＝f
```



```
（F（J）4．5．6
\＆ r （！）\(=\) ？
Mn \(7 \times=1, \mathrm{HF}\)
\(7 \quad i(1)=T(1)+b(K) * *(I=1) * I M A G(K) * W L(K)\)
on T © \(?\)
4 Lamites），U（T）\(=0\)
```



```
I．AMnA（I）＝ \(1 . A M \cap A(I) * W(K) * *(I=I) * W L(K)\)
```



```
－COATINAR
TYF METHOH SEYS UP THE MATRIX FQHATION
\(A B=C\)
THIS SFETION SETS UP THE A MATRIX
\(\mathrm{NA}=\mathrm{N}+\mathrm{C}+\mathrm{C}+9\)
```



```
Jフ＝－ 1
nの 1 ； \(1=1, M+1\)
J \(2=-\mathrm{J}\) ？
```



```
J9＝－9
IE（1）14．5．97
17 กी 7 ？ \(1: 1, M+1,2\)
小9 \(=\mathrm{m}=\mathrm{J} 9\)
A（i＋Ma＊（J＝1））zJi＊LAMDA（K）
72 KュKか？
GO 715
```



```
」 1 aー」
\(A(Y+n A+(J=\{ ))=J 9+\) LAMnA \((K)\)
10 xat＋？
15 Cnat 1 लum
－ \(7=1\)
Ne？
กn \(25: m+4+2, N A\)
```



```
人1：
さンシース
```



```
：F（．17）74．5．2？
```



```
J4n－！ 4
```



```
？ \(2<k+\) ？
```



```
\(19>-.11\)
（ ()\(+44+(J=\{ )=1(K) * 1\)
```

```
?h<=k+Z
2) <=v!
    19=-1
    7% 2t, 1*1, 1, +1
    d=-17
    \thereforeT+1
    7%(.11)?8,5.?9
20 1?=-4
    On 77 1mM+?,NA,?
        1>=-17
    A(1+4A*(J-4))=\2*Y(K)
    ;E(I.RO.NA)GO rO 27
```



```
    !品 \人
2? j2n=1
    MO 3O ImN+7,NA,2
```



```
    15(1.EO.NA)OOTO 30
```



```
    19=-1?
#%. & = kt?
7M OnNTTQ,MF
    |=-4
    k,4}=
    #n 31 1*P:4?,NA
    < q < % q+9
    &=k!
    \therefore9 = -.19
    15(11)\?,5.86
{( |2m=1
    R\cap PT 1=9,14+1,?
    , 2=037
    4()+(1)+(J-1))=\2*T(K)
    12(J.Ef. 1.1+9)G0 ro 27
    ((Y+N+s*J)==, \?*S(K+9)
4? k=k+?
    #の %n i4
ษ゙ i:=-?
```



```
    1>=0.\
    {({+(A+(d-1))=J2*S(k)
    ir(d.En.i4+9)(j0 t0 R名
    4(I+R:A+J)= J O+T(K+1).
A只 
ST CONT!MHE
M TUYS e=CTINN SETS UD THE C VEPTOR
    19:=1
    K=9
    ;n $.3 1: 1,M+1
    \9=-j9
    1F(J1)34,5,35
```



```
    %\cap T^{3
zi4 [(1)=T(V)
<7 }v=k+
    ONOO P= 隹+?,NA
q! O(1)=0
    v=2
    Sn 9! T=4+3,INA,?
    G(I)=:(%)
```

 TMTS GFCTION SOLVES THF MATRIX EQUATION 8 STORES THE PARAMETERS
 $$
\text { in } 4 x p: y x .
$$

${ }^{+} \mathrm{Al}=9$
CAII E\&ACSL(A,B,NA,NAI,NA,IN,X,D,TH,IT,AA,S,T)
Iと(1T) RM, 37,38

in T n 5

rn $70<$
r
TWTE
ANP CALEILATES THE WEIGTHING FUMCTION TO BF USED ON THE
r
WEYY ITTEOATIO甘
r
है. IRTTA(.) hY)ITER
10 (1Ef2,42)
ifnrry (2,43) (X(I), I世1, M49)
$\because n+7=(7,64)$
$\therefore 1 \times 1$

: $74-4$
IF(N.EO.1)GOTO 101

! E(N.Eの, ?) GO TO 90
กก $791=9,14-2$
Imelm

CAI IFVVZ(W,NF,NA,N,M,X,RT,IMAGT,RIIMAG,HLJ
A A Condryallt
5 wot'

GO TO AO

くケの口
*i Fnqu: (5T0)
大⿹ 500nAT(3150.0)

TA FODNST(ZZH OARAMFTFQS DERIVED ON TERATIONEIS)

ar FCQHAY(5THク OFAL IMAGINARY FEOEN
* い

$\because 5 \quad 6 \operatorname{cosint}(15,3(4 X, E\{4,5))$

? ○品
54n


```
    SOMO!EY FMUN, DEAOM,EQROR
    A|NEHCTON 'O(NF), X(NA), RT(NE), Q(NF),WL(NF)
    TWTS SFGOEAT GIVEN THE PARAMETERS OF THE DOLYNOMIAL COMPUTES AND
    HEITES THE FRERUENCY RESPONSE ANO COMPUTES FROM THIS THE FRROR
    SETGKF: TME :YRIGINAL DATA AND THAY GIVEN AY THE FITYED MODFL
```

```
    101TE(?,A)
```

 101TE(?,A)
 HOYTS(2,2)
 HOYTS(2,2)
 "c!ref(a, O
 "c!ref(a, O
 TOTEU0=0
    ```
    TOTEU0=0
```



```
    A=x(!;+1)+w(K)
```

 A=x(!;+1)+w(K)
 11:x(M)
 11:x(M)
 #WIf+mr\O! x(A\,A)
 #WIf+mr\O! x(A\,A)
 T = '4
 T = '4
 TE(M.53.9)G0 TO 19
 TE(M.53.9)G0 TO 19
 Tn 4 19=9,A=9
 Tn 4 19=9,A=9
 !=4-14
    ```
    !=4-14
```



```
14 COwT:!!1E
```

14 COwT:!!1E
is(%.EO.1)GOTO {?

```
    is(%.EO.1)GOTO {?
```



```
    \therefore1=X(:A.-i)
```

```
    \therefore1=X(:A.-i)
```



```
        ?E(H.EO.?)GO TO 13
```

 ?E(H.EO.?)GO TO 13
 nN: {1= ki-?
 nN: {1= ki-?
 !=1-14
    ```
        !=1-14
```



```
9* Conctimule
```

```
9* Conctimule
```



```
        TOTFQR=FOTGR&*WL(K)*(REAL(ERROR)*REAL(ERROR)*AIMAG(ERRAR)
```

 TOTFQR=FOTGR&*WL(K)*(REAL(ERROR)*REAL(ERROR)*AIMAG(ERRAR)
 9 *AIMAS(EROOR):
 9 *AIMAS(EROOR):
 IMACT(K)=AIMRG(ENUM/DENOM)
 IMACT(K)=AIMRG(ENUM/DENOM)
 R+(*)=OFA!_(FN|M/DENOM)
 R+(*)=OFA!_(FN|M/DENOM)
 * DostE(>, P)*,gT(K),INA(GT(K),W(K)
 * DostE(>, P)*,gT(K),INA(GT(K),W(K)
 G:TE(?, 30)TOTERR
 G:TE(?, 30)TOTERR
 #5%ifm
 #5%ifm
 1: culimi=r(40!x(y!9).0.)
1: culimi=r(40!x(y!9).0.)
\&0 ra 19
\&0 ra 19
12 am,N"1=CMO(Y(X(NA), O.)
12 am,N"1=CMO(Y(X(NA), O.)
\0 T0 1?
\0 T0 1?
M ZOMHAT(GNHO REAL IMARINARY FREQUENES
M ZOMHAT(GNHO REAL IMARINARY FREQUENES
*)
*)
, GOMBATPGAM CALCUI.ATED RESILTSS EROM LEVY POIYNOMIAL RAYEOS
, GOMBATPGAM CALCUI.ATED RESILTSS EROM LEVY POIYNOMIAL RAYEOS
* Ens+4<t////)
* Ens+4<t////)
* CnDMAT(13,5(4x,F{4,5))

```
    * CnDMAT(13,5(4x,F{4,5))
```



```
    FNO
```

```
    FNO
```

sllapoltyne Levra（X，Y，W，NO）
OTAFNS：ON X（AO），Y（AO），W（NO）
COMMOM NOPRINT

THTC GFGMENT GIVEN THE FREQUENCV EFSPONSE IN THE FORM OF GMPLITUD RATIC AUO PHASF DIEFERENCE COMVERTS IT TO THE EUGVALENY REAL ANO IMACINREY DARTS
 URY「（7，9）

1Y）
2円 CONTTNHE

（FENODRYT．FO，I）GO TO ？ 1

v（1）mv（i）：3．14150／180．
$v \in=y(t)$
xCEx（1）
yery $x+\cos \cos (Y S)$
Y（Y）ニy®＊itmers）
qr．Anetyluif
QएT：IOM
500

APPENDIX 1

Al. 2 Solution of the illustrative example by Levy's method.

FHIL :AOAFL MATA

WHAEBATRD ROFPFICENTS STADTING UITH ZEROTH IN ASCENDING ORDER

$$
\text { i. . } 150001: 00 \quad-0.105922 F=09
$$

DRMCMINATOO CUEFFICFATS SYARTING WITH YHE ZERDTY IN ASCENDING OROER

```
A.9n\0:ME 09 0.758790F 0! 0.703574F 00
```


| i 7 | －11．44342E－172 | －0．76982E－01 | 0.20000804 |
| :---: | :---: | :---: | :---: |
| 96. | －19． $380.565-09$ | －0．40483F－09 | 0.30000 E 0.9 |
| 97 | | － $0.77973 \mathrm{Em?}$ | 0.4000 CE Ot |
| $9 \times$ | －3．168O35－17 | －0．21201F－03 | 0.90000509 |

PARAMETFRS NERIVFO ON ITERATION？

W：OPRGTHO GOFFFICENTS STARTING WITH TFRATH IN ASCENDING OROER

```
3.94095%00 - 0.04?400E-02
```

MEAMAINATIQ COFFEICENTS STARTING MITH THE ZEROTH IN ASCENDING OROER

```
%.inn#OnF !9 0.754708F nO 0.742374E 00
```

| ¢M！CHLATEA | | RESIITS | FROM | tevy | POLYNAMIAI | RATIO | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 日FAI． | | | friagtnarv | | FREQUENC | CY |
| ？ | | 91609F | 00 | | ． 06085 Fm 04 | | 0.90000 E | －02 |
| ？ | 1 | 49AOOE | 00 | | ．06084E－03 | | $0.90005 \mathrm{E}=$ | －04 |
| ； | \therefore | 14590 F | ก0 | | ． 993968×12 | | 9． $20000 \mathrm{E}=$ | － 09 |
| 4 | 4 | 19593F | 30 | | $.387845-12$ | | 0.40000 E | －09 |
| \square | 0. | 19583E | 10 | | 58157Em02 | | 1）． 50009 E | － 09 |
| ＊ | is． | 1155\％F | 00 | | | | ＋）． 10000 E | 00 |
| \because | A | 19407E | 00 | | ． 9 97685－0！ | | 0.200008 | 00 |
| ＊ | 1. | 41298F | 00 | | ． 239935 m （ | | $0.25000 E$ | 00 |
| 0 | | 17870F | 00 | | ． 377475009 | | 0.40000 E | 00 |
| $9:$ | \bigcirc | 9384めF＝ | | | ．62919F＝01 | | 0.70000 E | 00 |
| 11 | 1 | 7才708Fm | | | .79813 Em （19 | | 0.100008 | 01 |
| 12 | \because | 7nctiof－ | | | 973385－n4 | | $0.15000 E$ | 09 |
| 1 ： | －3 | 67？785－ | \％ 7 | | ． $77321 \mathrm{~F}=01$ | | 0.200005 | 04 |
| $9:$ | $0 \cdot$ | 734708－ | 019 | | ．39763E－09 | | 0.30000 E | 09 |
| ＊ | － | 243605m | | | $.17470 \mathrm{Em9}$ | | 9．80000E | 04 |
| ¢ | | 954806－ | 01 | | ．2312750n2 | | 0．60000E | 04 |

[^1]

ACMOMTMATOE COEFFICENTS STARTING WITH THE ZEROTH IN ASCENDING ORAER

```
O.1nnn:%ren1
1.755037E On
n.242638600
```



```
THYAL FOPIR IN COMPLEX FITTING % O.J.54S2EE=0%
```


TOTAL FQROR I: GOHPLEX FYYTING: 0.264626E-03

2ロ2FMETEQ: AEPIVED ON ITERATION 5

NHMRQTOS COFEFICEYTS STADTING UITH ZEOATH IN ASCENAING ORDER

$$
\therefore .490019 E 100 \quad-0.930045 E-12
$$

Meqninfatho goegficents stanting with the zeroth in ascending order

$$
\therefore .103010 \mathrm{O} \quad 0.755937 \mathrm{~F} 00 \quad 0.292650 \mathrm{0} 0
$$

| α | 11．14553500 | －0．95832E－02 | $0.10000 E$ | 00 |
| :---: | :---: | :---: | :---: | :---: |
| 7 | 1．1407E 60 | －0．172795－01 | 0.20000 E | 6.0 |
| \cdots | －19208E 介0 | －0．239955m01 | 0.250008 | 00 |
| \％ | 9．103J76 ${ }^{\text {a }}$ | －0．37751F－01 | 0.400008 | 00 |
| 1.1 | 3．03251E－01 | －0．62127E－01 | 0.7000 E | 00 |
| 11 | A． $797845-09$ | －1．79827F－01 | 0.900005 | 09 |
| 13 | ？38547E－11 | － 0.8924 ？ 0 － 01 | C． 95000 E | 09 |
| 1 \％ | | － $0.773005-01$ | $0.20000 E$ | 01 |
| 1： | －？． $944775-94$ | －0．307285－01 | 0.800005 | 04 |
| 1： | －）． $23230 \mathrm{E}=19$ | － $0.174614=09$ | 0.60000 E | 04 |
| 1＊ | －－ 15 5545－01 | －0．231758－0？ | O．4000nE | 0. |

TシV リSTMA NISFEREVT OROFRS

APPENDIX 1

Al. 3 A listing of the continued fraction program.

HASTEO CHESISSHIEH RY ROUTH ARRAY

तTMEVETON INT(?O), ITS(ZO)
CADA日G胃 /STAR/ISTAB
\because nmann $C(1706), 81(36), 1 \mathrm{ME}$


```
OETFRMYNE THE INPUT MONE
\eta=An(1,1)MODE
icemanf.eo.1)GO TO %
```

r

$3 \operatorname{son}(4$, T）CCNST

ABI EIODLE（FNUM，NYC，NZ，ZD，H，NM）
小 $=40$
$4 N=? n+9$
$4=2+M x-1$
另 $4 \quad 1=1, N 7+9$
$\therefore=(?+1+(f-1))=E N(1)(J)+$ ONST

1．$-7+4 x_{1}=1$
esanfa，J）（ $A(q+1 . *(J+1)), J=1, N N)$
oc．in（9，$\ddagger)(A(?+L+(J m 9)), 1=1, N M)$
An $16, \quad:=N M+1, N N$
$46 A(7+1+(1-9))=0$
OAT：T NOUIN A FORM YO RUN THS METHOD，PARAMFTERS ARE SET
FOD UCS IN THE SUARDUTINES ANO TYME DATA PS READ IN．

7 LEんD（4，F）DT，TMAX
$\therefore 17,1=1, N N$
$+(9+1+(1-1))=A(1+L \omega(J-9)) / A(1+L+(N N-9))$
$4(7+3 *(1-1))=A(7+1 *(1 \infty 9)) / A(9+1 .(2 N+1))$
A $97=x+1$
（x $+(t+1 *(J-1)=0$
HETTf（7， H$) \mathrm{M}$
rosnmo
FOOTKTMy
N以
$\alpha=n$
7ก $15 \quad 1=1.2$
nn 5 ： $51, \mathrm{NN}$
$t=4+4$
a $4 \quad$ v（Y）$=A(I+L *(J-9))$

$\therefore 7=3+\left(4 h_{1} \rightarrow-1\right)$
THIS SECTION RFADS IN DATA IN POLEIZERO FORM ANO CONVERTS IT TO
VITEGATMR BNA DENOMTNATOR ROLYNOMTALS USING SURROUFINE FUADLE
SCAR PH FOUES
2EAN(4, 3)(7D(1), IE 9, NP)
CSil E:HDNLE (DENOKI,NDC,ND,ZD,H,NN)
3ก 4 (29, N
($:(9+1 .+(1-9))=0$ ENAM(J)

- $1\left(2+(-(5-1))=0^{\circ}\right.$
in Tr 7
TWIS SECTION READS IN DATB IN POLYNOMIAL FORM
f
r

CAII RLCKPOUYH（NQ，E2，NND，A，H，IDRINT）
 い！PTE（2，34）
hin T：in

く3ENHO＋N世N
－$\because=7 * K ?+? * N N P$
N4アコス
l＝（「KFr．ro．f）GOTO1
Y－0

＜$x+\cdots+$
9－$(1+1+(J-9))=H(k)$
吅 4 ：
ar $17,7 \times 1$ Nif
$9(1(i+1+(.!-i))=0$
SMMDITE THE K COEFEICIENYS
C：1：GMITHAREAY（N：，NZ，NN，A，H）
GEAUCE THE SYSTKM ORDER AND RETIRN TO BACKAOUTN TO
SGNDHTE THE FARAMETERS．
TODT：T＝0
TOS日路
9 M ：ncware－
$\therefore=\mathrm{AN}=$－
1．$-2+\operatorname{lan} 0-1$
［5（Av2．LT．3）STOP
？a！
30．Tは 97
今rne
－Finnat（419）
＊：70：4．1TP7050．1）

1？FOOBATC／／／／ZMY GEDLIGFI MODFL OF ODOER 1 IS，／／／／）
3：ODDMT（3L4 THIS SYSTEM IS UNSTABLF）
＝vの

THIS SLGMEST ORGANISFS THE MIITYPIYING OUT OF A TEANEFER FUNCTIO
IN DAIEIZEON FORM TO A RATIO OF TWO POLYNOMIALS
ve（Ky．eg．0）C（1）＝1
\rightarrow ？
$8:(\mathrm{CO}=2.0) 60$ TП
$\because=k+?$
（e（k．we．2） 60 ro 3
（M）（C（9）$=7 P(k-1) * * 2+2 D(<) * * 2$
$+(2),+(2)=-2.0+20(k-9)$
$n(3), C(2)=9.0$

```
    Y.0or =%
A Jr(K.EO.K(.) rO TO (
    \Piत 个?:
7.u(*)=y口(r-{)**? * 7P(K)**2
    T(?)=-2.0-2P(K-1)
    x(x)=4.0
    '% %
    ;DT = it*出-9
    GA!L EPONLY(A,B,C,M,N,BPT)
    * = | O%
    nO 5 1-1.M
A(T)}=\textrm{C}(\textrm{J}
    6^T!4
4 v=v+1
    IE(X.GT,<T) FETURN
    If(X.5日.1)(10 TO 7
    A(9):-7D(K)
    %(?)
    v=?
    TOTEM4+AM1
    FALLETNOIV(A,R,C,M,V,IDT)
    A = 10%
    Ma 8 17%.4
\thereforeA(!)= C(I)
    0nTr*
7 (i4).C(9) = - 2D(k)
    a(ว).C(7)=1.0
    G10T=?
    #口TM,
    60!
```



```
    FH:E ERGOMET MHLTIDI.IES TYO DOIVNOMIALS A,G OF LFNGYHM,N
    T9 5OQS A THIRN PDIYNOMIAL C OF LFNGTH IPT, WHERE IPT IS SET
    IO N+ \O.q av THT: USER
    97 1 1=9.10%
10(;)=0.0
    In}=
*.Jr=.10+9
    IO = 1r+9
    - ge(Jc.rr.IDT) RETUEN
    1: = 0
| = 1:+1
    !E(yA.rit.M) gO TO?
    10=n
c. 10= ! O.4.
    |E(IA.GY.N) क0 TO 3
    IE((IA+IS),NE.IP) {0 rn 4
    i.(IC)=(IS)*B(IB)+C(JC)
    in TO*
    EN:
```

```
    S!IROOITINE GACKOOUTH(N4,NR,NNR,A,H,IFRINT)
    O!MFNS!ON A(N4),H(N?)
    CMIAMTA/STAR/ISTAR
    THIS CEGNEMT GIVEN THE CHENR SHIEH M COEFFICIENTS FORMS THE
    CM~RFGOMINTNG ROUTH ARRAY EROM WHICM THE TRANSFER FUNCTION
    COFEFYTENTS YQE FOUND
    ICTA'旦的
    :->.!{Nama
```



```
    IE(IDGYNT.FR.1)GO TO &
    #) { im!,N1
4 4(1)=0
    4(!)=1
    @0 2 x-9,1-4
    i=1.-k
7 1(1)=u(t)*A(1+9)
    I= 1-9
    1434
    ! >- - ?
    OM 人= 1,1-2
    !2i-i
    1.2%-1.3
    T=(1).0日.1)(1=6149
    7n 3.19%.L.
```



```
    #! Tf R
    NO द P:+1,?
    On & J#Q,NHR
،.A(1+(.+(A-1))=A(I+L+(J-q))/A(4+L*(NNR-i))
* EMT\M:1%
```



```
    |^T{(?,7)(A(2+L*(J-9)),J#9,NNR)
    ;) 1 \ .1%1.NN&
1: :C(A(9+L+(J-9)).LT.0)ISTAR=9
    \squareET14M
G.FABMATPGOM DENOMTNATOR STARTIMG WITH ZEROTH POWER,//, RYX,GEGG.G
FFOQ:AT(////YPH NUMFRATOR STARTING WITH ZEROTK POWER://:
    9 (9X.4E\6.6))
    44%
    S'GQDOUTINF EUSHANDINT(N,A,KY,D,DT,TMAX,X,Y,CY,K2,INT,ITS,N2,NY2)
    n\MF:STON A(X1),D(N),X(N12),Y(N),C1(K?),INT(N),ITS(N)
```



```
    FUYS SEGTENY GIVEN THE ROUTH ARRAY TAKES TVE TRANSPER FUNCTEON
    (TMF EIOST TSO LINFS) GNN PUTS INTO THE BUSH CANONICAL FOQM. PHY
    STAYE Y&RIARLE MODFL IS THEN USEN YO GIVE THE TIME RESDONSF
```



```
    )\ 179.N*N
1 C(r)=n
    3n ? !#\,N-1
    अり(!) =|
? S(f+! \)=1
    ##(N)=4
    On v,jeq,N
(A(A+B*(I-1))=-A(1+N?*(J-1))
```

 3) \(4.1=9, N\)
 4 \(\quad(1)=\Delta(?+42 *(J-1))\)
 SUR2ПUTIAE ROUTHAPRAV(NG,MZ,NN,A,H)
 JTMEMCYON \(2(N Y), H(N))\)
 THIS SEGNEVT GIVEN THE TRAMSEFR FUNCTION NUMERATOR ANA

CHEN P SHIFH.H COEFFICIENTS.

