
LOUGHBOROUGH - --(
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

\11:>..: (,. c,. ----------------------1-----------------------
-- - -- ~------------------------ --- ----- - -------~

ACCESSION/COPY NO.

-VOL-NO~------- -c-~~ls~~U~-~-----------------

-1 J UL 199~

30 JUN 1995

A COMPUTER BASED ALARM HANDLING SYSTEM

,
FOR PROCESS PLANT

by

GARY HOENIG

APPENDICES

. ,

i

_ J

Loo9 oug" Unlvenllr --

.f Tcch",.l·.. L<;P'.ry

la" l5U- ~:;::
Class

APPENDIX A

INTRODUCTION TO THE

OLDMAN ON-LINE CRT DISPLAY PACKAGE

214

.' ,)

APPENDIX A

TABLE OF CONTENTS

section

A.l Introduction 216

A.2 Hardware 216

A.3 System Description 217

A.4 References 218

•

215

A.I. INTRODUCTION

Recently the author in conjunction with the Department
of Industry undertook a research and development program to
study and perfect cathode ray tube (CRT) based display
techniques used for displaying process information to plant
operating staff. Surveys by the Department of Industry have
shown that all the major manufacturers of process control
equipment supply CRT's with standard display formats as the
primary interface between the process and the process
operator. Since the range of display formats provided by
most instrument manufacturers is limited, operators are
unable to investigate alternative ways of displaying plant
information. The project endevoured to develop a display
facility whereby operating staff could specify and assess a
variety of display formats while the system was on-line.

Although the intention of the exercise was to provide

information of the types of display formats preferred by
operators, the implementation of the proJect yielded a
variety of technical difficulties primarily related to real
time microprocessor applications.

A.2. HARDWARE

Due to limited resources the most suitable equipment
available for implementing the system consisted of:

1) Intecolor 8001 VDU with BASIC programing support

for the 8080 m~croprocessor w~th a max~mum capac1"y or
24K Bytes for display and software implementation. A
dual drive floppy disc storage system used for program
and data storage was interfaced to the Intecolor.

2) Solartron Compact Logger for sampling,

216

conditioning, and logging plant data from up to 30
analogue inputs.

3) A purpose built dedicated touch control operator's

keyboard for display selection.

A.3. SYSTEM DESCRIPTION

The on-line display management package, referred to as
OLDMAN, is intended to be a self-contained system which can
be attached to an existing process plant. Process variables
are measured directly from the existing plant instrument
sensors and control system using the data logger. Data is

sent to the Intecolor display via an RS-232 communication
link. The Intecolor converts the data into a displayable
form. See Figure A.I. Individual picture formats are
stored on the floppy disc. The operator selects the

appropriate display using the custom built touch control

keyboard. The system then locates the correct picture
overlay stored on disc. As incoming data from the data

logger is received, the system stores a limited amount of

data for historical type display formats such as trend type

displays. All r~levent data is then displayed on the VDU in
a format described in the picture format which is stored on
disc.

Figure A.2 shows the OLDMAN display system in use by an
operator. The touch keyboard located in front of the
display is adequately sensitive to be used even with heavy
gloves. The keyboard construction is also resistant to
environmental abuse.

The dlsplay system provioes a means of specifying both

the variant and invariant information content of a display.
The desl.gn procedure is to draw the invariant parts of the

217

PLANT

EXISTING
CONTROL
SYSTEM

r-
! 11

-------- f----~-----l

,~~ I

r
1

DATA 1

LOGGER I

LDMAN i I o
1
1
1
I

1

FLOPPY I NTECOLOR 1

DISC VDU 1
I

1
I I

~-------------------~

FIG. A.I. OLDMAN Information Display Package

218

Figure A- 2 The OLDMAN Display Package in Use

display overlay such as titles, legends, or mimics using
special graphic and semigraphic characters. Then how and
where the variable information is to be displayed is
specified. The two step procedure generates a 'picture
blank', the invariant picture content, and the 'activated
picture'. The 'activated picture' is the 'picture blank'
with variant display locations inserted. All of this data
is stored on the floppy disc medium. The display can be
comprised of an invariant picture and variant process
information in the form of alphanumerics, analogue
representation, or graphical plots. Figures A.3 through A.7
illustrate some of the display formats which can be built.

The on-line display management package consists of two
maj or sections:

1) On-Line Mode where displays containing real time

information are accessable to the operator on demand.

2) Off-Line Mode where, using the same hardware,
operators and/or designers can build display formats as
required.

Formats are developed, editted, and stored in the off
line mode.

In the on-line mode the system operates in real time,
collecting process data and displaying the information
acccording to one of the operated selected formats developed
off-line. The two operational modes can not both be running
simultaneously. Further details of the OLDHAN display
package are described in reference [All. Some operational
difficulties of the system are discussed by the author in
reference [A2].

220

Figure A. 3 Horizontal Loop Display Format

Figure A. 4 Vertical Loop Display Format

221

Figure A. S Historical Trend Display x 2

I . •

" FT

••• •• , .. - ••• , • •••
..., FUlII I COH .. I •

...... ,
.. , .. ' , .. • t·. ..,J;Jlss -

DATA S. IH

Figure A. 6 Historical Trend Display x 4

222

:!lI1IIL D .• Elm(:;:JC02 !I.I t

54 . 1 " .4 BIOI

•. 3 FT "'.4 C

CCII MLCIIIII

I

I a- a- ~ =1-- I

I

!i Ii ~ .. U ::JPH •••
all) "'., t

:I -., Q>IO ::l a> 53 .1 %.

OATA 5aIH IH PI!OI>'£SS

Figure A. 7 Example Mimic Display Format

223

A.4 REFERENCES

AI. Umbers, I.G., Mark, S.J., and Hoenig, G., 1981, "A

User's Guide for an On-Line Display Management Package",
PRC2(CON), Department of Industry, Warren Spring Laboratory,

-
Stevenage, England.

A2. Hoenig, G., 1981, "Real-Time Design Considerations for
an On-Line Display Package", internal report, Department of
Industry, Warren Spring Laboratory, Stevenage, England,
June, 1981.

224

APPENDIX B

USER'S GUIDE FOR THE
OFF-LINE COMPONENT OF THE

ALARM HANDLING SYSTEM

224

APPENDIX B

TABLE OF CONTENTS

Section

B.l.

B.2.

SYSTEM SPECIFICATION 227

B.l.l Introduction 227

B.l.2 Equipment Available 227

B.l.3 System Requirements 228

B.l.4 Organisation of the Report 229

USER'S GUIDE 230

B.2.l Introduction to OFLAD 230

B.2.2 Conventions 230

B.2.3 Start-Up Procedure 232

B.2.4 OFf-Line Alarm Data System Monitor 233
(OFLAD)

B.2.4.l Functions Available

B.2.4.2 Housekeeping Functions

B.2.4.3 File ~lanipulation and
Data Entry

225

233

234

236

B.2.4.4 Editing and Listing

B.2.5 Compile Alarm Data Base (COMP)

B.2.5.1 Introduction

B.2.5.2 Use of COMP

B.2.6 Transfering Alarm Data Base

(TRANSFER)

B.2.6.1 Introduction

B.2.6.2 Use of TRANSFER

B.3. INITIALISING DISKS

B.4. REFERENCES

255

257

257

258

262

262

263

266

267

TABLE B-1. ANALOGUE CONVERSION ALGORITHMS 268

226

B.I. SYSTEM SPECIFICATION

B.I.I Introduction

Computer based process control systems are becoming
common place in the process industry. With the switch to
automated processing many features of process computer
control have not been adequately examined. The alarm
subsystem is such a feature. A recent survey and reportl

has shown that all major manufacturers of process control
equipment supply inadequate alarm handling facilities. The
system described in this report has been designed as a
generalized alarm handling package with a high degree of
system flexibility. The handling package is intended to be
an add on feature to existing process control systems. An
exercise of this nature will provide information on the
types of alarm requirements preferred by operators and
designers and will also provide an insight into how adequate
alarm handling facilities should be incorporated in existing
process control systems.

B.I.2 Equipment Description

It is usually the best policy when designing a computer
based system to concentrate on the functional specification
before considering the implementation of the system. In
this way the design approach is not limited by the physical
entities which are available, but instead, is directed
towards satisfying the overall system objectives. However,
where resources are limited some account must be taken of
the hardware that can be provided by the available

227

resources.

Prototype research and development often requires
changes to be made in the overall system objectives. The
possible changes in system requirements necessitates the
choice of hardware which not only meets preliminary
requirements, but which is also capable of serving future
needs. The most suitable equipment available for
implementing the off-line component of the alarm handling
system considered here is outlined below.

The off-line computer used for prototype development of
the alarm handling system is the Chromatics CG 1999 Colour
Graphics Computer. This Z-80 processor based unit contains
32K of memory, a high resolution colour graphics display,
and a single 8 inch, 250K single sided, single density
floppy disk drive. A Teletype T43 printing terminal is
available for connection to the Chromatics via an RS-232

serial port. The printer is used for obtaining listings of
the loaded data. The serial line is also used as the down
line link to the on-line computer for transfering the alarm
data base to the on-line system. The Chromatics contains
Micro Soft BASIC Ver 3.0 language which operates in
conjunction with a Chromatics operating system and disk
operating system.

B.l.3 System Requirements

The off-line alarm handling system is an independent,
stand-alone computer system which is used to build an alarm
handling data base for subsequent use in the on-line alarm
handling system. The off-line system allows the designer to
load alarm and other alarm related information into the

system at hlS leisure. This raw input data is stored in
files for future use. File storage of the raw data also

228

allows the designer to review and make changes to the raw
data with relative ease. Once the raw data is stored, the
off-line system retrieves the raw data from the storage
files, examines the data, and converts the data into a
condensed numerically coded data base. This alarm data base
contains all of the information in the raw data files plus
other information required by the on-line computer system.
Converting the raw data into a data base structure ensures
that the on-line computer program can run at maximum
efficiency and speed. The alarm data base is scored by the
off-line system ready for future transfer to the on-line

system.

B.I.4 Organisation of the Report

The remainder of the report presents a user's guide to

the facilities provided by the off-line alarm handling
system package. A second report describes and documents the

OFLAD software.

229

.......... --- ---------------------,

B.2. USER'S GUIDE

B.2.l Introduction to OF LAD

The OFf-Line Alarm Data (OFLAD) program structure is
restricted by the available memory in the off-line computer,
i.e., the Chromatics CG 1999. The resulting structure is
comprised of three separate BASIC programs which interact
without operator intervention. This approach maximizes the
memory space available for data handling. The three program
modules are:

1) System Monitor and Data Input Routine (OFLAD)

2) The Data Compiler (COMP)

3) The Data Base Loader (TRANSFER)

Each of the three modules are linked via common data
files stored on the disk unit. The System Monitor provides
the necessary coding for loading and running the other
modules as appropriate.

B.2.2 Conventions

Certain conventions are observed in operating the
system:

a) The type of response required to questions asked by
the software are as far as possible self-explanatory.
The response to a question requiring a yes or no reply
is either "y" or "N". Occasionally special response
formats are required by the software. In these
instances special instructions are given in the user's

230

guide and the reference is given in the software
prompt.

bl Where more than one item is required by a question
the items supplied must be separated by a space.

cl User responses are entered by a carriage return.

dl There are four types of files used by the system:

il DA Files: Data Acquisition Files contain
coded ASCII information required when building an
alarm data base.

iil EP Files: Event Processor Files contain

coded ASCII 'information required when building an
alarm data base.

iiil AG Files: Alarm Generation Files contain
coded ASCII information required when building an
alarm data base.

ivl ADB Files: Alarm Data Base Files contain an
image of an alarm data base as generated by the
COHP module. The ADB is transferred to the on
line computer by the TRANSFER module.

el The permitted ranges of file identifiers are as
follows:

File Type

DA
EP
AG
ADB

231

Range

1 - 25

26 - 50

51 - 75

76 - 100

B.2.3 Start-up Procedure

1. Ensure that the T43 printer is connected to port SIO-O
on the Chromatics.

2. Switch on the Chromatics, disk drive unit, and T43
printer.

3. Insert a suitably initialised floppy disk into the disk
drive unit (check that the label is uppermost and nearest to
the drive door.)

4. On the Chromatics keyboard: (see Note: 1)

i) Press the (RESET) and the (BOOT) keys.
11) Press the (BASIC) key.
iii) The Chromatics will respond with a request for

memory size:

MEMORY SIZE?

5. Type: &hBOOO (RETURN)

6. Type: DOS"LOAD OFLAD" (RETURW

7. Type: RUN (RETURN)

OFLAD will now be loaded from the floppy dlSk and will
commence to run.

Note 1: The () around a letter or a series of letters
indicates that this is one key on the keyboard.

232

- ---------------------------

B.2.4 OFf-Line Alarm Data System Monitor

The OFLAD Alarm Data System Monitor comprises an
operating system and alarm data input routines. The
operating system recognizes commands used to evoke the
various functions available in the software package. The
data input routines are essentially data file editors which
allow the user to perform editing functions on any of three
data base file areas called working files. These working
files correspond to the three major operational sections of
the Alarm Handling System1 Data Acquisition, Event
Processing and Alarm Generation. Data files may be built,
examined, and stored. Similarly previously developed data
files can be examined, modified, deleted, etc. Once files
are completed the Compiler is used to build a coded Alarm

Data Base which can be interpreted by the on-line Alarm
Handling System. Compilation checks the validity of the

Data Acquistion (DA), Event Processor (EP) and Alarm
Generation (AG) files, building them into a numerically
coded Alarm Data Base (ADB). Finally, the data base can be

transferred to the on-line Alarm Handling System.

B.2.4.l Functions Available

OFLAD provides facilities for activating Data
Acquisition, Event Processor and Alarm Generation files.
(Activate refers to the procedures used to arrange for
dynamic information to be used for alarm data base
compilation.) In addition, facilities are provided for
housekeeping tasks such as deleting DA, EP, and AG files and
listing disk directory.

233

When OFLAD has been loaded and is waiting for a command
it will prompt the user by printing:

COMMAND:

The user responds by typing a command shown in the list
below. If the user does not know the command to use then a
list of commands and functions can be displayed by entering
an incorrect command or the command HElp. Only the first
two letters of the command need be entered.

Command

DIrectory
LOad
STore
COmp
FIles
ENter
CHange
LIst
DElete
TRansfer
HElp

Function

List disk directory

Load data files into working file space
Store or kill working files
Goto cmlP module (Hodule 2)
List working files loaded
Enter data in working file
Edit a working file
List a working file
Delete a disk file
Goto to TRANSFER module Olodule 3)
List commands

B.2.4.2 Housekeeping Functions

List Disk Directory - DI. The contents of the disk
currently loaded in the disk drive unit are listed with the
following example format:

FILE NO. - NO. OF ELEMENTS

DA

234

1 - 10 5 - 20 ,etc.

EP

30 - 10 ,etc.

AG

60 - 10 , etc.

ADB

100 - 250 ,etc.

The first number displayed is the file reference number
followed by the number of elements in the file. The number
of elements is directly proportional to the file size.

Delete Files - DE. This command allows unwanted DA,
EP, AG and ADB files to be removed from the currently loaded
disk. The command format is as follows:

INPUT FILE ~ruMBER:

The required file identifier number is obtained from
the directory listing. This value is entered. The program
now asks

SURE?

which requires confirmation of the deletion ("Y" or "N").

Go to COMP l10dule - co. This command is entered when
all the currently required activation or flle maintenance

235

operations have been performed. It loads and starts the
second program (Module 2: COl-IP), which is described
elsewhere. In brief the COMP Module is used to compile and
build an alarm data base from activated DA, EP and AG files.

*** WARNING *** All working files must be secured by
using the STore command, otherwise the information in the
working files is lost.

Go to TRANSFER Module - TR. This command is entered
when all the currently required activation or file
maintenance operations have been performed. It loads and
starts the third program (Module 3: TRANSFER), which is

described elsewhere. In brief the TRANSFER module is used
to transfer a compiled alarm data base to the on-line alarm
handling computer.

*** WARNING *** All working files must be secured by
using the STore command, otherwise the information in the
working files is lost.

HElp ~ HE. This command lists the available system
commands. No response with a (RETURN) is equivalent to the
HElp command.

B.2.4.3 File Manipulation and Data Entry

The OFLAD program module contains three working file
areas allocated to the DA, EP and AG sections respectively.
There are two modes of operating the working files.

1) The working files can be 'loaded' with files of the
same type from the floppy disk drive unit. Once loaded

236

using the LOad command, the data in the respective working
file may be altered using the CHange command. New data is
added to the file by using the ENter command. Data is
deleted from the working file through the use of the CHange
command and inputing a space in place of the first data
string in the data group (see CHange command). A working
f He can be listed at any time using the LIst command. The
file is then stored on disk using the STore command.

2) Data can be immediately entered into a working flle
which has not been loaded from the disk. A new working f He
space is loaded by using the LOad command and responding
with a file identifier number which does not exist on the
currently loaded disk. The CHange, ENter, LIst, and STore
commands function in the same manner as described above.
When the loaded files are STored, the currently loaded file
identifier number is used to store the file on disk unless
instructed otherwise.

Either method may be used. The FIle command will list
the working files currently present in the system. Note:
The working files are not stored until a STore command is
issued. If other program modules are entered, the current
working files are lost.

Load Working Files - LO. This command allows the user
to copy the contents of files stored on the currently loaded
floppy disk into the appropriate working file space. The
command also allows the creation of a new file. There are
three working files; DA, EP and AG respectively.

The program responds:

DA FILE NUMBER:

237

The number (1 - 25) of the DA file to be loaded is
entered. Next the program asks:

EP FILE NmlBER:

The number (26 - 50) of the EP file to be loaded is
entered. Next the program asks:

AG FILE NUMBER:

The number (51 - 75) of the AG file to be loaded is
entered.

If a file is not present on the currently loaded disk,
the program responds

NEW FILE

If no file is to be loaded then press RETURN •

List the Loaded Working Files - FI. This command lists
the file identifier numbers of the files which have been
loaded into the respective working files. If a working file
has not been loaded, no response will be given for that
particular working file.

Store or Kill Working Files - ST. This command allows
the user to delete a working file or store the file on the
currently loaded disk with either the same file identifier
number or a new one. The STore command is the same for any
of the three working files. The user is then asked whether
or not each individual working file is to be stored, etc.
If a file is loaded in the working file the program asks:

238

STORE DA (file number)?

STORE EP (file number)?

STORE AG (file number)?

In each case the response to the prompt is as follows:

RETURN = Do not store, leave status quo

ay" =

=

"K" =

Store, no change in file number
and delete working file

Store with new file number
and delete working file

Kill working file

If the response is "NF" the program then asks:

ENTER NEW NUMBER?

The new file identifier number can be any legal file
number for the respective working file.

Enter New Data - EN. This command allows new data to
be added to a loaded working file. The working file is
specified by the prompt:

ITEM:

The acceptable responses to the ITEM: prompt are:

Da Data Acquisition working file

239

Ep Event Processor working file

Ag Alarm Generation working file

Help - Help, list ITEM commands

Only the first letter D, E, A, or H respectively need

be entered. No response to the ITEM: prompt, i.e., (RETURN)
only, exits the ENter command.

DA Unit - D. If the response to the ITEM: prompt is
-Dw then the program responds:

INPUT DATA ACQUISITION INFORMATION

This indicates that the program is entering the routine

for inputing information relating to data acquisition. This
is the first working file. Each measured variable used by

the alarm handling system must be assigned in order that the
system knows where and how to obtain process information
about the variable. Each question must be answered to

ensure proper compilation of the alarm data base. However,

a (RETURN) with no response leaves the item unchanged. This
is useful when using the CHange command.

The program responds:

PLANT CODE []:

This is the identifying code for the measured variable.
Whenever the particular measured variable is referenced the
Plant Code must be used. Any alphanumeric code is
acceptable.

Next the program asks:

240

NAZ,IE []:

This is the English description of the Plant Code. It
is recommended that the name be as brief as possible. The
maximum length should not be more than 10 characters.

The program continues:

INPUT DEVICE []:

The input device for the measured variable is now
assigned. The device assignment is the device from which
data is acquired on the on-line computer system. The
acceptable devices are:

0 Device #0 Media Plant I/O

1 Device U TT3: Host Link

2 Device #2 TT1: T43 Terminal

3 Device #3 Not Assigned

4 Device 14 Not Assigned

/·1 Hemory location when using DZ,IA
equipment.

If "M" is entered the program asks:

ADDRESS []:

Any decimal address is acceptable.

The program next asks:

241

DATA TYPE []:

The data type is either Analogue or Binary, so enter
either "A" or "B". The data type is analogue if the
measured variable is represented by a continuous parameter.
The data type is binary if the measured variable has only
two states, i.e., ON-OFF or 0-1. If the response is "A" the
program asks:

CONVERSION ALGORITHM I[]:

There are five conversion algorithms available on the
on-line computer. The conversion number identifies how the
measured variable is to be converted into values used by the
event processor. Enter a value 1 to 5. (See Table B-l.)

If the measured variable is a binary type then the
program asks if data inversion is required.

DATA INVERSION (Y/N):

A .y" response indicates that the binary value is
changed or inverted from either a 0 to a 1 or a 1 to a 0

before it is stored in the DA on-line data base.

The program continues:

RANGE []:

Enter the minimum and maximum values that the measured
variable will reach. These values must be in units
identical to those seen by the on-line alarm handling sytem.
The format of the response is:

value min value max RETURN

242

".

These values are not engineering units, they are in the
measured parameter units. The program can not deal with

engineering values.

The program next asks for the significant change:

SIGNIFICANT CHANGE [l:

Enter in measured parameter units the minimum change during
one scan period which will initiate event processing. Data
value changes that occur during the data acquisition scan

period are compared with the significant change. No action
is taken if the data value change is less.

The next question asked is:

SCAN RATE [l:

The Scan Rate is the time between data acquisition

samplings. The Alarm Handling System has four levels of
scanning.

Scan Rate Time Interval

1 1 Second

2 5 Seconds

3 15 Seconds

4 1 Minute

Enter the number 1, 2, 3, or 4 and ~ETURij). The
program now asks:

243

SCAN PRIORITY [1:

within each scan group the measured variables are
sampled one after another in the order of their priority.
Any integer number 1 - 100 can be entered with I being the
highest (first up) priority. If more than one variable has
the same priority in a scan group then the variables with
the same priority are sampled in alphanumeric order of the
Plant Code. With a large number of variables in a scan
group, in some cases, the time between sampling may not
always be consistent for low priority variables.

The program responds

END OF DA INPUT

and returns to the COMMAND prompt, ready for further
instructions.

Event Processor List - E. With the response to the
ITEM: prompt nE" the program prints:

INPUT EVENT STATUS INFORMATION

This indicates that the program is entering the routine
for inputing information relating to event status
assignments. This is the second working file. The event
processor in the on-line computer retrieves processed
measured variable information from the DA on-line data base.
These values are compared with the conditions assigned in
the event list corresponding to each Plant Code. The event
processor sets a flag in the event status image if the
conditions for the event are true. Each question must be
answered to ensure proper compilation of the alarm handling
system data base. However, if no response is required or

244

the question does not apply, then press @ETURN). This
results in no change to the data in the working file and is
useful when using the CHange command.

The program asks:

PLANT CODE []:

The alphanumeric response to this question must be
identical to the plant code given.in the DA unit section in
order to assign the correct event status conditions. If any
Plant Codes are entered which are not in the DA file, the
alarm data base will fail to compile. Any number of events

r
can be assigned to a Plant Code, however each must have a
unique event name.

Next the program asks:

EVENT NAME [1:

This is the English description of the event. It is
highly recommended that the name be as brief as possible.
The maximum recommended length should be not more than 10

characters. Spaces should also be avoided since the event
name is entered in the alarm file which has difficulties
dealing with spaces. Spaces are permitted, but special
formats when using spaces are required in the alarm file.

Now the program continues:

EVENT TYPE []:

The event type describes the class of event as follows:

XLO

245

LO

HI

XHI

TREND (Change in DA)/(Scan Interval)

ON

OFF

DEVI

TDEVI

The event type determines how the alarm handling system
examines the DA data before deciding if an event has
occurred. For example, if an event is named TANKHI then a
possible event type would be HI, i.e., the variable is then
examined in this context. If the type is TREND then the
variable is examined on the basis of rate of change and so
on. The limits are entered which represent the limits
for the selected event type. These event condition
parameters are entered next. Analogue event types require
limits of the alarm band. For analogue event types the
response must be a numeric value in units related to those
generated by the DA processor. In other words if the values
are modified by the DA processor conversion algorithms, the
limit values are applied to the converted values. Analogue
bands can also implement hysteresis on the band limits.

ON/OFF binary events do not require event conditioning.
If the event corresponds to a binary variable press (RETURW

The program continues:

246

,-
I

ENTER PARAMETERS

1 [] :

2 [] :

3 [] :

4 [] :

Referring to the figure below the shaded areas
represent the plant data value range after conversion in
which an event will be considered to have occurred, i.e.
TRUE. The limits of these ranges are represented by the
parameters 1, 2, 3 and 4. Parameters 1 and 2 describe the
lower limit of the range while 3 and 4, the upper limit.
There are two parameters for each range limit to accommodate
hysteresis.

LIMIT

LIMIT
PARAMETERS

---')

+ PARAMETERS + //

MV

~~~~~~~4~ 
I-+.I-J'-I-HI.../--/-'~+I-I- 3 ' 

la Applies to most 
event types 

M V , 

~ttij~ttttt=:~ 

lb Applies to DEVI and 

TDEV! onli' 

Figure B.l. Analogue Range Parameters 

247 



Note that Figure B.la illustrates the event range for XLO, 
LO, HI, XHI, and TREND events. Figure B.lb shows the event 
range for DEVI (deviation> and TDEVI (trend deviation> 
events. XLO, LO, HI, and XHI event labels are used for the 
user's convienence. There is no difference in the way that 
the event range limits are used to detect events. The 
parameter values are entered in the same fashion for all 
event types. All parameters must be entered and in the 
value order 1<=2<3<=4. To implem:nt event types so that 
only one limit is used refer to the Figure B.2. 

The deviation events inverse the event range so that 
all values outside the band are considered to represent TRUE 
events. 

Hysteresis causes a lag in response when variables are 
close to limit parameters. This is implemented by shifting 
the event range limit from one parameter value_to the other 
depending upon the direction of approach of the measured 
variable. The limit parameters 1,2 and 3,4 are used to set 
the upper and lower hysteresis values for each band limit. 

Referring to Figure B.3, the lower limit 1 is the 
lowest value of the value band in which the event status 
condition is true. If the measured plant value makes a 
positive going excursion across the lower limit, the event 
is not true until the value crosses the lower limit 2. The 
reverse is true when the measured value makes a negative 
going excursion across the band limits. The same hysteresis 
shift occurs on the high limit. If no hysteresis is 
required then set the low limit 1 equal to the low limit 2 
and the high limit 3 equal to the high limit 4. 

248 



MV 

'" " 

,-, 

MV 

:-" ' 

, - , 

SET OUTSIDE 

OPERATING RANGE 

LO EVENT WI1H SINGLE LIMIT 

SET OUTSIDE 

OPERATING RANGE 

H I EVENT WITH SINGLE LIMIT 

SET 80TH WITHIN 

OPERATING RANGE --

LO OR HI EVENT WITH DUAL LIMITS 

249 



Eg., Measured Plant Value Change .. MV 

Low Limit 1 = 10 
Low Limit 2 = 12 

Hi Limit 3 = 20 
Hi Limit 4 = 22 

MV = 9 to 11; Event = False 
MV = 9 to 12; Event = True 
MV = 23 to 21; Event = False 
MV = 21 to 19; Event = True 

RAN GE LlftllT 

~ __________________ ~ __ ~.-~~ __ 4 

~ __________________ -;~ ____ ~ _______ 3 

MV 

~ __ ~ ______ ~ __ ~~ ________________ ~ ___ 2 

~~~--------------------------~~--I 

t--+

Fig B.3. Diagram of Limit Hysteresis Response

The program next prints

250

END OF EVENT PROCESSOR INPUT

and returns to the COMMAND prompt, ready for further
instructions.

Alarm Generation - A. With this response to the ITEM:
prompt the program responds:

INPUT ALARM CONDITION INFORHATION

This indicates that the program is entering the routine
for inputing information relating to alarm conditions and
alarm output assignments. This is the third working file.
The alarm processor in the on-line computer inspects the
event status image generated by the event processor. The
alarm processor compares the event image with the conditions
for alarm ON and alarm OFF. If these conditions are met,
the alarm processor informs the alarm display unit of the
change in the alarm status ima~e. Each question must be
answered to ensure proper compilation of the alarm handling
system data base. However, if no response is required or
the question does not apply then press @ETURN). This
results in no change to the data in the working file and is
useful when using the CHange command.

The program asks:

ALARM NAME []:

This is the English description of the alarm. Any
alphanumeric response may be entered. It is recommended
that the alarm name be as brief as possible. The maximum
length should be not more than 20 characters.

251

Next the program asks:

OUTPUT CODE []:

This code is the alarm reference code which is sent to
the display unit when a change in alarm condition occurs.
This code must be recognizable by the display unit otherwise
the on-line alarm handling system will not function
correctly. Any alphanumeric response may be entered.

The program continues:

CONDITION ON []:

A Boolean expression containing the event names which
must be true is entered. The allowable Boolean operators
are:

NOT

OR

AND

XOR

(Pseudo operator

) Pseudo operator

SEQ TIL

VOT

The format of the expression must be as follows:

252

1) Space between operators and operands.

2) No spaces can exist in the event name. If there
are spaces in the event name substitute the space with A •

•

3) Parentheses must be entered with a space as

Examples:

LEGAL
INPUTS

ILLEGAL
INPUTS

_(except if preceeded by a (

)_ except if succeeded by a)

1) FLOWATANK AND LEVELl

2) NOT (LEVEL2 OR NOT (LEVEL1»

1) LEVELIAND FLOW TANK

2) NOT(LEVEL20RNOT(LEVELl»

Most errors are detected during compilation, however,

great care should be taken to ensure correct functioning of
the on-line alarm handling system.

Simple sequences can also be used as condition
statements. The operator SEQ indicates that the time of
occurance of the succeeding events must be in chronological
order. The operator TIL is used to set a tlme llmlC on th~
detection. This time limit in seconds represents the time
from the occurance of the first event in the sequence. All
events must have occurred with this time limit for the
sequence to be valid.

253

--------- -- ---------------

Example:

SEQ LEVELl LEVEL2 LEVEL3 TIL 30

The condition statement requires that event LEVELl must
occur before LEVEL2. Also LEVEL2 must occur before LEVEL3.
The time difference between LEVEL3 and LEVELl must be less

than 30 seconds.

Note: No logical operators are allowed in a SEQ TIL

statement.

A similar operation is the VOT operator. This operator
examines the succeeding events and takes a majority vote.
If the majority of events in the statement have occurred
than the condition statement is satisfied.

Example:

VOT LEVELl HIFLOW TEMP

The program now asks:

CONDITION OFF []:

Again, a Boolean expression containing the event names
which must be true is entered. In the on-line system the
alarm output code is sent to the display unit with a data
packet indicating that either the CONDITION ON expression is
true or that the CONDITION OFF expression is true.

The program continues:

PERSISTENCY []:

254

The persistency value indicates the display
characteristics of the alarm with respect to acceptance and
reset. See the display unit document for further details.
Acceptable values are I to 5.

The program responds

END OF ALARM CONDITION INPUT

and returns to the COMMAND prompt, ready for further
instructions.

B.2.4.4 Editing Files

Change or Edit a Working File - CH. This command
allows elements in the working files to be changed or
deleted. Any of the three working files may be edited.

The program responds:

ITEM:

The working file is now entered in the same manner as
when the ENter command is used.

Type:

D for DA

E for EP

A for AG

The program now asks which group of file entries are to

255

be changed or deleted.

For the DA unit working file the program responds:

ENTER PLANT CODE TO BE CHANGED:

For the EP working file the program responds:

ENTER EVENT NAME TO BE CHANGED:

For the AG working file the program responds:

ENTER ALARM NAME TO BE CHANGED:

In each case the exact Plant Code, Event Name, or Alarm
Name respectively must be entered. If the entered request
does not match any Plant Code, Event Name, or Alarm Name in
the respective working file, the program responds with

CAN NOT FIND

and returns to the command prompt. If the response is found
then the edit mode is entered allowing changes to be made to
any of the questions in the group. The current contents of
the file elements are shown in the brackets such as

PLANT CODE [F20l):

Enter the new data or press (RETURm for no change. To
delete a group of data in a working file, enter a space and

(RETURN) in response to

EVENT NAME [__):

256

ALARM NAME [__):

Although the data group will'still exist in the working
file, when the working file is STored, the data group will
be deleted;

List a Working File - LI. This command lists the
contents of a loaded working file with a description header.
The program responds:

WHICH ONE?

Enter 0,

respectively.
E, or A for the DA, EP, or AG file
The program continues:

HARD COPY?

If a printed copy of the working file contents is
required, enter ayw. The output will then be transferred to
the T43 Printer. Otherwise with an -NW response the listing
is sent to the Chromatics VDU display.

Note: The T43 Printer must be connected to port SIO-O with
parity off, full duplex, and 300 BAUD.

When complete the program returns to the COMMAND
prompt, ready for further instructions.

B.2.5 Compile Alarm Data Base

B.2.5.1 Introduction to COMP

The second program module in the off-line software is
the COMP or compilation module. This program retrieves DA,

257

EP and AG files stored on the currently loaded floppy disk,
processes the data, and finally builds and stores an
activated alarm data base (ADB) file on the loaded disk.
The compiler performs the following functions:

1) Inspects the OA, EP and AG files for obvious syntax
errors.

2) Sorts the OA, EP and AG file information into a
systematic order required for the,alarm data base.

3) Cross correlates the OA, EP and AG files, .
inspecting for missing, duplicate, or mismatched data.

4) Provides a listing of the data immediately prior to .
data conversion.

5) Builds and stores an alarm data base ready for
transfer to the on-line system.

Any errors in the data text are noted by an n*_ before
the incorrect element. Compilation errors are also noted
with an error message for each error occurrance.
Compilation will not succeed if there are any compilation
errors. If errors do occur, the user must edit the
appropriate file using the OFLAD module which is
automatically loaded and run upon completion of the COMP
module.

B.2.5.2 Use of COMP

Compile an Alarm Oata Base - CO. This command allows
the user to enter the COMP program module and compile and
build an alarm data base. The alarm data base is stored on
the disk unit.

258

The program responds:

DA FILE NO.?

Enter the DA file to be used in the compilation.

Next the program asks:

EP FILE NO.?

Enter the EP file to be used in the compilation.

The program continues:

AG FILE NO.?

Enter the AG file to be used in the compilation. The
files entered to the above questions must exist on the
currently loaded disk directory. The data in the files must
be consistent with one another to ensure successful
compilation. The files on the disk are not destroyed during
compilation. The file contents are copied in the program
module.

The program now asks:

ADB NO.?

Enter the file identifier number of the Alarm Data Base
to be generated by the compilation. If the ADB number
already exists on the currently loaded d1Sk, tne curren~ 8U~
file will be overwritten by the ADB generated during
compilation. The program will respond:

*** WARNING - ADB FILE __ ALREADY EXISTS ***

259

,

I·

ARE YOU SURE?

Any response other than .y" results in another 'ADB
NO.?' request.

The program continues:

HARD COPY?

If a printed copy of the compilation listings are
required, enter ·Y·. The output will then be transferred to
the T43 Printer. Otherwise with an aN" response the
listings are sent to the Chromatics VDU display.

Note: The T43 Printer must be connected to port SIO-O with
parity off, full duplex, and 300 BAUD.

The program will now load the requested DA file. The
file is sorted and an alphanumeric Plant Code listing is
produced. Any errors will be noted with a "*". A response

DA TYPE ERROR

indicates that a non-existent data type is present. The
total DA errors are noted in the trailing error statement.

*** 0 ERRORS ***

A second listing w ill be produced of the DA file which
is in Scan Group and Scan Priority order.

The program now loads the requested EP file. The file
is sorted and an alphanumeric Event Name listing is
produced. Any errors will be noted with a

260

n*" • A response

EP TYPE ERROR

indicates that a non-existent event type is present. The
total EP errors are noted in the trailing error statement.

*** 0 ERRORS ***

The program now loads the AG file. The file is sorted
and an alphanumeric Alarm Name listing is produced. Any
errors will be noted with a -*-. Carefully examine the
Boolean expressions for errors. These expressions have been
converted into Reverse Polish notation. The alarm listing
format is:

ALARM NAME: alarm name (output code)

CONDITION ON: reverse polish expression

CONDITION OFF: reverse polish expression

PERSISTENCY: number

The total'AG errors are noted in the trailing error
statement.

*** 0 ERRORS ***

If no errors have occurred during compilation, the
program responds:

*** TOTAL ERRORS = 0 ***

PASS 1 OK

*** COMPILATION OK ***

261

The program now builds the alarm data base. stores it
on disk. and returns to the OFLAD module. The COMMAND:
prompt indicates that compilation has completed and ready
for further instructions.

If errors occurred during compilation the program
responds:

*** TOTAL ERRORS = __ ***

*** COMPILATION FAILED ***

The program aborts and returns to the OFLAD module.
The COMMAND: prompt indicates that the system is ready for
further instructions.

The compilation time is proportional to the size of the
files used. Compilation time grows rapidly with the total
number of file elements.

B.2.6 Transfering the Alarm Data Base (TRANSFER)

B.2.6.l Introduction to TRANSFER

The third program module in the off-line software is
the TRANSFER module. This program retrieves ADB files
stored on the currently loaded floppy disk and installs the
compiled alarm data base in the on-line alarm handling
computer. The transfer routine performs the following
functions:

1) Enquires the user for the alarm data base (ADB)
file to be transferred.

2) Establishes communication with the on-line

262

computer.

3) Transfers the data base to the on-line computer
performing some error checking for link and transfer errors.

Any errors generated during the transfer task are most
likely due to difficulties with the communication link to
the on-line computer. If errors do occur the routine will
abort, returning to the OFLAD module. The user should check
all link lines and repeat the transfer command.

B.2.6.2 Use of TRANSFER

Transfer an Alarm Data Base - TR. This command allows
the user to enter the TRANSFER program module and transfer
an alarm data base file to the on-line alarm handling
computer. The program starts:

ALARM DATA BASE TRANSFER ROUTINE

THE CHROMATICS MUST BE CONNECTED TO THE PDPII/03.

THE ALARM HANDLING SYSTEM MUST BE INSTALLED AND RUNNING
BEFORE PROCEEDING.

A link error will occur if the setup is not correct,
thus aborting the transfer.

The program responds with a directory list of the alarm
data base files available on the currently loaded floppy
disk. The format is the same as for the List Directory
command DI in OFLAD.

AVAILABLE ALAR~I DATA BASES

263

ADB
100 - 250, etc.

ADB No.?

Enter the appropriate alarm data base number to be
transferred. The program continues:

ARE YOU SURE?

A "N" reponse will abort the transfer
system returns to the OFLAD program module.

COMMAND:

routine and the
The prompt:

indicates that the system is ready for further instructions.

A ·Y" reponse to the 'ARE YOU SURE?' prompt will
initiate the transfer of the alarm data base down line to
the PDPI1/03. When completed, the program will return to
the OFLAD program module ready for further instructions.

There are three forms of error messages which may be
encountered during the transfer of the data base.

1) Type Error in Element

2) Link Error

3) Xfer Error

Type errors occur when the transfer routine has found
an invalid element in the alarm data base. The element
number in error is noted in the error message. This
indicates that the alarm data base may be corrupted.
Transfer will continue however the alarm data base in the

264

on-line computer will not be fully functional. If this
error is encountered, execute the transfer again. If still
persistent, re-compile the alarm data base.

Link errors occur when the transfer routine can not
establish communication with the on-line alarm handling
system. The transfer routine is aborted and program control
is returned to OFLAD. Ensure that the on-line system is
functional and that all communication lines are secured in
the correct place. Try the trans~er again. No data will
have been transferred to the on-line system.

Xfer errors occur when communication checks on the link
line show that there is a possibility that a corrupted data
transfer has occured. The alarm data base in the on-line
system will have been corrupted as well. Restart the
transfer procedure after ensuring that the on-line system
has also been reset. Program control will have been
returned to the OFLAD program module.

265

, ,

B.3.0 INITIALISING DISKS

New floppy disks must be processed by the Chromatics CG
1999 File Control System program 'FORMAT'. This program
formats the disk. The otherwise blank disk should be at
hand before continuing. Obtain a copy of the off-line Alarm
Handling System master disk which contains the system
programs

OFLAD.BAS
LOADOFLAD.SRC
COMP.BAS
LOADCOMP. SRC
DISKINI.BAS

The procedure essentially consists of transfering all
of the Chromatics System Files and the off-line Alarm
Handling System programs to the new disk. The procedure is
identical to that outlined in the Chromatics Disk Operating
Manua14•

1) Press the (DISK OS)

2) Insert the Master disk

3) Type: DUPE *.* (RETURW

4) Follow the instructions on the Chromatics display

5) When finished store Master disk in a safe place.

266

B.4.0 REFERENCES

1) Hoenig, G., 1980, "A Survey of Alarms and Alarm Systems
in the Process Industries", Warren Spring Laboratory,
Department of Industry, Stevenage, England.

2) Singleton, W.T., 1974, "Man-Machine Systems·, Penguin,
London.

3) Fitter, M.J., 1979, "Dialogues for Users", Froc. Infotech
State of the Art Conference on User-Friendly Systems, pp
5.1-5.21, 28-30 March 1979.

4) Chromatics Incorporated, 1978, "Disk Software Reference
. -

Manual", CG Series, Atlanta, pp 2.9-2.10.

