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ABSTRACT 

In this work, laboratory scale experiments were carried 

out to determine and quantify the mechanisms by which water, 

sugar and other solutes are transferred from vegetable tissue 

to blanch water. Samples of commercial potato and carrot 

varieties were studied and Fick's law of diffusion was applied 

to describe the mass transfer of solutes during blanching of 

cylinders and cubes of the vegetable tissues. 

Diffusivities (Da) for solute and sugar were determined 

for various conditions of blanch water concentrations (0-15% 

sucrose), temperature (60-900 C), time (120-1800 sec) and tissue 

dimensions (0.005-0.007m for carrot cylinders and 0.01-0.018m 

for potato cubes). Apparent diffusivities were found to be 

dependent on both temperature and concentration of the blanch 

medium and independent of tissue dimension. Values of (D ) a 
were found to be in the range 3.07 x 10- 10 to 7.64 x 10- 10 m2s- 1 

for solute loss from carrot, 4.25 x 10- 10 to 7.75 x 10- 10 m2s- 1 

for solute loss from potato, and 3.71 x 10- 10 to 16.32 x 10- 10 m2s- 1 

for reducing sugar loss from potato. 

Diffusivity and temperature were related by an Arrhenius type 

relationship, having an activation energy of 28.2 kJ mol- l for 

solute diffusion from carrot, 41.6 kJ mol- l for solute diffusion 

from potato and 27.6 kJ mol- l for reducing sugar diffusion from 

pota to. 

Solute and sugar losses during the first 300 sec blanching , 
were due not simply to diffusion but also to expulsion of cell 

sap solute as turgor was lost on cell death, while in the 

period 600-1800 sec the solute losses appeared to arise solely 

by diffusion. The gelatinisation of starch in potato tissue 

appears to have little influence on solute loss during blanching, 

but did affect water retention within the tissues. 
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The numerical solution for the unsteady state diffusion 

equation for diffusion out of a slab was also used success

fully to predict the apparent diffusivity of sugars from potato 

sI ices during a commercial blanching operation. 

The simultaneous heat transfer occurring during blanching 

was also investigated for various heating and cool ing tempera

tures, times, sample sizes and agitation rates, to aid prediction 

of heating and cooling rates. Thermal diffusivity for potato 

was calculated from the experimental time-temperature curves and 

found to increase 

1.34 x 10- 7 m2 s- 1 

with temperature reaching a maximum of 
o at 70 C. The temperature and moisture content 

was found to have strong correlation with specific heat and 

thermal conductivity and a linear relation was shown to exist 

between them (r = +0.93 for specific heat and +0.97 for thermal 

conductivity). The specific heat of potato at 76% moisture 

content ranged from 2.7351 kJ/kgOK at 400 c to 4.0154 kJ/kgOK 

at 90oC, while thermal conductivity at 76% moisture content 
o 0 0 ranged from 0.4101 W/m K to 0.5571 W/m Kat 40_90 C. 

Results of this study indicate that the heat transfer 

process involved in water blanching of potato is quite rapid 

relative to the mass transfer process involved, the latter was 

found requiring approximately 3600 sec to reach equil ibrium while 

heat transfer required only less than 900 sec. 
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I. I NTRODUCTI ON 

1.1 Tissue and Cell Structure 

1.1.1 Cell Structure 

A brief description of the basic cell structure may help 

the understanding of how heat affects the cells and how solutes 

and water are transported through them (see Figure 1.1). The 

first feature of the cell is the cell wall which surrounds the 

cell. The cell wall is elastic in young cells and is highly 

permeable being composed almost entirely of fibrils of cellulose. 

Cell walls are composed of three layers; a primary wall, a 

secondary wall and a middle lamella. The outer region of the 

cell wall is the middle lamella. It is the region shared between 

adjacent cells. The middle lamella of young cells is composed of 

pectic compounds which serve to cement the cells together and 

-which under certain conditions of physical and chemical treat-

ment during processing may soften and allow the cells to separate. 

As the cell grows older the nature of these cementing substances 

often changes, lignins and other compounds are deposited and the 

cellulose layer of the cell wall thickens. Also at this stage 

the permeability of the cell wall will be reduced. Another 

feature of the cell is the cytoplasm which is a colloidal solu

tion of protein and other substances dispersed in water, containing 

enzyme systems responsible for cell metabolism. The cytoplasm 

is not uniform, but differentiated into various regions and cell 

pa rts. 

The membrane surrounding the cytoplasm and separating it from 

the cell wall within the cell is called the cell membrane (plasma

lemma). It is thin and flexible and is mainly composed of protein 

and lipid bilayer. This membrane acts as a differentially per

meable membrane allowing the water and some other small molecules 

to pass in and out of the cell. The inner boundary of the cyto

plasm separating the cytoplasm from the vacuole is called the 

tonoplast which is a relatively tough differentially permeable 
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membrane. This membrane is responsible with the cell membrane 

for the cell acting as an osmotic system maintaining cell 

turgor pressure. There is usually a large vacuole in the cell 

filled with an aqueous solution of many compounds such as 

sugar, salt and other soluble materials called cell sap. The 

vacuole in some plant cells may also contain a colloidal sub

stance. I n young cell s the vacuo 1 es are sma 11 and numerous. 

As the cell grows, the size of the vacuoles increases much more 

than does the cytoplasm, by the imbibition of water and other 

small molecules. In old cells, the vacuoles become larger in 

size and smaller in number with often only one large vacuole 

occupying most of the cell, leaving the cytoplasm as a layer. 

around the periphery~ The other features of the cell are shown 

in F i gu re 1. 1. 

1.1.2 Tissue Structure 

1.1.2.1 Carrot structure 

Structurally, the carrot is a tapering root, which in 

transverse section, is circular having dark rings on the outside 

(cortex), lighter rings towards the centre and a greenish-yellow 

section at the core (Priestley, 1979). The cells of the outer 

cortex are distinguished in cross-section from those of the outer 

epidermis by their greater size and thicker wall. This surrounds 

the phloem which is mainly composed of parenchymatous cells with 

scattered sieve tubes. These two zones are of considerable width 

and the greater part of the food reserves occur here, although 

starch is absent or present in only small amounts in the cortex. 

The centre is occupied by a xylem (core). The core is 

separated from the cortex by several layers of narrow elongated 

cells called the cambium. 

The walls of the xylem are composed primarily of cellulose 

which with growth becomes thickened with lignin. The walls of 

the phloem contain little lignin. The xylem in young roots consists 
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of large parenchymatous cells, traversed by narrow medullary 

rays. The walls of the parenchyma become thickened with age. 

The cells in old carrot roots are more densely packed 

than those in young roots (see Figure 1.2) (Hector, 1938). 

1.1.2.2 Potato structure 

The potato has stem characteristics in its internal struc

ture (Fedec et a I., 1977) as shown in Fi gure 1.3. 

The young, immature tuber has an epidermis which is replaced 

in the fully matured potato by a layer of corky periderm, some 

10-11 cells in depth which appears to serve the purpose of reta'r

ding loss of moisture and resisting attack by fungi. 

Next to the periderm is a zone of external phloem (cortex), 

which is a narrow layer of parenchyma tissue. Vascular 'storage 

parenchyma high in starch content is also present in the cortex. 

The inner cells in the cortex contain mostly large oval-shaped 

starch grains (average 32 x 54 ~m). These inner cells appear 

to be the largest in the tuber with dimensions up to 146 x 189 ~m,., 

The xylem and the internal phloem are found in minute strands 

or bundles, most of which form a narrow, discontinuous ring.' The 

internal phloem zone is characterized by the presence of starch 

storage parenchyma cells containing starch grains similar in size 

to those of the cortex. 

The xylem is separated from the internal phloem by several 

large cells with starch. Cambium cells occur only in the bundle 

rays between the external phloem and the xylem. In the centre 

of the tuber, the pith or 'water core' is readily distinguished 

and it consists of small cells containing lower starch content. 

The cell size ranges from 70 x 132 to 96 x 158 ~m. 



-FIGURE 1.3: potato tuber cross-section (after Fedec et aI., 1977) 
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1.2 Nutrient Transport During Blanching 

1.2.1 Diffusion and Osmosis 

Diffusion is the term applied to the transport of solute 

from a region of high solute concentration to one of 

low solute concentration. The driving force for transfer is a 

concentration difference or a concentration gradient. The concen

tration gradient tends to move the .solute., in such a direction 

as to equalise concentrations and remove the gradient. 

The rate at which solute ,is then transferred from one 

region to the other depends upon the departure of the system from 

equilibrium. The transfer of the solute between the regions 

obviously requires time, and then the net transfer stops when 

equilibrium is attained. 

While osmosis describes the transport of water molecules 

across a semi-permeable membrane from a region of dilute solution 

(higher potential) to one of more concentrated solution (lower 

potential). 

The rate at which osmosis takes place depends on the diff

erence between the concentration of the two solutions. The water 

transport results from random diffusion and the net movement 

eventually equalises the chemical potential on each side of the 

membrane. As a result of this transport a pressure build-up 

may occur on the concentrated solution side of the membrane. 

This pressure is termed 'osmotic pressure'. 

During the initial seconds of water blanching osmosis can 

take place across the differentially permeable membranes of the 

cells, but this will cease on cell death when the cytoplasmic 

membranes become disorganised. 

During immersion of living plant cells in a hypotonic solution, 

there will be a water uptake or a net diffusive movement of water 
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FIGURE 1.4: Turgor and plasmolysis in plant cells. 

A: Cells in isotonic solution 
B: Cells in hypotonic solution 

1. The concentration in the cell sap is higher than the solution 
outside the cell. 

2. Ilater enters by osmosis passing through the permeable cell wall 
and the semi-permeable cytoplasm. 

3. The ce 11 sap vo 1 ume ins i de the vacuo le increases and pushes 
outwards on the cell wall making the cell turgid. 

C: Cell in hypertonic solution 

1. The solution outside the cell is more concentrated than the 
ce 1 1 sap. 

2. Water passes out of the vacuole by osmosis. 
3. The vacuole shrinks, pulling the cytoplasm away from the cell 

wall and leaving the cell flaccid. 
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into the cell, and the cells become turgid. The opposite may 

happen (plasmolysis) if the immersion solution is hypertonic 

to the cell solution, when a net loss of cell water would 

occur. 

However when the cell is immersed in isotonic solution, 

there will be equal water diffusion in both directions. Figure 

I. 4 shows the d i ffus i on of water in and out of the ce 11, under 

these conditions. 

1.2.2 Mechanism of Nutrient Transport During Water 
Blanching 

There are several views about the mechanism of nutrient 

transport during water blanching. 

Selman and Rolfe (1979) suggested that when vegetable 

tissue comes in contact with water during blanching, water is 

absorbed by osmosis until heat destroys the permeabil ity of the 

cytoplasmic membranes of the cell. On loss of turgor cell 

solution is lost as cell volume contracts. Thereafter loss of 

solutes (and water) occurs by diffusion. 

Lathrop and Leung (1980) suggested that the leaching of 

vitamin C during water blanching was also controlled primarily by 

di ffus ion. 

Further support for this mechanism comes from the work of 

Kozempel ~. (1981 and 1982), which suggested that diffusion 

is the rate controlling step in the mass transfer of solute and 

other nutrients during water blanching. 

According to this view, the transport of solute and nutrients 

from the interior of the tissue to the blanch water is caused 

by a concentration gradient and follows the basic equation of 

diffusion: 
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££ = D 
dt a 

where: D = diffusion coefficient, C = concentration, t = time 
a 

and x = distance. 

Based on these views and others such as Vukov (1977), Islam 

and Flink (1982), one can describe the mechanism of nutrients 

transport during water blanching in the following manner. 

The influence of temperature and blanch time on permea

bility of tissue leads to a partition of the mass transport 

into three fundamental stages: osmosis, disorganisation and 

diffusion. 

In the first stage water enters the cell by osmosis through 

the differentially permeable membrane. Some solutes may move out 

in this stage from the ruptured cells on the surface of the 

tissues. In the second stage as temperature increases, denatura

tion of the proteins in the cell membranes results in increased 

permeability of the membranes and loss of turgor, and cell solution 

is forced outof the cell by the cell wall pressure. 

The duration of these two stages depends on the blanching 

temperature and the time needed for denaturisation. After the 

completion of these two initial stages, the third stage 'diffusion' 

can be considered as the rate controlling factor. 

During this latter stage nutrients and water will be trans

ported by diffusion and follow the general law of molecular diff

usion. Therefore, the solute molecules diffuse gradually from 

the tissue (regions of high concentration) to the blanch water 

(regions of lower concentration). The tendency to diffuse 

increases as the concentration difference between tissue and blanch 

medium increases. 
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As the blanching process continues, the rate of diffusion 

starts decreasing gradually from a high initial value until . 
equilibrium is approached. 

Figure 1.5 shows how the rate of diffusion decreases with 

time during blanching. 

c o 
III 
:::J 

'+
'+-

"0 

'+
o 
Q) 
..... 
to 
et: 

u, ..... 
"'0 "'0 

Time 

FIGURE 1.5: The decrease in diffusion rate with time during 
blanching of vegetable tissue 

Similarly as the blanching process continues, the concentration 

in the blanch medium and tissue will change. Figure 1.6 illustrates 

the changes in concentration in the tissue and blanch medium with 

time. 

Curve A shows the change of the solute concentration in 

tissue with time and curve B shows the corresponding concentration 

change in the blanch medium. After a blanch time of t l , most of 

the solutes in the cells of the tissue will have diffused out into 

the blanch medium, and little further loss Is obtained by Increasing 
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FIGURE 1.6: Change of solute concentration in tissues and blanch 
medium with time (where C and C are the initial 
concentration at time = a? and CO and Ct are the 
concentration at time = t for ti~sue and blanch 
medium respectively). 

the time to t 2. The distance between curves A and B at any 

time represents the magnitude of the concentration gradient. 

The diffusion of solutes from tissue to blanch medium 

may be considered to take place in two stages (Charm, 1978). 

The solutes in solution within the body of the tissue close 

to. the tissue surface first diffuse to the surface of the tissue, 

and then the solutes diffuse from the surface to the blanch water. 

The interior solutes will then have to penetrate this outer layer 

before reaching the surface, and the process will become progres

sively more difficult and the diffusion rate wIll slow down. 

An illustration of how the solute molecules diffuse from the 

tissue into the blanch water, may be made by considering a cylin

drical cross-section of the tissue, see Figure 1.7. 
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FIGU~E 1. 7: Solute concentration within cross-section of tissue 
at successive times during immersion in medium of C 
concentration {where Cl is the initial concentratio~ 
in the tissue, .at t = 0, Ct , is the concentration in 
the tissue, at t = t, CWl is the initial concentra
tion at the surface at t = 0 and C t is the concen-
•. h f w tratlon at time t = t at t e sur ace. 

The radius of the cross-section is denoted by r, the concentration 

of solutes in the cross-section of the tissue {Cl is uniform and 

the solute concentration in the blanch water is C • w 

When tissue is immersed in the blanch water and C is greater 

than C , then diffusion will start at the surface, and a concen-
w 

tration gradient will develop within the tissue along the radius r. 

As time is required for solute to diffuse from cell to cell in 

the tissue, the concentration gradient will have a gradually 

falling slope receeding from the surface. Therefore the concen

tration of solutes in the tissue will resemble successively curves 

1,2, 3 and 4 as time passes. 
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When equilibrium is reached, the concentration within the 

tissue will again be uniform, and a straight line graph will 

result (curve 5). 

The speed with which a solute molecule will diffuse depends 

on: 

1. Size of tissue sample: 

The reduction in the tissue sample size should result in a 

greater rate of diffusion due to the increase in the surface 

area to volume ratio and to the reduction in the distance 

the solute has to move within the tissue sample to get to 

the su rface. 

2. Concentration gradient: 

The concentration gradient between that at the surface of 

the tissue and that in the blanch medium is important, since 

the driving force is the difference in concentration. The 

direction of diffusing also depends on that concentration 

gradient. 

3. Temperature: 

An increase in the temperature may increase both the solu

bility of solutes in water and the rate of diffusion of solutes 

through the tissue, and so will increase the diffusion coeffi

ci ent. 

4. Agitation rate: 

Agitation of the blanch medium increases eddy diffusion and 

so increases the diffusion rate (Charm, 1978). 

1.2.3 Water Retention Mechanism 

There are various views in the literature on the mechanism 

control ling the retention of water in the cell (Kuprianoff, 1958, 

Ling and Walton, 1976; Duckworth, 1976). 
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However the most generally accepted view is the one presen

ted by Weier and Stocking (1949). In this view the chief internal 

factors that control water retention of the cell are: 

1. The concentration of osmotically active materials within 

the cytoplasm and cel I vacuole. 

2. The permeability of the protoplasm. 

3. The amount of colloidally active materials within the 

vacuole, cytoplasm, and cell wall. 

4. The elasticity of the cell wall. 

5. The presence of intercellular spaces in the tissue. 

According to this view, any heat treatment which alters 

the permeability of the protoplasm, the ability of solutes to 

be retained within the cell, the elasticity of the cell wall or 

the colloidal nature of the cell contents, will alter the water 

retaining power of the cell. Therefore cells having large 

quantities of protoplasm, starch grains or other colloidally 

active material are likely to retain more of their water on 

death than cells of smaller or without colloidal content. 

Weier and Stocking (1949) also pointed out that tissues 

having highly elastic cell walls at full turgor will have a larger 

water content. The death of this type of tissue will result in the 

contraction of the distended cell wall which forces out the large 

amount of watery solution. If the tissue cell walls are rigid and 

less elastic the death of such tissue will result in much less 

contraction of the cell wall on losing turgor, and therefore less 

loss of cell solution. 
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1.3 Effect of Heating on Vegetable Tissues 

Heating vegetables tissues brings about a series of chemical, 

physical and histological changes depending on the severity of 

the process. Priestley (1979) summarised the general effects 

brought about by heat: 

1. Physical ~hanges in tissue such as: 

a) Denaturation of proteins. 

b) Gelatinisation of starch. 

c) Breakdown of pectic substances. 

d) Changes in cell structure. 

e) Changes in intercellular air. 

2. Chemical changes, such as: 

a) Enzym~hydrolysis. 

b) Oxidation and development of flavour components and 

colour. 

3. Histochemical changes, such as change in texture. 

4. Materials loss in the form of solutes, water, and volatile 

substances. 

1.3.1 Cell Membrane Disorganisation 

During immersion of living cells in water only a very slow 

diffusion process takes place. The concentration equilibrium 

results from osmosis. This indicates that living cells do not allow 

direct diffusion of solutes because the cytoplasmic membrane in 

its natural state controls the mass transfer in and out of the 

cell. 

For rapid diffusion of the solute molecules from the cell 

to the blanch water, and for cell solute transfer by means of 

diffusion, the semi-permeability of the cytoplasmic membrane has 

to be neutralised. This can be achieved by heat or chemical treat

ment, (Weier and Stocking, 1949). 
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The denaturation of the protein of the cytoplasm and the 

cell membranes by heat resulted in cell membrane disorganisa-

tion. In denaturation, the physical action is not reversible 

(it can be if not adequate). 

Denaturation of the protein of the cytoplasm and cell 

membrane starts at temperatures above sooe and is accelerated 

at higher temperatures. The time required for complete denatura

tion depends on the temperature and physical condition of 

vegetable tissue. At temperatures above 700 e the disorganisation 

of the cytoplasmic membrane is completed in a short time (less 

than 300 seconds depending on the tissue. As a result of cyto

plasmic membrane disorganisation, the cell membranes lose their 

selective permeability and the remaining cell walls are fully. 

permeable to solutes. 

In this state, solutes and water can freely pass out of 

and into the cell by diffusion. 

According to Dousse et al. (1977), on using heat as a means 

of denaturation for apple tissue cell membranes, a correlation 

between temperature and time will result as shown in Figure 1.8. 
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FIGURE 1.8: Time for denaturation of apple tissue cell mem
branes as function of temperature (after Dousse 
et aI., 1977) 

1.3.2 Changes in Starch 

o 

Most starches contain both amylose and amylopectin within 

the granule. Usually the amylose represents between 20 and 30% 

of the total starch (Paul and Palmer, 1972). According to 

McCready and Hassid (1947) amylose and amylopectin are present 

in a ratio of 1:3 in potato starch. 
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Amylose is best described as a linear polymer of n, 1-4 

linked D-glucose units (70-350 glucose units) together with 

molecules possessing a very limited amount of branching 

(Priestley, 1979). Amylopectin is a branched chain of glucose 

polymer (up to 1000 glucose units) in which the n,I-4 linkages 

are branched by an n, 1-6. 

The major change that occurs within the cells of the 

starchy vegetables during heating is the gelatinisation of starch 

in the typical temperature range of 50-75°e. When starchy vege

table tissue is heated to above 500 e, starch granules slowly 

and reversibly start to absorb water and swell. Thi.s swell ing 

is reversible until at a certain temperature the so-called 

gelatinisation temperature, material is leached from the starch 

granule and structural order is irreversibly lost, (Priestley, 

1979) . 

When the gelatinisation temperature is reached starch 

rapidly absorbs large quantities of water, several times its 

own weight. Once gelatinisation starts, it proceeds very rapidly. 

Temperature ranges inducing gelatinisation are however 

variable, being influenced by the size of the starch grain, 

heating time, pH, degree of maturity and variety of vegetable 

tissue (Weier and Stocking, 1949; Radley, 1968). Potato 

starch begins to gelatinise in the range of 64 to 720 e,(Roberts 

and Proctor, 1955), while carrot starch has a gelatinisation 

temperature around 500 e,(Mann and Weier, 1944). 

The swell ing of starch, particularly amylose is bel ieved 

to occur through the binding of water (Kerr, 1950; Mayer, 1978). 

In starch granules, amylose and amylopectin molecules are 

loosely bound together by hydrogen bonds of the hydroxyls. As 

the temperature of water-starch mixture rises, hydrogen bonding 

decreases for both the starch-starch bonds and water-water bonds 

and the size of the particles diminishes. Then the water molecules 
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begin to penetrate between the starch molecules. Therefore the 

gelatinisation process involves the breaking of H-bonds that 

hold the micellar structural units together and the permeation 

of the weakened starch structure by dissociated water molecules 

which hydrate the hydroxyl groups of the starch molecules. In 

potatoes of high starch content the cells tend to separate and 

round off largely because of the swelling of the gelatinised 

starch, while in potatoes of low starch content, the cells tend 

to retain their original orientation with respect to each other 

(Talburt and Smith, 1975). 

Another change that occurs in starch granules during heating 

(processing) is the hydrolysis of starch to dextrins and maltose 

by the activity of the amylases. 

In general there are two kinds of storage starch in 

vegetables which are characterized by differences in gelatinisa

tion temperatures in relation to the inactivation temperature 

of the amylase (Mann and Weier, 1944). The storage starch in 

carrot, parsnip.and turni.p roots gelatinises at a lower tempera

ture (40-500 C) than that of enzyme inactivat"ion (750 C) whereas 

the storage starch in white potato and peas does not gelatinise 

until after the enzyme has been inactivated. According to Mann 

and Weier (1944), a slow rate of heating during blanching of 

carrot has caused conversion of gelatinised starch to dextrin 

before the enzymes are inactivated. However no such chemical 

change in the structure of the starch molecule has been observed 

during rapid blanching. 

It seems that in general, gelatinisation of the starch grains 

in carrots results in the immediate hydrolysis of starch to 

dextrins, unless the amylase is inactivated. Bettelheim and 

Sterl ing (1955) noticed that total starch content invariably 

decreased during the cooking process of different varieties of 

potato, but the amylose content decreased in some varieties and 

increased in others. The percentage of amylose in potato starch 
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decreased during cooking in cases where the amylose percentage 

of raw potato starch was above 10%, and increased where it was 

below this value. It was suggested that the possible explanation 

of this behaviour was based on simple diffusion and enzyme 

activity. According to Bettelheim and Sterling (1955), the starch 

content of cooked potato was dependent not only on the starch 

content of the raw potatoes, but also on other factors such 

as the solubility of the heated starch and the permeabil ity of 

the cell wall and cell membranes during processing. 

Permeability is important because loss of soluble starch 

occurs by diffusion into the cooking medium. 

1.3.3 Changes in Pectic Substances 

Pectic substances are widely distributed in plant tissue. 

In most vegetables the pectic substances occur in the middle 

lamella, which acts as a cementing material holding the cells 

together. Also it occurs in the primary wall of many cells. 

Any agent or heat process which breaks down these substances 

can obviously bring about softening and separation in the tissue 

of fruits and vegetables (Meyer, 1978). When the pectic substances 

diminish in the middle lamella, the cells can be separated more 

readily. When they diminish in the cell walls the walls become 

thinner and more readily punctured. Simpson and Halliday (1941) 

investigated the change in pectic substances in carrots and 

parsnips before and after steaming. They steamed carrots and pars

nips for 20 minutes and 45 minutes. They found that while there 

was a steady increase in the amounts of pectins and pectates as 

steaming progresses, there was a decrease in the protopectin as 

well as in the total pectic substances. Histological observation 

of the tissue wall showed that tissue steamed for 45 minutes had 

a much thinner middle lamel la than the fresh tissue. They concluded 

that these changes may have been brought about by the hydrolysis of 

protopectin to pectin. 
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Lee et al. (1979) found that the fi rmness of carrots 

increased as the blanch temperature was raised from 54 to 750C, 

and decreased as the blanch temperature was raised from 750 to 1000C. 

This firming effect was attributed to the effects of pectin 

methyl esterase (PME) which is activated by the low temperature 

blanch and inactivated by the high temperature blanch. 

BartoLome and Hoff (1972) showed the same observation during 

heating potato. They proposed that heating at temperatures above 

500C led to loss of integrity of the cellular membrane allowing 

intercellular electrolytes to contact the cell wall materials 

thereby activating pectin methyl esterase (PME). This enzyme 

increases the number of free carboxyl groups in the cell wall 

pectin which are available to form bridges with calcium and 

magnesium. This leads to an increased resistance of the tissue 

to further thermal degradation. Above 700C the enzyme is rapidly 

destroyed and exerts no effect on the cell wall material. 

Therefore it appears that the softness occurring during heating 

fruits and vegetables is partially the result of changes in the 

pectic substances, i.e. the large molecules .of insoluble proto

pectins are in some fashion hydrolysed to smaller soluble pectic 

substances which are able to form colloidal dispersions in water. 

1.3.4 Change in Intercellular Air 

Most parenchyma tissue in fresh vegetables and fruits 

contains large intercellular spaces filled with air or gas of 

similar composition. In some fruits and vegetables the amount of 

air is appreciable, in others quite small (Meyer, 1978). Weier 

and Stocking (1949) reported that 15% of the volume of fresh 

peaches is intercellular space, compared to 20-25% for apple 

(Reeve, 1953) and approximately 1% in potato tuber (Burton and 

Spragg, 1950). Intercellular air in fruit and vegetable tissues 

determines to a large extent their appearance and also may to some 

extent act as an insulator restricting the inward penetration of 
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heat and the outward movement of water. The changes in inter

cellular ai r during blanching have been investigated by Crafts 

(1944a). According to this investigation there are three effects 

of blanching that account for the displacement of intercellular 

air. First, the heat expands the air rapidly and much of it moves 

out along the intercellular spaces towards a cut surface. 

Secondly, heating kills the cells and allows the cell sap to 

escape from the killed cells to the intercellular spaces causing 

a change in the appearance and juiciness of the tissue. Thirdly 

heat softens the cell walls so that they bend and give under the 

compressional force of surface tension. Upon cooling the blanched 

tissue, the gases contract and the air is replaced by cell sap 

that leaks from the killed cells. In the case of white potato 

tissue, intercellular air is relatively small in volume and so 

its displacement has little effect upon the appearance of the 

finished product. According to Crafts (1944b) the opaqueness of 

raw potato is due to the refraction of light by starch grains, 

rather than to gas-filled intercellular space. Different effects 

may be obtained by different heating procedures. 

Crafts (1944a) pointed out if blanching has not been 

thorough, the air bubbles may reform and if the walls are not 

sufficiently plastic, the air bubbles will remain in the finished 

product making it opaque. 

1.3.5 Histological Changes in Tissue 

1.3.5. I Changes in potato tissue 

Heating of potato tissue has been extensively studied. 

It is well known that heat produces remarkable changes, in potato 

tissue due to denaturation of proteins. and gelatinisation of 

the starch. 

The behaviour of potato tissue on heating is complex and 

depends on a number of factors including variety and maturity as 

well as processing conditions. 
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Various workers have attempted to explain the way in which 

heat influences the tissues, and several views have been put 

forward. At the beginning, it was believed that starch generally 

affects potato tissue by causing distension of the cell wall due 

to the swelling starch granules when potato is heated beyond the 

gelation temperature of the starch. 

According to this view a 'swelling pressure' was assumed 

to cause rupture of the cell wall or rounding off of the cells, 

thereby causing rupture of the middle lamella and separation of 

the cells. This hypothesis appears as a sol idly establ ished 

fact in many publications, (Whittenberger, 1951; Reeve, 1954b; 

Bettelheim and Sterling, 1955; Reeve, 1967; Talburt and Smith, 

1975). Microscopic observations of rounded and separated cells 

in cooked potato tissue as a result of the swelling of the 

gelatinized starch have been frequently cited as evidence of 

this mechanism (Reeve, 1954a; Burton, 1966). 

An alternative interpretation was suggested by Hoff (1972), 

who in his study on starch swelling pressure of cooked potato 

described the way in which heat affects the tissue and the 

mechanism of cell separation in the following manner. As potato 

tissue is heated from room temperature to the boiling point, the 

potato which consists mostly of water, will increase approximately 

4% in volume. As a result of this increase in volume considerable 

shear stresses both radial and tangential will be generated in the 

potato interior, dependent on the tensile strength of the cell 

wall, the module of elasticity and on the turgor pressure that 

existed when heating was initiated. 

Under certain circumstances, the limit of elasticity of the 

middle lamella and the cell wall which varies with temperature 

will be exceeded and the results will be cell separation and cell 

rupture. But if the elasticity limit is not exceeded, neither cell 

separation nor cell rupture wi 11 occur. 
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According to this view a number of factors that influence 

the strength of the cell wall and the middle lamella have to be 

considered. These factors include the content of calcium and 

organic acid, cell size, starch content, starch retrogradation, 

diffusion of amylose, age and storage time. A number of these fac

tors have been recognised in some publications (Reeve, 1954b; 

Bettelheim and Sterl ing, 1955; Barrios ~., 1961; Wager, 

1963) . 

1.3.5.2 Changes in carrot tissue 

Priestley (1979) has given extensive reviews on the effect 

of heat on carrot tissue. It is well known that the mechanical 

properties of carrot tissue that reflect the firmness, depend 

largely upon the structure arrangement and the chemical composi

tion of the cell walls (Sterling, 1968; Paulus and Saguy, 1980). 

There are two views regarding the physical effect of heat 

on the softening of carrot tissue and the structure of the cell 

wall. These include: the.loss of rigidity in the individual 

cell walls (softening of interlamellar layer) and the easy sepa

ration of cell walls, (Sterling, 1959; Sterling and Shimazu, 1961). 

1.4 Blanching Process 

1.4.1 Blanching 

Blanching is regarded as an important and necessary prelimi

nary step in the preparation of vegetables and some fruits prior 

to freezing, canning or drying. Blanching is usually accomplished 

by heating the plant tissue rapidly to the required temperature, 

holding it at this temperature for a definite period of time and 

then either rapidly cooling the blanched tissue or passing it 

immediately to the next stage of the process without delay. 
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The form and objective of heat applied during the blanching 

process varies according to the type of blanching process and the 

final processing to be carried out. Blanching prior to freezing, 

drying or irradiation is used primarily to inactivate enzymes, 

whereas blanching prior to canning is used to remove tissue 

gases, soften the tissue, inactivate enzymes and to increase the 

temperature of the tissue. Hot water blanching prior to frying 

is used both to destroy enzyme activity and to leach out reducing 

sugars and other chemical constituents responsible for the produc

tion of poor colour and flavour. 

1.4.2 Blanching Applications 

Apart from the above particular applications, the general 

characteristics and reasons for blanching are: 

1. To inactivate enzymes or to destroy enzyme substrates which 

would contribute to undesirable changes in colour, flavour, 

odour or nutritive value during pnocessing and storage of 

the food (Lee, 1958). 

Oxidative and other chemical reactions are also inhibited. 

The more heat resistant enzymes in vegetables, which serve as 

an index of blanching adequacy, are catalase and peroxidase. 

2. To remove intercellular gases which might cause the excessive 

build-up of pressure in the can during heat processing, and 

to reduce the can corrosion by reducing the oxygen content 

of can headspace gases and to aid the attainment of adequate 

heads pace vacua during canning (Adam ~., 1942). 

3. To soften and shrink the food so reducing weight and volume 

resulting in higher drained weights and facilitating packing 

in a container (Adam and Stanworth, 1941). 

4. To act as a preliminary cleaning stage and reduce the load 

of microorganisms present on surfaces. 

Microbial destruction is not a primary objective of the 
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blanching process for canning but can be a key factor in 

reducing the microbial load in frozen products. 

5. To improve the texture especially in dehydrated foods by 

maintaining the capability for adequate reconstitution in 

the vegetable tissues which are to be dehydrated. 

6. To improve the colour and flavour of the canned vegetables 

and setting the natural colour of certain products, for 

example during blanching of carrot, the carotenoids become 

dissolved in small intracellular oil droplets and in this 

way they are protected from oxidative breakdown during 

dehydration (Duckworth, 1966). 

Against these desirable characteristics blanching may lead to: 

1. Leaching out of the water-soluble nutrients (sugar, protein 

and minerals) into the blanch medium (Horner, 1936; Lee, 

1958) . 

2. Loss of the heat sensitive vitamins (Vitamins Bl and C). 

3. Loss of the desirable flavour constituents from the food. 

The leaching out of reducing-sugars may be used to control product 

colour in the potato industry (Mitchell and Rutledge, 1973). 

Because various types of vegetables differ in size, shape, 

thermal properties, maturity and the natural level of their 

enzymes, blanching treatments have to be established on an experi

mental basis. 

With potato, blanching time may vary from 2-12 minutes 

depending upon the temperature used, size of piece, product 

load in the blancher, uniformity of heat distribution in the 

blancher and variety and maturity of the potato being processed 

(Ta I burt and Smi th, 1975). 
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1.4.3 Methods of Blanching 

The most common methods of blanching in commercial operation 

are those which convey product through steam and those which 

convey product through water. The former method being favoured 

in Continental Europe and the USA and the latter in Britain. 

Hot water blanching involves passing the food at a controlled 

rate through hot water for the required time and temperature. In 

most modern factories, continuous systems are used and are usually 

of the following types: immersion blancher, tube or pipe blancher, 

rotary blancher, hydrostatic blancher and tbermoscrew blancher. 

Water blanching also can be conducted on a batch basis by 

simply dipping a batch of products in hot water at the desired 

temperature and time. 

The main disadvantages of hot water blanching are the direct 

contact with food which leads to high loss of water soluble 

nutrients, the scrupulous sanitation requirements to avoid 

microbial build-up, and the large volumes of high quality water 

needed. The leaching of water soluble materials also results in 

high BOO (Biochemical Oxygen Demand) blancher effluents. Lee (1958) 

reported that conventional blanching of vegetables (peas and beans) 

in general can cause losses as high as 40% for minerals and cer

tain vitamins, 35% for sugar and 20% for protein. 