! $7=1$
$1.1=N^{2}-9$
! ? ? $\mathrm{P}=\mathrm{Z}, \mathrm{L}$
$17=-17$
$15(1)$ FO.1) $11=11=1$
in $>, f=4.19$
$7+(1+1+(J-9))=A(1-2+1 . * J)-4(9-2) / A(1-9) * A(I-9+1 * J)$

(1) $=$ A(1)/ $(1+1)$

QETH?

1 ? GUO. COEFFICENT/)

シャッ
SHADIITINE MATINGRYIRUNG,N,DT,TMAX,NY,NZ,NE,X,Y,M,MINV,INTATG

MRAL M(N?), NINV(N2)
HIMEDSTON INT(N), ITS(N),X(NY),Y(N),AT(N3), IC(N), RERNT(NT)

-9xmiti s(9296), PU(?6) Imp
『リツョ゙
On 6tin $:=1, N+N$
जin f(!)=A(!)
PE(IRHRO.EO.1) 50 TO 70 O
IE(N.1T. 3) SO TO 900
fondite EIGEOVAIUES

```
r
    CA!L RON{RHFSSE(M,A(9),INT(Q))
```



```
    190%)
r
F tEST EOD FOH:AL ROOTS
C
    n) 5 !=9,N-1
    in S . | E Y + I,N
```



```
    TE(V(P).EO.-Y(J).ADD.ABS(Y(I)),GT.., E-OQ)GO TO 5
    JQTEF(?.7)
    1F\:1
    ひの अ: 000
        * comPTMHE
    TEST EOP COMPLEX EIGFNVALUFS
    n) < I= 1,N
    IE (Anc(V(I)).LT..fE=nO)GOTO 4
    IC(I)=1
    in Tn z
    !r(t)=0
    * C\NT!*N!F
    COMD:ATE FIGENVFCTORS
    *aM>mA+N+7**
    CAII FAOQVS(N,NBOZ,A,M,X,Y,AT)
            CA!!F&OACK(N,A,M,V,INT)
    GONDITE INVERSE EIGFNVECTODS.
    On 
    On O I=1,N
        2 }\because+Nv(1+N*(J-1))=0.
    @790 &=1, M
    .q**(NV(f+N*(f-1))=1.0
        |\:9
        &B=A+**
    7% 5,00 I=1,N*N
    ORO AT(A:T+T)=M(T)
    CAII EASOLVE (M,MINV,N,NA,NA,IN,D,ID,IT,REINT)
    n\cap Ca1 I=1, Wf*N
    C54 n(f)=ar(N4+1)
    CA!1 HTM4(MINV,BU,Z,N,N,1)
    心の` COAT!4%F
    15(180.60.1)00 10700
    (%(140)8,520.531
    5>0 ve\F=(3,5>>)
    #つ* (0NT!4!!F
```



```
2n!q AT(Mi+f)=F(I)
    !01T= (2,8000)
    T=-OT
    11T=T+nT
        1.1=9
        15(%)40)8,12.13
r
G THTS EROTION CALCHLATES THE IMDIISE RESPONSF
c
    1:9^4% \=9.%
    [F(11.)9M4,0.100
```

```
    40n 1r(ic(I).EO.i)GO TO 15
        F(Y)=7(1)*EXP(X(1)*r)
        (0) T0 1&
        15 E=FXO(V(I)*T)
            s=v(!)*Y
```



```
            F(I+1)=-7(I)*R*SIN(S)+T(I+q)*R*P\capS(S)
    409 t.l=m|!
```



```
    Ch|: HTM4(M,F,FT,N,N,Y)
C
C. GUTYE TIME RESPOHSE
    BF=0
    On 200% !=\,N
    วn^& ELTz&FT+F゙T(I)*AT(N4+I)
        GOITE(2, 2OO2)T,FET
        !P(Y-T!*AX)94,11.8
    THTS SFCTION COMPUTES THE STEP RESDONSF
        17 0n 20 !=4,N
            I=(11,1402,8,103
    10% (F(1P(I).EO.1)E0 T0 21
        c(T)=>(I)*(EXP(X(I)+T)-4)/X(T)
            G自得 20
        <4 O=FYO(Y(I)*T)
            Vq=V(%)
            &-V(!)*T
            LEv(T)*V(I)+Y(T)*X(Y)
```



```
            *)= vq*TOS(S))*R+Y^)/p
```



```
            ({q)+x(T)*C0S(5))*R-X(I))/P
    an) L1m-1.1
        zo CryTt#HE
            Gn TO 14
            s.rno
    5>4 f?\TF(2,5?4)
            <0 T| 5%3
!
* TUTS EFETION DOES THF QUNGE KHTTA INTEGRATION
!
```



```
        \0) fl! T=9,N*N
    AO+ {(i)="(I)
        I SNNO=1
        \because##N+!
        IE(TMD.50.1)00 T0 790
        GDTTF(),52?)
        n\cap 70& !=?,m!
    #!*(1)=0
    n!. Te, 745
    790 :!0!T&(7,574)
    !n749 1=2,N4
    791 x(!)=811(I-1)
    OE 4-n!r
        *(9)=0
        15!!2!mg.FO.0)GO TO R
        \MTT=n
        N0tte.つT2ONO)
```



```
        !!PT:=1
```

```
    FFr=?
    #f 20n{ i=?.M9
z@O:\mp@code{crT=FrT+X(1)*F(imi)}
HOFTEP=,DO\capZ:X(Q),FEY
```



```
GonTfulig
OETHFN
7EORMAT(///MRH EOHA1 DOOTS FOUND)
    10 EnEMAT(4X,13,5x,EqO,4)
```



```
    幺人 Erom去T(////19H STFF [NPIST////)
    * 34 FnGMAT(////G7H JMPULSE RESPONSF////)
    "A? EOUMSTT(7GHYQUHGF-KUTTA INTEGRATION///)
```



```
    E!%
    SIMROUTINE FLOERY(M,Y,DY)
    |!ME:GYON V(M).DY(N)
    TH!S GEGMENT GOMPUYES THE OATES FOR THE RUNGE KUTTA INTEGRAYIC:
    CMAMCM音(9706), BU(36), (MD
    N=\mp@code{Cl}
    O? 1 1=9, M!
    :F(1%M.F゙g.9%GO 10 x
    Ov(!+4!&R|(I)
    OOTO}
z Ty (%-4)=0
G an 4 .JE9, !
    Sunm:(:+Aj*(.f-1))*Y(J+1)
1 Nv(1+4)=SuM+0Y(I+9)
    36T!!2*
    &f+
```


APPENDIX 1

A1. 4 Solution of the illustrative example by Chen and Shieh's method.

```
FH{I MrINFL ME ORDER 7
```

AFUOMIMATCQ STARTING WITH ZFROTM PODER

| $9.294350 F$ | 05 | $0.334087 E 07$ | $0.381427 E$ | 07 | $0.853703 E$ | 06 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0.703470 F$ | 0.409700504 | $0.836400 E$ | 07 | $0.900000 E$ | 09 | |

$0.703470 F 050.409700$ O 0
$0.936400 E$ O?
0.900000 Eq

NIGAEETAD GTARTING WITH YEROTH POWFR

| SACS 05 | 0.3750005 O6 | $0.000000 E O T$ | 0.0000008 On |
| :---: | :---: | :---: | :---: |
| - monconfoo | 0.000000700 | 0.000000800 | 0.000000 g 0 |

H OAFAMFTEQS CALCULATED GROM ROUTH ARPAY

| N0. | COFFFICENT |
| :---: | :---: |
| 9 | 0.900000 F 09 |
| 7 | -0.487329F 00 |
| \% | -0.3679 0.38 Oq |
| 4 | 0.617279200 |
| 5 | -0.253380F 0 ? |
| 9 | - 1.179453500 |
| 7 | 0.604446% 17 |
| 8 | -0.789834F=01 |
| θ | -0.176205F 03 |
| 10 | C.7849986-09 |
| 19 | - 0.524950 E (5 |
| 12 | - 0.96043 E-02 |
| 13 | 0.785369 E 0 |
| 16 | ก.714.67E-03 |

```
MEPHPER AORMEL OF ORDER A
```

REACBINATOO STARTING WITH ZFROTN POWER

| $0.509089 F 04$ | $0.589794 E 05$ | $0.499510 E 05$ | $0.150325 E$ | 05 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1.119804 F 04$ | $0.647340 E 02$ | $0.900000 E 04$ | | |

```
QERHCFO NONFL OF GROER S
```

```
GFOMMJ:ATOE STARTING WITH ZEQOTH DOWER
    0.909787E #? 0.928960E 04 0.906649E 04 0.306276E 03
    O.90599E 02 0.90000NE 09
whbgeatMd stapting with zeroth pOwgr
```



```
    0.9*4T57F-n3 O.gnuCOCF OO
```

GEPEPEN NGPFI OF ORCER a
mfocotuator gtarting gith zeroth power
-4.70475C5 09 -6.030323E 0? -0.554420E O? -0.129594E 02
O. 1 nocone 09

```
NIOALFATMD GTERTIAG WITH ZEROTH POMFQ
    *.87575CF00 -0.104264E 02 0.956448E 09 -0.785370%-09
    A. morinof of
tuIS SVCTEM IS UNSTARLE
```

BENICFO PRINFI OF OROFR
NE:OAINATOQ STAETING WITH ZSOOTH POLER

REMITEA MOAFI OF SikEER ?

| DEMCMINAT: | STARTING | MITH TFROTH | POLEX |
| :---: | :---: | :---: | :---: |
| reosyer | c-09 | 0.14643 E 09 | 0.900000809 |

ABREATMF GTARTING KITH PEROTN POUPO

APPENDIX 1

Al. 5 A listing of Lees' moments program.

```
MAGTED MOMFNTS METHOD FOR TRANSEEE FUNCTION REDUCTION
```



```
#F:l NOM(?)
```

TWIS DEOGRAM COMPUTES THE MOMFNTS OF A GIVEN MATHEMATIEAL
YOAEL AMT EITS FO THFM A TRANSFFR FUNCTION OF THE USERTS RNOIEE.
THF MANEL PAKAMETERS APE FITTED TO PHE MOMENTS USPYG ROSENBROCKIS

AATA aFOUIRED:
SHDOOHTYHE DFTMON4 (NM, NOM)
THIS GHODLYFS THE NM MONENTS OF THE MOOEL, IN SDOITSON TO YHF
-EORTH, ANO STODES THEM IN THF APOAYMOM. THIS ARRAV MUST NAT

TS! S CEGHFAT, GIVEN THE CURQ\&NT VALUE OF TUE MODEL PARAMETERS
STOPEF ; Y ARRAY X COMPUTES THE MOMENTS OF THE FITTED TRANSFEA
F11: Tin'
X \because MTOT VALIVE FOR MODET PARAMETFPS.
(a:l InER CiNSTRAINT ON MODEI PARAMFYERS.
HEUSDED GONSTRAINT ON HODFI PAQAMEYERS.
procgan wpyteen ev

```
M.J. ROSLEV.
DEOT, CHEMPCAI ENGINFERING,
EO!!GHRO2OUGH UNIVFRSITY OF TECHNOLDGY
```

```
    C.A!(. NETIOON4(HR.MOM)
    |=*NM
    10% 4 =9,M
A BFAD(4, ?)
```



```
    *A=!**(:4+9)
    \becauseG%7**4
    3.1=-1
    !口!TE(>,?0)
```



```
    CA11 EMSNO(#,N,ZOA,G,BJ,F,Y,G,H, W,NMQ,NA,NG,A,D,E)
    101+5(:,40) (X(!),I#9,M)
* तat! monfl. (N,x,f)
```



```
    0175(3.70)F
    ッTの9
    * EnEMAT(350.n)
วN EODMAT(4H!)
25 FAOM:TC/f//214 SIMPLE MODEI MOMEMTS:/,4E16.6)
* EOOWAT(///IZ7H ERROR IN MAYCHING MOMENTS=,F{6.6)
4O EO2MAT(////ZOH SIMDI.E MODEI. FARAMFTERS W,4E16.6)
    O4"
```



```
    DFA| -&\cap:A (%0)
```



```
THY STGMENT EVAGUATES TNE MOMFNTS OF THE STATE VABGABIE MODELI
            x'=Ax +RU
    AN STORES THEM IN AQRAY MOM.
    GATA OFOIIRED:
    A%OENEQ OF SYSTEA.
    IO= VIHREO OF IHPUFS INTO SVSTFM.
    M=N!H*SEO OF MOMENTS WHICH ARP TO AE FYTTED IN ADOITION TO THE
    ##OOTH. THJS M|ST FQUAI THE NUMRER OF PARAMETEQS IN THE
```



```
    & = O| InT :4ATRIX
```



```
    IN||F= SFLECTED INOUT.
```



```
    \because? % 04%4
```



```
    C:!! '1n \TF!!4T(A,N,N?,A)
    |゙1T=12, )29
    <心1! リDITFMAT(*),1P,NTP, &)
```



```
#n A!!:M(|)=f!
    N\mp@code{# ! = ", N}
```



```
    CAI{, FGGOLVE(A,AINV,U,NZ,VZ,1,O,ID,IT,MOM)
    「に(#゙)*,ん,?
```



```
    CAII COMASI!S(A)(9),MUM,A(1),N,01,NDD)
```



```
    ?=-1+1+1
```



```
    ELII cSmASUS(Z,D!M,A(1+N*(T*1)),N,O,NRF)
    BO ? }==9,4:A+
```



```
    ,口十?*(7,&)O!gTOUT,1NP!!T,(MOM(1),T=1,NM+1)
    刀त i! !m, Nm+!
```



```
    D| 4 \ =1, क
*! vn=(r)##(!!
```



```
    {0N(f)-2(A)-Y*B(3)*B(2)+2*P(2)**T
```



```
* :0rTr(7,0)
    `丁口の
```



```
Er:nAAT(GOUCE!O.O)
```



```
# FOUNAT(////{3H PLANT HATRTX)
y? EMDMATC////ISH INPUT :IATRIX)
    EnM
```

```
    SHORM:ITYNG (ALYGH(H,H,IT,K,K,G,H,MOM)
    DFAL AMM(N)
    Or:!F*SP)H K(N),G(N),H(N),GAGGMOM(ON)
    TUTS SFGMEMT FORMUIATES AN EROOR SOUARED ORJECTIVF FUIGETION.
:GAIL MODED (N,X,GA&C:OMM)
T C=0
    0,1 < % =?, N
    *(1)=>(1)+"
\thereforeE:F+(# - CALCMOM(Y)/NON(I ))**2
ORT!10%
OMO
```


THYG SRGMFAT WRITES MIIT AN N M MATRYX.
10177 (2, 1)
an $2 \quad 1=1, N$

- Cnowatel/)

$\because \mathrm{AM}$

```
SiKRN:ITINE MHDFI (N,X,GALCMOM)
```



```
२EA1 :A\,N2,A3
TATS ESELENT EVALUATES THF FIDST 3 NORMALYSED MOMEMTS OF
THE (4.&) ONIYNOMTAL PATIO TRANSFFP FUNCTION CORRESDONAING FO
THF CGORFNT HODEL DARAMETERS STORED IN ARRAY X, THE CALLCULATEO
GMFE:C SPF STOREN TM AROAY CBLCMOM.
xax(1)
:4=v(%)
&)
"9-49-4!
4-2**2*N4- 2*A?
```



```
    CA!f.\cdots⿱㇒日*(9)*+19
\therefore1, ranm(2)=H?-H9*Ma
```



```
qEy!fov
```


APPENDIX 1

Al. 6 Soiction of the illustrative example by Lees' method.

| 2.41 | $=$ | 9 | 0.300000 E | 00 |
| :---: | :---: | :---: | :---: | :---: |
| 001 | $=$ | 7 | 9.900000 F | 00 |
| 2% | \pm | 3 | n．000000E | 00 |
| 20.1 | a | f | 0．0．90000E | 00 |
| マロ！ | ＝ | 5 | 0．000none | 07 |
| 20.1 | $=$ | 幺 | 0.3759005 | gn |
| 20， | $=$ | 7 | 0．3133376 | 08 |

```
MPNESTS FOS nITPIFT 1 WITH INPUT {
    0.141919 00 -0.2533535-01 - 0.2&2007E 09 -0.960490E 0?
v^2*4!tGE! mOMENTS
```



```
MDLE MODEI PARAMETERS * 0.1176A7E 02 0.145387E O2 0.903341E A2
```

MDIE MONEI MOMENTS

RCE IN MATCHING MOMENTS O $0.235293 E-13$

APPENDIX 2

A2.1 A iisting of the program for the reduction of state variable models by matching the moments.


```
RFAD IN SYSTEM ORDERS AND FUIL PLANT MATRIX
```

RPAD(1,1)N,N,ID,NM,IMP
RFAn(9,2)($(A(I+N *(J-1)), J=9, N), I=1, N)$
READ(1, ?) OT, TMAX
r
C COMDIITF PARAMETERS FOR USE IN PROGRAM
C
$1 \times=0$

```
    gOFAD=3
    \TINGm0
    EDSs.1F-10
    N!D=N*!P
    NL=NM+1
    N:P=1P*N4
    Nn=M*NMP
    NQ=IP+NMP
```



```
    1)=:M*M
    4>? =2*M?
    IE=1
    WO1TE(2.190)
C UGF MATINGR FOR THE FULL SYSTEM
28 N4=N+1
N?=N*N
N*2N2+7*N
V゙5N**Nく
ON 4 T=1,N2
4 ATNV(I)कA(I)
```

 AMLETGENVECTORS AND THEN COMPUTES THP TIME RESPONSEOFTHE
 Amn etgenvectorS AND. THEN COMPUTES TH& TIME RESPONSE Of THE
 SVSTEM ANALYTICALLY(IRUNGEO)OR BY RUNGE KUTTE (IRUNGEI)
 5 C:II MATINGR&IRUNGG,N,OT,TMAX,NQ,NR,NS,X,Y,Q,A,INT,KX,R,KX,R,R,BU,
 1.FT,IX,IREAD)
 GO T0(6,10.8.10),1E
 READ IN ANO WRITE OUT B MATRIX
 A RFAD(1, 2)((A(I+N*(J=1)),J=1,IP),Im1,N)
 \P{TE(2,192)
 CAIL NRITEMAT(N,IP,NIP,B)
 IF=?
 8 IE(TF EQ.3)IE=4
 COMD|ITE THE TIME RESPONSE FOR EACN FORCING FUNCTION
 D\cap 10 K=1,IO
 WO!YE(2,115)K
 DO 11 I=1,N
 41 BH(1)=R(I+N* (K-1))
G^ TO 5
O CANTINISE
Bn {2, l=1.N?