5) Chromatics Incorporated, 1978, "Operators Manual', CG .
Series, A1tanta.

267

TABLE B-I

ANALOGUE CONVERSION ALGORITHMS

User defined. See on-line software documentation.

268

APPENDIX C

USER'S GUIDE FOR THE
ON-LINE COMPONENT OF THE

ALARM HANDLING SYSTEM

269

APPENDIX C

TABLE OF CONTENTS

Section

C.l.O

C.2.0

System Specification

C.l.l Introduction
C.l.2 Equipment Available
C.l.3 System Requirements
C.l.4 Organisation of Appendix

On-Line User's Guide

C.2.l Introduction to the Alarm
Handling System

C.2.2 Startup
C.2.3 Shutdown
C.2.4 Use of COMAH
C.2.S Activation of the Alarm

Handling System
C.2.6.0 Use of EDIT

C.2.6.l EDIT Sub-commands
C.2.6.2 Errors

270

271

271
271
272
272

273

273
273
276
277

278
280
281
283

C.l.D SYSTEM SPECIFICATION

C.l.l Introduction

The on-line portion of the alarm handling system is
capable of interpreting and implementing alarm data base
structures as developed in the off-line component. Since
the on-line system is a target machine for the data base,
the operation of the on-line system has been greatly
simplified. In normal operation the user must insure that
the alarm data base has been installed correctly, otherwise
the operation is fully automatic. The alarm handling system
presented here is in prototype form, so obviously the user
may find peculiarities with operation of the system contrary
this document. However the greatest care has been taken to
foresee such difficulties.

C.l.2 Equipment Available

As discussed in previous appendices it is usually the
best policy when designing a computer based system to
concentrate on the functional specification before
considering the implementation of the system. In this way
the design approach is not limited by the physical entities
which are available, but instead is directed towards
satisfying the overall system objectives. However, where
resources are limited some account must be taken of the
hardware that can be provided by the available resources.

Prototype design and development often requires changes
to be made to the overall system objectives. The possible
changes in system requirements necessitates the choice of
hardware which not only meets preliminary requirements but
which is also capable of servicing future needs. The most
suitable equipment available for implementing the on-line
component of the alarm handling system considered here is

271

discussed in the hardware documentation.

C.l.3 System Requirements

The on-line alarm handling system is an independent
stand-alone computer system which is used to collect process
data, process this data, generate alarm and display
information as defined by the installed alarm data base.
The user having developed such a data base off-line can
install the alarm data base which defines the alarm
functions to be performed by the on-line system in a
specific application. Once installed the user need only
start the on-line system and the operation is fully
automatic. Alarms and alarm information will be generated
as instructed in the alarm data base.

C.l.4 Organisation of the Appendix

The remainder of this appendix report presents a user's
guide to the operation of the on-line alarm handling system.
Other documentation is available describing details and
configuration of the software and hardware systems.

272

C.2.0 On-Line USER'S GUIDE

C.2.1 Introduction

The on-line portion of the Alarm Handling System (ABS)
is straight forward and easy to operate. It is recommended
that a system manager be assigned to perform the startup and

shutdown procedures in order to avoid difficulties with
equipment and software. Once the system is secured no
further attention should be required.

Described here are the basic procedures for startup and

shutdown. If further details are required, a detailed
descripion, listings and flowcharts can be found in the on

line software documentation.

C.2.2 Startup

The following steps must be executed to startup the

alarm handling system:

1) Ensure all connections to the PDP 11/03 alarm

handling computer are correct and secure. These include:

a) TTO: Console Terminal
b) TTl: Printer
c) TT2: Chromatics Link Line
d) TT3: Host Computer Link Line (if present)

e) DDO:/DDl: TUSS Tape Drive

Refer to the hardware document for more details.

2) Power up the Chromatics and PDP 11/03 computers.
Also power up all peripherals.

3) Place the switches on the front panel of the PDP

273

11/03 in the following positions:

DC ON on
ENABLE on
LTC off

The Media Active power bin must be switched OFF.

4) Insert Alarm Handling System cassette tape into
tape drive DD1:

5) Make certain that the console terminal is in the
On-line mode. An I@I symbol should be present indicating
that the computer is in ODT (On-line Debugging Tool). Enter
173000G, the boot strap address. The alarm system will now
boot off the tape drive DD1:

6) Once the boot is complete the program will respond:

Restart 00:00

DAY =

Before continuing switch the LTC switch located on the front
panel of the PDP 11/03 to the ON position. Also switch all
Media Plant interface equipment ON. This is essential since
the alarm system accesses the Media interface at startup.
If the Media interface is OFF the system will crash. In
this situation the user must return to step 3 and try again.
(If there is no Hedia Interface in your system consult the
system manager to modify the POW powerup task.)

Once all equipment is sw itched ON, enter the day of the
month. The program will continue:

110NTH =
YEAR =

274

HOURS =
UINS =

Enter the day 1-31, month 1-12, year e.g. 82, hours 0-23,
and minutes 0-59.

7) Now enter the following into the console terminal:

<cntrl>C
$LOG <return>

This protects the system from tampering. If the system
manager requires to enter the system there are two user
names suitable for this purpose. These names and passwords
should be issued only with the system manager's approval.

User

GOD

TOP

Password Protection

SSD Top priority- should be used
for software development,
access is given to all

WSL

job slots.

General access to AHS jobs
required to operate
system. Protection
is provided to vital
software.

It is recommended that for all operations in this document
that the TOP user be entered to protect software task in the
case of a miss-entry.

8) Next startup the Chromatics alarm display system.
First insert the appropriate alarm display disk in the
Chromatics floppy disk drive.

275

9) On the Chromatics keyboard enter:

(RESET)
(BOOT)
(BASIC)

Memory Size = &HBOOO
DOS "LOAD DISPLAY"
RUN

(RETURN)

10) Remove the AHS tape from the TUSS tape drive for
security.

11) The alarm handling and display system is now
installed and running. Refer to the COMAH task commands
discussed later in this document for further details of how
to activate the alarm handling functions.

C.2.3 Shutdown

1) Remove all tapes and floppy disks from the system
drives.

2) Turn all power points off.

276

C.2.4 Use of CO~Ulli

The COMAH task allows the system manager to evoke

engineering funcions with the system. A summary of the
operations available are presented here. For more details

refer to the on-line software documentation.

Via the console terminal TTO: the system manager must
use the SWEPSPEEO utility $ACT14 to activate the COMAH job
slot. Once started the prompt 'ii' will indicate that the
task is ready for input. All inputs consist of up to 2

character strings followed by a carriage return.

EO Enter EDIT mode. Overlay storage tape must be in

ODD:

TI Print time and date to console.

RE Restart alarm handling system from scratch.

ST stop the alarm handling system except for the

watchdog task WO.

RU Run or 'warm start' the alarm handling system.

Useful during fault finding after using the ST

command.

X Exit COMAE task.

An error message may be encountered when entering the EDIT

mode if the overlay tape is not inserted in drive ODD:.

277

C.2.5 Activating the Alarm Handling System

With the alarm handling system software installed and
running in both the alarm handling computer and the display
computer, the user can activate the alarm handling system
functions as follows:

1) Install appropriate Alarm Data Base for application
at hand from the off-line alarm handling system into the on
line alarm handling computer. Refer to the Off-Line User's
Guide for details describing the procedure.

2) With the Alarm Data Base installed the system is
ready to be activated. Ensure that the on-line alarm
display package is installed and running in the display
computer.

3) Log into the high secur i ty user name TOP with the
J:l,'::!bWOrU WSL.

4) Activate Job slot 14, the COMAH task.

5) Wait for the 'ii' prompt.

6) Insert 'RU' • The alarm handling system functions
are now running. Data Acquisition has now started. The
user must wait 15 minutes to ensure that all data

acquisition units are initialized after which time the alarm
handling system is primed. Alarms can now be generated in

accordance with the event and alarm definitions in the alarm
data base.

7) Insert 'X, to exit the COMAE task.

8) Most Important: Log out to maintain security of
the system. Enter:

278

<cntrl> C
$LOG <return>

Note that the alarm display package provided with the
system contains a display personality module for a simple
paging display format. Sample alarm message texts are
provided for demonstration purposes. If the user requires
other forms of display, display personality modules must be
written. Software hooks are provided for this purpose. See
the On-Line Software Documentation for further details.

279

C.2.6.0 Use of EDIT

The EDIT command allows the system manager to make
simple modifications on-line to the alarm data base. Use
this program with care. A good understanding of the
structure of the alarm data base is required. Incorrect
entries will cause malfunction of the alarm handling system.
It is recommended that the user read the on-line document
concerning the EDIT task and the Alarm Data Base before

proceeding.

1) Make certain that the overlay tape ASS OVERLAY is
inserted in tape drive 000: and stop any display or off-line

tasks in the attached Chromatics.

2) Activate alarm handling command task CO~IAH.

3) Enter 'EO' after the it prompt.

4) Wait until the overlay file is retrieved from the

tape drive and installed in the system.

5) The editor prompt> indicates that the system is

ready for edit mode sub-commands described below.

6) When editing is complete, enter the sub-command
'X'. Wait until the overlay is complete. The system will
be returned to the COMAH task.

7) The system must be restarted after a modif1cation
to the alarm data base has been made. The array sizes in
the SETUP task may need adjusting.

280

C.2.6.l Edit Sub-Commands

P Print alarm data base to the T43 Printer on device

TTl:.

L List alarm data base to console.

I Insert a new element into the data base. This
function is followed by:

ELEMENT NUMBER:

The user must enter and element number at which the
insertion is to be made. The element number is the alarm
data base array subscipt. The present contents of the
element entered will be shifted to the next higher element
number. The same occurs for any elements above the
insertion point.

The program will display the present contents of the
element. If a new entry is to be made the use,r enters an

,'='. The program will respond with an '=' prompt awaiting
input. Any numeric values are acceptable. A carrage return
completes the entry. To exit the insert mode enter a
RETURN. The insert sub-command readjusts the data base size
in element one.

Example:

>1
ELEMENT NU~1BER = 25
25> [old contents] =

= [new entry]
26> [old contents]

R Replace a data base element. This function is

281

followed by:

>R
ELEMENT NUMBER = [number]

The user must enter an element number at which a
modification may be made. The contents of the element
entered will be displayed as follows:

25> 321.0 =

= [new entry]
25> [new entry]

By entering a '+' the program steps to the next data
base element, a '-' decrements the data base pointer and a

(RETURN) terminates the function.

+ 25> 321.0
26> 432.0
25> 321.0

>
(RETURN)

D Delete a data base element. This function removes
an element from the alarm data base. The remaining elements
are shifted downwards to take up the space in the data base.
The data base size in element one is also decremented. The
program responds:

>D
ELEMENT NUMBER = 25
25> 321.0 Y

25> 432.0 (R~=ETU=RN=)

>

Any response other than 'Y' aborts the function.

282

X Exit the alarm data base
overlay, restart necessary program
alarm handling command task COMAH.

C.2.6.2 Errors

editor, remove the
tasks and return to the

Error messages may be encountered when entering the
edit mode. The error message will be generated by the
SWEPSPEED system indicating an overlay error. The principal
causes of this error are:

1) Alarm Handling Overlay files not inserted correctly
in tape drive 000:

2) Tape drive not properly connected to the system or
not powered up.

3) The Display package in the Chromatics computer was
transferring data to the alarm handling system at the time
of calling the Edit command.

Correct difficulty, enter the CO~IAH task again and repeat
, procedure.

If errors occur when exiting the EDIT mode consult the
system manager or re-boot the alarm handling software.
Sorry about that!

During editing the only error message generated by the
program is the following:

RE-SIZE ADB

This message is generated when an attempt is made to insert
an element into an alarm data base which has filled all
available space in the %AO alarm data base array. No

283

further entr ies may be made. This size may be increased by
modifying the SETUP task in job slot 16. Consult the system
manager.

284

APPENDIX D

SOFTWARE DESCRIPTION
FOR THE OFF-LINE_COMPONENT

OF THE ALARM HANDLING SYSTEM

285

APPENDIX D

TABLE OF CONTENTS

Section

D.l.O Introduction 288

D.2.0 OFLAD 288

D.2.l Setup 289

D.2.2 Command Monitor 289

D.2.3 Load Sub 289

D.2.4 Q$ Sub 290

D.2.S Files Loaded Sub 290

D.2.6 Compile Sub 290

D.2.7 Help Sub 290

D.2.S Change Sub 290

D.2.9 List Sub 291

D.2.l0 Item Sub 291

D.2.11 Help Item Sub 291

D.2.l2 Store Sub 291

D.2.13 Delete Sub 292

D.2.l4 Dir Sub 292

D.2.1S Transfer Sub 292

D.2.l6 Data Entry 292

D.3.0 COMP 293

D.3.l Introduction 293

D.3.2 Setup 293

D.3.3 Input 293

D.3.4 DA Processing 294

D.3.S Event Processing 295

286

D.3.6 Process Alarms 296

D.3.7 Build Data Base Header 299

D.3.S Comp Fail Check 299

D.3.9 Build Data Base 299

D.4.0 TRANSFER 300

D.4.1 Introduction 300

D.4.2 Setup 300

D.4.3 Ask for Overlay 300

D.4.4 Start Transfer 301

D.4.S Close Down 301

D.4.6 Prod 302

D.4.7 Float Check 302

D.4.8 ERR Link 302

D.4.9 ERR Comm 302

D.S.O LISTINGS 303

287

OFF-LINE SOFTWARE DESCRIPTION

D.l.D INTRODUCTION

As described in the user's guide for the off-line
component of the alarm handling system, there are three
BASIC programs which comprise the software. The alarm data
base generator OFLAD functions as the command program
calling up all functions in the off-line system. It also
performs as the editor for the raw data files which later
are compiled by the COMP program into a coded alarm data
base. The third program is the XFER or transfer program
which loads the compiled data base into the on-line alarm
handling computer.

Presented here is an explanation of the structure of
these three programs and how they interact with each other •

•
The programs are written entirely in Microsoft BASIC and are
intended for use in the Chromatics CG 1999 intelligent
colour graphics terminal. Pecularities in program
statements will be due to Chromatic's specific instructions.
The reader should refer to the Chromatic's user's manuals
provided by the manufacture for more details of these
statements.

D.2.D OF LAD

The Off-Line Alarm Data base generator (OFLADl is the
core program in the off-line system. The program provides a
system command structure and raw data file management and
editing facilities. The program is best explained by
walking through the flowchart. Because of the highly
interactive nature of this program the off-line user's guide
is also a software description. As a result, only

288

additional information is presented here which will clarify
the program listings.

D.2.l Setup 100-199

The setup section is executed each time the program is
run. The screen colours and windows are set. The baud rate
is set match the T-43 printer on port 510-0. As much string
space as possible is cleared to make maximum room for data
files in the form of string arrays. These file string
arrays are also dimensioned here. The variable D is used to
set the maximum data file or array size. The arrays are as
follows:

R$(D,8)
S$(D,8)
A$(D,5)
CO$ (11)

DI (lOO)

Data Aquisition data
Event Definition data
Alarm Definition data
Command ref file
Disk directory

Finally a directory listing of the contents of the currently
loaded floppy disk is generated on the display.

D.2.2 Command Monitor 200-259

The command monitor prompts the user for an instruction
entry. The entry is checked and the program control is
temporarily transfered to the appropriate subroutine. A
listing of the available commands can be found in the off
line user's guide.

D.2.3 Load Sub 260-359

There are three 'working files' in the program
represented by the arrays R$. 5$, and A$. In order for the
user to use these work areas, the file must be loaded, i.e.,

289

identified with a raw data file number. The load command
makes this assignment. If the file number already exists on
the floppy disk directory listing, the file is loaded into
the appropriate working file area. Thus the arrays R$. S$,
or A$ are filled with raw data information. Once the files
are loaded, subsequent additions or editing may be performed
as required. Examination of the program listing will
clarify this explanation. It should be noted that the
variables FR, FS, and FA are used as flags to indicate that
the working files are loaded (1= loaded. 0= empty). The
variables NR, NS, and NA are used to store the total number
of entries made in the working files.

D.2.4 Q$ Sub 360-369

This internal service routine is used to convert a
string response given by the user in Q$ into a number value
returned in Q.

D.2.5 Files Loaded Sub 370-379

The command routine lists the numbers of the working
files which are currently loaded in the system.

D.2.6 Compile Sub 380-385

Turns off the screen window and executes a SUBMIT file
to load in the COMP program. l<erer"Co Cllrollldtics IlIalluals
for SUBMIT command.

D.2.7 Help Sub 400-460

Lists available OFLAD commands.

D.2.8 Change Sub 450-460

290

"

The edit flag FC is set to 1 and the program control is
temporarily transfered to the Item Sub. The edit flag FC is
set to zero and program control returned to the Monitor

section.

0.2.9 List Sub 470-499

Oepending upon the user's reponse to ·WHICH ONE?", the
routine branches to the appropriate subroutine. These
routines print headers describing working file contents and

then prints out the file contents.

0.2.10 Item Sub 500-620

The command allows a particular working file entry if
the change flag is set or places the working file pointer
to the next available entry point in the file for data
insertion. When the change flag is set the routine asks for
the name or first section of a particular file entry. The
program scans the working file to find the entry. If no
entry can be found, the program reports this. With the
working file pointer set the program control is temporarily
transfered to the appropriate data entry routine.

0.2.11 Help Item Sub 630-660

Lists available subcommands in the Item Sub.

0.2.12 Store Sub 700-790

Via several subcommands, this routine provides options
for storing the contents of working files onto the floppy
disk store. The working t~les can be ae!etea, storea,
stored with number change or the working file can be
cleared. The routine branches to the appropriate subroutine
which provide the appropriate file name and number to the

291

disk operating system and then the directory is updated.

D.2.l3 Delete Sub 791-799

This command allows existing files on a currently
loaded floppy disk to be deleted. The file number is
converted into a file name for the disk operating system.
The directory is updated and the floppy disk is compressed.

D.2.l4 Dir Sub 800-810

This routine evokes the directory listing routine
located in the Setup section.

D.2.lS Transfer Sub 820-830

This command turns off the display window and SUBMITs
the file LOADXFER which subsequently loads the XFER program
into the system.

D.2.l6 Data Entry

The remainder of the program is commited to data entry
routines for the various working files. The working files
as mentioned are in the form of string arrays.
is two dimensional. The first dimension is the
and the second is the section within the entry.

Each array
entry number

The program
prints the description of the section, then the current
contents and finally asks for input. An examination of the
program listing clearly shows the content of each of the
entry section elements in the working file arrays. The data
entry routines line numbers are as follows:

Data Acquisition
Event Definitions
Alarm Definitions

1000 - 1230
2000 - 2110
4000 - 4090

292

0.3.0 COMP

0.3.1 Introduction

The COMP or compiler program is the most complex of the
three off-line programs. The program is loaded into the
computer via a submit file as evoked by the OFLAD program
module. The purpose of the COMP program is to convert the
data stored in the Data Acquisition, Event, and Alarm files
into a coded Alarm Data Base sui table for loading into the
on-line alarm handling system. File entries are checked and
cross checked to insure that all data syntax was valid and
correct. As with the OFLAD program description it is best
to describe the program details by walking through the
flowchart and listing. Many aspects of the OFLAD and cmlP
are similar since the data files generated in the OFLAD
program are used by the COMP program. Variables used for
specific functions are similar if not the same as in OFLAD.

D.3.2 Setup 50-140

This section sets the baud rate for port 510-0 to 300
for the T-43 printer. The screen window is set, arrays
dimensioned and a file directory is printed to the screen of
the contents of the currently loaded floppy disk.

0.3.3 Input 150-175

This program section issues prompts to the user for the
data files to be used to build an alarm data base. The
following file numbers must be specified: DA, EP, AG and the
destination ADB file. The file numbers are checked for
validity and
floppy disk.

and their existence on the currently loaded
The user is also asked if a hard copy print

293

out is required. If so the logic output device A is set to
the display screen as well as I/O port SIO-O.

0.3.4 DA Processing 180-590

This program section represents the Data Acquisition
file processing. The section is comprised of a variety of
routines which convert the DA file data into alarm data base
coded information. The program records the number of
compilation errors that occur in ~ariable ER. First the
program reconstructs the raw data files from the files on
disk in string array R$(,l. This file is printed verbatim
to the screen. N is the number of entries in the DA file.

The program next sorts the file according to the plant
code alphanumeric order [R$(N,ll). Next. a check is made to
see if there is any duplication of plant codes. Any error
is marked by a '*' next to the duplicate plant code. An
intermediate listing is made of the file. An examination of
the scan rates [R$(N,7l) is made and a sort is made to place
the list of entries in scan order. Next the list is sorted
according to priorities within each scan rate group.
Another listing is made of the file. DA related elements in
the Alarm Data Base header are now calculated and p}aced in
the temporary header array. Refer to the alarm data base
documentation for more details regarding the alarm data base
contents.

Errors which do not appear on the listings as '*' are
recorded in EO and an error message is issued. A good
example for this case is in the next section of the compiler
where data type and range evaluations are performed. Here
the descriptions of data type are converted to a numeric
code representing the data type as follows:

o = Binary

294

I

2

3

4

=

=

=

=

Inverted Binary
Analogue Conversion 0
Analogue Conversion I
and so on

This section combines information in array elements R$(N,4l
and R$(N,5l into the above code placed in R$(N,4). Range
information if present is located in R$(N,6) as a combined

-
low/high text string. The string is separated into its
numeric values. The low value is-then placed in R$(N,5) and
the high value in R$(N,6).

Next the input device number in R$(N,3l is examined to
-

see if it is valid. The value is decremented by I and
replaced in R$(N,3l.

The significant change value remains in R$(N,9l. After
compilation R$(N,2l contains the DA data storage location
and is not presently used. No further processing is done on
the DA file until the alarm data base is built later.

D.3.5 Event Processing 600-865

The program next compiles the event data. The event
data file is retrieved form the floppy disk. NS contains
the total number of entries and is used to dimension the
event array S$(,). As with the DA files, the raw event data
file is printed to the screen. Errors are summed for this
section in variable ES and errors are marked on the listing
with the '.' as well.

The file entries are sorted according to the
alphanumeric order of event names. The file entries are
next sorted according to event types. Duplicate event names
generate an error and are marked on the listing. Next the
plant codes are checked against plant codes in the DA file

295

R$(N,l). If a plant code does not exist, the plant code is
" "

error marked. A listing is now made to the display screen.

Finally the event type in S$ (1,3) is checked for
" "

validity and converted to codes as follows:

1 = ON

2 = OFF
3 = XLO
4 = LO
5 = HI
6 = XHI
7 = TREND
8 = DEVIATION
9 = TREND DEVIATION

An error message is made if an illegal event type is
detected. No more processing is performed until the alarm
data base is built.

D.3.6 Process Alarms 870-1240

Alarm definitions are next compiled. The alarm data
file is retrieved from the floppy disk. NA contains the
total number
array A$(,).

of entries and is used to dimension the alarm
The raw data contained in this file is printed

to the screen. Errors are summed for this program section
in variable EA. Errors are marked on the listing with a
I * I •

The file entries are sorted according to the
alphanumeric order of· alarm names. Duplicate alarm names
generate an error and are marked on the listing.

Next the Boolean expressions representing the ON
condition and OFF condition statements are translated into

296

Reverse Polish Notation (RPN). During the translation
aspects of the validity of the Boolean expression are also
checked.

The Boolean processor performs the conversion to RPN.
There are two passes made of the Boolean expression through
the processor. The first is used to check the validity of
the Boolean expressions. Both the construction of the
expression and the existence to the events used in the
expression are checked. Later, when the alarm data base is
built, the second pass is made. During this pass the
Boolean operators and events are coded.

The Boolean processor actually converts algebraric
Boolean notation into RPN. The expressions for the ON or
OFF alarm condition expressions are examined character by
character. A temporary stack B$(M) is used to store
operators temporarily. The resulting expression is placed
in stack AA$(J). The stack pOinters M and J indicate the
next available stack location. Referring to figure below
the process operates as follows:

FI FO
EVENTS)

ALGE BRAIC • RESULT STACK
BOOLEAN (\ /' A At (J)
EXPRESSION

NOT
OR

AND
XOR

FI LO

BllM)

TEMpORARY

STACK

Figure: Using a Stack to convert expression to RPN

297

Individual characters are taken from the condition
expression string and are stored in X$. If the contents of
X$ does not appear to be an operator or an event name
(identified by a leading and following space character) then
X$ is added to T$ until the contents of T$ is either a
recognizable operator and if not it is an event. Operators
are stored consecutively in the temporary stack $B(M).
Event are placed directly in the result stack AA$(J). When
all elements in the condition statement are processed the
operators are transferred from the temporary stack to the
result stack in FILO (first in last out) fashion. The
result in the stack AA$(J) is now in RPN with the first
entry as the left hand compenent of the expression.

Unfortunately nesting by using brackets causes
additional complications. Expressions within brackets are
intermediate results so when a left hand bracket is
encountered it is passed directly to stack B$(M). When a
right hand bracket is encountered it is passed directly to'
the result stack AA$(J). Operators are then retrieved off
the B$(M) stack until a left hand bracket is encountered
after which the next component in the original expression is
evaluated.

The operator NOT is also not really a true Boolean
operator. As a result any time an event or nested
expression is passed on to the result stack, the B$(M) stack
must be examined to see if there is a NOT on the top of the
stack.

The RPN result of the Boolean expressions are printed
to the screen along with the alarm definition information.

298

D.3.7 Build Data Base Header 1300-1330

At this point the alarm data base header is built. The
appropriate values are inserted in the data base array.
Refer to the Alarm Data Base documentation for further
details.

D.3.8 Comp Fail Check 1340-1355

This section generates a status report to the user. Up
to this point in the compilation is referred to as the first
pass. If errors have occured, the second pass is aborted
and the program restarts the OFLAD program module.

D.3.9 Build Data Base 1360-1500

Elements of the alarm data base are now ordered and
sent to an opened floppy disk file. Elements are printed
to the open file in the order in which the elements appear
in the final data base. Refer to the Alarm Data Base
documentation for further details. The data is sent as
follows:

1) Data Base Header from DB%()

2) Data Acquisition Definitions from R$(,)

3) Event Definitions from S$(,)

4) Alarm Definitions from A$(,) after condition

expressions are reprocessed with operators coded and event
names substituted with event locations in the event status
image.

If all goes well the alarm data base file ADB_.DAT is
closed on the floppy disk. A message is printed stating

299

that the compilation is OK. The directory is updated, the
hardcopy output is turned off, and the OFLAD program module
is re-installed.

D.4.0 TRANSFER

D.4.1 Introduction

TRANSFER, the third program ~odule in the off-line
system transfers an alarm data base, as compiled by the COMP
program, to the on-line system in the PDP 11/03 alarm

-
handling computer. The program complements the alarm
handling on-line task LOAD. Refer to the documentation for
this task for further details. In order for the program to
function correctly, the Chromatics computer must be properly
installed, that is, port SIO-O must be connected to port
TT2: on the PDP 11/03 and the alarm handling software must
be up and running. The TRANSFER program is entered via an
OFLAD command and a LOADXFER submit file.

D.4.2 Setup 50-165

This program section informs the user of the conditions
of use of the program. the program also questions the user
about which alarm data base stored on the currently loaded
floppy disk is to be transfered to the on-line system. A

-
listing of the available alarm data base files is also
given.

D.4.3 Ask for Overlay 200-250

First the program requests the LOAD overlay task to be
installed in the on-line system. This is done by issuing an
'L' to the on-line system. Remember that in normal running
mode the alarm handling system computer uses device TT2: as

300

an output line for display commands to the Chromatics in the
on-line mode. This means that when issuing an 'L' that the
data packet is received by the CHROM link task and passed on
to the DISPlay task where it is recognized as a request for
the LOAD task. The CHROM link task is shut down and the
LOAD task is installed over the DISPlay task.

A timeout error is set in the event that the on-line
system does not respond. TRANSFER will try up to 5 times to
establish contact. If stil no response indicating that the
LOAD task is installed is received, a link error occurs and
the program is aborted.

D.4.4 Start Transfer 300-410

With communication established, recognized by a '*'
response from the LOAD task, the timeout time for a response
is decreased and 'READY' is sent down line. Next several
null data packets are sent to clear the line. the first
data sent is the alarm data base size, the first element in
the alarm data base. This allows the on-line system to see

. if there is enough room for the incoming alarm data base.
The size is also used to set the number of data transfers to
be made in the TRANSFER program.

Any data packet which is not equal to now received from
the on-line system is interpretted as a transfer error and
the program aborts. Also if a data packet is sent and no
response is received. a transfer error is initiated.

D.4.S Close Down 450-470

Once all data has been transfered, the program returns
to the OFLAD program module. Several additional null data
packets are sent to clear the link line.

301

D.4.6 Prod 500-550

This routine is called each time data is to be received
fom the PDP 11/03. the program turns off the output section
of the port SIO-O to prevent any echo down line from an
input statement. Once input is received the output port is
turned back on.

D.4.7 Float Check 600-750

This routine is called each time an alarm data base
entry is sent to the on-line system. The alarm data base is
stored in a real array in the on-line system. Also the LOAD
task is only capable of dealing with real values. The float
check routine examines the numeric data in the alarm data
base files and converts it if necessary to a floating point
format acceptable to the on-line system. When data is
stored in .DAT files on the floppy disk. often extra space
characters are present in the data file entries. The CLR
SPC subroutine removes these spaces before the float check
is performed.

D.4.8 ERR Link 1000-1020

If a link error occurs this error routine will print an
error message, ring the bell, and send program control to
the Close Down routine. This occurs after 5 attempts are
made to establish the link with the on-line system.

D.4.9 ERR Comm 2000-2020

If a communication or transfer error occurs this error
routine will print an error message. ring the bell, and send
program control to the Close Down routine. This occurs
after 5 attempts are made to re-establish the transfer
communication protocol.

302

D.S.O LISTINGS

303

"

\ , ,

- -- ------------------------------------

10 ' ---- OFF-LINE ALARM HANDLING DATA BASE GENERATOR
20 ' ---- VER. 3.1
30 ' ---- Bv G. Hoenl~, LUT, FEB. 1982
40 '
lOO PRINTCHR$(12';"·C2"
102 CLEAR 2000:PRINTCHR$(27'j"OAO"
103 PRINT CHR$(27';"R04" '---SET BAUD JOO
104 CLEAR (FREIX)-4000'
105 D=50
110 DIMR$ID,9',S$ID,S',A$(D,S',CO$III',DI(IOO'
115 DOS"ARYLOAD 01,01"
120 PRINT"---- FILE DIRECTORY ----":PRINT"FILE NUMBER - NO. OF ELEMENT
S·
125 PRINT:PRINT"DA":FORI=IT025:GOSUBI40:NEXTI
127 PRINT:PRINT"EP":FORI=26T050:GOSUBI40:NEXTI
129 PRINT:PRINT"AG":FORI=51T07S:GOSUBI40:NEXTI
130 PRINT:PRINT"ADB":FORI=76TOtOO:GOSUBI40:HEXTI:PRINT:IFX=tTHENRETURN
ELSE200
140 IFDI(l'<>OTHENPRIHT1;"-";DIII',:RETURNELSERETURN
200 '
210 ' ---- COMMAND MONITOR
220 '
225 PRINT:CO$(I)="EN":CO$(2)="CH":CO$IJ)="DI":CO$(4)="LI":CO$IS'·"HE":
CO$(6)="LO":CO$(7)="ST":CO$(8)="FI":CO$19)="CO":CO$(10)="DE":COS(II)·"
TR"
230 LINEINPUT"·C6COMMAND:·C3";C$:PRINT"·C2":C$=LEFTIC,2):1=0
235 IFC$=CO$(9'THEN380
240 1=1+1
250 IFI(12TH~NIFC$=CO$(I)THENONIGOSUB500,450,SOO,470,400,260,700,J70,J
80,791,820:GOT0230ELSE240
252 IFC$<>""THENPRINT"·C4Syntax error·C2";CHR$(7)
255 PRINT:GOT0230
260 ' ---- LOAD SUB
270 IFFR=ITHENPRINT"DA FILE";DR:"LOADED,":60TOJOO
275 Q$=U":LINEINPUT"DA FILE NUMBER: ";Q$:GOSUBJ60:IFQS.""ORQ$·"'"THENJ
00
285 IFO(10RQ>25THEN275
290 FR=I:DR=Q:IFDIIQ)=OTHENPRINT"NEU FILE":GOT0300
295 DOS"OPEN 5 R DA"+D$+".DAT":NR=DI(Q)
296 FORI=ITONR:FORJ=IT09:LINEINPUTIS;R$(I,J':NEXTJ:NEXTI:DOS"CLOSE S"
300 IFFS=ITHENPRINT"EP FILE":DS;"LOADED,":GOTD330
305 Q$="":LINEINPUT"EP FILE NUMBER: ";Q$:GOSUB360:IFD$·""ORD$·"~"THEN3
30
315 IFQ(260RO)50THEN305

304

"
" .
'. , '

,

320 FS=I:DS=O:IFDI(O)=OTHENPRINT"NEU FILE":GOT0330
325 DOS"OPEN 5 R EP"+OS+",DAT":NS=DI(O)
326 FORI=ITONS:FORJ=IT07:LINEINPUTM5:S$(I,J):NEXTJ:NEXTI:DOS"CLOSE 5"
330 IFFA=ITHENPRINT"AG FILE":DA;"LOADED,":GOT0358 -
335 OI="":LINEINPUT"AG FILE NUMBER: ";OS:GOSUB360:IFQ$=""ORO$="."THEN3
58
340 IFO{510RO)75THEN335
345 FA=I:DA=O:IFDI(O)=OTHENPRINT"NEU FILE":GOT0358
350 DOS"OPEN 5 R AO·+OS+",DAT":NA=DI(O)
355 FORI=ITONA:FORJ=IT05:LINEINPUTIS:A$(I,J):NEXTJ:NEXTI:DOS"CLOSE 5"
359 PRINT:RETURN
360 '--0$ SUB
362 IFOI="hTHENO=O:RETURN
364 M=0:FORI=IT0100:IFO$=STR$(I)THENM=I:I=100
365 NEXTI:IFH<>OTHENO$=·.":RETURH
366 Q=VAL(OI):RETURN
370 ' ---- FILES LOADED SUB
372 IFFR=ITHENPRINT"DA FILE":DR
373 IFFS=1THENPRINT"EVENT PROCESSOR FILE":DS
374 IFFA=lTHENPRINT"ALARM FILE";DA
375 IFFR+FS+FA=OTHENPRINT"NO FILES LOADED,"
376 PRINT:RETURN -
380 ' ---- COMPILE SUB
385 PRINTCHRI(27);"OAF·:DOS"SUBMIT LOADCONP":END
400 ' ---- HELP COMMAND SUB
410 PRIHT"~C3EH~C2TERh:PRINT"~C3CH~C2ANGE":PRINT"~C3DI~C2RECTORY·
420 PRINT·~C3Ll~C2ST":PRINT·~C3LO-C2AD":PRINT"-C3ST·C20RE":PRINT""C3HE
·C2LP"
425 PRINT"·C3FI·C2LES LOADED":PRINT"·C3CO·C2HPILE h:PRINT""C3DE"C2LETE"
:PRINT"·C3TR·C2ANSFER·
430 PRINT:RETURH
450 ' ---- CHANGE SUB
460 FC=I:GOSUB500:FC=0:RETURN
470 ' ---- LIST SUB
471 PRINT:LINEIHPUT'·C6UHICH ONE!~C2";Q$:Q$=LEFTIIQ$,I):IFO$="D"THENGO
SUB480
472 IFO$="E"THENGDSUB490
473 IFO$="A"THENGDSUB494
474 RETURN
480 IFFR=OTHEN499ELSEPRINT:PRINT"PLANT CODE',·NAME·,,"I/P DEV","TYPE",
HALO NO,","RANGE·,"SCAN·,"PRIORITY"
481 PRINT:FDRI=lTDD:IFR$(I,I)=""THENRETURNELSEFDRJ=lT08:PRINT R$(I,J),
:IFJ=2ANDLEHIRI(I,J»(14THENPRINT"",
482 NEXTJ:PRINT:PRINTTABI8S);"(";R$(1,9);")":NEXTI:RETURN
490 IFFS=OTHEN499ELSEPRINT:PRINT"PLANT CDDE","EVENT NAME",,"TYPE","L,
LIMIT","L, HYS,",·U, LIMIT",·U, HYS,·
491 PRINT:FDRI=lTDD:IFS$(I,1)="·THENRETURNELSEFORJ=lT07:PRINTSI(I,J),:
IFJ=2ANDLEN(SS(I,J»{14THEHPRINT··,
492 NEXTJ:PRINT:NEXTI:RETURN
494 IFFA=OTHEN499
495 F_ORI:1TD_D:I_FASIl,ll=··THENRETURNELSEPRINT"ALARM NAM~! __ :!_~~(.I_~ll ___ _

305

•

320 FS=I:DS=Q:IFDI(Q)=OTHENPRINT"NEU FILE":GDTD330
325 DDS"DPEN 5 R EP"+Q$+".DAT":NS=DI(O)
326 FDRI=ITDNS:FDRJ=ITD7:LINEINPUTftS;SS(I,J):NEXTJ:NEXTI:DOS"CLOSE 5"
330 IFFA=ITHENPRINT"AG FILE":DA;"LOADED.":GDTDJ58
JJ5 O$="":LINEINPUT"AG FILE NUKBER: ";O$:GDSUBJ60:IFOS=·"ORQ'="*"THENJ
58
J40 IFO{510RO>75THENJJS
345 FA=I:DA=Q:IFDI(O)=OTHENPRINT"NEU FILE":GDT0358
350 DOS"OPEN 5 R AS"+O$+".DAT":NA=DI(O)
355 FORI=ITONA:FORJ=IT05:LINEINPUTI5;AS(I,J):NEXTJ:NEXTI:DOS"CLOSE 5"
358 PRINT:RETURN
360 '--0$ SUB
362 IFO$=""THENO=O:RETURN
364 M=0:FORI=IT0100:IFO$=STRS(I)THENK=I:I=100
365 NEXTI:IFK<>OTHENO$=".":RETURN
366 Q=VAL(O$):RETURN
370 ' ---- FILES LOADED SUB
372 IFFR=ITHENPRINT"DA FILE":DR
373 IFFS=1THENPRIIIT"EVENT PROCESSOR FlLE":DS
374 IFFA=ITHENPRINT"ALARH FIlE";DA
375 IFFR+FS+FA=OTHEIIPRIIIT"NO FILES LOADED."
376 PRINT:RETURH
3BO ' ---- COMPILE SUB
3B5 PRINTCHRS(271;"OAF":DDS"SUBMIT LOADCOHP":END
400 ' ---- HELP COMMAND SUB
410 PRINT"·C3EN·C2TER":PRINT"·C3CH·C2ANGE":PRlNT"·C3DI·C2RECTORY"
420 PRINT"·C3LI·C2ST":PRINT"·C3LO·C2AD":PRINT"·C3ST·C20RE":PRINT"·C3HE
MC:!LP"
425 PRINT"·C3FI·C2LES LOADED":PRIIIT"·CJCO·C2MPILE":PRINT"MC3DEMC2LCTE"
:PRINT"·CJTR·C2ANSFER"
430 PRINT:RETURN
450 ' ---- CHANGE SUB
460 FC=I:GOSU8500:FC=0:RETURN
470 ' ---- LIST SUB .
471 PRINT:LIIIEIIIPUT"·C6UHICH ONE,MC2";DS:OS=LEFT$(O',I):IFO$="D"THENGO
5U8480
472 IFO'="E"THENGOSUB490
473 IFO'="A"THENGOSUB494
474 RETURN
480 IFFR=OTHEN499ELSEPRIIIT:PRIIIT"PLANT CODE","NAME",,"I1P DEV","TYPE",
"ALG NO.","RANGE","SCAII","PRIORITY·
481 PRINT:FORI=ITOD:IFR$(I,I)=··THENRETURNEL5EFORJ=IT08:PRlilT RS(I,J),
:IFJ=2AIIDLEN(R$(I,J»<14THENPRINT"",
482 NEXTJ:PRINT:PRINTTAB(8SI;"(";R$(I.9);")":NEXTI:RETURN
490 IFFS=OTHEN499ELSEPRINT:PRINT"PLANT CODE","EVEIIT NAHE",,"TYPE","L.
LIMIT","L. HIS.","U. LIMIT","U. HrS."
491 PRINT:FORI=ITOD:IFS$(I,1)="·THENRETURNELSEFORJ~lT07:PRINTSS(I,J),:
IFJ=2ANDLEII(SS(I,J»(14THENPRINT"",
492 NEXTJ:PRIIIT:NEXTI:RETURN
494 IFFA=OTHEN499
495 FORI=ITOD:IFA$(I,I)=""THENRETURNEL5EPRINT"ALARM NAME: ";A$(I,l)