The leaching loss can be reduced by allowing soluble solids 

from the food to accumulate in the blanching water until the 

desired concentration is obtained. This is called 'serial water 

blanching'. Alternatively two blanchers in series may be used 

for their maximum leaching and for more effective control of the 

product colour and texture, for greater flexibility and to 

increase the capacity of the plant. More than two blanchers and 

many combinations of high and low water temperatures may be used 

to obtain the desired colour and texture in the finished product. 
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Water blanchers using recycled hot water are more efficient 

in the use of energy than steam blanchers. In addition the 

recycling of hot water within a processing system is more energy 

efficient than a single-pass operation which continually heats 

cold water and discards it (Swartz and Carroad, 1979). In the 

recycling system not only water and energy conservation can be 

achieved, but also a higher-solids product would result with more 

dilute effluent. 

In steam blanching the blanchers are designed on the princi

pal of using a conveyor to transport a thin layer of food through 

a steam chamber and subjecting it to jets of saturated steam at 

atmospheric or low pressure from above and below. The steam 

blanchers are commonly of the following types: thermoscrew 

blancher, vibratory spiral blancher-cooler and in can steam 

blanching. Continuous steam type blanchers are mechanically more 

complex than are the hot water type and occupy more floor space 

than water blanchers for comparable capacity. Steam blanching 

causes much less loss of soluble solids by leaching than water 

blanching but the cleaning effect on the food is reduced so that 

an 'after washer' is necessary. 

There are some other methods of blanching also available, 

but these methods have been used experimentally or to a limited 

extent in commercial operation. These methods are: Individual 

Quick Blanching (IQB), Microwave blanching, Electronic blanching, 

Hot gas blanching, and Fluidized-bed blanching. 

IQB is a new concept in blanching and it is a modified three 

stage steam blanching processing. It is claimed by Lazar et al. 

(1971) to reduce both the volume and strength of blancher 

effluent, improving the nutritional values (controlling blanching 

losses). and texture of processed vegetable and uniform heat 

t reatmen t. 
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Microwave blanching has been investigated but few commercial 

units are in operation. Microwave in combination with hot water 

or steam has been suggested by Dietrich et al. (1970), HUX5011 et - -
~. (1970), and Chen et al. (1971). Microwave blanching has some 

applications with fruits and vegetables and offers several 

advantages such as microbiological cleanliness, no effluent 

and low losses of nutrients, but the high capital costs make it 

much more expensive than conventional blanching. 

Blanching of vegetables by a dielectric heating system 

was suggested by Reynolds (1951), by using a high-frequency 

field ," heat inside the food will be generated by molecular 

stress. It is claimed that dielectric heating reduces the 

blanching time to about 20 seconds and gives improved texture, 

colour and vitamin retention. The disadvantage of a'dielectric 

system is that it imposes restrictions on the thickness and 

character of the product, since the food to be blanched is part 

of the power generating electrical circuit. Foodstuff thicknesses 

of less than 0.025m' are considered practical in the dielectric 

system. 

Robe (1973) and Rails et al. (1973) have successfully applied 

hot gas blanching to spinach and other vegetables. Hot gases at 

1500 C are circulated through and around the vegetables which are 

conveyed through the gas chamber on a stainless steel belt. It 

is claimed that hot gas blanching reduces the volume of waste 

water effluent to less than 1% compared to steam or hot water 

blanching. The other characteristics are better nutrient retention 

and better product colour, but there may be high weight losses due 

to evaporation. Since partial dehydration can be accomplished in 

hot gas blanching, the method is particularly well suited to 

products that are subsequently to be dried. Mitchell~. (1968) 

claimed that heating in a fluidized bed offers a possible means for 

achieving uniform short-time blanching. In this process the 

vegetable is subjected to an updraft of gas of high velocity 

to cause the bed to behave as a fluid. 
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From the above one can conclude that the main problems 

concerning blanching are: firstly in ensuring uniform heat 

treatment and second in controlling blanching losses and the 

effluent disposal dfficulties caused by these. Also one can 

conclude that a good blanching process should have a high heat 

efficiency, maintain product quality, occupy little space and 

have little or no liquid effluent. Based on these considerations, 

commercial steam blanchers are criticized for allowing steam to be 

wasted at the inlet and outlet and for increasing effluent by 

condensation on uninsulated walls. In addition, steam blanchers 

occupy more floor space than water blanchers for comparable 

capacity. 

Although water blanching has been shown to be more effec

tive for heat transfer into the product and to be less expensive 

in both capital equipment and operating costs, it is criticized 

for a greater tendency to leach sol ids from the product than 

steam blanching.· Water blanchers with recycled hot water are 

more efficient in the use of energy than steam blanchers. 

Individual quick blanching has shown promise for decreasing 

blancher effluent and giving uniform heat treatment as well as 

maintaining high yield and product quality. 

Microwave blanching although it has no effluent, the large 

capital cost and low energy efficiency make it much more expensive 

than conventional blanching. 

Superheated steam and high frequency electrical heating have 

not been considered satisfactory from an operational or economic 

standpoint. Hot gas blanching reduces the effluent to a negligible 

quantity, but require? more energy than steam blanching and may 

cost 2-10 times as much. 

Based on the work of Bomben (1977), the energy efficiency of 

a conventional steam blancher is 5%, a hydrostatic steam blancher 

27%, vibratory spiral blancher 85% and a water blancher 60%. 
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When the operational costs of the above blanchers are 

compared to those of a conventional water blancher the low capi

tal cost of the water blancher makes it the most economical 

choice. 



2. MASS AND HEAT DIFFUSION THEORY 
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2. MASS AND HEAT DIFFUSION THEORY 

2.1 The Diffusion Model and Prediction of Apparent Diffusion 
Coeffi cient 

The mass transfer process is characterized by the general 

type of equation: 

Rate of mass transfer driving force 
res i stance 

This equation shows that in order to transfer a property such as 

mass, a driving force is needed to overcome the resistance. 

In the blanching of vegetables, the two contributions to the 

total resistance to mass transfer are the surface resistance due 

to convection and the internal resistance due to mass diffusion. 

These two can be represented by Fick's first and second laws 

together with a mass balance at the interface (surface): 

and 

where: 

dc d2c 
D 

dt = a dx2 
(2.1) 

-D dc K (C C ) 1 dN 
-= - = A dt' a dx 0 

(2.2) 

at x = a (surface) 

D - diffusion a coefficient (m2 s -1) 

A = tota 1 surface area for mass trans fer (m2 ) 

C = solute concentration at any point in the sample (%) 
Ca concentration of the (blanch) medium % 
K = surface mass transfer coefficient, kg m-2 s-l 

N mass d i ffus i ng, (kg) 

t = blanch time (s) 

x = any position in the sample where the concentration 

is C (m). 
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Equation (2.1) expresses the rate of accumulation of mass at 

a given point in the medium. The second equation gives the rate 

of diffusing per unit area of a medium in terms of the diffusion 

coefficient and .the concentration gradient across the medium. 

Equation (2.1) is a general expression for mass diffusion in one 

dimension. 

To obtain equations for mass diffusion in the form of 

cylindrical or spherical coordinates, equation (2.1) can be 

expressed as: 

dc 
dt 

D (d
2

c + .!. 
a dr2 r 

for infinite cylinder, and 

dc 
dt 

for a sphere, 

D (d2c + ~ 
a dr2 r 

;!E) 
. dr 

;!E) 
. dr 

where: r is the distance from the centre. 

(2.3) 

(2.4) 

The solution to these equations is given by Newman (1931a) 

for the three geometric shapes of slab of infinite extent, 

cylinder of infinite length and a sphere. The average concentra

tion is obtained after integration with respect to position as 

a function of time for given values of surface mass transfer 

coefficient, all in non-dimensionalised form·. 

It was assumed that: 

1. There was no chemical reaction in the system. 

2. The initial concentration was uniform throughout the sample 

of the vegetable. 

3. The concentration of the (blanching) medium was constant and 

uniform. 
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If there. is sufficient agitation of the blanching liquid, 

then-the surface resistance becomes small because at maximum 

agitation the mass transfer 

the relative resistance (m) 

coefficient (K) becomes large and 

approaches zero according to: 

m = 

Thus it can be assumed that the total resistance to mass diffu

sion is due to only the 'internal' resistance. We then require 

only the solution to Fick's second law. This is given by Newman 

(1931b) for the geometrical shapes, slab of infinite extent, 

cylinder of infinite length, and sphere, with the average concen

tration obtained after integration with respect to position as 

a function of time, again in non-dimensionalised form as follows: 

Slab: 
8 L = -

n=O 

Sphere: 

e- Co 6 '" 
E = = - L Cl - C 1'2 n=l 0 

Cyl inder: 

e- Co '" 
E = = I; L C - C n= 1 1 0 

where R n is the root of Jo(x) = 

(2n+l)2 

n2 
exp 

R 2 
exp 

n 

00 

1 + L 
n=l 

o t 
exp [-(2n+l)2 [a~ ] 

(2.5) 

o t 
[ -n2 [a~ ] 1'2] = E s 

(2.6) 

o t 
[- [_a_] R 2] = E 

a2 n r 

(2.7) 

(-1) n 
X2n 

=0 
(2n)2! 
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where the first ten values are: 

n 1 2 3 4 5 6 7 8 9 

R 2.4048 
n 5.5201 8.654 11. 792 14.931 18.071 21.212 24.352 27.493 

and here: 

a : characteristic linear dimension; half the diameter for a 

cylinder and sphere, half the thickness for a slab (m). 

C : average solute concentration in the (blanched) sample at 

time t, (%) 

Cl: uniform ini tial (cell sap) solute concentration in the fresh 

(unblanched) sample, (%) 

J : the Bessel function of order zero 
o 

n : number of roots. 

D t '" 
'and ~: t, a non-dimensional time. 

a 

Newman (1931b) by using the principle of superposltion 

showed mathematically how the solution for a slab of infinite 

extent can be used to obtain the solution for diffusion in two 

directions x and y (rectangular bar) three directions, x, yand 

z (cubes) and a cylinder of finite length. 

If the values of E ,E or E are each used for diffusion 
x y z 

between a pair of parallel faces, then the solution for diffusion 

from the x and y faces in a rectangular bar is 

D t 
f (~) : E E 

y2 x Y 

For diffusion from all 
D t 

E : f (_a_) f 
x~ 

three 
D t 
(~) 
y2 

faces, x, 
D t 

f (~) 
z2 

y and z in cubes: 

E E E 
x y z 

(2.8) 

(2.9) 

10 

30.635 
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and for diffusion from a short cylinder of length x and radius r 

E 
o t 

f (_a_) = 
r2 

E E 
x r (2.10) 

It may be seen that E is dimensionless and expresses in a sense 

the fraction of leachable solute in a blanched material. The 

magnitude of E ranges from unity to zero; thus E = 1.0 for any 

unblanched material. The value of E reduces to a fraction during 

the course of blanching. The right hand side of the equations 

2.5, 2.6, 2.7 is a rapidly converging series. If 0 and a are 
a 

constant, E will nearly be a linear function of the blanching 

time on a semi logarithmic coordinate. 

Newman (1931b) developed these solutions for drying applica

tions over a wide range of concentrations and presented the results 

as a set of tab 1 es. I n the case of blanch i ng vegetab 1 es the 

concentrations are much smaller and near to zero. The solutions 

were therefore recalculated at much smaller increments in the 

range of concentrations applicable to the blanching of vegetables, 

using the first ten terms for the three series. The<e are shown 
Oat 

in Tables 2.1, 2.2 and 2.3, for various values of (az-) for a 

slab of infinite extent, sphere and cylinder of infinite length, 

(see Appendix I for the computer program used in the calculation). 

From these data, graphs as illustrated in Figures 2.1, 2.2 

and 2.3 were prepared showing 

c - c 
o 

as a function of 1 for values of 

o - 0.04 and 0 to 0.20. 

o t a 
ar in the ranges, 0 - 0.01, 

To calculate the apparent diffusion coefficient (0 ), 
a 

C - C o 
E = C - C 

1 0 
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o t Slab Cyl inder Sphere 

" [= ~l t E , E or E E E a" x y z r 5 

0.0002 0.9774 0.9528 0.9306 
0.0004 0.9734 0.9456 0.9198 
0.0006 0.9693 0.9388 0.9098 
0.0008 0.9663 0.9324 0.9004 
0.0010 0.9631 0.9264 0.8915 
0.0012 0.9601 0.9207 0.8831 
0.0014 0.9572 0.9152 0.8752 
0.0016 0.9544 0.9100 0.8677 
0.0018 0.9518 0.9051 0.8605 
0.0020 0.9493 0.9004 0.8537 
0.0022 0.9469 0.8953 0.8471 
0.0024 0.9446 0.8914 0.8408 
0.0026 0.9424 0.8872 0.8348 
0.0028 0.9402 0.8832 0.8290 
0.0030 0.9381 0.8792 0.8234 
0.0032 0.9361 0.8754 0.8179 
0.0034 0.9342 0.8717 0.8127 
0.0036 0.9323 0.8682 0.8076 
0.0038 0.9304 0.8647 0.8026 
0.0040 0.9286 0.8613 0.7978 
0.0042 0.9269 0.8580 0.7932 
0.0044 0.9251 0.8547 0.7886 
0.0046 0.9235 0.8516 0.7842 
0.0048 0.9218 0.8485 0.7798 
0.0050 0.9202 0.8455 0.7756 
0.0052 0.9186 0.8425 0.7715 
0.0054 0.9171 0.8396 0.7674 
0.0056 o. 9i 56 0.8368 0.7635 
0.0058 0.9141 0.8340 0.7596 
0.0060 0.9126 0.8313 0.7558 
0.0062 0.9112 0.8286 0.7521 
0.0064 0.9097 0.8260 0.7484 
0.0066 0.9083 0.8234 0.7448 
0.0068 0.9070 0.8208 0.7413 
0.0070 0.9056 0.8183 0.7378 
0.0072 0.9043 0.8158 0.7344 
0.0074 0.9029 0.8134 0.7310 
0.0076 0.9016 0.811 0 0.7277 
0.0078 0.9003 0.8086 0.7244 
0.0080 0.8991 0.8063 0.7212 
0.0082 0.8978 0.8040 0.7181 
0.0084 0.8966 0.8017 0.7149 
0.0086 0.8954 0.7995 0.7119 
0.0088 0.8941 0.7973 0.7083 
0.0090 0.8930 0.7951 0.7059 
0.0092 0.8916 0.7929 0.7029 
0.0094 0.8906 O. 790'~ 0.7000 
0.0096 0.8894 0.7887 0.6971 
0.0098 0.8883 0.7866 0.6943 
0.0100 0.8872 0.7845 0.6915 

D t C - C 
'V a 0 ] TABLE 2.1: Values of t [= ---] for various values of E [= C _ C 

a2 I 0 

in the range of 0 to 0.010 for the geometrical shapes: 
slab of infinite extent, sphere, and cylinder of infinite 
1 eng th 



o t 
'c 

[= ~l t 
0 

a' 

0.002 

0.004 

0.006 

0.008 

0.010 

0.012 

0.014 

0.016 
0.018 

0.020 

0.022 

0.024 

0.026 

0.028 

0.030 

0.032 

0.034 

0.036 

0.038 
0.040 

0.042 

0.044 
0.046 

0.048 

0.050 

TABLE 2.2: 
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Slab Cyl i nder 

Ex' E or E E 
y z r 

0.9493 0.9003 
0.9286 0.8612 

0.9125 0.8312 

0.8990 0.8063 

0.8871 0.7845 
0.8763 0.7650 
0.8664 0.7473 
0.8:72 0.7369 
0.8486 0.7157 
0.8404 0.7014 
0.8326 0.6879 
0.8251 0.6751 
0.8180 0.6630 

0.8111 0.6513 

0.8045 0.6402 

0.7981 0.6295 

0.7919 0.6192 

0.7859 0.6093 
0.7800 0.5997 
0.7743 0.5904 
0.7687 0.5814 

0.7633 0.5726 
0.7579 0.5641 

0.7527 0.5559 
0.7476 0.5478 

'" 0 t 
Values of t [= ~] for various values of E a 

Sphere 

E s 

0.8536 

C.7978 

0.7557 
0.7212 

0.6914 

0.6651 
0.6414 

0.6198 

0.5998 
0.5812 

0.5639 

0.5475 

0.5321 

0.5175 

0.5036 
0.4904 

0.4778 

0.4657 
0.4541 
0.4429 

0.4322 

0.4219 

0.4119 
0.4023 

0.3930 

c - C 
[= C - Co] 

1 0 

in the range of 0 to 0.050:. for the geometrical shapes: 
slab of infinite extent, sphere, and cylinder of infinite 
length 
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o t Slab Sphere Cyl i nde r 
'" a 
t [= -] 

a2 
Ex' E or E E E 

Y z 5 r 

.0002 .9773 .9305 , .9527 i 

.0004 .. 9784 .9198 I .9455 , 

.0006 I .9697 .9097 I .9887 

.0008 .9663 .9003 
I 

.9328 
.0020 .9493 .8536 .9003 
.0040 .9286 .7978 .8612 
.0060 .9125 .7557 .8312 
.0080 .8990 .7212 .8063 
.0100 .8871 .6914 i .7845 
.0200 .8404 .5812 , .7014 I 
.0300 .8045 .5036 I .6402 
.0400 .7743 .4429 I .5904 
.0500 .7476 .3930 I .5478 
.0600 I .7236 .3508 .5105 
.0700 I .7014 .3143 .4772 
.0800 .6808 .2825 .4470 
.0900 I .6614 .2544 I .4195 
.1000 I .6431 .2295 I .3941 
.1100 

I 
.6257 .2072 .3707 

.1200 .6091 .1873 .3489 

.1300 .5931 .1694 .3286 

.1400 .5778 .1532 
I 

.3096 
.1500 .5630 .1387 .2918 
.1600 

, 
.5487 .1256 , .2751 , I .1700 I .5349 .1137 .2595 

.1800 .5215 .1030 .2447 

.1900 I .5085 .0932 .2309 

.2000 .4959 .0845 .2178 

.2100 .4836 .0765 .2055 

.2200 .4718 .0693 .1939 

.2300 .4600 .0628 .1830 

.2400 .4487 .0569 . I 727 

.2500 .4377 .0515 .1629 

.2600 .4270 .0467 .1538 

.2700 .4165 .0423 .1451 

.2800 .4063 .0388 .1370 

.2900 .3964 .0347 .1293 

.3000 .3867 .0314 .1220 

.3100 .3773 . .0285 . I 151 

.3200 . 3681 .0258 .1087 

.3300 .3591 .0234 .1025 

.3400 .3503 .0212 .0968 

.3500 .3418 .0192 .0913 

.3600 .3334 .0174 .0862 

.3700 .3253 .0157 .0814 

.3800 .3174 .0142 .0768 

.3900 .3096 .0129 .0725 

.4000 .3021 .0117 .0684 

.4100 .2947 .0106 .0645 

.4200 .2875 .0096 .0609 

.4300 .2805 .0087 .0575 

.4400 .2737 .0079 .0543 

IContinued ..•• 



.4500 

.4600 

.4700 

.4800 

.4900 

.5000 

.5100 

.5200 

.5300 

.5400 

.5500 

.5600 

.5700 

.5800 

.5900 

.6000 

TABLE 2.3: 

.2670 

.2605 

.2541 

.2479 

.2419 

.2360 

.2302 

.2246 

.2192 

.2138 

.2086 

.2035 

.1986 

.1937 

.1890 

.1844 

'U 
Values of t 

c - C 

41 

i 

I 
I 

o t 
a [= -] 
a 2 

. 

.0071 I .0512 

.0064 .0483 
! .0058 , .0456 , 

.0053 
, 

.0430 ! 
.0048 

, .0406 
j 

.0043 i .0383 

.0039 I .0362 

.0035 1 .0341 , 

.0032 .0322 

.0029 .0304 

.0026 .0287 

.0024 .0271 

.0021 .0256 

.0019 .0241 

.0017 .0228 

.0016 .0215 

for various values of 

E [= 0] in the range 0 to 0.600 for the 
CI- Co 

geometrical shapes: slab of infinite extent, 

sphere, and cylinder of infinite length 
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was first evaluated from the experimental data, then the corres

ponding value of ~ was obtained from the graph of 

'" 0 t 
t (= _a_) 

a 2 

for the appropriate shape. 

. f '" By equating the value 0 t 

cient (0 ) was determined. a 

o t 
to _a_ 

a2 
, the value of diffusion coeffi-

During blanching in a finite volume of water, the concentration 

in the blanch medium Co varies from COl at the beginning of blanching 

to COt at the end of blanching. Therefore Co was approximated by 

the arithmetic average: 

C = o 

WiLh blanching of potato tissue the concentration of sol ids and 

sugars were considered to be as follows: 

M 
Cl 

0 = W 

C 
Mt =-W 

M 
and C w 

0 =w-
w 

whe re: M = weight of sol i ds or sugar at time t = 0 in unblanched 
0 

potato 

W = weight of free water in potato 

Mt = weight of so 1 i ds or sugar at time t = t in blanched 

potato 

M = we ight of soli ds or sugar at time t = t in blanch water 
w 

W = weight of blanch water. w 



FIGURE 2.1: Plot of E for slab, infinite cylinder and sphere versus 1 in the range 0 to 0.010 for evaluation of the 
diffusion coefficient (D ) a 
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2.2 Arrhenius Theory and the Activation Energy Prediction 

The most common and generally valid assumption is that 

temperature-dependence of the diffusion coefficient 

follow the Arrhenius equation (Geankopl is, 1972). 

can be expressed as: 

o = 0 exp (- E /RT) 
a 0 a 

where: 0 = constant, (m2 s -1) 
0 

E = activation energy, kJ mol-
a 

(D)will 
a 

This behaviour 

(2. 11 ) 

R = universal gas constant (8.314 J k- 1 mol-I) 

T = absolute temperature. (OK) 

This equation (the Arrhenius equation) 

ln 0 versus the reciprocal of absolute 
a 

linear relationship (straight line) as 

'" o 
c: 

T 

indicates that a plot of 
1 temperature (T) gives a 

shown in Figure 2.4. 

FIGURE 2.4: Relation between ln 0 
a 

1 and -
T 
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The activation energy, (Ea)' is generally derived from the slope 

of the plot of In Da vs t, (which is the activation energy 

divided by the gas constant R), according to the following 

equation: 

- SR (2.12) 

where S is the slope of the straight line and E and R have the 
a 

same meaning as before. 

E may be determined in the following manner; taking 
a 

logarithms of both sides of equation 2.11: 

E 
= In D _ a 

o RT (2.13) 

The constant Do can be estimated by letting Da be Dal at tempera

ture, TI then 

E 
a 

+ RT 
I 

Substituting equation 2.14 into equation 2.13 gives: 

D 
a In -- = 

Dal 

= 

-E a 
-R-

-E 
a 

R 

I I (- - -) 
T TI 

(T I - T) 
[ T T 1 

1 

(2.14) 

(2.15) 

(2.16) 

Thus if experimental values of D at two or three temperatures a 
are avai lable, then one could extrapolate the straight I ine and 

predict the diffusion coefficients at other temperatures. 
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Labuza and Riboh (1982) indicated that practical or 

theoretical errors may arise from this type of extrapolation 

due to the heterogeneity of the food sample causing a sampling 

error, and the sample itself may contain substances interfering 

with the analysis. 

2.3 Prediction of Apparent Thermal Diffusivity 

Unsteady state or transient heat conduction is the most 

widely encountered situation during heating and cooling of food 

materials. For the unsteady state condition, the temperature 

distribution in a body is given by Fourier's general law of 

heat conduction in the form of a partial differential equation 

as fo 11 ows: 

d (K dT) + ~ (K dT) + ~ (K dT) + 
dx 0 dx dy 0 dy dz 0 dz q 

where: 

= 

K = 
.0 

T = 

q = 

Cp = 

P = 

t = 

dT 
p. Cp. dt 

thermal conductivity 

temperatu re, oK 

of the material 

internal heat generation, W/m 3 

spec i f i c hea t , kJ/kgOK 

density of the material, kg/m 3 

time, sec 

x,y,z =coordinate directions 

(2.17) 

W/moK 

By considering a food material with the following characteristics: 

1. Thermal conductivity, Ko is uniform and constant. 

2. No internal heat generation. 
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Equation 2.17 reduces to: 

(2. 18) 

where: 

K 
Cl = 

o 
p Cp is the thermal diffusivity (m2.sec-1). 

The equivalent Fourier's equation for cylindrical coordinates 

i.e. for an infinite cylinder with only a radial temperature 

gradient is: 

dT 
(ft= [ 1 d (r dT)] Clr:.d'"r dr 

where r is the distance from the centre. 

(2.19) 

For spherical coordinates, Fourier's equation of conduction 

is: 

dT 
[2r d'"r + 

2 d"T r -] 
dr2 

Where conditions are such that the temperature difference 

(2.20) 

between the heating or cooling medium and the food surface is 

negligible, and where the surface temperature is maintained at 

the temperature of the heating or cooling medium, then it can be 

assumed that the surface thermal resistance is negligible, h! = 0 

since this condition implies a large heat transfer coefficient, 

h, at the surface of the food. This condition arises in a well 

agitated medium. 

The calculation is more complex for the case of a small 

heat transfer coefficient where there is a finite temperature 
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difference and the surface thermal resistance is large. If the 

initial and bo~ndary conditions of the food material are that 

it has a uniform initial temperature and the surface temperature 

remains constant at the heating or cooling medium temperature, 

then the solution to the above heat conduction differential equation 

for the central temperature history of the three elementary shapes, 

the infinite slab, the infinite cylinder and the sphere will be 

as given by Schneider (1974) in dimensionless form: 

Slab: 

T - T 
t S 

To - \ 

4 
25 

+ l e-(~)~2t - 1 5 ... = 
~ 

Cyl inder: 

Sphe re: 

Tt - \ 

T - T o s 

Tt - \ 

T - T o s 

= 

= 

-R 2t 
I e 

-R 2t 
2 

2 [ e 
"'"R I-J;-I "Ti( R'-I"T'j + "'"R

2
"-J;-1 "To( R;;-2Tj + .... 1 

2 I 
n=1 

( ) n+ I 2 2 CL t -I exp [-n ~ (-::7) 1 
r 

where: Tt = the centre temperature at time (t) 

(2.21) 

(2.22) 

(2.23) 

T = the uniform initial temperature of the vegetable o 
T = the temperature of the heating or cooling medium. s 

JI(R I) is the first order Bessel function of RI' 

RI ,R2,R
3

, ••. Rn are the roots of the zero-order Bessel function. 

A graphical solution for these equations is given by Schneider 

(1974). In 
T - T 

I t s 
n T - T 

o s 

this graphical solution the relationship between 

and £! gives straight line graphs from which the 
r2 
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thermal diffusivity a can be calculated. 

To calculate the thermal diffusivity the value of E = 

was first calculated from the experimental results. 

Then by using the Schneider chart (Figure 2.5) a value for 
'" at f = -- was obtained. Finally the thermal diffusivity a was 

r2 

determined by solving:: 

T - T 
t s 

T - T 
o s 

where r is the characteristic linear dimension i.e. half the 

thickness for a slab, half the diameter for a cylinder and 

sphere (m). 



T -T 
t s 

T -T o s 
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3. LITERATURE SURVEY 

The survey includes relevant work relating to the water 

blanching of vegetables, the diffusivity of nutrients, and heat 

transfer in vegetables. 

The survey was divided into three sections: firstly diffusi

vity and activation energy in food systems, secondly heat diffusion 

in vegetable tissue and thirdly mass transfer during water blanching 

of vegetables. 

3.1 Diffusivity and Activation Energy in Food Systems 

3.1.1 Diffusion Coefficients of Nutrients and Water in Food 
Systems 

Knowledge of mass transfer and diffusivity of nutrients 

through vegetable tissues during processing is becoming an impor

tant factor in the food industry as the characteristics of the final 

product, process simulation and equipment design become increasingly 

dependent on the rate of mass diffusion. While there is some informa

tion in the literature on the application of Fick's law to predict 

the diffusivity of components in foodstuffs, very few studies have 

examined the diffusivity and mass transfer properties of vegetables 

as functions of time, temperature, concentration and other factors. 

Steward (1930) studied the diffusion of certain solutes (glucose 

and potassium phosphate) through membranes of living tissue of 

potato and red beet. The results indicated that the diffusion 

coefficient of glucose through various living plant tissues is of 

a lower order than that of glucose in water. The diffusion coeffi

cient of glucose was found to be 0.217 x 10- 11 m2 s-1 through turgid 

beet root and 0.10 x 10-11 m2 s-1 through unplasmolysed potato tissue. 

It was stated that the rate of diffusion of solutes through living 



tissues is much slower than the rate in aqueous solution apparently 

due to the resistance of living protoplasm itself. Also it wa~ 

indicated that the lower diffusion 'rate of potassium phosphate 

(0.220 x 10-12 m2 s-l) was probably due to the electrical effects 

on the walls of capillary spaces. 

Becker and Sallans (1955) estimated apparent diffusion coeffi

cients (Da) for water at several temperatures during drying of wheat 

kernel which was considered as spherical in shape, and found that D 
a 

was related to temperature by an Arrhenius type equation: 

E 
Da = Do exp (- R~) 

In the temperature range 20 to 800 e the diffusion coefficients were 

found to lie between 0.069 x 10-10 and 2.77 x 10-10 m2 s-l. The 

diffusion coefficient was also found to be independent of moisture 

content in the important'range 12-30% water. However, no attempt 

had been made to study the effects of relative humidity, air velocity, 

or reduction of atmospheric pressure. 

Fish (1958) accurately measured the diffusion of water by adsorp

tion and desorption in potato starch gel and scalded potato, at 

moisture contents ranging from 0.7 to 44% (wet basis). The diffusion 

coefficient was found to decrease very markedly with decreasing 

moisture content especially below 30% moisture. Also it was found 

that diffusion of water in scalded potato was controlled by the 

migration of water through the starchy part of the material. He 

suggested that the slow transport of water in dry starchy material 

is associated with the loss of rotational freedom of the water mole

cules. The coefficient for diffusion of water in scalded potato and 

starch gel are shown in Table 3.1 as functions of moisture content. 
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Variation of diffusion coefficients of water (D ) 
with water content in scalded potato and starcha 

gel (after Fish. 1958) 

Starch Gel Sca 1 ded Potato 

Moisture D at 25 0 C Moisture D at 250 C 
Content a Content a 

% m2 s-l % m2 s-l 

0.8 0.0011 x 10-11 9 0.10 x 10-11 

6.3 0.015 x 10- 11 10 3.0 x 10-11 

14. 1 0.36 x 10-11 15 7.0 x 10-11 

80.0 2.4 x 10-11 - -

Duckworth and Tobasnick (1960) showed by the use of autoradiography 

that sulphite applied to strips of root vegetables (potato. carrot). 

in scalding solutions diffuse through the volume of the strip during 

subsequent dehydration. Movement of sulphite appeared to be rather 

more rapid in carrot than in potato with a slightly higher concen

tration for both cases in the centre of the strip than at the peri

phery. The results appeared to lend some support to the suggestion 

that the phenomenon of the brown centre during drying might be due 

to an inward diffusion of the browning reactants themselves. due to 

formation of a concentration gradient resulting from the more rapid 

removal of water from the surface layers. 

In another study Duckworth and Smith (1961) examined the 

diffusion of glucose during potato and carrot dehydration using 

similar methods. Strips of potato and carrot were soaked in a solu

tion containing glucose labelled with c-14 until the distribution of 

the labelled glucose was uniform through the material. The strips 

were then dehydrated either with or without a preliminary blanch in 

boiling water. In blanched potato and carrot strips. glucose 

accumulated in the centre of the dehydrated product while.in unblanched 

potato strips it accumulated peripherally. 
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The contrast between the behaviour of glucose in scalded and 

unscalded potato is probably due to the difference in form of the 

starch in the two cases. In the unscalded strips the temperature 

of the material did not rise sufficiently high during drying to 

cause gelatinisation of the starch. The starch grains therefore 

remained intact throughout the drying. The results also confirmed 

that the predominant direction of diffusion of solutes during the 

dehydration of scalded strips of potato and carrot is towards the 

centre of the piece. 

Duckworth (1962) reported on the relation between moisture 

content and diffusion of solutes in dried vegetable tissue. In 

order to examine the extent to which diffusion of solutes can take 

place at different moisture levels, he applied labelled glucose to 

carrot and potato pieces and stored them for several months at 

various relative humidities. Subsequently he found the diffusion 

rate of labelled glucose in dried carrot and potato decreased with 

the decreasing of initial moisture content. Unfortunately the 

presentation of the results did not allow calculation of the 

diffusion coefficients. 

Saravacos and Charm (1962) reported diffusion coefficients of 

the order of ID-9 to 10-10 m2 s-l for water in the air drying of 

potato slabs and other fruits and vegetables at atmospheric pressure 

in the range of moisture content 0.1 to 1.0 (g moisture/g dry matter). 

The diffusivity of water in potato slabs was found to increase with 

temperature and the values were: 2.58 x 10-10 m2 s-l at 54°C, 

3.94 x 10-10 m2 s-l at 60oc, 4.37 x 10-10 m2 5-1 at 650 C and 

6.36 x 10-10 m2 s-l at 69°C. They also found a strong temperature 

dependence from which they calculated an activation energy of 

52.3 kJ/mol for diffusion. The results suggested that moisture 

transfer during the falling-rate period in potato was by molecular 

diffusion. 
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Nakayama and Jackson (1963) measured the diffusion coeffi

cient of tritiated water (H 3 HI 016 ) at four agar gel concentrations 

and found that Da was related to 

equation from which a value D = a 

concentration by a linear regression 

2.41 ± 0.055 x 10-9 m2 s-1 was 

determin.ed for the diffusion of tritiated water in ordinary water. 

This value agrees with the results of Wang et al .(1953), 

2.44 ± 0.057 x 10-9 m2 s-1 which were determined by using a 

diffusion capillary technique. However in 1% agar solution the 

diffusion coefficient of water was reduced to a value of 

2.2 x 10-~ m2 s-1 from a value of 2.4 x 10-9 m2 s-1 in pure water. 

Zagrodszki and Kubiak (1963) described a method for measuring 

the diffusion coefficient of sugar in beet tissue. The method was 

based on measuring the Da of sugar between known solutions through 

a diaphragm made of the beet tissue. The measurements were carried 

out for different diaphragm thicknesses (0.2 - 0.6 cm), different 

temperatures (60 to 750 e) and different speeds of water flow 

(1-12 cm.s- 1). The mean D values of sugar at 60, 65, 70 and 75°C a 
were found to be: 6.75 x 10-10 m2 s~I, 7.6 x 10-10 m2 's- I , 

9.25 x 10-10 m2 s-1 and 1.05 x 10-9 m2 s-1 respectively. 