1) A(I)=AINV(I)
IF(TE.FO.4)GO TO
qFAD IN AND WRITE OUT VARIABLES OF INTEREST
READ(9, 1)(KX(I),I=9,M)
4Q!TE(2,1000)(KX(1),I=1,M)
C DIT ARRAYS TO ZERO FOR USE IN THE PROGRAM
0n 93 1:1,N0
Q(1)=0
2) S(1)=0
DO 14 1=1,NR
14 R!1)=0
```
\(4>=9\)
\(30 \quad 1 N=9\)

COMPUTE THE INVERSE PLANT MATRIX FOR USE IN DCTFRMINING THE MOMENTS

\section*{15 ATNV（T）\(=0\)}

D：1 T I \(=1, N\)
16 AYNV \((1+N+(I-1))=1\)
CAII．，F4SOLVE（A，AINV，N，N2，N2，IN，D，ID，IY，BU）
1E（1ヶ）17．18．18
DFTFRMINE THE MOMENTS FOR EACH FORCING FUNCTION IN TURN
UCIN＇S SUBROUTINE DETMOM
१R On \(19 \mathrm{NF}=1,1 \mathrm{P}\)
in \(20 \quad 1=1 . N\)
20 3い（1）\(=8(I+N+(N F-1))\)
CAIL DETMOM2（MOM，N，NM，AINV，NF，N5，N2）
IE（MZ．EQ．3）GOTO 19
FOR THF FULL SYSTEM THIS SFGMENT SETS UP TME ARRAYS Q AND S AHE STORES THE ZEROTH MOMENTS OR STEADY STATES，IN MO

Dn \(21 \mathrm{JT=1,N4}\)
\(J=N F+P D *(J 1-1)\)
Di） 21 I＝1．M
\(17=K \times(1)\)
\(210: 1+\operatorname{M*}(\mathrm{J}-1))=\operatorname{MOM}(12+N *(\mathrm{~J} 1-1))\)
0の 2？19＝1，NM
\(J=N F+!\mathrm{P}_{\mathrm{H}} \mathrm{J} 1\)
D） \(22 \quad \mathrm{I}=1\) ，M
\(12=k \times(1)\)
72 \(S(i+M+(j-q))=-j 1+\operatorname{MOM}(12+N *(J 1-1))\)
Dの \(241=1, \mathrm{M}\)
\(17=K \times(1)\)
\(24 M \cap(I+M+(N F-1))=M O N(12)\)
19 CANTINUE
\(I=(M Z, F Q .3) G 0 \quad 50550\)
FOR THF FULL SYSTEM SEY UP THE ARRAY R
กn 23 I＝1．10
23 R（T＋10＊（1－1））\(=1\)
DDEDARE ARRAYS FOR THE LEAST SQUARES SOLUTION TAKING arcount of the steady state conditions neld in mo

CAIL FPMUMT（M，NMP，IP，MO（1），R（1），A（1），O，NRR）
CALI FPMASUS（A（1），Q（1），A（1），NQ，2，NRR）
CAII．TRANMAT（A，Q，M，NMP）
GA！L TRANMAT（S，A，M，NMP）
C：1 FMOVE（Q（1），AINV（1），NQ）
CAII EMOVE（A（1），R（8O1），NQ）
SIIVE the lfast squares problem one column at a timer EACH ROW BEING NORMALISED．THE EUCLID NORAS ARE COMPUTED BEFORE AND AETER SOLVING．THE COLUMN BY COLUMN SOLUTION IS STORED IN S
no \(500, t=1, M\)
\(205041=1\) ．NMP
\(Q \cap=R(800+I+N M P *(J=9))\)
```

 IF(RQ.EO.O)GOTO 50S
 A([)=9
 0\cap 50? K=9.M
 K)=1+NMP* (K=1)
 5n2 Q(K2)=AlNV(K2)/RQ
 Gn ro 501
 505
 In 50K }k=9,
 K?=I +NMP*(K-1)
 50K Q(<2)=AINV(K2)
 501 GONTINHE
 E|C=0
 0N 30? I=1,NMP
 30? E|C=E|C*A(1)*A(I)
 FHC=SORT(EUC)
 301 GNP!TINHE
 My=?
 GAIL ILSQ(NMP,M,1,NQ,NMP,M,MZ2,Q,A,BU,INT,EPS,IT,R)
 1c(1r)>5,200.17
 200 GONTINUE
 NF=1+M* (J=9)
 500 CAII. FMOVE(BU(1),S(NE),M)
 THF RFOUCEO PLANT MATRIX A* IS FORMED FROM S AND THE B* MAYRIX
 FOOM A* BY MULTIPLYING THE ZEROTH MOMENTS.B* IS WRITTEN OUT
 GAtI TRANMAT(S,A,M,M)
 WDITE(?.26)
 C^1I. FPMUMT(M,IP,M,A(1),MO(1),B(1),O,NRR)
 CA1,1 FPMASUS(B(1):0UM,B(1),NIP,=1,NRR)
 WO1TE(2,27)
 GAII WRYTEMAT(M,ID,MIP,B)
 SFT ID PARAMETERS TO RETURN TO MATINGR FOR THE REDUCED SYSFEM
 N-%"
 l Y=0
 1E=3
 IOFAD=4
 GOT0 ?.8
 9 M9#y
 WQ1TF(3.66)
 G\cap ro 30
 550 CONYINIJF
 9090 CONTINUE
Sr@p
17 W!!TE(2,32)M2
IE(MZ.NF.2)STOP
WDTEE2,2020)1T
WQITE(?,2021)(INT(1),I=IY+1,N)
STOP
25 UDITF(7.33)
STOD
- FOOMAT(20:0)
FOPMAT(400FO.0)
110 FORMAT(1GH FULL MODEL DATA/////)
59 EAUMAT(//22H LEAST SQUARES ERROR m,E16.6)
?.S FORMAY(15HIREDUCED SYSTEM///)
27 FORMAT(////27H FORCING FUNCTION MATRIX B*//)
AG FARMAY(////72H REOUCED MODEL MOMENTS//)
32 FIRMaT(///7H MATRIX,I3.92H IS SINGULAR)
33 FOQMAT(/////17H DIMENSIONS WRONGI
112 GORMAT(///Z6H FORCING EUNCTION MATRIX B//)

```
```

 44 FnOMAT(///3日H TIME RESPONSE FOR FORCING FUNCTION
 13/1)
 GOO F\capRMAT (////I8H RHS EUCLID. NORMS)
 zO3 FORMAT(////19H RHS EUCLID NORM *,F16.6)
 5$1 FNRMAT(1H{)
 1OOO GORMAT(////\3H VARIABLES OF INTEREST`,30I3)
KAB F\capOMAT (AB)
2O20 GीRMAT(14H MATRIX RANK m,I4)
?O?9 FПRMAT(18H USELESS COLUMNS m,2013)
Ean

```
    SIRDOIITINE ILSQ(M,N,L,MN,ML,NL,NZL,A,B,X,IPIV,EPS,IER,AUX)
    DIMFNSION A(MN), B(ML), X(NL),IPIV(N),AUX(NZL)
    THIS Sfgment solves the linear least squares probleme i.e.
    MP NIMIZES THE EUCLID NORM OF B-AX, WHERE A IS (M, N) MATRIX
    M GE.H, AND B IS (N,L) MATRIX. THIS PROGRAM IS GIVEN IN ORTAIL
    IG YHF IBM 360 SCIENTIFIC SUBROUTYNES MANUAL. THE METHOS HAS.
    BFFN GIVEN BY
                G.GOLUB, NUMEPISCHE MATHEMATIK,VOL7,ISS.3(1965),2060296
        IF(M-N)30.1.1
        \(1 \mathrm{POV}=0\)
        \(1 F N D=0\)
        on. \(4 x=1, N\)
        IOIV(*) \(=k\)
        \(\mathrm{H}=0\)
        ICTMIFND+1
        I: \(\mathrm{H} \cap=\mathrm{F} F \mathrm{ND}+\mathrm{M}\)
        DO \(2 t=I S T, I E N D\)
\(2+44+4(I) * A(T)\)
        AlIX(K) = H
        1:(H-DIV)4.4,3
3 ) \(1 \mathrm{y}=\mathrm{H}\)
    x \(\operatorname{ci}\) : \(V=\mathrm{K}\)
4 CONTINHE
    IC(DIV) 31.31 .5
5 SIG:SQRT(DIV)
    TO!=SIG*ABS(EPS)
    LM \(=1 * M\)
    1ST: m :
    0) \(21 k=1\), N
    ISTEIST+M+1
    IFNDE:ST+M-K
    I?KDIV-K
    \(1=(1) 8,8,6\)
( \(H=A \| X(K)\)
    \(\operatorname{AiU}(K)=A \| X(K P I V)\)
    AllX(KBIV) \(m\)
    \(10=1 * M\)
    ON 7 İ!ST,IEND
    \(J=I+I n\)
    \(H=A(I)\)
    \(A(I)=A(J)\)
7 AノJ) \(=\boldsymbol{H}\)
ค (f (K-1) 11.11.9
0 Sicmo
    ) 110 IEIST.IEND
10 STC:S \(10+A(1) * A(1)\)
    S!G=SORT(SIG)

1F（SIG－TOL）32，32，11
11 H＝A（IST）
Ic（H）42，13，13
\(12 \mathrm{stg}=\mathrm{stG}\)
13 iDiV（KDIV）mIPIV（K）
IPIV（K）：KPIV
GFTA：H＋SIG
\(A(I S T)=R E T A\)
gCTA＝Y／（SIG＊BETA）
\(\mathrm{JaN}+\mathrm{K}\)
A！！\((1)=-S I G\)
I \(r(K-M) 94,19,19\)
14 PTV＝？
\(10=0\)
\(J \subset T=K+1\)
\(K 口!V=\| S T\)
Dn \(18 \mathrm{j}=\mathrm{JST}, \mathrm{N}\)
\(\| n=1 D+M\)
\(\mathrm{H}=0\)
On 15 IFIST，IEND
\(i t=1+10\)
\(15 \mathrm{H}=\mathrm{H}+\mathrm{A}(\mathrm{I}) * \mathrm{~A}(!\mathrm{I})\)
H＊AFTA＊H
OH \(16 \mathrm{I}=\mathrm{IST}\) IEND
\(1 \Gamma=1+10\)

\(I T=1 S T+10\)
\(H=A \| K(d)-A(1!) * A(1!)\)
AlX（J）＝
\(1 \epsilon(H-D T V) 18.18 .17\)
17 OPVaH
xOIv＝，
18 CONTINUE
10 On 29 JZK，LM，H
\(H \approx 0\)
1 \(\mathrm{CND}=\mathrm{J}+\mathrm{M}=\mathrm{K}\)
\(I:=\| T\)
DO \(20^{\circ}\) IEJ．IFND
\(H=H+A(T I) * B(I)\)
30 ！ \(1=11+1\)
\(H \approx\) RFTA＊\(H\)
IP＝TST
DO 29 I＝J．IFND
\(B(J)=R(I)-A(I I) * H\)
21 It＝T1＋1
1（只 \({ }^{(1)}\)
\(1=\mathrm{N}\)
\(\mathrm{L} M=1+N\)
piVa1／AUX（2＊N）
D， \(22 \mathrm{~K}=\mathrm{N}, \mathrm{LN}, \mathrm{N}\)
\(K(K)=0 Y V * B(I)\)
22 19！ 4
IF \((N-4) 26.26 .23\)
\(23 \mathrm{~J} T=(N-9) * M+N\)
กn \(35 \mathrm{~J}=2 \mathrm{~N}\)
JCTEJST－M～1
\(k=N+N+9-1\)
p．Vaq／AltX（K）
KくTEKON
IN＝TPYV（KST）＝KST
\(1 \mathrm{ct}=2 \mathrm{~m} .1\)
DO \(25 \mathrm{~K}=1, \mathrm{~L}\)
\(H=R(K \subseteq T)\)
```

 I<TmIST+N
 I~ND=TST+J=?
 I!xJST
 On 24 l=1ST.IENO
 I!=!!+M
 7\& H=H-A(II)*X(I)
I= ST-1
II=1+P0
x(1)=x(1I)
X(|):\#PIV*H
25 KeTmKST+M
36 ISTmN\&!
IEND=0
DO 29 J=9.L
IENO=IEND+M
HOT
1C(M-N)}20,20,2
27 0n 28 1mIST.IEND
28 H=N+B(T)* 8(I)
IST-IST+M
29 AO|X(J)=H
RETURN
30 IFA=-?
RFTURN
31 Irg\#=1
RETURN
32 1FR=K-1
qETIIRN
CM!
SIRROUTINE NETMOMZ(Q,N,NM,AINV,IP,NI,NZ)
DYMENSION Q(N1),AINV(N2)
COMMON A(1681),BU(41),IMP
THIS SEGMENT COMPUTES THE MOMENTS (ZEROTH UP TO THE NM MOMENT)
DE THE SYSTEM
\mp@subsup{x}{}{\prime}=AX+B
On 1 I=4,N
O(!)=0
DO 1 I= 1.N
qQ(I)=-AINV(Y+N*(J-q))*BU(J)+Q(I)
J=?
D~ 2 K=2,NM+1
DN ? T={,N
Qri+N*(K-1))=0
DO ? 1=1,N
7 D(I+N* (K-1)) 2-(K-1)*AINV (I*N* (J-1))*Q(J*N*(K-2))+Q(I+N* (K*1))
WOITE(2,3)IP
ON 4 I={,N
4 WOITE(?,5)I,(Q(I+N*(J-4)),J=1,NM+4)
RFTURN
T FORMAT (///3OH MATRIX OF MOMENTS FOR FORCING FUNCTION:I3//)
S FORMAT(IGH ROW =,13.4E16.6/(9X,4E{6.6))
11 FORMAT(////99H NORMALISED MOMENTS)
54%

```
```

 SIGRROHTINE MATINGRIIRUNG,N,DT,TMAX,NI,NZ,NS,X,Y,M,MINV,INT,ITS,
 q AT,IC,REINY,Z,F,FY,IX,IREAD)
 REAI. M(NZ),MINV(N2)
 DYMFNGION INT(N),ITS(N),X(NY),Y(NY),AT(N3),IC(N), REINT(NY)
 OYMFNSION Z(N1),F(N),FY(N)
 GOMMON A(1681), BU(41),IMP
 THIS SFGMENT COMPUTES THE TIME RESPONSE OF THE SYSTEM
 X' =AX + B
 GV THF ANALYTICAL MEYHOD OR (IF IRUNGmI OR EQUAL ROOTS ARE
 FOIND, BY THE RUNGE KUTTA METHOD
 1COU=0
 1F(IX.NF.OSGO TO 2000
 WO1TE(2.502)
 00 500 1=1.N
 50^ WロITE(2,501)I,(A(I*N*(J-1)),J=1,N)
|\&0
00600 I=1,N*N
A00 M(I)=A(I)
IF(N.GE.3)GO TO 2001
| Y=?.
RFTURN
COMPUTF EIGFNVAIURS
2001 COMTINUE
CAI.L EDDIRHESSE(N,A(T).INT({)).
CAII FDORHESSE(N,A(1),IFS(1),X(1),Y(1),AT(1),IVS)
WQTTE(2.504)
WO1:E(2.503)
0n 203 1=4,N
?03 iNTTE(2,202)I,X(I),V(1)
1FO=%
TEST FOR EQUAL ROOTS
On 5 Y=1,N-1
On 5 J={ [1,N
IF(ABS(X(I)-X(J)).GT.. 1E-06)00 T0 5
IF(Y(T).EQ. =Y(J).AND.ABS(Y(I)!.GT..GEOOP)GO TO 5
NOITE(3,7)
150:9
iv=?
RFTIQN
5 CONTINHE
TOST COR COMPLEX EIGENVAGUES
IF(IRITNG.EQ.T)GO 104000
D) 3 1=1,N
IF (ARS(Y(I)).LT..1E-09)GO T0 4
I"(1)\&{
G.1 70 3
4 IC(I)=0
3 continl!F
COMP!TE EIGFNVECTORS
Nany=N*N+7*N
C,H!F{QRVS(N,NBOR,A,M,X,Y,AT)

```
```

 CALL FLBACK{N,A,M,Y,INT)
 HM(TE(?.505)
 DO 50x I=1,N
 W\capITEP2,501)I,(M(I+N*(J*I)),J=1,N)
 506 CONTINHF
 COMPIJTF INVERSE EIGENVECTORS
 Dn O T={,N
 0n O J=1,N
 OM\NV(i+N*(J-1))=0.0
 DO 10 i=1.N
 10 M1Nv(1+N*(1-1))=1.0
 1!=9
 NA=N*N
 D) 030 I=1,N*N
 Q80 A* (N4*1)=M(1)
 C:IT. F&SOLVE (M,MENV,N,NA,NA,IN,D,ID,IT,REINT)
 W?IT.E(2.1000)
 0) 9!01 E=1,N
 1009 WロTTEP?.501)I,(MINV(I+N*(J-1)),J=9,N)
DO 981 T=1,N*N
Q3\ M(T)=AT(N1+1)
IV={
\&OOO COMTINIF
IF(IRUNG.EQ.{)IX=2
RFTIIRN
20.00 1F(1X FQ.2)GO TO 700
C:It HTM4(MINV,BU,Z,N,N,1)
OON CONTINIE
I=(1\&G.E0.13G0 TO 700
i=(1M0)8.520.521
5?n w!!TE(7.,52Z)
5?3 COnTIN|IF
T=-nT
11 r=r*0T
l. =1
IF(INO) 9,12,13
THIS SFCTION CALCHLATES THE IMPULSE RESPONSE
130044 1=1,N
I=(11.)101,8.100
100 Ir(1C(!).EQ.1)GO FO 15
F(I)=>(I)*EXP(X(I)*T)
G^ T0 14.
45 R-FxO(X(1)*Y)
S-V(I)*T
F(T)=7(I)*R*COS(S)+Z(I+1)*R*SIN(S)
F({+1)=-Z(I)*R*SIN(S)+Z(I+q)*R*COS(S)
191 1.1 =-1.1
14 continue
C:II. HTM4(M,F,FT,N,N,1)
MRITE TMME RESPONSE
Inn|=rcou+9
NEIYE(2,17)P,ICOU
N\#PTC(2,300)
NDYTE(IREAD)T,(FT(I),I=1,N)
NQYYE(?.301)((1,FY(I)),Y=1,N)
NTY组=NINT((Y-TMAX)/OT)
IE(NTTME)19.8.8

```

THIS SECTION COMPUTES THE STEP RESPONSE
```

42 0n 20 1:1.N
IF(L1)102,8,103
103 1F(IC(I),EQ.1)GO YO 21
F(I)=7(I)*(EXP(X(I)*T)*q)/X(1)
G\ TO 20
21 R=FXP(X(1)*T)
Yq=Y(%)
3=Y(1)*T
P=V(I)*Y(I) \& X(I)* X(I)
F(I)=7(I)*(\ell Yq*SIN(S)*X(I)*COS(S))*R*X(I))/P*Z(I*q)*((X(I)*SIN(S
1)* Yq*C0S(S))*R+Y{)/P
F(I*q)z-Z(I)*((X(I)*SIN(S)= Yq*COS(S))*R+Yq)/p+2(I*1)*(C Yq*SIN
{(c)+x(1)*COS(S))*Rmx(I))/p
102 b1:=Wl
20 CONTINIE
Gn TO 14
srop
529 WDYYE(2,524;
TO ro 523
THIS SECTIO* DOES THE RUNGE KUTTA INTEGRATION
700 4RTTE(2,702)
On x01 I=1.N*N
6O1 A(I)=M(I)
101!NG=1
M4=N+1
IE IMAP.EQ.1,GO ro 710
WSTTE(?.522)
DO 704 I=2,M1
704 x111=0
GO TO 711
710 W口\TE(?.524)
\) 719 1=2,M1
719 (! !)=\&口(1-4)
715 {-ny
x(1)=0
1:(YRUNG.EQ.O)GO TO 8
| \1T=!
705 6:1II. F4PUNG(MI,INIT,H,X,Z,V)
INIT=1
IfOU=1COU+9
WQYTE(2.17.)X(1),ICOU
WOTTEP2,3005
WपITE(IREAD)(X(I),I\#1,N*1)
WQ1PE(?,301)((1,X(1+1)),I=1,N)
NTIME\#NINT((X(1)-TMAX)/DT)
IF(NTIME)705,8.8
8 CONYINUE
RFY|RN
7 FOMMAT(///I\&H EQUAL ROOTS FOUND)
505 F\capDMAT(////23H MATRIX OF EIGENVECPORS/)
504 FORMAT(/////9H SYSTEM EIGENVALUES/)
SO3 FORMATC35H VARIABLE REAL IMAG)
202 FORMAT(3X,13,2(4X,E13.6))
502 F\capRMAT(1///QH A MATRIX/)
501 FORMAT(/6H ROW =, 13.4E16.6/(9X.4E16.6))
17 FORMAT(/I/7H TIME =,E10.4,14,1)
17 FORMAT(4X,13,5X,E10,4)
300 FORMAT(G4H VARIABLE
F
VARIABLE

```
    \ FT)
301 FORMAT (3(3X.13.E\7.6))
52Z FORMAT(////91H STEP INPUT////)
5>4 F\capRMAT(////97H IMPULSE RESPONSE////)
IOOO FORNAT(///39H MATRIX OF INVERSE EYGENVECTORS/)
702 FORMAT(2GH{RUNGE-KUTTA INTEGRATION///)
    ENO
```

```
SIRROUTINE E4DERY(M,Y,DY)
O!MFNSION Y(M).DY(M)
COMMON A(1681), BU(41),IMP
THIS SFGMENT COMPUTES THE RATES X: OF
    X' # AX + 8U
FOR,A RUNGE KUTTA INTEGRAYION
N=M-1
O\cap 1 T#1,N
IS(IMO.FO.1,GO TO 3
0v(I+1).a日|(I)
Gn T0 4
3)v(T+1)=0
4 DO & }J=1,
SHM=A(I+N*(J-1))*Y(j+1)
{ nV(Y+q) =SUM+DY(I+1)
RFTURM
E4n
```

SHRROIITINE TRANMAT (A,AT,M,N)
DIMENSION A (M,N), AT (N,M)
THIS SEGMENT PUTS THE TRANSPOSE OF A(M,N)INTO AT
DO $1 \quad I=1, M$
Dn $1, i=1, N$
1 Ar(J.I) AA(I, J)
RFTURN
Ekin
SUMROITINE WRITEMAT (N,M,NM,A)
DTMENSYON A(NM)
THIS SFGMENT WRITES THE MATRIX A(N, M)
WRTTE(2,1)
Dी ? $=1, \mathrm{~N}$

RFTIIRN
1 FORMAT(1/)
3 FORMAT(/GH \#OW w, 13.4E96.6/(9X.4E96.6))
END

APPENDIX 2

A2. 2 Model 1, an overdamped system, reducea by matching the moments.