306

;- (-;AS(I,2);-)-
496 PRINT"CONDITION ON: ";A$(I,31:PRIHT"COHDITION OFF: ";A$(I,41:PRIN
T"PERSISTENCY: ";A$(I,51:PRINT:NEXTI:PRINT:RETURN
499 PRINT:PRINT"HO FILE LOADED.":PRINT:RETURN
500 ' ---- ITEM SUB
510 LINEINPUT"-C6ITEM:-C3":C$:C$=LEFT$(C$.11
515 IFFC=ITHENGOT0530
520 IFC$="ALL"THENGOSUBIOOO:GOSUB2000:GOSUB4000:GOT0230
530 IFC$="D"THENN=OELSE560
535 IFFC=ITHENPRINT:LINEINPUT"-C6PLANT CODE TO BE CHANGED:-C3";CC$
540 N=N+I:IFN=D+IANDFC=ITHENPRINT"·C4Can't Find":RETURNELSEIFN=D+ITHEN
PRINT H·C4Array Full":GOT0620
545 IFFC=ITHENIFCC$=R$(N,IITHEHGOSUBIOOO:RETURN:ELSE540
550 IFR$(N,tl=""ORLEFT$(R$(N,II,II=" "THENGOSUB1000:GOT0200:ELSE540
560 IFC$="E"THENN=OELSE580
562 IFFC=ITHENPRINT:LINEINPUT"·C6EVENT NAHE TO BE CHANGED:·C3":CC$
564 N=N+I:IFN=D+IANDFC=1THENPRINT"·C4Can't Flnd":RETURNELSEIFN=D+1THEN
PRINT"·C4Array Full":GOT0620
566 IFFC=ITHENIFCC$=S$(N.2ITHENGOSUB2000:RETURN:ELSE564
568 IFS$(N,ll=""ORLEFT$(S$(N,II,ll=" ·THENGOSUB2000:GOT0200ELSE564
580 IFC$="A"THENN=OELSE600
582 IFFC=ITHENPRINT:LINEINPUr H·C6ALARH NAME TO BE CHANGED:-C3";CC$
584 N=N+I:IFH=D+IANDFC=ITHENPRINT H·C4Can't Find":RETURNELSEIFN=D+ITHEN
PRINTu'C4Array Full":GOT0620
586 IFFC=ITHENIFCC$=A$(N,IITHENGOSUB4000:RETURNELSE584
588 IFA$(N,II="·ORLEFT$(A$(N,II,II=" "THENGOSUB4000:GOT0200ELSE584
600 IFC$="H"THENGOSUB630:GOT0500
610 IFC$<>""THENPRIHT:PRINT"·C4SyntaK error'CZ";CHRS(71
620 PRINT:FC=O:GOT0200
630 ' ---- HELP ITEM SUB
640 PRINT:IFFC=OTHENPRINT u ·C3ALL"
650 PRINT"·C3D·C2ATA ACO":PRINT"·C3E·C2VENT PROCESSOR"
660 PRINT"·C3A·C2LARK":PRINT"·C3H·C2ELP":PRINT:RETURN
700 ' ---- STORE SUB
705 PRINT:PRINT"RETURN = STORE NO CHANGE IN FILE NUMBER."
710 PRINT"'N' = DO NOT STORE."
715 PRINT"'NF' = STORE UITH NEU FILE NUMBER."
720 PRINTH'K' = KILL UORKING FILE,":PRINT
725 IFFR=ITHENPRINT"STORE DA";DRj:LINEINPUT"?";SS$:ELSE733
727 IFSS$=""THENM=O:DOS"OPEN 5 U *.DOS"ELSE731
728 FORI=ITOD:FORJ=IT09:IFLEFT$(R$(I,II,II<>" "ANDRS(I,ll<>""THENM=Mtl
:PRINTI5;R$(I,JI;CHR$(131;
729 NEXTJ:NEXTI:IFH<>OTHENDOS"CLOSE 5 DA"tHID$(STR$(DRI,Z,21+".DAT"ELS
EDOS"CLOSE 5"
730 DI(DRI=INT(HI91:DOS"ARYSAVE DI,DI":DOS"COHPRESS":GDT0733
731 IFSS$="NF"THENINPUT"ENTER NEU NUHBER";a:IFO<26ANDO>OTHENDR=INT(OI:
SS$="":GOT0727ELSE733
732 IFSS$="K"THENERASER$:DIKR$(D,91:FR=0
733 IFFS=ITHENPRINT"STORE EP";DS::LINEINPUT"?";SS1:ELSE750
735 IFSS$=""THENH=O:DOS"OPEN 5 U *.DOS"ELSE743
737 FORI=ITOD:FORJ=IT07:IFLEFT$(S$(I,11,1)(>" "ANDS$(I.l)<>U"THENM=M+1

307

:PRINTM5:S$II.JI;CHR$1131;
739 NEXTJ:NEXTI:IFKC>OTHENDOS"CLOSE 5 EP"+KIDSISTR$IDSI.2,21+·.DAT"ELS
EDOS"CLOSE 5"
741 DIIDSI=INTIK/71:DOS"ARYSAVE DI,DI":DDS"CDHPRESS":GDT0750
743 IFSS$="NF"THENINPUT"ENTER NEU NUKBER";O:IFOC5IANDO)25THENDS=INTIOI
:SS$="":GDT0735ELSE750
745 IFSSS="K"THENERASESS:DIKSSID,81:FS=0
750 IFFA=ITHENPRINT"STDRE AG":DA;:LINEINPUT"'·:SS$:ELSE790
752 IFSSS=""THENK=O:DOS"OPEN 5 U *.DDS·ELSE760
754 FORI=ITDD:FDRJ=ITD5:IFLEFTIAII,II,II(>· ·ANDA$II,IIC>""THENM=K+I
:PRINTM5:A$II,JI;CHRSI131;
756 NEXTJ:NEXTI:IFKC>OTHENDDS"CLDSE 5 AG"+KID$ISTR$IDAI,2,21+".DAT·ELS
EDDS"CLOSE S"
758 DIIDAI=INTIK/51:DDS"ARYSAVE DI;DI":DDS·CDKPRESS":GDT0790
760 IFSSS="NF·THENINPUT"ENTER NEU NUKBER";O:IFO<76ANDO>50THENDA=INTIOI
:SS$="·:GOTD752ELSE790
765 IFSS$="K"THENERASEAS:DIKA$ID,SI:FA=O
790 RETURN
791 ' ---- DELETE SUB .
792 X=I:GDSUBI20:X=O:O=0:INPUT"DELETE FILE NUMBER 11-IOOI";O:O=INTIOI:
IFOCIDRQ>IOOTHENRETURN
793 IFDIIQI=OTHENPRINT·NO FILE":PRINT:RETURN
794 GOSUB795: DOS"KILL "+FS+KID$(STRS 101.2,2 I +". DAT·: GOSUB799: RETURN
795 IFOC26THENF$=·DA":RETURN
796 IFO<51THENFS="EP":RETURN
797 IFOC76THENF$="AG·:RETURN
798 F$="ADB':RETURN
799 DIIQI=O:DOS"ARYSAVE DI,DI·:DDS"COKPRESS":RETURN
BOO ' ---- DIR SUB
810 X=I:GDSUBI20:X=0:PRINT:RETURN
820 ' ---- TRANSFER
830 PRINTCHUI271;"OAF":DDS"SUBMIT LOADXFER·:END
1000 ' -
1010 ' ---- DA UNIT - ROUTINE FOR ENTERING DATA AQUISITIDN INFORMATION
1020 '
1025 IFFR=OTHEN499
1030 PRINT:PRINT:PRINT"·C7INPUT DATA ACOUISTION INFORNATIONHC2"
1040 PRINT:PRINT"·C6PLANT CODE [";R$IN,II;:LINEINPUT·l:·C2"jR$:IFR$<>"
"THENR$(N,II=U
1050 PRINT:PRINT"·C6NAKE [·;RSIN,21;:LINEINPUT·l:-C2·;R$:IFR$<> THENR
$IN,21=RS
1060 PRINT:PRINT"·C6INPUT DEVICE [";R$IN,31;:LINEINPUT"l:HC2":R$:IrR$=
"·THENI090
1070 IFR$="""ORR$="0"ORR$="I"ORRS="2"ORRS="3"THENR$IH,31=R$ELSE1060
10ao IFR$="""THENPRINT:LINEINPUT"·C6ADDRESS:-CZ";RS:R$IN.31=R$IN.3l+RS
1090 PRINT:PRINT"-C6DATA TYPE [":R$(N,41;:LINEINPUT"l:-C~"jR$
1100 IFR$=·"ANDR$IN,41="A"THENPRINT:GOTOI130ELSEIFR$=""THEN1190
1110 R$=LEFT$IRS,II:IFRSC>·A"ANDRS(>"B"THENI090ELSEPRINT:IFR$="B"THENI
170
1120 RSIN,41=RS
1130 PRINT"-C6CONVERSION ALGORITHM • [·;R$IN,51;:LINEINPUT·]:-C2·:R~

308

1140 IFR$<>""THENR$(N,5)=RS
1150 PRINT: PRINT"-C6RANGE ["; R$ (N, 6); : LINEINPUT" J :NC:!U ;RS: IFR$ O''''THEN
R$(N,61=RS
1155 PRINT:PRINT"-C6SIGNIFICANT AFSOLUTE CHANGE [";R$(H,9);:LINEINPUT"
J:-CZ";R$:IFR$<>·"THENR$(H,9)=R$
1160 GOT01190
1170 LINEINPUT"-C6DATA INVERSION (Y/N):"CZ":R$
llBO R$=LEFT$(R$,II:IFRS<)"Y"ANDRS<)"N"THENI170ELSER$(N,41=R$
1190 PRINT:PRINT"-C6SCAN RATE [";R'(N,71;:LINEINPUTU]:NC:!":R,:IFRS<>""
THENR$(N,71=R$
1200 PRINT:PRIHT"-C6SCAN PRIORITY [";R$(N,B);:LINEINPUT"]:NC:!":R$
1210 IFR$<>""THENR$(N,S)=R$
1220 PRINT:PRINT"-C7END OF DA UNIT INPUT":PRINT
1230 PRINT:RETURN
2000 '
2010 ' ---- STATUS - ROUTINE FOR ENTERING EVENT PROCESSOR INFORMATION
2020 '
2025 IFFS=OTHEN499
2030 PRINT:PRINT:PRINT"-C7INPUT ANALOG EVENT PROCESSOR INFORMATION"C2"
2040 PRINT:PRINT"-C6PLANT CODE [";S'(N,II;:LINEINPUT"]:"C2":S$:IFS'<>"
UTHENS$(N,I)=S$
2045 PRINT:PRINT""C6EVENT NAME [";S$(N,21;:LINEINPUT"l:"C2";S$:IFS,(,"
"THENS'(N,21=S$
2050 PRINT:PRINT"-C6EVENT TYPE [";S$(N,3);:LINEINPUT"1:"C2":S,:IFS,<>'
"THENSHN,3)=S$
2060 PRINT:PRINT"-C6LOUER LIMIT [":S$(N,4);:LINEINPUTU]:NC2":S':IFSS<>
""THENS$(N,4)=S$
2070 PRINT:PRINT"-C6LOUER HYSTERESIS [";S$(N,5);:LINEINPUT"l%:"C2";S$:
IFS$<>""THENS$(N,5)=S$
2080 PRINT:PRINT"-C6UPPER LIMIT [";S$(N,6);:LINEINPUTu l:-C2";S':IFS'<>
·"THENS$(N,61=S$
2090 PRINT:PRINT""C6UPPER HYSTERESIS [";S$(N,7);:LINEINPUT"]%:"C2";S$:
IFS$<>'"THENS$(N,7)=SS
2100 PRINT:PRINT""C7END OF ANALOG EVENT PROCESSOR INPUT":PRINT
211 0 PRINT:RETURN "-
4000 '
4010 ' ---- ALARM - ROUTINE FOR ENTERING ALARM GENERATION INFORMATION
4020 '
4025 IFFA=OTHEN499
4030 PRINT:PRINT:PRINT"·C7INPUT ALARM CONDITION INFORMATIONNC2"
4040 PRINT: PRINT"-C6ALARM NAME ["; A$ (N, 11 ;: LlNEINPUT"l: -C2"; AS: IFA$<>"
"THENA$(N,Il=AS
4045 PRINT:PRINT""C60UTPUT CODE [";A$(N,2);:LINEINPUT"1:NC:!u;A$:IFA$<>
""THENA$(N,21=A$
4050 PRINT:PRINT"·C6CONDITION ON [";A$(N,3);:LINEINPUT"]:·C2";AS:IFAS<
)""THENA$(N,3)=A$
4060 PRINT:PRINT"-C6CONDITION OFF [";A$(N,4);:LINEI~PUT"]:"C2":A$:IFA$
C)""THENA$(N,4)=A$
4070 PRINT:PRINT"·C6PERSISTENCY [";A$(N,5);:LINEINPUT"1:"CZ":A$:IFA$<>
"OTHENA$(N,51=A$
4080 PRINT:PRINT"·C7END OF ALARM CONDITION INPUT":PRINT
4090 PRINT:RETURN
=C2ROk

309

10 ,---- OFF-LINE ALARH DATA ~ASE COMPILER --------
20 ,---- VER 2.1
30 ,---- G. HOENIG, LUT, FED 1982
40 '
50 PRINTCHR'(271;"R04" '--SET PORT BAUD 300
60 CLEAR2000:PRINTCHR'(27);"OAO";CHR'(12)
70 DIH DI(100),V'(9),HI31
80 DOS"ARYLOAD DI.DI"
90 PRINT"---- FILE DIRECTORY ----":PRINT"FlLE NUMBER - NO. OF ElEMENTS
"
100 PRINT:PRINT"DA":FORI=IT025:GOSUBI40:NEXTI
110 PRINT:PRINT"EP":FORI=26T050:GOSUBI40:NEXTI
120 PRINT:PRINT"AG":FORI=51T075:GOSUBI40:NEXTI
130 PRINT:PRINT"ADB":FORI=76T0100:GOSUBI40:NEXTI:PRINT:GOT0150
140 IFDIII)<>OTHENPRINTI;"-";DIII),:RETURNELSERETURN
150 IFX=lTHENRETURNELSEPRINT:R=O:INPUT"DA FILE NO.";R:R=INTIR):IFR=OTH
EN1500ELSEIFR>250RR(ITHEN150
151 M=R:GOSUBI60:N=DIIR)
152 S=O:PRINT:INPUT"EP FILE NO.";S:S=INTISI:IFS=OTHEN1500ELSEIFS}500RS
(26THEN152
153 M=S:GOSUB160:NS=DIIS)
154 A=O:PRINT:INPUT"AG FILE NO.";A:A=INTIAI:IFA=OTHEN1500ELSEIFA)750RA
(SITHENI54ELSE1S6
155 H=A:GOSUBI60:NA=DIIA)
156 DB=O:PRINT:INPUT·'ADB NO.";DB:DB=INTIDB):IFDB=OTHEN1500ELSEIFDB)100
ORDB<76THEN156
157 IFDIIDBI<>OTHENPRINT"** IIARNING ** ALARM DATA BASE ADB";DB;" ALR
EADY EXISTS!"
158 PRINT"ARE YOU SURE? .;: 1I NE INPUT OS: IFLEFT' I 0',1 K>"Y"THENI50ELSEl
70
160 IFDI(H)=OTHENPRINT"FILE NOT FOUND":ENDELSERETURN
170 DIH R'IN,9)
175 O'="":INPUT"HARD COPY IY/NI";O':IF01="Y"THENPRINTCHR11271;"Oa4"
180 DOS"OPEN 5 R DA"+HID'ISTR'IRI,2,2)+".DAT"
190 FORI=lTON:FORJ=IT09:LINEINPUTft5;R'II,J):NEXTJ:NEXTI:DOS"CLOSE 5"
200 FORI=ITON:PRIHT:FORJ=IT09:PRINTR'II,JI;" ";:NEXTJ:NEXTI:PRINT
210 ER=0:FORK=2TON:J=K
220 IFR'IJ,II<R'IJ-l,1ITHEH230ELSE240
230 FORH=IT09:V'IH)=R'IJ-l,H):R'IJ-l,H)=R'IJ,MI:R$IJ,M)=V'IH):NEXTM:J=
J-l:GOT0220
240 NEXTK
250 FORI=2TON:IFR'II,II=R'(I-l,I)THENER=ER+l:R'II-l,1)="."+R'II-l,l):N
EXTI ELSENEXTI
260 PRINT

310

270 PRINT"PLANT CODE","NAKE",,"I/P DEV','TYPE","ALG NO.·,"RANGE","SCAN
", 'PRIORITY"
280 PRINT:FORI=ITON:FORJ=ITOS:PRINTRSII,J),:IFJ=2ANDLENIRSII,J»{14THE
NPRINT"",
285 NEXTJ:PRINT:PRINTTAB(85);"I":R$II.9);")"
290 PRINT:NEXT!
300 PRINT:IFER=ITHENPRINT".". I ERROR HH"ELSEPRINT" •• u ";ER;" ER
RORS .. U"

310 PRINT:IFX=ITHENX=O:RETURN
330 '--SORT SCAN RATES
340 FORK=2TON:J=K
350 IFRSIJ,7)<RSIJ-l,7)THEN360ELSE370
360 FORH=1T09:VSIK)=RSIJ-l,H):R$IJ-I,H)=R$IJ,H):R$IJ,H)=VSIK):NEXTK:J=
J-l:GOT0350
370 NEXTK
380 'X=1:GOSUB260
390 '--SORT PRIOR
400 FORK=2TON:J=K
410 IFVALIRSIJ.8»<VALIR$IJ-l,S»ANDRSIJ.7)=R$IJ-I,7)THEN420ELSE430
420 FORK=1T09:VSIK)=RSIJ-l,H):RSIJ-I.H)=R$IJ.H):R$IJ,H)=V$IK):NEXTH:J=
J-l:GOT0410
HO NEXTK
431 '--CK SIG CHG
440 X=I:GOSUB260
450 '--DA HEADER
460 DIHRHIS):FORI=1TON:FORJ=1T04:IFVALIR$II,7»=JTHENRHIJ+1)=RHIJ+l)+1
470 NEXTJ:NEXTI:RHll)=N
480 '--TYPE AND RANGE
490 FORI=ITON:X$=R$II.4):IFXS="A"THENR$II,4)=STR$ll+VALIRSII,S»)
500 IFXS="Y"THENR$II,4)=STR$ll)ELSEIFX$="N"THENRSII,4)=STR$(0)
510 IFX$<>nN"ANDX$(>"Y"ANDXS<>"A"THENPRINT"DA TYPE ERROR ":R$II,4):EO
=EO+l
520 P=INSTRI2,R$II,6)," "):IFIP=00RP=LENIR$II,6»)ANDXS="A"THENPRINT"R
ANGE ERROR ";RSII,6):EO=EO+l:GOT0540
530 R$II,S)=LEFTSIR$II,6),P):R$II,6)=RIGHTSIR$II,6),LENIRSII,6»-P)
540 N(XT!
550 '--PROCESS lIP
560 FORI=1TON:J=VALIRSII,J»:IFJ<=00RJ>4THEN570ELSERSII,J)=STRSIJ-l):N
EXTI:GOT05S0
570 EO=EO+l:PRINT"I/P ERROR h;RSII,3):NEXTI
580 '--SET DA ADDRESS OFFSET
590 FORI=ITON:R$II,2)=STRSII):NEXTI
600 '--PROCESS EP
610 'PRINT:X=I:GOSUB90:X=0:PRINT:INPUT"EP FILE NO.":S:S=INTIS):IFS)50D
RS(26THEN510
620 NS=OIl 5)
630 DIK S$INS,S)
640 DOS"OPEN 5 R EP"+HID$ISTR$IS).2,2)+".DAT"
6S0 FORI=ITONS:FORJ=IT07:LINEINPUT'5;S~II,J):NEXTJ:NEXTI:DOS"CLOSE 5"
660 FORI=ITONS:PRINT:FORJ=IT07:PRINTS$II,J);" ";:NEXTJ:NEXTI:PRINT
670 ES=0:FORK:2TONS:J=K

311

, . ,

-• • · '

680 IFS$IJ,2)<S$IJ-l,2)THEN690ElSE700
690 FORM=IT07:V$IH)=S$IJ-l,H):S$IJ-l,H)=S$IJ,M):S$IJ,M)=V$IM):NEXTH:J=
J-l:GOT0680
700 NEXTK
710 FORY.=2TONS:J=K
720 IFS$IJ,3)<S$IJ-l,3)ANDS$IJ,2)=S$IJ-l,2)THEN730ElSE740
730 FORH=IT07:V$IH)=S$IJ-l,H):S$IJ-l,H)=S$IJ.M):S$(J.H)=V$IM):NEXTM:J=
J-l:GOT0720 '
740 NEXTK
750 FORI=2TONS:IFS$II.2)=S$CI-l,2)THENES=EStl:S$II-l,2)=·'"+5$11-1,2):
NEXTIELSENEXTI
760 FORI=ITONS:H=O:FORJ=ITON:IFS$II,I)=R$IJ,I)THENH=Mtl
770 NEXTJ:IFH=OTHENS$II,l)="'"+S$(I,l):ES=ES+l:NEXTIELSENEXTI
780 PRINT
790 PRINT"EVENT CODE","EVENT NAHE",,"PLANT CODE","TYPE","L. LIMIT","L.

HYS."."U. LIHIT","U. HYS." -
800 FORI=ITONS
810 PRINT USING "E'*ftft":I.:PRINT·",S$II,2),:IFLENIS$(I,2»{14THENPRINT
"" ,
820 PRINTS$(I,I),:FORJ=3T07:PRINTS$(I,J),:NEXTJ:PRINT:NEXTI
830 PRINT:IFES=ITHENPRINT"**** 1 ERROR ***'·ELSEPRINT"*'*~ ";ES;" ER
RORS ••• 0"

840 PRINT
850 V$ll)=·ON":V$12)="OFF":V$13)="LO LO":V$(4)="LO":VS(S)="HI":V$16)="
HI HI":V$(7)="TREND"
860 FORI=ITOHS:H=0:FORJ=IT07:IFS$II.3)=VSIJ)THENSSII,3)=STR$IJ):J=7:H=
1
865 NEXTJ:IFM=OTHENEO=EO+l:PRINT"EP TYPE ERROR ";SSII,J):NEXTIELSENEX
TI
866 FORI=ITONS:FORJ=4T07:HIJ-4)=VALIS$II,J»:NEXTJ:H=0
867 IFHIO»HII)THENS6SELSEFORJ=OT02:IFHIJ+1»HIJ)THENNEXTJ:GOT0869ELSE
H=I:NEXTJ:GOT0869
868 FORJ=OT02:IFHIJ+l){HIJ)THENNEXTJELSEH=I:NEXTJ
869 IFH(>OTHENEO=EO+l:PRINT"lIHIT ERROR ";SSII,I):NEXTIELSENEXTI
870 '--PROCESS AL
880 'PRrNT:~=I:GOSUB90:X=0:PRINT:INPUT"AG FILE NO,";A:A=INTIA):IFA)750
RA{51THEN810
890 NA=DIIA)
900 DIM ASINA+l,7):TN=0:AN=0
910 DOS·OPEN 5 R AG"+HID$ISTRS(A),2,2)+".DAT"
920 FORI=ITONA:FORJ=IT05:LINEINPUTI5;A$(I,J):NEXTJ:NEXTI:DOS·CLOSE S"
930 FORI=ITONA:PRINT:FORJ=IT05:PRINTA$II,J);" ";:NEXTJ:NEXTI:PRINT
940 X=0:EA=0:FORK=2TONA:J=K
950 IFAS(J,I){ASIJ-I,I)THEN960ELSE970
960 FORH=ITOS:VSIH)=ASIJ-I,H):A$IJ-I,MI=A$IJ,H):A$(J,HI=V$IH):NEXTH:J=
J-l:GOTD950
970 NEXTK
980 FORI=ITONA:IFA$II,l)=AS(I-l,I)THENEA=EA+l:A$(I-l,I)="'"+A$II-I,I):
NEXTIELSENEXTI
990 '--BOOLEAN PROCESS
1000 Al$="NOT":A2$="OR":A3$="AND":A4S="XOR"

312

1010 FORI=ITOHA:PRIHT:PRINT"ALARH HAHE: ":A$(I,I);" (";A$(I.2);"l"
:FORL=3T04
1020 DIHAA$(50).B$(50)
1030 J=O:H=O:T$="":X$=·":FORK=ITOLEN(A$(I,Ll)+I:X$=MID$(A$(I,Ll.K,I'
1040 IFX$="("THEHH=H+l:B$(H)="(":GOTOI130
1050 IFXS'"'"THENIFT$<>""THENJ=J+I:AAS(J'=T$:T$="":GOSUBI510:GOTOI150E
LSE1150
1060 IFXS<>" "ANDX$<>·"THENTS=T$+X$:GOTOI130
1070 IFTS="NOT"THENH=H+l:BS(H'=A1S:TS=·u:GOTOI130
1080 IFTS="OR"THENH=H+l:BS(H'=A2S:TS=··:GOTOI130
1090 IFT$="AND·THENM=M+l:B$(H'=A3S:TS="·:GOTDI130
1100 IFT$="XOR·THENH=H+l:BS(H'=A4$:T$="·:GOTOI130
1110 IFXS=·"THENIFTS<>·"THENJ=J+I:AA$(J'=T$:GOSUBI510:GOTOIlBOELSE11BO
1120 IFXS=· "THENIFT$=""THENI140ELSEJ=J+l:AA$(J'=T$:T$="o:GOSUBI51O:GO
T01140
1130 NEXTK
1140 IFB$(H'=Al$THENJ=J+l:AA$(J)=Al$:H=H-l:GOTOI140ELSEI130
1150 IFB$(H'<>"("ANDB$(H'<>""THENJ=J+l:AAS(J'=B$(H':M=H-l:GOT01150
1160 IFB$(H'=·(·THENH=H-l:XS=" ·:GOTOI120
1170 IFB$=·uTHENX$=" ":GOTOI120
1180 IFH>OTHENJ=J+I:AA$(J'=B$(H':H=H-I:GOTOI180
1185 IFX=ITHENRETURN
1190 IFL=3THENPRINT"CONDITION ON: ";:ASII.b'=STR$(J'ELSEPRINT"CONDIT
ION OFF: ";:ASII,7'=STRS(J'
1200 TA=TA+J:FORK=ITOJ:IFAASIK'="("ORAA$IK'=·'"THENAASIK'="~u+AA$(K':E
A=EA+l
1205 PRINTAA$(K';·, ";:NEXTK:PRINT
1210 ERASE AAS.BS
1220 NEXTL:PRINT"PERSISTANCY: ":AS(I,5':NEXTI
1230 PRINT:IFEA=ITHENPRINT"**** 1 ERROR *~*."ELSEPRINT·~~.~ ";EA;" E
RRORS ****.
1240 PRINT
1250 '--ASSIGN AG AD OFFSET
1260 FORI=ITONA:A$II,I)=STRSIN+NS+I):NEXTI
1270 '--ASSIGN DA & EP AD OFFSET TO EP
12S0 FORI=ITONS:FORJ=ITON:IFS$(I,I)=R'IJ,I)THENS'II,I)=R$IJ,2):J=H
1290 NEXTJ:S$(I,S)=S$(I,2':S$II,2'=STR$(I-l):NEXTI
1295 TS=0:FORI=ITONS:VS=VALISS(I,3)':IFVS)IANDVS(STHENVS=7ELSEVS=3
1296 SSII,I)=STR$IVS):TS=VS+TS:NEXTI
1300 '--DATA BASE HEADER.
1310 DIHDB%(lll
1320 DB%(I)=TA+NA.4+TS+N.6+11:DB%(2)=N~6:DB%13)~RH(2):DB%14)=RH(3':DB%
IS'=RH(4)
1330 DB%(6)=RH(5':DB%(7'=11+N.6+1:DB%(Sl=11+H.6+TS+l:DB%19)=N:DB%ll0'=
NS:DB%(lll=HA
1340 '--COHP FAIL
1350 IFER+ES+EAtEO<>OTHENPRINT"'... COMPILATION FAILED *~*~":PRINT:P

RINT"***' TOTAL ERRORS =";ERtES+EAtEO;" ' •• '":GOTOI500
1355 PRINT·.... PASS 1 OK •••••
1360 '--DB BUILDER
1400 DOS·OPEN 5 U •• DOS·

313

, ,
, ,

--,

1410 FORI=ITO,,:PRINTW5:DBX(II:CHRS(131::NEXTI
1420 FORI=ITON:PRINTIS;RS(I,II;CHRS(IJI;:FORJ=JT06:PRINTI5;VAL(RS(I,JI
I;CHRS(IJI;:NEXTJ:PRINTIS;RS(I,91;CHRS(131;:NEXTI
1430 FORI=ITONS:VS=VAL(SS(I,III:PRINTI5;VAL(SS(I.lll:CHR'(1JI;:PRINT~5
;VAL(SS(I,VS+lll+l;CHRS(131;:FORJ=3TOVS:PRINTW5;VAL(SS(I,JII;CHRS(IJI;
: NEXT J: NEXlI
1440 Al$="-I":A2S="-2":A3S="-J":A4S="-4"
1450 X'I:FORI=ITONA:PRINTM5:VAL(AS(I,211;CHRS(IJI:VAL(A$(I,SII;CHR'(IJ
I ;
1460 FORL·3T04:GOSUB1020:IFL·JTHENPRINTMS:VAL(AS(I.611:CHRS(IJI:ELSEPR
INTft5:VAL(AS(I,711;CHRS(131;
1470 FORK=ITOJ:FORM=ITONS:IFAAS(KI'SS(M,BITHENAA$(KI=S$(M,2I:M=NS
1480 NEXTM:PRINTI5;VAL(AA$(KII;CHR$(131;:NEXTK:ERASEAAS,B$:NEXTL:NEXTI
:x=o
1490 DOS"CLOSE 5 ADB"+MID$(STR$(DBI.2,311".DAT"
1495 DI(DBI=DB%(II:DOS"ARYSAVE DI,DI":DOS"COMPRESS·
1496 PRINT"**** COMPILATION OK ****"
1500 PRINTCHRS(271;"OaF";CHRS(271;"OAF":DOS"SUPNIT LOADOFLAD":END
1510 '--EVENT C/K SUB
1530 F=O:BBS·"":FORG=ITOLEN(AAS(JII:IFKID$(AA'(JI,G.ll="""THENBB$=BBf+
" "ELSEBB$=BBS+MIDS(AAS(JI.G.l1
1540 NEXTG:AAS(JI=BBS:IFX=ITHENRETURN
1545 FORH=OTONS:IFBBS'SS(H,2ITHENF=F+l:H'NS
1550 NEXTH:IFFC1THENAAS(JI="*"+AA$(J):EA=EAll:F=0
1560 RETURN
'C2ROk

314

10 ,---- TRANSFER LINK TO 11/03 -------
20 ,---- VER 1.0
30 ,---- G. HOENIG, LUT FED 1982
40 '
50 PRINTCHR$(271;"ROC" '--SET PORT BAUD 300
60 CLEAR2000:PRINTCHR$(271;"OAO";CHR$(121
70 DI" DI(1001,V$181
80 DOS"ARYLOAD DI,DI"
85 PRINT"ALARM DATA BASE TRANSFER ROUTINE":PRINT:PRINT:PRINT"THE CHROM
ATICS MUST BE CONNECTED TO THE PDP 11/03."
86 PRINT:PRINT"THE ALARM HANDLING SYSTEM MUST BE INSTALLED AND RUNNING

BEFORE PROCEEDING."
a7 PRINT:PRINT"A LINK ERROR UILL OCCUR IF THE SET UP IS NOT CORRECT, T
HUS ABORTING THE TRANSFER."
90 PRINT:PRINT:PRINT"---- AVAILABLE ALARM DATA BASES ---"
100 PRINT:PRINT"ADB":FORI=76T0100:GOSUBI40:NEXTI:PRINT:GOT0150
140 IFDIIII{>OTHENPRINTI;"-n:DIIII,:RETURNELSERETURN
150 DB=O:PRINT:INPUT"ADB NO.";DB:DB=lNT(DBI:IFDB=OTHEN465ELSEIFDB)1000
RDB<76THEN150
155 IFDIIDBI=OTHENPRINT"ADB DOES NOT EXISTI":PRINT"ENTER 0 TO EXIT":GO
10150
160 PRINT:LINEINPUT"ARE YOU SURE' ";O$:IFLEFT$(OS,11{>"Y"THEN465
165 DOS·OPEN 5 R ADB"+KID$(STR$(DBI,2,21+".DAT"
200 • -- ASK FOR OVERLAY
210 DNERRORGOT01000
220 TIMEOUT375:T=0
230 PRINTftl
240 PRINTN1;"L"
250 GDSUB500:IFH$=""THENPRINTll;"L":GOT0250
300 ' -- START XFER
310 ONERRORGOT02000
320 TIMEOUT200
330 IFN$<>"*"THENPRINTM1;"L":GOSUB500:GOT0330
340 PRINTftl;"READY"
350 GOSUB500
360 IFN$<>"0"THENFORI=IT03:GOSUB500:NEXTI:GOT0330
365_INPUTI5;S:S$=STR$(SI:GOSUB600
370 FORI=1TOS
380 GOSUB600:PRINTll;SS
390 GDSUB500
400 IFN$<>"O"THENPRINT"XFER ERROR":GOT0450
405 LINEINPUTft5;SS
410 NEXTI
450 • -- CLOSE nOUN

315

455 FORI=ITOIO:PRINTnl:NEXTI
460 DOS"CLOSE 5·
465 ONERRORGOTOO
470 PRINTCHRS(27);"OAF":DOS·SUDNIT LOADOFLA":END
500 ' -- PROD
510 PRINTCHRS(27);"ODF"
520 T1=G:NS="·
530 LINEINPUTnl;NS
540 PRINTCHRS(27):"OF4"
550 RETURN
600 REH"CK FLOAT"
605 GOSUB700
610 L=LEN(SS)-l
620 P=INSTR(SS,"."):Pl=INSTR(SS,"E"1
630 GOSUF650:GOSUF700:GOSUF730:RETURN
650 IFP=OANDP1=OTHENSS=SS+".0":RETURN
660 IFP=OTHENS$=LEFT$(SS,Pl-II+".OE"+RIGHTS(SS,L-PII:RETURN
670 IFP=ITHENSS="O"+SS:RETURN
6BO IFP=2THENS$="-0"+LEFTS(SS.LI
690 RETURN
700 REM"CLR SPC·
70S L=LEN(SSI
710 P=INSTR(SS," "I
720 IFP>OTHENS$=LEFT$(St,P-ll+RIGHTt(SS,L-P):GOT070S
725 RETURN
730 X=ASC(S$I
740 IFX<4BORX>S7THENIFX<>45THENPRINT"TYPE ERROR IN ELENENT";I:S$="?9?9
.9999"
750 RETURN
1000 ' -- ERR LINK
1010 IFERR=25THENT=T+I:IFT)5THENPRINT"LINK ERROR - ABORT";CHR$(71:RESU
NE450
1020 IFERR=25THENRESUHE540ELSEONERRORGOTOO
2000 ' -- ERR COMK
2010 IFERR=25THENT1=TI+!:IFTI>5THENPRINT"XFER ERROR - ABORT";CHRS(7':R
ESUME450
2020 IFERR=25THENRESUME530ELSEONERRORGOTOO
=C2ROk

316

10 ,----- INITIALIZE A DIRECTORY ARRAY -------
20 '
30 ,----- ENTER A ·0· UHEN FINISHED ----------
40 '
50 DIH D1(100)
60 FORI=lT0100:DIII)=O:NEXT
70 INPUT"FILE NO.";F:IFF=OTHEN100
80 INPUT"NUHBER OF ELEHENTS";N
90 DIIF)=N:GOT070
100 DOS"ARYSAVE DI,DI"
110 DOS"COHPRESS"
120 END
~C2ROk

317

LOADXFER.SRC FILE LISTING
VER 1.0
G. HOENIG, FEB. 1982. LUT

NEU
DOS"LOAD XFEP"
RUN

LOAIIOFLA.SRC FILE LISTING
VER 1.0
G. HOENIG, FEB. 1982, LUT

NEU
DOS"LOAD OFLAD"
RUN

318

LOADCONP.SRC FILE LISTING
VER 1.0
G. HOENIG, FEB. 1982. LUT

NEU
DOS"LOAD COMP"
RUN

319

APPENDIX E

SOFTWARE DESCRIPTION FOR

THE ON-LINE COMPONENT OF

THE ALARM HANDLING SYSTEM

320

APPENDIX E

TABLE OF CONTENTS

section

E.l.O Alarm Handling System Overview 328

E.l.l Introduction 328 ,
E.l.2 The On-Line System 328

, ,
E.l.3 The Date Base 336

E.l.4 The Software Languages 337

E.l.5 Program Task Software Organisation 338

E.2.0 The Queue Manager 342

E.2.l Introduction 342

E.2.2 Operation Summary 344

E.2.3 Communication Structure and Protocol 345

E.2.4 Job Priority 346

,. , E.2.5 Errors 346

E.2.6 Software Functional Description 347
E.2.6.l The Queue 351

E.2.6.2 QMAN 353
E.2.6.3 INQ 354

E.2.6.4 OUTQ 354

E.3.0 Powerup Task 356

E.3.l Introduction 356
-

E.3.2 Operation Summary 356
E.3.3 Software Description 357

321

E.4.0 Setup Task

E.4.1 Introduction
E.4.2 Software Description

E.5.0 Command Task COMAS

E.5.1 Introduction
E.5.2 Operation Summary
E.5.3 Software Description _

E.6.0 Watchdog

E.6.1 Introduction
E.6.2 Operation Summary
E.6.3 Software Description

E.7.0 The Communication Link Tasks

E.7.1 Introduction
E.7.2.0 TALK

E.7.2.1 Operation Summary
E.7.2.2 Software Description

E.7.3.0 LISN
-

E.7.3.1 Operation Summary
E.7.3.2 Software Description

E.7.4.0 CHROM
E.7.4.1 Operation Summary
E.7.4.2 Software Description

E.8.0 Keyboard Driver

E.8.l
E.8.2
E.8.3
E.8.4

Introduction
Operation Summary

Communication Structure and Protocol
Support Task Priority Assignments

322

358

358
358

361

361
-

361

362

363

363
363
363

365

365
365
366
366
366
367
367
367
368
369

370

370
370
371

372

E.B.5 Errors 372

E.B.6 Software Functional Description 373

E.B.7 Detailed Software Description 374

E.B.7.l Setup 374

E.B.7.2

E.8.7.3

E.B.7.4

E.B.7.S

E.B.7.6

E.B.7.7

E.B.7.B

Scan Keys

Check In Q
Poll Lapse

Which Key

Key Control
Check Mask

Functions

375

376

377

377

377

37B

37B

E.B.7.9 Queues 383

E.B.B Special Operator Keyboard Assignments 384

E.9.0 Media Driver Module 386

E.9.l Introduction 386

E.9.2 Operation Summary 386

E.9.3 Communication Structure and Protocol 38B

E.9.4 Job Priority 390

E.9.5 Driver-Job Handshaking 390
-

E.9.6 Communication Link Priority 390

E.9.7 Errors 391

E.9.B.0 Media I/O Device Data 391

E.9.B.l AOV & AOI
-

E.9.8.2 AI

E.9.B.3 DO

E.9.8.4 DIM
-E.9.8.S DIF

-
E.9.B.6 WO

E.9.9.0 Sample Programs

E.9.9.1 Analogue Output

E.9.9.2 Digital Output

E.9.9.3 Analogue Input
E.9.9.4 Digital Input

E.9.l0.0 Software Description

323

391

392
392

392

393
393

394

394

394

394
395

396

E.9.l0.l Setup 396
. .

E.9.l0.2 Communications 396

E.9.l0.3 Channel Selection 397

E.9.l0.4.0 Service Routines 398

E.9.l0.4.l AI Routine 398

E.9.l0.4.2 AOV & AOI Routines 399

E.9.l0.4.3 DIF Routine .
E.9.l0.4.4 DIM Routine

E.9.l0.4.5 DO Routine

E.9.l0.4.6 WO Routine

400

400

401
401

TABLE E.9-l Media I/O Device Nomenclature 402

TABLE E.9-2 I/O Device Channel Allocations 403

TABLE E.9-3 Media Technical Information 408

E.lO.O Data Acquisition

E.lO.l Introduction

E.lO.2 Operation Summary

E.lO.3 Software Description

E.lO.3.l Setup
E.lO.3.2 Run

E.ll.O Data Acquisition Controller

E.ll.l Introduction
E.ll.2 Software Description

E.11.2.l Setup

E.11.2.2 Run

E.12.0 Event Processor

E.12.l Introduction

E.12.2 Operation Summary

324

410

410

410

410

410

411

412

412

413

413

413

414

414

414

E.12.3 Software Description

E.12.3.1 Setup

E.12.3.2 Find Change

E.12.3.3 Change

E.12.3.4 Hysteresis

E.13.0 Alarm Generator

E.13.1 Introduction

E.13.2 Operation Summary
-

E.13.3 Software Description

E.13.3.1 Setup

E.13.3.2 Run

E.13.3.3 Check for ON or OFF

E.13.3.4 Check Result

E.14.0 Display Task

E.14.1 Introduction

E.14.2 Operation Summary

41S

41S

41S

41S

416

419

419

419

419

420

420

420

421

422

422

422
E.14.3 Communication Structure and Protocol 422

E.14.4 Support Task Priority"Assignments 423

E.14.S Errors 42S

E.14.6 Software Description 42S

E.14.6.1 Private Software Links 42S
E.14.6.2 Setup 426

E.14.6.3 Run

E.14.6.4 Function Select

E.lS.O Overlay Tasks

E.lS.l Introduction

E.lS.2.0 EDIT
- -

E.lS.2.1 Operation Summary

E.lS.2.2 Software Description
E.lS.3.0 LOAD

32S

426

427

428

428

428

429

430

430

E.15.3.1 Operation Summary

E.15.3.2 Software Description

E.16.0 Alarm Display Package

E.16.1 Introduction

E.16.2 Hardware

Operation Summary

431

431

433

433

433
-

434 E.16.3

E.16.4

E.16.5

E.16.6

E.16.7

Communication Structure and Protocol 435

Data Packet Structur~

Function Codes

Errors

436

437
-

437

E.16.8 Software Functional Description 438

E.16.9 Software Detailed Description 439

E.16.9.1 Setup 440
- -

E.16.9.2 Alarm List Initialisation 441

E.16.9.3 Alarm List Status 441

E.16.9.4 Run Control 442

E.16.9.5 I/O Routines 443

E.16.9.6 Decode 444

E.16.9.7 Alarm List Processing Funct. 445

E.16.10 Display Personality Modules 446

E.16.10.1 Alarm Paging Display 447

E.16.10.1.1 Screen Init~a1isation 448

E.16.10.1.2 Screen Up and Down 448

E.16.10.1.3 Print/Add and Remove 448

E.16.10.1.4 Update

E.17.0 The Alarm Data Base

E.17.1 Introduction

E.17.2 Data Base Header

E.17.3 Data Acquistion

E.17.4 Event Definition

E.17.5 Alarm Definition

326

449

450

450

451

452

453

455

E.lS.O An Introduction to SWEPSPEED 11

E.lS.l Introduction
E.1S.2 Conventions
E.lS.3 Log In and Log Out

457

457
457
457

E:lS.4 Overview of Program Development 45S
E.lS.4.1 Preparation of Job Source 459
E.lS.4.2 Compilation of Job 459
E.lS.4.3 Activation of Job 460

E.lS.5
E.lS.6
E.lS.7
E.lS.S
E.lS.10

File Storage and Lis~ing 460
Job Monitoring 461

Global Variables and Real-Time Oper. 461
Hardware Configuration

SWEPSPEED SYSGEN Configuration

E.19.0 Hardware Configuration

E.19.l PDP 11/03 Parts

E.19.2 LSI Periperal Configurations
E.19.3 Highland Ann. Media Ch. No.