Silin (1964) reported values for diffusion coefficients of 

sucrose, raffinose and non-sugar substances through beet .cells at 

temperatures of 200 e and 700 e. He found that most of the non-sugar 

solutes diffuse more quickly than the sucrose, while proteins 

(colloids) diffuse much more slowly, due to the large molecular 

weight. The diffusion coefficients of sucrose were 4.28 x 10-10 m2 s-1 

and 1.24 x 10- 9 m2 s-1 at 20 and 700 e respectively. While the 

diffusion coefficients of albumen were 1.02 x 10-11 m2 s-1 at 200 e 
and 2.95 x 10- 11 m2 s-1 at 700 e. 

Wood (1966) studied the diffusion of sodium chloride in pork 

muscle, using a system in which the total salt uptake by the muscle 

was plotted versus (time)! to give a straight line. He found that 

the rate of salt diffusion did not depend on the muscle fibre 

direction. The diffusion coefficients at -20 e and 250 e were: 
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0.12 x 10-9 and 0.36 x 10-9 m2 s-l respectively. Freezing the 

muscle at -20oe was found to have no effect on the diffusion 

coefficient subsequently determined at -2oC. 

Wood (1966) in the above paper also calculated the diffusion 

coefficient of sodium chloride In pork muscle (0.40 x 10-9 m2 s-l) 

from the results of Wistreich~. (1960) and found it to be 

independent of the brine concentration. 

Del Valle and Nickerson (1967) used a similar method for fish 

muscle and found that the diffusion coefficients for sodium chloride 

were not constant but depended upon the salt concentration and the 

temperature. The diffusion coefficients at 5 and 250 C were: 

0.65 x 10-9 and 1.25 x 10-9 m2 s-l respectively. 

Urie and Shahbenderian (1968) studied the desalination process 

of pickled gherkins based on a model for salt diffusion from an 

equivalent sphere into a solution. They found that the rate of 

desalination appeared to be controlled by simple diffusion with 

a 1.35 x 10-9 m2 s-l diffusion coefficient. Also it was found that 

stirring of the leaching solution had little effect on the rate 

of leaching, and the skin of the gherkin offered negligible resis

tance to diffusion. 

In a more fundamental work Paulus (1972) used radioactive 

isotopes to study the ion uptake and transport in potato tissue. 

In his experiments the osmotic pressure of the tissue was higher 

than that of the surrounding solution. Under these conditions 

there was, in addition to diffusive transport of ion, an osmotic 

flux of water. He calculated the diffusion coefficients for 

several ions (Cs, Sr, Zr and Cel using an empirical equation and 

found the diffusion coefficients for these ions ranged from 

5.0 x 10-10 m2 S-1 for caesium to 5.0 x 10-12 m2 s-1 for cerium. 
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Geurts et al. (1974) studied the transport of sodium chloride 

and water during the salting of cheese. They considered the pene

tration of salt into the cheese and the outward migration of water 

as an impeded mutual diffusion process. Diffusion coefficients of 

salt in the moisture in the cheese were found to be: 

2.31 x 10-10 m2 s-l , whi le that of salt in pure water was 

1. 16 x 10-9 m2 - s-l. They suggested that the lower value of 

diffusion coefficient may have been due to local viscosity increa

ses, reduction in cheese volume and obstructions to diffusion due 

to tortuosity of the pores. 

Stahl and Loncin (1979) used the one dimensional solutions 

of Fick's second law to predict diffusivity (D) in potato, and 

found that the apparent diffusivity of cyclohexanol in potatoes 

is strongly dependent on the variety. For varieties high in water 

content (86%) the diffusivity was as much as 6.0 x 10-lU m2 s-l 

at 200 e. The corresponding diffusiVity of cyclohexanol in water 

was 8.7 x 10-10 m2 s-l at the same temperature. The influence of 

temperature on diffusion coefficient (Da) showed that 0 obeyed a 
an Arrhenius type equation with a 35.7 kJ/mol activation energy. 

In a more recent and practical study Lathrop and Leung (1980) 

studied the leaching of Vitamin e from peas during blanching. 

They found that the leaching of Vitamin e was controlled primarily 

by diffusion. The diffusivity for leaching of Vitamin e out of peas 

at 8soe was found to be 1.4 x 10-8 m2 s-l based on Vitamin e reten

tion after two minutes of water blanching. They suggested that the 

higher value of diffusion coefficient may be due to the higher 

temperature used. 

Fick's law in terms of moisture content for diffusion out of 

spheres was successfully applied by Suarez et al. (1980) to describe 

the drying of grain sorghum. It was found that the diffusion 

coefficient of water was independent of moisture content in the 

approximate range of 21-6% (dry basis) moisture content. At 60 and 



60 

500 C the diffusion coefficients were 4.0 x 10-11 m2 s-1 and 

2.9 x 10-11 m2 s-1 respectively. An Arrhenius type temperatur~ 

dependency of moisture diffusivity was found, from which the energy 

of activation was estimated to be 31.4 kJ/mol. The authors attribu

ted the lower value of activation energy to the way that the 

material moisturised, since the diffusivities of rewetted materials 

were different from that of the naturally moist one. 

Desai and Schwartzberg (1980) predicted the diffusion coeffi

cients of sodium chloride in 0.046m diameter, 0.00255m thick potato 

sI ices and 0.025m diameter, 0.2m long pickled cucumbers during a 

two-stage counter current leaching process. The predicted 0 values . a 
for pickles and potatoes were calculated by respectively treating 

the pickles as infinite cylinders and the potatoes as infinite slabs. 

The 0 values were found to be 0.42 x 10-9 m2 s-1 and 1.4 x 10-9 m2 s-1 a 
for potato and pickled cucumber respectively after 30 minutes. 

Kozempel et al. (19Bl) showed that the leaching of soluble 

solids, glucose, potassium, magnesium and phosphorus from potato 

in hot water blanching can be predicted by using a mathematical model 

when diffusion is the rate controlling step. The diffusivity of 

these soluble solids, at 770C were found to be 7.6 x 10-9 , 

1.13 x 10-7 ,. 1.18 x 10-8 and 1.08 x 10-8 m2 s-1 respectively. 

Although the model was developed for 0.95 cm french fry cut potatoes, 

they concluded that it was applicable to other types and cuts of 

other vegetables. 

A model based upon diffusion as the rate controlling step in 

blanching was also used successfully by Kozempel et al. (1982) to 

correlate and predict the loss of water soluble vitamins from 

potato as a function of the process parameters. The diffusivity 

values for ascorbic acid, thiamin, riboflavin and niacin of french 

fries 0.95 cm thick at 77°C were estimated to be 9.56 x 10-~ m2 s-1, 

3.61 x 10-9 m2 s-1, 3.36 x 10-9 m2 s-1 and 7.93 x 10-8 m2 s-1 

respectively. 
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In simi lar experiments Bressan et al. (1981 and 1982) used a 

mass transfer model to measure the "effective diffusion coefficient 

of total solids and lactose from small cured cottage cheeses during 

washing at several temperatures. At temperatures of 25, 35, 50 and 

58°C the effective diffusion coefficients were: 3.40 x 10-10 m2 s-l, 

3.96 x 10-10 m2 s-l, 5.02 x 10-10 m2 s-l and 5.54 x 10-10 m2 s-l 

respectively. An empirical correlation for diffusivitv of total 

solids as a function of temperature was found to be: 

o = (0.0658T + 1.72) x 10-10 
a 

where 0 is in m2 s-l and T is in °C. 
a 

The diffusion coefficient values for lactose at 250 C 

(3.8 x 10-10 m2 s-l) are uniformly larger than those of the 

associated total solids values, indicating that the whey proteins 

are more significantly influencing the diffusion of total solids 

than are the salts and low molecular weight components. 

Califano and Calvelo (1983) proposed a mathematical model for 

heat and mass transfer with a simultaneous chemical reaction to 

analyse the influence of blanching at moderate temperatures on the 

reducing sugar content of the potato. Potato spheres of 2.25 cm 

diameter were blanched in a container filled with distilled water 

at a controlled temperature and stirring was strong enough to 

secure uniformity of heat transfer coefficient. The apparent 

diffusion coefficient obtained was found to be changed with temp

erature according to the Stokes-Einstein equation: 

where DG, is the apparent diffusion coefficient of reducing sugar 

in potato, U is the water viscosity at temperature T and K is 
w 

constant. 
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At 600 C with simultaneous reducing sugar generation, the D 
a 

value was 11.3 x 10-10 m2 s-l. When the simultaneous generation 

of sugar was not taken into account, the result led to 

D = 4.95 x 10-10 m2 s-l at 600 C. 
a 

The described phenomenon of reducing sugar generation became 

less important at temperatures higher than 750 C because of the 

simultaneous destruction of the enzymes. 

3.1.2 Activation Energy for Diffusion in Food Systems 

The diffusion process is influenced by the movement of mole

cules and ions. In a 1 iquid or sol id system these molecules are 

subjected to a considerable force holding them together. There

fore they are not free to move as in the gas system. In such 

systems molecules can only diffuse or move if they have sufficient 

kinetic energy to overcome the forces holding them to adjacent 

molecules, and to push other molecules out of the way. The energy 

necessary to do this is the 'activation energy' (E ). a 

Becker and Sallans (1955) found that the energies of activation 

for diffusion of moisture in two different samples of wheat kernel 

of 10.3% and 9.6% moisture content (dry basis) were 61.6 kJ/mol 

and 54.1 kJ/mol. Since the only difference between the two samples 

was a time lapse of 6 months, it was stated that the decrease in 

energy of activation was due to chemical or physical chanqes taking 

place during storage. 

Fish (1958) found that the increase of the diffusion coefficient 

of water in gelled starch with increasing water content, was mainly 

caused by a decrease of E from 41.0 kJ/mol at a water content of a 
0.74% to 18.8 kJ/mol at a water content of 44.5%. Activation 

energies for water diffusion in various food materials during 

drying was also reported and they are given in Table 3.2. 
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TABLE 3.2: Activation energies (E ) for water diffusion in food 
a materials 

E Moi sture 
Materi a 1 a Content References kJ/mol 

(drxJ~~~s) 

Sugar beet root 28.9 VaccareZ:iB et al. (1974) 

Wheat 54.0-61.1 0.12-0.30 Becker and Sallans 
(1955) 

Tobacco leaf 18.0 Chen and Johnson (1969) 

Rice: 
(b ran) 44.8 Steff and Singh ( 1980) 

(starchy en do- 28.5 0.34-0.13 sperm) 

Tapioca root 22.6 Chi ri fe (1971) 

Sorghum 31.4 0.21-0.06 Suarez et al. (1980) 

Fish muscle 29.7 o. 1 Jason (1958) 

Thijssen and Kerkhof (1977) reported activation energies for 

physical properties at high water activities as given in Table 3.3 

(overleaf) • 

Stahl and Loncin (1979) obtained an activation energy of 

35.7 kJ/mol for cyclohexanol diffusion in potato tissue, which is 

about twice as much as for diffusion in water. This indicated that 

mass transfer in potatoes may also be influenced by cell walls and 

membranes. Saravacos and Charm (1962) came to the same conclusion, 

and attributed the high value of activation energy for water diffu

sion in potato tissue to the resistance of the potato to moisture 

transfer that is due to the presence of cell walls and other non

starchy materials. 
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TABLE 3.3: Activation energies at high water activities of physical 
properties and reactions. 
(After Thijssen and Kerkhof (1977)) 

Property E a kJ/mol 

Phys i ca 1 properties 2. 1 - 209.3 

Water vapour pressure 41.9 

Water diffusion coefficient 8.4 - 41.9 

Heat transfer coefficient 2.1 - 29.3 

Viscosity water (20oC) 0.008 

Viscosity glucose (25OC) 200.9 

Enzyme reaction 16.7 - 62.8 

Chemi ca 1 reaction 62.8- 502.4 

Hydrolysis 62.8 - 108.9 

Maillard browning 104.7 - 209.3 

Protein denaturation 334.9 - 502.4 

Activation energies related to texture softening during 

cooking of three varieties of carrot were found by Paulus and Saguy 

(1980) to be 117.2, 113.0 and 92.1 kJJmol for Rubika, Rothild and 

Kundulus varieties respectively. However they did not explain why 

the energy of activation of the Kundulus variety was significantly 

lower than those of the Rubika and Rothild varieties. 

Califano and Calvelo (1983) reported an activation energy for 

reducing sugar generation during warm water blanching of potato 

in the range of 60-70oC. The E was 41.8 kJ/mol. This value seems a 
comparable with those reported by Ikemiya and Deobald (1966); 

(30.3 - 30.9 kJ/mol) in the range 30-70oC for the enzymic generation 

of reducing sugars in similar biological systems. 
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3.2 Heat Diffusion in Vegetable Tissue 

The thermal properties, namely thermal diffusivity, thermal 

conductivity and specific heat are of great importance in esta

blishing the energy requirements of a particular heating or cooling 

process. Values of thermal properties of foods are essential in 

predicting, designing and optimising many processes involving heat 

transfer, such as freezing, canning, drying, cooking and blanching. 

Some of these thermal properties have been determined in the free

zing region of some foods, but in the heating and cooking region, 

these properties are not readily available in terms useful for 

design parameters (Matthews and Hall, 1968). 

The scarcity of 1 iterature data and lack of information on the 

thermal properties of some vegetables, especially potato, during 

heating (blanching), suggested that there was a need for the 

determination of such data. Dickerson and Read (1968) have shown 

that the calculation of heat transfer rates in food requires the 

following knowledge: 

1. Thermal properties of the food. 

2. Geometry of the food. 

3. Thermal processing conditions: 

a) temperature of the heat source 

b) initial temperature of the food 

c) temperature difference between heat source and food 

surface. 

3.2.1 Thermal Diffusivity 

In the heating and cooling of food materials, unsteady-state 

or transient heat conduction is the most widely encountered situa

tion which involves the accumulation or depletion of heat within the 

the body so that the temperature distribution changes with time. 

Thermal diffusivity a is a measure of the quantity of heat absorbed 

by a material for a given temperature change, and further indicates 
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the ability of the material to conduct heat to adjacent molecules. 

In terms of other thermal properties, thermal diffusivity is 

defined as the ratio of thermal conductivity, Ko' to the product 

of specific heat, Cp, and density, p, 

K 
o ex : 

p Cp 

Values of thermal diffusivity are required to predict temperature 

history curves of food during various heating or cooling processes. 

Thermal diffusivity for apple, orange, grapefruit and squash 

has been reported by Gane (1936). The thermal diffusivity was 

calculated from the time-temperature data using Gurney-Lurie charts. 

The unit surface conductance was assumed to be large so that * ~ o. 
The thermal diffusivity values were 1.26 x 10-7 , 1.21 x 10-7 , 

1.32 x 10-7 and 1.26 x 10-7 m2 5- 1 for apple, grapefruit, squash 

and orange respectively. 

Based on time-temperature relationships involved in the trans

fer of heat in the unsteady state for several fruits and vegetables, 

Kethley ~. (1950) applied the graphical method of Gurney and Lurie 

to calculate the thermal diffusivity of these foods for the tempera

ture range 27 to -180 C (the usual cooling range in the freezing of 

fruits and vegetables). The average values of thermal diffusivity were 

found to range from 1.20 x 10-7 for peach flesh to 1.50 x 10-7 m2 s-1 

for apple flesh. The thermal diffusivity of Irish potato was 

1.21 x 10-7 m2 5-1• 

Since the f ru its and vegetab les used in these experiments were 

subjected to temperatures sufficiently low to freeze 95% or more of 

their water content, the average thermal diffusivity of these foods 

might be expected to be a function of both liquid and solid water 

(ice) and would be similar to the thermal diffusivity of water in 

the temperature range of 0 to 27°C which is 1.43 x 10-7 m2 5-1 

(Mohsenin, 1980). 
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Matthews and Hall (1968) used the method of finite differen

ces to determine the thermal diffusivity of Excel potatoes. It was 

found that the thermal diffusivity decreased linearly with storage 

time (at 40 C) according to the relation: 

a = [6.327 x 10-3 (1.126 x 10-4 x test date)] x 0.25806 m2s-1 

A correlation between maximum temperature and thermal diffusivity 

of potato based on experimental results was given as: 

a = [-1.962 x 10-2 + (2.617 x 10-4 x T) - (8.500 x 10-7 x T2)] 

x 0.25806 m2 s-l 

According to this correlation, as temperature increased, thermal 

diffusivity increased up to a maximum value at 680 C (9.75 x 10-8 m2s- 1) 

and then decreased with higher temperature. The maximum values of 

diffusivity which occurred in the 68 to 740 C range suggests that maxi

mum diffusivity was related to the starch gelatinisation of the 

potato. 

Wadsworth and Spadaro (1969) reported an experimental determina

tion of the thermal diffusivity of sweet potatoes during immersion 

heating in a constant temperature water bath. It was shown that 

the apparent thermal diffusivity during heating increased with temp

erature from a value of 1.03 x 10-7 m2 s~l at270 C to a maximum value 

of 2.22 x 10-7 m2 s-l at 740c and then decreased to a value of 

1.55 x 10-7 m2 s-l at 90oC. An approximation of the variation of 

thermal diffusivity with temperature during immersion heating from 

27 to 900 C was given by the expression: 
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~ = [0.30 x 10-2 + 0.10 X 10-4 X T + 0.50 X 10-7 X T3 -

It was believed that the rapid increase in a between 65 and 740 C 

was due to the gelatinisation of sweet potato starch which occurs 

in that temperature range. The decrease in ~ above 740 c was 

probably due to the softening and separation of the cells. 

Rao et al. (1975) used the line-source method for the simulta

neous measurement of the thermal conductivity and thermal diffusi

vity of process varieties of squash and white potato at ambient 

temperature. The average thermal diffusivities for potato were: 

1.70 X 10-7 m2 sI at about 82% moisture content with a standard 

deviation of 9.0% from the mean,while that for the squash was 

1.55 X 10-7 m2 s-1 witha standard deviation of 6;3%. The magnitudes 

of thermal diffusivity of potatoes are higher than those reported by 

Matthews and. Hall (1968) which ranged between 9.59 X 10-8 and 

1.41 x 10-7 m2 s-l. The high thermal diffusivity was attributed 

to the high moisture content (82%) and to the Excel potatoes used 

by Matthews and Hall (1968) which were stored for several months 

causing the thermal diffusivity to decrease. 

The thermal diffusivities of five states of sweet potato 

materials (solid potato, plain puree, and three types of pureed 

potato with varying amounts of starch, corn, syrup, and milk) for 

three processing temperatures using uniform sized samples were 

determined byCrumpton and Threadgi 11 (1977). The results indicated 

that there was a significant difference in thermal diffusivity with 

respect to retort temperature and to the states of sweet potato 

materials. The diffusivity differed according to the states, with 

a range of 1.29 x 10-7 m2 s-1 for solid to 1.39 x 10-7 m2 s-1 for 

plain puree. The plain puree and the solid were highly significantly 

different from each other, and from the three puree mixes which 

were not significantly different from each other, and had an average 
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diffusivity of 1.33 x 10-7 m2 s-l. Retort temperatures had an 

effect on thermal diffusivity but this effect was less than the 

effect of state of material on thermal diffusivity. The diffusi

vities for the 116°c, 1320C and 1490 C ret~rt temperature were 

1.32 x 10-7 , 1.33 x 10-7 and 1.36 x 10-7 m2 s-1 respectively. 

3.2.2 Specific Heat 

In food heating processes, specific heat is a very important 

unit as it indicates the amount of heat required to bring the food 

material to the desired temperature. Specific heat is defined as 

the heat capacity of a body per unit mass of the body (Mohsenin, 

1980) • 

Q 0 
Cp = M~T kJ/kg K 

where M is the mass of the material and Cp is specific heat. 

The ratio of the heat supplied Q to the corresponding 

temperature rise ~T is defined as the heat capacity of a body. 

The need for specific heats of food materials has been realised 

for some time and the influence of water on thermal properties 

of food has been given great attention. This is because moi sture 

content changes considerably during many processing operations", 

and because there is normally a substantial difference between 

the thermal properties of water and the other constituents. Many 

formulae have been suggested to determine the specific heat of food 

from its moisture content. 

In 1892, Siebel introduced a formula to measure the specific 

heat from the moisture content. His formula relied on the assumption 

that specific heat is an additive property. He suggested that the 

specific heat above freezing point for high moisture content foods 



70 

like fruits, vegetables and meat could be calculated from the 

following equation: 

ep = [0.008M + 0.20] x 4.1868 kJ/kgOK 

where M is the water content of the food material in percent wet 

basis and 0.20 is a constant assumed to be the specific heat of 

the dry solid. 

Earle (1966) reported that if the percentage of water in a 

foodstuff is known, then the specific heat of the foodstuff above 

freezing can be estimated from: 

Charm (1971) obtained the relationship: 

ep = 1.0 X + 0.3 X + 0.5 Xf w s 

to calculate specific heat of food from its composition, where 

Xw' Xs and Xf are the weight fractions of water, solids and fat 

respectively. 

Lamb (1976) based on the data of Earle (1966) and Charm (1971) 

gave the following approximation to calculate the specific heat: 

ep = [0.65M + 0.35] x 4.1868 

where ep is in kJ/kgOK and M is on a wet weight basis. 

Due to the high moisture content, many investigators found that 

the specific heat of vegetables and fruits as calculated from Siebel's 
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equation varies very little from the experimental values. 

Hood (1961) measured the specific heat of cucumbers using 

the method of calorimetry. He reported a value of 4.091 kJ/kgOK 

compared to 4.053 kJ/kgOK calculated from Siebel's equation at 

96% moisture content. 

Frechette and Zahradnik (1968) used calorimetry to measure 

the specific heat of apples. They found the specific heat of 

Mclntosh apples to be 3.77 kJ/kgOK as determined experimentally 
o and 3.73 kJ/kg K as calculated using the average water content of 

86%. 

Yamada (1970) has reported on the measurement of specific 

heat of potato using the method of liquid calorimetry. He found 

that the moisture content had a marked influence on the specific 

heat of potato. The specific heat varied from 2.072 kJ/kgOK at 

22% moisture content to 3.65 kJ/kgoK at 83% moisture content. 

Furthermore the relation between the specific heat and the moisture 

content indicated that the best fitting equations are: 

Cp = [0.216 + 0.780 W) x 4.1868 (W> 0.50) 

Cp = [0.393 + 0.437 W) x 4.1868 (0.50 > W > 0.20) 

In general there is very little data available on the specific 

heat of potato. 

Specific heat measurements of citrus fruits using the method 

of. mixtures have been reported by Turrell and Perry (1957). 

The specific heat of freshly picked orange, lemon and grapefruit 
o were found to vary very little: 3.663, 3.735 and 3.705 kJ/kg K 

respectively due, as expected, to the water content. To find the 

effect of water content, they determined the specific heat of 

orange at different moisture contents. The regression of specific 

heat of orange with water content was: 
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Cp = [0.00601M + 0.347] x 4.1868 

The method of mixtures was also used by Sharma and Thompson (1973) 

to measure the specific heat of grain sorghum at five different 

moisture levels between 2 and 29%. The method consisted of deter

mining the temperature change of water contained in a calorimeter 

at 4.5°C where a grain sample at approximately 24°c was dropped 

into the calorimeter. A regression equation for the relationship 

between specific heat and moisture content in the range of 2-30% 

wet basis was reported to be: 

Cp = [0.3337 + 0.0077M] x 4.1868 

3.2.3 Thermal Conductivity 

Thermal conductivity, K , is a physical property of the o 
material through which heat is transferred. The thermal conducti-

vity of a substance can be defined as the amount of heat flow 

per unit area per unit time when the temperature decreases by one 

degree in unit distance. In mathematical form, the thermal conduc

tivity K (w/mOK) is the proportionality factor in the Fourier's 
o 

law for heat conduction. 

Q = K A dt 
o dl 

where Q is the quantity 

transfer (m2) and ~~ is 

of heat flow (W), A is the area 

the temperature gradient (~). 
m 

for heat 

A most notable feature of food materials is their extremely 

low values of thermal conductivity compared to metals. This diff

erence in thermal conductivity is due to differences in the abundance 

of free electrons. In metals the electrons transmit most of the 

heat energy, whereas in foods, where water is the main constituent, 



73 

the free electron concentration is low and the transfer mechanism 

involves primarily vibration of atoms and molecules. Another 

striking feature is that since the food materials are not homo

geneous and vary in cellular structure, composition and air 

content, the variations in thermal conductivity are greater than 

those of the non-biological materials. One of the earliest works 

reported on the measurement of thermal conductivity of fruits and 

vegetables is that by Gane (1936). The thermal conductivity was 

calculated from the relation: 

k o 
p Cp 

where a is thermal diffusivity, ko thermal conductivity, Cp specific 

heat and p is density. Thermal conductivity for apple, orange, and 

grapefruit was 0.4154, 0.4154 and 0.3981 W/moK respectively. 

Kethley et al. (1950) estimated the average thermal conductivity 

of certain fruits and vegetables deduced from experimental values 

of thermal diffusivity and the average apparent specific heat 

between -18 and 270 C. These values varied from 1.0557 W/moK for 

Irish potato to 1.3499 W/'moK for strawberries. The average thermal 

conductivities of these foods were also calculated for the tempera-

ture range 26.6 to OOC. These values varied from 0.4846 to 0.5884 W/moK 

and compared favourably with the average value of 0.6057 W/moK for 

water in this same temperature range. 

Thermal conductivity of citrus fruit was determined by Turrell 

and Perry (1957) using a mathematical model and time-temperature 

data. The values of ko, for grapefruit, lemon, orange (Valencia) 

and orange (Washington Naval) were 0.3267, 0.4398, 0.490 and 

0.410 W/moK. The lower conductivity of grapefruit was attributed 

to the thicker rind or peel of the grapefruit compared to lemon 

and orange. The authors suggested that since a large portion of 

rind volume is taken up by air and CO2 , the thermal conductivity of 

the rind should be lower than that of the pulp or the edible tissue. 
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The dependence of thermal conductivity of potato on moisture 

content and temperature has been reported by Yamada (1970). The 

thermal conductivity was measured by the method of the unsteady 

state heat conduction of a sphere. The values of thermal conduc

tivity of potato at 76% moisture content rangedfrom 0.485 W/moK 

at 100e to 0.556 W/moK at 75°e. The relation between the thermal 

conductivity and moisture content showed that the decrease in the 

moisture content was accompanied by a decrease of the thermal 

conductivi ty. 

Sweat (1974) measured the thermal conductivity of several 

fruits and vegetables using a miniaturised thermal conductivity 

probe. As expected, he found a high correlation between thermal 

conductivity and water content for all the materials used except 

apples, apparently due to the large amount of air space which redu

ces thermal conductivity. 

Based on the high correlation between water content and ther

mal conductivity, a regression equation was proposed to calculate 

the thermal conductivity of high moisture content food as follows: 

k = 0.00493 W + 0.148 o 

where k is in W/moK and W is in percent. 
o 

Some of the results are shown in Table 3.4 (overleaf). 

The method of line heat source was used by Rao et al. (1975) 
to measure the thermal conductivity of white potatoes and squash. 

The potatoes employed in this study were Katahdin, Russet Burbank, 

Monona, Norchip and Kennebec varieties. At the probability level of 

5 percent, the thermal conductivities of the five varieties of pota

toes studied were found to be significantly different. The values 

of thermal conductivity varied between 0.533 W/moK for the Katahdin 

variety to 0.571 W/moK for Russet Burbank variety at 82% moisture 

content. The thermal conductivity values of three varieties of 
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TABLE 3.4: Thermal conductivity of selected fruits and vegetables 
(After Sweat. 1974) 

Water 
Temperature Thermal 

Materi a 1 Content Conductivity 
% w. b. °C W/moK 

Apple (green) 88.5 28 0.422 

Beet (red) 89.5 28 0.601 

Carrot 90.0 28 0.605 

Cucumber 95.4 28 0.598 

Tu rn i p 89.8 24 0.563 

squash studied were not found to be significantly different when 

variations in moisture content were taken into consideration. 
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3.3 Mass Transfer During Blanching of Vegetables 

3.3.1 Diffusive Loss of Sugar in Relation to Colour of 
Potato Chips 

Diffusing out of reducing sugar is of particular importance 

in the potato industry. In the manufacture of potato chips, french 

fries and dehydrated potato, the reducing sugar content is closely 

related to the colour of the final product. It is widely known that 

when potatoes are processed, a maillard or non-enzymic browning 

reaction can take place between sugar, especially reducing sugars, 

and amino acids, producihg an undesirable brown colour at the 

surface of the potato strip (Schwimmer et al., 1957; Townsend and 

Hope, 1960; Hoover and Xander, 1961 and Smith, 1975). 

Control of colour in the potato chips industry is necessary 

to obtain a standard product and in general light-coloured chips 

are preferred. In comparing a large number of sugar determinations 

with colour of chips, Wright and Whiteman (1951) found that chips 

with the most desirable colour came from potatoes averaging 0.18 per

cent reducing sugar. A level of 0.4 percent has been found to be 

the upper limit conducive to a satisfactory product (Wright and 

Whiteman, 1954). Smith (1955) found that in most instances 

acceptably coloured chips were made from potatoes of less than 

0.2 percent (FWB) reducing sugars. 

Habib and Brown (1957) also found a high correlation between 

light coloured chips and low reducing sugar content of the tubers. 

Hawkins ~. (1958) found a critical concentration of 0.4 

percent reducing sugars above which chips were dark brown and not 

acceptable in flavour. Burton (1962) reported that potatoes with 

1.22 percent reducing sugar content produced chips. much too dark, 

but those with 0.25 percent had a good light colour. 

Mitchell and Rutledge (1973) stated that potatoes containing 

about 0.2% reducing sugar usually produced chips with the desired 
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golden brown colour, but with higher levels of reducing sugars the 

product tended to be unattractively dark with a burnt flavour. 

Reducing sugar content of potatoes depends upon variety 

(Smith, 1969; Mills, 1964), maturity (Miller, 1972; Smith, 1957), 

storage and cultural conditions (Clegg and Chapman, 1962; Harvey 

1962, Talburt and Smith, 1975). Glucose, fructose and sucrose 

comprise the major sugars in the potato (Schwimmer et al., 1954). 

Of these, the reducing sugars, because of the non-enzymic browning 

reaction during processing, have the most effect on the colour of 

chips (Habib and Brown, 1957). The reducing sugar content of potato 

is naturally low, but during low temperature storage (0 to 4 .0C), 

reducing sugars accumulate and often the finished fried product 

will be darker than desired. 

Smith (1975) mentioned three processes which occur in potatoes 

during storage: (i) respi ration, which uti 1 izessugars by converting 

them into carbon dioxide and water, (ii) conversion of starch to 

sugar by amylolytic enzymes, and (iii) conversion of sugar to starch, 

by starch-synthesizing enzymes. Hanes (1940) attributed the conver

sion of reducing sugar to starch to the activity of the enzyme, phos

phorylase. According to Arreguin-Lozano and Bonner (1949), phosphory

lase is equally active in potatoes from all storage temperatures and 

it does not attack starch in potatoes stored at high temperatures. 

This is attributed to the formation of an inhibitor of phosphorylase 

at high temperatures which disappears at low storage temperatures. 

Potatoes differ according to variety in the rate at which reducing 

sugar accumulates in cool storage, and the rate at which it is 

converted when the temperature is raised. Such differences may also 

be influenced by maturity, pre-storage conditions as well as storage 

temperature. Low storage temperatures (below 4°C) are necessary for 

slowing sprouting and dehydration. The importance of storage temp

erature on the processing quality of potato has been recognised by 

many authors. 
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Sweetman (1930) showed that chips made from tubers stored 

bet,"een 0 and 2.8oe were darker than those made from potato stored 

at 4.4-12.8°e. The changes in colour were correlated with changes 

in sugar content under different conditions of storage. Peacock 

et al. (1931), Wright et al. (1936) also found that the colour of ---- ----
potato chips when made from tubers stored at 15.6 or 21 0 e was most 

desirable, and that as storage temperatures decreased to 4.4,2.Z 

and oOe, the brown colour of the chips became more intensified. 

Stevenson and eunningham (1961) found that potato varieties 

vary considerably in their ability to accumulate reducing sugars 

during storage. They stated that varieties which accumulate large 

percentages of reducing sugars during low temperature storage and 

cannot be reconditioned at ZO-25°e were unsuitable for chip proces

sing. Hyde and Morrison (196,4) found that storage at 4.4°e 

resulted in accumulation of reducing sugars whereas storage at 21 0 e 

caused little change in reducing sugars. Also they found that phos

phorylase activity was greater at 4:4oe than at 21 0 e. They concluded 

that since the phosphorylase enzyme catalyzes the breakdown of 

starch, it could be a factor influencing sugar accumulation and 

chip colour of potatoes stored at 4.40 e. 

Smith (1975) considered that 10 to 12.8°e is the ideal storage 

temperature for potatoes to be processed into chips or french fries. 

He stated that although sugar may accumulate at these temperatures 

it will not be appreciable unless stored for long periods. Partial 

removal or lowering of sugar contents by storing the potato tubers 

at temperatures of 10-16°e or above is a fairly standard practice, 

but such a practice introduces major problems with sprouting, 

dehydration and rotting. In the processing and production of french 

fries control of the chip colour is possible by using water blanching 

as a means of lowering the reducing sugar level of the potato tuber. 

Hot water blanching in the range of 60 to BOoc prior to frying 

is used to leach out reducing sugars and other chemical consti.tuents 

responsible for the production of off-colours and flavours, in french 

fries. 
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Patton (1948) d~scribed a process of leaching the reducing 

sugar from potato slices before frying. The potato slices were 

immersed in a hot aqueous solution of alkaline salt such as cal

ciumchloride, calcium sulphamate and magnesium chloride in 0.1 

to 0.005 molar concentrations for various times before frying. 

He found that immersing potato slices in 0.25 percent calcium 

chloride for three minutes at a temperature just below the boiling 

point, leached sufficient browning reactants to give light coloured 

chips after frying. 

Whiteman (1951) found that potato slices soaked in slightly 

acidulated water (0.044 percent hydrochloric acid) at 62.8°C for 

two minutes just before frying gave chips acceptable in colour 

and flavour. 

Dexter and Salunkhe (1952a) showed that great improvement in 

chip colour resulted from short treatment of si ices with hot water. 

Pontiac potato slices were immersed for 1.5minutes in water at 700 C 

followed by soaking for various times in cold water at room tempera

ture. Chemical analysis (Table 3.5) showed a considerable removal 

of proteins as well as sugars. In 15 minutes of extraction prac

tically all of the reducing sugars, about 27% of the protein and 

about 7% of dry matter were removed. When the slices were soaked 

in cold water without hot water treatment, the total solids lost 

were about one-third as much as in 15 minutes soaking after a hot 

treatment was given, while sugar and protein loss was reduced to 

about one-tenth. From the size of potato cells and the thickness 

of the slices, it was suggested that this loss was largely due to 

the contents of the cut cells on the face of each slice. 