Contents

1. Full and reduced model data.
2. Step responses as detailed below.

| Figure | Input | state x_{i} | reduced
 state $x_{i}{ }^{*}$ |
| :---: | :---: | :---: | :---: |
| A2.1 | 1 | 1 | 1 |
| A2.2 | 1 | 3 | 2 |
| A2.3 | 1 | 7 | 3 |
| A2.5 | 1 | 12 | 4 |
| A2.7 | 2 | 3 | 2 |

State x_{1} was not forced by input 2.

$2015=2.200000 E \quad 01$
$\quad 0.000000 E 00$
$0.000000 E 00$

QnW $=3 \quad$| $0.000000 E 00$ |
| :--- |
| $0.000000 E 00$ |
| $0.000000 E 00$ |

0.000

| ROW | 4 | 0.0000008 | 0 |
| :---: | :---: | :---: | :---: |
| | | 0.000000E | 0 |
| | | 0.000000 E | 00 |

| $0.000000 E$ | 00 |
| :--- | :--- |
| $0.000000 E$ | 00 |
| $0.000000 E$ | 00 |

$-0.200000 E 01$
0.000000800
0.000000800$0.000000 E O 0$$-0.100000 E O 2$
$0.000000 E 00$
$0.000000 E ~$0.000000 E 0
$0.130000 E 02$ $0.000000 E 00$ $0.000000 E 00$
0.000000 E 00
$0.000000 E 00$
0.000000 E 0
0.000000 E 0
0.000000 O 0
$-0.800000 \mathrm{E} 09$
0.000000 E 0
0.000000 E 00
0.500000 E 01
0.000000 E 00
0.000000 E 00
0.000000 E 00
$0.000000 E O 0$
$0.000000 E 00$
0.000000 E 00
0.000000 E 0
0.000000 E 00
$0.000000 E 00$
$-0.120000 E 02$
0.000000800
$0.000000 E 00$
0.900000 ET
0.000000 E 00
0.000000 E 00
0.000000 E 00

| 0.000000 E | 00 | 0.000000 E | 00 |
| :---: | :---: | :---: | :---: |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.0000008 | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.005000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| -0.100000E | 02 | 0.0000002 | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.130000 E | 02 | -0.1300008 | 02 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.300000 E | 09 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.0000008 | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| -0.500000E | 09 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.110000 E | 02 | -0.110000E | 02 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.600000 E | 09 |
| 0.000000 E | 00 | 0.0000002 | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.0000008 | 00 | 0.0000008 | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| 0.900000 E | 09 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 |
| $0.000000 E$ | 00 | 0.000000 E | 00 |
| 0.140000 F | 02 | -0.140000E | 02 |

```
VARIABIF REAI IMAG
    F-0.100000E O1
    2 - 0.200000E O1
    3-0.300000E 01
    4 -0.500000E 01
    5 - O.600000E 01
    6 -0.4.3000OE 02
    7 - -.800000E 01
    8-0.120000E 02
    9 - 0.100000E 02
    10 - - .110000E 02
    1: - O.900000E 01
    12 -0.140000E O2
    0.000000E 00
    0.000000E OO
    0.000000E 0O
    0.000000E ON
    0.000000E 00
    0.000000E OO
    0.000000E 0O
    0.000000E OO
    0.000000E 00
    0.000000E 00
    0.000000E OO
    0.000000E 00
```

FORCING FUNGTION MATRIX B

| P0． | \％ | 4 | 0.100000 E | 01 | 0.000000 E | 00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gow | \＃ | 2 | 0.000000 E | 00° | 0.200000 E | 01 |
| 204， | － | 3 | 0.000000 E | 00 | 0.0000008 | 00 |
| ロロハ | $=$ | 4 | 0.000000 E | 00 | 0.000000 E | 00 |
| Qnis | $=$ | 5 | 0.0000008 | 00 | 0.000000 E | 00 |
| 304 | ＝ | 6 | 0.0000005 | 00 | 0.000000 E | 00 |
| 204 | \＃ | 7 | 0.000000 E | 00 | $0.000000 E$ | 00 |
| 204 | ＝ | 8 | 0.000000 E | 00 | 0.0000008 | 00 |
| R 0 id | $=$ | 9 | 0.000000 E | 00 | 0.000000 E | 00 |
| ROW | ＝ | ： 0 | 0.000000 E | 00 | 0.000000 E | 00 |
| ROW | \＃ | 19 | 0.000000 E | 00 | $0.000000 E$ | 00 |
| ROM | ＝ | 12 | 0.000000 E | 00 | 0.000000 E | 00 |

VARIABIFS OF INTEREST: 13792
MATRIX OF MOMENTS FOR FORCING FUNCTION 1
 $0.240000 E 02$

| nOW | = | 2 | $0.100000 E$
 $0.465000 E$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.1500002 | 01 | 0.350000 E | 01 | 0.112500% | 02 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| POH | \% | 3 | 0.900000 E | 01 | 0.180000 E | 01 | 0.3820005 | 09 | 0.123960 E | 02 |
| | | | 0.514584 E | 02 | | | | | | |
| Qnu | = | 4 | 0.100000 E | 01 | 0.9676925 | 01 | 0.4077998 | 09 | 0.1333718 | 02 |
| | | | $0.555629 E$ | 02 | | | | | | |
| ROW | - | 5 | $0.900000 E$ | 01 | $0.201026 E$ | 01 | 0.549896 E | 01 | 0.187552 L | 02 |
| | | | $0.805699 E$ | 02 | | | | | | |
| Qnw | $=$ | 6 | $\begin{aligned} & 0.900000 \varepsilon \\ & 0.990627 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | $0.213526 E$ | 01 | $0.595197 E$ | 09 | 0.209872 E | 02 |
| R OW | \pm | 7 | 0.900000 E | 010 | 0.2335268 | 01 | $0.688608 E$ | 09 | 0.259189E | 02 |
| | | | 0.111158 E | 03 | | | | | | |
| ROW | $=$ | 8. | $\begin{aligned} & 0.100000 E \\ & 0.121019 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 05 \end{aligned}$ | 0.2426176 | 01 | 0.732720 E | 01 | 0.2711722 | $0 ?$ |
| ROW | \# | 0 | $\begin{aligned} & 0.1000008 \\ & 0.149827 E \end{aligned}$ | $\begin{aligned} & 09 \\ & 03 \end{aligned}$ | 0.2592838 | 01 | 0.899147 F | 01 | 0.317129 F | 02 |
| 3nW | $=$ | 10 | $0.100000 E$ | 01.0 | 0.267617 E | 01 | 0.863750 E | 01 | 0.333723 E | 02 |
| | | | 0.752951 E | 03 | | | | | | |
| 80w | - | 11 | 0.1000005 | 09°. 0 | 0.278728 E | 01 | $0.925690 E$ | 09 | 0.364579 E | 02 |
| | | . | 0.169155 E | 03 | | | | | | |
| 10.5 | $=$ | 42 | $\begin{aligned} & 0.100000 E \\ & 0.18 \cap 163 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.2858798 | 01 | 0.986528 E | 01 | 0.3852918 | $0 ?$ |
| IATP | P ${ }^{\text {P }}$ | OF | MOMENTS FOR | FORCINO | - FUNCTION | 2 | | | | |
| 0W | m | 1 | $\begin{aligned} & 0.000000 E \\ & 0.000000 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 00 \end{aligned}$ | 0.0000008 | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| OW | * | 2 | $\begin{aligned} & 0.100000 E \\ & 0.150000 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 01 \end{aligned}$ | $0.500000 E$ | 00 | 0.500000 E | 00 | 0.750000 E | 00 |
| OH | $=$ | 3 | $\begin{aligned} & 0.100000 E \\ & 0.187440 E \end{aligned}$ | $\begin{aligned} & 04 \\ & 01 \end{aligned}$ | 0.600000 E | 00 | 0.620000 E | 00 | 0.9380005 | 00 |
| Oul | $=$ | 4 | $\begin{aligned} & 0.100000 E \\ & 0.221382 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 01 \end{aligned}$ | 0.678923 E | 00 | 0.724142 E | 00 | 0.1103118 | 09 |
| OW | $=$ | 5 | $\begin{aligned} & 0.100000 E \\ & 0.554816 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 09 \end{aligned}$ | 0.101026 E | 09 | $0.939765 E$ | 09 | 0.230076 E | 01 |
| 1w | = | 6 | $\begin{aligned} & 0.100000 \mathrm{E} \\ & 0.719381 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 09 \\ & 04 \end{aligned}$ | 0.1135262 | 01 | 0.168946 E | 01 | 0.393930E | 09 |
| 3W | : | 7 | $\begin{aligned} & 0.100000 E \\ & 0.106823 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.1335268 | 01 | $0.221556 E$ | 09 | 0.446064 E | 01 |
| HW | $=$ | 8 | $\begin{aligned} & 0.900000 E \\ & 0.125498 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | $0.142617 E$ | 01 | 0.247487 E | 01 | 0.5935608 | 01 |

| nou $=9$ | $\begin{aligned} & 0.100000 \mathrm{E} \text { O1 } \\ & 0.169755 \mathrm{E} \end{aligned}$ | 0.159283 E | 01 | 0.300589E | 09 | 0.663859809 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROU $=10$ | $\begin{aligned} & 0.100000 E 01 \\ & 0.194621 E 02 \end{aligned}$ | 0.167617 E | 01 | 0.328517 E | 09 | 0.745980 E 09 |
| ROW $=91$ | $\begin{aligned} & 0.100000 E \quad 04 \\ & 0.233231 E 02 \end{aligned}$ | 0.178728 E | 09 | 0.368234 E | 09 | 0.868725 E 09 |
| and $=1$? | 0.100000 E 09
 0.260469 E 02 | 0.185871 E | 09 | 0.394787 E | 09 | 0.953322809 |

REOLTEES SYSTEM

FORCING FUNCTION MATRIX B*

| ROW $=1$ | $0.100000 E 01$ | $0.941393 E-91$ | |
| :--- | :--- | :--- | :--- |
| ROH $=$ | 2 | $-0.999544 E-05$ | $0.133023 E 09$ |
| RON $=3$ | $0.377982 E-04$ | $-0.357424 E 00$ | |
| RON $=$ | 4 | $-0.420106 E-04$ | $0.499981 E 00$ |

\& MATRIX

| POW | - | 1 | 0.0 .900000 E | 01 | m0.151433Em | 40 | $0.893149 \mathrm{ECO1}$ | | -0.2402918-19 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PON | - | $?$ | 0.133123 E | 09 | -0.956635E | 00 | -0.507506E | 00 | 0.133915 E | 00 |
| 20w | $=$ | 3 | $-0.357469 \mathrm{E}$ | 00 | $0.169465 E$ | 09 | -0.896009E | 00 | -0.441293E | 00 |
| 904 | * | 4 | $0.500023 E$ | 00 | -0.179196E | 01 | 0.444438 E | 01 | -0.395243E | 01 |

SVSTEM FIGFNVALUES

| VAFIABIE | REAL |
| :---: | :---: |
| 1 | $-0.170239 E$ |
| 2 | $-0.170239 E$ |
| 3 | $-0.100000 E$ |
| 4 | $-0.160029 E$ |
| | 01 |

IMAG

$1-0.170239 E 01$
$-0.118812 E 09$
$0.118812 E 01$
0.000000 E 00
$0.000000 \mathrm{E} O$

```
MATRYX OF MOMENTS FOR FORCING FIJNCTION 1
```

| ROW | ＝ | 4 | $\begin{aligned} & 0.100000 E \\ & 0.240000 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.100000 E | 01 | 0.200000 E | 09 | 0.800000 E | 01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROU | $=$ | $?$ | $\begin{aligned} & 0.100000 \mathrm{E} \\ & 0.514777 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.1598768 | 01 | $0.382505 E$ | 01 | $0.124023 E$ | 02 |
| ROH | － | 3 | $\begin{aligned} & 0.100000 E \\ & 0.111246 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.233385 E | 04 | $0.688675 E$ | 01 | 0.2594458 | 02 |
| RON | ＝ | 4 | $\begin{array}{r} 0.100000 E \\ 0.180290 E \end{array}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.2857388 | 01 | 0.966497 E | 04 | 0.385445 E | 02 |

MATRIX OF MOMENTS FOR FORCING FUNCTION 2

| R0\％ | \＃ | 1 | $\begin{aligned} & -0.224993 E-21 \\ & -0.819209 E-10 \end{aligned}$ | | －0．267703E－11 | | －0．629873Em19 | | －0．1943948－90 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Row | \geqslant | $?$ | $\begin{aligned} & 0.100000 \mathrm{E} \\ & 0.186512 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 01 \\ & 09 \end{aligned}$ | 0.598057 E | 00 | 0.626728 E | 00 | 0.9261768 | 00 |
| ロロッ | － | 3 | $\begin{aligned} & \dot{0 .} 100000 \varepsilon \\ & 0.106671 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.133298 E | 09 | 0.229703 E | 01 | 0.447652 E | 09 |
| pou | $=$ | 4 | $\begin{aligned} & 0.100000 E \\ & 0.260848 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.185654 E | 09 | $0.394723 E$ | 01 | 0.9541028 | 04 |

APPENDIX 2

A2. 3 Model 2, an oscillating model, reduced by matching the moments.

Contents

1. Full and reduced model data.
2. Step responses as detailed below.

| Figure | Input | state x_{i} | reduced
 state $x_{i} *$ |
| :--- | :---: | :---: | :---: |
| A2.8 | 1 | 2 | 1 |
| A2.9 | 1 | 5 | 2 |
| A2.10 | 1 | 9 | 3 |
| A2.12 | 1 | 2 | 2 |
| A2.13 | 2 | 5 | 4 |
| A2.14 | 2 | 9 | 2 |

MATRTX

| OW | $=$ | 1 | $=0.400000 E$ | 00 | -0.100000E | 01 | 0.0000008 | 00 | 0.000000 E | 00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{aligned} & 0.000000 E \\ & 0.000000 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 00 \end{aligned}$ | $\begin{aligned} & 0.000000 E \\ & 0.000000 E \end{aligned}$ | 00 00 | $\begin{aligned} & 0.000000 E \\ & 0.000000 E \end{aligned}$ | 00 00 | $\begin{aligned} & 0.0000008 \\ & 0.000000 E \end{aligned}$ | 00 00 |
| Ow | $=$ | 7 | $0.100000 E$ | 01 | $0.000000 E$ | 00 | $0.000000 \mathrm{E}$ | 00 | $0.000000 \mathrm{E}$ | 00 |
| | | | $0.000000 E$ | 00 | $0.000000 E$ | 00 | $0.000000 \mathrm{E}$ | 00 | $0.000000 \mathrm{E}$ | 00 |
| | | | 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 | $0.000000 E$ | 00 |
| OW | 0 | 3 | 0.000000 E | 00 | 0.100000 E | 02 | -0.100000E | 02 | 0.0000005 | 00 |
| | | | ?. 000000 E | 00 | 0.000000 E | 00 | $0.000000 E$ | 00 | 0.0000005 | 00 |
| | | | 0.000000ε | 00 | 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| OW | * | 4 | $0.000000 E$ | 00 | 0.000000 E | 00 | 0.100000 E | 01 | -0.800000\% | 00 |
| | | | $\begin{array}{r} -0.100000 E \\ 0.000000 E \end{array}$ | $\begin{aligned} & 01 \\ & 00 \end{aligned}$ | $\begin{aligned} & 0.000000 E \\ & 0.0000002 \end{aligned}$ | 00 00 | $\begin{aligned} & 0.000000 E \\ & 0.000000 E \end{aligned}$ | 00 00 | $\begin{aligned} & 0.000000 E \\ & 0.0000008 \end{aligned}$ | 00 00 |
| 00 | \pm | 5 | 0.000000 E | 00 | 0.0000005 | 00 | $0.000000 E$ | 00 | 0.100000 ct | 09 |
| | | | 0.0000005 | 00 | 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| | | | 0.000000 E | 00 | 0.000000 E | 00 | . 0.0000002 | 00 | 0.000000 E | 00 |
| OH | H | 6 | $0.000000 E$ | CO | 0.0000005 | 00 | 0.000000 E | 00 | 0.0000008 | 00 |
| | | | $0.800000 E$ | 01 | -0.800000E | 01 | 0.000000 E | 00 | 0.000000 E | 00 |
| | | | 0.0000002 | 00 | 0.000000% | 00 | 0.0000005 | 00 | 0.000000% | 00 |
| 015 | * | 7 | . 0.000000 E | 00 | 0.000000 E | 00 | 0.0000008 | 00 | 0.000000 E | 00 |
| | | | 0.0000005 | 00 | 0.1000005 | 01 | -0.120000E | 01 | -0.100000E | 04 |
| | | | $0.000000 E$ | 00 | 0.000000 E | 00 | 0.000000 E | 00 | 0.0000005 | 00 |
| O. | $=$ | 8 | 0.0000005 | 00 | 0.000000 E | 00 | 0.000000 E | 00 | 0.0000008 | 00 |
| | | | $0.000000 \mathrm{E}$ | 00 | 0.000000ε | 00 | $0.100000 E$ | 01 | $0.000000 E$ | 00 |
| | | | 0.000000 E | 00 | $0.000000 E$ | 00 | $0.000000 \mathrm{E}$ | 00 | 0.0000005 | 00 |
| nis | \underline{m} | 0 | | 00 | | 00 | | 00 | | 00 |
| | | | $0.000000 \mathrm{E}$ | 00 | 0.0000005 | 00 | 0.000000 E | 00 | 0.8000008 | 04 |
| | | | -0.6000005 | 01 | $0.000000 E$ | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| OH | \pm | 10 | | 00 | | 00 | $0.000000 E$ | 00 | $0.000000 E$ | 00 |
| | | | 0.0000005 | 00 | $0.000000 E$ | 00 | 0.000000 E | 00 | 0.0000008 | 00 |
| | | | 0.1200005 | 02 | -0.120000E | 02 | 0.0000005 | 00 | 0.0000002 | 00 |
| กW | $=$ | +1 | 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 | 0.0000002 | 00 |
| | | | 0.000000 E | 00 | $0.000000 E$ | 00 | 0.000000 E | 00 | 0.0000008 | 00 |
| | | | 0.000000 E | 00 | $0.900000 E$ | 01 | -0.900000E | 01 | $0.000000 E$ | 00 |
| 018 | : | $\cdots 2$ | 介. 000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 | $0.000000 \mathrm{E}$ | 00 |
| | | | ก. 000000 E | 09 | 0.0000005 | 00 | 0.0000008 | 00 | 0.000000 E | 00 |
| | | | $0.000000 E$ | 00 | 0.000000 E | 00 | $0.140000 E$ | 02 | $\cdots 0.140000 E$ | 02 |

```
ysrem figanvalugs
```

| ARIABIE | REAI. | IMAG |
| :---: | :---: | :---: |
| 1 | -n. 2000noE OO | |
| 2 | - 0.200000500 | $0.979796 E 00$ |
| 3 | -0.400000E 00 | -0.716515E 00 |
| 4 | -0.400000E 00 | 0.916515 E 00 |
| 5 | -0.600000E 00 | -0.800000E 00 |
| 6 | -0.000000E 00 | 0.800000800 |
| 7 | - 0.600000 E 01 | 0.000000800 |
| 3 | -0.900000E 02 | 0.000000 e 00 |
| 7 | -0.800000E 01 | 0.000000 EO |
| 10 | -0.120000E 02 | 0.000000 e 00 |
| 11 | -0.900000E 01 | 0.000000 EO |
| 1 ? | -0.1400nOE O2 | 0.000000 e 00 |