E.20. Listings and Important Flowcharts

327

463

465

469

469
470
471

472

E.l.O ALARM HANDLING SYSTEM OVERVIEW

E.l.l INTRODUCTION

The purpose of this section is to give an overview of
the alarm handling system operator, documentation, software
and hardware. The alarm handling system is a stand-alone
device intended for process plant applications where there
may be a need to improve process alarm data generation and
presentation. The device is passive in nature, that is, the
system collects and processes plant data, manipulating the
data, generating alarm information, and finally displaying
the information without performing process control
functions. The system acquired process data, manipulates
the data, generates alarm and other status information and
displays this information to the plant operator.

A combination of microprocessor based equipment is
implemented in the alarm handling system. A PDP 11/03
computer forms the basis of the system. The accompanying
display package runs on a Chromatics CG-1999 intelligent
colour graphics terminal.

E.l.2 THE ON-LINE SYSTEM

Software for the alarm system is comprised of two major
sections; 1.) the alarm handling software and 2.) the alarm
display software. The alarm handling software written
entirely in SWEPSPEED 11 runs in the PDP 11/03 computer.
Alarm dJ.spJ.ay sottware wrJ.tten prJ.ncJ.pc111y J.1I i-lJ.cr""oft
BASIC runs in the Chromatics graphics computer. An
additional software section will be resident in the host
computer if present. Described here is a summary of the
software organisation of the alarm handling system. The
primary intention is to give an overview of the alarm
handling'systems functional structure and task inter-

328

relationships. Details of the individual program tasks are

described in subsequent sections. The reader should be
familiar wth SWEPSPEED II and Microsoft BASIC before

proceeding. An introducton to SWEPSPEED II can be found

elsewhere in the documentation.

Since the alarm handling system software is comprised

of many tasks running independently in a real-time
environment, coordination of tasks requires an overall or

global program structure capable of performing housekeeping

functions such as inter-task communication, system start ups

and other program task supervisions. The software

communication structure for the entire on-line alarm

handling system (ASS) is shown in Fig E.l.l. The alarm

system is comprised of 20 SWEPSPEED program tasks resident

in the PDPll/03. or Microsoft BASIC display task in the

Chromatics and interface tasks in the host computer if

present. All program sections must be installed and running

for the alarm handling system to function correctly.

Communication,tasks between the computers are driven by

software drivers which detect the absence of a link line.

Software resident in the PDPll/03 computer constitutes the

core of the alarm handling system. Program tasks coordinate

all the functions of the system. The SWEPSPEED tasks can be

classified according to their functions as follows:

1. Supervision tasks

2. Link drivers
3. Device drivers

4. Alarm handling tasks
5. Aux~llary tasks

BASIC programs located in the Chromatics are used to

implement a variety of colour VDU based alrm d~splays. Note

329

w
w
o

11:9 STORE

$'·0 • 20

5T-<)'20

ALARM

DISPLAY

112

' TTI
TTo

-- --.
CHROM

H~·iN~

~I
•

· ·

6
a

'T3'

KBDRIV

(V ~

MEDIA ~

I t
DISP H!ill

I'
~-

I
I

OVERLAY .

EDIT

LOAD

HOST LINK

TALK

11

LISN I~m
. ,

f O~ , , , , , . I ,
~ . , '

I j' '-.' .
1.11 I QMAN ••• .. - DA

~
~ : f!

\
f;1 J ~

\

't : \

t"J \
\

OACON \\~
ALARM \. ,
DATA I ,

... ~ BASE
I

%AII\') @~

~ 1t'2~ 1 ,

I [F_3~ T , , ,
~I ,L .' I - - - -- - - - - - - - -- - - - . AG

~ [:] + , %E
~ ALARM

Got)

Figure E.!.I. Alarm Handling System

~A~.

OJ.DlCI Naln

%o.-U "'llorlca •

""D2ot) 11,..,

0..(, Chan,'

01

EP

[VENT '!Q!!t.

EI1I0 ""I.rnl,

"a EM() TI",.

£11(' Er.nl Slot",
'ASK

STORE

QUEUE

PRlyATE LUt K

MEOIA UHk

FLAG

D
D

" , , . ,
~,

c=J
o
o

DATA FLOyr ~~-__

0101 START 4- __ _

that this document refers to the on-line duties of the

Chromatics. Off-line alarm data base building and transfer
routines are executed only when the Chromatics is in the
off-line mode. These off-line programs are discussed
elsewhere.

When the alarm handling system is used with a host
computer, program tasks resident in the host are used for:

1. Link with alarm handling computer.

2. Data acquisition routines for returning process
data from the host data base.

3. Other application specific functions.

The language used for the host task is dependent on the
application.

The system overhead tasks in the alarm handling
computer are as follows:

Task Name Section

Q-MAN E.2.0

POW E.3.0

SETUP E.4.0

331

Function

Supervise queue

cou,munication system.

Coordinate alarm system
startups.

Contains alarm handling
system array dimensions.

Must be adjusted to meet
specifications of alarm
data base.

COMAH E.5.0

WD E.6.0

Engineering command task,
allows system manager to
evoke data base editor,
restart or stop the
system, etc.

Controls the system
hardware monitor watchdog
and other time related
overhead functions.

The inter-computer link drivers are as follow:

Task Name Section

LISTEN E.7.2

TALK E.7.3

CHROM E.7.4 •

Function

Retrieve data packets
from the host computer
link and place them in
the system queue.

Send data packets as
obtained from the system
queue down the host
computer link.

Manager data packet swap
routine with the
Chromatics computer.
Used as a interface
between the alarm
handling DISPLAY tasks
and the Chromat1cs

display package.

The Device Driver tasks in the alarm handling computer
are as follows:

332

Task Name Section

KBDRIV E.8.0

MEDIA E.9.0

DISPLAY E.14.0

Function

Software task which
supervises all special

operator keyboard
functions.

Normalises and supervises
all I/O through the Media
Plant Interface hardware.

Although not specifically

a device driver this task

coordinates data flow out
to peripheral display

devices.

The software tasks which perform the alarm handling
functions are as follows: These tasks all use the alarm

data base %A# () as reference.

Task Name Section

DA E.lO.O

DACON E.11.0

EP E.12.0

333

Function

Data Acquisition
supervision. Initiates
data acquisition,
converts process data
into engineering values.

Controls the data

acqulsltlon sampilng

rates.

Event Processor.

Examines the data

AG E.13.0

DISPLAY E.l4.0

retrieved and processed

by the DA tasks,
generating a binary event
status image based upon

event definitions in the

alarm data base.

Alarm Generator.
Examines the event status
image and based upon
Boolean expressions coded
in the alarm data base,
generate alarm output

codes.

Alarm output codes are

received from the AG task

and passed on to the
appropriate display
output device. This task
also has access to the

system queue.

Due to memory space restrictions several program tasks
are overlayed into job slot 2 where the DISPLAY tasks
normally resides. These tasks are service routines required
for on-line data base editing and loading. Alarm handling
system is automatically stopped whenever tasks are overlayed
over the DISPLAY tasks. Overlayed tasks are stored on the
magnetic tape cassette which should be located in drive

DDO:. ,Any time an overlay task is executed the system

message must restart the system. The overlay tasks are as

follows:

334

Task Name Section

EDIT E.15.2

LOAD E.15.3

DISPLAY E.14.0

Function

Evoked through COMAH.
Allows the system manager
to make simple changes to
the alarm data base
currently residing in the
alarm handling system.

Evoked by the off-line
Chromatics program XFER
via the SWEPSPEED task
DISPLAY. This task
supervises the transfer
of an alarm data base
from the Chromatics
computer when in the off
line mode.

See previous description.
This task is also an
overlay since both of the
above tasks overlay into
the DISPLAY task job
slot. When the abov'e
overlays are complete,
the DISPLAY task overlays
back into its original
job slot.

Alarm hand11ng computer resident tasks are described in
brief here in order to give the reader an idea of the
organization of the sysem and the inter-relationship between
program tasks.

335

E.l.3 THE DATA BASE

The alarm handling system is a generalised device. The
basic alarm system is not capable of performing any
functions without first being programmed. The alarm
handling system may be thought of as an operating system
ready to be programmed for a specific user application. The
alarm data base is the 'program' which defines how and what
duties, the alarm system will per.!=orm. In the case of the
prototype system. this data base is constructed by the user
in an off-line development computer. Application specific
information concerning data acquisition alarm generation and
display is condensed by the off-line computer into a compact
coding. Compression of the application data into this data
base minimizes the amount of memory space required by the
on-line computer to store the alarm system definition.
Additionally, the data base is organised in such a manner as
to maximize the speed of execution of the data base program.

When the on-line alarm handling system is running, the
data base is constantly referenced by the tasks that
comprise the system. The data base remains unchanged by the
on-line system since any modifications the data base would
result in an alteration of the alarm system operator.

Following is a brief summary of the system definitions
coded in the alarm data base:

Overhead Information: Sizes required for data base,
arrays, lists, etc.

Data Acquisition: Plant addresses, range, conversion,
data type and scan rates.

Event Definitions: Type of event and parameters.

336

Alarm Definitions: Coded expressions describing
combinations of events required for an alarm.

Display Data: Alarm output codes, etc.

More details of the data base structure are described in
Section E.17.0. The off-line documentation gives a detailed
description of the information stored in the alarm data base
and how the data base is built.

E.I.4 THE SOFTWARE LANGUAGE

SWEPSPEED II was found to be a convenient language for
the Alarm Handling software. The real-time multi-tasking
capablities of SWEPSPEED are suitable to build the system
from a collection of well defined and structured program
tasks. Although SWEPSPEED itself is not particularly a
structured language, care has been taken to insure that all
program tasks are uniformally organized and formatted. This

, approach for example results in consistent allocations of
program line numbers. For example, all program tasks
contains a 'Setup' module located at line 20, program queue
communications are at lines 900 and 950, and so forth. The
user will find that a clear understanding of the program
organization of anyone task is directly applicable to any
other program task. Details of program organization
convention are shown in Section E.I.5. In addition care has
been taken to ensure that in general variables in one task
will have the same or similar function in other tasks.

337

E.l.S PROGRAM TASK SOFTWARE ORGANISATION

Program Line Number Typical Function

10 Task title with version number.

20 Setup - Variables assigned here are
dependent upon the location of
supporting tasks and upon the location
of the task within the system's
communicaton structure. Busy flags and
other housekeeping duties relating to
globally interacting software functions
are also found in this section.

100

200

300+

Run - This represents the starting point
of the main body of the program.
Generally, this section is used as a
program control module which supervises
function within the task via GOSUB
commands. Branching to subroutines adds
structure to the program making it
easier to follow and fault find a
program. The Run section also includes
all the task shutdown housekeeping
functions.

Function Selection - This section
generally is used for decoding task
input commands and selects program
routines as dictated by the task command
messages.

Flexible and dependent on task.

338

800

900

950

Errors - This program line is always
reserved for error trapping routines.
Initial error vectoring is performed in
the Setup section.

INQ - The INQ subroutines are
exclusively assigned to lines 900-950.
Queue assignments are made in the Setup
section.

OUTQ - The OUTQ subroutines are
exclusively assigned to lines 950-970.
Any program task requiring access to the
alarm handling queue communication
system must have either or both the INQ
and OUTQ routines. These routines are
identical in all tasks.

339

Local variable assignments are usually consistent as
illustrated by the first example for inter-task
communication shown in Figure E.l.2a. In the case of the
inter-task queue structure all tasks requiring access to the
queue use identical service subroutine software. Other
variables which do not have such globally related functions
also follow a similar convention. For example, the list of
variables shown in Figure E.l.2b generally perform the same
functions throughout the alarm system. Global variable
assignments are dependent upon the task to which they
pertain. Figure E.l.2c illustrates some of these
assignments.

340

Figure E.l.2a

$N = Incoming data packets.
$M = Outgoing data packets.
01 = In queue number.
02 = Out queue number.

o = Oueue Manager job slot location.

Figure E.l.2b

I = Index or array pointer.
0, 01, D2, etc. = Alarm data base pointers.
F = Function number.
V = Measured process variable value.
L = List location or pointer.

Figure E.l.2c

%A#() = Alarm data base.

?Flt, ?F2i, etc. = Busy flag for an individual
task.

%D#(), Di(), etc. = Data acquisition data store.
%Et(), Ei(), etc. = Event processor data store.
Gi() = Alarm generation data store.

Examples of a typical variable assignment conventions.

Figure E.l.2

341

E.2.0 THE QUEUE MANAGER

E.2.1 INTRODUCTION

Real time multi-tasking software systems have an inherent
difficulty with inter task communication. Since tasks are being
executed at differing priority levels and require varing
execution times, synchronous communication between tasks can
significantly decrease the response time of the entire
software system. When a task requires inter task
communication, both tasks must wait for each other to
complete the necessary handshaking protocol. The 'waiting'
process can consume large amounts of processor time and hold
up the execution of other tasks. Ideally tasks in a
multitasking environment should be able to communicate with
other tasks at any time as required.

A common method for implementing such a communication
structure is a system queue. As tasks require inter task
communication, output messages from tasks are stored up in a
queue or stack until the receiving task has time to deal
with the incoming message. The sending task is not held up
waiting for the receiving task ~o accept the message. The
receiving task can retrieve the message packet at a
convenient time. With all tasks communicating via a queue
structure the system is not held up by inter task
communication.

Each task requiring communication will have an output
queue and an input queue. Messages are transferred from
output queues to input queues. The queue system is
supervised by a task called the Queue Manager. This task
examines all queues which contain output messages. If
any messages are in the output queues of any task. the Q
Manager examines a data header contained within the message
to determine the destination queue and makes the transfer.

342

The header is str ipped off and the message is placed in the
appropriate input queue corresponding to the receiving task.

An added feature of this system is that any task has
access to any other task which contains input/output (I/O)
queues. By placing the appropriate header code on the
message. a message can be transferred by the 0 Manager to
any task with queueing facilities.

A queue (0) is simply a means' of emulating a cyclic
file which allows data packets to be entered in sequential
order and removed in a first in. first out (FIFO) order. An

input pointer I' is used to indicate the next available
location in the O. Similarily an output pointer o. is used
to indicate the last message location in the Q. The 0 is
empty when O. and I' are equal. An array is used for the O.
The pointers are incremented to the maximum number of
available array elements and then reset to the beginning of
the array to start over again, i.e. a cyclic file. As
messages are entered into the 0 the I' pointer is
incremented accordingly. If the next available element
(1'+1) is full. that is the O. pOinter is pointing to the
same location, the 0 is full. No further entries may be
made until the 0 is serviced by the 0 Manager.

The Q Manager removes messages {rom the Q by
incrementing the output pointer O. and removing
packet, until the pointers O. and I' are equal.
now full.

the message
The Q is

The pointers are 'rotated' around the Q as shown in
Fig. E.2.l making the Q appear continuous. The size of the
Q or rather array defines how many message packets can be
back logged before the Q is full. Tasks which intermittently
produce large amounts of data for slower tasks are ideal
candidates for such a communication structure.

343

'"" r
(0)
(I) 0 ..

(2)

(3)

(4)

(5)

(6)

(7)

,

Figure E.2.l Queue array structure and pointers

E.2.2 OPERATION SUMMARY

This section describes in brief the operation of the
Queue Manager. More deatils are given in the subsequent
sections. The Queue Manager is always accessed via other
tasks in the system so its operation is transparent to the
operation of the alarm handling system and the operator.

1) The Q Manager software must be loaded into a
SWEPSPEED job slot. This job slot must be assigned a higher
priority than any job requiring queue servicing.

2) There are 10 queues available, 5 input types and 5 .
output types, comprised of reserved global array variables
Sll, II(lO), 01(10), and $QI(70)=20.

3) Each job requiring queue servicing must contain the
appropriate IN queue and/or OUT queue software routines.

4) Message packets which are to be sent by a task to
another task must contain a data header containing the code

344

of the destination queue. (Refer to SectionED.O).

5) The calling job places its outgoing message packets
in its OUT Q.

6) The calling job must start the queue manager using
interactive statements (included in Q software routines).

7) The receiving Job is started by the Q Manager if
necessary. The receiving job then removes the data packet
which has been stripped of the header from its IN Q.

8) The reserved global variables Ii() and Oi() should
be cleared at system startup. The queue manager task should
also be the first job started at power up.

E.2.3 COMMUNICATION STRUCTURE AND PROTOCOL

Generally the operation of the Q Manager is transparent
to the operation of the system. thus the importance of
understanding the Q Manager's operation is non-essential.

,However, when the user wishes to add or modify jobs which
require inter task communication, ,the system designer should
be aware of the functions and operation of the Q Manager.
This is necessary to avoid possible conflict with other jobs
using the Q system.

The Q Manager transfers message packets from one job's
OUT Q to another job's IN Q.

345

JOB A
OUTQ

--
I"(N) --• --

--
--
--

-

IU(M) •
OMAN

()M(N).

JOB B
INQ

--
--
--
-- Oo(M)

•

-~-- ------ ---- ---

Figure E.2.2 Q Manager Transfer Task

The above figure illustrates the typical information flow
through the queue system. Job A is sending message packets
to job B via job A's OUT Q through the Q Manager and on to
job B's IN Q. The header placed on the message packet by
job A indentifies the destination Q in which the message is
to be inserted.

E.2.4 JOB PRIORITY

The only restriction on job priority assignment made to
the Q Manager is that any task requiring queue servicing
must have a job priority assignment lower than that of the Q

Manager. If a calling job has a higher priority than the Q

Manager, it may be possible that Q pointers are corrupted or
confused.

E.2.S ERRORS

Error messages are generated when any sub-queue within

346

the system becomes full. The error message

O-n WAITING n= 0 number

is generated by the 0 Manager whenever the 0 Manager is
waiting for space in a task IN O. In other words queue n is
full.

OUT 0 routines located in the sending tasks can
generate a similar error message.- For example;

KB 0 WAITING

DISP 0 WAITING

These mesa ages are generated whenever the corresponding OUT
o is full and wai ting service from the 0 Manager.

IN 0 routines do not generate error messages. If
WAITING error messages are persistent, the system manager
should consider reassignment of job slot priorities and/or

,increase the sub-queue size (Sll).

In the event that the 0 Manager detects an invalid
header in a message packet, the message packet is dumped and
no further action is taken on the packet. No error message
is generated.

E.2.6 SOFTWARE FUNCTIONAL DESCRIPTION

As previously described the 0 Manager transfers message
packets for OUT O's to IN O'S to and from various tasks. In
order to accomplish this function without intertask
conflict, the tasks subscribing to the Q system also must
contain certain
individual Q's.

software routines to service their
A functional sketch of the system is

347

illustrated in Figure E.2.3.

OUT 0 /
ROUTI.~N ... E_-.J

OMAN
OTHER Q',

....

.IN ~/ IN 0
ROUTI'lI'-_~

Icmo

Figure E.2.3 0 Service Routine Information Flow

The OUT 0 and IN 0 routines are the same for each
.

individual task and are described in the next section.
Variables which identify 0 numbers assigned to the task are
specified in the 'Setup' section at the beginning of the
task requiring queue services. These variables are used by
the OUT 0 and IN 0 routines.

01 = output 0 number [5-9]
02 = input 0 number [0-4]

o = 0 Manager job slot [7]

The 0 is comprised of a string array so therefore all
message contents must be in string form not exceeding 20
characters. By convention

$N = Input data
$M = Output data

When outputing a message to another task in the 0
system, the message text must contain a 'header' to identify
the IN 0 to which the message packet is directed. The
header by convention consists of the first two characters of
the message text. The characters are the string

348

representation of the IN Q number to which the message Is
directed. Queue number assignments are preselected in the Q
Manager software and are summarized below:

Q Number Q Type Task Job Slot

00 OUT Q LISN 12

01 OUT Q KBDRIV 4
02 OUT Q DISP 2
03 OUT Q DA 8 ,

.
04 OUT Q PCPDAT 17
05 IN Q TALK 3
.
06 IN Q KBDRIV 4
07 IN Q DISP 2
08 IN Q DA 8
09 IN Q PCPDAT 17

By example, if the Keyboard Driver KBDRIV is required
to send a message to the DISPlay task, the message outputed
through OUT Q 01 would read:

$M '" 07MESSAGE

Once the keyboard driver has defined $M as above, the OUT Q
routine within the keyboard driver is called. The routine
places the message in the next available queue location and
requests the Q Manager to start.

The Q Manager detects the presence of a message in the
OUT Q 01 by checking the It(l) and 0'(1) queue pointers.
The message is removed form the queue. The Q Manager
examines the first two characters of the string and decodes
which IN Q the message, stripped of the header, should be
placed. The Q Manager having sent the message to IN Q 07,
starts the task, if necessary, which contains the specified
IN Q. In this case job 4 is started.

349

Finally, the receiving task must check its own IN Q

occasionally to see if there are any entries. This is
accomplished by calling the standard IN Q routine which is
the same for all jobs nevertheless unique due to the Setup
variables. The message text is returned to the job through
the variable $N which should now read

$N = MESSAGE

Summarizing, the sending job places outgoing messages
in $M with a header identifying the destination Q number.
The OUT Q routine is called. The message is placed in the
job's OUT Q. The Q Manager transfers the message to the
correct IN Q by examining and stripping off the header.
Finally, the receiving task. after checking its IN Q by
calling the standard IN Q routine removes messages from the
Q and are available in the local variable $N.

In the prototype alarm handling system, the IN Q

assignment numbers contained in the message packet header is
complicated by the fact that the alarm handling system is
linked to the PDP 11/34 host computer. As described
~lsewhere, the PDP 11/34 contains the PCP software package
which is also comprised of a large number of separate tasks
in the same manner as the alarm handling system.
Figuratively. these tasks also contain IN and OUT O's. The
structure and operation of this system is described
elsewhere in the PDP 11/34 Link documentation.
Nevertheless, IN 0 number assignments in the PDP 11/34 start
at 10 as follows:

Q Number
10
-
11

12

Q Type
IN Q

IN Q

IN Q

Task
GETDAT
OCP
PCPMC

350

When the Q Manager encounters any of the above headers, the
header is not stripped off. The entire message packet is
placed in the Link task TALK's IN Q. The TALK task send the
complete message packet to the 11/34 for further processing.
Data returning from the 11/34 does not have any labeling
difficulties since all destinations are within the Alarm
Handling System.

E.2.6.l The Queue

The system queue and pointers are comprised of the
following reserved global variables:

$Q(70)=20
.

11 (10)

01 (10)

S1I

Main Q

Input pointers on sub-queues
Output pointers on sub-queues
Sub-queue size defined in Q Manager
Setup section

r

The main Q is a string array with a maximum of 20 characters
,};ler element. The main Q is divided into 10 sub-queues as
follows:

OUT
Q's

IN

Q's

Figure E.2.4 Main Q with sub-queues

351

The 0 input/output pointer are located in the reserved
global array variables II(n) and Ol(n) where the subsript
indicates the 0 number 0 - 9. The location is stored in a
relative form. i.e., the first location in the sub-queue is
zero. The absolute location in the main queue is calculated

a follows:

Li = II(Ol)+Sll*Ol (1)
Lo = 01(02)+Sll*02 (2)

In the above equations

L = absolute location in the main queue.
01(02) or 11(01) = relative sub-queue location.
Sll = the sub-queue size (currently set at 7).
01 = out sub-queue number.
02 = in sub-queue number.

The O-Manager has preassigned OUT queues as 00 - 04.
Similarly the IN queues are 05 - 09. This means that the 0
Manager will transfer from the Out Oueue to the In Oueues
where OUT queues are interpreted as 'out' from sending tasks
and IN queues as 'in' to the receiving tasks. Any task
requiring two way communication via the queue system must
contain both a IN and an OUT queue.

The input/output pointers increment around the queue
array by using the MOD function. This function is used to
evaluate the modulus of two integer expressions. The
modulus is defined as the remainder after dividing one
number by another. In this way the pointers are always
incremented yet in reality are 'rotated' around a queue
array. For a queue size of three the pointers are rotated
as follows:
0,1,2,0,1,2,0 ••• and so forth, where the modulus is 2.

352

The input and output pointers It(q) and ot(q) store
these relative values.

Refering to the flowcharts in the Appendix, these two
procedures involved in queue servicing, data insertion and
data removal. Eack task inserting data into a queue must
use an insertion routine called OUTQ. While each task
extracting data from a queue must use the complementing
removal routine called INQ. The queue manager contains both
these routines with some additional software sorting
functions.

E.2.6.2 QMAN

The Q Manager performs both INQ and OUTQ functions
using almost identical software. For information relating
to the insertion and removal of data from the Q refer to the
INQ and OUTQ sections.

The Q Manager examines all Output Q's (0-4) pointers
I'(q) and O'(q) to determine whether there are any entries

, in an output queue which require servicing. If an entry is
found, message packets are removed from the queue. The
header is examined. If the header value ls valid the
message packet is placed in the corresponding input queue.
Next the Q Manager locates the job slot in which the input
queue is located.
array J() and are

These assignments are located in the
allocated in the Setup section of the Q

Manager. A START command is issued for the corresponding
job slot.

In the event that a destination input queue is full the
Q Manager generates an error message, waits 2 ticks and
tries again as many times as necessary. If a message packet
header does not make sense then the packet is dumped. Any
header with a value of 10 or more retains its header and is

353

placed in the PDPll/34 link task queue.

When a scan is complete, if a message packet had been
serviced on the scan, a further scan is initiated until all
output queues are emptied.

E.2.6.3 INQ

The INQ routine must be present in a task which has an
input Q. Refer to Appendix for l~sting. The routine
performs the following funcitons:

1) Examine I'() and O.() pointers for the queue in
question.

2) If I'(Q2)=0'(Q2) then the queue is empty, no action
- --

is taken and program control is returned to the main task.

3) If 11 (02) >0I(Q2) then queue entires are present. - - .
The data packet located in $Q'(Lo) is placed in $N. 0'(02)
is incremented to the next queue location, and program
control is returned to the main task.

By convention Q2 is used to assign the input queue number
and must be specified in the task Setup section along with
the job slot location of the Q Manager; Q.

E.2.6.4 OUTQ

The OUTO routine must be present in a task which has an
output Q. Refer to section E.20. for listing. The routine
performs the following functions:

1) Examine 1'(01) and O'(Ql) pointers for the queue in
question.

354

2) If 1'(01)+1=01(01) then the 0 is full. An error
-

message is generated, the routine waits 2 ticks, and tries
again.

3) The contents of $M is loaded into $OiCLi) and
-

1'(01) is incremented. The 0 Manager is started if
necessary. Program control is returned to the main task.

By convention 01 is used to assign, the output queue number
and must be specified in the task Setup section along with
the job slot location of the 0 Manager1 O. $M must contain
the header identification in the first two characters of the
text. The header must be present before loading into the 0

queue.

355

°E.3.0 POWERUP

E.3.l INTRODUCTION

The POWerup task POW is an alarm handling system
housekeeping task. Initialisation of the alarm handling
system is performed by this task. When the software system
is first booted into the computer various aspects of the
software must be initialised for correct operation. The POW
task also executes functions which will restart the alarm
handling system. In this mode the task is started by the
alarm handling command task COMAH.

E.3.2 OPERATION SUMMARY

As described above in normal operation the POW task is
automatically started when the SWEPSPEED alarm handling
system software is first booted or restarted. In the event
that the user requires to re-initialise or 'clear' the alarm
handling sytem, the POW task can be started via the command
task COMAH.

The only interaction that the user has with the task is
that of entering the date and time as prompted by the'
program on the console terminal.

No error messages are generated by the task, however if
the user miss-keys an entry, the program will detect the
syntax error when trying to set the time or date. If this
shouia occur, tn~ ta~k is restarted after generating a
SWEPSPEED error message.

356

E.3.3 SOFTWARE DESCRIPTION

The POWerup task is a small and concise program
requiring little explanation. Refer to the flow chart and

listing for clarifications.

The task performs the following functions:

1) Stops all job slots which are not idle.

2) Permits user to insert real time and date into

system.

3) Clears all temporary storage arrays which may cause

confusion during a system restart.

4) Initialises the time of occurrence event processor
storage array %EI(). All elements are set to the minimum or
'datum' time value -IOE6.

5) Connects the watchdog task WD to the system clock.

6) Appropriate job slots are connected to the system
clock or started to get the system going.

357

E.4.0 SETUP

E.4.l INTRODUCTION

The SETUP task is an initialisation module for the
alarm handling system. The task performs no operational
functions. Principal data array sizes are dimensioned here.
SWEPSPEED is a compiled language therefore itmes such as
array sizes can not be dynamically adjusted. The user of
the alarm system may need to redimension key arrays to suit
the requirements of a particular Alarm Data Base. All
arrays which may require redimensioning are included in the
SETUP task. All these arrays are global types, therefore
redimensioning requires a knowledge of the SWEPSPEED
utilities as follows:

$GLO Used to condense the global table after
reducing array sizes. (SQUEEZE)

$INS Used to re-install overlay files since a new
global table will be in use. The EDIT, LOAD,
and DISPlay overlays must be installed into
job slot 2 after a redimensioning.

$MON Used to inspect the contents of the Alarm
Data Base header.

E.4.2 SOFTWARE DESCRIPTION

Presented here is a list of the global arrays found in
the SETUP task and how to calculate the array dimensions.

%AiO The Alarm Data Base. Dimension to at least the
size of the Alarm Data Base as given in %Ai(l).

358

%Dt 0

%DUO

%D2t 0

DUO

%Et 0

Et 0

EUO

Data Acquisition current measured value array
store. Dimension to the number of data
acquisition units as given in %At(2).

Data Acquisition historical measured value array
store. Dimension to the number of data
acquisition units as given in %At(2).

Data Acquisition trend data array store.
Dimension to the number of data acquisition units
as given in %At(2).

Data Acquisition change data stored in bit form
Csee BIT function). Dimension to the number of
data acquisition units as given in %At(2) divided
by 16, the integer bit size.

Event Processor 'time of event' store. Dimension
to the number of event definitions as given in
%At (l0) •

Event Processor event status store. Data is
stored bit wise Csee BIT function). The dimension
is calculated by dividing %At(10), the number of
event definitions, by 16, the integer bit size.

Event Processor measured data hysteresis store.
Dimension to the number of event definitions as
given in %AtCIO).

GtC) Alarm Generator output alarm status store. Data
is stored in bit wise format (see BIT function).
The dimension is the number of a1arm'definitions
as in %At(11) divided by 16, the integer bit size.

NOTE: Arrays used for bit wise formats are dimensioned by

359

) ,J __ ~_

•

calculating the total number of bits required. There are 16
bits in each integer represented by the array starting with
array subscript O. The calculation is as follows:

Dimension = INT«number of bits required)/16) MIN 1

Note that since location 0 is used the result of the
equation is truncated to integers only.

360

E.S.O COMMAND TASK - COMAH

E.S.l INTRODUCTION

The COMAB task is intended for use by the alarm
handling system manager to evoke engineering functions
within the system. The principal uses of the COMAB commands
are to enter the alarm data base EDIT mode and system
startup and shutdown. The task is not intended for use by
the operator.

E.S.2 OPERATION SUMMARY

To start the task the system manager must use the
SWEPSPEED utility $ACT14 on the console terminal TTO: thus
activating job slot 14 where the COMAB task is located.
Once in COMAB the prompt 'it' will indicate that the task is
ready for input. All inputs consist of up to 2 character
strings followed by a carriage return. The avaiable
functions are as follows:

ED

•
Enter EDIT mode. OVerlay storage tape must be in
DDO:

TI Print time and date to console.

RE Restart alarm handling system from scratch.

ST Stop the alarm handling system except for the
watchdog task WO.

RU Run or 'warm start' the alarm handling system.
Useful during fault finding after using the ST
command.

361

X Exit COMAH task.

An error message may be encountered when entering the EDIT
mode if the overlay tape is not inserted in drive 000:.

E.5.3 SOFTWARE DESCRIPTION

The COMAH task is simple and concise. It provides a
means of command input and subseq~ent branching to the
appropriate subroutine. For details of program structure
refer to flow charts and listings.

362

E.6.0 WATCH DOG

E.6.l INTRODUCTION

The Watch Dog task WD,drives a system monitor card in
the Media Plant Interface hardware. The task also performs
some alarm handling system housekeeping functions, the most
important of these being the updating of the time of event
records in the event processor array %Ei().

E.6.2 OPERATION SUMMARY

In normal operation the functioning of the Watch Dog
task is transparent to the operator. The task is set to run
once each second with a top priority job slot assignment.
The POWerup task contains a CONNECT statement for the Watch
Dog task so the Watch Dog begins running only after the
POWerup task is execute. The Media Interface hardware
requires this task to run at least once each second so that
the system monitor card does not think that the computer has

failed.

E.6.3 SOFTWARE DESCRIPTION

The WD task is a short and concise task requiring
little explanation. Refer to the flow chart and listing for
further details.

When the task runs a specific bit pattern is sent to
the Media system monitor to inform the plant interface that
the computer is operational. The current real time in the
alarm handling system is then examined to see if the time is
00:00:00, and if so, subtract 18280 seconds (1 day) from
each event time in the event processor time of occurance

363
•

array %Ei(). The minimum time or 'datum' time value is
-lOE6 (5 days). After completion the WD task remains idle
until the next second at which time the execution is
repeated.

364

E.7.0 THE COMMUNICATION LINK TASKS

E.7.l INTRODUCTION

The communication link tasks supervise software
communications with peripheral computer systems. These link
tasks are TALK, LISN, and CHROM. The link tasks must have
there own job slot allocations since in SWEPSPEED once an
input statement is executed the program stops until the
input request is satisfied. If i~ter-computer
communications were incorporated into other tasks, the
system would not be able to function properly.

Job slot priority assignments must be arranged such ,
that any incoming inter-computer link tasks, LISN and CHROM,
are as high or higher than other tasks. This is to insure
that incoming data packets are not lost. Links with heavy
traffic such as the host computer link should have very high
job slot priority.

Described in this section are details of the three link
tasks in the alarm handling system.

E.7.2 TALK

The TALK task is a unidirectional communication link
with the host p,rocess control computer. The TALK task sends
ASCII data packets down the serial link line TT3:. To avoid
conflict with the LISN task which also uses this line, TT3:
has been set to no-echo via the SWEPSPEED system generation.
The TALK task prints down line data packets comprised of
text strings as retrieved from the alarm handling system
queue system. The data packets are sent verbatim without
any additional termination characters added to tne ena or

365

I. .

the string contents.

E.7.2.1 Operation Summary

The TALK task operation is transparent to the operator.
Since its only means of retrieving data packets is via the
system queue, the task is automatically started by the queue
manager when necessay. No program error messages are
generated. When the alarm handling system is restarted the
local print buffer @T3: may still 'be operned for output. In
this case the program notes the error, rectifies the
situation and restarts.

E.7.2.2 Software Description

Little explanation of the flowchart and listing is
required. The task uses the standard INQ subroutine for
data packet inputs.

E.7.3 LISN

The LISN task is a unidirectional software
communication link with the host process control computer.
This task is intended to complement the TALK task above.
The LISN task retrieves ASCII data packets from the serial
link line TT3:. The task uses the same serial line as the
TALK task so several precautions must be noted as explaned
above. In general the LISN task retrieves data packets from
the serial line and passes them verbatim to the alarm
handling system queue system. The LISN task utilises the
standard input statements so in fact a terminating carriage
return is required to input data packets. This means that
all incoming data must not contain a carriage return within
a data packet. The contents of the data packet must conform
with the format as required by the queue manager and the

366

· ,

destination task.

The task is assigned a high priority so that incoming
data is not lost.

E.7.3.l Operation Summary

The LISN task is automatically started during system
powerup. If a host computer is not present consult the
system manager to remove this automatic startup which is
performed in the POW task. This is important to avoid
difficulties with subsequent alarm system restarts. If the
LISN task has been activated, the program with remain
waiting for an input. In this condition the POW task can
not stop the job. If this should occur the system manager
must use the SWEPSPEED utility $RES to clear and restart the
alarm handling system from scratch.

In some situations when the alarm system is restarted
the input buffer @L3: may still be opened for input. In
this case the program detects this and rectifies the
difficulty.

E.7.3.2 Software Description

Little explanation of the flowchart and listing is
required. The task uses the standard OUTQ subroutine for
inserting data packets into the alarm handling system queue.

E.7.4 CHROM

The CHROM task is a bidirectional software
communication task which links the Alarm Display Package
resident in the Chromatics display computer with the alarm
handling system DISPlay task. The inter-computer link is

367

comprised of a constant data packet swapping procedure down
the serial link line TT2: with the Chromatics. Data packets
consist of coded ASCII text strings. The Chromatics Alarm
Display Package sends data packets to the DISPlay task
headed with a funciton code initiating further functions in
the DISPlay task. The DISPlay task sends display commands
to the Chromatics as appropriate. If no data packet is sent
during a data packet swap an empty data packet is sen~
This constant swapping is used to detect the heal th of the
Alarm Display Package. To avoid echoing data packets the
TT2: serial line is set to no echo in the SWEPSPEED system
generation.

E.7.4.l Operation Summary

The operation of the CHROM task is automatic once
started by the DISPlay task. The CHROM task will not
function correctly if the complementing link routine in the
Alarm Display Package in the Chromatics display computer is
not functioning. It is important that the Alarm Display
Package be fully installed and running for the alarm
handling system to function correctly. If the display

- - -
package is not running the alarm handling system will -
perform overhead and data aquisition without performing any __
alarm handling funcitons.

During alarm data base transfer from the off-line alarm
handling system in the Chromatics and data base editting,
the CHROM task is stopped to avoid difficulties with the
serial line between the Chromatics and The PDP 11/03.

No error messages are generated by the task. However,
if a SWEPSPEED error results form an open 1/0 buffer during
alarm system restart, the task detects the error, rect1f1es
it, and restarts the task.

368

>

1

. " ,.

, '
, "
"

E.7.4.2 Software Description

The CHROM task operates very closely with the DISPlay
task since its main purpose is to maintain the private
software link between the two tasks. The bulk of the task
deals with this supervision. The inter-computer link
portion functions the same as in the LISN and TALK tasks.

The CHROM task performs the following functions:

1) Listen to the TT2: serial line for an input via an
input command.

2) If the response is not an empty data packet, the
busy flag of the link to the DISPlay task (?NI) is checked.
If the flag is set the program waits until it is not set.
The data packet is inserted in NI and the busy flag is set.

3) The program next checks the link form the DISPlay
task. If the busy/request flag ?MI is not set then an empty
data packet is sent to the TT2: serial line. Program
control is then returned to step 1. Otherwise, if the
busy/request flag ?MI is set then a data packet is retrieved
from $MI, the ?MI f1ag"c1eared, and the data packet is sent
to the TT2: serial line.

Further program details can be obtained from the
flowchart and listing.

369

, ,

E.8.0 KEYBOARD DRIVER

E.8.l INTRODUCTION

The Keyboard Driver software provides software support
for the special purpose operator keyboard described
elsewhere. Although the functions included in this routine
are specific to the prototype alarm handling system, the
module may readily be modified to,meet the requirements of
other types of keyboards. The keyboard driver is a general
purpose software driver for indiviually addressed keys
accessible through digitial input/output type interfaces.

, " The driver will not support multiplexed keyboards.

-'

E.8.2 OPERATION SUMMARY

This section describes in brief the use of the Operator
Keyboard Driver Module. The Operator Keyboard Driver Module
is used as follows:

1)

2)

3)

The Media Driver software module must be loaded
into a SWEPSPEED job slot having a priority higher
than the Keyboard Driver.

The Queue Manager software must be loaded into a
SWEPSPEED job slot having a priority higher than
the Keyboard Driver.

Ensure that the Keyboard Driver has been assigned
the correct job locations of the Media Driver and
the Q-Manager. Also ensure that the Queue number
and Media link numbers are unique.

4) Load the appropriate Key Function and Key Text

370

arrays into the global area. This need not be
necessary if new Function or Text arrays are to be

generated.

5) Activate the Keyboard Driver using the $ACT
command or other job interaction instructions.

6) The Keyboard Driver will remain active until

stopped by the user.

E.8.3 COMMUNICATION STRUCTURE AND PROTOCOL

The key board driver communicates with other software
modules via the alarm handling system queue. (See Queue
Manager Documentation). The driver utilises both an IN .
queue and an OUT queue to allow two way communication with
other jobs. Key press functions can be assigned to indicate
the transfer of text from the keyboard driver into the
system queue. Also the driver will read messages received
from its input queue. Messages received in this way are

. interpreted as key press function codes and are executed in
the same manner as if a key press had been detected.