Townsley (1952) obtained satisfactory chip colour when potato 

slices were soaked in water for 5-7 minutes at 67-730 C. However 

some flavour was lost as a result of such treatment due to leaching 

out of sugar, nitrogenous compounds and other constituents of the 

potato. 
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TABLE 3.5: Analyses of extracts and tuber slices after immersion 
in hot water and soaking in cold water. 
(After Dexter and Salunkhe, 1952a) 

Period of extraction Total Protein Total Reducing Non-

in cold water, minutes Solids Sugar Sugar Reducing 
Sugar 

% % % % % 

Analyses of the extracts 

0-15 (following hot 1. 21 0.49 0.21 0.12 0.09 
treatment) 

15,.30 0.72 0.27 0.12 0.10 0.02 

30-60 0.54 0.19 0.08 0.04 0.04 

Total (sum of above) 2.47 0.95 0.41 0.26 0.15 0-60 

Cold (0-60 no hot 0.40 0.06 0.02 0.02 0.00 treatment) 

Analyses of tuber sI ices 

o (direct from potato) 18.5 1.77 0.56 0.41 0.15 

0-15 (following hot - - O. 11 0.00 o. 11 treatment) 
15-30 (following hot 0.00 0.00 0.00 treatment) - -
30-60 (following hot - - 0.01 0.00 0.01 treatment) 

Cold 0-60 (no hot - - 0.53 0.38 0.15 treatment) 

Dexter and Salunkhe (1952b) attempted to improve chip colour by 

treating potato slices with various chemical solutions so that redu

cing sugar might be removed by diffusion without excessive leaching 

of other desirable constituents of potato. Pontiac potato slices 

were treated for 1.5 minutes with water, hydrochloric acid pH 1.9 

(about 0.05%), or phosphoric acid pH 1.9 at 23.9°C or 48.9 0 C, after 

which they were extracted with water at the same temperature for 

3.5 minutes. The results (Table 3.6) showed that soaking and washing 
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TABLE 3.6: Treatment of potato slices 
(After Dexter and Salunkhe, 1952b) 

Analysis of Extracts .xf,!l;r:ly"sdi 
Ss f.f P: Ices 

Sample Total solids Protein Tota 1 Reducing 
extracted as extracted as sugar sugar 

% % % % % 0, 
'0 

SI ices Solids Protein SI ices SI ices SI ices 

Water 23.9oe 0.91 4.32 5.49 0.156 1.88 0.10 

Water 48.9 Oe I. 19 5.69 10.98 0.313 1.44 0.08 

Hydroch lori c acid 23.9°e 1.06 5.06 9.68 0.275 1.75 0;05 

Hydrochloric acid 48.9oe 1.34 6.40 13.16 0.375 1.27 0.00 

Phosphori c acid 23.9oe 1.30 6.22 9.00 0.256 1.57 0.04 

Phosphori c acid 48.9oe I. 61 7.68 13.49 0.384 1.35 0.00 

Unextracted slices TS % TP % 
20.92 2.85 

in water at 23.90 e for 5 minutes removed 4.3% of the solids and this 

was increased to 5.7% by raising the temperature to 48.9°e. Acidifi

cation of the water resulted in further increases in the solids extrac

ted. In a more or less parallel way, extraction of protein was increa

sed either by raising the temperature or by acidification. Losses of 

dry matter in the potato slices, owing to the most severe acid 

treatment were 7.7% of the total solids or 3.36% more than that with 

washing with water at room temperature. In any case, this method 

which involved only the control of temperature or acid concentration 

or both appears well adapted to remove reducing sugars without great 

loss of other soluble constituents. 

Mitchell and Rutledge (1973) found that the rate of leaching of 

reducing sugar in water was greatest at 730 e and satisfactory crisps 

were produced from Kennebec potatoes with up to 0.4% reducing sugar. 

This was attributed to the increase in permeability of the tissue 

associated with thermal breakdown of cell membranes and the absence 
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of a diffusion resistance caused by gelling of the starch. Yields 

and compositions of potato slices and crisps leached at 730C are 

given in Table 3.7. Potatoes with more than 0.4% reducing sugars 

were judged unsatisfactory since the length of time required for 

leaching the reducing sugars at 730C also removed the desirable 

constituents (flavour, nitrogenous compounds and vitamins) and a 

poor quality crisp resulted. 

TABLE 3.7: Relative yield and composition of potato slices and 
crisps 
(After Mitchell and Rutledge, 1973) 

Time of Leachi ng (mi n) at 730C 
Qua I i ty 

0 I 3 7 

Yield after leaching 100.0 100.4 100.0 98.4 

% solids after leaching 21.0 19.2 17.8 16.9 

% yield of crisps 30. I 30.2 31.1 31.8 

% 0 i I in crisps 30.2 36.4 42.8 46.8 

3.3.2 Diffusive Loss of Nutrients During Blanching of Carrot 
Ti ssue 

Horner (1936-1937) noted that during water blanching of certain 

fresh vegetables (peas, beans, carrots and potatoes) considerable 

loss of potassium and phosphates occurred with all vegetables. 

Shrinkage of the vegetables accompanied by a reduction in weight 

also took place. Calcium was absorbed by the vegetables during 

blanching, and the amount depending upon the nature of the vegetables, 

the hardness of blanching water and the time of blanching. In the 

following blanching processes peas (3 minutes at 1000C), beans (3 

minutes at 820C) , carrots (7 minutes at 1000C) and potatoes (5 

minutes at IOOOC), the percentage gain in calcium oxide (CaO) and 

losses in potassium oxide (K20), phosphorous pentoxide (P205) and 
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weight, are as shown in Table 3.8. Unfortunately the author did 

not give information on the samples' size, initial weight and 

sample to water ratio which are important in calculating the 

diffusivity, nor did he explain the way by which potassium and 

phosphate were los t. 

TABLE 3.8: Gain in calcium and loss in potassium and phosphates 
contents during blanching 
(After Horner, 1936-193]) 

Vege- Loss Composition 
in Loss tab les wt Raw Blanched 
% K20 P 205 

CaO K20 P 205 
CaO K20 P20

5 
% % % % % % % % 

Peas 6.5 0.295 0.257 0.0199 0.192 0.235 0.030< 39 20 

Beans 2.2 0.337 0.085 0.104 0.208 0.088 0.124 40 -
Carrots 9.0 0.072 0.051 0.0432 0.067 0.048 0.0521 16 15 

Pota- 0.0 0.552 0.109 0.0118 0.502 0.099 0.015 9 9 toes 

Horner (1939) also studied the effects of cooking, blanching, 

Gain 

CaO 
0, 

• 
52 

19 

21 

33 

. 

and canning on the mineral constitueni:s of peas,"beans, carrots, potato 

and spinach. The constituents studied were: calcium, magnesium, 

potassium, phosphates and chloride, Blanching of carrots and potatoes 

were carried out at 1000C for 7 and 5 minutes respectively. The 

results indicated that when water of appreciable hardness was used, 

the calcium content of the vegetables increased, but the other 

inorganic constituents decreased. The total losses on canning and 

cooking were of approximately the same magnitude. The presence of 

common salt in the canned material has little or no effect on the 

distribution of the inorganic constituents between the solid and 

liquid portions of the can. Therefore he concluded that it is not 

possible to diminish the losses in canned material by adjusting the 

composition of the covering liquid. Results for the mineral loss 
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and gain from carrot and potato are shown in Table 3.9. The 

mechanism by which these changes occurred in potato and carrot 

blanching were not given. 

TABLE 3.9: % gain (+) or loss of mineral constitutents during 
blanching, cooking and canning. 
(After Horner, 1939) 

% Gain or Loss 

Vegetables Cons t i tuen t Blanching Cann i ng Cooking 

Ca Id urn +9 1 6 

Magnesium 21 27 28 
Carrot Potassium 15 42 44 

Phos phortJs 3 34 24 

Calcium +30 +72 -
Magnes i urn 25 45 -Potato 
Potassium 11 44 -
Phosphorus 1 1 18 -

The changes occurring during the blanching of vegetables (peas, beans, 

carrots, potatoes, parsnips, swedes and brussel sprouts) for 1, 3 and 

6 minutes in water and for 3 minutes in steam have been reported by 

Adam~. (1942). The ~atio of water to solids during blanching was 

3 to 1 and the blanching temperature was 100oC. The retention of 

the chief nutritive substances, and the principal physical changes 

were studied. The results indicated that small units of large surface 

area, such as fresh peas and sliced or diced roots, retained a lower 

proportion of their nutritive materials than do the larger units such 

as whole roots and the starchy seeds, see Tables 3.10, 3.11 and 3.12. 

Sma 11 un i ts of large surface area retained 65-81% of their sugars, 

50-68% of the i r vitamin C, 70-83% of the i r mineral substances and 

78-86% of their prote in, the larger roots and starchy seeds retained 

79c90% of thei r sugars, 67-78% of their Vitamin C, 92-98% of their 
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TABLE 3.10: Composition of Carrots 
(After Adam et aI., 1942) 

Carrot Type Total Sugars So 1i ds 
% % 

Carrots, whole 10.3 4.8 

Carrots, sI iced 10.5 5.5 

Carrots, diced 9.9 6.4 

Ash Protein Ascorbic 
Acid 

% % mg per 9 

0.31 1.1 0.057 

0.42 1.2 0.055 

0.44 1.2 0.050 

TABLE 3.11: Retention of nutritive substance during blanching, 
a, b, c and d refer to water-blanching treatments of 
1, 3 and 6 min and 3 min blanching in steam 
(After Adam ~., 1942) 

Carrot Type Sugar % Protein % 

a b c d a b c d 

Carrots, whole 98 86 82 89 90 90 90 91 

Carrots, sliced 80 73 58 74 70 73 70 74 

Carrots, diced - 87 73 83 77 75 79 93 

TABLE 3.12: Physical changes produced by blanching 
(After Adam et a!., 1942) 

Vi tamin C % 

a b c 

84 64 56 

78 70 61 

77 62 54 

weight compared with Volume compared with 

Carrot Type unb 1 anched we i ght unblanched volume 

a b c d a b c d 
% % % % % % % % 

d 

68 

78 

80 

Carrots, whole 98.4 96.9 95.6 98.5 98.0 95.9 94.4 98.4 

Carrots, diced 98.8 97.7 98.3 99.8 97.8 95.4 95.9 100.0 
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protein and 84-92% of their mineral substances. They concluded 

that blanching causes a reduction in the weight of vegetables through 

expulsion of water-soluble cell contents and a reduction in volume, 

through expulsion of gases and contraction or collapse of the 

tissues. 

The effect of blanching conditions on the yield and properties 

of the dehydrated product have been studied in detail by Gooding and 

Tucker (1955). They observed that as the concentration of solutes 

in the blanch medium rose, the-loss of solutes from the carrot became 

less. Also they found that as the soluble solids concentration 

increased from about 1% to 4.5% the yield of dehydrated product 

increased by about 30%. 

3/16 in X 5/16 in cross 

A comparison between the standard strips of 

section and strips of 3/32 in X 5/16 in cross-

section showed that when blanched in liquor of high soluble solids 

concentration (3-5%), the thinner strips suffered about 50% greater 

loss than the thicker strips, and gave a yield of dehydrated product 

some 10-15% less. But when steam blanching was substituted for water 

blanching, the yields of thin strips were similar to those of the 

th i cke r .s t rips. 

Gooding .(1956) also studied the role of blanching media like 

steam and water (on the factory scale) on the quality and yield as 

well as the keeping quality of the dehydrated material. The yield 

and losses during processing of carrot are shown in Tables 3.13 

and 3.14. The loss of solids by blanching in steam was substantially 

less than during water blanching. Carrots blanched in steam were 

found to be more susceptible to discolouration while those blanched 

in water became unpalatable due to excessive leaching losses. 

In carrot blanched at high blanch liquor concentrations a 

caramelised flavour occurred and the storage life at 37°C was sharply 

reduced. This was explained by the suggestion that the reducing 

leaching at higher blanch liquor concentrations was leaving in the 

tissue a higher concentration of easily caramelised substances and 
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a higher concentration of the substances that take part in the 

browning reactions during high. temperature storage. 

TABLE 3.13: Losses of soluble solids during processing (strips 
3/16 in x 5/16 in) 
(After Gooding, 1956) 

Soluble solids content as % % loss of Loss of soluble 

of dry matter soluble solids solids as % of dry 
matter oriQinally 

Raw Carrot a* b** a b apresen t b 

66.4 63.0 64.9 13.8 6.3 9.2 4.3 

* (a) scalded in liquor containing 3.4% soluble solids 

** (b) sca lded ins team 

TABLE 3.14: Yields and losses during processing 
(After Gooding, 1956) 

Stri p Yield as Yield as Losses during processing 
Treatment % of % of dry as % of dry matter size trimmed matter entering stripper 

in carrot entering 
5 tri ppe r Total Scalding 

Water 3116x 8.42 86.6 13.9 11.9 
scalded 5116 
(liquor with 
soluble 
so 1 i ds 
content 3/32x 7.21 76.0 24.0 17.4 
(3- 5%) 5116 

Steam 3/16x 9.84 88.1 11.9 8.5 
scalded 5116 
at 

7/32x 10.21 88.6 11.4 6.1 98-1000 C 5116 
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Sistrunk (1969) studied the influence of blanching on colour, . 
firmness and carbohydrate changes in canned carrots. Two varieties 

of carrots, Scarlet Nantes and Highlight Hybrid were peeled, sliced 

and blanched for 1.5, 3 or 6 minutes at 71 0 C, 79.4°C or 87.8°c. 

The results showed that the total sugars increased as blanch time 

increased at 71 and 79.4°C. Conversely, starch content decreased 

indicating that part of the increase in sugar resulted from the 

transformation of starch. Also when the time of blanch at 71 0 C 

was increased, water-soluble pectin decreased and Calgon-soluble 

pectin increased. This could be due to the effects of 

methyl esterase which is activated by low temperature. 

shows the effect of blanch time and temperature on the 

pect i n 

Table 3.15 

qua 1 i ty of 

carrot. He concluded that with a blanch treatment of 71 0 C carrots 

were firmer and more moist and contained more carbohydrates than 

carrots blanched at higher temperatures. This was attributed to 

the thermal degradation of cellular structure at high temperature, 

which results in a decrease in firmness and turgidity. 

TABLE 3.15: Effect of blanch time and temperature on the quality 
of carrot (After Sistrunk, 1969) 

Blanch Treatment % % % % 
Temperature Time Total Starch Water Calgon 

°C min Swga.rs Soluble soluble 
pectin pectin 

71 1.5 8.61 2.02 0.811 0.215 

71 3 9.03 1.34 0.783 0.283 

71 6 9.51 0.65 0.766 0.301 

79.4 1.5 8.63 1.02 0.738 0.251 

79.4 3 8.90 0.87 0.764 0.269 

79.4 6 9.23 0.33 0.756 0.221 

87.8 1.5 8.85 0.36 0.764 0.265 

87.8 3 8.59 0.33 0.765 0.218 

87.8 6 8.19 0.23 0.811 0.181 
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Dan and Jain (1971) reported a new blanching medium for 

dehydration of red coloured Asiatic type carrots. Bright red 

Asiatic carrots were washed, peeled, shredded and blanched in 

steam, boiling water and sugar 

(2-10 Brix) for 5-15 minutes. 

shreds for 5 minutes in varying 

(between 0 and 10 Brix) showed 

solutions of varying concentration 

The results of blanching carrot 

concentrations of sugar solutions 

that there was an increase in the 

total soluble solids of the medium when the initial Brix was less 

.than that of fresh carrots (i .e. 4.5 Brix), due to leaching out of 

soluble solids from the shreds into the medium. 

In the case of media of initial Brix higher than that of the 

shreds, there was uptake of sugar by the shreds from the medium. 

The blanching medium of 4.6 Brix for carrot shreds was considered 

as optimum because of the minimal changes in the total soluble 

solids of the shreds as well as the blanching medium. Blanching in 

plain water caused maximum leaching loss to the shreds lowering the 

total soluble solids to 1.4 Brix. The results are summarised in 

Tables 3.16 and 3.17. The retention of reducing sugars in the 

shreds was found to be dependent on the concentration of the sugar 

in the blanch i ng med i um and the time of blanch i ng. They con·c 1 uded 

that blanching in water resulted in maximum leaching losses from 

the carrot shreds, while use of sugar solutions and steam blanching 

induced little leaching loss. 

The loss of ascorbic acid, riboflavin, thiamin and carotene in 

carrots using different blanching methods of live steam and hot 

water were studied by Mirza and Morton (1974). The time taken to 

blanch the carrot was checked by the time taken to inactivate the 

enzyme peroxidase (2 min for steam blanching and 3.5 min atlOOOC 

for water blanching). They found that steam blanching gave better 

retention of water soluble vitamins in carrots than water blanching. 

Carotene content showed some increases on blanching and this was 

probably due to the leaching of water soluble solids whereas 

carotene, being insoluble, was retained. 
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TABLE 3.16: Effect of sugar concentration in blanching media on 
total soluble solids, dry ma~ter and reducing sugars 
in carrot shreds blanched for 5 minutes (After Dan and 
Jain, 1971) 

Blanching medium Blanched Shreds (sugar solution) 

°Brix Dry Retenti on of 
After matter oB . reduc i ng Initial rlX 

blanching .% sugars % 

0.0 0.4 3.92 1.4 39.96 

2.2 2.4 6.55 3.7 21.29 
4,6 4.5 8.91 5.8 Not dtd. 

6.8 6.4 11.0 7.7 16.20 

9.2 8.6 13.19 9. 1 15.69 

TABLE 3.17: Effect of blanching medium and blanching time on total 
soluble solids (TSS) and the % retention of reducing 
sugars in carrot shreds (After Dan and Jain, 1971) 

Blanching Medium Blanched Shreds 

TSS of 
~ 

Retention 
medium 01<: of sugars <: .-
O(Brix) .- E Dry TSS % Type ..c:~ 

After u matter O(Bri xl Total I ni t i al " Q) Reduci ng Blanching '" E % - .- as 
." ... invert 

Water 0.0 0.8 5 4.90 1.4 34.9 30.4 
0.0 0.9 10 4.87 1.2 32.1 28.3 
0.0 1.0 15 5.37 1.1 30.6 27.9 

Sugar 4.7 5.4 5 11. 48 5.9 14.9 81.4 
solu- 4.7 5.3 10 11.62 6.1 15.3 81.1 
tion 4.7 5.3 15 11.94 6.3 15.9 81.5 
Steam at - - 5 7.54 5. 1 94.0 87.7 
atmos- - - 10 8.26 5. 1 94.3 86.6 
pheri c - - 15 8.26 5. 1 95.2 86.6 
pressure 

... 
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Thermal destruction of carotenoids by blanching and cooking 

of carrot, and leaching of soluble solids during processing of 

carrot were examined by Baloch ~. (1977) in an attempt to 

explain the apparent increase in carotenoid content during pro

cessing. Results given in Table 3.18 showed a positive relationship 

between the apparent increase in carotenoid content and leaching 

loss. Increases in carotenoid contents were obtained when results 

were calculated on a dry weight basis for the leached material, but 

when the results were calculated on a water insoluble solids basis, 

no such increase in carotenoid content was apparent. Therefore 

they suggested that leaching of soluble solids is a major factor 

responsible for the apparent increase in the carotenoid content of 

carrot during processing. Several workers have also found leaching 

losses to be responsible to a great extent for such increases during 

processing of carrot (Lee, 1945; Della Monica and McDowell, 1965). 

TABLE 3.18: Effect of leaching of soluble solids on carotenoid 
content of processed carrot (After Baloch et al., 1977) 

Loss in so 1 ub 1 e Increase in carotenoid 
Treatment so 1 i ds (% dry wt content (% drywt basis 

basis) on leached material) 

Unblanched - -
BI anched 2.7 9. I 
Water dipped 6.9 26. I 

Detergent dipped 7.5 29. I 
Water washed 11.9 48.2 

Detergent washed 14.5 58.0 

Water dipped at 750 C 8.1 27.9 

Guerrant et al. (1947) and Weckel et al. (1962) also found leaching ---- ----
losses of water soluble solids resulted in such apparent increases in 

carotenoid content during blanching and processing. 
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In a more detailed study, Selmar. and Rolfe (1979) carried out 

laboratory scale experiments to demonstrate the main mechanisms by 

which weight changes and solute loss occurred in immature pea seeds 

and carrot root tissue during blanching in water. Samples of vege

table tissue were blanched in 80 ml distilled water at temperatures 

from 20 to 97°C for periods not exceeding 25 minutes. The results 

showed that loss of solutes by diffusion appeared to be influenced 

largely by the initial solute concentration of the cell sap, 

whereas the overall tissue weight loss· appeared to be. governed 

largely by the initial cell volume, inherent cell turgor pressure 

and the elasticity of the cell walls. 

3.3.3 Diffusive Loss of Nutrients During Blanching of Potato 
Tissue 

Gooding (1956) made a comparison on a factory scale between 

scalding of vegetables in water and in steam at 98-100oc and the 

effects of these processes on the yield, quality and storage life 

of the products. The results for potato (Table 3.19) showed that 

when thicker strips (3/16 x 5/16 in) of potato were used, the total 

loss of dry matter was 13.0% with water scaling and 7.4% during 

steam scalding (the increase in yield resulting from steam blanching 

was 6.2%), and when thinner strips were used (1/8 x 5/6 in), water 

scalding led to an increase in loss (17.9), but with steam scalding 

the yield was almost exactly the same as that obtained from the 

thicker strips. On the other hand he found that steam blanching 

did lead to the expected reduction in high-temperature storage life. 

He recommended that if steam blanching was to be used in the manu

facture of dehydrated potato it would be necessary to ensure that 

the raw vegetable had a low content of reducing sugar. Also he 

recommended adequate washing before scalding to remove superficial 

starch which led to slimness in the cooked potato. 
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TABLE 3.19: Yields resulting from water and steam scalding 
(After Gooding, 1956) 

Water Scalding Steam Scalding 
Stri p Yield as % % Recovery Yield as % % Recovery Dimension Variety of trimmed of dry of trimmed of dry inch potato matter potato matter 

3/l6x5/16 King Edward 16. 1 87.0 17. 1 92.6 

1/8x5/l6 11 11 15.6 82.1 17.2 92.4 

The leaching of solutes and the sloughing (disintegration of 

the outer layers) of potato tuber tissue were investigated by Davis 

et a1. (1973). Slices of tissue from low (1.075-1.078) and high 

(1.092-1.094) specific gravi ty tubers were soaked in disti lied water 

(100 g/250 ml) at room temperature for 0, 1, 2, 3, 4 and 6 hours. 

Then the pH, electrical conductivity, total solids, potassium, 

phosphorus and citric acid content of the soak water were analysed. 

They noted that all constituents studied diffused into the water 

during the soak periods. After 6 hours the average amount of materials 

in the soak water were: total solids 23%, phosphorus 68%, phytic 

acid 55%, potassium 71%, total ash 62%, total nitrogen 56%, calcium 

35% and magnesium 50%. The greatest losses from the slices occurred 

in the first 2-3 hours and were similar for both specific gravity 

groups. The decrease in the amount of citric acid in the soak water 

after reaching maximum value 67% after 3 hours soaking was attributed 

to either a concentration gradient effect or to metabolism of the acid. 

The effect of soaking on composition of potato is shown in Table 3.20. 

They also found that the decrease in sloughing was highly correlated 

(P < 1%) with the length of soak period, the increase in electrical 

conductivity of the soakwater, and with the leaching of all constituents 

measured. 

, 
I 
! 

j 
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TABLE 3.20: Effect of soaking on sloughing and composition of 
Russet Burbank potato tissue (After Davis et al., 1973) 

Specific Soak Cooking Total Total Total Electrical 
Gravity Peri od potato so 1 i ds nitrogen ash conduct i vi ty we i ght 

hr g g/1 OOg mg/100g mg/1 OOg mg KC1/1 

Low 
1. 075-1. 078 0 22 20.4 440 817 0 

1 57 17. 1 307 600 1000 

2 89 16.9 230 487 1277 

3 109 16.5 177 440 1623 

4 114 16.1 163 360 1742 

6 120 15.9 130 297 1928 

High 0 15 23.4 293 890 0 
1.092-1.095 1 56 20.4 200 697 1120 

2 84 19.3 183 597 1420 

3 95 18.8 157 533 1530 

4 108 18.3 157 427 1775 

6 114 17.7 170 350 1993 

The effects of va dous un i t operat ions of comme rc i a 1 potato 

processing plants on proteins and vitamin content of the products 

I 

were investigated by Augustin ~. (1979a). The investigation 

included processing lines for potato granules and flakes as well as 

dehydrated slices and dices. They pointed out that in general, protein 

and vi tamin retentions were lowest at any point where potatoes were 

exposed to high temperature for prolonged periods of time. 

In the granule process, total retention values over the entire 

process varied from 9% for thiamin to 83% for protein and vitamin 86 

(Table 3.21). Ascorbic acid and folic acid. retention were below the 

50% level. The relatively low retention values for ascorbic acid and 

folic acid during water blanching werebelieved to be due to a combination 
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TABLE 3.21: Percent overall nutrient retention during commercial 
potato granule production (Affer Augustin et al., 1979a) 

Pro- Ascor- Thia- Ribo- Nia- Folic Vi ta-

Treatment tein bic min flavin cin acid mi n 
aci d B6 

% % % % % % % 

Water blanching 91 86 94 103 90 69 91 

Coo 1i ng 88 81 98 83 91 68 85 

Steam blanching 87 79 84 92 80 60 79 
Mixing and 90 43 9 119 74 42 81 mashing 

Conditioning 89 42 7 105 73 43 79 
Dehydration 83 45 9 125 78 48 83 

of leaching as well as to their sensitivity to heat. They observed 

that riboflavin values increased significantly during the granule 

process. It was hypothesized that the increase in riboflavin reten

tion was'due to the presence of lipids interfering with the analysis. 

During the flake operation, water blanching and the drum drying 

operation resulted in the greatest reduction of retention values. 

Thiamin retention was a relatively high 64% during the production 

of potato flakes. The manufacture of dehydrated slices and dices 

showed the lowest retention values of all the dehyrated potato 

products investigated. Overall retention values ranged from 4% for 

thiamin to 85% for protein (Table 3.22). The low values found with 

thiamin were not the results of heat inactivation or leaching, but 

were due to the interaction of this nutrient with sulphites. 

With the exception of ascorbic acid, retention losses were 

significantly greater during water blanching than during dehydra

tion. They concluded that the nutrient retention is significantly 

reduced during commercial dehydration of potato, with the exception 

of thiamin which is completely destroyed during the granule process 

as well as in the slice and dice operation, and ascorbic acid which 

• j 
1 

! : 
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is retained at roughly the 40% level, all nutrients are retained 

at the 50% or higher leve'. 

TABLE 3.22: Percent overall nutrient retention during commercial 
potato slice and dice operation (After Augustin et aI., 
1979a) --

Pro- Ascor- Thia- Nia- Fo 1 i c Vi tami n 
Treatment tein bic mi n cin aci d B6 

acid 
% % % % % % 

Cl! 
(l) 

Water blanching 88 70 95 82 80 u 70 .-- 85 40 VI Dehydration 4 73 58 72 

Cl! Wa te r blanch i ng 95 68 97 88 79 90 
(l) 
u 

86 38 4 80 69 84 .- Dehydration c 

Augustin et al. (1979b) also investigated the nutritional effects 

of the various unit operations in commercial processing plant of 

frozen potato products. The investigation involved a processing line 

for french fries and pre-formed patties. In general, the total 

retention values were highest with protein, thiamin and niacin, and 

the lowest with ascorbic acid and folic acids (Table 3.23). Diff

erences between total" retention and retention during water blanching 

in general were insignificant. Retention values with small cut (1 in) 

french fries were lower than those of the large (! in) size cut. 

This was probably due to differences in leaching losses of some 

nutrients as a result of different volume to surface area ratios 

of the two sizes cut. 

With the exception of the case of ascorbic acid in preformed 

patties,water blanching was found to be the major cause of nutrient 

reduction during commercial frozen french fry production. The 

overall retention values found ranged from a low of 53% for ascorbic 

acid in preformed patties to a high of 90% for Vitamin B in pre

formed patti es a 1 so. The resu 1 ts (Tab le 3.24) also ShOd that the 
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TABLE 3.23: Percent retention of nutrients during commercial pro
cessing (After Augustin et al., 1979b) • 

Large sized French Sma 11 sized French Preformed patties 
fries a a fr i es a 

Water Water Water 
Total Blanching Total Blanching Total Blanching 

Protein 85b(12.0)c 89(6.2) 81(B.5) 81 (12.]) 90(4.4) 97(7.0) 
Ascorbic 69 (14.4) 75(10.2) acid 61 (20.3) 69(22.0) 53(26.6) 80(6.3) 

Thiamin 80 (11.4) 80(9.3) 81 (16.8) 88(5.9) 88(9.9) 96(S.6) 
Niacin 84 (1 .25) ~S(8.0) 74(13.6) 78(18.4) 90(18.2) 93(7.9) 
Vi tamin B6 78 (12.5) 79(12.0) 74(11.9) 77 (19.0) ·91(12.8) 92(9.6) 
Fol ic acid 66 (19.4) 69(19.S) 6S(23.3) 66(21.1) 73(16.2) 81 (]3.2) 

a Number of plants sampled; b % retention; c Coefficient of variation 

TABLE 3.24: Comparative percent retention of nutrients in potatoes 
during water and steam blanching (After Augustin et al.,. 
1979b) 

Nutrients Water Blanching Steam Blanching 
% % 

Protei n 81 94 

Ascorbic acid 69 89 

Thiamin 88 90 

Niacin 78 93 
Vi tami n B6 77 97 
Fol i c aci d 66 93 

retention values of steam blanching were significantly greater than 

those of water-blanching. 

The loss of Vitamin C and solids from potato strips after 

soaking-blanching at temperatures from 2S-800 C for periods up to 

30 minutes, after par-frying (at 18SoC for 90 sec), frozen storage 
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and after finish frying (at 1850e for 90 sec) were determined,by 

Boushell and Potter (1980). Vitamin e was lost during soaking

blanching at 25 to 800e to the extent of 2.7-68% of the initial 

Vitamin e level, and the rate of this loss was increased with the 

use of higher blanch temperatures. In most cases the rate of 

Vitamin e loss was' greater during the first 10 minutes of the 

blanching than in subsequent minutes. The loss of Vitamin C was 

attributed to both heat destruction and leaching. Additional losses 

due to finish-frying were high and exceeded those due to water 

blanching. Final Vitamin C levels were as low as 9.2% of the original. 

However, soaking-blanching did not significantly affect the solids or 

fat content of potato strips, but both processes of frying were found 

to increase the total solids content of the strips. This effect of 

frying on solids content was due to water evaporation and oil 

absorption. 

Effect of boiling at 1000C for 10, 20 or 40 min or blanching 

for 2 min at 100°C in distilled water on retention of L-ascorbic 

acid, thiamin and riboflavin of peeled and unpeeled potato and 

other vegetables was investigated by Salib et al. (1980). Generally 

they found that boiling resulted in greater decreases of vitamin 

content than blanching, and vitamin retention decreased as boiling 

time increased. Also the retention of vitamins in vegetables boi led 

in acidic solution pH6 was higher than in alkaline solution pH8 and 

after boiling in distilled water. 

Kozempel~. (1982) reported a significant loss of nutrients 

from 0.95 cm french fries cut potato in hot water blanching at nOe 
for 16 min. These.nutrients were: ascorbic acid, thiamin, riboflavin, 

niacin and some amino acids, glutamic acid, aspartic acid, valine, 

phenylalanine, arginine, methionine and tryptophan. Based on the 

assumption that vitamin losses in 

model based upon diffusion as the 

potato are due to leaching, a 

rate 

was successfully used to correlate and 

contro 11 i ng 

pred i ct the 

step in leaching 

loss of the 

vitamins. Also, the authors suggested that most of the losses of 

amino acids may be due to leaching of the free amino acids from the potato. 
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3.4 Conclusions 

From the review of the literature on the blanching of 

vegetables (carrot and potato), it appears that most of these 

studies report only losses or retention under selected conditions 

and do .not give information on the losses as functions of tempera

ture, time, concentration, dimension and other properties. Rela

tively few studies have involved the sugar and solids losses from 

carrot and potato tissue, and in most cases little consideration 

has been given to the mechanisms of loss involved. There is also 

little evidence to .show whether the variability of raw materials, 

supposedly of the same tissue type, have any significant effect 

on loss rate. 

In literature concerned with the study of diffusion coefficient 

of nutrients during processing, there seems to be a lack of informa

tion on the diffusion coefficients of solute and sugar from carrot 

and potato. Most workers seem more concerned with the evaluation 

of the diffusion coefficients rather than the actual mechanism 

involved. However, in very general terms, it appears that diffusion 

coefficient is governed by the process temperature, medium concentra

tion and the diffusing substance size, and very few studies have 

examined the diffusion coefficients as function of these properties. 

3.5· Objectives of this Research 

The first objective of this work was to examine the mechanisms 

of solute loss from both carrot tissues (non-starchy food) and 

potato tissues (starchy food) during water blanching, using the 

same parameters as those found in the literature survey, i.e. to 

study the effects of blanch temperature, blanch time, blanch medium 

concentration, dimensions of tissue to be blanched, tissue to 

blanch water ratio, and post-blanching cooling process. The next 

objective was to apply Fick's law of diffusion to describe the rate 

of solute loss during blanching and to estimate values for diffusion 
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coefficients (0 ) under various conditions of tissue size, blanch a 
time, temperature and concentration of the blanch medium. One 

objective of this study was to study the diffusivity of reducing 

sugars out of potato during laboratory scale and industrial scale 

blanching and to determine if the diffusion model obtained from 

laboratory data could be used to correlate and predict the loss 

of reducing sugars on an industrial scale. 

As the water blanching of vegetable involves simultaneous 

heat and mass diffusion and as a knowledge of the thermal properties 

of vegetables (thermal diffusivity; thermal conductivity and specific 

heat) are necessary in order to predict heating or cooling rates 

during processing, the work was extended to ascertain the relative 

importance of heat diffusion during blanching. 



4. MATEKIALS AND EXPERIMENTAL METHODS 
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4. MATERIALS AND EXPERIMENTAL METHODS 

4.1 laboratory Scale Blanching 

4.1.1 Carrot Blanching Studies 

4.1.1.1 Raw material and sample preparation 

The carrots (Daucus carota, variety Chanetenay) used in this 

work were supplied by the National Vegetable Research Station, 

We 11 esbou rne. 

Commercial samples of carrot roots purchased from a local 

supermarket were also used in this study for comparative purpo-

ses. 

The carrots were sorted to select those with a length of 

0.12 to 0.15 m and a diameter of 0.025 to 0.035 m before storage 

at 5-6°c in paper sacks. 

Cylindrical samples 0.06 m long and 0.006 m diameter were 

cut longitudinally from the carrot tissue by using a No 3 size 

cork borer. 

The cylinders were trimmed by a scalpel to the required 

length. This effectively 'infinite' cylinder was chosen 

because of the availability of a formal solution for unsteady 

state diffusion and the similarity to the shape of a whole 

carrot. Several cylinders were cut from a number of carrot 

roots ,and placed in a covered petri dish to minimise the evapora

tion from the surface during the short delay prior to use. 

After the carrot cylinders were prepared, they were mixed 

together to minimise the variation in composition and then used 

immediately for blanching. 
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Samples. consisted of two cyl inders (approximately 0.005 kg) 

for each blanch time. The samples were carefully blotted ,iith 

absorbent paper to remove the surface cell sap before being 

weighed. Samples from both cortex and core were used separately 

in this work and the preparation was the same. 