DRCING EJNCTION MATRIX B

| 2w | \# | 1 | 0.100000 E | 09. | 0.100000 E | 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | $=$ | $?$ | 0.000000 E | 00 | 0.000000 E | 00 |
| iw | $=$ | 3 | 0.000000 e | 00 | 0.100000 E | 01 |
| 3 | $=$ | 4 | 0.000000 E | 00 | 0.000000 E | 00 |
| $1 \pm$ | = | 5 | 0.000000 E | D0 | 0.000000 E | $n 0$ |
| M | " | 6 | Q.000000E | 00 | 0.000000 E | 00 |
| ω | \% | 7 | 0.000000 E | 00 | 0.000000 E | 00 |
| 1 | $=$ | 8 | 0.0000008 | 00 | 0.0000008 | 00 |
| 14 | $=$ | 0 | 0.000000 E | 00 | 0.00000 CE | 00 |
| | = | 10 | 0.000000 E | 00 | 0.000000 E | 00 |
| 时 | $=$ | 19 | 0.000000 E | 00 | 0.000000 E | 00 |
| 4 | $=$ | 9? | 0.000000 E | 00 | 0.000000 E | 00 |
| | 14 B | IFS | F INTERESTE | 2 | 5912 | |

| OLS | * | 2 | $\begin{aligned} & 0.900000 E \\ & 0.930944 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.4000002 | 00 | -0.168000E | | -0.44900E | 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 04 | \pm | 3 | $\begin{aligned} & 0.100000 \mathrm{E} \\ & 0.111384 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.500000 E | 00 | -0.958000E | 04 | -0.489000E | 01 |
| 014 | * | 4 | $\begin{aligned} & 0.000000 E \\ & 0.659600 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.100000E | 01 | $-0.280000 \mathrm{E}$ | 09 | $0.430000 E$ | 04 |
| 04 | = | 5 | $\begin{array}{r} 0.100000 E \\ -0.229896 E \end{array}$ | $\begin{aligned} & 09 \\ & 02 \end{aligned}$ | 0.130000 E | 01 | -0.190000E | 01 | -0.162900E | 02 |
| 04 | * | 6 | $\begin{array}{r} 0.100009 E \\ -0.393491 E \end{array}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.142500 E | 01 | -0.1943738 | 01 | -0.167189E | 02 |
| nis | a | 7 | $\begin{aligned} & 0.000000 E \\ & 0.84 .256 E \end{aligned}$ | 00 | -0.9000NOE | 01 | -0.525000E | 09 | -0.748875E | 01 |
| 0.4 | $=$ | 8 | $\begin{array}{r} 0.100000 E \\ -0.170535 E \end{array}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.262500% | 04 | $0.315625 E$ | 01 | $\cdots 0.291064 \mathrm{E}$ | 02 |
| Oid | 0 | 0 | $\begin{array}{r} 0.101000 E \\ -0.183243 E \end{array}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.2791675 | 09 | 0.408689 E | 01 | -0.190630E | 02 |
| 04 | = | 10 | $\begin{array}{r} 0.100000 E \\ -0.189217 E \end{array}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.287500 E | 01 | $0.456597 E$ | 01 | -0.1792.95 | 02 |
| กH | = | 41. | $\begin{array}{r} 0.100000 E \\ -0.196408 E \end{array}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.298619 E | 01 | $0.522955 E$ | 04 | -0.1617832 | 02 |
| 0,4 | \% | 4 ? | $\begin{array}{r} 0.100000 E \\ -0.200683 E \end{array}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.305754 E | 01 | . 0.563634 E | 01 | -0.149641E | 02 |

ATRIX OF MOMENTS FOR FORCING FUNCTION 2

| 04 | \% | 1 | 0.000000 E | | -0.100000E | 01 | -0.800000E | 00 | 0.504000 E | 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 0.176640 E | 02 | | | | | | |
| OW | $=$ | 7 | 0.100000 E | 01 | 0.400000E | 00 | -0.168000E | 04 | -0.4416nOE | 04 |
| | | | 0.130944 E | 02 | | | | | | |
| 0'd | F | 3 | $\begin{aligned} & 0.110000 E \\ & 0.111386 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.510000% | 00 | -0.157800E | 01 | $=0.6889408$ | 09 |
| OW | E | 4 | $\begin{aligned} & 0.0000005 \\ & 0.6783606 \end{aligned}$ | $\begin{aligned} & 00 \\ & 0 ? \end{aligned}$ | 0.190000 E | 01 | -0.278000E | 04 | 0.4662006 | 09 |
| 3.1 | $\underline{2}$ | 5 | $\begin{array}{r} 0.110000 E \\ -0.244822 \varepsilon \end{array}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | $0.139000 E$ | 01 | -0.155400E | 01 | -0.169590E | 02 |
| 01d | = | 6 | $\begin{array}{r} 0.110000 E \\ -0.331814 E \end{array}$ | $\begin{aligned} & 04 \\ & 02 \end{aligned}$ | 0.1527508 | 01 | -0.117212E | 09 | -0.175985E | 02 |
| 0.4 | $=$ | 7 | $\begin{aligned} & 0.000000 \mathrm{E} \\ & 0.880832 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.110000E | 01 | -0.569500E | 09 | -0.1038565 | 02 |
| 34 | * | 8 | $\begin{array}{r} 0.110000 E \\ -0.180424 E \end{array}$ | $\begin{aligned} & 04 \\ & 03 \end{aligned}$ | 0.2847508 | 01 | 0.346987 E | 01 | 0.220208 E | 02 |

| 104 | $=$ | 9 | $\begin{array}{r} 0.110000 E \\ -0.173614 E \end{array}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.303083 E | 01 | 0.447215 E | 01 | -0.997847E | $0 ?$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| !nw | : | 10 | $\begin{array}{r} 0.110000 E \\ -0.179792 E \end{array}$ | $\begin{aligned} & 09 \\ & 03 \end{aligned}$ | 0.312250 E | 01 | $0.499257 E$ | 01 | -0.985366E | 07 |
| 1015 | m | 19 | $\begin{array}{r} 0.110000 E \\ -0.207184 E \end{array}$ | $\begin{aligned} & 09 \\ & 03 \end{aligned}$ | $0.324472 E$ | 01 | 0.571362 E | 09 | -0.166320E | 02 |
| 104 | $=$ | 12 | $\begin{array}{r} 0.110000 E \\ -0.219558 E \end{array}$ | $\begin{aligned} & 09 \\ & 03 \end{aligned}$ | 0.3323298 | 01 | 0.698838 E | 01 | $0.953060 E$ | 02 |

FDUCEN SYSTEN

OMCING FUNCTION MATRIX B*

| | $=$ | 1 | 0.253834 E 00 | $0.343120 E 00$ |
| :---: | :---: | :---: | :---: | :---: |
| 04 | \# | $?$ | -0.232904E 00 | -0.158635E 00 |
| 01.8 | 7 | 3 | $0.1999878-01$ | $0.1498875-09$ |
| nu | \# | 4 | -0.130779E-01 | -0.987845E=02 |

MATR:X

| nut | = | 1 | $0.639027 E 00$ | -0.112362E | 01 | $0.170541 E$ | 01 | -0.947465E O1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | = | 2 | $0.975595 E 00$ | -0.618674E | 00 | 0.763401 E | 00 | -0.8874182 00 |
| nus | $=$ | 3 | -0.700986E=01 | 0.2146568 | 00 | 0.2814228 | 01 | -0.297878E01 |
| 04 | $=$ | 4 | $0.450720 \mathrm{E}=09$ | -0.120148E | 00 | 0.425444 E | 01 | -0.496629E 01 |

YSTEM FIGFNVALUES

| A0iA8if | REAL |
| :---: | :---: |
| 1 | $-0.122771 E$ |
| 2 | $-0.122771 E$ |
| 3 | $-0.543084 E$ |
| 4 | -0.5430845 |
| 4 | 00 |

$1 M A G$
$-0.779903 E$
$0.779903 E$
$-0.593351 E$
0.500
$0.5351 E$

```
IATRIX OF MOMENTS FOR FOGCING EUNCTION I
```

| ก以 | 1 | $\begin{aligned} & 0.100000 E \\ & 0.194394 E \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.4776982 | 00 | -0.159913E | 01 | $=0.482944 \mathrm{E}$ | 01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OW * | $?$ | $\begin{array}{r} 0.100000 E \\ -0.290927 E \end{array}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.140752 F | 09 | -0.124992E | 01 | -0.166804E | 0 ? |
| กW = | . 3 | $\begin{array}{r} 0.100000 E \\ -0.190234 E \end{array}$ | $\begin{aligned} & 04 \\ & 03 \end{aligned}$ | 0.2896515 | 01 | 0.465293 E | 01 | -0.977878E | $0 ?$ |
| $0!8=$ | 4 | $\begin{array}{r} 0.100000 E \\ -0.205970 E \end{array}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.3962405 | 01 | 0.628821 E | 01 | -0.132074E | 02 |

ATRIX OF MOMENTS FOR FORCIMG FUNCTION 2

| OW | $=$ | 9 | $\begin{aligned} & 0.100000 \mathrm{E} \\ & 0.144397 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.349604 E | 00 | -0.176996E | 09 | -0.410945F | 04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 04 | \pm | 2 | $\begin{array}{r} 0.190000 E \\ -0.996969 E \end{array}$ | $\begin{aligned} & 01 \\ & 02 \end{aligned}$ | 0.9306068 | 01 | -0.177118E | 01 | -0.1672538 | 02 |
| 0 H | \cdots | 3 | $\begin{array}{r} 0.110000 E \\ -0.188688 E \end{array}$ | $\begin{aligned} & 09 \\ & 03 \end{aligned}$ | 0.294892 E | 01 | 0.4005688 | 01 | -0. 209550 E | 02 |
| O6 | \# | 4 | $\begin{array}{r} 0.110000 E \\ -0.208157 E \end{array}$ | $\begin{aligned} & 01 \\ & 03 \end{aligned}$ | 0.324937 E | 01 | $0.367836 E$ | 09 | -0.168717E | 02 |

APPENDIX 2

A2.4 Model 3, an inverting model, reduced by matching the moments.

Contents

1. Full and reduced model data.
2. Step responses as detailed below.

| Figure | Input | state x_{i} | reduced
 state $x_{i} *$ |
| :--- | :---: | :---: | :---: |
| A2.16 | 1 | 1 | 1 |
| A2.17 | 1 | 3 | 2 |
| A2.18 | 1 | 5 | 3 |
| A2.19 | 1 | 8 | 4 |
| A2.20 | 2 | 1 | 1 |
| A2.21 | 2 | 3 | 2 |
| A2.22 | 2 | 5 | 3 |
| A2.23 | 2 | 8 | 4 |

FUTL MODFL DATA

4 MATRIX
ROW $\quad-0.167500 E 02$
$0.000000 E 00$
0.000000500

| $W=$ | 2 | -0.192500E |
| :---: | :---: | :---: |
| | | 0.000000 E |
| | | 0.0000008 |

0.000000 O 0 0.00 OOODE 00 0.000000 OO

| ROW | 4 | 0.0000008 | 00 |
| :---: | :---: | :---: | :---: |
| | | 0.000000 E | 00 |
| | | 0.000000 E | 00 |
| DOW | 5 | 0.000000 E | 00 |
| | | -0.700000E | 01 |
| | | 0.000000 E | 00 |

| ROW $=8$ | $0.000000 E 00$ |
| :--- | :--- |
| | 0.000000 E 00 |
| | 0.000000 E |

| ROU $=9 \quad$ | $0.000000 E 00$ |
| ---: | ---: |
| | $0.000000 E 00$ |
| | $-0.500000 E 01$ |

0.192500 E 02
0.00000000
0.000000 EO
$0.127500 E$
0.00000
$0.000000 E$
00
0.900000 EO
0.000000 E 0
0.000000 E OO
$0.000000 E 00$
0.000000 E 00
$0.000000 E O 0$
$\begin{array}{ll}0.000000 E & 00 \\ 0.000000 E & 00 \\ 0.000000 E & 00\end{array}$
$0.000000 \mathrm{O} \quad 0$
$-0.600000 E 01$
0.000000 e 00
0.000000800
0.750000 E 01
0.000000 E 0
$0.000000 \mathrm{E} \quad 0$
0.000000 E 0
0.000000 EO
0.000000 E 0
$0.000000 E 00$
0.000000 O 0
0.000000 E 00
0.000000 E 00
$-0.550000 \mathrm{E} 01$
0.000000 E 00
0.000000500
0.850000201
0.000000 E OO
0.000000 E On
0.000000 E OO
$0.000000 E 00$
$0.000000 \varepsilon 00$ 0.000000 E O
0.000000 E 00
$0.000000 E 00$
$0.000000 E 00$
-0.900000 E O1
0.000000 E 00
0.000000 E 00
0.800000 E O9
0.000000 E 00
$0.000000 E 00$
$0.000000 E 00$
0.000000 E 0
$0.000000 E 00$
0.000000 E 00
$0.000000 E 00$
$0.000000 E 00$
$0.000000 E \quad 00$
$-0.750000 E 01$
$0.000000 E 00$
0.000000 E 00
$0.650000 E 09$
$0.000000 E 00$
0.000000 E 0
0.000000 E 00
$0.000000 \mathrm{E} \quad 0$
$0.000000 E 00$
$0.000000 E 00$
0.000000 E 00
0.000000 E 00
$0.000000 E 00$
$-0.850000 \mathrm{O}$
$\begin{array}{ll}0.000000 E & 00 \\ 0.000000 E & 00 \\ 0.450000 E & 01\end{array}$
0.000000 O 0
$0.000000 E 00$
0.000000 EO
0.000000 O 0
$0.000000 E 00$
0.000000 EO
$0.000000 E 00$
0.000000 E O
$0.000000 \varepsilon 00$
$-0.800000 \% 09$
0.000000 E 00
0.000000 O
$0.700000 E O 9$
0.000000200
0.000000 OO
0.000000200
0.000000 O 0
0.000000 EO
0.000000 O 0
0.000000 EO
$0.000000 E 00$
$0.0000 \operatorname{ODE} 0$
-0.550000809
0.000000 O
0.000000500
0.500000 E 09
$0.000000 E 00$
0.000000 O 0
$0.000000 \mathrm{O} \quad 0$
$0.000000 E O 0$
0.000000200
0.000000200
0.000000200
$0.000000 \mathrm{E} \quad 00$
0.000000 O O
-0.450000 E 01

```
SYSTEM EIGFNVALUES
\begin{tabular}{|c|c|c|c|c|}
\hline JARIABIE & REAL & & IMAE & \\
\hline 1 & -0.100000E & 01 & 0.000000 E & 00 \\
\hline 2 & \(-0.300000 E\) & 01 & 0.0000005 & 00 \\
\hline 3 & - 0.900000 E & 01 & 0.000000 E & 00 \\
\hline 4 & -0.649976E & 01 & 0.000000 E & 00 \\
\hline 5 & -0.600098E & 01 & \(0.000000 E\) & 00 \\
\hline 6 & -0.7000192 & 01 & 0.0000005 & 00 \\
\hline 7 & -0.549992E & 01 & \(0.000000 E\) & 00 \\
\hline 8 & \(=0.749991 E\) & 01 & \(0.000000 E\) & 00 \\
\hline 7 & -0.500002E & 01 & \(0.000000 E\) & 00 \\
\hline 10 & -0.800002E & 01 & \(0.000000 E\) & 00 \\
\hline 11 & -0.450000E & 09 & 0.000000 E & 00 \\
\hline 12 & -0. 0.850000 E & 09 & 0.000000 E & 00 \\
\hline
\end{tabular}
```

FORCINR FUNCTION MATRIX B

| Row | = | 9 | 0.100000 E | 01 | 0.1000008 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20.1 | \# | $?$ | $0.100000 E$ | 09 | $0.100000 E$ | 09 |
| ROW | * | 3 | 0.000000 E | 00 | 0.100000 E | 01 |
| ROW | \% | 4 | 0.000000 E | 00 | 0.000000 E | 00 |
| ROS | = | 5 | 0.000000 E | 00 | 0.100000 E | 01 |
| R nu | \# | 6 | 0.000000ε | 00 | 0.000000 E | 00 |
| ROW | $\#$ | 7 | 0.000000 E | 00 | 0.000000 E | 00 |
| 004 | \% | 8 | $0.000000 E$ | 00 | 0.100000 E | 01 |
| ROU | \% | 0 | 0.000000 E | 00 | 0.000000 \% | 00 |
| ROW | $=$ | 10 | 0.000000 E | 00 | 0.000000% | no |
| 20, | $=$ | 11 | 0.000000 E | 00 | 0.100000 E | 09 |
| ROU | $=$ | 92 | 0.000000 E | 00 | 0.000000 E | 00 |

VARIABIFS OF INTERESTE 1358
MATRIX OF MOMENTS FOR FORCING FUNCTIONROW $=1 \quad-0.500000 E 00 \quad-0.100000 E 01 \quad-0.233333 E 01 \quad-0.733333 E 09$$-0.297778 \mathrm{E} 02$

| ROU | \% | $?$ | $\begin{aligned} & -0.833333 E \\ & -0.417284 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.144444E | 01 | -0.329630E | 09 | -0.102963E | 0? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROW | \% | 3 | $\begin{aligned} & -0.83333 .3 E \\ & -0.468435 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.153704E | 01 | -0.363786E | 09 | -0.115089E | 02 |
| ROW | - | 4 | $\begin{aligned} & -0.833333 E \\ & -0.533570 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.164120E | 01 | -0.404816E | 09 | -0.930270E | 02 |
| Rous | = | 5 | $\begin{aligned} & -0.833333 E \\ & -0.619155 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | $-0.176025 E$ | 01 | -0.455109E | 09 | -0.1497748 | 02 |
| Rous | = | 6 | $\begin{aligned} & -0.833333 E \\ & -0.736285 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.989914E | 01 | -0.518414E | 09 | -0.175695E | 02 |
| ROS | n | 7 | $\begin{aligned} & -0.833333 E \\ & -0.842192 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.201025E | 01 | -0.572020E | 09 | -0.198576E | 02 |
| ROU | | 8 | $\begin{aligned} & -0.833333 E \\ & -0.982508 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.213846E | 01 | -0.657819E | 04 | -0.228014E | 02 |
| Rod | * | 9 | $\begin{array}{r} -0.833333 E \\ -0.119996 E \end{array}$ | $\begin{aligned} & 00 \\ & 03 \end{aligned}$ | -0.230512E | 01 | -0.730024E | 01 | -0.274845E | 02 |
| ROW | \% | 90 | $\begin{aligned} & -0.833333 E \\ & -0.143015 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 03 \end{aligned}$ | -0.245664E | 01 | -0.819356E | 01 | -0.316907E | 0? |
| RnW | | 11 | $-0.833333 E$
 -0.159370E | $\begin{aligned} & 00 \\ & 03 \end{aligned}$ | -0.255468E | 09 | -0.879466E | 09 | -0.347547E | 02 |
| 904 | | 12 | $\begin{aligned} & -0.833333 \mathrm{E} \\ & -0.196196 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 00 \\ & 0 S \end{aligned}$ | -0.273086E | 01 | 00.100124 E | 02 | -0.414297E | 02 |

MATRIX DF MOMENTS FOR FORCING FUNCTION 2

| Qow | \pm | 1 | $\begin{array}{r} -0.500000 E \\ -0.297778 E \end{array}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.100000E | 01 | -0.233333E | 09 | -0.73333 | 01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R04 | \cdots | 2 | $\begin{aligned} & -0.833333 E \\ & -0.417284 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.144444E | 01 | -0.329630E | 09 | -0.102963E | 09 |
| POH | * | 3 | $\begin{aligned} & -0.722222 E \\ & -0.468431 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.952469E | 01 | -0.363592E | 09 | -0.1150808 | 02 |
| 90.4 | \# | 4 | $-0.722222 \mathrm{E}$
 $-0.533543 E$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.167497E | 01 | -0.403886E | 01 | -0. 1302268 | 0 ? |
| ROL | $=$ | 5 | $\begin{array}{r} -0.579365 E \\ -0.699037 E \end{array}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | $-0.169774 \mathrm{E}$ | 04 | -0.452393E | 09 | $-0.167644 \mathrm{E}$ | 02 |
| 804 | 2 | 6 | $-0.579365 \mathrm{E}$
 $-0.735853 \mathrm{E}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.179430E | 09 | -0.592202E | 01 | -0.1752242 | 02 |
| ROW | $=$ | 7 | $\begin{array}{r} -0.579365 E \\ -0.849298 E \end{array}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.1879554 | 09 | -0.362110E | 01 | -0.1977092 | 02 |
| nOW | = | 8 | $-0.425519 E$ $-0.980623 E$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | $-0.193701 E$ | 01 | -0.621711E | 04 | -0.226403F | 02 |

```
lowr - -0.425519E 00 -0.202211E 01 -0.702595E 09 -0.268559E 0?
    -0.i1934TE 03
304=10 -0.425519E On -0.209948E OT - 0.778940E O1 -0.341046E 02
ROW = 11 -0.307872E 00 -0.213570E O1 -0.829192E O1 -0.340312EO2
    -0.158183E 03
70W=17 -0.307872E 00 -0.220442E 01 -0.927152E 09 -0.402422E 02
```