The message protocol from sending a command to the
keyboard is as follows:

The key board driver input queue number is b. Key code
functions, described in section E.8.7.8, are strung together
and sent as a single string text packet

message string--------~.0605000452
d · Ci~ --...::::..... 1.0. Hea ~ng BEEP TURN

keyb ard Q
OFF 52

371

, .

The message packet is placed into the queue system and
subsequently sent on to the keyboard driver. The output
message texts are defined by the user in the $T'(K) array.
The text is sent verbatim into the system queue when the
appropriate key press is detected. See section E.8.7.8 for
further details.

E.8.4 SUPPORT TASK PRIORITY ASSIGNMENT

The Keyboard Driver utilizes two supporting tasks, the
Media Driver and the Queue Manager. Job Priority
assignments follow the rules outlined elsewhere for the
supporting tasks. In general, the keyboard driver must be
assigned a sufficiently high job priority to maintain a
reasonable response time from the operator keyboard. With
this in mind, it has been found that a priority assignment
of 28 works satisfactorily in the prototype alarm handling
system. The Media Driver and Queue Manager necessarily have
job priority assignments higher than the keyboard driver.

E.8.5 ERRORS

The keyboard driver does not generate error messages
with the exception of the Q routine. Any invalid key
function code will not be executed. If an invalid function
, '

code is imbedded in a string of functions codes, all valid
codes preceeding the invalid code will be executed. When
the invalid function code is detected, the remainder of the
function codes in the string are aborted.

The OUT Q routine within the driver will generate the
following error message on the console VDU whenever the
keyboard driver's output Q is full and waiting to be

372

"

serviced:

KB - Q WAITING

E.8.6 SOFTWARE FUNCTIONAL DESCRIPTION

The keyboard driver software module resides in the
Swepspeed system as a job. The job, once activated, runs
continuously until stopped by another Swepspeed job or
command. The Media driver module, described elsewhere, must
be installed in the system when activating the Keyboard
driver module since the operator keyboard can only be
accessed via the Media plant interface.

Functionally the driver performs the following
operations:

1) Poll the operator keyboard inputs to determine .
whether or not a key has been pressed.

2) If no key has been pressed, wait a short while and .
try again.

3) If a key has been pressed determine which specific
key was pressed.

4) Check key routine to determine whether or not the
key is enabled, if not abort any further key functions
and resume polling scan.

5) Locate the key function codes stored in $F'CK) where
K is the Key number, see appendix.

6) Execute key functions.

373

.'

7) Resume key board polling scan.

E.8.7 SOFTWARE DETAILED DESCRIPTION

This software description explains in detail the
keyboard driver module flowcharts presented in the following
section. Please refer to the flow charts to clarify the
description presented here.

E.8.7.l Set Up

This section sets the initial values of certain
variables used in the driver module which are dependent upon
the location of the keyboard module and other supporting
modules in the Swepspeed system. The following variables
are set as indicated below:

M =
Ml =

Ql =
Q =

10

2

7
1

= Media Driver Module Job number
= Media Driver Communication link assignment

(must be unique)
= QUEUE Manager Job number
= Keyboard Driver Output Queue Number (must

be unique)

As the set up implies, the keyboard driver module requires
both the Queue Manager and the Media Driver Module to be
fully installed in the Swepspeed system to ensure proper
operation of the keyboard driver. Any of the above
variables may be set to other values without effecting the
operation of the keyboard driver, however care must be taken
to ensure
allocation

that new assignments correspond with priority
requirements of the supporting jobs and that

communication assignments do not conflict with other jobs.
Herer to the desciption of the other modules concerned for

374

, ;

more details.

E.8.7.2 Scan Keys

This section polls the digital input channels which
have been assigned to the operator keyboard. The operator
keyboard is physically connected to the computer via the
Media plant interface package. In the prototype system, the
keyboard keys are connected to the digital inputs on a one
to one basis. Any key press will result in a single unique
digital input being activated. Due to physical constraints
the keyboard digital input assignments have been split, some
are maintained contact type input and the remainder are
fleeting contact type inputs. The behaviour of the inputs
differs in the manner by which the inputs are read by the
computer.

The result of this anomally is that the Scan Key
section performs two types of key scan. Keyboard inputs
assigned to Media channels 145-154 are the maintained input

-
type. There are 16 such inputs on the Media card. The
Media driver module allows the user to read the status of
.the entire card as an integer representation of the input
status of all 16 channels (See Media Driver Documentation).
The keys on Media Channel 145-154 represent 11 digital
inputs on the card, so by scanning one channel in the group,
a status can be obtained for the entire group. If the
result of
detected.
by adding

the status is non-zero a key press can be
The Media Channel number can then be calculated

the location of the TRUE bit in the input card
status to 145 which represents the first media channel on
the card.

A similar method is used for detecting the inputs on
the Fleeting cards. Fleeting cards are organised in groups
of 8 inputs. The corresponding Media Channels are 161 to

375

185. Similarly the inputs are scanned in such a manner that
only one card status is obtained from the Media Plant
interface. This is important when addressing the Fleeting
inputs since the entire group of 8 inputs on a card is
automatically reset whenever any channel on the card is
read. By identifying non-zero status words indicating a key
press, the bit location of the TRUE bit is added to the
Media channel number of the first input on the card to
establish the Media input channel number activated. There
is a major difference in the way that the two types of Media
inputs respond, this effecting the key operations. Key
connected to Digital fleeting (DIF) Media Channels give only
one output for each key process. Keys connected to Digital
Maintained (DIM) Media Channels remain ·on· as long as the _'
key is pressed. This difference makes some of the key
function codes available unsuitable for DIF keys.

All the above input information is obtained via the
Media Driver Module. Details of the protocol for
communicating with the Media Driver Module are described in
the Media Driver Documentation.

E.8.7.3 Check In Queue

The Check In Queue Section is executed after'each scan
of the operator keyboard keys. A check is made to see if an
addition has been made to the keyboard driver modules input
queue. If so the input queue is serviced once. Only one
incoming message is retrieved from the input queue and sent
to the Key Function Section. Any further queue entries are
processed after the next keyboard scan. The input queue
messages are used to generate keyboard functions such as
turning key backlight lamps on and off, etc. Message texts
are interpreted as if they are key codes and operators. Key
functions codes obtained via the module's input queue are
not maskable. Execution of the text if valid is immediate.

376

The content of the input messages must be in accordance
with the key function codes and operators as discussed in
the Function Section. The procedures for servicing software
module input queues is discussed in the Queue Manager
documentation.

E.8.7.4 Poll Lapse

The Poll Lapse section in ef~ect sets the keyboard scan
rate. After each key scan procedure the driver suspends
operations for 100 mS before starting again. This brief
pause also allows lower priority jobs to be allocated
processor time., The suspension time does not reflect the
exact scan rate due to the unknown amount of time allocated
to higher priority jobs.

E.8.7.S Which Key

Having established that a key has been pressed, this
section translates the Media Channel number of the key input
into a Key number used by the driver to identify the -
location of key function codes, etc. The Key numbers (K)
are 1 to 40 and are assigned as described in section 8.0.
The translation of Media Channel numbers to Key numbers - ,

improves the flexibility of the system for use in other
hardware configurations and also optimises the amount of
array area required for look up tables.

E.8.7.6 Key Control

The Key Control section supervises the action taken
when a key press has been detected. Firstly, the program
calls the CK Mask Subrutine to determine whether or not the
key mask shows that the key is enabled. The result of the
subroutine is in ?M which is True of the key is disabled.

377

The key control will sound a brief tone burst from the
operator keyboard's audible output device to indicate that
the key pressed is no masked. No further key functions are
performed and the program control is returned to the Scan
Keys section if the key is masked. Finding the key enabled
the Key Control sends program control to the Function
subroutine described later. After completion of the
Function subroutine Key Control returns program control to
the Scan Keys section.

E.8.7.7 Check Mask

This subroutine returns the variable ?M which is True
if the key number K is disabled as indicated by the mask
array ?MC). The mask is set or reset with Key function
codes as described later.

E.8.7.8 Function

Key functions are executed by Function Section. Key
Function codes are located by the routine and used to select
predefined key function operations. A global string array
$Ft(40) = 20 contains user defined key codes'and operations
to build up key operation sequences. The array elements are
identified by the Key number K. Each individual key can
thus be defined to initiate the execution of any number of
key function operations. The key code is used in
conjunction with an operator. The key code identifies the
type of operation and the operator provides additional
information required. The key codes and operators are
strung together to from a sequential execution of
operations. When all operations are completed the Function
Section returns program control to Key Control.

A list ot the key codes and operations currently
available are presented below.

378

Code & Operator
:

00

01 nn

02 nn

03 nn

04 nn

05 00

06 ff

07 qq

Function

NOP

MASK

UNMASK

ON

OFF

BEEP

CLEAR

Description

No operation is performed.

Disable the key represented
by the key number nn.

Enable the key represented
b~ the key number nn.

Turn on the digital out
represented by the Media
Channel Number nn.

Turn off the digital out
represented by the Media
Channel Number nn.

Sound the keyboard audible
output device for a short
burst.

Clear function with the
following parameters:

£f=Ol Clear key input mask (enable all keys)
£f=02 Clear all keyboard digital outputs
ff=03 Clear all (mask and digital outputs)

SEND TEXT

qq=Ol CR
qq=02 ESC
qq=03 None

Send the text contained in
Key Text Array $T'(K) to the
output queue. qq defines
the termination character.

379

"

08 nn

09 nn

10 ff

qq=04

qq=OS
qq=06
qq=07
qq=08

Buffer key text
Send and Clear Buffer with CR
Send and Clear Buffer with ESC
Send and Clear Buffer, no termination
Delete last char in buffer

HOLD ON

TOGGLE

SP FUNC

This operation suitable only
for DIM type inputs,
suspends further key
function operations while
the key is pressed. Hold on
also turns the keyboard
Media digital output number
nn on until the key is
released.

If the keyboard Media
digital output number nn is
already ON, the digital
output is turned off. If
the digital output is OFF
then the output is turned
on.

This operation selects via
ff a variety of special
functions specific to the
prototype system. These
functions enable the
keyboard to respond
correctly when interfacing
with the PCP process control
language OCP task.

The key function coaes ana operators are stored in $Ft(K)
from left to right representing the order in which the

380

functions are to be performed. Both the Text and Function
array currently have a maximum of 20 characters available.
Key message text is stored in $Ti(K). The following
examples illustrate the operations.

Example 1 : Key number K = 14 is pressed
$Fi(14) = ·035501140704· .
$Ti(14) = ·Hello·

The key operations are executed from left to right.

0355
0114

Turn on a Media Channel number 55
Mask (disable) key 14

0704 Send ·Hello· to the software device with input queue

number 04

Example 2 : Key number K = 10 is pressed
$Fi(lO) = "035008550450·

$TI (10) = • •

0350 Turn On Media Output Channel number 50.
0855 Turn on Media Output Channel. 55 and hold until

key is released. Key number must represent a
DIM type input. When key is released turn off

55.

0450 Turn off Media Output Channel number 50.

Key message texts are stored in $T'(40) = 20 by key
number K.
text plus

The contents of each element forms the message
a header. The header is used to identify the

software device input queue for which the message is
intended. A typical message text would be "lOTHREER

• For
more details on the queue communication system see the queue
manager documentation.

381

~

,

K = the corresponding key number
$Tt(K) = -OlTHIS IS A TEST-

If the key function code 0701 has been specified in $Ft(K)
the text THIS IS A TEST will be placed in a input queue of
the software module or device which has been allocated input
queue No 01. The operator in the following function code
indicated the type of terminating character to be added to
the end of the text.

01 = CR ASCII 13
02 = ESC ASCII 27
-
03 = No TERMINATING"character

The above function codes are for single text messages.
Additional codes are available to string or buffer text
strings together before the message is sent into the queue.

04 = Buffer key text.
05 = Send to out queue with CR at end and clear.
06 = Send to out queue with ESC at end and clear.
- -
07 = Send to out queue with no termination-char; clear.
08 = Delete one character from the end of the buffer.

The leading characters in the key text describing the
,

destination queue remains the same as previously discussed.,
When a buffer is built the header is taken from the first
key text to be loaded into the buffer. Subsequent entries
to the buffer are stripped of their headers before insertion
into the buffer. Once the buffer is complete a key such as
ENTER can be programmed with the fucntion 05, 06, or 07 to
send buffer with the termination character as defined by the
subfunction number. The buffer is also cleared. A key such
as ERASE may be programmed with function code 08 to delete
the last character in the buffer.

382

, .'

A string of key texts may be built and sent as follows:

Key Key Text Key Function

1 ·011" 0704
2 "012" 0704
3 "013" 0704

ENTER 0705

The buffer text will read "01123CR".

These termination characters are required by some
driver module output queue ready for receiving by the queue '
manager. Details of the generation of the output queue and
other queue communication functions is discussed in the
Queue Manager Documentation.

E.8.7.9 Queue

The Keyboard Driver incorporates both an IN and OUT
,Queue. The Queue assignments are OUT 1 and IN 6. The,
queues software is identical to calling job queue software
as described in the Queue Manager Documentation.: -

383

E.8.8 SPECIAL OPERATOR KEYBOARD KEY ASSIGNMENTS

Key No. Media Channel Key Text

1 145 ACCEPT ALARM

2 146 PROCESS ALARM

3 147 COMPUTER FAIL

4 148 TEST LAMPS

5 149 START/YES

6 150 FUT HOLD

7 151 OPEN/THRU

8 152 CLOSE/DIVERT

9 153 HOLD

10 154 STOR

155
156
157
158
159
160

11 161 TIME

12 162 DISPLAY
~ ~ - ' .", .
. . 13 163 LOOP -

14 164 SEQUENCES.
15 165 PLAD

16 166 REJECT
17 167 EXECUTE
18 168 CHANGE
19 169 SPEC CHANGE
20 170 7
21 171 8
22 172 9

23 173 4'

24 174 5
25 175 6
26 176 M

384

27 177 S
28 178 1

29 179 2

30 180 3
-
31 181 C
32 182 I
33 183 0

34 184 • -
35 185

36 186 R
37 187 -SPARE-
38 188 ERASE
39 189 ENTER_

Status no. Digital outputs

46 HIGHLAND ACCEPT
47 HIGHLAND TEST LAMPS
48

1 49 TIME INDICATOR
2 50 DISPLAY INDICATOR
3 51 LOOP INDICATOR
4 52 SEQUENCES INDICATOR -
5 53 PLAD INDICATOR
6 54 REJECT INDICATOR
7 55 ACCEPT ALARM INDICATOR
8 56 PROCESS ALARM INDICATOR
9 57 TEST LAMPS INDICATOR
10 58 EXECUTE INDICATOR
-
11 59 AUDIO OUTPUT RATE

-
12 60 AUDIO OUTPUT PITCH

385

E.9.0 MEDIA DRIVER MODULE

E.9.l INTRODUCTION

The SWEPSPEED 11 Media Driver Module is used to send or
retrieve data from the Alarm Handling Media Plant Interface
hardware. The driver, written in SWEPSPEED 11, allows the
user to confidently communicate with the Media system
through the use of normalised data transfer protocol. Since
the Media is accessed through the PDP 11/03 memory
addresses, use of the module prevents system failures caused
by improper accessing. Media liD_Devices have differing
forms of computer inputs andlor outputs which require
substantial bitwise data manipulation. The driver module
performs all necessary calculations yielding uniform
normalised values. Error detection intercepts most user
protocol and overflow errors and generates console error
messages. The reader should be familiar with SWEPSPEED 11
before proceeding. A description of the SWEPSPEED 11 system
can be found in the SWEPSPEED 11 User's Guide. The purpose
of this document is to describe operation and use of the
SWEPSPEED II Media Ddver Module.

E.9.2 OPERATION SUMMARY

This section describes in brief the use of the Media
Driver Module. More details are given in the subsequent
sections. The Media Driver Module is used as follows:

1. The Media Driver software must be loaded into a
SWEPSPEED job slot. This job slot must be
assigned a higher priority than any job the driver
services.

2. There are 5 bidirectional communication links with

386

the driver comprised of reserved global array
variables. The subscripts identify the
communication link number (n = 1 to 5).

3. When writing to the driver a job must load data,
if any, into the appropriate global variable
%vt(n), VI(n), and ?Vi(n). The Media I/O Device
channel number (refer to Appendix) is loaded into
Cl (n) last.

4. The calling job must start the driver using job
interaction statements and then wait until e'(n)
is 0 or less.

5. When using the driver to read data the calling job
can read data, if any from the appropriate global
transfer variable %V'(n), V'(n), and ?Vi(n). If

e' (n) = 0 the transfer is OK. If e, (n) is less
than 0 an error has occurred.

6. ?Fll is TRUE when the driver is running.

387

E.9.3 COMMUNICATION STRUCTURE AND PROTOCOL

Data transfer to and from the module is accomplished
through reserved global transfer variables as follows:

I ?FUL

Channel 1 Cl (1) %Vi(l) VI (1) ?V41(1)
,

Channel 2 Cl (2) %VI (2) Vi(2) ?Vi (2)

MEDIA DRIVER

Channel 3 C'(3) %V'(3) V, (3) ?V'(3)
JOB MODULE

Channel 4 Ci(4) %Vi(4) Vi(4) ?vi(4)

Channel 5 Cl (5) %VI(5) VI (5) ?VI(5)
. . . .

Reserved Global Variables Job

There are five communication data links available.
Each link contains space for a Media I/O Channel Number, a .
real variable, an integer variable, and a logical variable.
The variables used for this data transfer are reserved for
Media Driver use, that is, when the Media Driver module is
installed in the system care must be taken not to use the
same global variables for other purposes.

The reserved global variables are:

?Fli Media Busy Flag [True or False]

Cl (n) Media I/O Channel Number array

%Vi (n) Real Variable array normalised [0.0 to 1.0]

388

Vi(n) Integer Variable array [-32767 to +32767]

. ?Vi (n) Logical Variable array [True or False]

The individual communication links are necessary in a
real-time multi-tasking environment to avoid collision or
corruption of data as several tasks compete for the same
global variables.

Each SWEPSPEED job that requires Media I/O data is
assigned its own communication link 1 through 5. It is
important that not more than one job uses a communication
link. Communication through the link is bidirectional so
that a single link is used for both output and input data.
The generalised communication procedure is as follows:

1) The job requiring communication places any output .
data (if there is any) in the three array variables %Vi(n),
Vi(n), and ?Vi(n) where 'n' is the job's communication link
number 1 to 5. Which variables, if any, need to be assigned
depends upon the Media I/O device as shown in Section E.8.0.

2) The job now places the Media I/O channel number,
also see Section E.8.0, in the array variable Ci(n), where
'n' is the job's communication link number 1 to 5.

3) The job must now start the Media Driver with the
interjob instruction START.

4) The job must now test the value of C'(n). If C'(n) .
is 0, the communication is complete and the appropriate data
is located in the three array variables %V'(n), V'(n), and
?V, (n) as specif ied in Section E.8.0. If Ci(n) < 0 then an
error has occured and the data transfer is not valid. The
error codes are as follows:

389

Ci(n) = -1 invalid Media Channel Number

C'(n) = -2 analogue overflow

E.9.4 JOB PRIORITY

The Media Driver must be assigned a job priority higher
than any job that uses the module for effective operation.
This is necessary to insure that the driver is not
interrupted by a job which may change a global transfer
variable at a critical moment. Since a variable is
comprised of more than one byte of information, job
interruptions between byte transfers could lead to erroneous
data if several jobs were trying to access a global transfer
variable.

E.9.5 DRIVER - JOB HANDSHAKING

The Media Driver can not detect when a data transfer is
required so therefore the job module requiring communication
must start the driver with a START instruction. In the same
manner, the calling job cannot detect when the Media Driver
is finished, so the cailing job must test the value of Ci(n)
as previously described. WARNING: Any attempt to use the
Media Driver Module with no power on the Media I/O hardware
will result in a fatal software error. i.e •• SWEPSPEED will
crash.

E.9.6 COMMUNICATION LINK PRIORITY

The Media Driver scans the C#(n) array to determine
which communication links require servicing. When a Media
Channel Number is detected the driver assumes that service
is required. This array is scanned in the order 1 to 5, so
lower numbered communcation links have higher priority. It

390

is important that when the communication link is loaded that
the Media Channel number C'(n) is loaded last to prevent
data collision.

E.9.7 ERRORS

As previously mentioned the drive can detect most
errors which can cause system failure. An error code is
placed in C'(n) in response to a data transfer request which
causes an error. All error codes are less than O. When an
error does occur a message is also displayed on the console
which gives an indication of the type of error generated.
The module can not detect the absence of power on the Media
I/O hardware. If the module is used in this case SWEPSPEED
will crash.

Error !&de. Console Message Description

-1 NON-EXISTENT MEDIA I/O ERROR Improper channel no.

-2 MEDIA ERROR AO = xxx. xxx Overflow on output
calls. %V'(n) must
be 0.0 to 1. 0 •

E.9.8 MEDIA I/O DEVICE DATA

In this section the input and output information
associated with specific Media I/O Devices is discussed.
Note that all real variable data must be normalised 0.0 to
1.0. See appendix for nomenclature explanations.

E.9.8.1 AOV's and AOI's Analogue Outputs

%V1I(n) Write Only - Load normalised output data 0.0

391

V' (n)

?V!i (n)

E.9.8.2 AI

%V!i(n)

Vi (n)

?Vi (n)

E.9.8.3 DO

%V!i(n)

Vi(n)

?Vi(n)

E.9.8.4 DIM

%V!i(n)

VlI(n)

to 1.0 where 0.0 = 0% and 1.0 = 100% output
range.

Not Used

Not Used

Analogue Inputs

Read Only - Contaiqs normalised input from
analogue input where 0.0 = 0% and 1.0 = 100%
of input range.

Not Used

Not Used

Digital Outputs

Not Used

Read Only - Contains integer representation
of the current status of the entire digital
output group in which the channel number
addressed resides.
(LS) bi t is the LS

The least significant
output of the group of 16

where a 1 bit = TRUE.

Write Only - Load TRUE for output 'ON'

Digital Inputs Maintained

Not Used

Read Only - Contains integer representation
of the current status of the entire digital

392

?V'(n)

E.9.8.S DIF

%Vi (n)

Vi(n)

?V. (n)

E.9.8.6 WD

%Vi (n)

VII(n)

?Vi (n)

input group in which the channel number
resides. The LS bit is the LS input of the
group of 16 where a 1 bit = TRUE.

Read Only - Contains TRUE for input 'ON'

Digital Inputs Fleeting

Not used

Read Only - Contains an integer
representation of the current status of the
entire digital input group in which the
channel number resides. The LS bit is the LS
input of the group of 8 where a 1 bi t = TRUE.
WARNING: Whenever a fleeting input card is
addressed, the entire group of 8 is reset to
FALSE.

Read Only - Contains TRUE for input 'ON'.
WARNING: Whenever a fleeting input card is
accessed the entire group of 8 is reset to
FALSE.

System Monitor Watch Dog

Not Used

Read Only - Contains an integer
representation of the watch dog status word.
See Watch Dog documentation.

Read Only - Contains TRUE for system OK.

393

)

E.9.9 SAMPLE PROGRAMS

Job 2 = User's job assigned to communication link 3.

Job 10 = Media Driver Module

E.9.9.l Analogue Output Example

User's Job 2

•

•
50 %Vt(3) =0.5

.
60 CI(3)=12
70 START10
80 IFCI(3»OGOT070
90 IFCI(3)=-lGOTOxx .
100 IFCI(3)=-2GOTOxx

•

•

%VI contains the normalised output
set Media channel 12
start driver
if error detection required

E.9.9.2 Digital Output Example

User's Job 2
, .

•
40 ?V, (3) =TRUE
50 CI(3)=26
60 START10
70 IFCI(3»OGOT060
80 IFCI(3)=-lGOTOxx
90 IFCI(3)=-2GOTOxx
100 T=VI (3)

•
•

?VI contains the output status
set Media channel 26
start driver
if error detection required

optional read of group status

E.9.9.3 Analogue Input Example

394

User's Job 2

•
•
70 CI(3)=109
80 STARTIO
90 IFCI(3»OGOTOSO
100 %T=%VI (3)
110 IFCI(3)=-lGOTOxx
120 IFCI(3)=-2GOTOxx

•
•

E.9.9.4 Digital Input Example

User's Job 2

•

•
80 CI(3)=167

.
90 START10
100 IFCI(3»OGOT090
110 ?T=?VI (3)
120 T=Vi (3)
130 IFCI(3)=-lGOTOxx .
140 IFCi(3)=-2GOTOxx

•

•

set Media channel 109
start driver

transfer data
optional error detection

set Media channel 167
start driver

transfer status
optional group value reading
optional error detection

395

E.9.10.0 SOFTWARE DESCRIPTION

The Media Driver Module is comprised of software
routines specifically developed for dealing with the Media
Plant Interface hardware. The plant interface consists of a
variety of different types of interface cards. Each type of
interface card requires a software routine to code or decode
information to or from the cards. The Media Driver Module
recognizes which type of interface card is being addressed
and subsequently selects the appropriate software routine.
Routine selection is based on the channel number requested
by the calling job.

E.9.10.1 Setup

The Setup section of the Media Driver Module contains
all variable initialisation.

E.9.10.2 Communications

The module communicated with other program tasks via
software links as described previously. When the Media
Driver is started by a calling job, the program scans all
communication links to see if a service request has been
entered. This is accomplished by scanning the channel
number array CI(N), where N is the Media link number. If
the value of CI(N) is greater than zero, a request is noted.
The values of the global transfer variables are inserted
into local variables. Program control is temporarily
transferred to the Channel Select section for further
processing of the 1/0 request. When the 1/0 request has
been serviced program control returns to the communication
section. Local program variables containing Media data are
inserted into the corresponding global transfer variables.
The channel number global variable C'(N) is then set to zero
or less. The calling job can detect that the Media

396

servicing is complete by noting the change in CICN). Error
detection is performed in the I/O servic routines. If an
error has occurred, CICN) will be less than zero. The value
is the error code number.

Each link is checked in the same manner and sent off
for further processing if necessary. When the scan of the
links is complete, the driver is stopped unless a link had
made a reques~ In this case the procedure begins again
until no requests are found on a scan of the Media software
links.

The global transfer variables which make up the links
are comprised of many different variable types. As a result
it is important that the Media Driver job priority is higher
than any calling job's priority. Also by convention the
global transfer variable CIC) is always the last variable to
be processed. These steps insure that the transfer variable
%VIC) is not corrupted. A read or write to a real variable
requires a two byte transfer. Programs of differing
priority may collide by trying to access a real global
variable 'at the same time'.

E.9.10.3 Channel Selection

Having found a service request in the Communication
section, the channel selection section branches program
control to the appropriate input/output routine for the
channel requested. The user must ensure that ~ledia channel
numbers do indeed allow the program to branch to the correct
subroutine for a specific hardware configuration. In the
prototype alarm handling system channel asssignments have
been based on the configuration of the Media interface
hardware. Channel numbers are assigned consecutively form 1
which represents the first available I/O port at the lowest
available Media memory address of 160000 octal. Refer to

397

Table E.9-2.

The channel number is retrieved from the transfer
variable C,eN). The link number N has been established by
the Communication section. program control is passed on to
the appropriate subroutine.

An error can be generated by this routine when a non
existent Media channel number is requested. The error code
is -1. No branching to a service_subroutine occurs when a
none existent channel number error is encountered. Program
control returns to the Communication section.

E.9.10.4 Service Routines

Each Media interface card requires special software
routines. Media cards are electrically located in the
computer in the I/O page of memory. The exact location is
selected by the user such that the Media interface does not
conflict with any addresses used for other computer
interfaces. The addresses selected for the prototype alarm
handling system start at 160000 octal and continue upwards.
To read or write data to the Media interface cards the
program must perform a memory read or write command.
Following are decriptions of the software service routines
available. Refer to the flow charts and listing for more
aeta~ls.

E.9.10.4.1 AI Routine

There are two types of analogue input interface cards
used in the prototype alarm handling system, individually
accessed and multiplexed analogue inputs. Multiplexed
inputs use a single analogue input card and an attached
multiplexer card which selects one of up to 16 different
input lines to be connected to the analogue card. Accessing

398

inputs therefore requires an input line selection 1 to 16 on
the multiplexer, a wait until the analogue card settles, and
then read the data from the analogue card. Based upon the
Media Driver channel number the program service routine
calculates the appropriate multiplexer and multiplexer line
to be used. The multiplexer is notified. Then the routine
waits for the 50 microsecond settling time of the analogue
card and reads the input data.

Individually accessed analogqe cards do not require
settling time so that the data can be read immediately.
This methos allows the fastest form of analogue input with
the unfortunate difficulty of having to provide a separate
card for each analogue variable to be measured.

The Media analogue input cards have a 10 bit
resolution. When reading the card these 10 bits are located
in the most significant bits of the 16 bit memory word
corresponding to the analogue input card. The unused bits
are set to 1 by the card. The service routine calculates
the normalized value 0.0 to 1.0 as a proportion of the bit
pattern obtained from the analogue card.

No errors are generated by this routine.

E.9.l0.4.2 AOV & AI Routines

Analogue output cards are available with either voltage
or current outputs. AOV are voltage outputs while AOI are
current types. Both cards are dealt with in the same
manner. The Media interfaces require a 10 bit pattern. The
bit pattern is comprised of the most significant bits of the
16 bit word located in the memory location at which the
interface card resides. The analogue output routlne
converts the normalized output value %V into a proportion of
the output represented by the octal values 0 to 1777. The

399

memory location of the output cards is calculated and the
output value is transferred to the address. Program control
is returned to the Communication section with the local
variables set to zero. In the event that the normalized
variable %V is out of the range 0.0 to 1.0, an error -2 is
generated and no service is performed.

E.9.l0.4.3 DIF Routine

Fleeting digital input card are unique in that once the
card is read the card resets all inputs to read O. There
are 8 inputs on each card. The condition of the inputs is
represented by a 1 for true in the most significant 8 bits
of the 16 bit word representing the card. The remainder of
the bits are set to 1. The service routine calculates the
input card to be read based upon the channel number
requesetd. The card is read and, for convenience, the top 8
bits are placed in the least significant bits of the integer
transfer variable Vi resulting in an integer representation
of the inputs on the entire card or group. The channel
number requested is used to calculate which bit in the 8 bit
pattern is to be returned in the logic transfer variable ?V.
In this way both a group representation can be retrieved
along with an individual channel status.

No errors are generated by this routine.

E.9.l0.4.4 DIM Routine

Maintained digital input cards have 16 input channels.
Unlike the fleeting card types, these input cards are not
reset when read. The service routine calculates in which
group of 16 the Media channel number requested is located
and the appropriate card is read. Data retrieved is in
negative logic, i.e., 0 = true. The program converts the
values into positive logic. Since the cards have 16 inputs,

400

all inputs are read simultaneously and the 16 bit pattern is
placed in the integer transfer variable V. The bit location
of the individual channel requested is calculated, and the
value is placed in the logic transfer variable ?V.

No errors are generated by this service routine.

E.9.10.4.S DO Routine

Digital output cards used in,the prototype system are
16 way open collector types. The 16 bit pattern sent to
these cards is translated into ON for a 1. Since individual
bits within the pattern can not be addressed separately, the
service routine stores the current status of the outputs in
a digital output store array A(O). Each word (2 bytes) in
the array represent the output for a digital output card.
When output requests are serviced, the individual bit
location is calculated and inserted in the output store
array. The array elements are then written to the digital
output cards.

No errors are generated by this service routine.

E.9.10.4.6 WO Routine

The watchdog service routine writes a special bit
pattern to the Media System Monitor card. No error messages
are generated by this routine. More details concerning the
watchdog card are described in the watchdog documentation.

401

TABLE E.9-l MEDIA I/O DEVICE NOMENCLATURE

AI Analogue Input
AOI Analogue Output Current Type
AOV Analogue Output Voltage Type
DIF Digital Inputs with Fleeting Contacts
DIM Digital Inputs with Maintained Contacts

DO Digital Outputs
WD Watch Dog System Monitor

402

Table E.9-2 I/O Device Channel Allocation

I/O Device Ch. No.

AOVl O-lOV AN OUT 1

AOV2 2

AOV3 3

AOV4 4

AOV5 5

AOV6 6

AOV7 7

AOV8 8

AOV9 9

AOVIO 10

AOVll 11

AOV12 12

AOV13 O-lOV AN OUT 13

AOIl O-lOMA AN OUT 14

AOI2 0-101-1A AN OUT 15

WD WATCH DOG 16

DOl DIG OUT OPEN COLLECTOR 17

D02 18

D03 19

D04
~l

20

DOS 21

D06 22

D07 23

D08 24

D09 25

DOlO 26

DOll 27

D012 28

D013 29
D014 30
D015 DIG OUT OP[:!; COLLECTOR 31

403

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

004l

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

DIG OUT OPEN COLLECTOR

OIG OUT OPEN COLLECTOR

404

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46
-

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

DOS2

DOS3

DOS4

DOSS

DOS6

DOS7

DOS8

DOS9

D060

D061
D062

D063
-

D064

AIl
AI2

An
AI4
AIS

AI6
AI7

DIG OUT OPEN COLLECTOR

DIG OUT OPEN COLLECTOR

RESERVED

RESERVED

O-SV AN IN

O-SV AN IN

405

68

69

70

71

72

73

74

75

76

77

78

79

80
81

82

83
84

85

86

87

88

89

90

91

92
93

94

95

96

97

98

99

100

101
102

103

AI8 0-5V AN IN 104

AI9 0-20MA AN IN 105

All 0 0-20MA AN IN 106

AIl1 0-10V AN IN 107

AIl2 108

AI13 109

All 4 110

AIlS 111

AIl6 0-10V AN IN 112

AIl7 0-5V AN IN 113

All 8 114

AIl9 115
AI20 116

AI21 117

AI22 118

AI23 119

AI24 120

AI25 121

AI26 122

AI27 123

AI28 124

AI29 125

AI30 126

AI31 127

AI32 0-5V AN IN 128

RESERVED 129

130
131

132

133

134

135

136

137
138

RESERVED 139

406

RESERVED 140

141

142

RESERVED 143

AI33 0-5V AN IN 144

DIMl DIG IN ~IAINTAINED 145

DH12 146

DIM3 147

DIM4 148

DIMS 149

DIM6 150

DIH7 151

DIH8 152

DIM9 153

DIMI0 154

DIMll 155

DIlU2 156

DIM13 157

DIH14 158

DIM15 159

DIM16 DIG IN MAINTAINED 160

DIFl DIG IN FLEETING 161

DIF2 162

DIF3 163

DIF4 164

DIF5 165

DIF6 166

DIF7 167

DIF8 168

DIF9 169

DIFI0 170

DIFll 171

DIF12 172

DIF13 173
DIF14 174
DIF15 DIG IN FLEETING - 175

407

DIF16

DIF17
DIF18
DIF19

DIF20

DIF21
DIF22
DIF23

DIF24
DIF25
DIF26
DIF27
DIF28

DIF29
DIF30

DIF31
DIF32

DIG IN FLEETING

DIG IN FLEETING

408

176

177
178
179

180

181

182

183

184

185

186

187

188
189

190

191

192

Table E.9-2 Media Technical Information

.....

I I IT'll 1 T , I 1 I I
13 Atv 0..,.,-- 0-1011 24r1 Th ssr 1-': E.:vv

~
,.
-~ ~~ C"L.".2!-\-r

V. " .. """,A -
l ~ b;t ::#-1

~I
~l'!

I I I I I I I I I I I t~
I s::1 .,.

iD .:> I .. 3 Y <; " 7 10 11 1"'1. 13 IV I::> 1(. I) ,
-

~...) t:l '::)- ~ 1 N:l-~"
.-l ~ ~ ~ N~'~ ~ ~ ~. ;). ~ Cl ~

~ ~ U~~ ~ " " ~
A

'" ~
.~) ~'ll'~ii

et '10
.j -11 ~ ~ ~ ~ ~ '- "

-... -- -
I I I I t I t .1 I J.
'I 1>.(1, O.'r MII)\ AI: ML~ AI 111: DJ: I{ ~4-:r;"

P/l:>5.n£ &DV .. ~ el',,,.., t .. , t &,.,\
10'/ " r. "': > "-5" DC. tc",r <41 ..

J.:o ... ~ 5,", ,b -5 $e. s"t'.s ,,~S
F~U.TIN(r - ,"1.-'"" \" \" '"

-
I , - 0
% - ~ §

::: ~ l ::tr2-
,~ 8 1 {}

£1 ~ "
1 -- Q.

~ i-l,
1 1 ;;, ,

1 I l:. ~, ~ ~ ~ ~ I -
o I 'l. ~ Y ~ " 7 /0 " I L IJ IV 10; 1(, 17

Media Layout

E.10.0 DATA ACQUISITION

E.10.l INTRODUCTION

A principal characteristic of any device which requires
data from the surrounding environment is the data
aqcuisition task. In the alarm handling system the data
acquisition task DA performs this function. The DA task
allows the system to obtain process data from any task
capable of generating such data h~ving access to the queue
communication system. In addition, the DA task has a
software link with the Media Driver module. Directives are
sent in the form of data packets to appropriate tasks.
These commands initiate the acquisition of process data from
individual plant sensors. The operation of the DA task is
supervised by the DACON data acquisition controller task
which is described elsewhere. The order and frequency with
which the data points are sampled is determined by the
system definition as defined by the contents of the alarm
data base.

E.10.2 OPERATION SUMMARY

The DA task is a core alar~ handling system task.
System tasks are not accessible to the user in normal
operation and therefore the functioning of the DA task does
not require user intervention.

E.10.3 SOFTWARE DESCRIPTION

E.10.3.l Setup

The DA task requires program support from the Media
Driver, the Q Manager, and the Event Processor. The job

410

I·

slot locations of these support tasks are assigned here.

E.lO.3.2 Run

The program control section of DA coordinates the
subroutine selection in the task. The software selects the
locations in the alarm data base which correspond to the
variable descriptions of the various process variables to be
measured. Each variable descripti~n takes the same amount
of space in the alarm data base. The DA tasks steps through
the sets of data which are organised according to priority
and scan group. Starting with the first variable
description the DA task continues to step through the
descriptions up to the limit set by the Data Acquisition
Controller task.

Each variable description is examined and a process
data request is sent to the appropriate I/O device. When
the data is retrieved, the software examines the data type
and calls up the appropriate subroutine to deal with the

. data. When complete the next variable description in the
alarm data base is processed and so on.

When all variables are completed, the program looks to
see if a significant change has occurred in any measured
variable. If so the event processor is started.

With all data acquisition functions completed, the
program stops. It will be started by DACON when the next
data scan time period has elapsed.

Refer to the SETUP task documentation for the
descriptions of the Data Acquisition storage arrays.

411

E.ll.O DATA ACQUISITION CONTROLLER

E.ll.l INTRODUCTION AND DESCRIPTION

The purpose of the Data Acquisition Controller (DACON)
task is to supervise the operation of the Data Acquisition
task. Process variables can be scanned at various rates
with the maximum scan rate of 1 second. The alarm data base
contains variable definitions describing where and how to
obtain process data represented by these descriptions.
These variable descriptions are ordered sequentially in the
alarm data base according to scan rate and priority within
each scan rate group. Each time the Data Acquisition task
is executed the program starts at the beginning of the
variable description list. i.e., the process variable with
the highest scan rate and priority. After obtaining process
data for this variable the task steps to the next variable
definition and so on. The DACON task sets the upper limit
to which the Data Acquisition task will step through the
alarm data base variable definitions. The upper limit is
set according to the scan group to be executed. For
example, at one second intervals the maximum limit is set to
the top or end of the one second scan group. Every five
seconds the limit is set to the 'top of the five second scan
group so that both the one second and the five second group
are scanned during the data acquisition. The process
continues for the remainder of the scan groups. The DACON
task then resets this top limit to the appropriate level
based upon the current real time. Once the limit is set the
Data Acquisition task is started. Error messages are issued
in the event that the Data Acquisition task has not
completed a data scan during a one second interval.

The DACON task is started by the COHAH alarm handling
command task. The command task also suspends the operation
of DACON dUring some alarm handling systems functions.

412

E.ll.2 SOFTWARE DESCRIPTION

The DACON task is a small supervision task. The
operation of the software should be readily understood by
examining the flow charts and program listings. Described
here is a summary of the software functions.

E.ll.2.l Setup

The Setup section of the program contains the usual
variable assignments relating to the job slot positions of
supporting tasks. In'this case the variable D is used for
the job slot location of the Data Acquisition task.

E.ll.2.2 Run

The program periodically checks the current real time
clock values. Depending upon the tim:, the variable POt is
set to the maximum alarm data base variable definition to

.which the Data Acquisition task should scan. Once the scan
group is determined based upon the cuurent real time, the
maximum address (Pot) to be used in the Data Acquisition
task is calculated. The value of POt is dependent upon the
number of variable definitions is each scan group.
Information regarding the number of variable definitions in
each scan group is obtained from the alarm data base header.
See alarm data base documentation for further details.
Additionally the DACON task will check the operation of the ,
Data Acquisition task to ensure that the scanning is being
completed within a one second scan interval.

413

E.12.0 EVENT PROCESSOR

E.12.1 INTRODUCTION

The event processor is one of the core alarm handling
tasks. This task establishes a binary event status image
representing the current mode of operation of the process
plant. Using event definitions contained in the alarm data
base, individual data acquisition ,units are converted into a
true/false event status. The event definitions describe all
conditions in which a particular data acquisition unit is to
be considered as indicative of an event occuring on the
plant. A wide variety of event types are available to suit
most needs such as analogue, binary, or contact type data.
In the present version of the alarm handling system, there
is a one to one correspondence of events to data acquisition
units. It is exspected that further additions such as
derived events using multiple combinations of events and
time related events can be added. The event processor
software includes the provisions for such improvements.