4.1.1.2 Blanching apparatus 

The blanching apparatus consisted of a large glass ves&el 

of 0.45 x 0.29 m diameter and 29 litre capacity. The blanch 

media used was either distilled water or sucrose solutions. 

In order to maintain a constant concentration in the blanch 

medium and to effect an infinite volume, the vessel was filled 

with 27 litres of the blanch medium. 

The temperature of the blanch medium was thermostatically 

controlled to ~ 0.50 C by a sensitive thermostat connected to an 

immersion heater. The blanch medium was constantly agitated by 

an impeller to maintain a uniform concentration and temperature 

distribution at the surface of the carrot sample. 

Evaporation from the surface of the blanch medium was 

minimised by a number of plastic spheres of about 0.015 m diameter 

floating on the surface (see Figure 4.1). 

4.1.1.3 Blanching procedure 

Cotton thread was passed diametrically through the centre 

of each carrot cylinder with a fine needle so that two carrot 

cylinders of each sample were ·suspended in a horizontal fashion 

and were about 0.10 m apart. The cylinder samples were presented, 

with no pre-treatment to the blanch medium in such a way that 

several samples of two cyl inders each fixed on threads of cotton 

were suspended vertically from cross bars fixed at the top of 

the vesse I. 
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A small weight was attached to the bottom of the thread 

to prevent the cylinders from floating and getting entwined 

with other samples present in the vessel. 

The blanching time was recorded from the time the carrot 

cylinders were immersed into the blanching medium. After the 

required blanch time the samples were removed from the vessel, 

1 ightly blotted with absorbent paper to remove drops of free 

liquid, separated from the cotton thread and placed in a 

closed petri dish. 

One cylinder in each sample was used to determine the total 

weight loss and the dry matter and the other one was used for 

the determination of the cel'l sap concentration. 

A post-blanch cooling procedure was not incorporated unless 

specifically stated. 

4.1.2 Potato Blanching Studies 

4.1.2.1 Raw material and sample preparation 

Fresh new potatoes (HomeGuard and Maris Bard varieties) were 

supplied by Thoro1ds of Loughborough and potatoes of the Record 

!liariety were suppl ied by an industrial company.' 

Record potatoes were used only with sugar studies. The 

potatoes were stored in paper sacks at 10-150 C. Whole potatoes 

to be blanched were removed from store and washed in water and 

dr i ed. 

Samples were prepared by dicing the whole potatoes into I cm 

cubes (unless otherwise stated). Cubes were chosen because they 

Cubes were cut from the pith were 

area 

easy to obtain from 

only. Quantities of 

potato. 

cubes from at least 5-7 potatoes were 

prepared and thoroughly mixed to ensure uniformity, and piaced 

in a covered beaker to minimize the evaporation from the surface. 
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The cubes were then immediately used for blanching. 

+ A sample of 9 cubes (10.50g - 0.30g) was used for each 

blanch time. This method of preparation was used to minimise 

the variation in composition among the cubes of the potatoes. 

4.1.2.2 Blanching apparatus 

The blanching technique was developed from that described 

by Selman and Rolfe (1979). The samples of vegetables were blanched 

in distilled water in a 250 ml beaker. The temperature of the 

blanch water was maintained by using an electrically heated hot 

plate set at the required temperature and a bunsen burner. 

The drop in blanch temperature caused by addition of the 

sample to the water was minimised by placing the beaker over a 

bunsen flame for 20 seconds before returning the beaker to the 

hot plate. 

The blanch water in the beaker was agitated by a magnetic 

stirrer at constant rate (120 rpm). The evaporation of water 

during blanching was minimized by covering the beaker with a 

lid of aluminium foil. A thermometer was kept inside the beaker 

to check any change in temperature of water during blanching. 

4.1.2.3 Blanching procedure 

Samples of potato tuber of approximately 10.50 ~ 0.30g 

(9 cubes) were blanched in a 250 ml beaker containing 50 ml 

distilled water to give a ratio of sample to water during blanching 

of approximately 1:5 (unless otherwise stated). 

Nine cubes of potato were added in one lot to the blanch 

water with no pre-treatment. The blanching time was varied from 

120-1800 sec. The blanching time was recorded from the time the 

potato cubes were dipp~ed into the blanching medium. After the 

required blanch time, the potato cubes were drained out over a 
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funnel and blotted lightly between two pieces of absorbent 

paper in a standard manRer to remove surface moisture before 

being placed in petri dishes and then weighed after it was 

cooled. 

The blanch water was collected in a glass dish and dried 

to constant weight at 95-IOOoe in a circulated air oven. 

No post-blanching cooling was used in this procedure 

unless otherwise stated •.. The potato cubes were handled with 

care and in a standard manner during the procedure. 

4.2 Industrial Scale Blanching 

4.2.1 Raw Material and Sample Preparation 

Medium size Record potatoes (0.05 - 0.07 m) diameter were 

kept stored at IQoe until use. The mean value of dry matter 
+ content was 22.2 - o.B. 

The potatoes were sliced mechanically in most cases trans

versely to the main axis, and cut into si ices (0.065 m length and 

0.059 m width) with a thickness of 0.141: 0.025 cm. At least 

three measurements of the thickness were made at different 

points of each piece with a dial micrometer (13 pieces were used) 

(see Appendix 11). 

4.2.2 Sampling and Operating Procedure 

A similar study to that developed on the laboratory scale 

was conducted on the factory scale (commercial operation). Potato 

samples were collected from various stages of a processing line. 

iSamples of blanch \~ater were also collected (see Appendix VIII). 

A flow chart for the processing line and the sampling points 

are shown in Figure 4.2. The potato samples.were collected from 
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six points along the processing 1 ine; 

51 icing, (3) after washing at 29°C for 

(1) at the store, (2) after 

15-17 sec, (4) before the 

hot blanching, (5) immediately after hot blanching (27 sec at 

74°C) , (6) after water spraying at 4l oe. 

Blanch water samples ~Iere collected from each of the follo

wing points: 

1. from the wash water in blanch 1 ; 

2. from the make up water 1 . , 
3. from the overflow in blanch I . , 
4. from the blanch water in blanch 2' , 

5. from make up water 2; 

6. from the overflow in blanch 2. 

The parameters investigated were total and reducing sugar content, 

total, soluble and suspended solids and dry matter content for 

both potato slices and blanch waters. 

The potato slices and blanch waters were sampled in dupli

cates of approximately 300 g each for every sampling point as 

shown in Figure 4.2. 

Following the removal of samples from the line, each sample 

was put inside a glass jar, and labelled. The samples were trans

ported to the laboratory and then stored at sOe until the analysis. 

Within three days of sampling,part of each sample was used for 

dry matter determination, solids loss measurement and sugar 

extraction. The extracted samples were stored at sOe until used 

for the sugar analysis. The remaining part of each sample was 

also stored at sOe for further analysis. 
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4.3 Analytical Procedures 

4.3. I Measurement of Sample Weight 

When the sample preparation was finished, samples of nine 

cubes of potato or one cylinder of carrot for each blanch time 

were carefully and lightly bfotted with absorbent paper to 

remove the surface moisture. 

The samples were then quickly placed in a closed dish and 

weighed. 

After a given blanch time, the samples were sieved over a 

funnel and quickly blotted in the same way and placed in a 

closed dish and then weighed after cooling. 

4.3:2 Measurement of Dry Matter Content 

The dry matter content of the fresh vegetable tissue was 

es t imated by drying sampl es of O.OOSkg approximately (4 cubes 

of potato or 3 cyl i nders of ca rrot) in a vacuum oven at 70°C and 

13.33 kN 
-2 (100 mm) to constant weight. m pressure 

The dry matter content of blanched samples was estimated 

immediately after draining, blotting and weighing of blanched 

cubes or cylinders. Samples of blanched potato cubes or carrot 

cylinder were cut into thin slices to enhance drying and dried in 

the same way in a vacuum oven. 

4.3.3 Measurement of Cell Sap Concentration 

Total soluble sol ids content (cell sap concentration) was 

measured using an Abbe refractometer calibrated with sucrose 

solutions w/w at 200 C. The cell solution was obtained from the 

sample by pulping the sample with a pestle and mortar and then 

squeezing out by hand into a small dish. The calibration curve is 

as shown in Figure 4.3. 
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4.3.4 Measurement of Total Solids in the Blanch Water 

After blanching, the potato cubes were sieved over a 

funnel and removed. The blanch water was collected in a glass 

dish and dried to constant weight at 95-100oC in a circulated 

air oven. 

The percentage of sol ids lost from the tissue sample into 

the blanch water was calculated as follows: 

% solids lost into 
blanch water 

weight of solids in blanch water 
---------------------------x 100 
initial fresh weight of tissue 

sample 

For soluble solids, the blanch water was filtered through No 541 

Whatman filter paper and dried to constant weight. The soluble 

sol ids were calculated from the difference between the total and 

insoluble sol ids. 

4.3.5 Method for Varying the Initial Moisture Content of 
the Tissue 

In order to see how the initial moisture content of fresh 

tissues influenced the losses of solids and weight changes during 

blanching, the initial water content of fresh tissue was varied. 

The water content of fresh tissues was decreased by allowing 

water to evaporate from samples at 300 C in a circulated air oven 

for different times, and increased by allowing samples to take 

up water during immersion in distilled water at 200 C for various 

times. The resulting changes in fresh weight and cell sap solute 

concentration were then measured as shown before (Selman and 

Rolfe, 1979). 
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4.3.6 Alcohol Insoluble Solids (AIS) Determination 

The AIS was measured using the method of Moyer and HOlgate 

(1948). Samples of 20g of macerated material were transferred to 

a lOO ml measuring cylinder and then blended with 80 ml 85% 

ethanol for 60 sec using a 'Silverson' homogeniser. The solids 

were then filtered through No 41 Whatman filter paper using a 

Buchner funnel. The residue after filtration was then dried to 

constant weight in an air oven at 95-100oC. AIS content was used 

as a maturity characteristic of the tissues. 

4.3.7 Determination of Sugar Content 

The total and reducing sugar contents (and sucrose by 

difference) of the blanched potato and blanch water were deter

mined using the method of Cronin and Smith (1979). The method 

was chosen because a rapid procedure was required for the analysis 

of a large number of samples. Solutions of glucose covering the 

concentration range 50-500 ~g/ml were prepared in 85% methanol 

and used to construct the standard calibration graph, see 

Figure 4.4. The sugar content was calculated as follows: 

Analysis of potato samples before and after blanching: 

Sugar in potato sample % = 

= 
-6 Reading from graph ~g/ml x D x 10 x 100 

Initial weight of potato sample 

= g of sugar/lOO g of fresh weight. 

Analysis of blanch waters: 

Sugar lost into blanch water % from the potato sample 

= Reading from 
In i t ia I 

-6 graph ~g/ml x D x 10 x 
weight of potato sample 

100 

= g of sugar lost into blanch water/lOO g of initial fresh 
weight of potato sample 
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D - is the dilution factor 

4.3.8 Free Water Content Measurement 

The water which is removed by using a forced convection oven 

at IOO-I050 C is called the total water content. The free water 

content is defined as: 

'Total water' content - 'Bound water' content 

- 'free water' content 

In the vegetable tissue most of the sugar and other soluble 

materials are present in solution in the free water of the tissue, 

Kuprianoff (1958). So a measure of free water content was requi red. 

The free water content was calculated from the measurement of the 

concentration before and after addition of a known amount of 

"ater to a potato sample as follows. 

The concentration before adding water to the sample was 

first measured: 

This "as followed by the measurement of concentration after 

adding water to the sample 

where: m - amount of soluble sol ids in sample 

Wl- unbound water (free water) 

W2- amount of water added 

(4.1) 

(4.2) 

Cl- concentration of sample (refractometric solids of 

cell sap) 

C2- concentration of sample after known amount of water 

is added. 
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Then by solving equations 4.1 and 4.2, equation 4.3 was obtained 

from which the free water content of the potato sample was 

calculated: 

W = 
1 

(4.3) 

The concentration of the tissue Cl and C2 was measured by using 

an Abbe refractometer. 

4.4 Transient Temperature Distribution Studies 

4.4.1 Raw Materials and Sample Preparation 

The potatoes used in this study were the Record variety (see 

Materials section). The potatoes were removed from storage before 

use and allowed to equilibrate with room temperature to ensure 

uniform temperature distribution in the potato. A cylindrical 

section of potato tissue was cut from the central area of the 

tuber (pith) by using a sharp cork borer size number (10). 

One cylinder sample was taken from a single potato along the 

major axis. The cylinder was 0.&15 m in diameter and 0.07 m in 

length so that the ratio of the length to the diameter of the 

sample was high. 

By choosing a high ratio of length to radius and by insulating 

the ends of the cylinder, a good approximation to the infinite 

cyl inder was attained, i.e. the radial. condition only. 

4.4.2 Temperature Measurement Apparatus 

Figure 4.5 shows a schematic diagram of the apparatus used 

for measuring temperature distribution in the potato sample. The 

thermocouples were carefully passed through the upper cork insula

tion of the apparatus, so that the thermocouple wires passing 

through the cork lay in the central axis of .the apparatus. 
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FIGURE 4.5: Apparatus used to measure the temperature distributil 
in potato during heating and cooling 
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The thermocouple probe was positioned at the mid-point of 

the central axis, about 0.035 m from the cork insulation. The 

apparatus was then mounted on a holder. The assembled apparatus 

was placed in a constant temperature water bath at 200 e and 

allowed to attain bath temperature. After attaining the desired 

initial uniform temperature, the assembled apparatus was then 

transferred quickly to a second constant temperature water bath 

(heating medium), see Figure 4.6. The temperature at the centre 

of the sample was recorded as a function of time by a digital 

temperature recorder (one-point flat bed chart recorder) using 

paper moving at 0.025 m/min. speed. The potato sample remained in 

the bath until the measured temperature was within 0.2oe of the· 

water bath temperature. After each sample was heated, it was cut 

open to check that the thermocouple had been at the centre. 

Temperature measurements from samples in which the thermocouple 

was not found at the centre were discarded. All experiments at 

the same conditions were repeated at least three times. 

4.4.3 Thermocouples 

Nickel chromi.um vs nickel aluminium thermocouples, enclosed 

in 0.0015 m diameter stainless steel sheaths were used to measure 

the temperature distribution inside the potato cylinders. 

Three thermocouples were used, one for measuring the temperature 

at the centre of the potato cylinder, one for measuring the temperature 

of the water bath and one for measuring the temperature of the cooling 

water bath. 

4.4.4 Water Bath 

A well agitated constant temperature (~ 0.50
e) water bath was 

used to heat or cool the potato samples. The capacity of the water 

bath was sufficient to prevent any drop in water temperature during 

immersion. Evaporation from the surface of the water bath was 
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minimised by a layer of plastic spheres. The length and width 

of the bath was 0.45 ~ 0.29 m and the height was 0.29 m. The 

total water content was 27 litres. 

4.4.5 Experimental Parameters 

The parameters investigated were: 

1. Hea ti ng temperature 

2. Cool ing temperature 

3. Cool ing time. 

4. Heating time 

5. Cylinder diameter 

6. Agitation rate 

Seven water bath temperatures during heating were selected to 

cover a wide range of temperatures below and.above the gelatini

sation temperature range of starch in potato. The temperatures 

used were: 30, 40, 50, 60, 70, 80 and 90oC. The temperature of 

the water bath during cooling was 20oC. The heating and cooling 

time varied fromOto900sec. The diameter of potato cylinders 

studied ranged from 0.015 m to 0.027 m. 

4.5 Specific Heat Studies 

4.5.1 Method and Measurement 

The method of mixtures (Mohsenin, 1980) was employed in this 

investigation using a Dewar flask calorimeter. 

Figure 4.7 shows the schematic diagram of the calorimeter 

used to determine the specific heat. The calorimeter was first 

filled with 250 ml distilled water at constant temperature with 

one of the thermocouples placed inside the water. A cylindrical 

sample of potato 0.022 mdiameter and 0.06 m in length was cut from 

the potato by means of cork borer size number 15. After weighing 
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the sample, the initial centre temperature was measured by a 

thermocouple. When a constant initial temperature was observed 

for both sample and water, the potato sample was immersed in the 

calorimeter in such a way that the cylindrical sample was hanging 

inside the water from a hook. The lid was closed immediately to 

reduce heat leakage. The final temperature of water and potato 

sample were recorded when equi 1 ibr ium 11as reached between the 

water and potato. This procedure was repeated at least four times. 

The specific heat was measured at temperatures ranging from 

30 to 900 C and at moisture contents ranging from 70 to 80%. 

4.5.2 Specific Heat Calculation 

The specific heat of the potato was calculated from the 

following heat balance equation: 

C P Mp (t - t ) -- C M ( t - t ) pew w e w (4.4) 

Cp = 
C M (t - t ) 
w w e w 

Mp ( t - t ) 
P e 

(4.5) 

where: Cp = speci f i c heat of sample, kg/kJK 

;'C = specific heat of water, kg /kJK w 
t = equilibrium temperature, (oC) 
e 

(oC) t initial water temperature, 
w 

(oC) t = initial sample temperature, 
p 

M = weight of added water, (g) w 
Mp = weight of potato sample (g) 

,~ See Append i x IV 

The accuracy of this method is dependent on maintaining the temp

erature of the water in the calorimeter significantly the same 
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and minimizing the heat exchanges between the calorimeter and 

its surrounding environment, so the calorimeter was covered with 

a lid during the test, and the thermal leakage from the calorimeter 

was measured by running the procedure with water only and the 

temperature difference with time was recorded, see Appendix Ill. 

To correct the error resulting from the thermal leakage of 

the calorimeter, a correction factor was incorporated in calculating 

the specific heat values. This correction factor was added to the 

equilibrium temperature on both sides of the energy equation. 

Where kf is the correction factor, then the heat balance equation 

4.5, becomes: 

C M [ (t + k f ) - t 1 w w e w 
Cp = Mp [t - ( t + k

f
)] 

P e 
(4.6) 

The energy added by stirring was assumed to be negligible. 

values were obtained from Appendix III at the given temperatures. 

4.6 Thermal Conductivity Calculation 

The thermal conductivity was determined by the thermal 

diffusing method. The thermal diffusing method is an indirect 

method for measuring thermal conductivity. According to this 

method, thermal conductivity is defined as: 

K o 
= p Cp (4.7) 

where: Cl = thermal diffusivity m2 sec- 1 

K thermal conductivity W/moK 
0 

p = density kg/m 3 

Cp = specific heat of the sample J/kgOK 
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Tt centre temperature of the sample at time t 

J
s 

temperature of the heating medium 

T the initial uniform temperature of the sample 
o 
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5. RESULTS AND DISCUSSION 

5.1 Mass Transfer During Blanching 

5.1.1 Effect of Blanch Temperature 

5.1.1.1 Carrot tissue 

An experiment was first carried out to study the changes in 

fresh weight and cell sap concentration which occurred when 

cylinders of fresh carrot root tissue (cortex and core) were 

immersed in water for 300 and 900 sec over the temperature range 

of 20-900 C. The results are summarized graphically in Figures 

5.1,5.2 and 5.3. Figure 5.1 shows that at the lower temperatures 

between 20-500 C a weight gain was recorded as a result of water 

uptake by osmosis due to the diffusion pressure deficit of the 

cells. This water uptake increased with temperature up to 40°C 

to give a high weight gain (7.7%) at this temperature. As the 

temperature was raised above 40°C, a point was reached at which 

the osmotic properties of the cytoplasmic membrane became critical. 

Fr.om this point onward the rate of water uptake began to decrease 

and continued to do so as temperature increased. When the tempera

ture was high enough to destroy the semi-permeabil ity of the cyto

plasmic membrane and its osmotic properties, then a weight loss was 

observed. This temperature occurred between 50 and 60°C. As the 

temperature increased from 60 to 90°C, the rate of weight loss 

increased to reach maximum values of 6% at 90°C after 300 sec 

blanching and B.3% at BOoC after 900 sec. 

The weight loss recorded between 60-900C, is due to both loss 

of water. and to the increase in·solute loss as a result of cyto

plasmic membrane disorganization, and cessation of the osmotic 

properties of the membranes. The rate of weight loss appears to be 

increased with increasing blanch temperature, but a slight weight 

gain was recorded between BO-900C after 900 sec blanching, which 

, ' 
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indicates that water diffusion from the blanch medium into the 

carrot tissue is taking place at this stage. The trend for both 

blanching for 300 sec and 900 sec is similar, but the amount of 

weight gain and loss at the given temperature is different. 

The difference in the rate of weight loss obtained at 60, 70, 80 

and 900 C after 300 and 900 sec may be due to the rate of heat 

penetration into the tissue and to the rate of disorganization of 

the cytoplasmic membrane, which will vary with time and temperature 

of the blanching. The high values of weight loss recorded at 80 

and 900 C demonstrate the rapid rate of heat penetration at these 

temperatures which disorganized thecytoplasmic membranes very fast 

rendering the tissue completely permeable in a few seconds. 

Figures 5.2 and 5.3 show a slow gradual decrease in cell sap solute 

concentration with temperature up to 500 C and then followed by a 

high rate of cell sap concentration decrease up to 900 C. Some of 

the solutes lost into the blanch water below 500 C would be expected 

to come from the tissue surface cells ruptured during the prepara

tion and cutting of sample tissue cylinders. 

The trend for both core and cortex is similar, both exhibiting 

a decrease in cell sap solute concentration with temperature, but 

the rate of cell sap concentration decrease from the core is lower 

than that from the cortex. This difference may arise in part to 

initial concentration differences between the tissues, and to 

structural differences between the tissue. Cell sap solutes 

(expressed as sucrose concentration) in the unblanched carrots were 

generally less in the core (7.8%) than the cortex (9.5%). 

The typical variation of cell sap concentration between cylin

ders cut from eight Chantenay carrots cortex is shown in Appendix V. 

The number of cylinders that could be cut from one carrot without 

defect varied from two to five. Cyl inders taken from different 

positions within the cortex gave the same cell sap concentration. 

Solute content of the cell sap ranged from 7.8 to 10.4% with the 

mean for all 27 cylinders being 9.1 ~ 0.2% (as sucrose). 
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5.1.1.2 Potato tissue 

A similar experiment was carried out to study the changes in 

fresh weight and solute losses which occurred when cubes of Home 

Guard potato tissue were immersed in water for 900 sec over the 

range 20-900 e. The results are summarized in Figure 5.4; At 

temperatures between 20-S00 e, the amount of water absorbed 

osmotically by potato tissue was higher than that in the case of 

carrot root tissue. Above sooe a weight loss was recorded which 

reached a maximum value at 6soe. Above 6soe weight loss decreased 

up to 900 e. This decrease in weight loss indicates that the starch 

gelatinization which occurred above 600 e caused some water uptake 

by the cells. During heating of potato tissue above sooe, the 

starch granules within the cell of the tissue begin to swell and 

when the starch gelatinization temperature is reached (60-700 e), the 

starch granules swell rapidly, and the resulting starch gel will 

occupy the greater part of the cell volume setting up a certain 

imbitional force which is assisting water uptake. It is known 

that during gelatinization, the starch granule absorbs large 

quantities of water, equivalent to several times its own weight. 

The solute losses show a gradual increase with temperature up to 

65°e then reduced up to 700 e and started to increase again up to 

90°C. The solute loss between 65 and 700 e was expected to be influen

ced by the inward water movement. The solute loss between 20 and 50°C 

was higher than the loss from carrot tissue and in part due to the 

loss of starch from the damaged cells on the surface of the tissue 

during cutting. However the amount of solute lost from the potato 

tissue was smaller than that from carrot tissue due to differences 

in the cell sap solute content of the tissues which were 4.5% in 

potato and 9.5% in carrot. 

Figure 5.5 shows that the pattern of tissue weight changes 

from Record potatoes is different from that of Home Guard potatoes 

~/ith respect to time. The weight loss reached a maximum value at 

60°C after 600 sec then decreased up to 90°C. These changes 

suggest that the presence of the starch in high amount in Record 
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potato retards the loss_o!_ ~ater from the cell.at temperatures 

. above 600 c due to imbibi tion of some water in the gelatinization, 

process. Also-it is 'possible that the g-elatinizil-tion ois'tarch-rn' 

old potatoes (mature) is more significant than in the new potatoes 

whi~h contain less starch. In fact the alcohol insoluble solids 

content of Record potatoes (14.5%) was higher than that of Home 

Guard potatoes (11.1%). 

5.1.2 Effect of Blanch Time 

5.1.2.1 Carrot tissue 

An experiment was conducted to investigate the changes in 

fresh weight and dry matter which occurred when cylinders of 

carrot root tissue (core and cortex) were blanched in water at 700 e 

over the time interval 120-1800 sec. The cortex and core tissue 

shows a weight loss with time during blanching at 700 e,see 

Figure 5.6. For the first 300-6005 the rate of weight loss for 

both core (0.014) and cortex (0.011) was greater than after 600s 

when the rate tailed off to an approximate steady increase (0.001). 

~ It appears that the loss of weight during the first 300-6005 is 

controlled by expulsion of cell contents into the blanch medium as 

a result of loss of turgor. Selman and Rolfe (1979) also found that 

weight loss during the first 120 sec arose primarily from the con

traction of the tissue on loss of cell turgor. The steady weight 

losses after thi.s time suggest that the weight loss is entirely 

controlled by the diffusion of solutes and water. The weight loss 

after 1800 sec was higher for the core (9.8%) than the cortex (8%) 

possibly due to the high water content of the core tissue. 

figure 5.7 shows the effect of both blanch time (120-1800 sec) and 

temperature (50-900 C) on tissue weight change of cortex tissue. 

As expected a weight gain was recorded at 500 C between 120-18005 

due to water uptake by osmosis as the temperature was still low 

enough to keep the cytoplasmic membranes and the osmotic properties 

of the cells intact. At higher temperatures the pattern of weight 

loss was similar, but with increasing temperature, wei~ht losses 
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tended to increase during the first 600 sec, which resulted in a 

greater overall loss at each subsequent blanch time. 

Figures 5.8 and 5.9 show that the dry matter content of both 

the cortex and core decreased with the increase in blanching times. 

The rate of decrease in both cases was higher between 0-600 sec 

than the time thereafter, when the decrease tailed off. This also 

indicated that loss of solids during the first 600 sec occurred by 

expulsion of cell contents into the blanch medium. The decrease in 

dry matter after 600 sec was largely due to the diffusion of solids 

from the carrot tissue into the blanch medium. As the concentration 

gradient decreased with blanch time, then the diffusion rate of 

s~lids slowed. The difference between the loss trend from core and 

cortex was negligible. The losses of dry matter solids from carrot 

cortex during blanching at 60, 70, 80 and 900 C for 120-1800 sec 

are shown in figure 5.10. As expected the dry matter solids behaved 

in a similar fashion as before, decreasing with the increase of 

both blanch temperature and time. 

5.1.2.2 Potato tissue 

Similar experiments were carried out to study the changes in 

fresh weight and solute losses which occurred when cubes of potato 

tissue were blanched in water at 60, 70, 80 and 900 C over the time 

interval 120-18005. The results are summarised in Figures 5.11, 5.12, 

5.13 and 5.14. These figures show an increase in the solute loss 

with time. The rate of this increase, increases with use of higher 

temperatures except at 600 c, where the rate of solute loss is higher 

than that at 70, 80 and 900 C. In all cases the solute loss was 

greater during the first 300 sec of blanching. The loss of both 

weight and water also increased more rapidly during this first 

120-300 sec of blanching. This suggests that the weight loss from 

potato tissue during the first 300 sec arises from the expulsion 

and expression of solutes and water on loss of cell turgor. After 

this time the rate of weight loss at 80 and 900 C starts decreasing 

with blanch time (see Figures 5.13 and 5.14) due largely to the 
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retention of some water within the cell during starch gelatiniza

tion which is accelerated by increasing the temperature and time. 

The gelatinization of potato starch during blanching at 700 C 

(Figure 5.12) seems to make little contribution to the retention 

of water in the tissue. 

Duri ng 

the same as 

blanching at 600 C (Figure 5.11) the trend was not ..... 
at 70, 80 and 900 C. For the first 120 sec of blanching 

there was a weight gain which-was as expected due to uptake of water 

through the intact cytoplasmic membranes, but after this time, the 

cells death and the expulsion of cell contents caused a high rate 

of weight loss which reached a maximum value (10.2%) after 1800 sec. 

However the high solute loss at 600 C (2.9%), which is higher than 

at 70, 80 and 900 C, suggested that an enzymic reaction might be 

initiated by this temperature causing internal generation of sugar 

from starch, and thus increasing the fraction of solutes in the 

medium. In a work performed on the changes of sugar content in 

potatoes during blanching at 60-750 C, Califano and Calvelo (1979) 

found evidence that besides the mass transfer to the bath there 

exists an internal generation of reducing sugars due to an enzymic 

hydrolysis of starch-. Another mechanism could be attributed to 

cell wall pressure, if the degree of cell content expulsion depends 

on the cell wall pressure or the amount of distension of the cell 

wall at the time the membranes are disorganised. Therefore as the 

potato tissue -at,600 C absorbed water up to 2% (tissue weight) during 

the first 120 sec, then one can expect a higher loss of water and 

solute after the cytoplasmic membranes are disorganised and turgor 

lost. 

Comparison between Figures 5.15 and 5.7 indicates that the 

-patterns of change occurring in carrots were different from those of 

potato tissue. The presence of starch in potato tissue seems to have 

great influence on these changes involving water. However, in general 
• 

the potato starch gelatinization had little effect on solutes loss. 
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Effect of Initial Water Content (Turgor) on Losses 
During Blanching 

5.1.3.1 Carrot tissue 

An experiment was made to study the effect of initial water 

content (cell wall pressure) on losses during blanching. Samples 

of core and cortex tissue of a wide range of different initial 

water contents were prepared as described in the method section, 

4.3.5, and the fresh weight change, cell sap concentration and 

dry matter solids losses were recorded after blanching for 900 sec 

at 700 C. The results are summarised in Figures 5.16, 5.17, 5.18 and 

5.19. 

Figures 5.16 and 5.17 show that " increasing the initial water 

content of a sample above its fresh level before blanching, resulted 

in a higher weight loss than that from fresh carrot samples. 

Similarly, decreasing the initial water content of fresh carrot 

samples resulted in a smaller weight loss than that from the fresh 

samples. Selman and Rolfe (1979) suggested that such weight losses 

are more likely to be related to the change in tissue volume (i.e. 

influenced by the initial cell volume and the inherent cell turgor 

pressure~ A weight gain was recorded after 8-10% water removal from 

the fresh carrot sample. This weight gain suggests that water remo

val from the tissue cells by dehydration had caused the cell walls 

to shrink inwards by the contracted cytoplasm and vacuole. Thus on 

disorganization of the cytoplasmic membranes by blanching at 700 C, 

it would be expected that water will diffuse into the cell causing the 

tissue volume to expand resulting in a weight gain. The pattern for 

both core and cortex tissues was the same; However the prepared core 

tissue gave a higher weight loss than the cortex, mainly due to the 

higher initial water content of the core tissue. 

In a second experiment, prepared carrot cortex tissue of three 

different initial water contents (111.0, 100.0, 91.0) were blanched 

at 700 C for 120-1800 sec to study the effect of time. The changes 

are shown in Figure 5.18. The results in Figure 5.18 indicated that 
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the weight loss is correlated positively with initial water 

content of the tissue. By removing 9% of the water content of 

the tissue, a weight gain of 2.3% occurred up to 1800 sec, due to 

diffusion of water into the cell, as the cell solute concentration 

would be higher than that of the blanch medium, and due to tissue 

volume changes. As expected, increasing the water content of -- -- - _.-- ---,,--,--._- ---

the carrot tissue up to 11% of its fresh water content resulted in 

high weight loss (14.3%) after 1800 sec due to contraction of the 

distended cell wall which forced out the cell solution. These 

results show the effect of the initial water content on weight 

change following the disorganization of cell membranes. Also the 

results confirm that on disorganization of the cytoplasmic membranes 

by blanching, weight loss arose from the contraction of tissue 

cells under the influence of cell wall pressure. 

The effect of the initial water content of the core and cortex 

tissue on the dry matter solids changes during blanching at 700 e 
for 900 sec is shown in Figure 5.19. The dry matter solids loss for 

both core and cortex appear to decrease as the initial water content 

of the tissue was increased. This is due to the fact that the high 

solids concentration in the cells of tissues having low water 

content, is causing a concentration gradient to the blanch medium 

which is higher than in the case of tissue having high water content, 

see Figures 5.20 and 5.21. So on blanching at 700 e for 900 sec, the 

loss is higher from the tissue of low initial water content as the 

loss of solute and water is controlled by diffusion only at this 

stage. These results agreed reasonably well with those reported by 

5elman and Rolfe (1979). The pattern was similar and the solute 

losses were positively correlated with the initial water content of 

the tissue. 



FIGURE 5.20:Variation of dry matter solids with initial water content of prepared carrot cortex tissue (points from four 
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5.1.3.2 Potato tissue 

Potato tissue covering a wide range of initial water contents 

were prepared as described for carrot, and the potatoes were 

blanched for 900 sec at 700 e. The resulting fresh weight changes 

and solute losses are shown in Figure 5.22. A similar pattern to 

the weight changes exhibited by carrot tissue samples was obtained 

with potato. An increase in the prepared tissue weight up to 

106% of the fresh weight resulted in an almost equivalent i'ncrease 

in weight loss after blanching, but prepared tissue weights of 

higher than 106% did not give equivalent increases in weight loss 

after blanching. This may be due to some water uptake by the 

potato tissue during blanching caused by gelatinization of starch. 

However prepared tissue weights of less than 92rgave a greater 

increase in weight gain than the carrot gave after blanching under 

the same conditions. The solute losses seem to be positively changed 

with initial water content of the tissue, i.e. the loss increased 

with decreasing water content of fresh tissue. This increase in 

solute loss was expected since the removal of water from the 

tissue increased the solute concentration inside the cell (see 

Figure 5.23). This increase in solute concentration in the cells, 

however, produced a high concentration gradient between the cell 

and the blanch medium. Thus on disorganization of the cytoplasmic 

membranes by blanching at 700 C, solute diffused out of the cells in 

large amounts since the movement of solutes was entirely controlled 

by diffusion at this stage. 