REDUCES SYSTEM
FORCING FUUCTION MATRIX B*

| ROW $=$ | 1 | $0.129231 E 01$ | $0.299442 E 00$ |
| ---: | ---: | ---: | ---: |
| ROW $=$ | 2 | $0.233058 E 00$ | $0.439966 E 00$ |
| ROS $=$ | 3 | $-0.638803 E 00$ | $0.619053 E 00$ |
| RON $=$ | 4 | $-0.687954 E 00$ | $0.270035 E 00$ |

A MATrix

| ROH | $=$ | 1 | -0.235112E | | 0.217581 E | | -0.601083 | | 0.840264800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| now | " | $?$ | -0.539242E | 01 | 0.839650ε | 09 | -0.553048E | 01 | 0.649105800 |
| Row | - | 3 | 0.122183 E | 02 | -0.594858E | 01 | -0.181652E | 01 | -0.332415E00 |
| ROW | = | 4 | 0.924299 E | 02 | -0.197367E | n2 | 0.690159 E | 01 | -0.344738E 09 |

system figenvalues

| vARIABIE | REAL | IMAG |
| :---: | :---: | :---: |
| 1 | - 0.173383 E 02 | 0.000000 E 0 |
| 2 | -0.107454E 09 | -0.115700E 01 |
| 3 | -0.107454E 01 | G.195700E Of |
| 4 | -0.8912128 00 | 0.000000 E 0 |

AATRIX DF MOMENTS FOR FORCING FUNCTION 1

| 30W | 1 | $\begin{aligned} & -0.500000 E \\ & -0.299120 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.998913E | 00 | -0.234292E | 01 | -0.725229E | 01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30W $=$ | $?$ | $\begin{aligned} & -0.833333 E \\ & -0.470196 E \end{aligned}$ | $\begin{array}{r} 00 \\ 02 \end{array}$ | -0.153541E | 01 | 0.385194 E | 04 | -0.195904E | 02 |
| 204 | 3 | $\begin{aligned} & -0.833333 E \\ & -0.699848 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | - 0.175858 E | 04 | -0.456583E | 01 | -0.148669E | 02 |
| 2015 $=$ | 4 | $\begin{aligned} & -0.833333 E \\ & -0.981999 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | $-0.293670 E$ | 09 | -0.639478玉 | 01 | -0.226989E | 02 |
| AATRIX | OF | MOMENTS FOR | FORCI | ING FUNCTION | 2 | | | | |
| $104=$ | 9 | $\begin{aligned} & -0.500000 E \\ & -0.292204 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 08 \end{aligned}$ | -0.999762\% | 00 | -0.236222E | 01 | -0.720834 | 04 |
| $104=$ | $?$ | $\begin{aligned} & -9.722222 E \\ & -0.459791 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.952434E | 01 | -0.367806E | 04 | -0.143285E | 02 |
| !01 | 3 | $\begin{aligned} & -0.579365 E \\ & -0.308702 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.169737E | 01 | -0.456706E | 09 | -0.148089E | 02 |
| 1048 | 4 | $\begin{aligned} & -0.425519 E \\ & -0.988128 E \end{aligned}$ | $\begin{aligned} & 00 \\ & 02 \end{aligned}$ | -0.193661E | 09 | -0.676182E | 01 | -0.225985E | 02 |

APPENDIX 2

A2. 5 Mode? 4, a binary distillation column, reduced by matching the moments.

- 12.5 -

Contents

1. Full and reduced model data.
2. Step responses as detailed below.

| Figure | Input | state x_{i} | reduced
 state $x_{i}{ }^{*}$ |
| :---: | :---: | :---: | :---: |
| A2.24 | 1 | 1 | 1 |
| A2.25 | 1 | 3 | 2 |
| A2.26 | 1 | 8 | 3 |
| A2.27 | 1 | 11 | 4 |
| A2.28 | 2 | 1 | 1 |
| A2.29 | 2 | 3 | 2 |
| A2.31 | 2 | 8 | 3 |

A NATQIX

| R 04 | \% | 1 | $\begin{array}{r} -0.140000 E-01 \\ 0.000000 E 00 \\ 0.000000 E 00 \end{array}$ | $\begin{aligned} & 0.430000 E-02 \\ & 0.000000 \mathrm{O} \\ & 0.000000 \mathrm{E} \end{aligned}$ | $\begin{array}{ll} 0.000000 E & 00 \\ 0.000000 E & 00 \\ 0.000000 E & O O \end{array}$ | $\begin{aligned} & 0.000000 E \text { On } \\ & 0.000000 E O O \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20.4 | \# | 2 | $\begin{aligned} & 0.950000 \mathrm{E}-02 \\ & 0.000000 \mathrm{E} \text { OO } \\ & 0.000000 \mathrm{E} \text { OO } \end{aligned}$ | $\begin{array}{r} -0.138000 E-01 \\ 0.000000 E \quad 00 \\ 0.000000 E 00 \end{array}$ | $\begin{array}{r} 0.460000 \mathrm{E}-02 \\ 0.000000 \mathrm{E}=0 \\ -0.300000 \mathrm{E}-03 \end{array}$ | $\begin{array}{ll} 0.000000 E & 00 \\ 0.000000 E & 00 \end{array}$ |
| 304 | = | 3 | 0.000000 E 00 | $0.950000 E-02$ | -0.141000E-01 | $0.6300008-02$ |
| | | | $\begin{array}{ll} 0.000000 E & 00 \\ 0.000000 E & 00 \end{array}$ | $\begin{array}{ll} 0.000000 E & 00 \\ 0.000000 E & 00 \end{array}$ | $\begin{array}{r} 0.000000 E \quad 00 \\ -0.500000 E-03 \end{array}$ | 0.000000800 |
| 204 | \# | 4 | 0.000000 E 0 | 0.000000200 | $0.950000 E=02$ | -0.158000E-09 |
| | | | $0.910000 \mathrm{EWO9}$ | 0.000000800 | 0.000000 E 0 | 0.000000800 |
| | | | 0.000000 EO | 0.000000 ECO | -0.800000E-03 | |
| 304 | \pm | 5 | 0.000000800 | 0.00000080 | 0.000000800 | 0.950000 E 02 |
| | | | - $0.3120005-01$ | 0.150000E-01 | 0.000000 O | 0.000000 E OO |
| | | | 0.000000 E 0 | 0.000000 E 00 | -0.800000E-03 | |
| ? 0.1 | z | 6 | 0.000000 E 00 | 0.000000 E 00 | 0.000000 E 00 | 0.000000 E 0 |
| | | | $0.2020008-01$ | $-0.352000 E=01$ | $0.220000 E=01$ | 0.000000 E 00 |
| | | | 0.000000800 | 0.000000 E 00 | -0.8000008-03 | |
| 20w | - | 7 | 0.000000 E 00 | 0.000000800 | 0.000000 E 0 | 0.000000200 |
| | | | 0.000000 E 00 | $0.202000 \mathrm{E}-09$ | $-0.422000 \mathrm{E}=01$ | $0.280000 \mathrm{E}-09$ |
| | | | $0.000000 E 00$ | 0.000000 E 00 | -0.800000E-03 | |
| 20\% | \% | 8 | 0.000000500 | $0.000000 \mathrm{E} \text { 00 }$ | | $\begin{array}{r} 0.000000 \mathrm{E} 00 \\ -0.482000 \mathrm{E}=01 \end{array}$ |
| | | | 0.000000 E 00 | 0.000000800 | $0.2020005=01$ | |
| | | | $0.370000 \mathrm{E}-09$ | 0.000000800 | -0.6000008-03 | |
| 104 | * | 9 | 0.000000 E 0 | 0.000000 E OO | 0.000000 E 00 | $\begin{aligned} & 0.000000 \mathrm{E} O 0 \\ & 0.202000 \mathrm{E}-\mathrm{O} \end{aligned}$ |
| | | | 0.000000 EO | 0.000000 E 00 | $0.000000 E 00$ | |
| | | | - $0.572000 E 01$ | $0.4200008=01$ | $=0.3000008=0.3$ | |
| 10.3 | $=$ | 0 | 0.000000 E 0 | 0.000000800 | 0.000000 E 00 | 0.000000 E 00 |
| | | | 0.000000 E 0 | 0.000000800 | 0.000000 E OO | 0.000000200 |
| | | | $0.202000 \mathrm{ECO9}$ | -0.483000Ew04 | 0.000000 E 0 | |
| 10w | $=$ | +1 | $0.255000 \mathrm{E}-01$ | 0.000000800 | $0.000000 E 00$ | 0.000000 E 00 |
| | | | 0.000000 E 00 | 0.000000500 | 0.000000 E OO | 0.000000800 |
| | | | 0.000000 E 0 | $0.255000 \mathrm{E}-01$ | -0.185000E-09 | |

| 1 | - $0.960360 E=01$ | 0.000000 E | 00 |
| :---: | :---: | :---: | :---: |
| 2 | -0.50525jemit | $0.000000 E$ | 00 |
| 3 | -0.700745E-09 | 0.000000 E | 00 |
| 4 | -0.247194E-01 | 0.000000 E | 00 |
| 5 | - - . $337243 \mathrm{E}-01$ | 0.000000 E | 00 |
| 4 | - $0.823316 E-02$ | 0.000000 E | 00 |
| 7 | -n. 200682E-01 | 0.0000002 | 00 |
| 8 | -0.489846E-03 | 0.000000 E | 00 |
| 7 | -0.139995E-01 | 0.000000 E | 00 |
| 10 | -0.325079E-02 | 0.000000 E | 00 |
| 19 | -0.173768E-01 | 0.000000 E | 00 |

| 204 | - | 4 | $\begin{aligned} & -0.687112 E=04 \\ & -0.303097 E \quad 14 \end{aligned}$ | -0.147609E | 03 | -0.605634E | 06 | -0.374144E | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 104 | $=$ | 5 | $\begin{aligned} & -0.605829 E-01 \\ & -0.260902 E ~ \end{aligned} 4$ | -0.127626E | 03 | -0.521677E | 06 | -0.399505E | 10 |
| InW | \% | 6 | $-0.821884 \mathrm{E}-01$
 -0.347806E 14 | -0.170613E | 03 | -0.695711E | 06 | -0.425949E | 10 |
| 104 | - | 7 | $\begin{aligned} & -0.756661 E-01 \\ & -0.313015 E 14 \end{aligned}$ | -0.153885E | 03 | -0.626275E | 06 | -0.383352E | 10 |
| 10W | \pm | 8 | $\begin{aligned} & -0.545821 E=01 \\ & -0.218370 E 14 \end{aligned}$ | -0.107573E | 03 | -0.436992E | 06 | $0.267445 E$ | 10 |
| 104 | a | 9 | $\begin{aligned} & -0.292622 E-01 \\ & -0.112396 E 14 \end{aligned}$ | -0.554612F | 02 | -0.224952E | 06 | -0.137658E | 10 |
| 1014 | $=$ | 10 | $\begin{aligned} & -0.126521 E-01 \\ & -0.474880 E 13 \end{aligned}$ | -0.234569E | 02 | -0.950506E | 05 | -0.384695E | 0\%' |
| 10w | $=$ | 11 | $\begin{aligned} & -0.496005 E=03 \\ & -0.105196 E 14 \end{aligned}$ | -0.501687E | 02 | -0.290147E | 06 | -0.428896E | 10 |

ATRIX OF MOMENTS FOR FORCING FUNCTION 2

| 04 | = | 1 | $\begin{aligned} & 0.762494 E=0 ? \\ & 0.307406 E 13 \end{aligned}$ | 0.159469 E | 02 | $0.615120 E$ | 05 | 0.376483 E | 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0,4 | = | $?$ | $\begin{aligned} & 0.248228 E-01 \\ & 0.965834 E \quad 13 \end{aligned}$ | 0.4754258 | 02 | 0.1932272 | 06 | 0.198284 : | 10 |
| OW | \# | 3 | $\begin{aligned} & 0.557639 E-01 \\ & 0.223845 E 14 \end{aligned}$ | $0.109905 E$ | 03 | 0.447717 E | 06 | 0.274932 E | 10 |
| nW | x | 4 | $\begin{aligned} & 0.837728 E \sim 01 \\ & 0.347511 E 14 \end{aligned}$ | 0.170249 E | 03 | $0.694927 E$ | 06 | 0.4255728 | 10 |
| nis | = | 5 | $\begin{aligned} & 0.715961 E-09 \\ & 0.290128 E 14 \end{aligned}$ | 0.146498 E | 03 | 0.598105 E | 06 | 0.3663138 | 10 |
| OW | = | 6 | $\begin{aligned} & 0.9 .54440 \mathrm{E}=01 \\ & 0.398760 \mathrm{E} .14 \end{aligned}$ | $0.195185 E$ | 03 | 0.7972915 | 06 | 0.4883232 | 10 |
| 0 W | $=$ | 7 | $\begin{aligned} & 0.863859 \varepsilon=09 \\ & 0.358870 E 14 \end{aligned}$ | $0.175726 E$ | 03 | 0.797530 E | 06 | 0.439479 E | 10 |
| OW | ¥ | 8 | $\begin{aligned} & 0.615672 E=01 \\ & 0.250359 E 14 \end{aligned}$ | 0.122669 F | 03 | 0.500577 E | 06 | 0.308588 E | 10 |
| 0 N | = | 9 | $\begin{aligned} & 0.324124 \mathrm{E}=01 \\ & 0.128861 \mathrm{E} \quad 14 \end{aligned}$ | 0.639838 E | 02 | 0.257654 E | 06 | 0.1578028 | in |
| nW | $=$ | 90 | $\begin{aligned} & 0.139696 E-01 \\ & 0.544443 E 13 \end{aligned}$ | 0.2671398 | 02 | 0.108862 E | 06 | 0.666722% | 09 |
| nu | e | 19 | $\begin{aligned} & 0.5462925=09 \\ & 0.120611 E 14 \end{aligned}$ | $0.606530 E$ | 02 | 0.241397 E | 06 | 0.147708 E | 10 |

```
RFOUCEN SVSTEM
FORCING FUNCTION MATRIX 8*
\begin{tabular}{|c|c|c|c|c|}
\hline  & \(=\) & 1 & -0.995775E-06 & \(0.371608 E-05\) \\
\hline MOH & * & 2 & -0.500885E-06 & \(0.420928 \mathrm{E}=04\) \\
\hline 000 & * & 3 & \(-0.235026 E-04\) & \(0.409633 E-14\) \\
\hline ROU & - & 4 & \(0.447200 \mathrm{E}-03\) & \(0.477588 \mathrm{E}-03\) \\
\hline
\end{tabular}
A MAYRIX
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ROW & \(=\) & 1. & -0.335520E-02 & 0.159182 E-03 & f. \(207708 \mathrm{E}-03\) & \(0.365755 \mathrm{E}-05\) \\
\hline 70. & * & \(?\) & \(-0.177024 \varepsilon-01\) & \(0.180244 E-02\) & -0.499014E-03 & -0.6120568-03 \\
\hline QON & \# & 3 & -0.259250Em01 & \(0.7012775-02\) & -0.330329E-02 & -0.567334E-03 \\
\hline ROU & = & 4 & \(0.553710 \mathrm{E}=01\) & -0.698967E-02 & \(0.8913768-02\) & -0.184876E-01 \\
\hline
\end{tabular}
```

sVSTFM FIGFNVALUFS

| VARIABIF | QEAL | IMAG |
| :---: | :---: | :---: |
| 1 | $-0.185537 E-01$ | $0.000000 E O 0$ |
| 2 | $-0.487669 E-03$ | $0.000000 E O$ |
| 3 | $-0.991276 E-03$ | $0.000000 E O 0$ |
| 4 | $-0.331092 E-02$ | $0.000000 E 00$ |

REDUCEN MODEL MOMENTS

| ROW | * | 1 | -0.574695E-02
 -0.26名i28E is | -0.129234E | 02 | -0.533596E | 05 | -0.327523E | 07 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n W | \# | 2 | $\begin{aligned} & -0.436445 E-09 \\ & -0.195330 E \quad 14 \end{aligned}$ | -0.947365E | 02 | -0.388827E | 06 | -0.238557E | 10 |
| R Ow | m | 3 | $\begin{aligned} & -0.545821 E=01 \\ & -0.218496 E \quad 14 \end{aligned}$ | $0.0 .107602 E$ | 03 | -0.435824E | 06 | 0.2669052 | 10 |
| 7ก\% | \# | 4 | $\begin{aligned} & -0.496005 E-03 \\ & -0.105295 E \quad 14 \end{aligned}$ | -0.501805E | 02 | -0.209679E | 06 | -0.128546E | 10 |

MATRIX OF MOMENTS FOR FORCING FUNCTION 2

| Row | z | 1 | $\begin{aligned} & 0.762414 \mathrm{E}-02 \\ & 0.305954 \mathrm{E} \quad 13 \end{aligned}$ | 0.1545312 | 02 | 0.612539 E | 05 | 0.3742529 | 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rois | = | 2 | $\begin{aligned} & 0.557639 E-01 \\ & 0.222345 E 14 \end{aligned}$ | 0.109958 E | 03 | 0.445439 E | 06 | 0.2724518 | 10 |
| ROU | - | 3 | $\begin{aligned} & 0.695672 E-01 \\ & 0.249251 E 14 \end{aligned}$ | 0.122730 E | 03 | 0.497948 E | 06 | 0.304680 E | 10 |
| 20W | \% | 4 | $\begin{aligned} & 0.546292 \mathrm{E}-01 \\ & 0.120046 \mathrm{E} \\ & 14 \end{aligned}$ | $0.606776 E$ | 02 | 0.240343 E | 06 | 0.4468222 | 10 |