E.12.2 ~PERATION SUMMARY

The operation of the event processor is automatic and
generally transparent to the operator. The event processor
is started by the DA task whenever a significant change is
noted in a data acquisition unit. Once started the event
processor steps through event definitions as described in
the alarm data base. Event definitions establish the
measured variable data type and the variable event true
band. The current value of the data acquisition units is
compared with the event limits and pervious plant data. The
processor then decides if an event has occurred. The event
status image in EI() is updated as necessary and the alarm

414

generator is notified of the change.

E.12.3 SOFTWARE DESCRIPTION

The event processor task is relatively short however
the functions in the task have been condensed, obscuring
their operation.

E.12.3.l Setup

The setup section assigns the alarm generator slot
number, sets the busy flag, and defines the hysteresis truth
table.

E.12.3.2 Find Change

When the processor is started by the DA task, the
program tests the data change flag ?DI to see if there have
been significant changes in the data acquisition data store.
If so the Dll(O) array identifies which DA units have
changed indicated by a 1 bit in the array.

E.12.3.3 Change

Once a change has been noted the program searches
sequentially through the event definitions to locate all
definitions containing the DA unit in question. Using the
definition the event type is used to branch program control
to the appropriate event type subroutine. Here the values

of the DA unit are compared with event parameters to see if
an event has occurred. If a change in event status is noted

the event status image Et(O) is updated and the alarm
generator is started.
Find Change section to
changes in DA units.

Program control is returned to the
search for further significant

415

E.12.3.4 Hysteresis Sub

Analogue event detection requires a method for
detecting the relative change in process variables in order
to establish which parameter range limits are to be used to
evaluate the event. This is necessary since the hysteresis
feature requires the event processor to know how the
variable is changing. As described in the Off-Line User's
Guide the range band limits are defined by the parameters 1,
2. 3, and 4. These range parameters define 5 regions in
which the measured variable may be located.

REGION 5 4 RANGE PARAMETERS
REGION 4 3~ MARKING EVENT

1lV REGION 3 2) LIMITS

REGION 2

REGION I

Figure E.12.l Using regions for hysteresis calculations

As variables make excursions from one region to another
the processor must select the range parameter to be usea for
the event detection. There are 25 different transitions
that a variable can make from one region to another. From a
transition table, a truth table can be developed as follows:

4.16

Transition Region Does this represent Octal Truth

Number Old New a true status Table

0 1 1 N 0

1 1 2 N 0 4

2 1 3 Y 1

3 1 4 Y 1

4 1 5 N 0 1

5 2 1 N 0

6 2 2 Y/N 0 034614

7 2 3 Y 1 6

8 2 4 Y 1

9 2 5 N 0

10 3 1 N 0 4

11 3 2 Y 1

12 3 3 Y 1

13 3 4 Y 1 3

14 3 5 N 0

15 4 1 N 0 0

16 4 2 Y 1

17 4 3 Y 1 3
•

18 4 4 Y/N 0

19 4 5 N 0

20 5 1 N 0 4

21 5 2 Y 1

22 5 3 Y I' 000143

23 5 4 N 0 1

24 5 5 N 0

In the program the truth table is stored in bit form in

H(O). H(l). The transition number ~s calculated as follows:

Transition = (Old -1)*5 + New - 1

417

The transition number is then used to determ~ne if a change
has occurred in the event status image.

418

E.13.0 ALARM GENERATOR

E.13.l INTRODUCTION

The alarm generator is one of the core alarm handling
system tasks. Event status images produced by the event
processor are examined by the alarm generator each time a
change occurs in the stauts image. Based upon enhanced
Boolean expressions stored in the alarm data base, the alarm
generator determines whether an individual alarm is now on
or off. The Boolean expressions are comprised of
combinations of events and Boolean operators stored in a
coded Reverse Polish Notation as compiled by the off-line
section of the alarm handling system. In the alarm data
base the alarm definitions are comprised of two coded
expressions one for the alarm ON condition and the other for
the alarm OFF condition. Depending on the current status of
a particular alarm, the alarm generator will examine the
appropriate condition expression to see 1f the current
status of an alarm should be changed.

E.l3.2 OPERATION SUM~~RY

The alarm generator operation is transparent to the
operator. It's operation is fully automatic as the task is
started by the event processor whenever a change in the
event status image is detected. Using the event status
image as input data the alarm generator evaluates alarm
definitions in the alarm data base sequentially. There are
no error messages generated by the alarm generator task.

E.13.3 SOFTWARE DESCRIPTION

The alarm generator software has been condensed into a
closely packed program to maximize the efficiency of the
program. The structure of the program 1S the same as others

419

in the alarm handling system, however several subroutines
exploit the condensed nature of the alarm data base. It may
be useful to examine the off-line documentation for a better
understanding of the processing of the data base
information.

E.13.3.1 Setup

The DISPlay task is required as a supporting task. The
job slot location is assigned here.

E.13.3.2 Run

The Run section coordinates program control of the
task. Firstly the section locates the beginning of the
lists of alarm definitions in the alarm data base. The
total number of alarm definitions is placed in S. The
program next examines each alarm definition in the same
manner by locating the first three records in the
definition. These records represent 1) the alarm output
code, 2) persistancy (not presently used), and 3) the
length of the ON condition expression. The current status
of the alarm is next checked. The Run section calls either
the ON'condition or OFF condition subroutine for processing
the coded Boolean expression in the alarm data base. When
the expression is processed and the alarm status image is
updated, the program halts.

E.13.3.3 Check for ON or OFF

Depending upon the routine called these subroutines
process the appropriate portion of the alarm data base
representing the coded Boolean expression required. These
exp~essions are coded in Reverse Polish Notation (RPN). The
program processes these expressions using an RPN stack

defined as ?SO with P as the stack pointer. Elements are

420

extracted from the Boo1ean expressions and temporarily

placed in R. If R is less than 0 then the program
recognises the element as a Boo1ean operator. Program
control branches to the Boo1ean processor routine and
performs the appropriate function on contents of the stack
?SO. If R is positive, then the program recognises the
element as an event status image position bit location
representing an individual event status. R is then inserted
into the next available location in the stack ?SO. Once
processing the Boo1ean expression. the result of the
expression, if the expression has been correctly coded, will
be at the top of the stack ?S(). Currently the stack size
is set at 25, i.e. DIM ?S(25). Program control is returned
to the Run section.

E.13.3.4 Check Result

This section checks the result of the Boo1ean
expression. The result is compared with the present status
of the alarm definition. If there has been a change in the
alarm condition, the result of the Boo1ean expression will
match the current alarm status. This is the case since when
the status of an alarm changes, the expression chosen to
evaluate its new status will represent the opposing
condition statement result.

If a change is found. the alarm status image is updated
and a message is sent to the DISPlay routine via the
'private software link' as described in the DISPlay task
document. The message is a combination of the display
function code either a 1 for OFF or 2 for ON and the alarm
output code as obtained from the data base alarm definition.

421

E.14.0 DISPLAY TASK

E.14.l INTRODUCTION

The DISPlay task coordinates all operator display
functions generated by the alarm handling system. Display
coordination is necessary in order to ensure that tasks
within the alarm handling system which compete for the same
display device, do not generate conflicting data and produce
corrupted display information. In the prototype alarm
handling system, the DISPlay Task coordinates display
information for the VT-lOO console terminal, the T-43
printer and display protocol for the Chromatics based
display package. The DISPlay task has full access to the
Alarm Handling System queue system thus allowing two way
communication with the majority of tasks within the system.
The DISPlay task also contains a communication task with the
Hedia Driver. Function codes in incoming message packets
are used to identify which output display device is to be

implemented.

E.14.2 OPERATION SUMMARY

Generally the operation of the DISPlay task is
transparent to the operation of the alarm handling system.
Described here is a brief outline of the major functions of
the DISPlay task. Further details of its operation are
given in subsequent sections. The DISPlay task performs the

following functions:

1) Supervises the communication links with the

Chromatics display computer.

2) supervises output to the T-43 printer log.

422

3) Deals with alarm output messages as received from

the Alarm Generator.

4) Monitors queue system for output requests.

5) Coordinates all printed output to peripheral

devices.

E.14.3 COMMUNICATION STRUCTURE AND PROTOCOL

The DISPlay task monitors three software communication
lines:

1) The Q via INQ.

2) The Alarm Generation task via private link.

3) The Chromatics link via a private link to the

Chromatics link task.

The protocol for all three links is the same, i.e. in
the form of data packets comprised of strings. Private -software link lines are used in some cases since the
communication is exclusive to the DISPlay task. The data
packets received by 'the DISPlay task are processed in a
similar fashion as those in the Keyboard driver module.
Leading function codes in the string are used to select the
required display operation. The function code is a single
numeric character 1 to 6. Following this function code
operations the function operand. Depending on the function
code selected the operand may be output text on further
subfunction codes. The available display functions are as
follow:

Function Code Operation

423

1

2

3

4

5

6

7

8

9

o

L

Alarm OFF sends received alarm output
code to Chromatics and requests a Media
digital channel to be turned off.

Alarm ON sends received alarm output
code to Chromatics, requests a Media
digital channel to be turned on, and
keeps the Keyboard audible device.

VT-100 prints text to console terminal

CHROM send text to Chromatics display
computer.

T-43 send text to T-43 printer log.

Q send text to Q system.

Reserved for user specified functions.

Overlay LOAD task for transfer of alarm
data base from OFF-line system.

424

The received data packet has the following format:

FUNCTION
CODE

T EX T

TEXT OR OTHER COMMANDS

E.14.4 SUPPORT TASK PRIORITY ASSIGNHENTS

There are several priority and job slot conditions
which must be set for the DISPlay task to function
correctly. Firstly, the Chromatics link task CHROM must be
in job slot 13. The Q z.tanager and Media Driver modules must
be assigned a higher priority than the DISPlay task.

E.14.5 ERRORS

During normal operation no errors should be
encountered. The program does not generate any of it's own
error messages. During the OFF-line transfer of the alarm .
data base to the ON-line computer and during data base
editing, the DISPlay task will be overlayed. In the event
that the DISPlay task is not correctly overlayed back into
its job slot after such an operation, unusual errors will
occur. In this case enter the COMAH command task and re
execute the EDit mode which will make another attempt to
overlay the task.

E.14.6 SOFTI'TARE DESCRIPTION

Careful examination of the flowcharts and listings of
this task will help clarify the operatlon or ~nlb tdbK.

425

Some explanation is required of the private communication
link lines.

E.14.6.l Private Software Links

The private software links are used for the exclusive
communication between two jobs. The link is comprised of a
data packet swapping routine similar to that used in the
inter-computer link tasks. A unique global string variable
is used for the transfer of the data packet through the one
way link. A unique global logical variable is used as the
service request and busy flag. The operation of the link is
as follows:

1) Sending job examines logical variable to see if
link is busy. If it is, wait until flag is cleared then
place data packet in global transfer variable and set busy
flag.

2) Receiving job routinely polls the link request/busy
flag. If set then a data packet is retrieved from the
global link variable and the request/busy flag is cleared.

In the DISPlay task global variable assignments are as
follows:

$NI, ?NI Link from Chromatics link task

$Mi, ?MI Link to Chromatics link task

$Mli, ?Mli Link from Alarm Generator task

E.14.6.2 Setup

The Setup section contains the usual Job slot, link,
and queue assignments.

426

E.14.6.3 Run

The Run section's principal function is to scan all
incoming sources of data packets. These include the INQ
Chromatics link, and the alarm generator link. If a service
request is detected this sections transfers program control
to the Function Select section. Otherwise if no service
request is found the task stops.

E.14.6.4 Function Select

This section strips the leading function code from the
data packet and branches program control to the appropriate
subroutine. When complete the program control is returned

to the Run section.

The function subroutines are simple and require little
explanation. Subroutines retrieve the data as required from
the data packets. Canned routines for the Media Driver,

INQ, and OUTQ routines are used.

When an 'L' function code is encountered, the program
attempts to overlay the LOAD overlay task located on tape
storage over itself. When this occurs an 'x' is sent to the
Chromatics link task to shut down the link. If the
Chromatics link remains active during the data base
transfer, errors will occur.

427

E.1S.0 OVERLAY TASKS

E.1S.0 INTRODUCTION

Due to restricted memory space in the PDP 11/03

computer, two tasks LOAD and EDIT. are in overlay form.
This means that the tasks are stored on the tape drive
storage system until needed at which time the task is loaded
into a job slot. This is the DISPlay task job slot as well.
It is convenient to use this slot as the overlay slot since
by stopping the DISPlay task the alarm handling system
operation is suspended, not stopped, until the DISPlay task
is re-installed. Since the DISPlay task must be
reinstalled, there also exists an overlay file for the
DISPlay task on the same tape drive.

It is important to note that the overlay tape must be
properly inserted in the tape drive DDO: throughout the
duration of the use of either LOAD or EDIT. Also, if for
any reason the global variable table in the alarm handling
system is modified. the system manager must INSTALL the LOAD
the EDIT, and the DISPlay tasks. Refer to the SWEPSPEED

-
user's guide for further deta11s on overlay Jobs a!lQ Job
slots.

Described in this section are software descriptions of
the overlay tasks LOAD and EDIT. The DISPlay task although
existing as an overlay file as well is described in a
separate section •

• E.1S.2 EDIT

The EDIT task permits the user to make modifications to
the alarm data base when installed in the on-line computer.
The EDIT task is an over lay task call ed v ia a command ED in

428

the command task COMAH. When the EDIT task is called, the
alarm handling system is halted and the EDIT task is
overlayed from tape drive DDO: into job slot 2. Once in
edit mode the prompt > appears signifying that the system is
ready for edit commands. Modifying the alarm data base is
not recommended since-any changes must be executed with a
full knowledge of the structure of the alarm data base and
its functions. Incorrect data entries will result in the
malfunctioning of the alarm handling system when restarted.
Major changes made to the alarm data base should be
performed in the off-line develpoment system.

E.IS.2.1 Operation Summary

The EDIT task once evoked via COMAH exhibits the prompt
-

>. The following commands are then available:

P Send a copy of the current alarm data base to
TTI:, the T-43 printer.

L List the contents of the alarm data base to the
console.

R Replace an element in the alarm data base with a
new value.

I Insert a new element into the data base.

D Delete or remove an element from the alarm data
base.

X Exit the edit mode, re-install the dei splay task
in job slot 2, and return to the alarm handling
command task.

,
Error messages occur during incorrect task overlays and when

429

the alarm data base needs to be resized. Refer to the on
line user's guide for a full explanation of the operation
and the effects of the various edit commands.

E.lS.2.2 Software Description

The EDIT task is an overlay task located on the Alarm
Handling overlay tape. Being an overlay the task can only
be loaded into a pre-selected job slot. In this case job
slot 2 is use for all overlay tasks. The DISPlay task which
is normally in job slot 2 is overwritten by the overlay.
Disruption of the DISPlay task in this manner insures that
the alarm handling system stops functioning while the
overlay task is being executed. Being an overlay file the
EDIT task can be loaded into the system by either an OVERLAY
statement or a system INSTALL utility.

The program is simple in operation and requires little
explanation. A monitor using a > prompt selects the
appropriate subroutine as defined by the user response. The
Setup section contains a definition of the legal inputs.
The Run section selects the function subroutine. The
various subroutine functions are best explained by
examination of the program flowchart and listing.

E.lS.O LOAD

The LOAD task is an overlay task for use with the off
line development software. During the operation of TRANSFER
in the off-line system, the Chromatics unit installs an
alarm data base in the POP 11/03 on-line alarm handling
computer. The LOAD task when installed in the PDP 11/03,
forms the receiving module for the data transfer.
Communication protocol between the Chromatics off-line
system and the on-line system consists of a simple data

430

packet exchange routine. The LOAD task sends an ASCII text
string data packet in exchange for a data packet received
from the Chromatics. Data packets sent by LOAD contain
information concerning the status of the on-line system and
also error information pertaining to the transfer of data.
Refer to the off-line software document for additional
information regarding the function of this task.

E.lS.3.1 Operation Summary

The LOAD task operation is fully automatic once the
task overlay has been installed by the DISPlay task. The
DISPlay task installs the LOAD task when it receives an 'L'
via the CHROM link task to TT2: serial line. The 'L' is
sent by the off-line portion of the alarm handling system
resident in the Chromatics computer when an alarm data base
transfer is to occur.

The LOAD task replaces the on-line functions in the PDP
11/03 of the CHROM link task. The link is maintained by the
LOAD task for transfer purposes. The task responses with
the correct code to execute data base transfer. If an error
is detected the program aborts and the normal on-line tasks
are re-installed and started.

E.lS.3.2 Software Description

Little explanation is required for this task since the
program itself provides a good explanation. A few points
must be made.

The off-line program first tests to see if the LOAD
task is present by sending an 'L' at regular intervals until
the LOAD task give the correct coded response. Once the
link is established both program moou!es, tne LOw taSK ana
the off-line TRANSFER program, check to ensure that each

431

other is operational. With the link firmly established, the
off-line program sends the new alarm data base array size.
The LOAD task test this size to see if there is room. If

there is no room,
task is aborted.

no transfer takes place and the program
If all is well the data packet transfer

rate is increased and the alarm data base is overwritten
with incoming data. Any transfer error detected by either
transfer task will cause a negative value error code down
line. If this should occur, the process is aborted.

432

E.16.0 ALARM DISPLAY PACKAGE

E.16.1 INTRODUCTION

The Alarm Display Package is an independent hardware
/software system intended to complement the operation of the
prototype Alarm Handling System. Although the Alarm Display
Package does not perform any alarm information generation,
it does provide the primary means by which the alarm
handling system displays alarm information to the operator.
For prototype development, the software has been generalised
in such a manner that the end user can readily 'add on'
plant specific display formats without the modification to
the display system's communication and data processing
structures.

The display package runs in an intelligent colour ,
graphics terminal which is connected to the alarm handling
computer via a serial link. Software within the terminal is
capable of identifying alarm output and other codes as
distributed by the Alarm Handling Computer. The codes are

, interpretted as display commands to evoke appropriate alarm
texts and/or mimics on the display screen. A data packet
swapping protocol is used for communication between the
display package and the alarm handling system. Although
there is no alarm information generated by the display
package, the data packet swapping enables the alarm handling
computer to ascertain the health of the display package and
to ensure that data transfer to the display package is
complete and error free.

E.16.2 HARDWARE

The display package utilizes a Chromatics CG 1999
intelligent colour graphics terminal. This terminal is also

433

used for the off-line production of the alarm handling
system data base. Operation of the Chromatics in the off
line mode is described elsewhere. The Chromatics is a Z-80
microprocessor based device with 28K of RAM memory. A
Microsoft Basic interpreter is included in the unit in
addition to a comprehensive selection of colour graphics
operating system commands. A single 8 inch floppy disk unit
is used as the mass storage device. Communications with the
Alarm Handling System computer is by means of an RS232
serial line port. For a further description of the
Chromatics unit refer to the Chromatics Operators Manuals.

E.16.3 OPERATION SUMMARY

This section describes in brief the use of the Alarm
Display Package. Further details are given in the
subsequent sections. the Alarm Display Package is used as
follows:

1) The Chromatics display computer must be connected .
to the alarm handling computer. The connection is made via
TT2: on the PDPll/03 and via SIOO: on the Chromatics.

2) Turn on the Chromatics and insert the Display
floppy disk into the disk drive.

3) Press (RESET)(BOOT)and (BASIC.)

4) Enter Memory size? &HBOOO (RETURN)

5) Type DOSnLOAD DISPLAyn (RETURN)

6) Type RUN (RETURN)

7) Enter the display data base number to be used.

434

8) The display package is now up and running ready for
alarm data to be received from the alarm handling computer.
No further operation on the Chromatics are required.

E.l6.4 COMMUNICATION STRUCTURE AND PROTOCOL

The communication protocol between the Chromatics and
the PDPll/03 alarm handling computer is in general

- -
transparent to the operation of the overal alarm handling
system. The commuication structu;e is based on a simplified
ring system. Data packets are passed between the Chromatics
and the alarm handling computer. The data packets contain
alarm output codes and other operating instructions. If no
data is to be transferred, the data packets are sent
regardless, filled with code indicating that the data packet
is empty. In normal operation the Chromatics is waiting for
input via the serial 1/0 link line. The serial line is
connected to the PDPll/03 device TT2: and the Chromatics

-
SIOO: port. The data packet is in the form of ASCII numeric
codes which represent the type of function the display
package is to perform.

The data packet communication is bidirectional. The
link task CHROM in the alarm handling computer sends a"data
packet which mayor may not be empty. The alarm display
unit responds with a data packet which again mayor may not
be empty. The procedure continues at a rate of
approximately 3 exchanges per second. The constant exchange
of packets is used by the computers to establish the health
of each computer system. Data packets incoming to the
display unit are executed immediately therefore no data
packet is returned until the requested function has been
completed error free.

The alarm display unit returns either an empty data
packet or a packet containing alarm texts for printing. The

435

alarm text packets are headed by the appropriate function
code required for printing via the DISP task in the alarm
handling computer. See DISP documentation for further
information. Empty data "packets in either direction are
coded as a '*'. Note: The alarm display linker task CHROM
is used by the alarm handling display task DISP, both of
which reside in the alarm handling computer. It should also
be noted that since the TT2: I/O line has access to the DISP
task via the link task CHROM, all functions available
through the DISP task are available via the link line.

E.16.5 DATA PACKET STRUCTURE

The data packet structure as received by the alarm
display package is a combination of an alarm output code and
time/date information as follows:

Functi»~~-=-aTJm.L.l-:o:-u~R~p:::u::t~W==R!:::s~+J~'§N;:S~;;E;~;:s=-:;D=aY:::::-=M-:-o-n-:-t:-h--"Year
Code Code

The function code header identifies the display function to
be evoked. The alarm output code immediately following the
function code is used to identify the alarm to which the
function code pertains. The alarm output code range is 000
to 999. Not all function codes require an alarm output
code. In these cases all data following the function code
is ignored if it is present. Time/date information
optionally follows the alarm output code as shown in the
above figure. Hours, minutes and secondes are in 24 hour
format.

E.16.6 FUNCTION CODES

I+ALC+[time,datel Deactivate all alarms with alarm'

436

2+ALC+!time,datel

3+ALC+!time,datel

4

5

6

7

8

9

o

E.16.7 ERRORS

output code ALC, i.e., alarm
condition no longer exists.

Activate a new alarm with alarm
output code ALC. i.e.. a new alarm
has occured.

Accept the longest outstanding
alarm with alarm code ALC.

Accept all outstanding active
alarms.

Used for paging displays to roll
display screen up a small amount
and repack alarm list.

Used for paging displays to roll
display sreen down a small amount.
This function does not repack the
alarm list.

Reserved for user defined
functions.

The display package software does not generate error
messages. If a software error does occur, the prototype

437

system uses the normal BASIC error trapping which stops the
program and prints an error message on the display screen.
The display system must be re-started in order for the alarm
handling computer to function correctly. Obviously errors
of this sort should not occur in normal operation, however,
if and error should occur the BASIC software must be
carefully examined for corruption. To re-start the system
follow the start up procedure described in a previous
section. The alarm display data present in the system
before the failure can not be retreived.

E.16.8 SOFTWARE FUNCTIONAL DESCRIPTION

As previously discussed the alarm display package is an
independent, stand alone device. The BASIC interpreter
available in the Chromatics can run only one program at a
time unlike the multi-tasking environment present in the
alarm handling computer. The alarm display software must
therefore incorporate all communication, processing. and
display coding in one program. The software correspondingly
is segmented into these three functions. The alarm display
software is intended to be a core module upon which the user
can readily add user defined display function. Software
'hooks' are provided for this purpose. The strictly
modularized structured format aids in the addition of custom
display modules.

Data communication is accomplished in the I/O
subroutine. Time out error detection is used to detect the
absence to responses from the link line. For details of the
protocol of the link line see the previous section. Once a
data packet is received the message is decoded. Depending
upon the leading function code the program branches to the
appropriate subroutine to process the alarm output data.

The core of the alarm display package is a data array

438

in which all current alarm display information is stored.
Access to information in the array is organized in list
processing format. As new alarm data is added to the
display list the array pointer associated with each data
record define the location within the display list. As
entries are deleted due to the disappearance of an alarm,
the associated alarm data in the display list is deleted
simply by alteration of the list pointers. Dealing with the
list in this fashion minimizes the processing time of the
program. This is especially impo~tant to the operation of
the overall alarm handling system since the single task
display unit can not queue up display requests coming in
from the link line.

Following the alarm list processing the program
proceeds to display routines which can be user defined. In
the case of the prototype system, a paging type of alarm
display is available. Another display routine is also
available to generate mimics of alarm annunciator panels on
the VDU screen.

Once completing all display tasks, the program returns
to the 1/0 routines for further instructions.

E.l6.9 SOFTWARE DETAILED DESCRIPTION

The alarm display software is highly modularized. The
major software sections are as follows:

SETUP
CONTROL
1/0 ROUTINES
ALARM LIST PROCESSING
DISPLAY GENERATION

Refer to the flow charts and listings following this

439

section for further clarification of the text descriptions.

E.16.9.l Setup

This initial routine is executed only at start up of
the alarm display package. The Setup peforms two key
functions

1) Initialize the maximum alarm list size.
2) Initialize the alarm lis~ for list processing.

The alarm list size
list array is PCW,4)
T$ CW) •

is defined in the variable w. The alarm .
with it's accompanying text array

The alarm list array PCW,4) must be assigned with .
initial pointers and values as follows:

PCWo,l) = PRECEEDING ARRAY LOCATION IN LIST

PCWo,2) = NEXT ARRAY LOCATION IN LIST

PCWo,3) = The alarm code as oobtained from
alarm list entry

PCWo,4) = The current status of the
particular alarm list entry.

T# (Wo) = The associated text for the alrm code
as defined in P(Wo,4).

All alarm list elements are prenumbered to establish
the list processing network.

440

E.16.9.2 Alarm List Initialization

A summary of the variables associated with the alarm

lists are initiated in the setup routine and are as follows:

N = Total number of entries in list

FI = First array element i~ list

LA = Last array element in list

PC) = Alarm list

Ti()= Text for alarm list

PN = Text available empty locations in list

W = Maximum size of alarm list

I = Current location in list, ie. the actual array
element number.

Other variables associated with the list are transient
in nature and therefor difficult to define. However, an

examination of the program text should make these factors
apprent.

The setup section is extended only once at startup,

after which program control is passed on to the RUN control
module.

E.16.9.3 Alarm List Status

Each entry in the alarm list is tagged with a var1able

whose value is dependent upon the current status of the list

441

~ element. The alarm status is located in the alarm list
array P(W,4). There are four status values as follows:

o = No entry in this alarm list element.

I = This alarm has been accepted and will be
removed from the list when the alarm

conditions no longer exits.

2 = This alarm is active. It has not been
accepted and the cooresponding alarm
conditions still exists.

3 = List elements in the dondition are alarms
which represent alarm conditions which no
longer exists however the alarm has not been
accepted.

~

The alarm list status information is used pricipally ,
for identification of the manner by which the alarm should
be displayed for example, an active alarm may be displayed
in a different way from an accepted alarm.

E.16.9.4 Run Control

The run control module coordinates all activities of
the alarm display package. Essentially the run control
module is comprised of a series of GOSUB statements.
Appropriate subroutines are called as necessary. The order
in which the module executes is as follows:

1) Goto Loader routine - load in alarm text and
data forcat arrays.

2) Goto Display Screen Initialisation routine -
set up display.

442

3) Goto liD routine - send andlor obtain data
from the link line.

4) Examine the data received from the link to

obtain function code.

5) Goto Decode routine - if appropriate to decode
remainder of data package.

6) Locate if necessary the appropriate alarm list

location.

7) Goto the appropriate alarm list processing

routine.

8) Goto Display routine if required.

9) Return to step 3 and begin again.

E.16.9.5 liD Routine

The liD routine coordinates communication on the serial

link line 510:0. The routine uses the convention of
nomenclature used throughout the alarm handling system as
follows:

M$ = input data strings.
N$ = output data strings.

First the routine prints the contents of M$ out to the
link line verbatim. If M$ is empty, I.e., is equal to a

null string, a '*' is printed which is the normal indication
of an empty data packet.

Next the output port is turned off to prevent echo. An

443

input statement is executed to input data into N$. The
program is set up to 'time out' after one second in the
event of no input. In this case the routine prints another
'*' down the line and waits for input again. The procedure
continues until a response is received from the link line,
after which the output port is turned back on to re
establish the echo on the line.

Upon completion, program control is returned to the Run
Control module. N$ contains the received data packet and M$
will have been emptied after having been sent down line.

E.16.9.6 Decode

The Decode module strips the alarm and other
information from the incoming data packets. A predefined
funcion FNCO(,) is used to select the appropriate
characters from the data packet string. The decode routine
returns program control to the Run Control module with the
following variables. If a portion of the data string is
missing the returned variables are equal to zero.

F = Function code 0 - 9.

C = Alarm output code 000 - 999.

TO = Hours 0 - 23.

Tl = Minutes 0 - 59.

T2 = Seconds 0 - 59.

DO = Day, day ot montn.

Dl = Month 1 - 12.

444

D2 = Year, ego D2 = 82.

E.l6.9.7 Alarm List Processing Functions

The available alarm list processing function are as

follows:

ACTIVATE
ACCEPT

GENERAL ACCEPT
NO ALARl~

INSERT
DELETE
LIST/REPACK

Each of these functions is comprised of a separate program
module clearly defined in the program listing. The Run
Control module calls the appropriate functions depending

upon the alarm function code as received from the serial

link line. In this section each of the list processing

funcitons will be discussed.

A) ACTIVATE The activate routine is evoked with

function F = 2. The routine adas the alarm output code to
the next available location in the alarm list. The total
number of entries in the alarm list is incremented. Finally
the status code of 2 and the alarm code is assigned to the
list location.

B) ACCEPT This routine changes the status code of the
first entry in the alarm list which matches the alarm output
coe as received form the link line. If the status code is 2
then the code is changed to 1. If the status code is 3 then
the code is changed to O. The function code F = 3 evokes
this routine.

445

C) GENERAL ACCEPT The function code F = 4 selects the
general accept routine which 'accepts' all outstanding
active alarms in the alarm list. These are represented by
the status codes 3 or 2'which are respectively changed to 0
or 1.

D) NO ALARM This routine is represented by the
function code F = 1. When an alarm condition no longer
exists the status code is changed for all alarm list
elements containing the associated alarm output code. An
active status code of 2 is changed to 3. If the alarm has
been accepted, signified by the status code 1, then the
status is changed to o.

E) INSERT AND DELETE The insert and delete routines
either add or remove an alarm list element from the alarm
list. The insert routines initiates a display routine which
will add the additional alarm to the display.

The delete routine removes the alarm from the list only
if the status code for the alarm list element is zero. The
pointers in the alarm list array are adjusted to compensate
for the change in array element order. The deleted array
element is cleared and becomes the new last element in the
array. The variable I is the array element to be deleted.
The deleted routine does not initiate any display routine,
only performs the removal of an element in the alarm list.

E.16.10.0 DISPLAY PERSONALITY MODULES

The alarm display software discussed so far is the
basic alarm display routine which executes functions
required by the majority of alarm displays. Software
specific to various types of display formats is dependent
upon the type of hardware used and the formats themselves.
The alarm display software is therefore structured in

446

modular form to facilitate the user to develop specific

display function routines. The prototype alarm display
system has two types of alarm display presently available:

1) VDU alarm annunciatorn panel mimics.

2) Conventional alarm paging display formats.

The software discussed in the subsequent sections deals with
these display formats.

E.16.l0.l Alarm Paging Display

Alarm paging displays present alarm information to the

operator in a chronological list format. Often the maximum
available VDU screen area does not allow all alarms to be
displayed at the same instance. Typical paging formats
allow the operator to move the VDU display 'up and down' the

list.

In the alarm display package commands received via the

serial link line are available to execute the various paging
functions. In particular these include rolling the screen
display area up and down, repacking the list and relisting.

Additional display information is placed at the top and
bottom of the screen, primarily comprised of current alarm,
total number of alarms, and the number of alarm entries
above and below the display page.

The software module specific to the paging display are:

SCREEN INIT.

SCREEN UP
SCREEN DOw"N
PRINT/ ADD
REMOVE

447

UPDATE

The Run Control module is modified to execute these
routines after alarm list processing has occured. Note that
alarm display commands F=5 and F=6 have been added to the
core alarm list processing functions. Additional variables
associated with the paging display include:

PG = Top of page location
L and Xl = List Locations for printing.

E.16.l0.l.l Screen Initialisation

This program module sets up the screen display for
paging. In general the VDU screen is'divided into three
separate addressable windows 0, 1, 2. Printing colours and
cursor operations is set. Refer to the Chromatics Operation
manual for further explanation of the set up procedures.

E.16.l0.1.2 Screen Up and Down

These display functions move the contiguous sections of
the alarm list which is displayed up or down the list. Each
time the functions are executed, the sect10n a1sp~ayea is
moved up or down by ten lines.

E.16.l0.l.3 Print/ Add and Remove

These routines either add, modify, or remove alarm
texts from the screen with the following criteria:

Alarm Status

o Remove

1 Print an 'A' preceeding the alarm text.
2 Print a '*' preceeding the alarm text.

448

3 Print a '*' preceed1ng the alarm text.

E.l6.l0.l.4 Update

The update routine adjusts the display data printed at

the top and bottom of the display screen.

449

E.17.0 THE ALARM DATA BASE

E.17.1 INTRODUCTION

The alarm data base contains a definition of the
functions to be executed in the on-line alarm handling
system. Alarm system functions developed by the user in the
off-line system are coded and condensed by the off-line
compiler into a compact form for use in the on-line system.
The on-line system uses the data base much like a
program. The data base therefore defines the operation of
the on-line system. In normal operation it is not important
for the user to understand the structure and organisation of
the data base. However, under certain circumstances it may
be convenient user to examine or modify the contents of the
alarm data base on-line without returning to the off-line
system. Presented in this section are details of the alarm
data base format as it would reside in the on-line system.

The alarm data base (ADB>' is formed by the computer
functions in the off-line system. A variety of data bases
can be generated and stored on the off-line floppy disk
unit. The ADB is stored in the form of a data file (.DAT)
comprised of lists of real numbeers. When the ADB is
transferred to the on-line system, these data files are
conveyed verbatim to the on-line system. As the values are
transferred, the on-line computer places the values
consecutively into a real global variable array %A#()
starting with location 1. Althougn real var1aDle~ reYU1re
twice the memory space as integers, it was found convenient
to use reals since items such as range parameters are
inevitably reals. No doubt this is an area which should be
examined more closely. A real data base requires much more
memory space and additional accessing time over integer
based storage.

450

The alarm data base is organised into four major

sections:

1) Data Base Header
-2) Data Acquisition Variable Definitions

3) Event Definitions
4) Alarm Definitions

E.17.2 DATA BASE HEADER

The data base header is the only section of the ADB
which remains consistent regardless of the structure of the
remainder of the data base. The header contains key
locations and other information in the data base required by
the on-line system. The array elements 1 - 11 comprise the
header as follows: NB In programing terms the element number
should read as the array subscript.

Element Number Contents Description

1

2

3

4

5

6

Alarm data base size, i.e., the maximum number

of elements in the ADB.

The number of data acquisition variable

definitions.

The number of variable definitions in data scan
group 1.

The number of variable definitions in data scan
group 2.

The number of variable definitions in data scan

group 3.

The number of variable definitions in data scan

451

7

8

9

10

11

group 4.

The starting address of the first event
description.

The starting address of the first alarm
definition.

The required size of the data acquisition
storage arrays.

The number of event status outputs. The size
of the event processor arrays can De calcula~eQ
from this value.

The number of alarm status outputs. The size
of the alarm generator arrays can be calculated
from this number.

E.17.3 DATA ACQUISITION

Data Acquisition variable definitions begin at element
number 12. Variable definitions are all 6 elements long.
The definitions are-organized consecutively according to
scan group and priority within the scan group. The lowest
scan group number and the highest priority definition starts
at element number 12. The format of each variable
definition is as follows:

Element No. Contents Description

12 Plant Code

13 Input device number - 1

14 Data type number

452

15 Range low

16 Range high

17 Significant change value

18 Start of next variable definition.

The values in the variable definition are discussed in the
off-line documentation. Presented here is a brief summary
of the contents. The plant code is the numeric code which
is sent to the input device as a data request. The input
device number directs where the data request is sent. The
data base value is one less than the actual device number.
The data type number represents the following:

0 Binary
1 Binary Inversion
2 Analogue Conversion 1
3 Analogue Conversion 2

4 Analogue Conversion 3

5 Analogue Conversion 4

The high and low range values defines the operational limits
o the input device. Finally, the significant change value
represents the amount analogue input value must change
before the event process is started. Significant change and
range values apply only to analogue input variables.

E.17.4 EVENT DEFINITIONS

Event definitions follow directly after the data
acquisition variable definition. There are two types of
event definitions, one binary type and the other analogue

453

type. The difference is the length of the definition
record. Each event definition is organised as follows:

Element No. contents Description

N EP Data Packet size

N+l Data acquistion address location in data
acquisition store -

N+2 Event type

N+3 Band parameter 1 (analogue only)

N+4 Band parameter 2 n

N+5 Band parameter 3 •

N+6 Band parameter 4 n

The event types are defined as follows:

Value Event Type

1 OFF

2 ON

3 XLO

4 LO

5 HI

454

6 XHI

7 TREND

8 DEVI

9 TDEVI

E.l7.5 ALARM DEFINITIONS

Alarm definitions follow the event definitions. The
order of the alarm definitions is based on the alphanumeric
ordering of the alarm names assigned in the off-line
development software. Each alarm definition is organized as

follows:

Element No.

N

N+1

N+2

N+3

•
•

N'

N'+l

•

contents Description
•

Alarm output code

Persistance value

Number of elements in ON condition Boolean ~~

expression

ON condition Boolean expressions yJ

Number of elements in OFF condition Boolean
expression

OFF condition Boolean expressions

455

The alarm output code is the alarm identification which is
sent to the alarm display package. This code is sent along
with status headers when the Boolean ON or OFF condition
expressions are satisfied. The persistance number is not
presently used.

The Boolean condition expressions are code in reverse
Polish notations with operands being positively sized value
indicating the location of events int the event status
store. Negatively sized values are operators as follows:

Value Operator

-1 NOT

-2 OR

-3 AND

-4 XOR

-5 NXOR

-6 SEQ

-7 TIL

-8 VOT

•
456

,I

E.18.0 AN INTRODUCTION TO SWEPSPEED 11

E.18.1 INTRODUCTION

SWEPSPEED 11 is a multi-tasking user oriented operating
system and language primarily intended for real-time use.
The software was developed by the Central Electricity
Generating Board. Full details of the software package are
given in the SWEPSPEED 11 User's Guide. The language is
suitable for all PDP-II type computers. The software is
based on the DEC RT-II operating system, however in
operation SWEPSPEED 11 appears as a memory resident
independent operating system and high level language. The

SWEPSPEED 11 in the Alarm Handling System is a subset
version, therefore some commands and facilities are not
available as described in the user's manual. Normally a
system is generated by the system manager to meet the
requirements of a particular application. The purpose of
this document is to give a brief introduction to the whole
package. For further details refer to the SWEPSPEED 11
User's Guide.

E.18.2 CONVENTIONS

The SWEPSPEED 11 operating system is comprised of
utilities and system commands. System commands are resident
in memory. Utilities either are in memory or located on the
T058 tape storage and are automatically overlayed in memory
when required. Any command or utility must be prefaced with
a <control-c> character. No system command or utility will
be accepted by the system until the $ prompt appears on the
console. Any entry into the system must be followed by a
<carrage return>. ' Only one utility or command may be evoked
at a time.

Although the SWEPSPEED 11 language resembles BASIC in

457

syntax, care must be taken to insure that the SWEPSPEED

syntax is strictly followed. As with many high level
languages, few error messages are given in response to
syntax errors.

E.18.3 LOG IN AND LOG OUT

SWEPSPEED 11 supports a single user environment with
full user protection facilities. In order to enter the
system a user must LOG in as follows:

LOG IN

1. Enter <control-c> and wait for $ prompt.
2. Enter 'LOG' <cr>. NB. <cr>= carrage return
3. 'name?'; enter your three letter user name then

<cr>.
4. 'password?'; enter your three letter password then

<cr>.
5. You are now logged in.

Once logged on the system responds to <control-c> with the
command j ob dollar prompt. To log out of the system use the
LOG command. only this time reply with a <cr> when prompted
for the user name.

LOG OUT

1. Enter <control-c> and wait for $ prompt.
2. Enter 'LOG' <cr>.
3. 'name?'; <cr>.

E.18.4 OVERVIEW OF PROGRAM DEVELOPMENT

The system is organised into a number of jobs or job
slots. The total number of available jobs is specified by

458

the system manager. Each job contains space for a program
written in SWEPSPEED language. Selected job slots have been
assigned to each user. A user only has access to his own

jobs.

Each job is developed as follows:

1. Preparation of job source.
2. Compilation of job to produce a runable form.

3. Activation of a job.

E.18.4.l Preparation of Job Source

New job programs are entered or existing jobs are
modified through the use of the EDIT utility. The
particular job number to be edited must be specified.
Program text may now be entered. Editing is completed when
terminated with the END edit sub-command. Some syntax
errors are detected by the editor in which case the line is
only displayed up to the point of the first error. The line
must be retyped. Using the NAME edit sub-command gives new

jobs an identification for future reference. Tip: Keep
jobs short!