5.1.4 Effect of Blanch Medium Concentration 

5.1.4.1 Carrot tissue 

An experiment was carried out to study the changes in tissue 

weight and dry matter content during blanching of cortex cylinders 

at 700 e for 120-1800 sec in different concentrations of sucrose 

{O, 3, 9 and 15% w/w). Figure 5.24 shows that in 15% and 3% sucrose 

blanching medium a weight loss occurred. Also it showed that the 
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cortex tissue blanched in 15% sucrose had a higher rate of weight 

loss than the cortex blanched in 3% medium. The rate of weight 

loss in both media was higher during the first 900 sec before it 

tailed off to an approximately constant value. In 15% sucrose, the 

water concentration in the cell tissue was 

the water to diffuse 

greater than in the 

from the cells into blanch medium causing 

the blanch medium and leading to a high weight loss. In 3% sucrose 

water diffusion from the blanch medium into the tissue was expected 

as a result of the water concentration in the tissue being lower 

than in the blanch medium, but the results showed a slight weight 

loss which contradicts an expected weight gain. The reason could 

be that the amount of solute lost from the tissue was higher than 

the water absorbed, and thus a net weight loss occurred. In 9% 

sucrose no net change of tissue weight was expected at different 

blanch times as the concentration of the blanch medium and the 

cell tissues were approximately equal, so there would be no signi

ficant diffusion gradient in either direction. The reason why the 

rate of weight loss decreased after 900 sec must be because the 

water concentration in the tissues decreased, the concentration 

gradient between the tissue and medium became small, and so only a 

small amount of water diffused out. A weight gain was observed 

with blanching in water. This again shows a contradiction to an 

expected weight loss as shown in Figure 5.6. The weight gain could 

be due to the fact that .the tissue used contained low initial water 

content (i.e. small cell volume) and therefore on blanching will 

uptake water (see Section 5.1.3. I). 

figure 5.25 shows the changes in dry matter sol ids during 

blanching in different sucrose concentrations. In 15% sucrose, 

there was an increase in dry matter solids content of the tissue 

with time. This was expected due to diffusion of sucrose from the 

blanching medium into the tissue, as the concentration of sucrose 

in the blanch medium was higher than the concentration of tissue 

cell sap (8~7%). The same occurred in 9% sucrose but the overa II dry 
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matter solids gain was very small due to the isotonic concentra

tion of the cell sap and the blanching medium. As expected, in 3% 

sucrose there was a dry matter solids loss. This is because the 

concentration of sucrose in the medium was lower than the concen

tration of solutes in the cell tissues. 

5.1.5 Effect of Post-blanch Cooling 

Most of the previous work carried out on blanching of vegetables 

included post-blanching cooling as an integral part of the blanching 

process, and most of the measurements on weight change and solute 

loss were recorded after this cooling. Therefore the weight changes 

and water and solutes losses resulting from cooling were examined 

using water and air cooling for· different times and temperatures. 

5.1.5.1 Carrot tissue 

A post-blanching cooling process on carrot cortex tissue was 

carried out at 200 C in water for 300 and 900 sec after blanching 

at 700 C for 120-1800 sec in water. The results are summarised in 

Table 5.1. A decrease in weight loss was observed when the carrot 

tissue was blanched and then cooled in water. However the amount 

of weight loss decreased as the time of cooling increased from 300 

to 900 sec. This is due largely to the uptake of water during the 

cooling process from the medium. The cooling process also resulted 

in small solute loss (see Section 5.2.5). 

5.1.5.2 Potato tissue 

Post-blanch cooling of Haris Bard potato was carried out in 

two ways: (1) water cool ing, (2) air cooling. Potato samples 

were blanched at 700 C for 600 sec and then cooled in water or air 

for different times and temperatures. 

The results are summarised in Figures 5.26, 5.27 and Table 5.2. 
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TABLE 5.1: Effect of post-blanching cooling in water at 200 C for 
300 and 900 sec on the weight loss from carrot cortex 
after blanching at 700 C (means of four replicates) 

Percentage Percentage Percentage 
weight loss wel ght loss weight loss 

Blanch Blanch Cool i ng during during duri ng 
Time Tern). Temp. blanching blanching blanching 

(sec) (OC (OC) only and post- and post-
blanching blanching 
coo ling in cool ing in 
water for water for 

3005 9005 
. 

120 70 20 4.8 4.7 2.9 

300 70 20 5.9 5.3 3.2 
600 70 20 7.3 6.7 5.6 
900 70 20 7.7 6.9 6.4 

1200 70 20 8.4 7.2 6.9 

TABLE 5.2: Effect of post-blanching cooling in air at room tempera
ture (220 C) for 120-600 sec on the weight, solute and 
water loss from Maris Bard potato tissue after 600 sec 
blanching at 700 C (means of three replicates) 

I Percentage Percentage Percentage I '" '" L. weight loss solutes loss water loss L. Gl 
Gl C. 

111 after after after c. 
111 

E 
E Gl .- blanching blanching blanching Gl~ .- ... ~ ... 
"'u ... u and post- and post- and past-a ",0 '" J:: ~ J:: c~ c blanching blanching blanch i ng u u~ .- .-~ 

C Gl C u -Gl _u 
cool ing in cooling in cool i ng in 

'" L. '" Gl 
o L. o Gl _ :J 

- \11 o :J 0\11 air air air co ... co~ U'" u~ 

70 600 22 120 5.6 1.7 3.9 

70 600 22 300 6.3 I. 76 4.5 

70 600 22 600 7.3 I. 78 5.5 
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The results of Figure 5.26 show small solute losses during 

the post-blanch cooling in water which increased with increasing 

cooling time. A water uptake was also recorded during this process 

which reduced the overall weight loss. It was observed that 

cool ing by air at room temperature 22°C after blanch'ing at 700 C 

(Table 5.2) caused a greater weight loss than the other methods 

due to evaporation of water from the surface. Figure 5.27 shows 

a comparison between post-blanch cooling in air and water at 220 C 

for 300 sec after 600 sec blanching at 700 C. Cooling for 300 sec 

in water resulted in a slightly smaller weight loss (0.3%) than 

that blanched and weighed without cooling. The water uptake due to 

cooling was (0.4%). The (0.1%) difference was accounted for by 

further solute loss during cooling. Although air cooling resulted 

in the same solute loss as without cooling (1.7%), it resulted in 

a 2.1% water loss due to evapbration which resulted in a higher 

overall tissue weight loss of 6.3%. 

In a second experiment samples of potato were blanched at 70°C 

for 120-1800 sec followed by cooling in water at 20°C for 300 sec. 

The results are shown in Figure 5.28. This shows again a weight 

loss decrease with water cooling due to some water uptake from the 

cooling medium. 

5.1.6 Effect of Dimension 

5.1.6.1 Carrot tissue 

The effect of carrot sample diameter on the changes in weight 

and dry matter were also investigated. Cylinders of Nameless carrot 

cortex having diameters of 0.005, 0.006 and 0.007m were blanched 

for several times up to 1800 sec at 70°C. The results are shown 

in Figures 5.29 and 5.30. 

The weight loss increased with decreasing cyl inder diameter, 

being 9.8%, 8.5% and 8.0% after 1800 sec blanching at 70°C for 

samples having 0.005, 0.006 and 0.007m diameters respectively. 
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With the smaller diameter, the short distance that the solute and 

water need to travel to reach the surface of the tissue seem 

to make a large contribution to the high weight losses into the 

blanch medium. As expected the results in Figure 5.30 show that 

the dry matter solids loss increases with decreasing of the diameter. 

Again the trend was the same as before reflecting high dry matter 

solids loss during the first 900 sec before decreasing to a steady 

rate. 

5.1.6.2 Potato tissue 

A similar experiment was carried out with cubes of Maris Bard 

potato tissue to study the effect of sample dimension (0.01, 

0.012, 0.014 and 0.018m) on the changes in tissue weight during 

blanching at 700 e for 120-1500 sec, The results are shown in 

Figure 5.31. Figure 5.32 shows the change in weight and solute 

losses from potato cubes of 0.006, 0.010, 0.012, 0.014 and 0.018m 

dimension during blanching at 700 e for 900 sec. 

The pattern of changes in tissue weight (Figure 5.31) were 

similar to that of carrot, losses increasing with decreasing 

sample dimension, but the amount of weight lost from potato was 

lower than that lost from carrot. For example after 1200 sec 

blanching at 700 e, the weight losses were 9.3% and 7.5% from 

carrot cylinders having 0.005 and 0.007m diameter respectively, 

while the losses were 5.2% and 4.4% for potato cubes having dimen

sions of 0.01 and 0.018m respectively. This was largely because 

of water retention within the potato tissue due to starch gelatiniza

tion. From Figure 5.32 it seems that the amount of water retained 

within the tissues increased with decreasing cube size from 

0.018 to O.OlOm, being 3% and 2.7% respectively after 900 sec 

blanching. This could be due to the fact that since heat can pene

trate the centre of the smaller cubes more rapidly than the larger 

cubes, more starch gelatinization ~Iould occur in a given time and 

thus more water uptake would result. The high water losses from the 

0.OO6m cubes show a contradiction to the expected increase in water 
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retention. It is possible that the expected starch loss from the 

surface cells ruptured during preparation was very large in the 

case of the O.006m cubes which have a large surface area, relative 

to the volume. Hence the amount of starch remaining within the 

tissue would be very small. Thus on blanching the amount of water 

retention by gelatinization of the starch would not be as signifi

cant. 

5.1.7 Industrial Scale Blanching Process 

In the production of potato crisps, a blanching operation is 

employed to wash the potato slices and to leach out excess quanti

ties of reducing sugars, so that final reducing sugar contents are 

below 0.1%. The latter aids control of colour in the final product, 

but additional loss of dry matter may occur in the form of insoluble 

and other soluble matter. In this study it was possible to take 

only a small number of potato and water samples to obtain an indica

tion of the performance of this particular industrial process. 

5.1.7. I Total solids content of potato slices and blanch 
water 

The total solids contents of potato slices at various operations 

are presented in Table 5.3. From an initial content of 22.2% solids, 

an overall reduction of about 11% occurred as a result of blanching. 

Blanch I and spray I accounted for some 5% of the loss, which would 

arise from the leaching of both soluble and insoluble solids from 

the large cut surfaces of the potato slices. The water temperatures 

were too low to inactivate the cell membranes at this first stage, 

The higher temperatures (above about 500 C) of blanch 2 resulted in a 

further 6% loss of solids, largely due now to diffusive losses from 

toe dead tissues. 

Table 5.4 compares the percentage of solids in the blanch 1 

and blanch 2 as well as showing the percentage of solids in the 

make up water and the overflow for both processes. The total solids 
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TABLE 5.3: Dry matter contents of potato samples at the various 
sampling points in the process 

Potato Potato dry matter and losses* (%) (FWB) 
Sample 
Point A B 

Average 
I 2 3 4 5 6 

Ex store 20.99 22.01 23.12 21.88 22.00 22.91 22.2±0.8 
(whole) 

Ex slicer 22.84 21 .33 - 21.96 22.62 - 22.2±0.7 

!Ox blanch :W.74 2.0.87 22.2.3 21.62 2.1.4±0.7 I - -
Ex spray I 2.0.94 20.63 - 20.97 2.1 .76 - 21.1±0.5 

Ex blanch 19.39 2.0.16 - 2.0.00 19.13 - 19.7±0.5 2 

Ex spray 2 19.06 20.32 - 18.98 20.95 - 19. 8±!. 0 

* Percentage losses based on potato composition ex slicer 

Soluble solids 6.78% 

Moisture content 77.85% 

Losses 

-

-
3.6 

5.0 

11.3 

10.8 
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TABLE 5.4: Solids content of the blanching waters (a: total solids, 
b: soluble solids and c: insoluble solids) 

Water Type So 1i ds Loss% 

Sample of A B Average Point So 1i ds I 2 3 4 

Blanch I a 1.83 1.89 2.61 2.26 2.2 ± 0.4 
b 0.43 0.69 0.41 0.39 0.5±0.1 
c 1.4 1.20 2.2 1.87 1.7±0.5 

Overflow I a 2.30 4.23 2.42 0.92 2.5 ± 1.4 
b 0.41 0.41 0.40 0.42 0.4 
c 1.89 3.82 2.02 0.50 2.1±1.4 

Make up a 2.25 3.11 2.59 2.08 2.5 ±0.5 
water I 

Blanch 2 a 1.50 1.47 1.50 1. 45 1.5 
b 1.07 1.16 1.24 0.85 1.1±0.2 
c 0.43 0.31 0.26 0.60 0.4 ±0.2 

Overflow 2 a 1. 47 1.46 1.52 1.45 1.5 
b 0.78 0.79 0.80 0.74 0.8 
c 0.69 0.67 0.72 0.71 0.7 

Make up a 1.53 1.52 1.55 1.53 1.5 
water 2 

. . .. 
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content of the blanch waters in the fi rst stage was about 2.5% 

and for the second stage 1.5%. It is apparent that the insoluble 

(75% of total) solids content was much higher in the stage 1 waters 

compared to stage 2, as would be expected from the washing out of 

starch granules from the cut surfaces. 

The soluble solids content of the blanch 2 waters however 

was about twice that of the blanch 1 water, as here the temperatures 

were high enough to kill the cells and allow leaching of solubles 

from the body of the slices. Most of the insoluble material was 

therefore lost in blanch 1. There appeared to be some concentrating 

of insolubles in the overflow cleaning tank of blanch 1. 

5.2 Apparent Diffusion Coefficients for Solute losses from 
Carrot Ti ssue 

5.2.1 Effect of Tissue Type (Core and Cortex) 

Preliminary work was carried out on Nameless carrots from 

which standard cylinders of cortex and core tissue were cut and 

then blanched at 700 C for several times up to 1800 sec in water 

(see method Section, 4.1.1). Solute concentration in the cell 

sap was measured after each blanch time and the results are shown 

in Figure 5.33. Cell sap concentration decreased with blanch time. 

The trend for both cortex and core was similar both exhibiting the 

most rapid decrease in cell sap solute concentration during the 

first 300 to 600 sec. In similar studies on carrot cortex Selman 

and Rolfe (1979) suggested that losses during the first 5 minutes 

were not simply due to diffusion but also to the expulsion of 

cell sap as turgor was lost on cell death. The diffusion rate of 

solute from both core and cortex tissue into blanch water slowed 

between 600 to 1800 sec as the concentration gradient decreased. 

The diffusion coefficients (0 ) of carrot cell solutes were 
a 

calculated from the curves shown in Figure 5.33 by the method 

previously described. The 0 values are given in Table 5.5 as a 
a 
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TABLE 5.5: Apparent diffusion coefficients (0 ) of cell solutes of 
carrot cylinders when blanched inawater under the given 
conditions (data from curves in figures 5.33, 5.34, 5.35 
and 5.37) 

'" Data Sample c: 
0 

from Type .-... 
Fig. . -

"0 

No c: 
0 

u 

Nameless 
5.33 core 

cortex 
-------~--------- ---

Cortex 
Q) ... 
:::l ... 
'" 5.35 
... 
Q) 
Co 
E 
Q) 
I-

-------fo--------- ---
Cortex 

... 
Q) ... 

5.37 
Q) 
E 

'" .-
c 

----------------- ---
c: 

(Chanteney 0 

... 
(Cortex '" ... 

5.34 ... 
(Nameless c: 

Q) 

(Cortex u 
c: 
0 

u 

------- ---------- ---
Table Nameless 
5.6 Cortex Cl 

c: .--0 
0 
u 

.c 
u 
c: 

'" -.0 
I ... 
VI 
0 
c.. 

* Standard conditions: 

D 10 10 values at the given blanch Conditions x a seconds (m2 s-l) vari ed in 

from 120 300 600 s tanda rd" 

Standard 4.50 6.12 5.52 
Standa rd 6.15 6.60 6.62 

----------- ---- ---- ----
600 C 3.75 1.20 2.34 

Standa rd 1.00 2.04 3.42 

800 C 1.50 3.30 4.58 

900 C 6.98 7.35 7.68 

----------- ---- ---- ----

0.005m 3.07 4.83 5.31 

Standa rd 2.34 4.20 5.25 
0.007m 0.96 2.86 4.04 

----------- ---- ---- -----
3% ) 5.93 7.14 6.33 

) Q) 

15% VI 19.9 24.3 24.5 ) 0 ... 
15% ) u 4.65 7.50 7.80 :::l 

) VI 

20% 13.5 13.0 11.6 ) 
----------- ---- ---- -----
Wi th coo- 6.12 5.07 4.91 
1 i ng (300s) 

Wi th coo- 5.95 5.65 4.71 
1 ing(900s) 

Standard 4.95 4.20 4.01 

Only coo- 1.2 0.87 0.90 
1 i ng (300s) 

Only coo- 1.00 1.45 0.70 
1 ing(900s) 

o temperature = 70 C 

900 

4.84 

6.70 
-----

2.10 

4.00 

5.12 

7.62 
-----
5.14 

5.10 

4.76 
-----
5.30 

22.4 

6.95 

9.50 
-----

5.50 

5.55 

4.90 

0.60 

0.65 

Blanch 
Blanch 
Carrot 

medium = distilled water 
cylinder diameter = 0.006m 

1200 1500 1800 

5.10 ~.35 5.70 
6.56 6.06 6.05 
----- -----------
3.41 3.68 3.82 

4.35 4.35 4.55 

5.72 5.58 5.80 

7.69 7.80 7.34 

----- -----r-----
5.05 4.92 4.80 

5.10 4.86 5.08 

4.98 5. 15 5.21 

----- ----- fo-----
4.73 4.62 5.15 

19.5 15.6 13.4 

6.30 5.99 6.00 

8.29 7.76 8.30 
----- -----~-----
4.98 - -
5.09 - -
4.35 - -
0.63 - -
0.79 - -

time 

Mean 
600-
1800 

5.30 
6.40 

~-----

3.07 

4.13 

5.36 

7.64 

r-----
5.04 

5.08 

4.83 

f------
5.23 

19 . 1 

6.61 

9.09 

f------
5.13 

5.12 

4.42 

0.71 

0.70 
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function of time and tissue type with mean values for D during 
a 

the period from 600 to 1800 

arise solely by diffusion. 

sec. when solute 
o At 70 C the mean 

losses appear to 

D value for diffusion 
a 

of solutes out of core tissue was slightly less than the mean Da 
-10 2-1 value for the cortex tissue. These Da values were 5.30 x 10 m s 

-10 2-1 for core and 6.40 x 10 m s for cortex. This difference may be 

due in part to initial concentration differences between core and 

cortex tissue and to the variation of biochemical aspects and 

structural differences between the tissues. The expulsive losses 

during the first 300 sec are reflected in some of the D values 
a 

given in Table 5.5, which tend to be lower as might be expected 

if whole solution is being lost during loss of turgor. 

5.2.2 Effect of Blanch Medium Concentration 

Cylinders of Chantenay cortex tissue were blanched in three 

different concentrations of sucrose solution (3, 9 and 15% w/w) 

to give blanch medium concentrations of 6% smaller than, the same 

as, and 6% greater than the initial mean cell sap concentration of 

8.7%. The changes in the cell sap concentration after blanching 

are shown in Figure 5.34. As the cell sap concentration of the 

cortex is 8.7%, the 15% sucrose solution causes a high concentration 

gradient in favour of the medium and thus sucrose diffused into the 

cortex tissue and increased the cell sap concentration. The 3% 

sucrose as expected gave the converse effect to the 15% sucrose 

since the cell sap concentration of the cortex was higher than the 

concentration of the blanch medium. The 9% blanch medium which is 

almost isotonic to the initial cell sap concentration of the cortex, 

gave very slow rates of diffusion and no net movement in favour of 

either direction. This is in agreement with similar observations 

reported by Dan and Jain (1971) who blanched Asiatic carrots (4.5% 

initial cell sap concentration) for 300 sec at IOOoC in solutions 

containing up to 9% sucrose. 
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The diffusion coefficients calculated from curves for solute 

movement in the 0.3 and 15% solutions are given in Table 5.5. 

The Da value for the 9% solution was indeterminate due to the 

negl igible concentration difference. It is seen from Table 5.5. 

that the concentration of the blanching medium significantly 

influences the diffusion rate of the cell sap. Mean D values for a 
diffusion of solutes from the 15% sucrose solution were about four 

-la 2-1 times greater (19. I x la m s ). than those for the 3% sucrose 

solution (5.23 x la-la m2s- I ). In both solutions D decreased with 
a 

blanch time particularly in the case of the 15% sucrose solution 

where very small concentration differences existed after 900 sec. 

It might be expected that cell sap concentration and blanch 

water concentration would reach equilibrium at about the same time 

for both the 15% and 3% conditions. However cell sap concentration 

rose more rapidly towards an equilibrium in 15% sucrose than did 

the fall in cell sap concentration toward equilibrium in the 3% 

sucrose. The higher D values observed in blanching in 15% 
a 

sucrose support this, although it is not clear whether D is a 
influenced by the rise of cell sap concentration or vice versa. 

After 1800 sec cell sap concentration had reached 14% in 15% sucrose 

and 5.5% in 3% sucrose when in both cases the initial concentration 

difference was 6%. Compared to the pattern in water, 9% and 3% 

sucrose, the pattern at 15% appeared to be unexpected. The diff

erence in the 15% curve seems to arise during the first 300 sec 

blanching, when the changes occurring are not entirely due to 

diffusion and yet will influence the calculated value of Da' for if 

the initial cell sap concentration (Cl) is taken as that recorded 

after 300 sec blanching (= 12.2%) then 0 at say 1200 sec is 
a 

8.7 x 10-10 m2s- l • Similarly if Cl is taken as that recorded after 

600 sec blanching (13.2%) then D at 1200 sec becomes 3.8 x la-la m2s-
1 

a 
i.e. more similar to the values of 0 obtained for the other conditions. 

a 

However, considering the inherent variability of the carrot 

materials, it was suggested that the 15% result might simply be a 

reflection of this, and so bearing in mind the similarity between 
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the results previously obtained for the Chantenay and the Nameless 

carrot cortex cylinders, blanching in 15% sucrose was repeated 

and also in 20% sucrose using Nameless carrots of similar charac

teristics. These results are shown in Figure 5.34. The curves and 

D values (Table 5.5) are more nearly what might be expected in 
a 

relation to the results for water, 9% and 3% sucrose, with a mean 

D of 6.61 x 10- 10 in 15% sucrose, and 9.09 x 10- 10 m2s-1 in 20% 
a 

sucrose. It is concluded that the results for Chantenay carrots 

at 15% may well have reflected variability in the carrot tissue, 

but that D is influenced by the blanch medium concentration where 
a 

it is higher than the initial cell sap concentration. Typically 

a commercial blanch water concentration for carrots might be 

about 3-5% during continuous blanching (Gooding, 1956). 

5.2.3 Effect of the Blanch Temperature 

Cylinders of Chantenay cortex tissue were blanched for several 

times up to 1800 sec at 60, 70, 80 and 900 C. The resulting changes 

in cell sap concentration are shown in Figure 5.35. A similar 

pattern of decreasing cell sap concentration is observed at each 

temperature; but with increasing temperature the trend was for a 

more rapid decrease in concentration during the first 300 sec which 

resulted in a greater overall loss at each blanch time. The 

literature data on solids diffusing rates at different temperatures 

shows similar behaviour, that is the rate of diffusion increases 

with increasing temperature. In most cases, the rate of concentra

tion decrease slowed noticeably after 600 sec due to the now lower 

concentration gradient between the blanch medium and the tissue. 

The results for both the cortex of Chantenay and Nameless 

carrots at 700 e are very similar, and indicate that different types 

of carrots having similar characteristics, such as initial cell sap 

concentration, may exhibit a similar pattern of diffusive solute 

loss during blanching. The diffusion coefficients for solutes at 
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different temperatures calculated from the curves of Figure 5.35 

are shown in Table 5.5. 

Mean D 
a 

values show that D increases with increasing temperaa 
ture having values of 3.07 x 10- 10 m2s- 1 at 600 c, 4.13 x 10-10 m2s- 1 

o -10 
at 70 C, 5.36 x 10 

2 -1 0 -10 2 -1 0 m s at 80 C and 7.64 x 10 m s at 90 C. 

These results indicate that diffusion coefficient is dependent on 

the blanching temperature. The influence of temperature on the 

diffusion coefficient is plotted in Figure 5.36 as In Da versus T. 
The plot shows a linear relationship, which is typical of an 

Arrhenius type temperature· dependency and from which the activation 

energy was calculated by the following Arrhenius equation: 

E 
Da = D exp (- ~) o RT 

The activation energy E was calculated to be 28.2 kJ mol-I. This 
a 

compares well with reported activation energies for other tempera-

ture dependent changes occurring in plant foods during processing. 
-1 

Vaccarezza~. (1974) reported an E of 28.9 kJ mol for water a 
diffusion during drying of sugar beet, and Suarez et al. (1980) 

found an E of 31.4 kJ mol- l for water diffusion in Sorghum grain 
a 

drying. Paulus and Saguy (1980) found E values of 113.0, 92.1 and a 
117.2 kJ mol- l for texture change in Rothild, Kundulus and Rubika 

carrots respectively during cooking. 

5.2.4 Effect of Carrot Sample Diameter 

The effect of carrot diameter on the D values of cell sap 
a 

was also investigated. Three different Chantenay cortex cylinders 

having diameters of 0.005, 0.006 and 0.007m were used. These were 

blanched for several times up to 1800 sec at 700 C. The changes in 

cell sap concentration are shown in Figure 5.37. The rate of 

decrease of cell sap concentration appears to increase as cylinder 
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• 

diameter decreases. This indicates that the solute loss increases 

with decreasing sample diameter. Actual losses of solutes would 

however be expected to increase with surface area and this is shown 

to be true. The apparent diffusion coefficients for solutes from 

the 0.005, 0.006 and 0.007m cortex are shown in Table 5.5. It is 

seen tha t the 0 
a 

values are influenced by diameter, but only 

during the first 300 sec blanching, thereafter the 0 values in all 
a 

three cases were similar with mean 0 values of 5.04 x 10-10 
-10 -10 2 -1 a 

5.08 x 10 and 4.83 x 10 m s for the 0.005, 0.006 and 0.007m 

diameter cyl inders respectively. As expected, this .indicates that 

D is independent of diameter during the time when solute loss 
a 

occurs solely by diffusion. 

5.2.5 Effect of Post-blanch Cooling 

An experiment was carried out to examine the changes in cell 

sap concentration and diffusion coefficients during post-blanch 

cooling. Cylinders of Nameless carrot tissue were cooled in water 

at 20°C for 300 and 900 sec after blanching at 70°C for several 

times up to 1200 sec.Cooling times of 300 and 900 sec at 20°C were 

used for industrial reasons. The cell sap concentration changes 

are shown in Table 5.6. The rate of decrease of cell sap concen

tration appears to increase with increase in the post-blanch cooling 

time. The diffusion coefficients, D , values as functions of cooling 
a 

time are given in Table 5.5. This data shows an increase in the 

D values as a result of both blanching and cooling due to the a 
further solute loss during cooling. However the cooling time appeared 

to have no significant effect on D 
a 

10-10 and 5.12 x 10-10 m2s- 1 
values with mean D values of 

a 
after 300 and 900 sec cooling. 5.13 x 

The D 
a 

values during the cool ing process only was also calculated 

and found to be -10 2-1 
0.71 x 10 m s . This lower value may result from 

the slower rate of solute loss at the lower temperature and as a result 

of the movement of water in the opposite direction. 
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TABLE 5.6: Effect of post-blanching cooling in water at 200 C 
for 300 and 900 sec on the cell sap concentration 
changes of carrot cortex after blanching at 700 C 
(means of three replicates) 

Cell sap conc. Ce lIs ap conc. Ce 11 sap conc. 
Blanch Blanch changes du ring changes during changes duri ng 
Time Temperature blanch i ng on ly blanching and blanching and 

(secs) (OC) post-blanching post-blanching 
cooli ng for cool ing for 
300 sec 900 sec 

% % % 

120 70 7.25 6.25 5.70 

300 70 6.80 6.0 5.05 

600 70 5.8 5.1 4.75 

900 70 4.85 4.35 4.0 

1200 70 4.55 4.05 3.7 

,', 200 C was the cooling water temperature 

8.8% was the initial cell sap concentration 
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5.3 Apparent Diffusion Coefficients for Solute Loss from Potato 
Ti ssue 

Diffusion coefficients for the leaching of solutes out of 

potato were calculated. The dIffusion coefficients were calculated 

as functions of temperature, time, dimension, ratio of sample weight 

to blanch water, potato variety and post~blanch cooling. The 

solute losses during blanching were used to calculate the dlffu~ 

sion coefficients based on the method described before (Section 2.1), 

5.3.1 Effect of Blanch Temperature 

Cubes of Home Guard potato tissue were blanched for several 

times up to 1800 sec at 60, 70, 80 and 900 C. The increase of solute 

loss as the blanching proceeds at the four temperatures is shown 

in Figure 5.38. It is seen that solute loss is almost complete 

after 1800 sec with most of the loss occurring in the first 300-600 

sec as with carrot. The results also demonstrate that the mass 

transfer is more rapid at the higher temperature, which is as expec

ted since diffusivity of solute in water increases with temperature. 

The apparent diffusion coefficients for solutes, calculated from 

the results shown in Figure 5.38, are I isted in Table 5.7 as a func

tion of time with a mean D value of 8.25 x ID-ID m2s- 1 at 600 C, 
-ID 2 -loa -ID 2 -I 0 

4.25 x ID m s at 70 C, 7.75 x ID m s at 80 C and 

11.5 x ID-ID m2s- 1 at 900 e. These mean D values for solute loss 
a I 

from potatoes were plotted in Figure 5.39 as In Da versus T' It 

can be seen that the plot is a straight line of an Arrhenius type 

relationship from which the activation energy for diffusion waS 

estimated as 41.6 kJ mol-I. 

The diffusion coefficients for each temperature and time, 

Table 5.7, show no difference which would indicate that the solute 

D values are independent of time except at 600 C. The D value for 
a 0 a 

solutes at 60 C for 900 sec and longer, appear to be higher than the 

D values for the same time at 70
0 e, and similar to the D values a a 

at 80 and 900 e. The increase in D values at 600 C could be due to a 
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Apparent diffusion coefficients (D ) of solutes of potato 
cubes when blanched in water underathe given conditions 
(data from curves in figures 5.38, 5.40, 5.41, 5.42 and 5.43) 

c:: D x 10'u values (m2 s-l) at the given Data 0 Condi tions a .- blanch time (sec) from Sample .., va ri ed .-
Fig Type "0 from Mean c:: 
No. 0 Standard'" 120 300 600 900 1200 1500 1800 600-u 

1800 

Home .. 600 C 3.33 3.83 4.71 6.72 7.2 11.3 11.3 8.25 I-

Guard :J 
8. 13 6.67 4.47 4.67 3.85 3.26 4.25 .., Standard 5.0 5.38 Potato '" I-

800 e 9.83 7.83 6.67 Q) 13.9 8.71 8. 1 7.46 7.75 Co 
E 

900 e 16.7 13.8 11.8 Q) 10.7 12. 1 - - 11.5 
I-

-------1-------- ----- ----------- ---- ---- ---- ---- ------ ----- ----- -----
Maris c:: Standard 10.9 9.9 7.8 7.2 6.48 6.33 5.83 6.73 0 
Bard .-

6.9 5.76 5.16 4.56 4. 1 4.94 III 0.012m 7.5 5.12 Potato c:: 
Q) 

5.40 E 0.014m 5.51 6.37 5.n 4.63 5.02 4.70 4.36 4.89 .-
Cl 

0.018m 

~::r~~ 
5.67 5.28 4.66 5.08 4.95 5.13 

1------- ------- ----- ----------- ----- ------ ----- ----- -----
Home >- Standa rd 8.13 6.67 5.00 4.47 4.67 3.85 3.26 4.25 
Guard 

.., 
Q) 

Maris Bd .- Standard 10.9
1

9.9 7.8 7.2 6.48 6.33 5.83 6.73 I-

5.41 '" Record > Standard 8.3314.17 4.79 3.89 4.00 3.50 3.47 3.93 

------- __ .0.._ I 1------~----- ~------------- -----------~--------- ---- ----- -----.... .., I 
0 

, 
Q).c:: 1: 2.5 11.0 19.83 8.13 7.42 6.97 6.67 6.32 7.10 Mari s 0- u 

.- Q. c 
5.43 Bard .., E '" 1 : 20 11.39.78 7.60 7.47 6.29 5.97 5.67 6.60 "''''-Potato C::Vl.o 

--------------- ----- -----------~---------- ---- -----------~----- ----- -----

I Mari s 
.c:: 
u Standard 11.09.92 7.92 7.64 6.56 I 6.25 5.83 6.84 c:: 

'" 5.42 I Bard - on I Wi th coo- 11 .059.97 J7 .9717.67 6.61 6.30 5.86 6.88 .0 c:: 

I Potato I .- 1 i ng(300s) 0.05 '0.02 0.05 0.02~ 0.05 .., - 0.054 0.033 0.042 III 0 ICoo 1i ng I o 0 I I I I Ill. U on1y(300s) , , ! 

*Standard conditions: o Blanch temperature = 70 C 

Potato cubes dimension = 0.010m 

Potato sample to blanch water ratio = 1:5 
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a reducing sugar increase as a result of internal generation of 

reducing sugars due to enzymic hydrolysis of starch. As seen 

from Table 5.7 such an increase in reducing sugar only becomes 

important after 600 sec blanching, as 

6.72 x 10- 10 m2s- 1 after 900 sec, and 

the D a 
11 .3 x 

values increase to 

ISOO sec. In order to determine the rate of solute loss 

without chemical reaction (i.e. where the generation of sugars is 

not taken into account), the D value at 600 e, 2.69 x 10- 10 m2s-1 
a 

obtained from Figure 5.39, was appl ied to the diffusion model and 

the resulting values of C (solute loss into blanch water) are shown 

in Figure 5.3S. 

5.3.2 Effect of Dimension 

Maris Bard potato cubes of 0.01, 0.012, 0.014, O.OISm were 
o blanched at 70 e for several times up to ISOO sec, and solute losses 

are shown in Figure 5.40. As expected the solute loss appeared to 

decrease as the cube size increased. The trend in general was 

similar to the loss from carrot of different diameters. The 

diffusion coefficients as functions of time and dimension are given 

in Table 5.7 as calculated from Figure 5.40. From Table 5.7 it is 

clear that the dimension has no influence on diffusion coefficients 

and the mean Da values in all four cases were similar having values 

5.13 x 10- 10 , 4.S9 x 10- 10 , 4.94 x 10- 10 and 6.73 x 10- 10 m2s- 1 for 

O.OIS, 0.014, 0.012, O.OIOm cubes. This indicates that D is inde-
a 

pendent of 

for O.Olm 

the surface area for cubes from 0.012 to O.OISm. D values 
a 

cubes is a 1 ittle higher than for the other cubes which 

may have been due to the increase in sugar content during storage, as 

the measurements on solute loss from O.Olm cubes was carried out 

three weeks after these on the 0.012, 0.014 and O.OISm cubes. To 

con firm t his a 

carried out at 

6.28 x 10- 10 . , 

repeat experiment using O.ooS 

700 e for 600 sec and the mean 

6.16 x 10- 10 and 6.61 x 10- 10 

to 0.014m cubes was 

D values were: 6.42 x 10- 10 ; 
a 

m2 s- 1 for solute loss 

from 0.014, 0.012, 0.010 and 0.008m potato cubes respectively. 
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5.3.3 Effect of Potato Variety 

Solute loss from three varieties of potatoes (Home Guard, Maris 

Bard and Record) having 16.9%, 19.3% and 25.0% total solids respec

tively were examined during blanching at 700 C for several times up 

to 1800 sec. The results are summarised in Figure 5.41. A similar 

pattern of solute loss was observed for each variety. Greater 

solute loss occurred with the variety of higher total solids 

content. A higher solute loss was noted with Record variety as 

expected due to the high soluble solids content (6.4%) as compared 

to 4.7% for Maris Bard and 4.3% for Home Guard. The diffusion 

coefficients calculated from these results 
-10 2-1 

are listed in Table 5.7 

with mean values of 3.93 x 10 m s for Record, 4.25 x 10-IOm2s- 1 

-10 2-1 for Home Guard and 6.73 x 10 m 5 for Maris Bard. The mean 

D values for solute movement of Maris Bard are larger than the 
a 

D values of Home Guard and Record potatoes, indicating that the 
a 

sugar and 

on the D 
a 

other low molecular weight components have more influence 

values of potato than the other soluble components (proteins 

and starch). It should be pointed out that the apparent diffusion 

coefficient of solute in potato is strongly dependent on the com

position of the variety. Stahl and Loncin (1979) in their study of 

the prediction of diffusion in foodstuffs, also found that the 

apparent diffusivity in potatoes is strongly dependent on variety. 