APPENDIX 3

A3.1 A listing of the program for the reduction of state variable models by matching the frequency response.

```
MACTE: EREQUENGY RESPONSE REDUCTION,TYPF ?.
1*TEGFR D,DIKSTART
OTMFNETON WORK3(400),WORK4(40n),WORKS(800)
OYMFNSION W(50). R(400).JR(?0),WGRK1(400).WORK2(400)
D.MFMEYON HOLD(20),TO(20),101V(?0),WORK6(400),WORK7(800)
```



```
COmMON QO(400)
)PFINE ETLE 3(600.900.L,NTI)
BrF!iGFKilE4(600,100.L,NIL)
```

```
TUYS DPGGRAM REDUCES THE N TH. ORAFR MODEL
    X' = AX + 8II
YG AN FOUIVALENT M TH, OROER MODFL BY MATCHING THE FREQUFNRY
RESDGMSES OF AI.L INDUTS ANO SEIFCTED OUTPITSS OF THE FULL AND
REN!ICFD MOOELS.
OHTDUT:
FIII ANN REDUCED SYRTEMS ARE NRITYEN TOGETHER WITH THEIR
REEPFCTIVE TIME ANO FREQUFNCY RFSPONSES AND EIGENANALYSES.
IMEOOMATION IS GIVFN ON THE SFLFCTFO VARIABLES AND THE QUALTTV
OF FIT OBTAINED IN THE LEAST SQUARES SOLUTION.
0STA QFQUIREO:
M FFDITEED MODEL OROER.
N FHIT MODEL ORDER.
IO HUMAER OF INPUTS.
P NUHRER OF FREQUENCIES MATCHED.
# FPFOUENCIES.
A PI.INT MGTRIX.
OT IVTFRVAL. FOR THE TIME RESPONSE.
TABX MAXIMUM TIME FOR TIME RESPONSE.
; FNOIT MATRIY.
IF SFIECTED OUTPUTS.
DOOGRAM ,ARTTTEN BY:
M.J. BOSLEY,
DEPT. CHEM, ENG.
LOUGHBOROUGH UNIVERSITY OF TFCHNOLOGY,
ENGL*ND.
```

```
RFOD PNPIJT PARAMETERS, FREOUENCIES, PIANT MATRIX, AND TIMF
RF:GDOMSF DARAMFTERS.
30 2400 KEOZ=1.2
RCQD(1.1)M,N,IO;P
R&An(1, 2) (W(K), K=1,0)
RHAD(1,?)((A(I+N*(N-1)),N=1,N),I=q,N)
READ(4, ?) OT, rmAX
COMDIITF PARAMETERS FOR USE IN OROGRAM,
FDS*:9%-10
O*XSTART=0
1ND=1D*D
```

```
    AP0p:*棤*!pp
    MPFSM+10
    MO=的:M
    Mフ7=%+M%
    IE=1
    I?F4%年5
    MPm?
    SET IR DARAMETFRS FOR USE IN COMPUTING TIMF RESOONSE.
    NDTTE(7.099R)
    53 CONTIMME.
    1v=0
    10?NG=0
    N4=N+?
    N>=N**
    NR=N2+7+N
```



```
    NつリP=7*N!P
    K:TD=NTP
    GA11 FMOVE(A(1),WORK1(1),N2)
    CNMPUTE THF EIGENANALVSIS.
FOO C:II. MATINGR(IRUNG,N,DT,TMAX,NY,NP,N3,WORKZ,WORKS,WORKS,A,IO.IR,
                WORK7.IR,WIRKT,WORKT, BU,WORKK,IX,IREAD)
    50 TO,501,502,506,502),IE
    rean ymput MATRIX.
501 2ran(:.2)((B)(I+N*(J-1)),J#9,ID),I=1,N)
    ##TTE(?,4)
    #N1 uP?TEMAT(N,IP,NyP,B)
    | © ?
30n EOMTYMUE
    15=4
    COMDUTE'THE TIME RESOONSE FOR EAGM INPUT IN TURN.
    0n 50% k=1.1p
    0? 505. 1=1.N
505 9:1(1)=R(T+N*(K-1))
5n> comylv!f
    Cail rmOVE(WOQK9(9).A(1),NZ)
    COMDUTE THE SYSTEM FREQUENGY RESPONSE AND WRITE IT OUT.
```



```
    4 W,WORK&,NQ,HOLD)
    IG(OMXSTART.GT.O)GO TO OO9O
    QFAD THF SELECTED YARIAELES,
    R&&n(1,i)(IR(I),I=1,M)
    SFT UO GPRAYS FOR THE LEAST SOUARES SOLUTION.
    CH!I. GETHP(M,ID,MPDP,P,NY,WORK4,WOMKY,WORK3,W,IR,N)
    SOTFP?,300)
    HOTTE(?,S01)(I#(I),V#1,M)
    O^ 1>0 1=1.MIPP
```



```
C
r
```101
 N\capRK3(J1)={0RKム(J1)!QHELD
 Gn TO 440
102. \のロKy(!)=0
 0) 3:5 L=1.M
 JM=T+PDP+(L-1)
 350 W\capDK3(J4)=NORK4(J9)
 110. EWC=EUr.+WORK1(I)*WORK1(I)
 E1f:=SORT(E|C)
 CA!1 1, SOCIPP,M,1,MIPP,IPP,M,M27,WORK3,WORYI,HOLD,IPIV,EPR,IER,
 * WORKS)
 I*(IEQ.FQ.O)GO TO 205
 U&1TE(?.20S)IER
 H2!TF(2.7021)(IDIV(T).I=IER+1,M)
 STOE
 705 (6,9!TIN|!E
```



```
 3!0 COMTINHC
 FR!i. TRANMAT(A,WORKY,M,M)
 (*11 FMOYE(WORK\(1),A(9),M2)
r
c
C
 UOPTE OUT THE REDUCED SVSTEM ANN SET UP PARAMETERS TO ENARLE
 THE `TME ANN FRFQUFNCV RESDONSES TO SE COMPIJTED,AS FOR
 T4F Flll: SVSYEM.
 NOYTEP?,5)
 0) 200 I=1,M
 IM=「Q(%)
 0n ?un J=1.!P
20n Wの日k1(T+M*(N-1))=R0(IM+N*(J=1))
 C&1I CPMUMT(M,10,M;A(9),WORK1(1), R(9),O.NRR)
 G:!1. EPMASUS(B(9),DUM,B(1),MIP,m1,NRR)
 NO!TEP?.,4)
 C.KII HDITEMAT(M,IP,MIP,R)
 OTVGTADTETPD
 N二年
 Ir=3
 GO TO 53
*000 こ.NNTTHIF
 S*ND
 1 FMRMAT(20!O)
 P E.OMAT(GOOFO.0)
 & GIRMAT(IXHYEULI. OROFR SYSTFM,//, OH MATRIX A)
 4 CORMAT(////OH MATRIX B)
 5 FODMAT(//////90H REDUCED MODEL OATA)
 1) FODMAT(////94H IEAST SOUARES/)
 50 EORMAT(///9OH SYSTEM EIGENVR(UES/)
 5) FMRMAT(?(5X.E1G.6))
4Oz FMDMAT'////18H RHS FUCLYO NORM z,E16.6)
10% FODMAT(,ZOH LEAST SOUARES ERROR =, &16.6)
```

```
 ZOK ENRMAY(TOH STOP AT EEASE SOUARF.RANK =.13)
 30) EMQMAT(1///Z2H VARIARIES OF TNTERFST)
 ;N1 FODIAAT(4016)
 {!0 f VRMAT(////24H NUMEER OF CRERUENCTES m.13)
 GOL FORMAT:///I4OH TIMF RESDONSE FOR EORCING EUNCTION ,13//)
QOOQ FORMAT(MOH FUIL MOOFL DATA)
?O21 FMOMAT(1XH USELESS COLUMNS *.OOT3)
 E*n
```


1 REINT,N1,HOLD)
HTFG:R P, DIXSTART

ATHFNCION HOLD(N)
D:MENSYOR REINT(N4)
Crmmos an(400)
THYS SFGMENT COMPUTES THE REAT. AND IMAGINARY PARTS OF THE MODEL
$X=A X+B U$
FOP AII YNPUTS ANO OUTPUTS AND WRITES IT TO DISC FILES.
CP! EMOVE (A(1), STORE(1), N2)

A7=50
CA1 GGGUIVE(STORE,RO,N,N2,NID, I, D,ID,IT,REINT)
CAII FDMASUS(RO(1), DUM,RO(T),NID, $-1, N R R)$
CA1: EDMUMTCN,N,N,A(1),A(1),A2(1), O,NRR)
CA1। EDMIMTYN, IP,N,A(1), B(1),ABP1), O,NRR)
C:11 EDMASIS (AB(1), DUM, AB(I),NID, - N, NRR)
二: $: ~ E H C V E(A C(!), S T O R E(1), N Z)$
MP=1)
i) $7 \quad \mathrm{x}=1, \mathrm{p}$
गn 2 P=, N
$\rightarrow A>(Y+N+(!-1))=A 2(I+N *(T-1))+W(K) * W(X)$
r.R11 EMOVF(AB(1),RH(1),N1D)
$1 \mathrm{Al}=1$
1r=3
6. $\quad 17=\mathrm{M} \boldsymbol{Z}+9$
(3) E4SOLVF (A?,RH,N,N2,NIF,IN, H, ID, IT,REINT)

4. Des $1=1$ ! ip
$1=1+i 1+(1-1)$
G*11. EMOVE(RH(L), HOI.O(1),N)
LOTXQTART+J+IP*(K-1)
$\zeta$ WDTrEegrikjento
15(1GEQ.4)GOTO7
日ッ- 以 (K)
CAII FMOVE(B(1), RH(1),NIP)
CAl EDMASUS(Q.OUM,RH(1),NTP,O,NRR)
1ト"
I $=4$
かの $\boldsymbol{r}$ の
$\Rightarrow$ CA1 EMMVE(STDRF(1).AZ(1),N2)
zeTllper

$5^{\text {TOD }}$

190 EMRMAT(LE96.6)
101 FПロMAT(14)

2OO EnOMATP／／／／R8H REAT．PART AT ZFRO EREQUENCY； E＊～

```
 SHRRIHTTNE SETUD(M,TP,MIPP,P,NQ,HOLD,Q,S,W,IR,N)
 IMFFGER &
 DHFHSPON HOLD(MYPP),Q(MIPP),S(MIOD),W(P),YR(N)
 C^धMO* RG(400)
 FA?S CFGMENT READS RACK EROM DISC TME REAL. AND TMAGINARY
 DMRTS EOR EACH VARIABLE AND INDIIT MMD SETS UP ARRAYS PRIOR
 TO SOIVING THE LEASY SQUARES PRORIFM.
 100mp+!0
)\ & }k=1,
 0n 4 19=1.10
 J-Jq+90*(K-q)
 R-An(2'J)HO1D
 0) }3\quad1=4,
```



```
READ(A!,1)HOID
0n द Y = ¢ ,M
& : (1+11*(I-I))=-HOLO(TR(I))wW(K)
CH1& TQANMAT(Q,HOLD,M,IDP)
 MA1G FMOVE(HOLD(1):O(I),MTPP)
 ~&: TPANMAT(S,HOLD,M,IPP)
CA1! FMOVE(HOLD(1),S(1).MIPP)
&RTHRN
〔い!
```

    GMPROUTINE WRITFFRER(N,IP,F,N1,N2.N2IP,HOLO,WORK,W, DIXSTAPT, WORKT)
    IMTFGFR OPXSTART
    TYTEGER ?
    ) TMFis? OH WORK7 (N210)
    OPNFMCTON HOLD(NQ), WORK(NRIP),W(P)
    DruF!ETNA TFXTY(4), YEXT2(4)
    D. YA TEXT1(4), YEXTZ(9)/32H REAI. IMAG,
    9
.32ん GMIN
LAGI
TWTE SCGMENT READS GAGK FROM DISC THE REAL AND IMAGINARY DARTS
FAR FOCH VAGIARIE ANO INPUT. AND FROM IT COMPUTFS THE
EnUTUAIFNT FRFQUENCV RESPONSF. THE WHOLE OF THIS DATA
IC THEN WRTTTEN OUT.
HTTE(3.1)
1v=19/3

17ヵ!
Lérver.o. of $z=1 x+1$
n.2 $109 \mathrm{~K}=1, \mathrm{D}$
J. $=0$

L-I9 + PD* (K -1$)$ + DIXSTART
KたAn(T1) HO10
arell + +
on 19 1men, N

```
 1. 4ORK(1+N*(Nl-1))=HOI.D(1)
 READ(&"!)HOLD
 J!=HL+1
 On 12 I=1.N
1) MnaK(1+N*(JI-1))=H010(1)
 on 104 J=1,JP
 J==?*.1**
 Bn 10& y=1,N
 K>={+N*(JR-1)
 KT=!+N*IRR
 7O-WORK(KR)
 z! चHORK!K!)
 AOESORT(7R*7R*ZI*7I)
 IE(YR,NF.O.OR,ZI.NF,O)GO TO 200
 D!ASE=0
 GO TO. PO1
2OO GONTINHE
 OHACE=ATAN2(ABS(2I).ABS(2R))*&80/5.14959
 IO(7I.TT.O.AND.ZR.GT.O)PHASE=DHASE
 IE(%1.!T.O.AND.7R.LT.O)DNASE=180-DNASE
 IF(YI GT.O.ANO.ZR,IT.O)PHASE={8O+OHASE
 IT(YI GT.O.AND.7R.GT.O)PHASE#360-PHASE
 CONTIN!1F
 HARXV(KR)=AR
104 UnतX7(KI)=PHASE
 W%TTF(?,3)W(K)
 00 & 11=1,12
 ICTmS*S1-2
 14NO=TST+2
 IE(11 F0.17)IEND=IST+IY=1
 WOTTF(?,G)(I,I=1ST.IEND)
 NETYE(?,7)
 #प\TF(7., 1)(TEXT1,I=IST,IEND)
 0^ }8\quadT=9,
 * WOTTE(7.O)I,(WNRK(I+N*(J-1)),j=2*:ST-1,2*IEND)
 DM 101 11m9.17
 1CT=3+J1-2
 IE 绍= Y ST+2
 IE(.19 FO.IZ)IENO=1ST+IY=1
 WSYTE(7,G)(I,I=IST,YEND)
 WQTrE(7.7)
 WOTTE(?.2Y)(TEXTZ.InIST.IEND)
 0.101 {=1.N
109 W0!TE(?.9)I.(WORK7(F+N&(J-1)),J=2*1ST-1.2*IEND)
 RFTIRM
 FORMAT(YOH1FREQUENCY RESPONSE)
```



```
 FARMAT(//17H FORCING FUNCTION:4X,3(12.29X))
 EOFMAT(//6H STATE)
 FGRMAT(7X,12.4X,6(4X,E12.6))
 FMamAT(:C4)
 GORMAT(95A8)
 E*N
```

        SHRROHTPNE ILSO(M,N,L,MN,ML,NL,N2I,A, B, X, IDIV,EPS,IER,AUX)
        D) WeNSYON.A(献), B(MI.), X(NT.),IPIV(N),AUX(N2I)
    ```
i
 IG GF.N ANS A IS THE (N,L) MATRIX. THIS PROROAR IS GIVEN IN DETAIL.
 IN ruE !BM SOB SCIENTIFIC SUBS. MANUAL.
 REFERENCE:
 G GOIUS. SHMFOISCHE MATHEMATIK,VOL 7.1SS.3(1965).206-296.
 15(M-N)30,1,1
1 p:V=1]
 IFNO=n
 0n 4 v=9,N
 IOTV(x)=|
 H=O
 lCT=IFND+1
 IC:HD=YFNN+M
 DO 2 ##ST,IENO
 ? H=H+A(T)+A(!)
 Al(X(K)=H
 IC(H=DYY)4.4.3
z PMV#M
 KM1.v=k
4. GONTINIIF
 1.c(0.U)31.34.5
 S STGmSORT(PIV)
 TOI=STG*ABS(EPS)
 CN=1*M
 IST=mM
 nn 21 K=1,N
 TCT=1ST+M+1
 ITNA=TST+M-K
 I*Kgrvok
 IE(T)R.R.6
 A HEA||(: Y)
 A:M(!)=AUX(KP\V)
 A:|र(xO:V)=H
 IN=1+M
 DO P 1=بST,JENO
 j=1+17
 H-A(1)
 A(T)=A(1)
 7 4(I)=W
 4 15(k-4)11,19.9
 O S!c:0
 OO 10 Y=IST,IENO
40 Sif:mS(G*A(I)*4(1)
 FIG*SORT(SIG)
 fr(S!f-T01)32,32,19
49 HmA(ICT)..
 IF(H)1?.13.13
|% SG:-5!G
13 [!TV(K口:V)=IP!V(K)
 OTV(K)=KP|V
 gr:TA=H+SIG
 A:IST)=QETA
 BETA=1/(STG*BETA)
 A-V*K
 A|Y(J)=-SIG
 T ((K-N)44,10,19
14p+vm0
 In=0
 de?mex+9
 <0|V=,!QT
 OM A% I=JSY,N
```



```
 4-0,
```

On IS IEIST，IEND
$1:=1+1 n$
15 $\mathrm{H}=\mathrm{H}+\mathrm{A}(\mathrm{C}) * \mathrm{~A}(\mathrm{Cl})$
H－TFTA
on $9 \% T=T S T, I E N D$
$i=1+i n$


4－A11גC1）－A（11）＊A（11）
A！$\times()=$,
$1=(4-0 \uparrow($ ） 98.18 .17
17 p｜VEA
くットV＝！
$4:$ CONTIAHF
19 on 31 trK．LM，M
$\mathrm{H}=\mathrm{O}$
IFND $=1+M-K$
ITET
DO $29 \quad 1=\mathrm{A}$ IFND
$A=H+A$（T）
？ 1 1 $=1 Y+1$
$4=R F T A+H$
1？こ！くケ

B！！$=0(1)-A(I I)+H$ ．
71 ！：＝1！+1
1 CQEO
$1-N$
$1.4=1 * N$
$p: V=1 / A \| X(2 * N)$
on ？

？？ $1=1+h$
$1=(N-4) 26,26,23$
23，1et＝（V－1）＊M＋N

JCTmsCT－PT－1
$\mathrm{K}=\mathrm{N}+\mathrm{N}+\mathrm{G}-\mathrm{J}$
otvog／Alli（K）
KCTEKーN
1A＝YрYV（KST）－KST
1ヶTE？－．
Dの $75 k=1.1$
$H=R(K \cap T)$
1STaICTHN
［FNA＝TCT＋J－？
$19=1 S T$
0n． 74 I＝IST．IEND
1！＝T！+M ．
36． $\mathrm{H}-\mathrm{H}-\mathrm{A}(\mathrm{I})$ ） $\mathrm{X}(\mathrm{I})$
$!=I$ 行 1
$1=1+10$
$x(T)=v(Y I)$
$x(11)=p \mathrm{~F}+\mathrm{H}$
？ 5 Kcr＝xet +M
36 1crant 1
1cNの＝0
on $29.1=1.1$
IFND＝YFAD＋M
$\mathrm{H}=$ ？

$\rightarrow 7$ D $3 \dot{x} \quad \mathrm{I}$ IST．IEND
つ\＆ $4-4+8(9) * R(1)$

```
 ICTm!?T+M
 20 A!IX:J)=H
 q#TIIRN
 301-R2-?
 RETIIRN
 39 1FR2-4
 25%11R4
 3) 1-D=K-9
 RETITRN
 EN\
 SHRQOHTINE NATINGREIRUNG,N,DT,TMAX,N1,NZ,NS,X,Y,M,MINV,INTIITE,
 M AT,IC,DEINY,Y,F,FT,IX,IREAD)
 REAl M(N2),M{NV(N2)
 DIMENSTON INT(N),YGS(N),X(NT),Y(NQ):AT(NS).IC(N),REINT(NY)
 OPMENSION T(NQ),F(N),FT(N)
 COMMOM /TRESP/A(1684),BU(41),IMD
 1f011=n
 1E(PX NF.O)G0 TO 2000
 WRTTE(T,50?)
 0n 50^ !=1.N
 500 W%YTF(2,501)I,(A(1+N*(J-1)),d=1,N)
 |vca0
 DO (%)年 Y=1,N*N
 *OOM(1)=A(!)
 IC(N.GE 3)GO TO 2001
 IX=?
 RFTIIRN
r
C GOMPUTF EIGENVALURS
20n1 CONTIMHF
 CAIL CDDIRHSSSF(N,A(9),INT(q))
 E:11 EDORHESSE(N,A(4);ITS(9),X(4),Y(1),AT(4),IVS)
 WOTTEP?.504)
 W\1TE(?.503)
 00 203 T= 1,M
 703 WOTTE(2.202)I.X(I),V(1)
 TEO=0
 RGTIIRN
C
C TEST EOQ EQUAL ROOTS
r
 DO 5 T={,N-1
 on 5 . = = l + I,N
 IF(ABF(X(I)-X(J)).GT..TE-06)G0 TO 5
 YE(Y(I),FQ.-Y(J).AND.ABS(Y(I)).GT,.1E~0O)GOTO S
 WOYTE(?,7)
 1r0=1
 I Y =?
 R5TUR.N
 5 CANTINIF
C. TSST OND COMPLEX FIGENVALUES
 IE(IRUNG.EQ.1)GO TO 4000
 NC % T=T,N
 IE (AGS(Y(Y)).LT..1E-09)GO TO 4
 1r(Y)=9
 GO TO *
 4 [r(T)=!
 3 CONTINM!F
C
C
C CMMPUTE EIGENVECTORS
```

r.

```
NaO7=N*N+7*N
CAI.! E&ORVS(N,NBOZ,A,M,X,Y,AT)
 CAII FGBACK(H,A,M,V,INT)
NDPTF(?,505)
O^ 50K I=1,N
W:!TF(7,501)I,(M(I+N*(J-1)),J=1,N)
 50% GONTINUF
C
C. COMPUTE INVERSF EIGFNVECTORS
r
0ng t=4,N
DOQ I=1,N
 0 M:NV(Y+N* (J=1))=0.0
0) 10 I=?,N
 10 m+NV(1+N*(I-1))=1.0
 1:=4
 NA=N*N
 0^ 920 Y=1,N*N
 090 AF(M1+1)=M(T)
 CMI F&SOLVE (M,MYNV,N,NA,NA,IN,D,ID,IT,RFINT)
 WOTTE(2.1000)
 0N G09 JET,N
 InOT HOITEPO,501)I,(MINV(I+N*(J=1)).,=9,N)
 0N 089 1=1,N*N
 089 M!T)=AT(N9+I)
 Iv=1
4000 COnTyMlle
 IF(TRISNG.EQ.1)IX=2
 REYIRN
2000 IE(IK FQ.2)GO YO 700
 C:HI HTM&(MINV,BU,7,N,N,1)
 OOO CONTINIF
 IEFPFOFO.1IGO TO 7OO
 16(TMD)8,520,524
 5?0 WOITE(?,522)
 573 CONTINIF
 T=-nt
 11 T=T+!T
 1:=1
 1E(IMD)R.12.93
C
C. THYG GERTION CALCULATES THE IMPUISE RESPONSE
C
 13 n? 14 1=1,N
 1E (11.1901.8.100
 100 EE(TC(T).EQ.1)(;0 TO 15
 F(Y)=>(I)*EXP(X(I)*T)
 GO TO 1G.
 15 R=FXP(X(I)*T)
 S=Y(:)*T
 F(I)=>(T)*R*COS(S)+ ((I+1)*R*S PN(S)
 F(f+1)=-7(1)*R*SIN(S)+Z(I+1)*R*COS(S)
 101 LI=m!1
 14 CNNTINHF
 COII. ITSAK(M,F,FT,N,N,T)
C
C UNTTF TIMF RESPONSE
C
Irnu=1routq.
WDIT&(7.17)T.ICOU
W#TTE(?.300)
WOTTEPTRFADIT,(FT(I),I=4,N)
```

```
 W01TE(?.309)((I,FT(I)),1m1,N)
```