E.18.4.2 Compilation of Job

Jobs which have been edited or read in from a file on

the TU58 tape unit require compilation before activation.
The EDITor utility actually performs much of this function
itself, however the COMpilation utility completes the
process. During compilation variables are zeroed, data
storage is allocated, and line number references are
checked. The number of the job to be compiled is specified
when ,entering the utility. All jobs which are to be
activated or clock connected must be compiled. If a
compiled job is stored, only the source is saved, that is,

459

when a stored job is reloaded it must be recompiled.

E.18.4.3 Activation of a Job

Compiled jobs may be activated, i.e., run, by using the
system command ACTivate followed by the specified job
number. Jobs can also be controlled by other jobs using the
SWEPSPEED job interaction statements. The stop a job use
the system command STOp followed by the specified job
number.

E.18.S FILE STORAGE AND LISTING

All files are stored on the TOS8 tape unit. There are
two drives in the unit. One tape contains the utility files
and a bootable image of the system. This tape is located in
the left hand drive and is referred to as drive DDO:. It is
important that this tape is not removed during system
operation since user jobs may be corrupted. The user file
storage tape is located in the right hand drive and is
referred to as drive 001:.

Jobs can be stored on the user tape with the SAVe
system utility. The job source code is written to a named
file on the tape store for subsequent use.

Jobs stored on the tape can be reloaded using the
system utility OLD. Only files belonging to the logged in
user can be retrieved.

The DIR system command is used to obtain a listing of
the user tape directory on the console VDU.

The utility LISt is used to obtain a listing of a job
on the console VDU. A printed copy can be obtained by
SAVing a job to device TTl: which is the T43 teletype. Make

460

certain that the TT1: is installed and powered up.

E.18.6 JOB MONITORING

Three system utilities are provided to help users

monitor the execution of their jobs.

1. MONitor. Allows the user to examine variables in a
specific job while the job is running, and if desired,
change the value of the variable. _

2. STAtus. Reports both static information about a
job (such as its priority, etc.) and also reports the
current status of a job. e.g. whether it is running, queued
waiting for a device, idle, or uncompiled.

3. STReam. Allows the user to identify the current
status of a general input/output such as which files are
open and which jobs have access to those files and whether
they are open for input or output.

E.18.7 GLOBAL VARIABLES AND REAL-TIME OPERATION

In many real-time program applications it becomes
necessary for jobs to communicate with each other.
SWEPSPEED 11 supports the use of global variables for this
purpose. Global variables are accessable to those jobs
specified by the system manager. Through the use of global
variables data can be passed from one job to another. For
example see Fig. E.18.1.

Job A obtains process data from plant transducers. The
Retrieved data is placed in global variable G. Job B takes
the data in the global variable G and converts it into
engineering units.

461

The above principle is common in multi-tasking systems.
However, it is important to recognize that when several jobs
are running care must be taken to insure that one job does
not write to a global variable at the same time that another
job is trying to read the same variable. Steps must be
taken to prevent data corruption through the use of flags or
job priorities. (Note that an integer or logical can be
used as a flag since it takes only one machine instruction
to read or write these to a global.) N.B. As the priority
number lowers, so does the priority of the job decrease.

,--_.J_O_B_A_:--~·I G# 1 ---toI1 J 08 8

Figure E.1S.l Use of Global Variables

462

E.18.8 HARDWARE CONFIGURATION

The SWEPSPEED II in the Alarm Handling System is
running on a POP 11/03 supporting several peripheral devices
as follows:

Device Description

000:

001:

A dual drive TUS8 DECtape backing store.

TTO: VT100 VDU used as the system console.

TT1: T43 teletype printer.

TT2: Chromatics display computer.

TT3: Host computer if present.

Media Plant Interface System

The Media plant interface allows the user to output or
input binary or analogue data to or from plant sensors.
This system is accessable through the use of the SWEPSPEED
job MEDIA.SPD located on the system tape drive. The use of
the system is described elsewhere.

E.l8.9 EXAMPLE

First Log in •••••

<ctl-c>
$ LOG
name? ___ <cr>
password? ___ <cr>

463

<ctl-c>
$EDI3
*10 PRINT-THIS IS A TESTl-

* END

<ctl-c>
$LIS3

Job3
10 PRINT-THIS IS A TEST!

End of listing

<ctl-c>
$COM3
Job compiled

o errors
Job space = 888

<ctl-c>
$ACT3
THIS IS A TEST!

<ctl-c>
$SAV3
Save to file? DDl:TEST

done

<ctl-c>
$SCR3

<ctl-c>
$OLD3
From which file? DD1:TEST

done

464

E.l8.l0 SWEPSPEED SYSGEN CONFIGURATION

Included in this section is the SWEPSPEED system
generation required for the correct operation of the alarm
handling system. Refer to the SWEPSPEED system manuals fo~
further details on system generation. The listing
presented here is the SWEPSPEED system generation command
file required to generate the SWEPSPEED system used to
support this alarm handling system software.

465

i
! •
I

1

~';i:.i TT QU.l.E.l
bl:.l USR NUSwl11""
• •

,.. I~~!)AGE

U~Le~1ng o.l.a t1.l.es
",.
l
,.,'::1 ERROR NUNE
O~L~lE/LOG •• SS2,*.MAP,~.TMP,~.OB*
SE. ERROR UAKN1NG

· ·
Lut'{ HMA.M,.:,l. S.il1.MAC Ill,! ,PE.. TI'IP

.... l-,{c.ATE
:,lb I c.rl. iMP

~~C ... UDE REALS,STRINGS,LUU1CA ... S
.l .. I. ... uDE AttS, nUL', Sl&N
• ,.l-...!.JDE XOfo:, roI;(ur.:
.l "l-... uDE t="(Ji(, '~c.'; I
J~L ... UUE ASS.iUN,CLEAR
lr<C,-UilE OCT ~L, l-HAR, LEN, W U.::, POS, SuIll:> I r<
.i,~C ... UDE BITS
H~L ... ULlE lNPUT ,t-'K.WT
,,-IC, ... UDE OPEN, C,-OSE
lNCLUDE RE.AD,WK1Tg
• ,~L ... U[lE SORT
LNc'LUDE CONNECT,[IISCONN£LT,ELAPSE,S'-E.~P,WAKE
~NCLUDE START, ACTIVATE
.. ,"c'LUDE GOSUB,COMPGO
lNl-LUDE TIME,LI~TE,SETTIME,SETDATE ..
... NC. ... UlJE MEM
iNl-LUDE FORf'I~1

,~L ... UlJE JOBUVERLAY
iNl. ... ulJE CGU!)u~,K'::M

-.1 bUVf< Llr.\)
1'c.I" L'e.V llDJ.

466

I
L~~bUU O,~UrLeN=132.
~KlbUO O,~urLeN-IJ2.
L~~tiUD 1,BUfL~N=132.

lN~bUO 2,~ufL~N=132.,T'~~=NUEC~O

I £l"<rlifllAL TTv, iNt'SUU=O, ~'K I Sl!lI=O, wun h"-tiV. ,VDU= 1
Ic~nlfllAL lr~,I~t'YUD=1,t'~lbUU=O,IREb=1~o520,IVEt_~Lu
1~~nlNAL Tr~,IN~bUU=2,t'KlbUU=O,IR~b-IJ~5~O,IVEt.~~u

, 1~~nlNAL 1)~,~rtt'~UU=2,t'~lauu=O,IM~u=L/~~lO,lVEL-~~u

i' ILc":!:>=4 .

. AJB NllMSE:R=-l, Si.ZE:=200v, I~Hli~=JOlll , OWI~~rt=GOD, PRI OKJ.= 1 00, PkOl Et=-lO
"t'K1V1L=GW,FL,~O,NF,Aa,Uu,UI,MP,Jl,&S,MR,MW>
JU~ SlZE=l~vv,t'RIUIL=*

JOB SIZE=lOvv,t'RIVIL=*
JO~ SIZE=lOOu,t'HIVIL=*
JU~ SIZE=10vU,t'KIVIL=*
~JH SIZE=~Oo,PRIVIL=*
JU~ SlZE=~OU,t'MIVIL=*
_'\It< SIZE=500 ,PHIVIL=*
JU~ SIZE=500,PK~VIL=*
JOB SIZE:=500,PRIVIL=*
JuB SlZE=500,PK1VIL=*
~OB SIZE=200,PHIVIL=*
JU~ SLZE=20v,PKIVIL=*
JJB SIZE=20U,PRIVIL=*
~Ub SLZE=lOv,t'KIVIL=*
..IJ~ ; JoO,;, Wl. t.h no ;;'J..uce allocat,Hl
JoJ'"
•• t.! S
JUb

~J1J8

ub~H NAME=GuU,PASSUORD=&bD,t'RIORIT)=32766,PROTECTION=127,PKlvLLE:GE=
Ub~rt NAME=N~1,t'K!ORIT)=IVU,t'ROTECTIUN-10-

"t'KIVILEG~=uU,FC,FO,NF,~O,OU,DI,MP,JI,GS,MR,MU,SM,GC>
L1bt:.r<
tJSd~

u!:>t:.t(

'.I..

" (.r-<EATE

467

F lL.ER. HIP
I,'I'LUP 1=0

• •
r{ MACRO
F1L.~R.OB2=MCTYPE.TMP,FILER.TMP,FILER
At;
I •
l!rlS
• •
"L.S1GEN
• •
~U~) M1NERH.~lB MINERR.U~2

" r .. O:S(-'tGE
f-I.LJ aoneL

I t. nt.

468

E.19.0 HARDWARE CONFIGURATION

Described in this section is the configuration of the
PDP 11/03 computer. This includes details of the hardware
setup of inputs/output cards. memory organisation, boot
strap location, etc. For operational and further details
refer to Digital Equipment Corporation publications.

E.l9.l PDP 11/03 PARTS

The processory, memory, device interface, backplane,
and interconnecting hardware are all modular in design.
Module selection, such as the type and size of memory and
device interfaces, enables custom tailoring to meet specific
application requirements. Following is a summary of the
modules used in the alarm handling system PDP 11/03.

1) PDP 11/03 LSIll CPU M7264 with 4K RAM

2) One KEVll, Floating point arthimetic chip

'3) One MSVIl-C, 16K word MOS Read-Write memory M7955

4) Two MXVll-AA, Dual asynchronous serial line interfaces
with 4K word RAM memory and optional ROMs M8047

5) One DLVll, Serial Line Unit M7940

6) One Media Plant Interface Bus extension module

7) One H780-J, Master PDP Power Supply

8) One H9270, Backplane Assembly with logic cabinet

469

E.19.2 LSI PERIPHERIAL CONFIGURATIONS

Oevice I/O Module Address Vector Function

TTO: MXVllAA J2 177560 60 VDU console

000:/001: MXVllAA Jl 176500 300 TU58 Tape Orive

TTl: MXVllAA J2 176520 310 T43 Printer

TT2: MXVllAA Jl 176530 320 Chromatics

TT3: OLVll 175610 330 Host Link

Oevice Tx / Rx Interface
Baud Rate Type

TTO: 9600 RS232

,000:/001: 9600 RS232

TTl: 300 RS232

TT2: 9600 RS232

TT3: 9600 20MA Active Tx, Pasive Rx

All serial communication lines have the following bit
pattern:

No parity, 1 stop bit, 8 data bits

470

Link

t"l
•

m ~ m ~ IT] ~ ~ ~
'ID
•

/7 ,~ '''I '20 7./ '2.'2. 'l.3 U!D
w

= -)

C8 CD m IT] ~ []8 w w Cl =
-z-i "'l!>' '2) "1.9 "2e; 3c. "', t"

g;;
tI

C8 ~ W GJ ~ G8 m G1J g;;

~l,. 33 "3'" 3S" 3'- '17 30;. ~"i • ~ z
n

C8Q ~ I % I ,,,,,,,pr-nr I ACcvr I ~
<rO '" I

..... l... 't"l y~ ::cl

~ ...
-.I
..... Ff20Nr "rE~

tI
>
n = g;;
Z

I-~-- -I: /Ji.""A./O /tt.~ ,.,_iJU Ol! ,(.1Nl. Tr#"I t"l

f/'I£o~ b/l7:vt£ t:~.4N'" ~~

t"

,y",-6t ~
ffi
f3
{/)

E.20.0 LISTINGS AND IMPORTANT FLOWCHARTS

472

HAME PO\!4
10 REM "POUERUP VER 4"
20 ON ERROR GO TO 100
100 REM "R"
110 FOR 1=2 TO 20\ STOP 1\ NEXT I
120 PROMPT uDAY =. INPUT Dl
130 PROMPT "KONTH = " INPUT 02
140 PROMPT "YEAR =" INPUT D3
150 PROMPT "HOUR =. INPUT Tl
160 PROMPT "MIN =. INPUT T2
170 SETDATE Dl.D~.D3
180 5ETTIME Tl.T2.0
190 CONNECT 15 EVERY 1 SECS
200 CLEAR 11(0).01(0)
210 FOR 1=0 TO INT(lAI(10»\ %EI(I)=-1.00000E+06\ NEXT 1
220 'F91=FALSE
230 CH(I)=48\ ?VM(I)=FALSE\ START 10
240 START 4
250 PRINT "LOG IN & ACTI4"
END of l1shn~

473

HAHE DISP4
10 REH "DISPLAY DRIVE VER 1 •• "
20 RE.II "SETUP"
23 START 13
25 1F5.=TRUE
30 0=7
40 01=2
50 02=7
60 H=10
70 "'=5
100 REH "RUN"
105 GOSUB 950\ GOSUB 200\ IF '0 GOTO 105
110 IF NOT1N. GOTO 115\ SH='NI\ 'N"="U\ 'N"=FALSE\ GOSUB 200
115 IF NOT'Hl. GOTO 120\ 'N=SH1.\ 'Hl.=FALSE\ GOSUB ~OO
120 ?F5"=FALSE\ STOP
200 REM "SEL FUNC"
210 Ll=LEN(SNI\ IF Ll=O GOTO 240
215 IF Ll=1 AND SN="L" GOTD 990
220 A=VALUE(SUBSTR(SN.l,ll)
230 GOSUB(300.350,400.450.500,550IA
240 RETURN
300 REH "AL OFF"
310 'T=FALSE\ GOTO 370
350 REH "AL ON"
360 'T=TRUE\ GOSUB 700
370 C=VALUE(SUBSTR(SM,2,311\ 'H=SM\ GOSUB 850\ GOSUB 800\ RETURN
400 REH "VTl 00"
405 SH=SUBSTR(SN.2,Lll\ PRINT '"
410 RETURN
450 RE" "CHROH"
455 'H=SUBSTR(SN.2,Lll\ GOSUB BOO\ RETURN
500 RE" "TT1:"
505 RETURN
510 OPENDUT @T:"TT1:DU"KY"
520 'H=5UBSTR(SN.2,Lll\ PRINT ~T:SH
530 CLOSE @T:\ RETURN
550 RE" "g.
555 'H=5UBSTR(SN.2.Lll\ GOSUB 900\ RETURN
700 PEK "BEEP"
710 'H=·060500·
720 GOSUB 900\ RETURN
800 RE" "CHROHOUT"
810 IF 'HC)"" GOTO 820\ RETURM
820 IF NOT1". GOTO 830\ ELAPSE 2 lICKS \ GOlD 820
830 'HI='H' 'HI=TRUE\ RETURN

474

850 REM -MEDIA-
8SS IF CIIMI)<=O GOTO 860\ START M\ ELAPSE 2 TICKS \ GOTO 85S
860 'VIIKI)=!T\ CIIKI)=C\ START M' RETURN
900 REM "OUT 0-
905 IF "DD(IIIOI)+I.SII)<>OIIOI) GOTO ~15
910 START 0\ PRINT "DIS 0 UAITING'"\ ELAPSE 2 TICKS \ GOTO ~05
915 1#IOI)="ODIII101)+I.SII)\ L=IKIOI)+SI'~OI\ SOIIL)=SM' START 0\ RETURN
950 REM "IN 0"
955 IF "ODIOI(02).31.)="ODIIII02),3111 GOTO 970
960 'O=TRUE\ 08(02)="ODIOII02)+1.511)\ L=0'IQ21+S11~Q2\ SN=$O#ILI\ RETURN
970 ?O=FALSE\ SN=""\ RETURN
990 S"="X"\ GOSUF 800\ STOP 13\ OVERLAY .ERR=995:"DDO:LOAD2T" INTO 2."R"\ STOP
995 PRINT HOVE ER"' SN=""' GOTO 10 -
DIM SN=20, $H=20
DIH $N#=20. 'M8=20, '"'1=4
END of 11stlng

475

•

NAME TALK3T
10 REM "11/H OUT VER 1.3"'
20 REM "SETUP"
30 02=5
35 ON ERROR GD TO 800
40 OPENOUT @T3:"TT3:DUHHY"
100 REM "RUN"
110 GOSUB 950\ IF SN<>"" GOTO I~O\ CLOSE @T3:\ STOP
120 PRINT 2T3:SN:
121 PRINT "T"\ GOTO 100
151 SN=SUB5TR!SN.l.LEN(SN'-I'\ PRINT "TALK =":$N
160 GOTO 100
BOO RE" "ERROR"
810 CL05E @T3:\ GOTO 10
950 RE" "IN 0"
955 IF MOD(0*(02'.Sl~)=MOD(I"(02"SI~ GOTO 970
960 ON(02'=MOD(01(02'+1,51I'\ L=ON(Q: ~51#*02\ fN=$OI(LI\ RETURN
970 SN=""\ RETURN
DIM $N=20
END of l1shng

476

1

HAHE KBDRJ6
10 REM "KEYBOARD DRIVER VER 1.6"
20 REM "SET UP"
30 "=10
40 "'=2
50 0=7
60 01 =1
70 02=6
100 REM ·SCAN KEYS·
105 1=145
110 Cllltll=I
115 START M
120 IF C#IHll)O GOTO 115
125 IF VMIM1)=O GOTO ~50

130 V=VMlltl1
135 FOR J=O TO 11
140 IF BITIJ.VI GOTO 250
145 NEXT J
150 FOR 1=161 TO 185 STEP B
155 CMIHll=I
160 START"
165 IF CMlltll)O GO TO 160
170 IF VMlltll=O GOTO 195
175 V=VMIHll
180 FOR J=O TO 7
185 IF BITIJ.VI GOTO 250
190 NEXT J
195 NEXT I
200 RE" ·POLL LAP.SE"
210 ELAPSE 5 TICKS
215 GOSUB 950\ IF SN="" GOTO 220\ K=O\ SFI!O)=SN\ GOSUB 400
220 GOTO 100
250 REH ·UITCH KEY'
255 C=J+J
260 IF C)=145 AND C<=154 GO TO 280
265 IF C>=161 AND C<=189 GOTO 290
270 1=0\ RE" "NO KEY"
275 GOTO 100
280 r.=C-l44
2BS GOTO 300
290 K=C-160+10
300 PEM "KEY COHT~OL·
305 GOSUB 350
315 IF NOT'" GOTO 330

477

I
I
!

320 GOSUB 575
325 GOTO lOO
330 GOSUlI 400
335 GOTO lOO
350 REil "CK IIASK"
35S IF ?IIIK' GOTO 370
360 ~II=FALSE

365 RETURN
370 ?II=TRUE
375 RETURN
400 REH "FUNCTION"
405 IF SFI(K'<>"" GOTO 415
410 RETURN
415 P=I
420 GOSUB 780\ P=P+2\ LI=LEN(SFI(Y.)'\ IF,P>LI OR T(=O GO TO 410
430 GOSUBI 500.SI0.530.550.570.590.6~S.645.700.720,790.790.790.79OIl
440 P=P+2\ IF P>LI GOTO 410
445 GOTO 420
500 REil "IIASK"
505 GOSUB 7S0\ ?IIIT'=TRUE\ RETURN
510 REil "UNHASK"
515 GOSUB 780\ !H(T'=FALSE\ RETURN
530 REil "ON"
535 GOSUB 7S0\ IF T>=49 AND 1(=60 GOTO 540\ RETURN
540 5=T-48\ ?SI5'=TRUE
545 ?VMIIII,=lRUE\ CMIIIII=T\ START 11\ RETURN
550 REil "OFF"
555 GOSUS 780\ IF T>=49 AND T<=60 GOTO 560\ RETURN
560 5=T-48\ !SISl=FALSE
565 !VMllll'=FALSE\ Clllll,=T\ START 11\ RETURN
570 REil "BEEP"
572 GOSUS 780
575 IF NOT!SIII) GOTO 585
580 RETURN
58S ~=O\ GOSUB 600\ ELAPSE I lICKS \ GOSUB 610\ RETURN
590 REil "CLEAR"
595 GOSUB 780\ GOTO(596.597.5981T\ RETURN
596 CLEAR 111(0)\ RETURN
597 CLEAR ?5(01\ FOR T=48 TO 60\ GOSUS 565\ NEXT T\ RETURN
598 G05UB 596\ GOTO 597
600 REil "BEEP ON"
605 ?Vllllll=TRUE\ CI(lIll=S9+X\ START 11\ RETURN
610 REil "BEEP OFF"
615 ?Vlllll'=FAL5E\ CI(KI)=S9+X\ START 11\ RETURN
625 REil ·SEND"
626 GOSUS 780\ GOSUB(632.633.634.635.640.641.642.643)T\ RETURN
630 GOSUS 900\ SB1=""\ RETURN
632 SIt=STW(K)+CHAR(13)\ RETURN 630
633 SH=sTM(K)+CHAR(27)\ RETUR~ 630
634 SIt=STI(K)\ RETURN 630
635 L2=LEH($TM(K')\ IF L2{3 GOTO 638\ IF B(}O GOTO 636\ tBl=tTM(Kl\ GOTO 637

478

636 SBI=SUBSTRISTMIK),3,l2)
637 SB=SB+SBI\ B=B+I\ PRINT SBI:\ RETURN

" 638 RETURN
640 SH=SB+CHAR(13)\ SB=""' B=O' RETURN 630
641 SH=SB+CHAR(27)\ SB=""' B=O\ RETURN 630
64Z SH=SB\ SB=""' B=O\ RETURN 630
643 SX=CHAR(6)' IF B)=I GOTO 644' SB=""' B=O\ PRINT SX:\ RETURN
644 F=B-I' SF=SUBSTRISB,I.lENISBI-II\ PRINT 'X:\ RETURN
645 REH "HOlP ON"
650 GOSUB 780\ IF T~=46 ANP T<=60 GOTO 655\ RETURN
655 IF T>=48 GOTO 660\ GOSUB 545\ GOTO 665
660 GOSUB 540
665 CftIHI1=C _
i70 START H\ ELAPSE 2 TICKS \ IF CftIHl))O GOTD 670\ IF 'VIIH1) GOTO 665
675 IF T>=48 GOTO 680\ GOSUB 565\ RETURN
680 GOSUB 560\ RETURN '
700 REH "TOGGLE"
705 GOSUB 780\ IF T)=49 AND T<=60 GOTO 710\ RETURN
710 S=T-48\ IF NOT'SIS) GOTO 715\ GOSUB 560\ ELAPSE 10 TICKS \ RETURN
715 GOSUB 540\ ELAPSE 10 TICKS \ RETURN
720 REH "SET'
725 GOSUB 780\ GOTOI 730,731.732,733)T\ RETURN
730 ASSIGN ?Hlll)=T,T,T,T,T\ RETURN
731 ASSIGN ?HIII)=F.F,F,F,F\ RETURN
732 FOR T=49 TO 58\ GOSUB 545\ NEXT T\ RETURN
733 FOR T=49 TO 5S\ S=T-48\ IF NOT'SIS) GOTO 734\ NEXT T\ RETURN
734 GOSUB 565\ NEXT T\ RETURN
780 REH "GET FUNC·
785 ST=SUBSTRISFftIK).P.P+I)\ T=VALUEIST)\ RETURN
790 RE" "END"
795 RETURN 410
900 RE" ·OUT O'
905 IF HOOIIIIQ1)+I.SII)<>01101) GOTO 915
910 START 0\ PRINT "KB 0 UAITING"\ ELAPSE 2 TICKS \ GOTO 905
915 IftIOl)=HODIIIIOI)+I.S11)\ L=IIIOI)+Slft~OI\ SOlll)='"\ START 0\ RETURN
950 REH "IN O'
955 IF "00101(02),SI')=HODII8102).SI.) GOTO 970
960 01(02)=HOOIOII02)+1.51.)\ L=OM(02)+SIW*02\ $N=SOIIL)\ RETURN
970 SN="M\ RETURN
DIH 1H(40), 15(12)
DI" SN=20, SH=20, ST=2, $91=4, SB=20, SX=I
01" $rll~O)=20, ST8(40)=20
ENIt of hshng

479

HAnE EP6
10 REM "EVEN. PROC VER 1.6"
20 RE" "SETUP"
30 ?F2M=TRUE
40 H(0)='034614\ H(I)='000143
50 A-6
60 ?X=FALSE
100 REM "FIND CHANGES"
105 IF ?PM GOTO 110\ IF ?X GO TO 107\ ?F28-FALSE\ STOP
107 'EM-TRUE\ 'F2M-FALSE\ IF 1F91 GOTO 108~STOP
108 START A\ STOP
110 ?DM-FALSE
120 FOR 1=0 TO INT(ZAM(9»
I~S IF Pll(I)=O GOTO 150
130 FOR F-O TO 15
135 IF NOTElT(S.D1M(I)l GDTD 140\ E-16'I~B\ BIT(B.D1M(I)l=FALSE\ GOSUB ~OO
140 NEXT B
150 NEXT I
155 GOTO 105
200 REM "CHANGE"
210 l-INT(ZAM(7»
220 FOR Jl-1 TO INT(ZAM(10»
130 Dl=l+l\ J-Jl-l
240 IF INT(ZAI(Dl»<>E GOTO ~50\ GOSUB 300
~50 l-INT(%AM(L»+l\ NEXT Jl\ RETURN
300 RE" "EX CHANGE"
310 D-L\ D2=D+2\ D3=D+3\ D4=D+4\ D5'-'5\ D6=D+6
315 GOSUBI 325.340.400.400.400.400.S'O.600IIN'(%AI(D2»
320 RETURN
325 RE" "BINARY"
330 ?E=lOGIC(INTI%DM(E»)
335 IF 'E XDR BIT(J.EI(O» GOTO 33B' RETURN
33B GOSUB 800\ RETURN
340 RE" "BINARY lNV"
345 1E-lOGIC(INTIZDIIE»)
350 IF NOTTE XOR BITIJ.EIIO» GOTO 355\ RETURN
355 1E=NOT1E\ GOSUB 800\ RETURN
400 RE" "ANA"
410 N-l\ Nl-D3
420 IF %AM(Nl»%DI(E) GOTO 440
430 Hl=Nl+1\ H=N+l\ IF N()5 GO TO 420
440 GOSU~ 900
455 IF 'E NXOR BIT(J.EI(O» GOTO 460' GOSU! BOO
460 RETURN
500 REM "TREND"

480

510 N=I\ NI=DJ
520 IF XAIINI)}XD21IE) GOTO 540
530 NI=NI+I\ N=N+I\ IF N()S GOTO 520
540 GOSUB 900
550 IF 1E NXOR BITIJ.EWIO)) GOTO 560\ GDSUB BOO
560 RETURN
600 REH "TIHE OUT"
610 RETURN
800 RE" "E CHANGE"
801 PRINT "H":N."LO":LO.?E,"J":J
805 ?X=lRUE\ TIHE TIO)
810 %1=60.0.FLOATCTCOI)~FLOATC60*lCI)~TC2))
915 IF ?E AND HOTBITCJ.EMCO)) GOTO S~5

820 BITC J.EMCO))=FALSE\ %EMCJ)=-I.OOOOOE~06\ GOTO 830
825 BITC J.EBCO))=TRUE\ %EMCJ)=%T
830 RETURN
900 REH "HYSTERESIS SUB"
908 IF EINCJ)<>O GOTO 910\ EIMCJ)=N
910 IF EIIIJ)=N GOTO 980
920 LO=CEIIIJ)-I)t5+N-I
950 IF BITCLO,HIO» GOlD 960\ ?E=FALSE\ GOTO 970
960 ?E=TRUE
970 ElftCJ)=N\ RETURN
980 !E=BITIJ.EICO»)\ RETURN
DIM HIll. 1(2)

END of llShn9

481

/lAHE AG6
I PRINT "AG"
10 RE" "ALARH GENERATOR VER 1.6"
20 RE" "SETUP"
30 'FJ~=TRUE
40 F=2
lOO RE" "RUN AG"
10S S=INTI%Atlll»
106 IF S=O GO TO 160
110 D=INTI%AWIS»
115 FOR 1=0 TO 5-1
120 Dl=D+I\ D2.D+~\ D3=D+3
lZS Z=INTIZAW(D2»
130 21=D2+Z+1\ ZI=INTI%AMIZI»
135 IF ~IT(I.G~(O» GOTO 140\ GOSU~ 200\ GOTO 145
140 GOSU~ 300
145 GOSUe 500
150 0=2+21+4+D
155 NEXT I
160 'F3M=FALSE
165 STOP
200 REH ·CK FOR ON"
205 IF Z<>O GOTO 210\ RETURN
~10 FOr. K=1 TO Z\ J=D2+1
220 GOSU9 400
230 NEXT K
240 RETURN
300 RE" "CK FOR OFF"
305 IF ZI<>O GOTO 310\ RETURN
310 FOR K=I TO ZI\ J=ZO+1
320 GOSUB 400
330 NEXT K
340 RETURN
400 RE" "PROCESS EXP"
405 P=O
410 R=INTI%AI(J»
415 IF R<O GOTO 420\ P=P+I\ 'SIP)=BITIR.EMIO»\ GOTO 425
420 GOSUB 600
425 RETURN
500 RE" ·Cr. RESULT"
505 PRINT ·cr. AG"
510 Ir BITI1.61(0» UXOR 'SIP) GOTO 540
520 'GM=TRUE
530 BITC !.GMCO)I='SCPI
535 GOSUB 700

482

540 RETURN
600 RE" "BOOl OP"
610 R=ABSIRI\ Pl=P-l
620 GOTOI 630.640,6S0.660IR
630 TSIP)=NOT!SIPI\ RETURN
640 ?SIP1)=?SIP1) OR ?SIP)\ P=Pl\ RETURN
650 'SIP1)='S(Pl) AND 'SIP)\ P=Pl\ RETURN
660 ?S(Pll='S(Pl) XOR 'S(Pl\ P=Pl\ RETURN
700 REM "OUT"
705 PRINT ?S(P)
710 IF ?S(P) GOTO 7Z0\ SA="I"\ GOlD 730
720 SA="2"
730 IF N01?M1M GOlD 740\ SlART 8\ ELAPSE 2 TICKS \ GOTO 730
740 ~"'M=$A+DECIMAL(INTI%AI(D»)\ 'MII~TRUE\ START B\ RETURN
DIM !S(ZS)
DIh $A=I
EN1I of 11 sh n9

483

NAME OMN4
10 REM "0 MANAGER VER 1.4"
20 REM "SETUP"
JO Z,,~

40 SII=7
50 ASSIGN J(5)=3.4.2.S.17
100 REM "SCAN OUT O'S·
110 ?T=FALSE
120 FOR 0=0 TO Z
130 IF HODIO#IO).SII I =NODIIIIO).51ft) GOTO 150
140 GOSUB 300
150 NEXT 0
160 IF ?T GOTO 110
170 nor
300 REK "GET DATA & DEV NO"
30S ?T=TRUE
310 0110'=KODIOIIO)+I.SI3)
320 L=OMIO)+51M*O
330 S~=SO'IL)\ S=LEHISN)\ IF 5)1 GOTO 340\ RETURN
J40 SA=SUBSTRISN.l.2)
350 01=VALUE(SA'\ IF 01>Q GOTO 355\ $~=SUB5TRI$H.3.5)\ GOTO 400
355 01=5
400 REK ·XFER D~TA·
405 IF 01)=5 GOTO 410\ RETURN
410 IF MODIIIIOI)+I.SII)<>OIIOI) GO TO 500
420 ~EK "0 FULL"
430 START J(01)
440 PRINT "O-":OI:"UAITINGI·
450 ELAPSE 20 TICKS
460 GOTO 400
500 REK ·0 NOT FULL"
510 II(01)=KODIIII01)+I,SII)
520 l=IIIOI)+SII.01
530 SO.ILl=SN
540 IF J(01)()8 GOTO 5~5\ UAKE J(01)\ GOTD 550
545 START JIOI)
550 RETURN
DIM J(~O)

DIM SN=20. SA=2
DIM 1#110). 01(10)
DIM $011701=20
END of 11 sh n9

484

, "

NAME DAIS
10 REM "DATA Aca VER I.S"
20 REM "SETUP"
:!5 'F4I=TRUE
30 "=10
40 "1=3
50 0=7
60 01=3
70 02=8
80 El=5
99 POINT=O
100 REM "RUN DA"
105 IF POB=O GOTO 170
110 fOR 1=1 TO PO.
111 PGINT=POINT+l\ PRINT POINT
115 D=12+(I-l)'6\ C=O
120 Dl=D+1\ D2=0+2\ D3=[I+3\ D4=Df4\ D5=[I+5
125 !F=fALSE
130 X=INT(%Aft(D»
135 REM "ASK DEVICE"
140 GOSUB(200.:!50.300,350)INT(%AN(Dl»+1
145 If C<O GOTO 160
150 REil "TYPE"
155 GOSUB(600.610.630.650lINT(%AB(D2l)+1
160 NEXT I
165 IF NOT'f GOTO 170\ 'D8=TRUE\ START El
170 'F4N=fALSE

" 171 GOTO 100
180 STOP
200 RElI "MEDIA"
210 CN(lIl)=X
21S START lI\ If CM(lIl»O GOTO 215
220 C=CM')!I)\ 'D=?VM(Hll\ %D=%VBIM1)
225 RETURN
250 REil "11/34"
255 SL="10"
260 GOSUB 500 _
265 GOSUB 950\ GOSUB 700\ RETURN
300 RE)! "TT1:"
305 $l="04"
310 GOSUF 500
320 GOSUP 950\ GOSUB 700\ RETURN
35(,
3S~

500

REil "EMPTY"
C=-!'. RETURN
RE)! "OUT CODE"

485

505 $T=DECI"ALIINTIXAMID»)\ T=LENIST)
515 S"=1L+$T+CHAR(13)
520 GOSUS 900\ RETURN
600 RE" "BINARY"
605 GOSUS BOO\ RETURN
610 RE" "BINARY INV"
615 !D=NOT!D\ GOSUB SOO\ RETURN
630 RE" "ANA I"
635 GOSUS 750\ RETURN
650 RE" "ANA 2"
655 GOSUS 750\ RETURN
700 ~E" "ID.'O"
705 $0="."\ N=LENISN)\ IF N()O GOTO 707\ C=-I\ RETURN
707 Nl'POSISD.$N)\ IF Nl()O GOTO 710\ 7D=LDGICIVALUEI5UBSTRISN.N.N»)\ RETURN
710 ID=FLOATIVALUEISUBSTRISN.H-3.N»)tl.00000E-04\ RETURN
750 RE" "C~ RANGE"
755 IF %D)%A8ID4) OR 10{IAftID3) GOTO 765
760 GOSUB 850\ RETURN
765 PRINT "RANGE CK":X\ RETURN
800 RE" ·UP DATE DIG D"
805 N=I-l
810 IF LOGICIINTIIDIIN») NXOR .D GOTO 815\ %DftIN)=FLOATCINTI1D»\ BITI N.OlftIO)
815 RETURN
850 RE" ·UPDATE AN 0"
355 N=I-I
860 IF ABSI%D-IDftIN»(XAIIDS) GOTO 865\ 'F=TRUE\ BITI N.DIIIO»=TRUE
a6S %DlftIN)=%D8IH)\ %DIIN)=%D
870 :D2#IN)=I%O-IDftIN)+ID21IN»/~.0
975 RETURN
900 RE" "OUT 0"
905 IF "ODIII(01)+I.S1.)(>08101) GOTO 915
910 START 0\ PRINT "DAI 0 UAITING'"\ ELAPSE 2 TICKS \ GOTO 905
?IS 11(01)="ODIIIIOI)+1.51.)\ L=IIIOI)+SI"~OI\ SQIIL)=$K\ START 0\ RETURN
950 RE" "IN 0"
955 IF "ODIOIIQ2),511)="ODIII102).SII) GOTD 970
960 0#(02)=MOD(OIIQ2)+I.Sl.)\ L=0#(02)+SI#l02\ SN=SOIIL)\ RETURN
970 SLEEP \ GOTO 955
DIM SL=2, $T=3, SH=20, SD=I, SN=20, SA=B, SB=B
EHD of listing

NAHE DACOH2
10 REil "DA CONTROllER VER I.Z"
20 REil "SETUP"
30 D=B
100 REH ·SELECT SCAN GROUp·
110 A=O
120 TIIIE HO)
130 T=T(2)
140 IF IIOD(I.60)=0 GOTO ISO
150 IF IIOD(T.15 1=0 GOTO 190
160 IF MOD(T.5)=0 GOTO 200
170 S=I\ GOTO 300
180 5=4\ ?F9#=TRUE\ GOTO 300
190 S=3\ GOTO 300
ZOO S=:!\ GOTO 300
300 REil ·SET HAX ADDRH
310 FOR 1=3 TO S~2
320 A=INT(%A#(I»)~A
330 NEXT I
340 PO#=A
350 START D
360 ELAPSE 30 TICKS
370 TItlE I(0)
380 IF NOT?F4~ AND TC)T(21 GOTO 100\ ELAPSE 2 TICKS \ GOTO 370
DIH 1(2)
ENI' of llsting

487

NAME LISH2T
10 REM "11/34 IN VER 1.2·
20 REil "SETUp·
30 0=7
4~ 01=0
50 ON ERROR GO TO 800
60 OPEN IN ~l3:·TT3:DUMHY"
100 REil "LISTEN LOOP"
110 INPUT @L3:$M
I11 PRINT al·
120 IF $11:·· GOTO lOO
130 GOSUB 900
135 $11=0"
140 GOTO 100
SOO REil "ERROR"
810 CLOSE @l3:\ GO TO 60
900 REil ·OUT O·
905 IF HOD(II(01)+I.SII)()03(Ql) GOTO 915
910 START 0\ PRINT "LIS 0 UAITI~G"\ ELAPSE 2 TICKS \ GO TO 905
915 In(OI)=HOD(II(OI)+I,Sln)\ L=ln(OI)+SI#*OI\ 10n(L)=$M\ START 0\ RETURN
DIll $11=20
END of llsting

488

NAHE HEDIA6
5 REM "HEDIA DRIVER VER 1.6"
10 REM "FIND DEV"
15 'FlI=TRUE
20 FOR 1=1 TO 5
25 'E=FALSE
30 IF CMCII,=O GOTO 45
35 C=CtCII\ V=VDCII\ ZV=XVMCII\ 'V=?V#CII
40 GOSUS 100
45 NEXT I
50 'F1#=FALSE
55 STOP
100 REM "SELECT 1/0"
105 IF C=144 GO TO 550
110 IF C(16 GOTO 200
115 IF C=16 GOTO 300
120 IF C<SI GOTO 400
125 IF C{97 GOTO 160
130 IF C<129 GOTO 500
135 IF C(144 GOTO 160
140 IF C(161 GOTO 600
145 IF C<193 GOTO 700
160 PRINT "~ON-EXISTENT MEDIA lIe ERROR"\ PRINT \ CWCII~-I\ RETURN
165 ?VICII=?V\ XVMCII=XV\ VDCI)=V
170 IF NOT'E GOTO IBO
175 CDCII=-2\ RETURN
180 CDCII=O\ RETURN
'200 REM "AOV&AOI"
205 IF %V<O.O OR %V)I.O GOTD 215
210 V=INHFLOAH'OOI777)'I%V) ,
212 V2=0\ FOR J=O TO 9\ J6=J+6\ BITI J6,V21=BITIJ.VII\ NEXT J
213 HEMI'160000+C*21=V2\ GOTO 165
215 PRINT "HEDIA ERROR AO=";ZV\ ?E=TRUE\ GOTO 165
300 REH "UD"
305 V=MEHI'1600361\ GOTO 165
400 REM "DO'
405 C=C-17
410 BIT I C.A(OII='V
415 FOR J=O TO 3\ HEH('160040+J*21=AIJ'\ NEXT J
420 GOTO 165
500 REM "AI"
505 C=C-97\ 'V=FALSE\ V-O
510 IF C"5 GOTO 520
515 MEHI'160052)=C\ ELAPSE 3 TICKS \ Vl-MEH('160054" GOTO 560
520 C=t-16

489

525 "E"I'160056)=C\ ELAPSE J TICKS \ VI=HEHI'160060)\ GOlD 560
5S0 VI="EHI'1600601
560 V=O
570 FOR J=O TO 9\ J6=J+6\ BIT I J.V)=BITIJ6.VI)\ NEXT J
580 IV=FlOATIV).9.76563E-04
590 GOTO 165
600 RE" ·DI"·
60S C=C-145\ IV=O.O
610 V=HEHI'160066)\ FOR z=o 10 15\ BIT(:.V)=N~TBIT(Z.V)\ ~[XT 2\ ?V=BIT(C.VI\ GOTO
700 RE" "DIF·
705 C='-161\ IV=O.O
~IO GOTO(715.720.7~S.(30)IC/8)+1

71S V=HE"('160070)\ GOTO 735
720 V=MEHI'16007~)\ (=C-8\ GOTO 735
725 V=HEM('1600741\ (=.-16\ GOTO 735
:30 V=HEH('160076)\ C=(-24
735 U=IV-'OOO3(7)\ V=O\ FOR z=o 10 7\ 21=15-2\ BITI Z.V)=BIIIZ1.U)\ NEXT 2\ ?V=BITIC
740 GOTO 165
DIH A(l'
DIH CIIS). VI(S)
DIM 'VIISI
DI" IVX(SI
END ot hsting

490

NAKE HElTHt
to REM -HEALTH CHECK VER t.t"
t5 REM .-
20 TIME HO)
30 OPENOUT @T:-TT1:DUKKY-
40 PRINT @T:"TIKE =":T(0);":";T(I):":":T(2)
50 CLOSE eT:
60 ?VI(5)=TRUE\ GOSUS 6S\ GOTO 100
65 FOR I=S9 TO S9
70 ellS)=I
80 START 10\ ELAPSE 2 TICKS \ IF CM(S»O GOTO 80
90 NEXT I
9~ RETURN
100 ELAPSE 30 TICKS
110 'V~(5)=FALSE

120 GOSUF 65
DIH H2)
END Df hstlnq

491

. ':

HAHE CHROII.
10 REH ·CHR~HATICS LINK VER I .• •
20 REH ·SETUp·
30 D=2
~O ON ERROR GO TO 300
50 CLOSE @DI:\ CLOSE @D2:
100 REH "RUN·
10S OPENIH @DI:"TT~:DU"IIY·
110 OPEHOUT @D2:·TT~:DU"IIY·
200 INPUT @Dl:SN
210 IF SN="*" OR SN=·· GOTO 240
220 IF ~OT'N. GOTO 230\ START D\ ELAPSE ~ TICKS \ G~TO ~20
230 SNN=SH\ 'NN=TRUE\ START D
240 IF !Hft GOTO 250\ PRINT @D2:·"' GOTo 200
2~0 fM=SMI\ PRINT @D2:SHft\ $M~=··\ ?Mft=FALSE\ GOTO 200
300 RE" ••
310 CLOSE @DI:\ CLOSE eD2:\ IF SH='X· GOTO 320\ GOTO 100
320 STOP
DIH SN=20. 5"=1
END of l1shng

492

1-,
I

NAKE COltAH2
10 REil ·AHS COItMANDS VER 1.~·

~O REil "SETUp·
30 ASSIGN SC(O)··ED·.·TI ... ·RE ... ·ST·."RU",·X·
100 REM "RUN·
105 C=O\ PROMPT "I.· INPUT $N
110 FOR 1=0 TO 5\ IF fN·SCII) GOTO 1~0\ NEXT 1\ GOTO 130
1 ~O C=I H\ NEXT I
130 GOSUBt 200.~SO.300.3S0.400.450)C

140 GOTO 100
200 REil "ED"
210 STOP :.~.12
220 OVERLAY .ERR=SOO:"DDO:EDIT" INTO 2,"R"
230 STOP
::50 REil "TI"
260 TIME TIO)\ DATE DIO)\ PRINT DIO':"'":Dll':"'":DI2'.TIO):":":TII':":":TI2)\ RETURN
300 REM "RE·
310 START 1\ STOP
350 REM "ST"
360 STOP 12.8.9\ RETURN
400 REM ·RU·
410 START 12.9.8\ RETURN
450 REM "X·
460 STOP .
aoo PRINT "OVERLAY ERROR·\ GOTO 100
DIM TlZ), D(2)
DIM SCIS)=2, SN=2
END of lIsting

493

NAME SETUP
D!M EI(20). E1M(100), 61(20). Dll(30)
DIM %AI(260). %E"(100), %DI(100), %Dll(100). %D2"(100)
END of l1shng

494

,.
I
I

I

, ,- ~ .