5.3.4 Effect of Post-blanch Cooling in Water 

Post-blanch cooling in water at 200 C for 300s was also used 

in this study to examine its effect on the diffusion coefficient of 

solutes. Figure 5.42 shows the solute loss during the blanching of 

potato without cool ing, with cooling and during cooling only. The 

results show a slight increase in solute loss with cool ing. 

values for solute loss during blanching without cool ing and 

The D 
a 

cool ing 

only were calculated separately in order to determine the D values 
a 

for solute loss during blanching with cooling process. These values 

are presented in Table 5.7 as a function of time and the process. 
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The mean 0 values 
a 

and blanching with 
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for solutes during blanching without 
-10 cooling were 6,84 x 10 and 6.88 x 

cooling 
-10 2-1 10 m s 

respectively, showing no significant solute transfer during the 

cooling process. The mean 0 value. for solute 1055 during cooling 
-10 2 gl 

only was 0.0425 x 10 m s 

5.3.5 Effect of Ratio of Sample to Blanch Water 

Ratios of 1:2.5, 1:5 and 1:20 sample weight to water were 

used. Maris Bard O.Olm potato cubes were blanched in these ratios 

at 700e for several times up to 1800 sec. The solute 1055 at these 

ratios are shown in Figure 5.43. There was a negligible difference 

between blanching in 1:2.5, 1:5 and 1:20 on the pattern of solute 

1055. This was expected as the amount of solute lost into the 

blanch water was very small, and because the concentration of the 

blanch medium remained virtually the same in all three cases. 

After 1800 sec blanching in these three ratios the concentrations 

of solutes were 0.004, 0.002 and 0.001 g/ml respectively. The 

diffusion coefficient for solute movement in these three ratios are 

given in Table 5.7 as a function of time and the ratios of sample 

weight to blanch water. 

cases was similar, with mean 
-10 2-1 

It is seen that the Da value in all three 

o values of 7.10 x 10-10 m2s- 1 at 
a 

1:2.5, 6.73 x 10 m s at 1:5 and 6.60 x 10-10 m2s- 1 at 1 :20. 

This indicates that 0 values are constant over such small range 
a 

of concentration difference. 
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5.4 Apparent Diffusion Coefficient of Sugar in Potato Tissue 

5.4.1 Laboratory Scale 

5.4.1.1 Effect of temperature and time 

Figures 5.44, 5.45, 5.46 and 5.47 illustrate the changes in 

percentage of total and reducing sugar in both blanch water and 

potato with time of blanching at 50, 60, 70 and BOoC. Curves T 

and R in each figure show the change of average sugar percentage 

(total and reducing) in the blanched potato with time, and curves 

T and R show the corresponding change in percentage of sugar lost 

into the blanch water. In most cases the rate of sugar loss is 

high in the first 300 to 600 sec before declining to a steady rate 

of loss. Because of the differences in the initial sugar concen

tration of potato used in this work as seen in Figures 5.44 to 5.47, 

non-dimensional graphs were drawn by dividing the concentration 

after each blanch time for each temperature over the initial con

centration. From these non-dimensional ised graphs, Figures 5.4B 

and 5.49, it can be seen that the diffusing rate of both total and 

reducing sugar increased with increasing blanch temperature and 

the trend was the same. Figure 5.52 shows the percentage total and 

reducing sugars lost into the blanch water after 120 and 600 sec 

blanching at different temperatures. The pattern of loss for total 

and reducing sugars was similar with the amounts lost increasing 

substantially above 50°C. The losses of sugar below 500 e were 

assumed to arise from the cut surface cells. The losses between 

50 and 900 e increased gradually and reached maximum values of 

0.106% and 0.oB2% at 900 e for total and reducing sugars respectively 

after 600 sec. Reducing the blanch time from 600 sec to 120 sec 

resulted in a significant reduction in sugar loss. The reduction 

in losses at 900 e were 0.046% and 0.052% for total and reducing 

sugars respectively. 

Diffusion coefficients (D ) for movement of reducing sugars, 
a 

total sugars and sucrose out of potato cubes during blanching in 

water at 50, 60, 70 and Booe are presented in Table 5.B. The 



'-

'" CJl 
:J 
V> 

c~) 

0.32 

0.21! 

0.16 

0.08 

0.0 
o 300 600 

• 

900 
Blanch time (s) 

°T blanched potato 

T blanch water 
~ blanched potato 
R blanch water 

1200 1500 1800 

FIGURE 5.41!:Pcrcentage of Total (T) and Reducing (R) sugar remaining in Record potato cubes and lost into blanch 
water (T, ~) after the given blanch time at 500 C (means of four repl icates) 

N 
0 
0 



l-

'" 01 
::J 
<11 

oN' 

0.48 

0.40 

0.32 

0.24 

0.16 

0.0 
o 300 900 

Blanch time (s) 
1200 

g-
T blanch water 

<t ~ T blanched potato 

A-R blanch water 

R blanched potato 

1500 1800 

FIGURE5.45 Percentage of Total (T) and Reducing (R) sugar remaining in Record potato cubes and lost into blanch 
water (T, R) after the given blanch time at GOoe (mean of four repl icates) 

N 
0 



0.32 

'

'" 0' 
:J o. 16 n '" 

0.08 

0.0 
o 300 600 900 

Blanch time (5) 

1200 1500 

T blanched potato 

R blanch water 

R blanched potatd 

1800 

FIGURE 5. 1,6: Percentage of Total (T) and Reducing (R) sugar rema,n,ng in Record potato cubes and lost into 
blanch water (f, RI after the given blanch time at 700 e (mean of four repl icatesl 

N 
o 
N 



I.. 
n) 
en 
:l 

'" 

0.40 

0.32 

l' blanch water 

0.24 

_0 o. 16 
" • T blanched potato 

• 
0.08 -;::::~~:=:===~::::"--<Oc!f=::===:=:=:~~~~~~~~~~~~~:: R blanch water 

, ~ R blanched potato 

0.00 0~~------~3~OO~--------6~00~------~9~0~0--------~1~2~0~0--------~15~0~0--------7,8~00 
Blanch time (s) 

FIGURE 5.47:Percentage of Total (T) and Reducing (R) sugar remaining in Record potato cubes and lost into 
blanch water (1', R) after the given blanch time at 800 C (mean of four replicates) 

N 
o 
w 



e 
e 
° 

1.0 

o.s 

0.6 

0.4 70
0

e 

)( 
Sooe 

0.2 

0.0L-________ ~ ________ ~ __________ ~ ________ _L __ ~ ______ ~ ________ ~ 

o 300 600 900 1200 1500 I SOO 
Blanch time (5) 

FIGURE 5.
1
18: Reducing sugar remaining (non-dimensionalised) in Record potato cubes after the given 

blanch time at 50, 60, 70 and aooe 

N 
0 ..,. 



e 
Co 

1.0 

o.B 

sooe 
0.6 6-

o 60°C 
0.4 700 e 

£Ooc 

0.2 

0.0 
o 300 600 900 1200 1500 lBoO 

Blanch time (5) 

FIGURE 5.49:Total sugar remaining (non-dimensional ised) in Record potato cubes after the given blanch 
time at 50, 60, 70 and Booe 

N 
0 
V1 



206 

TABLE 5.8: Apparent diffusion coefficients (0 ) of sugar of Record 
potato cubes when blanched in wate~ under the given 
condition (Data from curves in Figures 5.44. 5.45. 5.46 
and 5.47) 

Ul 

1010 (m2 s- 1 ) C> Cl) c 0 x values at the given blanch c u 0 
Sample .- c .-

Ul '" '-' 
Type " 

., .-
4- .Ul "0 
4- .0 C 

" 0 
c (/) u 

Record Reduci n9 500 e 
potato sugar 600 e 

700 e 

800 e 

1--------~-------- ------
Record Total 500 e 
potato sugar 600 e 

700 e 

800 e 

-------- -------- ------
Record Sucrose 500 e 
potato 600 e 

700 e 
Booe 

Standard conditions: 

a time (sec) 

120 300 600 900 

1.66 2.90 2.80 3.44 

5.20 4.30 5.90 6.60 

9.20 12.0 9.60 8.90 

15.0 15.0 12.0 14.0 

1----- ------1-------------
1.63 1.00 1. 21 1.25 

3.95 4.00 4.50 3.30 

11.70 10.30 7.60 7.10 

16.00 15.00 9.10 6.90 

---- ------ ------ -----

1.46 0.066 0.038 0.019 

2.9 3.7 4. 1 4.9 

16.0 13.0 4.5 6.8 

8.9 9.5 7.8 5.4 

Blanch temperature = 

Potato cubes dimension = 

Potato sample to blanch = 
water rat i 0 

, 
1200 1500 

3.70 4.42 

6.90 7.32 

8.96 8.75 

14.0 16.3 

----- -----

1.88 2.17 

6.20 7.50 

6.90 7.00 

8.10 9.75 
-----1------

0.479 0.517 

6.2 9.6 

6.4 8.67 

5.B B.3 

1: 5 

Mean 1800 600-
1800 

4.20 3.71 

7.36 6.82 

9.40 9.12 

25.3 16.32 

------ ------
2.67 1.84 

5.63 5.43 

9.20 7.56 

10.8 8.93 

'------ ------

1.55 0.521 

5.4 6.04 

14.1 8.09 

7.2 6.90 
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results for reducing sugar (Table 5.S) shows that the 0 increased a 
with increasing blanch temperature with mean 0 values of a 
3.71 x 10-10 m2s- 1 at 500 e, 6.82 x 10-10 m2s-1 at 600 e, 

9.12 x 10-10 m2s- 1 at 700 e, and 16.32 x 10-10 m2s-1 at 800 e. 

The diffusion coefficient values for both total sugars and sucrose 

(Table 5.8) show the same pattern as the reducing sugar and increase 

with increasing blanch temperature. The influence of temperature 

on the diffusion coefficients of reducing and total sugar is shown 
I in Figures 5.50 and 5.51 as a plot of In Da versus r. The plot 

shows a linear relationship which is typical of an Arrhenius type 

temperature dependency and from which the activation energy for 

diffusion of reducing sugar and total sugar were calculated as 

27.6 kJ mol- I for reducing sugar and 31.4 kJ mol- I for total sugar. 

5.4.1.2 Effect of the diffusing substance 

As expected, the mean 0 values for both total sugar and sucrose 
a 

(Table 5.8) are lower than the mean 0 values for reducing sugar, as 
a 

the molecular weight of reducing sugar (glucose and fructose, 180) 
is lower than that of sucrose (342) and total sugar. For the same 

reason, total sugar diffused more slowly than sucrose with a mean Da 

value of 1.84 x 10-10 , 5.43 x 10-10 , 7.56 x 10-10 and 8.93 x 10-IO m2s -1 

at 50, 60, 70 and 800 e respectively. These results indicate that 0 a 
depends on the molecular weight of the diffusing substances and on 

the blanch temperature. The actual tendency of sugar to diffuse 

would however be expected to increase as the size of the diffusing 

substance decreases and temperature of blanching increases and this 

was shown to be true. 

The values of diffusivity of sugars in potatoes are comparable 

to those reported for other substances. For instance, the diffusion 

ff · . f . b was 7.2 x 10-10 m2s- 1 at 75 0 e coe IClents ° sucrose In sugar eets 

(Bruniche-Olsen, 1962). The diffusion coefficients of sucrose and 

glucose in water were 5.4 x 10- 10 and 6.9 x 10-10 m2s-1 at 25 0 e 

respectively (Schwartzberg and ehau, 1982). 
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5.4.2 Industrial Scale Process 

5.4.2. I Sugar content of potatoes and blanch waters 

The results of the sugar analysis are summarised in Tables 

5.9 and 5.10. Table 5.9 shows the percentage of total and reducing 

sugars in the potato slice during processing, while Table 5.10 shows 

the percentage of total and reducing sugar in blanch 1 and 2 as 

well as in the make up water and the overflow of both blanch I" 

and 2. 

The initial total sugar content was 0.25%. This was reduced 

by 12% by blanch I and by 32% by the end of spray 2. The total 

sugar content of slices ex spray I and blanch 2 were nominally the 

same, but further sampling might have shown a more steady continua

tion of sugar loss. 

The initial reducing sugar content was 0.18% comprising some 

72'1. of the total sugar content. It is doubtful if there is any 

significant difference between the composition of slices and whole 

potatoes. A reduction of 5.6% reducing sugars was recorded in 

slices ex blanch 1, and a total reduction of 11.1% after spray 1. 

These losses would have arisen mainly from the cut surfaces of the 

slices. However the reduction in reducing sugar content was more 

than doubled to 27.8% at the blanch 2 temperature of 74°c, being 

finally reduced by 38.9% ex spray 2. The relatively high loss in 

both total and reducing sugars during blanch 2 and water spray 2 

was due to a combination of the increase in permeability as well 

as the cessation of osmotic properties of the cell membranes as a 

result of cell membranes disorganization at high temperature. 

The total sugar content of the water was low, being 0.010% in 

blanch 1 and 0.016% in blanch 2. The associated make up and over

flow water contained similar levels to their respective blanch 

waters. The higher levels recorded in blanch 2 were as expected. 

The reducing sugar content was 0.009% in blanch 1 and 0.012% in 

blanch 2, comprising more than 70% of the total sugars present. 
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TABLE 5.9: Sugar contents of potato samples at the various sampling 
points in the process 

Potato Type Potato const i tuents and 10sses*'~(%) (FWB) 

Samp le of A B 
Ave rage*'~* Poi nt Sugar 

1 2 3 4 

Ex-store T'~ 0.228 0.267 0.238 0.266 0.25±0.02 
(whol e) R* 0.189 0.198 0.189 0.206 0.20±0.01 

s* 0.05 

Ex-s 1 icer T 0.315 0.246 0.215 0.225 0.25±0.05 
R 0.195 0.174 0.194 o. 174 0.18±0.01 
S 0.07 

Ex-blanch T 0.199 0.245 0.222 o. 196 0.22±0.2 
1 R 0.174 0.200 O. Hl5 O. 1:;6 0.17±0.02 

S 0.05 

Ex-spray T 0.166 0.193 0.228 0.219 0.20±0.03 
1 R 0.142 0.128 0.178 0.198 0.16±0.03 

S 0.04 

Ex-blanch T 0.177 0.199 0.202 0.211 0.20±0.01 
2 R 0.123 0.128 0.141 o. 138 0.13±0.01 

S 0.07 

Ex-spray T 0.159 0.164 0.186 0.180 0.17±0.01 
2 R 0.105 0.090 0.122 O. 126 0.11±0.02 

S 0.06 

,~ T = total sugar 

R = reducing sugar 

S = sucrose (by difference) 

1<1, Percentage losses based on potato composition ex-slicer 

,'<1,* Averages to three decimal places were used in D values 
a calculation 

Losses 

-
-

-
-

12.0 
5.6 

.20.0 
11. 1 

20.0 
27.8 

32.0 
38.9 
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TABLE 5.10: Sugar content of the blanching waters at the various 
sampling points in the process 

Sugar % 
Water Type A B Sample of Average 
Point Sugar 1 2 3 4 

Blanch 1 T* 0.0097 0.010 0.0091 0.011 0.010 
R*~~ 0.0077 0.0090 0.0080 0.011 0.009 
s*** 0.001 

------------ -------- --------- ------_. --------1--------- ---------
Overflow 1 T 0.0103 - 0.012 - 0.011 

R 0.0081 - 0.0091 - 0.009 
S 0.002 

1------------ --------. ---------1--------- ---------1--------- ---------
Make up T 0,011 - 0.012 - 0.012 
water 1 R 0.0101 - 0.0107 - 0.010 

S 0.002 
1------------ -------- ---------1--------- ---------1--------- ---------

Blanch 2 T 0.018 0.013 0.019 0.014 0.016 
R 0.014 0.014 0.0117 0.0082 0.012 
S 0.004 

1------------ -------- --------- -------- --------- -------- ---------
Overflow 2 T 0.013 - 0.017 - 0.015 

R 0.0103 - 0.011 - 0.011 
S 0.004 

----------- -------- ---------"------_. --------- -------- ---------
Make up T 0.014 - 0.013 - 0.014 
water 2 R 0.012 - 0.013 - 0.013 

S 0.001 

1, T = Total sugar 

,'d, R = Reducing sugar 

*** S = Sucrose 
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The pattern of levels was similar to that for total sugars. The 

proportion of sugars present in the water appeared to be similar 

to the proportion in which they are present in the potato slices. 

5.4.2.2 Apparent diffusion coefficients (0 ) of sugars 
calculated from industrial data a 

The diffusion equations previously presented in Section 2.1 

were fitted to the experimental data of Tables 5.9 and 5.10 to verify 

the applicability of diffusion in accounting for sugar removal from 

potato slices under the factory conditions of washing and blanching. 

Using these equations, the 0a values for total and reducing sugars 

were calculated for potato slices ex blanch 1 and ex blanch 2. 

For blanch 1 the initial mean sugar content was taken as that after 

slicing, and for blanch 2 

as that after spray 1. 

the initial mean sugar content was taken 

It is doubtful if the values for blanch 1 are very useful 

because the temperature of 29 0 C is too low to kill cells, and losses 

would primarily arise from the cut surfaces rather than from within 

the body of the slice. Laboratory work did not include such low 

temperatures, but the data collected here may be useful subsequently. 

The diffusion coefficients (0 ) for reducing and total sugars a 
from potato slices ex blanch 1 and blanch 2 are listed in Table 

5.11. All values of D are of an expected order of magnitude. 0 a a 
values for reducing sugars were higher than those for total sugars 

as expected from their molecular weights. The diffusion coeffi

cients of reducing sugars (2.93 x IO-lOm2s- 1) and total sugars 

(5.37 x 1O-lOm2 s- 1) in blanch 1 seemed to be higher than expected. 

Since diffusion was not the only controlling factor in this process, 

this may have been due to more damage in the surface cel Is resulting 

in higher sugar loss. The 0 values for sugars in slices ex blanch 2 
a 

are smaller, but of the same order as those obtained in the laboratory 

scale, 12.8 x 10-lOm2s-1 and 8.08 x 1O-lOm2 s-1 for reducing and total 

sugar respectively. 
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TABLE 5.11: Apparent diffusion coefficients for total and reducing 
sugars from potato slices ex blanch 1, and blanch 2. 
(Based on mean initial and final sugar contents from 
four replicates) 

Sample Point 
Apparent Diffusion Coefficients 

D" x 10 10 (m2s-!) 

Tota 1 Sugar Reduci ng Suga r 

Blanch 1 (29 OC) 5.37 2.93 

Blanch 2 (74oc) 0.73 6.46 

Laboratory" tes t (74°C) 8.08 12.18 

The agreement may be regarded as reasonable considering the 

very large errors inherent in this industrial study due to such 

small and variable samples. 

5.4.2.3 Comparison of actual and Predicted losses of sugars 

As a further test, the D values obtained from the laboratory a 
work were used to predict the losses of sugars from potato slices 

in blanch 2. Table 5.12 presents the actual and predicted losses 

of reducing and total sugars from potato slices ex blanch 2. Pre

dicted values were all smaller than the actual values found due to 

the higher laboratory D values used for the predictions. The mean 
a 

predicted reducing sugar content was 89% of the actual value and the 

predicted total sugar content was 84% of the actual value found. 

A difference of 10-15% between the controlled laboratory 

experimental results and the factory results is to be expected. 

Statistical analysis by student-T and F-tests showed that at all 

levels the differences were not significant, see Appendix VI 

So it can be concluded that the laboratory Da values can be used 

usefully to predict the losses in practice under different blanching 

conditions. 
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TABLE 5.12: Actual and predicted* losses of sugars from potato 
s 1 ices ex b 1 an ch 2 

Sugar Content of Potato S 1i ces % 

Samp le Reducing Sugar Total Sugar 
No Actua 1 Predi cted Actual Predicted 

1 0.122 0.107 0.177 0.148 

2 0.128 0.091 o. 199 0.166 

3 0.141 0.128 0.202 0.175 

4 0.138 0.144 0.211 0.169 

Mean 0.132 0.118 0.197 0.165 

* Based on Da values calculated from laboratory experiments 

5.5 Theoretical Correlation for the Optimum Process Conditions 
on the Industrial Scale 

5.5.1: Method for Prediction of Reducing Sugar Contents after 
Blanch 1, and after Blanch 2 

The relation between apparent diffusion coefficients for reducing 

sugars and temperature obtained by laboratory experiments is shown 

in Figure 5.50. Using this relation it was possible to demonstrate 

the theoretical relation between the initial content of reducing 

sugars in the potato slices and the final reducing sugar content 

after a given set of blanch conditions. 

estimated by extrapolation of the graph 

o (The 0 value at 29 C was 
a 

in Figure 5.50). 

Taking blanch 2 as an example, in practice the blanch time is 

kept constant at 27 sec and the temperature is varied according to 

the quality of the end product. Using 0 values for reducing sugars 
a 

at different temperatures obtained from laboratory scale (see Figure 

5.50 for relation between 0 and temperature), and the desired process 
a 

conditions (blanch time and thickness) into the following equation, 
D t 

r .... a' ( ) t = -- , then by assuming that the blanch medium concentration C 
2 0 

a 
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was zero, (as the reducing sugar and total solubles content of the 

blanch waters were low, i.e. less than 2%) and solving 

relationships between the initial (C 1) and final reducing sugar (C) 

content can be deduced for different blanch temperatures. For 

example: 

At 50°C 

60°C 

70°C 

80°C 

C = 0.8470 Cl 

C = 0.7930 Cl 

C = 0.7600 Cl 

C = 0.6800 Cl 

(5. J) 

(5.2) 

(5.3) 

(5.4) 

By substituting in a range of initial reducing sugar contents (Cl)' 

the corresponding final contents (C) after blanching, can be calcu

lated and a graph constructed (see Figure 5.53). 

A similar graph was prepared for blanch 1 operating at 16 sec 

holding time for various temperatures (see Figure 5.54) from the 

following relation: 

At 29°C 

50°C 

60°C 

70°C 

C = 0.9320 Co 

C = 0.8820 C 
° C = 0.R410 C 
° C = 0.8150 C 
° 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

Also by using the same technique but fixing the blanch temperature, 

the prediction of reducing sugar loss may be made at different 

blanch times as shown in the example of Figure 5.55 for a tempera

ture of 70°C at 27, 40, 60 and 90 sec residence times in blanch 2 

and example of Figure 5.56 for a temperature 29°C at t6, 40, 60 and 

90 sec reside"nce time in blanch 1. The related equations used to 

construct these two graphs were as follow: 
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Blanch 2 time of 27 sec c= 0.760 C 
0 

(5.9) 
40 sec C = 0.720 C (5.10) 

0 

60 sec C = 0.644 C (5.11) 
0 

90 sec c= 0.563 C (5.12) 
0 

Blanch I time of 16 sec C = 0.9320 C (5.13) 
0 

40 sec C = 0.893 C (5.14) 
0 

60 sec C = 0.870 C (5.15) 
0 

90 sec c= 0.8420 C (5.16) 
0 

5.5.2 Method for Prediction of Final Reducing Sugar Contents 
after Overall Blanch Process 

The reduction in reducing sugars can also be estimated over 

the whole process, and the losses produced by the spray operations 

may be included by introducing correction factors. The losses 

arising from spraying will vary slightly depending on, for example, 

spray water temperature and previous blanch temperature. However it 

was decided to use the mean figures obtained under the factory 

conditions. 

As a result of the slicing operation the level. of reducing sugars 

was decreased by a content of 0.012%. Spray 1 decreased the reducing 

sugars by a mean content of 0.012% also, and spray 2 by a content of 

0.022% making a total decrease in reducing sugar content due to the 

spray operations of 0.034%. 

So where the uncorrected equation for blanch I (290 C for 16 sec) 

as before is: 

C = 0.9320 Cl 

the corrected equation including the influence of the slicing 

operation will be: 
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C = 0.9320 Cl - 0.012 (5.17) 

where Cl refers to the initial reducing sugar content of the raw 

potatoes ex-store. 

By solving equation (5.17) with equations 5.1,5.2,5.3 and 

5.4 and introducing the correction factor 0.034 for the losses due 

to both spray operations, general equations may be produced which 

predict the content of reducing sugars after the overall blanch pro

cess (i.e. including blanch 1, spray 1, blanch 2 and spray 2). 

The final reducing sugar content after spray 1 is used as the 

initial content before blanch 2. So for example after final reducing 

sugar content would be given by: 

C = 0.7600 (0.9320 Cl - 0.012) - 0.034 

C = 0.7083 Cl - 0.0249 (5. 18) 

The prediction of final reducing sugar content can therefore be 

made for a wide variety of conditions and Figures 5.57, 5.58 and 

5.59 show three examples. 

Figure 5.57 shows the relation between the initial and final 

reducing sugar content after an overall blanch process where 

blanch 1 conditions are 29°C for 16 sec, and blanch 2 is fixed at 

27 sec for various temperatures, using the following equations: 

Blanch 2 temperatures of 50°C: e = 0.7894 Cl - 0.0238 (5.19) 

60°C: C = 0.7391 Cl - 0.0245 (5.20) 

70°C: C = 0.7083 Cl - 0.0249 (5.21 ) 

80°C: C = 0.6338 Cl - 0.0258 (5.22) 
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Figure 5.58 shows the relation between the initial and final 

reducing sugar content after an overall blanch process where 

blanch 1 conditions are 29 0 C for 16 sec, and blanch 2 is fixed at 

70°C for various times, using the following equations: 

Blanch 2 time of 27 sec: C = 0.7083 Cl - 0.0249 (5.23) 

40 sec: C = 0.6710 Cl - 0.0254 (5.24) 

60 sec: C = 0.6188 Cl - 0.0260 (5.25) 

90 sec: C = 0.5247 Cl - 0.0272 (5.26) 

Figure 5.59 shows the relation between the initial and final 

reducing sugar content after an overall blanch process where 

blanch 2 conditions are 700 C for 27 sec, and blanch 1 is fixed 

at 16 sec, for various temperatures, and also where blanch 1 

conditions are 70°C for 27 sec, using the following equations: 

Blanch 1 temperature of 29°C: C = 0.7083 Cl - 0.0249 (5.27) 

50°C: C = 0.6703 Cl - 0.02488(5.28) 

(16 sec) 70°C: c= 0.6194 Cl - 0.0249 (5.29) 

(27 sec) 70°C: C = 0.5776 Cl - 0.02488(5.30) 

Similarly it is possible to construct a graph which will indicate 

the choice of blanch time or temperature to produce a final reducing 

sugar content of some maximum desired level (such as 0.10%). 

Taking blanch 2 as an example, assuming that the maximum desired 

percent of reducing sugar requi red in the potato slices after 

blanching is 0.10% and the blanch conditions are fixed at 27 sec 

for various temperatures (50, 60, 70 and 80oe). Using the same 

method as before, a relationship between the percent of initial 

reducing sugar in potato slice and blanch temperature was obtained 

as shown in Figure 5.60. Figure 5.60 also shows the same relation 

after 60 and 90 sec blanching. In terms of prediction equations, 
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a regression analysis resulted in the following equations: 

For a blanch time of 27 sec 

C = 0.00078T + 0.0788 o 

For a blanch time of 60 sec 

(5.31) 

C = 0.00151T + 0.0531 (5.32) o 

For a blanch time of 90 sec 

Co = 0.00208T + 0.0368 (5.33) 

where Co is the percent of reducing sugar before blanching and T 

is blanch temperature in °C. 

By solving equations 5.5 with equations 5.31, 5.32 and 5:33 and 

introducing the correction factors for sugar loss in slicing and 

spraying before and after blanching as before, general equations 

were obtained which give a relation between blanch temperature and 

reducing sugar for the overall blanch process as follows: 

For blanch 2 time of 27 sec 

[0.00078T = 0.9320 C - 0.125] 
0 

(5.34 ) 

For blanch 2 time of 60 sec 

[0.00151T = 0.9320 C 
0 

- 0.0991] (5.35) 

For blanch 2 time of 90 sec 

[0.00208T = 0.9320 C - 0.0828] 
0 

(5.36) 

where T is the temperature in blanch 2. 



230 

5.6 Thermal Diffusion of Potato Tissue 

The effects of heating and cooling of foods during processing 

have extremely important influences upon the quality and charac

teristics of the final product. Values of the thermal properties 

such as thermal diffusivity, thermal conductivity and specific 

heat are required for the prediction of heating and cooling rates 

and process conditions using suitable mathematical models descri

bing the process. This project was extended to measure some of these 

properties. 

5.6.1 Transient Temperature Distribution 

Record potato cylinders, having a diameter of 0.015 to 0.027m, 

were heated in a constant temperature water bath at temperatures of 

30, 40, 50, 60, 70, 80 and 900 e. Figure 5.61 shows the experimental 

heating curves of 0.015m diameter potato samples in 40, 50, 60, 70, 

80 and 900 e water bath. Temperatures were measured at the centre 

of the sample in all cases. Heating temperatures ranging from 200 e 
up to 900 e were selected because of the importance of these tempera

tures to the chemical and physical changes taking place in the potato 

in this range. The most important physical change to take place 

during potato processing is the gelatinisation of the starch (see 

Section 1.3.2). 

Figure 5.61 shows that the heat penetration is very high during 

the first period of heating due to the high temperature gradient 

between the heating medium and potato. In all cases the centre 

temperature of the potato cylinder reached 80 to 85% of the heating 

medium in 180 sec. As heating continued and the temperature gradient 

between the heating medium and the potato sample became narrow, the 

rate of heat penetration slowed and became constant as the tempera

ture of potato reached an equilibrium state with the heating medium. 

Also the rate of heat penetration increased as the temperature of the 

medium was increased, and in all cases the pattern was the same. 
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In order to study the effect of the cylinder sample diameter on the 

heating curve and temperature distribution, potato cylinders of 

0.015, 0.022 and 0.027m were heated in water at 40 and 700 C. 

These temperatures of 40 and 700 C were chosen to observe the 

influence of starch gelatinisation on the temperature distribution. 

Figure 5.62 shows the experimental heating curves for 0.015, 0.022 

and 0.027m diameter potato immersed in 400 C water. Figure 5.63 shows 

similarly the heating curves for 0.015m and 0.022m diameter potato 

samples heated in 700 C water. In both cases the centre temperature 

of the smaller diameter potato reached the equilibrium state faster 

than the larger diameter potato sample. In heating at 400 C the 

centre temperature of the 0.015m diameter cylinders reached equili: 

brium 360 sec faster than the 0.022m cylinders (i.e. 0.015m samples 

reached equilibrium after 480 sec, while 0.022m cylinders reached 

equilibrium after 840 sec). At 700 C the centre temperature of 0.015m 

diameter cylinders reached equilibrium 600 sec faster than the 0.022m 

diameter samples. The difference in time is due to the different 

temperature gradients between the heating medium and sample which was 

200 C and 500 C respectively. However the trend was the same which 

indicated that the gelatinisation process had little influence on 

the time-temperature distribution. 

Figure 5.64 shows the centre time-temperature curves for 0.015m 

diameter potato samples during cooling in water at 200 C. 

was stud i ed to see how the phys i ca 1 and chem i ca 1 change-s 

Cool ing 

that had 

occurred at the higher temperature would influence the time-tempera

ture distribution at the centre of the sample during heat removal 

over the same temperature range. Potato samples Were heated at 

four different temperatures until they reached the heating medium 

temperature and then cooled at 200 C. Figures 5.65 and 5.66 show 

the heating and cooling curves for potato heated in 40, 50, 70 

and 800 e and then cooled at 200 C. It was expected that during 

heating in water at 700 e and above, gelatinisation would occur 

and thus the shape of the time-temperature distribution curve would 

be different to that at lower temperatures where gelatinisation did not 
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occur. However the cooling curves (BO-20) and (70-20) in Figure 

5.64 did not indicate any difference. However thermal diffusivity 

(a) calculated from these cooling curves gave a significant effect 

on thermal diffusivity specially after IBa sec cooling where the 

cooling rate has slowed down, see Section 5.6.2.4. 

5.6.2 Thermal Diffusivity 

5.6.2.1 Effect of temperature 

The experimental data shown in Figure 5.61 were used to cal

culate the thermal diffusivity of Record potato at different 

temperatures by the method described earlier. The values of thermal 

diffusivity are given in Table 5.13 along with the heating time and 

temperature. The variation of a with temperature during the first 

300 sec is shown in Figure 5.67. The thermal diffusivity, a, 

appeared to increase with increasing temperature. When the tempera

ture of the heating medium rose from 40 to 700 e, the thermal diffu

sivity, a, increased from an average value of 1.2B x 10-7 m2s-1 

at 400 e to an average value of 1.34 x 10-7 m2s-1 at 700 e. At 

temperatures between 70 and 900 e, the thermal diffusivity decreased 

slightly. The average values for thermal diffusivity at Ba and 

900 e were 1.33 x 10-7 and 1.32 x 10-7 m2s-1 respectively. This 

indicated that the thermal diffusivity, n, reached a high value 

between 70 and BOoe before it decreased up to 900 e. The increase in 

thermal diffusivity around 700 e was probably due to the gelatinisa

tion of potato starch. The decrease in thermal diffusivity after 

that may have arisen from the weakening and separation of the cell 

starch as the swelling starch became distended. The thermal diffu

sivities of potato were of the same order of magnitude as those 

reported for potato by Matthews and Hall (196B) which ranged between 

9.60 x 10-8 to 1.41 x 10-7 m2s-1 in the temperature range 63-730 e. 
However the magnitudes of thermal diffusivity of potatoes obtained in 

my investigation are lower than those reported by Rao ~. (197S). 
The average thermal diffusivity for potato was 1.70 x 10-7 m2 s- 1 • 
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TABLE'S.13: Apparent thermal diffusivity (a) of Record potato 
cylinders when heated in water under the given con
ditions (data from curves in Figures 5.61, 5.62, 5.63, 
5.64 and 5.68). 

Data 
from 
Fig. 
No. 