    NTTME=NINT( (T-TMAX)/DT)
    IF:NT:MF):1, R,8
    THIS PFCTION COMPIITES THE STEP RESPONSE
    92 nn 20 : $=1, \mathrm{~N}$
le(11.)102.8.103
903 $\mathrm{FE}(\mathrm{C}(\boldsymbol{1}) . E Q .1) \mathrm{GO}$ TO 21
$\mathrm{F}(1)=7(1) *(\operatorname{EXP}(X(1) * T)-1) / X(I)$
GO TO 20
$31 R=F X P(X(1) * T)$

S-v(I)*T
DaY(I)*V(1)+X(I)*X(I)

1) $-\quad Y q * C O S(S)) * R+V 1) / D$
$F(1+1)=-Z(1) *((X(1) * S I N(S)-Y 4 * C O C(S)) * R+Y 1 \quad) / P+Z(I+1) *(C \quad Y q * S I N$

$902 \mathrm{~L}=-11$
20 Cnnчinlle
gir TO, 4
STOD
57. Ho:TE().5?4)
G^ +1) 52.3
THTS QFCTIOA DOFS THE RUNGE KUTTA INTEGRATION
700 WEITE(?.702)

AM1 A(Y)=M(Y)
19!ल心至 1
$\mathrm{M} 9=\mathrm{N}+1$
I = (1月n.EQ.1)GOTO 790
HOTFP(3.522)
Dの 7i) $4=?, 41$
704 x(1)=0
Gin TO 7is
790-WOTTE(2.524)
กn $719:=2 . \mathrm{Mq}^{19}$
$791 \times($ (T) $=714(1-1)$
$795 \mathrm{H}=\mathrm{nr}$
$x(9)=0$
$1=(I R U N G, E Q .0) G O$ TO 8
I日TT=
705 CA1 EAPUNG(MP.INYT,H,X,Z,V)


Wの1Tc(?.17)×(9).IC0!
itorth ( 7,300 )
HETTF(TQEAD)(X(1), I=1, N+1)
WhYTE(,$~ 301)((1, X(1+1)), I=1, N)$
NrTMÉENYT ( $(X(4)=T M A X) / D T)$
1.(NTTMF) $705,8,8$
\& COMTIHIF
RETHRN
7 FOQMATC///IRH CQUAL ROOTS FOUNAS
5n5 F~2\&:9T(////つ3H MATRIX OF EIGENVFCTORS/)
5気 FMRMAT(////19H SYSTEM EIGENVAIUFS/)
GOT EAQMAT (ZSH VARIABLE REAI IMAG)
フOZ FMRMAT $(3 X, Y, 2(4 X, E 43,6))$
SO? FMRMAT(////9H A NATRIX/)
SO4 CMRMAT(/6H ROW $=13,4 E 16.6 /(9 X, 4 E 4,0))$

```
 4Y FMRMAT(1//7H TIME =,E40.4,14.1)
 10 FПOMAT (LX,I3,5X,E10.4)
ZOOFMRMATGSHH VARIAGIE FT FTRTABLE FY VARIABIE
 | FT)
3\cap1 FOOMAT(X(3X.[3,E17,R))
5?) F\OMA+(////91H STEP INPUT////)
5%& FOQMAT(////47H IMPUISE RESDONSE////)
IO\capO FORMAT(///S{H MATRIX OF INVERSE EIGENVECTORS/)
7\cap? FMRMAT(?4HYRUNGE-KUTTA INTEGRATION///)
 F0!
```

    SURROUTINE F\&DERY(M,Y,DY)
    DTMENSYON Y(M), DY(M)
    COMMON /TRESP/A(1684), BU(41), IMP
    TH: GFGMENT COMPITES THE RATE OF CHANGF OF THE MODEL
    \(X^{\prime}=A X+B\)
    foir uec in the runge kutta integration.
    \(\mathrm{N}=\mathrm{M}=1\)
    2n \(1 \quad \mathrm{P}=1\), N
    1: (Y:iD.FQ.1)GO TO 3
    
GO TO h
3 $\quad 0 \vee(r+1)=0$
4 DO $9 \quad i=1, N$
$s: M \leq A(1+N *(J-1)) * V(1+1)$
$4 \mathrm{D})(\mathrm{Y}+9)=\mathrm{SUH}+\mathrm{DY}(\mathrm{P}+9)$
PETHR:
FMn
S!RQOHTINE WRITEMAT(H,M,NM,A)
DPMENCION A(NM)
THIG SFGMENT WRITES OUT THE (N,M) MATRIX A.

力の $2 \quad 1=1, \mathrm{~N}$
7 WOTTE( ). S) I. (A (I+N* $(J-1)), J=1, M)$
RETURN.
9 FMOMAT(1/)
; FIFMAT(IGH ROW =, 13.7E16.6/(9X:7E\{6.6))
ENO
S:QQOUTYGE TRANMAT(A,AT,M,N)
DTMFNCYO: A(M,N), AT(N,M)
THIS GFGMENT DUTS THF TRANSPOSE OF THE \&M.NY MATRIX A INTO AT.
OM i $i=1, M$
on $1 \quad 1=1, \mathrm{~N}$

RETIIRN
Ewn

## APPENDIX 3

A3. 2 Model 1, an overdamped system, reduced by matching the frequency response.

## Contents

1. Full and reduced model data.
2. Step responses as detailed below.

| Figure | Input | State $x_{i}$ | reduced <br> state $x_{i}{ }^{*}$ |
| :---: | :---: | :---: | :---: |
| A3.1 | 1 | 1 | 1 |
| A3.2 | 1 | 3 | 2 |
| A3.3 | 1 | 7 | 3 |
| A3.4 | 1 | 12 | 4 |
| A3.5 | 2 | 3 | 2 |
| A3.6 | 2 | 7 | 3 |
| A3.7 | 2 | 12 | 4 |

State $x_{1}$ was not forced by input 2

FHLL MODEL DATA

## A MATMIX



| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| -0.200000E | $00^{\text {- }}$ | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.0000005 | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.100000 E | 02 | -0.100000E | 02 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.1300008 | 02 | -0.9300005 | 02 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | $0.3000 \cap 08$ | 01 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 F | 00 |
| 0.000000 E | 00 | $0.000000 E$ | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| -0.800000E | 01 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.0000008 | 00 | 0.0000008 | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.500000 E | 01 | -0.500000E | 01 | 0.000000 E | 00 |
| $0.000000 E$ | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.0000008 | 00 |
| 0.000000 E | 00 | 0.110000 E | 02 | -0.110000E | 02 |
| $0.006000 E$ | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.0000005 | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | $0.600000 \varepsilon$ | 01 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 F | 00 |
| -0.120000E | 02 | 0.000000 E | 00 | 0.000000 F | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.900000 E | 01 | -0.900000E | 01 | 0.000000 E | 00 |
| $0.000000 E$ | 00 | 0.000000 E | 00 | 0.000000 E | 00 |
| 0.000000 E | 00 | 0.000000 E | 00 | 0.0000008 | 00 |
| 0.000000 E | 00 | 0.140000 E | 02 | -0.140000E | 02 |

SYSTEM EIGENVALUES

| variable | REAL | IMAG |
| :---: | :---: | :---: |
| 1 | -0.100000E 01 | 0.000000 E 0 |
| 2 | -0.200000E 01 | 0.000000 E 0 |
| 3 | -0.300000E 01 | 0.000000 O 0 |
| 4 | -0.500000E 01 | 0.000000 E 00 |
| 5 | -0.600000E Oi | 0.000000 E OO |
| 6 | -0.130000E 02 | 0.000000 E 0 |
| 7 | -0.800000E 01 | 0.000000 E OO |
| 8 | -0.120000E 02 | 0.000000E 00 |
| 0 | -0.100000E 02 | 0.000000 E 0 |
| 10 | -0.110000E 02 | 0.000000 E 00 |
| 19 | -0.900000E 01 | 0,000000E 00 |
| 92 | -0.140000E 02 | 0.000000 OO |

MATRIX B


```
VARIABLES OF INTEREST
 1372
```

Frequencies ritted

|  | 0.200000E-01 | 0.300000 -01 | 0.400000E-01 |
| :---: | :---: | :---: | :---: |
| 0.700000E-01 | 0.100000 E 00 | 0.200000 EO | 0,300000E 00 |
| 0.400000 E 0 | 0.500000 E 00 | 0.600000800 | 0.700000 E 00 |
| 0.800000 E 0 | 0.900000 E 0 | 0.100000 Eq | $0.130000 \mathrm{E}^{\text {O }}$ |

REDUCED MODEL. DATA

MATRIX B

| ROW $=1$ | 0.900000 E 01 | $-0.956210 \mathrm{E}-07$ |  |
| ---: | ---: | ---: | ---: |
| ROW $=2$, | -0.903582 E 00 | 0.168969 E 01 |  |
| ROW $=$ | 3 | 0.103047 E 00 | -0.692271 E 00 |
| ROW $=$ | 4 | $-0.156227 E 00$ | 0.877878 E 00 |

## A MATRIX

| ROW | * | 1 | -0.100000E |  | 0.321287 E |  | -0.312381E |  | $0.1473045-07$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROW | * | 2 | 0.1793278 | 01 | -0.152594E | 09 | -0.227168E | 00 | 0.634203 Em 01 |
| ROW | = | 3 | -0.795318E | 00 | 0.218220 E | 09 | -0.906511E | 09 | -0.424822E on |
| ROW | = | 4 | 0.103410 E | 09 | -0.221478E | 01 | 0.435237 E | 01 | -0.301547E01 |

SYSTEM EIGENVALUES

| VARIABIE | REAL | IMAG |  |
| :---: | :---: | :---: | :---: |
| 1 | $-0.100000 E$ | 01 | $0.000000 E 00$ |
| 2 | $-0.169860 E$ | 01 | $0.000000 E O$ |
| 3 | $-0.195396 E$ | 01 | $-0.129151 E 01$ |
| 4 | $-0.195396 E$ | 01 | $0.121151 E$ |









## APPENDIX 3

A3.3 Model 4, a binary distillation column, reduced by matching the frequency response.

## Contents

1. Full and reduced model data.
2. Step responses as detailed below.

| Figure | Input | State $x_{i}$ | reduced <br> state $x_{i}$ |
| :--- | :---: | :---: | :---: |
| A3.8 | 1 |  |  |
| A3.9 | 1 | 1 | 1 |
| A3.10 | 1 | 3 | 2 |
| A3.11 | 1 | 8 | 7 |
| A3.12 | 2 | 11 | 4 |
| A3.13 | 2 | 3 | 1 |
| A3.14 | 2 | 8 | 2 |
| A3.15 | 2 | 11 | 4 |

FULL MODEL DATA

A MATRIX

| ROW |  | 1 | -0. 0.140000 E-04 |
| :---: | :---: | :---: | :---: |
|  |  |  | 0.000000 E 0 |
|  |  |  | 0.000000 E 00 |
| ROW | \# | 2 | 0.950000F-02. |
|  |  |  | 0.000000 O 0 |
|  |  |  | 0.000000 EO |

    \(\begin{array}{llll}0.000000 E & 00 & 0.000000 E & 00 \\ 0.00000 & 000000 E O\end{array}\)
    
$0.000000 E 00$
$0.000000 E 00$
$0.420000 F-01$
0.000000 E 00
0.000000 E 00
$0.255000 \mathrm{E}=01$
0.000000 E 00
0.000000 E 00
$0.420000 \mathrm{~F}-01$

$$
\begin{array}{r}
0.000000 \mathrm{E} 00 \\
0.000000 \mathrm{E} 00 \\
-0.483000 \mathrm{E}=01
\end{array}
$$

0.000000 E 00

0,255000E-01

| 0.000000 E 00 | 0.000000 EO |
| :---: | :---: |
| 0.000000 O 0 | $0.000000 E 00$ |
| 0.000000 E 00 |  |
| 0.460000E-02 | 0.000000 E 0 |
| 0.000000 E OO | 0.000000 EO |
| -0.3000008-03 |  |
| -0.141000E-01 | 0.630000 Em 02 |
| $\begin{array}{r} 0.000000 \mathrm{E} 00 \\ -0.500000 \mathrm{E}-03 \end{array}$ | 0.000000 EOO |
| $0.950000 \mathrm{EWO2}$ | $-0.158000 \mathrm{Em-0}$ |
| 0.000000 E 0 | 0.000000 O |
| -0.800000E-03 |  |
| 0.000000500 | 0.950000 Em 0 ? |
| 0.000000 E OO | 0.000000 F 0 |
| -0.800000E-03 |  |
| 0.000000 E 0 | 0.000000 E 00 |
| $0.220000 \mathrm{E}=01$ | 0.000000 EO |
| -0.800000E=03 |  |
| 0.000000 E 00 | 0.000000 O 0 |
| -0.422000E-01 | 0.280000 EmO |
| -0.800000E-03 |  |
| 0.000000 E 00 | 0.0000 OOE OO |
| $0.202000 \mathrm{E}-01$ | -0.482000E-04 |
| -0.600000E-03 |  |
| 0.000000 E 00 | 0.000000 E 00 |
| 0.000000500 | $0.202000 \mathrm{E}-01$ |
| $-0.300000 E=03$ |  |
| 0.000000 E 00 | 0.000000 E 00 |
| 0.000000 E O | 0.000000 E On |
| 0.000000 E 00 |  |
| 0.000000 E 0 | 0.000000 O |
| 0.000000 E 00 | 0.000000 E 00 |
| -0.185000E-01 |  |

    \(0.000000 E 00\)
        \(0.000000 \mathrm{O} \quad 0.000000 \mathrm{E} \quad 0\)
    0.000000 E 00
0.000000 E 00
$0.460000 E=02$
0.000000 E 0
$-0.1410005 \times 09$
0.000000 E 00000000 O 00
0.000000500
0.000000E OO
0.000000 E 00
$0.220000 \mathrm{E}=01$
0.000000 E 0
$-0.422000 E-01$
-0.800000E-03
0.000000 EO
$0.202000 \mathrm{E}=01$
$0.600000 \mathrm{E}-03$
0.000000 E 00
$0.000000 E 00$
$-0.300000 E=03$
0.000000 O O
0.000000500
$0.000000 E 00$
$-0.185000 \mathrm{E}=01$
$0.950000 \mathrm{Em}=0$ ?
0.000000 EO

$$
0.000000 \mathrm{~F} 00
$$

    0.000000 E 00
    0.000000 E On
    0.000000 EO 0
    0.280000 Em 0 ?
    0.0000 OOE 00
    \(-0.482000 \mathrm{E}-04\)
    0.000000 EO
    $$
\begin{aligned}
& 0.000000 \mathrm{E} O 0 \\
& 0.000000 \mathrm{E} O 0 \\
& 0.000000 \mathrm{E} 00 \\
& 0.000000 \mathrm{E} 00 \\
& 0.630000 \mathrm{Em}-02 \\
& 0.000000 \mathrm{E} 00
\end{aligned}
$$

$$
0.202000 \mathrm{E}-01
$$

$0.000000 E 00$
0.000000 E 00
$0.000000 E 00$
0.000000500 $-0.572000 \mathrm{Em} 01$

ROW - 10.000000 E 00 $0.000000 E 00$ $0.202000 \mathrm{E}-09$

ROW = $11 \quad 0.255000 E=09$ $0.000000 E \quad 00$ $0.000000 E 00$

| 1 | -0.960360E-01 | 0.000000 E | 00 |
| :---: | :---: | :---: | :---: |
| 2 | - 0.50 S295E-01 | 0.000000 E | 00 |
| 3 | -0.700745E-01 | 0.000000 E | 00 |
| 4 | -0.247194E-01 | 0.000000 E | 00 |
| 5 | -0.337243E-01 | 0.000000 E | 00 |
| 6 | -0.823316E-02 | 0.000000 E | 00 |
| 7 | -0. $200682 \mathrm{E}=01$ | 0.000000 E | 00 |
| 3 | - $0.489846 E-03$ | 0.000000 E | 00 |
| 7 | - $0.139995 E-01$ | 0.000000 E | 00 |
| 10 | -0. $0.325079 \mathrm{Em-02}$ | 0.000000 E | 00 |
| 19 | -0.173768E-01 | $0.000000 E$ | 00 |

MATRIX B

| ROw | \# | 1 | 0.000000 E OO | 0.000000 E 00 |
| :---: | :---: | :---: | :---: | :---: |
| ROW | \# | 2 | -0.300000E-05 | 0.300000 EmO |
| ROW | * | 3 | $=0.500000 \varepsilon-05$ | $0.500000 \mathrm{E}-04$ |
| ROW | * | 4 | - $0.500000 \mathrm{E}-05$ | $0.500000 \mathrm{E}-04$ |
| ROW. | * | 5 | -0.500000E-05 | $0.500000 \mathrm{E}-04$ |
| ROW | $\square$ | 6 | -0.500000E-05 | $0.5000005=04$ |
| ROW | a | 7 | -0.500000E-05 | $0.5000008-04$ |
| 80w | * | 8 | -0.2.00000E-04 | 0.500000 Em 04 |
| ROW | $\pm$ | 4 | -0.400000E-04 | $0.4000008-04$ |
| ROU | n | 10 | -0.200000E=04 | $0.200000 E-04$ |
| ROW | = | 11 | 0.460000E-03 | $0.460000 E-03$ |

```
VARIABLES OF INTEREST
 1 3 B 11
```

FREQUENEIES FITTED

| 0.100000 E 05 | $0.200000 \mathrm{E}=05$ | $0.400000 E=05$ | $0.7000008=05$ |
| :---: | :---: | :---: | :---: |
| $0.100000 \mathrm{E}=0.4$ | $0.200000 \mathrm{EmO4}$ | $0.400000 \mathrm{EmO4}$ | $0.700000 \mathrm{E}=04$ |
| 0.10000 OF-03 | $0.2000005=03$ | $0.400000 \mathrm{E}=03$ | $0.700000 \mathrm{E}=03$ |
| 0.1000)OE-O2 | $0.150000 E=02$ | 0.200000 EWUZ | 0.300000 Em 02 |
| $0.400000 \mathrm{E}-32$ | $0.600000 \mathrm{E}-02$ | $0.800000 \mathrm{E}-02$ | $0.900000 \mathrm{E}-02$ |
| $0.100000 \mathrm{E}-01$ | 0.150000 Emol | 0.200000E-01 | $0.300000 E=01$ |
| $0.350609 \mathrm{F-01}$ | 0.400000 EmO 1 | $0.450000 \mathrm{E}-09$ | $0.500000 \mathrm{EmO1}$ |

```
MATRIX B
\begin{tabular}{lccc}
ROW \(=1\) & \(0.606442 E-07\) & \(0.497498 E-05\) \\
ROW \(\quad 2\) & \(-0.485930 E-05\) & \(0.389084 E-04\) \\
ROW a 3 & \(-0.242061 E-04\) & \(0.443965 E-04\) \\
ROW \(=4\) & \(0.445093 E-03\) & \(0.476773 E-03\)
\end{tabular}
```

A MATRIX

| 90W | \# | 1 | $-0.194390 \mathrm{E}=01$ | 0.177334 Em 02 | -0.292368Em03 | -0.105470E-04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROW | $=$ | $?$ | $-0.220372 E-01$ | $0.257858 \mathrm{E}-02$ | $0.1734868-03$ | -0.449704E-03 |
| ROW | 2 | 3 | -0.248335E-01 | $0.773227 \mathrm{E}-02$ | -0.400497E-02 | -0.726149E-03 |
| Row | = | 4 | $0.458094 E-01$ | -0.478805E-02 | $0.732789 \mathrm{EmO2}$ | -0.184917E-09 |

SYSTEM ELGENVALUES

| VARIABIE | PEAL | ImAg |  |
| :---: | :---: | :---: | :---: |
| 1 | -0.184934E-01 | 0.000000 E | 00 |
| 2 | -0.570491E-03 | 0.000000 E | 00 |
| 3 | -0.810913E-02 | $0.000000 E$ | 00 |
| 4 | -0.425.506E-02 | $0.000000 E$ | 00 |











[^0]:    * unstable system

[^1]:    