,,~,~-'...,~~
-,~ ... ' -:.

c ,

'- .. - t ~_

.' ,- .

NAME PCPIIC2
10 REil "PCPIIC VER I.Z·
20 REil ·S·
30 01=4
40 02=9
50 h=10
55 111=1
60 0=7
70 ?F6~=TRUE
100 REil "R·
105 GOSUB 950\ IF NOT!O GO TO 110\ GOSUB 200
10i GOSUB 900\ IF '0 GO TO 105
110 ?F6H=FALSE\ STOP
200 REil •• '
210 C=VALUE(SUBSTR(SN,I.3»\ IF C<>O GOTO 220\ RETURN
220 CR(/ll)=C
230 START "\ IF Clllll»O GO TO 230
235 V=VI 1 /11)

240 ZV=ZVRI/ll)*10000.0\ ~V=DECI/lAL(INTI%V»
245 IF LENISV»=4 GOTO 250\ SV="O"+$V\ GOTO 24S
250 SH="12"+SN+"0."+$V+DECIIIALIV)+CHAR(13)
260 PETURN
900 REil "OD·
905 IF /lODIII(01)+1.511)003101l GOTO 915
910 START 0\ PRINT "P 0"\ ELAPSE 2 TICKS \ GO TO 90S
915 I.(01)=1I0DII.IO').',51.'\ l=IHIOI'.SI#~OI\ 10MIl'=S/!\ START 0\ RETURN
950 REil "10·
955 IF 1I0DIO.(02),SI#)=/lODIIII02',51.' GOTO 970
960 'O=TRUE\ OII02'=HODIOH(D2)+I,SI#)\ l=01102'+SI.'Q2\ SN=SOIIL)\ RETURN
970 ?O=FAlSE\ SN=··, RETURH
DIll SN=20, S/I=20, SV=4
END of hshn9

495

NAME UDJ
10 RE" "SYS UA1CH DOG DRIV·
20 HE"I'160036)='110000
30 TIME TIO)\ IF TIO)~Tll)+TI2)=O GOTO 40\ STOP
4~ FOR 1=0 TO INTIXAK(10»\ IF %E#II)(=-1.00000E+06 GOTO 50\ %E~II)=XEftll)-a6400.0
50 NEXT I
DIM 1(2)

END of llshng

496

NAME EDIT:!
10 RE" "EDIT ADP VER
20 RE" "5·

1 .," .-
30 ASSIGN $C(I':"I"."R","D"."X","L","P"
40 ON ERROR GO TO 900
100 REM Oft

110 PROMPT "> " INPUT SF\ L=LENISF'\ IF L=O GOTO 100
120 SX=SUBSTRISF.I.I'\ FOR 1=1 TO 6\ IF SX=SCII' GOTD 200\ NEXT I
140 GOTO 100
200 IF L{~ GOTO 210\ A=INTISUBSTRISF.I.L"\ ~F A)O GOTD ~~O
~10 IF 1)3 GOTO ~30\ PRDHPT "ARRAY ELEMENT NO = • INPUT SF\ A=VALUEISF,
220 IF A(=O OR A)INTIXAlll')+1 GOTO 100
230 GOTOI 300,350.400,450,500.550'1
240 GOTO 100

~': ''''" , 300 REM "IN" " ,
"., 305 IF A=1 GOTO' 1 00\ GOSUB 700 '"

',~, -- 310'GOSUB 750\ FOR J=INHXAI(1)+1 TO A STEP -1\ Jl=J-1\ %AIIJ'=%AIIJ1)\ NEXT J
315 XABIA'=XB\ %ABll'=%Alll'+1.0\ A=A+l\ GOTO 300

, ,

, '

,< {,

,,,." ...

! . -

350 RE" "RE"
355 GOSUB 700\ IF SF<>"-" GOTO 360\ A=A-l\ IF A{=O GOTO 100\ GOTO 355
360 IF SF<>"+" GOTO 365\ A=A+l\ IF A)INTIXAlll" GOTO 100\ GOTO 355
365 GOSUB 750\ XAIIA'=XD\ GOTO 350
400 REM "DE"
405 PRINT "DELETE ";\ GOSUB 700\ IF SF="Y· GOTO 410\ GOTO 100
410 IF %Alll'=O.O GOTO 100\ FOR J=A TO INTIXAlll"\ Jl=J+l\ lABIJ'=%AIIJ1'\ NEXT J
415 %AMll)=XAIII'-I,O\ GOTO 100
450 RE" ""
~55 OVERLAY .ERR=100:"DDO:DISP2" INTO 2

.' - 500 RE" •• "~ -
505 FOR J=1 TO INTIXAlll"\ PRINT Ji" =) ":XAIIJ'\ NEXT J\.PRINT \ GOTO 100
550 REM ~",

555 TIME TIO)\ DATE DIO'\ OPEN OUT @E:"TT1:DUH"Y"
560 PRINT @E:DIO':"-":Dll':"-":DI2'.TI0,:n:":TII':":":TI2'
565 PRINT @E:\ FOR J=1 TO INTIXAlll"\ PRINT @E:%AI(J';" ni\ NEXT J\ PRINT aE:\ CLOS
700 RE" ". ,

" 705 PRINT A;"=)";XAI(A',\ INPUT SF\ IF SF="" GOTO 710\ RETURN
, '" 710 RETURN 100

750 RE" ""
755 PRINT ,.: ";\ INPUT XD\ RETURN
900 RE" "ER" ,
905 E=ERROR\ IF £=12 GOTO 910\ GOTO 450
Ql0 PRINT "REDI" lAII'"' GOTO 100
DI" 1(2', D(2)
DIM SC(6)=I, SF=5, '1=1
END of llshn9

497

NAKE lOAD2T
10 REil "ADB XfER VER 1.2"
20 REil "SETUP"
25 STOP 13
30 OPEHOUT @Cl:"TT~:DU"NY"
40 OPENIN @C2:"Tl~:DUIIHY"
100 RE" "RUN"
110 PRINT @Cl:"."\ INPUT @C2:$N\ IF $N="READY" GOlD 120' ELAPSE 20 TICKS' GOlD 110
120 ON ERROR GO TO B50\ PRINT @Cl:"~"\ INPUT @C2:%N\ M=INTI%N)
130 ON ERROR GO TO SOO\ lANIH)=O.O\ lANll)=IN
140 ON ERROR GO TO B50
150 fOR I=~ TO N\ PRINT @el:"O"\ INPUT @C~:IN\ lANII)=IN\ NEXl I
700 REil "X"
705 CLOSE @Cl:\ CLOSE @c~:

710 OVERLAY .ERR=720:"DDO:DISP2" INTO ~,"R"
720 PRINT "OVERLAY ERROR DISP"' STOP
BOO REil "ER1" .
810 E=ERROR\ If E(>12 GOTO 700\ PRINl "REDIII %AN"' PRINT @Cl:"!"' GOlD 700
B50 REil "ER2"
860 E=ERROR\ IF E<>1 GOTO 700' PRINT "XFER ERROR", PRINl I!Cl:"~"' GOTO 700
DIll $~=20
END of hshng

498

SSTR
Job Nalll! Streatl DpY1Ce Fllenalle Status
2 DISP4 IlT Clospd
3 TAlK3T 1lT3 Closed
11 HELTHl !!T Closed
12 llSN2T el3 Closed
13 CHR0l14 @Dl Clospd
13 ,HROM !!D2 Closed
19 lEST n Closed

499

lGlO
~LlS

Na.e Referenced bv lobs
11(10) 1.2.3.4,7.8.12.17
01(10) 1.2.3.4.7.8.12.17
:tAft(~60) 1.5.6.8.9.~5.t6
:EH(100) 1.5.15.16
~FSa :1
~N. :!.13
~NH=20 =.13
~Ka 2,6
lKU=4 2.6

- ~K. 2.13
"- lKI=20 ~, 13

CHIS) 1.2.4.8,10.11,17
~V. (5) 1.2,4.8,10,11
Sill ~.3.4.7 ,8, lZ, 17
$DI (70)=20 2.3,4.7.8,12,17
VDIS) 4,10.17
lFH(40)=20 4
$11(40)=20 4
~F21 5
~DI 5.8
?EW S
DU (30) 5.8,16 . _ , e -'
7.DI(100) 5.8.16
EM(20) 5.6.16
%D2Mll00) 5,8.16

, , ElI(100) 5,16
, - 'F3I 6 -

GD(20) 6,16
'GW 6
?FU 8,9
POI 8,9

," -, - -- %VI(5) 8,10,17
%DUll00) 8.16
?FlI 10
lZI 18
~"6W 17
7F9# 1.5,9
~

500

SSIZ

?LIS
Job Na .. e Slot SHe Free SDace Job Slze Unallocated
1 POU4 450 ~30 120 0
2 DISP4 750 SO 700 0
3 TAlK3T ~50 30 ~20 0
4 KBDRl6 160tl 30 1570 0
5 EP6 900 64 ~ 836 0
6 AG6 1000 3'8 602 0
7 IlHAN4 500 67 433 0
8 DAIS 1100 98 1002 0
9 DACON2 300 SI 249 0
10 HEDIA6 1000 148 852 0
11 HELTHl 200 37 163 0
12 LISN2T 250 27 223 0
13 CHROH4 220 2 218 0
14 COMAH2 350 50 300 0
1S UD3 200 97 103 0
16 SETUP 20 2 IS 0
17 PCPliC2 410 4 406 0
18 SlMI 60 2 SS 0
H TEST 140 19 I:! 1 0
20 JOB20 0 0 0 0
Globals 5017 1730

501

SPRO
Job no. Owner Prot PrIor Prlvlleqes
1 GOD 10 100 GU GS JI MP Dl DU Fe FD AD HF HR HU
2 0 12 GU GS Jl HP Dl DU Fe FO AD HF HR HU
'3 0 44 GU GS Jl HP Dl DU Fe FD AD HF HR HU
4 0 24 GU GS JI MP DI DU Fe FD AD HF HR HU
5 0 :!5 GU GS JI HP Dl DU Fe FO AD HF HR HU
6 0 26 GU GS Jl HP Dl DU Fe FO AD HF HR MU
7 0 41 GU GS JI-HP DJ DU Fe FD AD HF HR MU
8 o ' 40 GU GS JI HP DI DU Fe FD AD HF HR HU
9 0 29 GU GS JI HP DJ DU Fe FO AD HF MR HU
lO_ 0 44 GU GS JJ HP DJ DU Fe FO AD HF HR HU

- , 11 0 31 GU GS JI HP DJ DU Fe FD AD HF HR HU
, ", , ~ 12 ,,- 0 44 GU GS JI MP DI DU Fe FD AD HF HR HU ,' '"

13 0 33 GU GS JI HP DJ DU Fe FO AD HF HR MU
14 TDP 10 34 GU GS JJ HP DJ DU Fe FO AO HF HR MU
15 0 4S GU GS JI HP DI DU Fe FD AD HF HR MU
16 0 36
17 0 37 GU GS JI MP DJ DU Fe FD AD HF HR HU
18 0 38 GU GS JJ HP Dl DU Fe FO AD HF HR HU
19 0 39 GU GS JI HP DI DU Fe FD AD HF HR MU
20 0 40 GU GS JI HP DI DU Fe FD AD HF HR MU

. " tUSER
Dwner Nalle?

, , Owner Prot Prior Prlvileges
, , GOD 127 32766 SH Ge GU GS JI HP DI DU Fe FD AD HF HR HU
'" HEI 10 100 SH GC GU GS JI HP DJ DU Fe FD AD NF HR MU , , ~

, ~, 1-

lOP 10 5

'0 -

.', ... ,- ~

... /' :.'" ,

502

10 '--- ALARM DISPLAY PAGING PACKAGE
20 '--- G. HOENIG. LUT, MAR 1992
30 '--- VER 2.0
~o '
:l0 ' -- SETUP
60 DEFINTP.L.D.S.U.X.I,T.N.F.C
63 U=100
65 DIHP(U.4),TS(U)
70 FORX~OTOU-2:P(X+l.l)=X:P(X+l.2)=X+2:NEXT
75 P(U.I)=U-l:P(U.2)=9999
80 LA=U:FI=I:N=O:P~=I:Pr,=O:D=1
8S DEF FHCO(U.X)=VAL(HID$(Nt.U.X»
90 ONERRORGOT0900
q5 PRINTCHR$(2i);"ROC":
lOO '-- RUN CONTROL
11 C GOSUB2000
120 GOSUB1000
130 GOSUB200:L=LEN(NS):IFL=OTHENI30ELSEF=FNCO(I.1)
140 IFF<4THENGOSUB300
144 NP=FI
145 IFF<)2THENGOSUBI70
150 ONFGOSUB450.350.~00.430.1200.1250
155 ONF60TOI60.130.160:GOTOI30
160 IFD1<>ITHEND=I:GOTOI30
165 Dl=0:D=Xl+2:IFD}NTHEND=I:GOTOI30
166 GOT0145
liD IFN=OTHENRETURNELSEFORX=DTON:Xl=X-1
175 IFP(NP,4)=OTHEN180ELSEIFP(NP.31=CTHENI=NP:X=H
180 NP=P(NP.2):NEXTX:RETURH
200 '--. 110 ROUTINE
205 ONERRORGOT0295
210 TIHEOUT2S .
215 IFHS=""THENHS="."
220 PRINT.,:HS:HS="·
230 PRINTCHR$(271:"OBF";
235 LINEINPUTll:NS
2~0 PRINTCHRS(27);"DB4";
245 OHERRORGOT0900
246 GOSUBI120:PRINTNS;CHRS(27l;"OA1";
250 RETURN '
29S IFERP=25THENPRINTCHRS(27l:"OB4"::PRINTW1:o*":RESUHE230ELSEO~ERRORG
0100
300 '-- IIECODE
305 r=FNCO(1.ll

503

, .

" '

','

Jl0 C=FNCOI:!,JI
315 TO=FNCOIZ,31:Tl=FNCOls.21:T2=FHCOI9,21
J20 DO=FHCOI",2):D'=FNCOI13,21:D2=FNCOl'S.21
J2s RETURN
J50 '-- ACTIVATE
Jss GOSUB500
J60 RETURN
400 '-- ACCEPT
405 OHPII.4'GOT0410.415.4ZD:RETURN
41~ Dl=I:RETURN
415 GOSUBI300:PII.41=I:RETURN
420 GOSUBI300:PII.4)=0:RETUR~
430 '-- GEN ACC"
435 IFN=DTHENRETURNELSEI=FI:FORL=lTON:Xl=L-l:GOSUD400:I=P(1.:!):NEXTL
440 FETURN
45~ ~-- HAL
4550NP(I.4IGOT0460.46S.470:Dl=I:RETURN
460 Dl=I:GOSUBI300:P(I.41=C:RETURN
465 Dl=I:P(I.41=3:RETURN
470 Dl=I;RETURN
500 '-- I~SERT
505 IFN+l>UTHENRETURN
510 N=N+l:P(PN.31=C:I=PN:P(PN.4)=2:PN=P(PN.2):L=H:GOSU~650:RETURH
550 '-- DELETE
555 IFI=FITHENFI=P(I.:!)
560 P!LA.Z)=I:P(P(I,2),1)=P(I.ll:P(P(I.l).~)=P(I.:!':P(I.l1=LA:LX=P(I.2
):P(I.:!'=9999:H=N-l:LA=I:RETURN
600 '-- LIST/REPK
605 605UBll00
610 IFN=OTHENRETURN
630 lL=FI:Ll=N:FORL=ITOL1:I=LL
633 lX=P(LL,2)
635 IFP(LL,4)=OTHEHGOSUB550
640 LL=LX:NEXTL:IFN=OTHENRETURN
645 lL=FI:FORL=ITOH:I=LL:LL=P(LL.21:GOSUB650:NEXTL:RETURN
650 '-- PRINT/ADD
655 IFL(PGDRL)PG+45THENRETURN
660 PRINTLjCHRS(91;:ONP(I.4)GD5U9670.675,675
665 PRINTTS(P(I.3»:RETURN
670 PRINT"A"::RETURN
675 PRINT"*";:RETURN
900'-- ERROR
905 ONERRORGOTOO
1000 '-- SCREEN INT
1003 PRINTCHRS(12)
lOOS PRINTCHRS(27):·DAO-~'U5115110004aO·;
1~10 rRINTCHRS(271:"DA1'r'U51101J000478·~
1015 PRINTCHRSI27':"DAZ"P'UO.0.51'.11":
10Z~ P~INT·-Cl'G·511.12.D.12.511.479.G.4'9·:CHRS(21';"-C2·;
1100 , __ BLANK 1
1105 PPINTCHRS(27):"OA1";CHRS(12):RETURN

504

< •

, <

1120 '-- BLANK 0
1125 PRINTCHR$(27);"OAO";CHR$112):RETURN
1140 '-- BLANK 2
1145 PRINTCHR$(27);"OA2":CHRSI12):RETURN
1200 '-- SRC UP
1205 PG=PG-l0:IFPG{OTHENPG=0
1210 GDSUB600:RETURN
1250 '-- SRC DOUN
1:55 PG=PG+l0:IFPG:=NlHENPG=N
1260 GOSUB600:RETURN
1300 '-- REHOVE
1305 IFX1<PGORX1>PG+45THENREIURN
1310 CX=CURSYll):CY=CURSY(I):PRINlCHRS(2S)
1315 IFX1-PG=OTHENI325
1320 FORJ=ITOX1-PG:PRINTCHR$(10);:NEXTJ
13250NPll,4)GOTOI330.'335.1330
1330 PRINT·-e·::GOTOI35~
1335 PRINTCHR$(9);"A·::~OT01350
1350 PRINT·-U"::PLOTC1.-~OTCY:REIURH
1400 '.. UPDATE
1405 RETURN-
2000 '.. LOAD
2010 RETURN
9000 FDRH=IT010:FORG='- '4:PRINTPIH,G),:NEXTG:PRINT:NEXTH
·C2ROk

505

, . , ,

, ". .
, .

. , .

Scan OUT Q pointers
First set Q number to 0

,.
Aze

?,/ OUT Q
~I/O pointeJ,"
~quaU

,/~
~L------i

, . Is

N

.:" this the >'-!-N __ --l

'.laS~OUT
" ,Q1

V

. w~
v there a .:~

,----'-. ~i~e requ~ y
: Stop)

Retrieve Q record contentsl
and place in IN

'Obtain destination Q from
header and place in lA

Increment
Q nlDDber

Increment OUT Q pointer

I
------~~----,r
edculate subqueue
location
L = O#(Q) + S1#*Q

record!
•

/~Is ~Q header ~
~at;~ tha >~----------------~t

, '"
• ,

Remove Q header information,
from IN and place in Q1

Set destination Q
to host l1nk Q1 = S

506

• <:--,.. ~- ,>-~ ~
,"~' ~ .' ... : '

", - ~ .;-

i Start dO$tinatioD
>'------1 job slot

Incremont IN Q input
pointor

Calculato subrocord locatioD

Insert tN into sub quo rocord
location

Wake or start appropriato
job slot containing IN Q

z..

Wait 20 ticks

507

I

Dimension
Integer Global Variable Arrays

B#() ~ no. of events (SA#(IO»/16
£l#() = no. of events (~#(IO»

G#() = no. of alarms (SA#(11)
Dl#() = no. of DA units (~(9»/16

Dimension
Real Global Variable Arraya

,;A#() = ADB size ~#(1)
%E#() = no. of events (~(10»
%»H() = no. of DA units (~#(9»
'i>Dl#O - 11

'JOD2#O = 1/

Stop

508

Assiln Command texts to tC(O)

L
it

Prompt console with 1#
Input tN

I Set cOIIIlIIand n1llllber cl'
, I

~. function
C=

,
I

~ Restart
-

jobs Obtain Start job 1
2 -

-

~
/~

.~overlay
, error? ,

Over!

I task
lob

, .
ay Edit
into,

slot 2
•
i

N

- system
time
date

~
/ Print tiBIo 0/ and date to

console'
, .

. Print error/
; messale

Stop

I -r I

Run Stop Exit

Start all S1:0P all (&top J
jobs for alam
alarm sys jobs

509

'ID

160036

Obtain system time

.(
Obtain the number of event

status units form data baso
header 'LAII(10)

Stop

Subtract 86400
from time value
(lDay of Seconds)

Increment counter

510

, ,'-

Setup job slot locations I

Set error trap
ERROR

Open for output TI3:

=

Print iN to the
link line TI3:

Close TI3: for output

Close output

Stop

511

, "

~ ,-

- ,~<

, -

LISN

Setup job slot locations

Set Error trap
ERROR

I Open for input TT3:

Input frOll TT3:
into $!I.

OUTQ

Send tM into Q system

Clear ix

Error

Close TT3: for input

512

, '

"

, ,

I Setup job slot location I
I

Set error trap

ERROR r::\
~--~~==~-----~

I Close inputs and outputs

IThiS clears aystaR after
ADB

on lT2:
loading

I Open lT2: for input and output I
~ Input from lT2~ and place in

,
/' Is

/tN = •
~ or 7

N

~:an
~~~;;;nding y Start Display 

~
ervice request to .>'--"'1 task 

Display task 
=T 

~ 
.'f 

Place $N in transfer 
variable INN , 

I 
Send service request 

7N# • mUE 

I 
I Start Display task , 

. 

A~:a 
service requost 

~~ ;!:~ Displa 
tas~ =...-,u~ 

jl" 

8 

! Wait 2 ticks 

Print a null 
string to lT2: 

t 

G 
513 



-, -

.. ...- -, . .,. -'" - ~, 
~ ~ . .,.-
1l ""f..,. '1 

,';; ,> -! 

Print ~# (messaae for Display 
task) to Tn: 

Clear /;11.# 
Clear service requost ?K# a FALSE 

( Error) 

Close TI2: for input 
snd output 

514 



'. 

. '. 

Setup job slot locations, 

1_..:Q~n_lIIIl_b~e_r_s..:,_aln;;:d=H=e=d=i=a=l=i=Dl:=:...... __ ,:". -8 
Set Media Channel request to 145 

(first channel of 16 group on DIH card) 
and start Media Driver 

nteger 
16 group 

key 
DIM 

Set Media Channel request to 161 
(first channel of 8 group on first DIF card) 

and start Media Driver 

Calculate first DIM Media 
Channel nlllllber which is 

true 

~;esponse ~:~:;- equal to 07 
~ Calculate DIF Media 

~"":""-----..j Channel nlllllber which 
key response 

DIF 

Set Media Channel request at 
start of next group of 8 and 

start Media Driver 

, I~_~------. 
tElapse 5 ticks 

is true 

, 

Convert Hedia Channel 
NlIIIlber to Iey nlllllber I 

Iey Control 

11 INQ 
11retrieve tN /

'"1 __ .J Set Key number to 0 
f ram Q I I-----"lL' ...:F:.,:un:::c..:.t :.:io:..:n:.....:..f;F:.:#;:..(:.:0.:.)_4:.:N~_' 

I 
Function Sub 

515 



Key Control 

Beep 

(return) . 

~CheCk Key )[as~-~ 

y 
>------""i 7M=Trlle 

N 

7M=False I 

( return) 

- , 
1'--"'-', ' ' • 

~ -:':;:'-' 
1 :" .. f">- ,-

:;;~ f 
f;" ~ 

~I - > 

516 



"- .' ~ , 
, "I'~ ,10_. 

j 
I 
! 
1 
! , 

(FunCtiOn SUb) 
I 

~Is .~' 
( return) 

-
Set function pointer P 

to begining of the 
function code string -

I I Obtain function code operator T 
from function string - .-

-

:~ there a 
function code N 

operand in return) 
the functio 

tring? 

Selec . Function 
Ta 

I I I T 1 
-

I 

Jlask i UDlllask [:] OFF B Clear 
, r 

Send Bold. OJJ Tonle I Set I No Functionl I 

I I 
I I T I 

I 

/~~e 
<last f~!~~o( ___ -loo.f • .!r!e!t.";ur!:n~) 

""'- code in 

\ Step 

~tring? 

to next function code 
function string 

517 



'c .~ ••• ~---------------
.' 

.' . 

)(ask 

Get function code operand (key number) 

Set mask bit for key to True 

( retU%n) 

( Uumask) 

, •. r;, :-:-:~:-:---.-"IL----;-=~,----..., I Get function. code operand (key number) I 

'. 
,~:.:?' ' " , 

~- ) ~ -/ 

'::'''~ ~ , ~ .. '" ~... ~ , , .... - .. . -~ ~ . 
• • '. r _ 

.~' . :, ~ 
'I • .. ', -' ... -

, . 
~fw ~/ t, \ 

:' "-,' 

Set mask bit for key to False 

(return) 

Get funotion code operand 
(Media Channel Dilital output) 

Set digital output status\ 
bit to True 

Request Media Driver service to I 
turn on output , 

(return) 

518 



, , 

. . ~, , ~ .. ,- _. 
; .. -::, , 

,~~~o! , .. ! '. l ~ 
.. ~.r,,\ l, ~ < 1 
... ~ ," ~ r ' 

::::::_"~'''' ~. ~. '--; r 

Get function code operand 
(not used) 

• Request lledia Driver to turn on 
and off digital output for 

keyboard audio device 

(return) 

Get function code operand 
(subfunction number) t 

--~'/:''-::' ~~~~ -
$;'>;' ( .- c:: 

'. ~I"':'" -:....----, 
Clear Koy 
mask bit 
array 

Clear Digital 
output statuI 

bit array 

, " 
'"t!!" ~ <''''~'''d 

Perform a Kodia 
Driver request to 
turn off each 
digi tal output 
that was on 

~ return) 

519 

l Perform subfunction 
T=l and T=2 



'. 
/_.J 
-"<".', -::-- . 

;. - ~~' .. -

, ' 

, . , 

Bold On 

Get function code oporand 
(digital output number) 

return 

Set digital output 
status bit true 

\00-----------,--
Issue a Hedia Driver request 
to turn on digital output 

Is 
still 

I.suo a Media Driver request 
to tu~n off digital output 

Turn off digital 
output status bit 

520 



I' 

,~ <r 
'\ , '. 

. 

• 

. 
-

Get function code operand 
(subfUDction) T 

Output text 1",= 
Key text + CR 

: Output text $H= 
I Key text + ESC 

. 
L , , 

I 
.-

I ~ - -- . ! 
Output text RI= I 

'! Output text 1M= 
Buffer +CR I Buffer + ESC 

1 

. 
; 

I 

.~~~ 

OUTQ 

Send ~)f 

(Return) 

Remove last 
character for buffer 1Bl 

I'" 
(Return) 

Output text 1M= 
Key text 

. 

I I 1; 
Output text 1H~ 
I Buffer 

I 

I Buffer 
Key text 

I 
Delete Last 
Character 
from Buffer 

, 

Delete Buffer ~l I 

521 



. , 

Return 

/Is 
,,/ 'this the~...:(~ ___ ~-:-:;~:-:;::--::-::-::-:::=:~ 
--(irst Buff Buffer hI sot equal . 'fly.- to full key text 

Strip two characters 
Q header from key text 

iAdd remaining key text 
to buffer IB1 

/ Print to consoh /-

(Return) 

( Toggle 

T 
Get function code operand,; -

(Digital output-channel number) 

ON 

, 

Return 

OFF 

. Wait 10 tick.i ------;;~ijj~i::: r s':fIturn) 



·' . 

~:' : 
:· .. 7~7'·! £ 
,. ~, -
, .. ~ "t-'~ 

., ~ ... "' ,
, ,; " 
,,' ~ "~ -..-'" 

. , 

" 

Get function code operand 
(Subfunction) 

I I I User 
Specified I User 

Specified I User 
Specific I User 

Specified 

523 



, • >, 

::,; . 

; ~ -

". - -~ 

",'~ " -
'--

. 
• 

Set busy flag ?Fl# I 
I 

Start increment through Communication 
links I~ 

(01--------..1 

, 

I -, -- ,/ 
./ 

Select 
I/O 

r I I 

AI 1A0v/AOI I DIF 
. 

I I I 
I 

Transfer globals to 
lo"al variables 

T I 
DIM I WD 

'1 I 

.-
Set error nagsT 

I ,,-, . 
Transfer locals to 

-. , . I global variables 

-

, 

la 
I < S 

? 

I 
_W",-

ADere 
<link reques 
~ing se 

" 

i Clear busy flag 

I 

, 

-. 

, r I 
. 

I Increment I 
-

pC Stop j 

524 

1 

DO 

I 

-



" -, . 
,,' -

I

·:·,····,· 
,.. -':; -

~';.- 'I., ;: _ 

,,' . 

> ", -

~.f;:~-~.,:--~~ :- ,,,,:, 
:,: ~ 't.:;-...... ;J ~::.. < 

, , 
,. . 

From channel number calculate 
which multiplexer card 

to address 

I Write analosue input line request 
to mul tiplexer 

I 
Wait 3 ticks for settlins 

time of anaolsue input 

Retrieve 10 bit pattern frOJll 
analosue input card 

I' Calculate the normalized 
value 'IIV 0.0 to 1.0 

( Return) 

I{ • 

Calculate 16 bit pattern 
from'1tV 

Set error flas 

I Write pattern to Media memory 
, location accordins to channel number 

r .. 
. Return) 

525 



· " 

( DIP ) 
I 

Calculate which digital input 
card contains channel number 

requested 

I 
Resd 8 bit pattern from digital 

, 

I 

input card -

I 
Reverse bit pattern and place 
bits in least significant bits 

of V 

I 
Retrieve bit corresponding to 

channel number requested and 
place in logic value 1V 

( Return) 

, 
Calculate which digital input 

card contains channel number 
requested ,'" " 

I , ; 

Readl6 bit pattern from di,ital 
input card 

I 
Place bit pattern in V and 

invert logic 

I 
Retrieve bit corresponding to 

channel number and place 
logic value in ?V 

-

526 



, ' , 

" , , , 

. ,'. 

( WD ) 
r 

Read bit pattern in 
'160036 and place bV 

I 
Write bit pattern 
'110000 to '160036 

I 
Upd!'te event time array every 

24 'hours 

I 
i Return} 

C-----.DO~) 
Set bit in A(O) 

corresponding to ?V 
at location calculated from 

channel nlllllber 

I 
Write tho three 16 bit patterns 

in A(O) to the threo digital 
output cards 

(Return) 

527 



( DAOON 

I 

I Obtain real time I 
-

I -
Select data scan group 

calculated from real time 
seconds value 

I 
Set maximUlll scan ,roup 

n1llllber in S 

I . , 
-

Calculate the total nUlllber of 
variable definitions to be executed 

by summing scan group total. 
- depending upon the maximUlll _ 0'- : 

scan group n1llllber S "". - . -

I - . 
Set the global variable POD to 

maximUlll n1llllber of variable 
definitions 

I -
i Start Da ta Acquistion 

I 
-... - ~ -

task . --- -

I -- - -

I Wait until end of 
present second count "..' ': ;;:~ ~ 

I 
-.. 

528 



- . 
~ '; , 

"'-~t\>,'_y 
...,- ,-- , 
.... < ,- , 

" - \ 

(EVEn' PROCESSOR 

I 
I Set busy fla, 7F2# I 

I 
Set hysteresis truth table 

B(O)- '34614 
B(l)- '143 

N 

Locate which DA chansed 
as indicated by bit set 

in »#(I) 
I 

11 Change 11 

I 

Clear busy fla,-

S ~ar t alarm 
senerator 

529 



Chan,. ) 

I 
Locate event definition in 
~#() by stepin, throush 
event definitions until , 

, 

the correct one is found 

r Retrieve the event definition 
record elements ' 

,.-
Selec -event type 

? 

, I I 1 . ~ .. - , 

I ! , I 
I Binary I Binary AnaloSUe Trend Deviation 
I Invert , 

I I I 

a chang N 
, ' in event Return 

, statu 
'( 

, 

, ' 
" -

" Set event Ua, in U(O) 
~ event statua image 

" 

, 

(IfeturnJ 



" 
, .. '~.~"-< " 
"'~,- i"::'o-"" • 
-" -I-' .. -~, • 

, ~,'-" 

Binary 

Locate current 10Sic 
value in tD#(). place 

in !E 

(AnalOSUe ) 

, 

Locate DA unit value 
in'~#() 

, 

Calculate which value resion 
DA value is in 

N=l. 2. 3. 4, or 5 

Locate current 10Sio 
value in ~#(). plaoe in 

7E and invert 

(aeturn) 

Locate DA unit trend value 
~2#() 

I 

. 

iLocate the previous resion of 
the variable in El#() 

. 

, I 
,Calculate transition n_ber 
and 1001: up if event i. true 
in hysteresis truth table 

i 

" 

, 

! 
'---f 

"'there a ,.. 
~nge in eve~~-------

-'-status" 

'Yf 
i Set change flaS , 

r< 
( Return) 

531 



, , 

' . ..:- '-:. 
,-r)¥ _ " 

,-'~ , 

<~,.//; - '. 
# ;;"> ~ ,- • ~ , , 

-;. 

Setup j ob slot locations 

Start job 13 
Chroma tics Link 

Set Busy Flag 1FSII 

Chock INQ 
obtain $N 

i! Select Display function 

a request 
rom the Chromatic·~

nk 1N# .. 
1 

IV 

Obtain $N from ~# 
Clear 1N# 

Select Display 
function 

Obtain IN form $Ml# 
request from 'f - Clear 1Ml# 
alarm generator >-----__ ~~~~==~ ______ _J 

1)u# • 'IRIJ 
1 

N 

i Clear busy flaC 7F5# 

;: Selec: Display 1
1
' 

p funct10n 1 
I 

532 



·' 

, . ~ -

.' 

,', ,; 

.. ~ , . 

" 

Solect Display Function 

Obtain function code A 
from the first character 

of ~ 

A= 

Alarm On 

: Out to Chrom 

I Out to I 
T43 

'Return 

Return 

Output an 'x" to 
ChrOllla tics link to 
Stop task 

Overlay task LOAD 
into job slot Z 

Restart Display 
task 

Out to VT1 

533 

Send to 
another Q 

Stop 



(A1a~ On) 
Set Logical variable 

?T - '!RUB 
I 

Form request to kerboard I 
Ill. _ J 070500 ' 

I 

G 
I 

l'Obtain alarm output code 
$N and place in C 

I 

frOll 

Set tM output message equal 
to $N input message . . 

I 
I Add time and date to $M. I 

I 
I 

Modia routine to set 
digital outputs C and 7T 

ChrOB link 
send '$11. to ChrOllatics 

(Return) . 

(
VT100 , 

Print text to conso1~ 

I 
Obtain text from IN 

and place inn 

I . 
/ Print lM to console 

(Return) 

(Alarm Of~ 
I 

Set logical variable 
?T - FALSB 

I 

534 



" 

Chrom 
send text to Chromatic 

fram f;N 
in /». 

ChrOllla tics link 
send 111. to Chromatic. 

( Return) 

( Send to ~ 
Another Q 

I 
Obtain messase to be placed 

in Q system fram iN and 
place in 'iM 

I 
OUTQ 

I 
( Return) 

T43 Printer 
send text to TTI: 

l Obtain text from iN and 
_ place in h4 _ 

Open output on;lT: for TT1: I 
! Print 1)1 to TT1: 7 

(Return) 

535 



; 

,~....... ~. '" - ~ 

.::: ,;."<~ - ;~ 

< ' 

........ -"--- .. ,. 
"'~ ,- - ,~ ". 

Chromatics LiDk 
end data to Chromatic 

Set $MII = 'ill. 
?H# = nUB 

I-
(Return) -

Wait :1. ticks 

536 



Output Alarm Code 

Set first character in 
alarm output code 'lA - ·2· . 

Set link transfer variable $M1# to 
1A + output code in alarm definition 

Set link request nll# R TBIJE 

Set first character in 
alarm output code $A - 'I' 

Start Display task 

537 



I 

ALARM GH'lERATOR 

Set busy fla, fF31 

Dete~ine total number of ala~ 
definitions fODD ADB header 

'lAI(1!) 
and startin, address of ala~ 

definitions 'lAI(8) 

Set data base pointers to first 
alarm definition 

t( 

Find previous alarm status I 

v 

Process 
Expression 

N 

Set ala~ chanse flag 
1G#. update status 
record 

I Output ala~ code 

./ Is 
-this the 

.: ~ a s t alarm >-<l---__ ~c~l~e~a~r:..!b~U~S!Y~f~l~a~'.J 

Ll ~-' __ d_e_f_i_~~i N_t_i_O ___ • C StJp } 

Increment to next 
alarm definition 

538 



Prooess expression 

Get first entry in expression 

, 
I 

NOT 
Invert 
last entry 
in stack 

/' Is 
entry in 

expression an 
operator 

? 

I 

I 
• OR 

OR last 
two stack 
entries 

1 

i 
! 

AND 
And last 
two stack 
entries 

j 

L Reduce stack by 2 
place result in stack 

I 
I SEQ . VOT 

check event majority vote 
times of events items in 
in stack for stack 
chronological order 

. I I 
Reduce stack by number in 
SEQ or VOT place result 
in stacl: . 

. 

Is 
~ere anoth oJ 

~V 
_,Return ,I 

, Increment to next' 
expression entry I 

539 

: 

XOR I 

XOR last 
two stack 
entries 

I 



DA 

I 
ISet Busy Flag 7F4# 1 

Read global variable PO# to obtaiu 
total number of variable definitions 

to be executed 

I Start data base scan J 

Calculate the location'of data aquisition 
definition in alarm data base 

Select 
input 
device 

Media 11/34 ITI: 
(IT2: ) 

Select . 
data 
type 

_I 

Binary Binary 
Invert 

Analogue I Analogue 2 

Is 
there a '( 

significant ..J Set 7D# True 
hanger 

Start Event 
I Processor 

Last '" -
DA definition 

? 

, 

I Clear Busy Flag ?F4#J 

~ Stop) 

540 



I 
I 

11 
~: 

I 
, I 

1 I 

I i 
I ' 

, 
(~' , 

I • 

J '. V" 
i : '4' 

/ 1. 
j' ij' '" .... ' 

11/34 
- -

I 

( Media 

I 
Issue a I!edia Driver request to 
retrieve data for appropriate 

plant code C 

I 
I Retrieve data in~. ?DI 

I 
( Return) 

-
TIl: 

I 

) 
Form output code text Form output code text for 11/34 link for TTl: line $){ =- ~ 10· + plant code $M = "04" + plant code 

I I 

OUTQ 
Send iH 

INQ 
Wait for response 

Retrieve data from returning message 
and decode message to obtain %D. ?D 

( Return ) 

541 

~; 

~j-------



• 

Binary 

Analogue 1 

Set significant change flag ?F 
Update data store %D#() 

Analogue 2 

Perform linear conversion 

Perform range check using 
data in alarm data base 

( Return) 

542 



. -

- '\ 
" 