5.61 

I .-
" " c ° ° .-u .., 

"' ... 
:::0 .., 
'" ... 
Q) 
a. 
E 
Q) .., 
Cl 

Cond i t ions 
varied from 
standard* 

Standard 

50°C 

60°C 

.; SOoC 

axl07 

60 

(m2s- 1 ) at the given blanch time 
In sec 

120 180 1 240 300 360 420 480 

1 .36 1 .31 1.28 1.24 1.21! 1 . 13 1. 18 1. 17 

1.36 1.341.31;1.241.18'1.161.071.03 

1.36 1.34 1.31 11.28il.28:1.20 1.19il.10 
I I ( • 

1.41 1.38 1.38 1.29 i 1.241.19 1.18' 1.08 
I I' , 

______ ~ ____ l~~:: _______ _ 
1.45 1.36:1.311.2911.241.20(15,1.07 

1 .41 1. 38 I 1. 33 : 1 .29 11. 22 ' 1. 18 11. 08 1. 02 
----- -----,----~----~---------1'----~-----· 

5.62 

5.63 

I : 1 i ' ! ' 

; Standard ° i1.36 1.3111.3011.2411.21,1.13:1.181.17 

~ ,O.022m(40 C) 1.31 1.3311.3411.36 (35 ;1.34 :1.381.31 

i -~~:~:~~~~~::: ~::~-~~::~l~:::l~::~i~::~J~:::~~::~-~:::-
:0 io.015m(70:C) 1.41 1.38:1.381.2911.24,1.19(181-08 

L
o.022m(]O C) 1.21 1.36,1.38 1.36 i1.351.34 ;1.27 1.22 

----- ------------~----- ---------~--------------~----------
c 

° 
i , I • : 
S tanda rd 1. 31 1. 31 ; 1 ; 31 '1. 24 'I. 21 : - '- -, 

5.68 ~ Without agi-
:::' tation 1.21 
g' l (at 40°C) 

------ -----1 :~~~~-------I~~;~-
g' 150-20 1.36 5.64 ._ 
'0 70-20 1.40 

° u 80-20 1.36 

1.24i1.22 1.14'1.00 -
1 • 
I 

----~---------~----------, , 
1 . 1 3 ! 1 • 05 1. 16 : 0 . 91 o. 85 io. 84 O. 75 , ' 

1.271. 11,1.13 !1.06 ;0.99 i1.03 0.98 

1.22: 1.2811.05 '1.11 '0.89 :0.84 iO. 79 
I ! 

1.24 1.1111.05 0.97 0.91 (.90 0.87 

i: Standard conditions: heating temperature = 40°C 

Potato cylinder diameter = 0.015m 
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This could be due to'the fact that our potatoes were stored for 

several months before being used for the measurement, during which 

compositional and physiological changes may have taken place. 

5.6.2.2 Effect of diameter 

Table 5.13 shows the thermal diffusivity of potato cylinders of 

0.015, 0.022, and 0.027m diameter during heating at 400C and the 

thermal diffusivity of 0.015 and 0.022m diameter cylinders at 70oC. 

The thermal diffusivity values for both cases were calculated from 

the experimental data shown in Figures 5.62 and 5.63 respectively. 

From Table 5.13 it is seen that the thermal diffusivity for the 

three diameters at 400C were similar, with the exception of the 

0.015m diameter sample after 240 sec heating. Table 5.13 shows the 

same observation with the a values for 0.015 and 0.022m diameter 

at 70oC. The decrease in thermal diffusivity of the 0.015m sample 

after 240 sec may be explained by the fact that since the centre 

temperature of 0.015m sample approached the heating medium tempera

ture faster than 0.022 and 0.027m diameter samples, the temperature 

gradient between the tissue and medium became small after 240 sec, 

therefore the heat penetration will decrease and thus the a values 

will be expected to decrease. 

As expected the results revealed that the thermal diffusivity 

was independent of diameter in the range studied, except for the 

values calculated after the temperature gradient between the sample 

and the heating medium has become very small (less than 4°C). 

5.6.2.3 Effect of agitation 

The most important factor during heating an object in a medium 

is the rate of heat transfer from the medium to the object. The rate 

of heating is increased as the heat transfer coefficient, h, increases. 

This means that the surface resistance approaches zero. This condition 



u 
o 
~ 

01 
C 

40 

20 

with ag i ta t ion 

without agitation 

Potato cylinder centre 
temperature 

10 0~----~0~-----'12~_0'---~li80~--~2~4~0----~3~0~0-----3~6LO----~4J2-0-----4-8~0------~S4~0------6~00------6~60 

FIGURES.68: 

Heating time (s) 

Effect of agitation on the tim~-temperature relationship in the centre of Record potato cylinders during 
heating in a 40 oC water bath \means of three repeats) 



243 

can be reached by increasing the agitation rate of the heating 

medium. Figure 5.68 shows the temperature profiles at the centre 

of 0.015m diameter potato cylinder s~mples heated at 400 C in a well 

agitated tank (see materials section) and without agitation. As expec

ted the rate of heat penetration was slightly faster with agitation 

than without agitation. During heating with agitation, the centre 

temperature of the sample reached 90% of the heating medium temperature, 

after 216 sec, while during heating without agitation, 258 sec elapsed. 

Table 5.13 shows the thermal diffusivity of potato during heating 

at 400 e with agitation and without agitation calculated from Figure 

5.68. a values calculated from the heating curve without agitation 

were lower than a values calculated from heating with agitation. 

This was due as expected to the surface resistance caused by the 

decreased heat transfer coefficient. In heating without agitation, 

it was expected that heat transfer coefficient at the surface of the 

sample is not large and a significant temperature difference between 

heating medium and sample surface is required to transfer heat to 

the sample. The heat transfer coefficients for heating without and 

with agitation were calculated and the values were 507 w/m2K and 

1600w/m2K respectively.(s~eSect:ion r:7).-

5.6.2.4 Effect of cooling process 

Because the heat transfer characteristics of the potato during 

immersion heating at high temperatures (above 6aOe) differ from 

those for immersion heating at the lower temperatures (below 6aoe) , 

a cooling process was carried out to examine what effect the 

physical changes produced during heating had on the thermal diffu

sivity. Table 5.13 shows the thermal diffusivity for potato during 

the cooling process. The results indicated that there was a consi

derable effect on the thermal diffusivity at 70 and 800 e, where the 

gelatinisation takes place. However the a values obtained for 

potatoes after 60 sec cooling in all cases were the same. The results 

suggest that the gelatinisation of the starch has a great effect On 

the heat transfer during heating the potato above 600 e. 
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5.6.1 Specific Heat 

5.6.3.1 Effect of moisture content 

Samples of Record potato at four different moisture levels 

between 72 to 78 percent, wet basis, with four replications at each 

moisture level were tested to determine their specific heat. 

Table 5.14 shows the influence of moisture content on the specific 

heat of potato. As seen from the results, the specific heat of 

potato varied from a low value of 2.5 kJ/kgOK at 72.3% moisture 

content to 3.3 kJ/kgOK at 78.8% moisture content. Figure 5.70 shows 

the relationship between the average value of specific heat and 

moisture. Regression analysis was applied to all data in Figure 

5.70 to determine the effect of moisture content on the specific 

heat. The regression equation for specific heat in the range 72 to 

78% moisture content was: 

Cp = o. 1303m - 6.8923 (at 50°C) 

Where Cp is the specific heat in kJ/kgOK and m is the water content 

expressed as percent wet basis. 

The values for specific heat obtained in this investigation are 

in agreement with which has been found by Yamada (1970) who reported 

values between 2.072 to 3.647 kJ/kgOK for potato in the moisture range 

of 22% to 83%. Also these values are quite close to the specific 

heat values reported by Hood (1961), and Frechett and Zahradnik 

(1968) for other vegetables and fruits. 

5.6.3.2 Effect of temperature 

Table 5.14 and Figure 5.69' show the influence of temperature 

on the specific heat of potato. The results show an increase in 

specific heat values with temperature in the range of 40 to 900 C. 

using regression analysis, the temperature was found to be linearly 



TABLE 5.14: Specific heat of Record potato at different temperatures 
and moisture contents 

Condi- Condi- Specific Heat kJ/kgOK Standard 
Deviation tions t ions 

I 2 3 4 Mean 

I 

u 40 2.8583 2.5397 2.9039 

I 
2.6385 2.7351 0.1743 

0 ! 

3.1878 
I 

3. 1686 3. 1656 3. 174 0.0121 ., 50 - i ... 
:::l 

60 3.3206 3. 1832 ! 3.4411 I 3.3389 0.106 .., 3.3210 
'" I 

I ... ! 
3.3649 3.6153 3.4654 3.4819 0.126 ., 70 -c. i ! E 

I 80 3.9557 3.8987 3.9272 
, 

4.040 3.9554 0.061 ., 
I I-

I I 0.0049 I 90 4.0164 

I 
4.0101 - i 4.0197 4.0154 

i 
! i I 

., i 78.8 28085 3.3432 3.7559 I 3.4328 3.3351 I 0.3933 

... .., I 
O. 1099 :::l c i 76.3 3.3929 3.1878 3.1686 i 3. 1656 3.2287 

, .., ., 
I , I "" III .., 

75.4 2.7264 2.4844 2.9629 j 2.9889 0.2359 .- c 2.7907 o 0 
:>:u t i 72.3 2.2202 2.4292 2.5322 

I 
2.9429 2.5311 0.3039 

related to specific heat according to the following regression equa

t ion: 

Cp = 0.02545T + 1. 79285 (at 76 % m ) 

where Cp in kJ/kgK and T is temperature in °C. According to this 

equation the predicted values of specific heat are within ±O.OS of 

the actual values. 

5.6.4 Thermal Conductivity 

5.6.4.1 Effect of moisture content 

The data of Table 5.15 shows the thermal conductivity of 

potato with its initial moisture content. Examination of the data 

in Table 5.15 indicates that the thermal conductivity of potato is 
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TABLE 5.15: Thermal conductivity of Record potato at different 
temperatures and moisture contents 

Condi
tions 

u 
o 
Q) ... 
:l ... 
'" ... 
Q) 
Q. 

E 

~ 

Q) ...... 
I c*'~ ~ 

VI ... 
.- c: o 0 
:>:u 

Condi
tions 

40 

50 

60 

70 

80 

90 

0.4284 

0.4879 

0.4627 

0.5651 

0.5574 

78.8* I 0.424'4 

76.3 : 0.4879 
75.4 i 0.4038 

72.3 0.3207 

* Percentage wet basil 

Thermal Conductivity w/moK 

2 3 

0.3808 0.4355 

0.4711 0.4616 

0.4411 0.4782 

o . 4932 I 0.5189 

0.5636 0.5550 

0.5583 -

0.5055 

0.4711 

0.3662 

0.3418 

0.5615 

0.4616 

0.4439 

0.3581 

Mean 

0.3957 0.4101 

0.4538 0.4686 

0.4640 0.4615 

I 0.5038 
i 0.5580 
i 0.5556 

0.5053 

0.5604 

0.5571 
! 

0.5298 0.5053 

0.4538 0.4686 

0.4394 0.4133 

0.4101 0.3577 

Standard 
devia-
ti on 

0.0261 

0.0147 

0.0153 

0.0129 

0.0047 

0.0014 

0.0586 

0.0147 

0.0362 

0.0382 
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affected as expected by the moisture content. The magnitude of 

thermal conductivity values of potato are in good agreement with 

those reported by Yamada (1970), and Rao et a 1. (1975). Yamada 

(1970) reported that values at 76% moisture content ranged from 

0.485 w/moK at 10oC, to 0.556 w/moK at 75°C. Rao et al.(1975) 

found the thermal conductivity of white potato varied between 

0.533 and 0.571 w/moK at 82% moisture content. 

Figure 5.72 shows a plot of thermal conductivity versus moisture 

content of potato. The thermal conductivity was found to be linearly 

dependent on moisture content according to the following regression 

equation: 

K = O. 0238m - 1.3655 (at 50°C ) 
o 

where m is the moisture content of potato in percent wet basis and 

Ko is the thermal conductivitYin w/moK. 

5.6.4.2 Effect of temperature 

The data of Table 5.15 shows that the thermal conductivity of 

potato is increased as expected by increasing temperature. Since 

there were very small differences in thermal conductivity at each 

heating temperature the averages of four replications for thermal 

conductivity were calculated and used in the statistical analysis. 

From a plot of thermal conductivity versus temperature (Figure 5.71), 

the thermal conductivity was found to be linearly dependent on 

temperature according to the equation: 

K = 0.003012T + 0.29805 ( at 78 % m) o 

where T is the temperature in °c. 
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6. CONCLUS IONS 

6.1 Mass Transfer during Blanching 

During blanching, solute and sugar levels decreased with time. 

The rate of this decrease increased with the use of higher blanch 

temperatures. In most cases, the rate of solute and sugar losses 

was greater during the first 300-600 sec of blanching than in 

subsequent seconds which suggested that losses during these first 

300 sec were due not simply to diffusion, but also to the expul

sion of cell solute as turgor was lost on cell death. In the 

period 600-1800 sec the solute and sugar losses were found to 

arise solely by diffusion. In cases of both potato and carrot, 

the general trend for solute loss remained the same. The 

gelatinisation of starch in potato tissue had little influence 

on solute loss during blanching, but did affect water retention 

within the tissue. 

Blanching of carrot tissue in distilled water caused a decrease 

in the cell solute concentration until equilibrium was reached 

after about 2 hours. Blanch media with concentrations less than 

that of the initial value of carrots (e.g. 3% sucrose) gave a 

similar trend but a small decrease in solute concentration. 

Blanch media concentrations near the initial tissue sap concentra

tion (9%) resulted in very little change in cell sap concentration 

because the solution was almost isotonic to the initial cell sap 

concentration of the carrot. Higher concentrations (15% and 20%) 

resulted in an increase in cell sap concentration due to the 

concentration gradient being in favour of the blanching medium. 

In blanching in water the core behaved very similarly to the cortex. 

When blanched in distilled water, cortex tissue of high initial 

water content showed a weight loss with blanch time compared to a 

weight gain exhibited by cortex of low initial water content, and 

the trend tor the former was simi lar to the loss exhibited by the core. 
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Blanching in 15% sucrose resulted in a much greater water loss 

due to the high concentration gradient. With blanch time samples 

fluctuated between weight loss and gain when blanched in 9% sucrose. 

Additional solute losses due to post-blanch cooling were 

minimal from both carrot and potato, due to lower temperature used 

in this process. However the post-blanch cooling in water resulted 

in some water uptake which reduced the overall weight loss. From 

an industrial point of view, this decrease in weight loss may be 

very ·important, because of the increase in the product weight. 

Also it was found that the solute and weight loss increased as 

sample dimension decreased. The distance that solutes and water 

moved to reach the surface of the tissue, had a strong influence 

on the weight loss into the blanch medium, and higher solute loss 

may be expected from smaller sized samples. The pattern of changes 

was similar for both carrot and potato, but the amount of weight 

lost from potato was lower than that lost from carrot, which was 

largely due to water retention within the potato tissue as a 

result of starch gelatinisation. 

An increase in the initial water content of potato and carrot 

above its fresh level before blanching, resulted in a higher weight 

loss than that from fresh samples .. Equivalent extra weight loss during 

blanching was obtained for potato.and carrot up to 106%, but in the 

case of potato, prepared tissue weight of higher than 106% did not 

give equivalent increases in weight loss after blanching due to 

water uptake on starch gelatinisation. Similarly, decreasing the 

initial water content of the fresh samples resulted in less weight 

loss than the fresh sample. However prepared potato tissue weights 

of less than 92% gave a greater increase in weight gain than the 

carrot gave after blanching. These changes in tissue weight are 

more likely to be influenced by the initial cell volume, cell wall 

elasticity and the inherent cell turgor pressure. 
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6.2 Mechanisms of Mass Transfer During Blanching 

It is apparent from the literature survey and from the 

results of this work that the more likely mechanisms for solute 

and water losses during blanching of vegetable are as follows: 

when vegetable tissue is blanched in water, protein in the cyto

plasmic membranes is denatured, then the cytoplasmic membranes 

are disorganised and the cells 'die'. The cells now are no longer 

controlled by an active membrane nor by an osmotic system. At this 

stage, when turgor is released the cell wall shrinks inwards forcing 

cell solution (solutes and water) out of the vacuoles into the 

intercellular spaces and out of the tissue to the blanch medium. 

The amount of this loss will be governed largely by the initial 

cell volume, inherent cell turgor pressure and the elasticity of 

the cell walls. However when starch granules are present inside 

the cells, as in the potato tissue, they are such large molecules 

that they cannot pass through the cellulose wall unless the cell 

walls are ruptured. During blanching in water the starch granules 

swell, become gelatinized and retain water, and if the blanching 

process continues, the starch may start to imbibe water from the 

blanch medium. After the death of the cell, the continued immer-

sion in the blanch medium allows solutes to diffuse out freely and the 

process wi 11 be controlled solely by diffusion. 

6.3 Apparent Diffusion Coefficients for Solutes and Sugar 

A mass transfer model (i .e. the numerical solution for the 

unsteady state diffusion equation for diffusion from slabs and 

cylinders)based upon diffusion as the main rate control ling step, 

was successfully used to describe and predict the loss of sugar 

from potato and solutes from carrot tissue during blanching. In 

general, D values were of the same order of magnitude as those 
a 

reported for diffusive solids loss from other foodstuffs under 

various conditions. The values were: 3.07 x ID-ID to 7.64 x 10-IOm2s -1 

for solute loss from carrot, 4.25 x 10-10 to 7.75 x 10- 10 m2 s- 1 for 
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solute loss from potato and 3.71 x 10- 10 to 16.32 x 10- 10 m2s- l 

for reducing sugar loss from potato. Apparent diffusivities 

were found in all cases to be dependent on temperature and con

centration of the blanch medium, and independent of tissue dimen

sion and blanch time. 

For solute loss from carrot, 0 was found to depend on 
a 

temperature in the range 60-900 C with an E of 28.2 kJ mol- l • 
a 

independent of cylinder diameter between 0.005 ~d Da values were 

0.007m, during the time when solute loss 

the 

fur 

o values being 5.04 a 
x 10-10 , 5.00 x 

occurred only by 

10-10 and 4.83 x 

diffusion, 

10-10 m2s- l 

the 0.005, 0.006 and 0.007m diameter cylinders respectively. 

For Chantenay carrots, 0 appeared to increase in blanch media 
a 

concentrations that were higher than the initial carrot cell sap 

concentration, the 0 being four times larger in 15% sucrose a . 
(19.1 x 10-10 m2s- l ) than in 3% sucrose solution (5.23 x 10-10 m2s- l ) 

at the same temperature and time. However it was suggested that the 

results were atypical, as repeated blanch tests with nameless 

carrots in 15 and 20% sucrose gave 0 values of 6.61 x 10-10 
a 

and 9.09 x 10- 10 m2s- l respectively. 

The mean 0 for losses in 3% sucrose solution was 5.23 x 10-10m2 s- l , 
a 

which was the same as that in water 5.08 x 10-10m2s- l • This suggested 

that solute contents in the blanch water up to 3% do not significantly 

affect diffusive solids loss under the conditions studied. These 0 a 
values compare well with a reference 0 for 0.38% sucrose in water 

a 
at 25 0 e of 5.21 x 10- 10 m2s- l (Weast, 1977). For the Nameless 

carrot core, 0 was found to be 5.30 x 10-10 m2s- l , being slightly 
a 

less than the Nameless carrot cortex, which had a 0 of 6.40 x 10-lOm2s- l , 
a 

possibly due to an initially lower cell sap concentration and the small 

structural differences between the tissues. 

The mean D values calculated for solute. loss from Chantenay 
a 

carrot cortex cylinders blanched in water at 700 e for two different 

sets of experiments were 4.13 x 10-10 and 5.08 x 10-10 m2 s- l • 
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The difference between these results would be expected from the 

variation in initial cell sap 

Post-blanch cooling was found 

concentration shown in Appendix V. 

to have little influence on the 0 a 
value for solute loss from carrot cortex, with the mean 0 

a 
values being 0.71 x 10-10 mZs-l higher than the actual value of 

4.42 x 10-10 mZs- l for 0 without cooling. 
a 

The diffusivity of solute loss in potato blanching was also 

calculated, and it was found to increase with temperature between 

70 and 900 C, following the Arrhenius equation with 41.6 kJ mol- l 

activation energy. The mean 0 values were 4.25 x 10-10 , a 
7.75 x 10-10 and 11.5 x 10-10mZs-l at 70, So and 900 C respectively. 

The mean Da value for solute loss at 600 C (S.25 x 10-10 mZs-l) 

was higher than 0 values at 70, So and 900 C, suggesting that an 
a 

enzymic reaction might be initiated at this temperature, causing 

internal-generation of sugar from starch and thus influencing the 

D values. a 

o values were also found to be influenced by dimension, but 
a 

only during the first 300 sec blanching, thereafter the 0 values a 
were similar with mean 0 values of 4.94 x 10-10 , 4.S9 x 10-10 

a 
and 5.13 x 10- 10 mZs- l for the 0.012,0.014 and O.OlSm cubes 

respectively. 

dimension (as 

This indicated that the 0 is independent of 
a 

with carrot) during the time when solute loss occurs 

mainly by diffusion and would be expected. Blanching of potato 

cubes in awalllr having 1 :2.5, 1 :5, and 1 :20 ratios of sample to 

water, was found to have no significant effect on the diffusivity 

of solute loss, with mean 0 values being 7.10 x 10-10 , 6.73 x 10-10 
a 

and 6.60 x 10-10 m2 s-1 for the three ratios respectively. In 

these three cases, the blanch medium solute concentration was found 

to be very small (0.001-0.004 g/ml) and was considered to be 

neg 1 i g i Die. 

Again the 0 value for solute loss during the post-blanch 
a 

cooling was very small (0.0425 x 10- 10 mZs- l ), indicating no 
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significant solute loss occurring during such process, due to 

lower temperature. The expulsive losses during the first 300 sec 

from carrot and potato were reflected in some of the D values 
a 

calculated for 120 and 300 sec blanching, which tended to be lower 

as might be expected if whole cell solution was being lost during 

loss of turgor. 

The experimental results for the loss of reducing sugar, total 

sugar and sucrose under laboratory blanching conditions were also 

interpreted in terms of a diffusive mass transfer model. The appa

rent diffusion coefficients calculated for sugar loss from potato 

during blanching showed a quantitative agreement with several 

previous reports in the literature on similar systems. 

The main factors affecting the diffusion coefficients (Da) 

of sugars from potato were temperature and diffusing substance. 

The mean Da values for red~cing sugar loss from potato were 

increased from 3.71 x 10-10 m2s- 1at 500 e to 16.32 x 10-10 m2s-1 at 

800 e, demonstrating that the mass transfer of sugar is more rapid 

at higher temperatures. Diffusion coefficients for sucrose and 

total sugar showed the same pattern as the reducing sugar and 

increased with increasing blanch temperature. The activation energtes 

related to reducing and total sugar diffusion in the range of 50-800 e 
were 27.6 and 31.4 kJ mol- 1 respectively. D values for reducing 

a 
sugars were higher than those for total sugars and sucrose as 

expected from their molecular weights. All D values for sugar loss a 
from potato were uniformly larger than the associated total solute D values, 

a 
because of the lower molecular weights of the sugars indicating that the 

soluble protein and soluble starch fractions of the total solutes are 

influencing the diffusion of total solutes. 

Using apparent diffusion coefficients calculated from controlled 

laboratory experiments, the predicted loss of reducing sugars in fac

tory scale blanching process was 89% of the observed loss. Predicted 

total sugar loss was 84% of the observed value. It was concluded 

that the laboratory data could be usefully used to predict real losses 
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under a variety of blanching conditions. The agreement of the 0a 

values obtained may be regarded as reasonable considering the 

very large errors inherent in this industrial study, because it 

was only possible to take a very small number of samples on one 

occasion. 

6.4 Significance of 0 Value Determination 
a 

The formal numerical solutions for unsteady state diffusion 

mass transfer were recalculated in the relevant small cell solute 

concentration and were given in tabular form for the shapes of slab 

of infinite extent, sphere and cylinderoof infinite length. In 

design, if the D value is known, then ~ can be evaluated and 
C - C a a 

o E = C _ C may be found from the graphs constructed from the above 
1 0 

tables, results will allow the prediction of mean solute concentra-

tion, and hence the overall loss incurred after a given blanch or 

wash treatment in the temperature range 60-900 C. Due to the 

inherent variability of plant material this will give only'an 

approximate value of (Cl. 

6.5 Thermal Diffusion 

The thermal diffusivity (a) of Record potato was calculated 

fmmthe experimental time-temperature curves, using the method of 

unsteady state heat conduction in cylinders. At 400 C a was 

1.28 x 10-7 m2 s- 1 • It increased with temperature gradually to 

reach a maximum mean value of 1.34 x 10-7 m2 s-1 at 700 C. Above 

700 C, a decreased, reaching a mean value of 1.32 x 10- 7 m2 s- 1at 900 C. 

It is suggested that the increase in a at about 700 C was due 

to the gelatinization of potato starch, and the decrease in a 
o between 70 and 90 C is probably due to the weakening and separation 

of the cells as the swel ling starch distends the cells. 
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As expected the thermal diffusivity, was independent of 

sample diameter between 0.015 and.0.027m, except when the tempera

ture gradient between sample and the heating medium had become less 

than 4°c. a values calculated from the heating curve without 

agi tation (1.22 x 10- 7 m2s- 1) were 0.09 x 10-7 m2s-1 lower than a 

values calculated from heating with agitation (1.31 x 10-7 m2s- 1). 

This was due as expected to the smaller heat transfer coefficient 

of 507 W/m2 oK compared with 1600W/m2 oK during heating with 

agitation. 

Calorimetry and the thermal diffusing method were successfully 

used for the simultaneous determination of specific heat (Cp) and 

thermal conductivity (Ko) of Record potato. The temperature and 

moisture content were correlated with specific heat and thermal 

conductivity. As expected, specific heat and thermal conductivity 

increased with moisture contents (m) and were linearly proportional 

to moisture, as given by the following regression equations: 

Cp = 0.1303m - 6.8923 

Ko = 0.0238m - 1.3655 

At 76% moisture content, the specific heat of potato ranged from 

2.7351 kJ/kgOK at 400 C to 4.0154 kJ/kgOK at 90oC, while thermal 

conductivity ranged from 0.4101 W/moK to 0.5571 W/moK at 40~90oC. 
In terms of prediction equations, a least squares regression 

analysis for temperature (T) resulted in the following equations: 

Cp = 0.02545T + 1.79285 

Ko = 0.003012T + 0.29805 

Results of this study indicate that the heat transfer process 

involved in water blanching of potato is quite rapid relative to 

the mass transfer process involved. 
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7. SUGGESTIONS FOR FURTHER WORK 

1. The diffusion model used for predicting diffusivity requires 

further testing to determine if it is applicable to other 

sizes of potato and carrot tissue, particularly whole carrot 

and whole potato, and to other types of vegetables. 

2. More research is required in order to determine if the diffu

sion model for leaching can be used to correlate and predict 

the losses of other water-soluble constituents, such as vita

mins, minerals and amino acids, from potato and carrot in hot 

water blanching. 

3. The experimental conditions could be extended by altering the 

agitation rate, to take into account different surface resis

tances. 

4. The transient temperature distribution in carrot tissue of 

different sizes under various heating conditions could be deter

mined and the thermal diffusivity calculated from the experi

mental data. 

5. A more detailed study of the relation between the starch content 

and gelatinisation process in potato tissues and the losses of 

solutes during water blanching could be carried out. 
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APPENDICES 

Computer""programme equating 
C - C , 0 

of E [= C _ C 1 for 51 ab of 
,I 0 

cylInder of InfInIte length 

OPEt'j 1,4,. 1 
OPEt'j 2,4,.2 
cr·m 1 

D 
~ [ .. ..2lj 

a2 

InfinIte 

for varIous values 

extent, sphere and 

It.Zn21 
21.31.3 
250 
31.30 
4.30 
450 
47~) 

475 
500 

PR It-H " 11 11 . ,- SLAB!! .• " !:;PHEPE It ,. I1 C:'r'L I NDEP It 

E ll 11 

" 
E 11 _. 11 E " 

FOF: A=. 1.31.32 TO • '308 STEP • 002 
GOTO 600 
FOR A=.e1 TO .61 ,STEP .01 

61.3(1 0=0 
71.31.3 FOR N=l TO 21 STEP 2 
81.31.3 8=EXP«-A*(3. 14159/2)'t'2)*~l"t"2;-
91.30 C=8!Nt2 
1000 D=D+C 
1100 t~EXT: ~l 
121.31.3 E=8*D/(3.14159't2) 
131.31.3 Xl$=STR$(. 0ellIiINHA,Uee0);' 
141.31.3 X2$=STR$(. 0eeUINTCE*le'J(0);-
151.31.3 0=1.3 
161.31.3 FOR N=l TO le STEP 1 
171.30 8=EXP«-A'+;(3. 14159't2;.*tH'2)~' 
181.31.3 C=B/N1'2 
191.31.3 D=D+C 
21.31.31.3 NEXT N 
211.31.3 E=6*Dr'(3.14159t2) 
221.31.3 X3$=STR$ ( • 1.301 * I NT( A*10e.3;' ) 
231.31.3 X4$=STR$ ( • 1.31.30 U ItH (E* 1 '3(,,3(1) ;-

2351.3 E=e 
241.31.3 FOR 1=1 TO le 
251.31.3 READ Z(I) 
261.31.3 Z(I)=Z(I)*Z(I) 
291.30 E=E+EXP(-A*(Z(I»)/(Z(I» 
2911.3 NEXT I 
301.31.3 E=E*4 
321.31.3 X5$=STR$(.eel*ItH(AOile00» 
331.30 X6$=STR$(.e0el*INT(E*10000) 
3525 PR I NT# 1. A " :,,2$ " :,,4$, :'<6$ 
355~3 RESTORE 
46(10 NEXT A 
4900 DATA 2.4048,.5.5201,.:3.654 .. 11.792 
4910 DATA 14.931 
5000 DATA 18.071,21.212,24.352,27.493 
51.310 DATA 30.635 
5015 IF A<:et.6 GO TO 5~)O 

5500 F'RIHT#4 
6000 CLOSE 4 
6010 STOP 

F.:EAD'r' • 



APPENDIX I I: Thickness Measurement of Record Potato ~Iices· 

Sample Cri s p Th i ckne s s 
Posi-
t i on I 2 3 4 5 6 7 8 

A 0.0012 0.0015 0.0015 0.0014 0.0015 0.0014 0.0015 0.0015 

B 0.0014 0.0014 0.0015 0.0015 0.0015 0.0012 0.0014 0.0014 

C 0.0015 0.0015 0.0014 0.0015 0.0015 0.0014 0.0015 0.0014 

(m) 

9 10 11 12 

0.0014 0.0014 0.0016 0.0015 

0.0015 0.0017 0.0015 0.0013 

0.0014 0.0016 0.0015 0.0013 

13 Average 

0.0015 0.0015 

0.0015 0.0014 

0.0014 0.0015 

Average 

..... 
~ -0 
0 

0 .... 
a 
c 
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APPEND IX 111 

BLANK RUN WITHOUT POTATO FOR DETERMINATION OF Kf 

(CORRECT I ON FACTOR) I N SPEC IF 1 C HEAT MEASUREMENT 

Temperature Correction Temperature 
(mins) (oC) factor (OC) 

kf (OC) 

0 51.6 0.0 80. 1 

5 51.5 0.1 80.0 
10 51.4 0.2 79.9 
15 51.3 0.3 79.8 
20 51.3 0.3 79.7 
25 51.2 0.4 79.6 

30 51.2 0.4 79.6 

35 51.1 0.5 79.6 
40 51.0 0.6 79.5 

50 50.9 0.7 79.3 
60 50.8 0.8 79.3 

Correction 
factor 

k
f 

(OC) 

0.0 

O. 1 
0.2 

0.3 
0.4 

0.5 
0.5 
0.5 
0.6 
0.8 
0.8 



Temperature 
(OC) 

20 

30 

40 

50 

60 

70 

80 

90 
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APPENDIX IV 

SPECIFIC HEAT OF WATER 

(After Perry and Chilton, 1973) 

Specific Heat Specific Heat 
of water of water 
Cal/g. 0C kg/kg oK 

- -
0.99866 4.18119 

0.99869 4.18132 

0.99919 4.18341 

1.00007 4.18709 

1. 00 13 1 4.19228 

1.00294 4.19911 

1.00502 4.20782 
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APPENDIX V 

CELL SAP CONCENTRATION (PERCENTAGE REFRACTOMETRIC SOLIDS, 

AS SUCROSE) OF CHANTENAY CARROT CORTEX CYLINDERS CUT FROM 

EIGHT DIFFERENT CARROTS 

Cv 1 i nders cut Ce 11 sap concentration (as % sucrose w/w) 

from the given ders of carrot cortex cut from the given 

carrot, at the 
same rad ius A B C D E F 

1 7.8 9.6 10. 1 10. 1 8.5 9.0 

2 7.9 10. 1 10.4 10. 1 8.4 9.0 

3 8.3 10.2 - 10.2 8.3 9.1 

4 7.8 10.1 - - - 9.6 

5 - 10. 1 - - - -

Means 8.0 10.0 10.2 1 O. 1 8.4 9.2 

in cyl in-
carrot 

G H 

9.2 8.3 

9.5 8.0 

- 8.0 

- 8.0 

- -

9.4 8. 1 
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APPENDIX VI 

STATISTICAL ANALYSIS FOR THE EXPERII1ENTAL AND THEORETICAL 

VALUES OF (cl IN INDUSTRIAL SCALE BLANCHING 

I. Statistical analysis for actual and predicted values of reducing su 

THIS PROGRAM REQUIRES TWO SETS OF DATA. THE FIRST OF SIZE N .A~ 

SIZE M ,TO BE ENTERED IN DATA STATEMENTSSTARTING FROM LINE 51313. 

FIRST SAMPLE OF SIZE 4 
.1:22 .12:=: .141 .1:3:3 

SECOND SAMPLE OF SIZE 4 
.107 .1391 .128 .144 

SAMPLE MEAN 
1 .1323 
2 .1175 

F-VALUE= 6.98174095 
POP'N VARIANCE: 3E-04 

;, Not 5 i gn i f i can tat a 11 I eve Is. 

'· ... AF' I At·ICE 
1E-04 

':::-ID. DE'· .... 
"?6E-(1:3 
.132132 4E-04 

STD. OEV.= .0176· 

2. Statistical analysis for actual and predicted values of total sugar 

THIS PROGRAM REQUIRES TWO SETS OF DATA, THE FIRST OF SIZE N ,A~ 

SIZE M ,TO BE ENTERED IN DATA STATEMENTSSTARTING FROM LINE 51313. 

t·l: 4 t'1: 4 

FIRST SAMPLE OF SIZE 4 
. 1 "77 . 199 • 2~J2 . 211 

SECOND SAMPLE OF SIZE 4 
.148 .166 .175 .169 

SAMPLE MEAN 
1 .1973 
2 .1645 

F-VALUE~ 1.54259251 
POP'N VARIANCE: 2E-134 

,"TUDHH·-T ~ .5 
* Notrsignificant at all levels. 

STD. DE'· .... 
• ~~j L2~i 

.0101 

'· ... 1"110; I At-lCE 
2E-04 
1E-04 

STD. 0 E'· .... : . I) 1 :3 :l 
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APPENDIX VII 

DIFFUSION COEFFICIENTS (0 ) CALCULATION 
a 

The following calculation shows how to calculate the 0 for 
a 

diffusing out of total sugar from potato cubes having O.Olm dimen-

sion during blanching at 700 C for 1800 sec, see Figure 5.46 and 

theory section (2. I) for the experimental results and for the 

meaning of the symbols. 

Blanch time = 1800s 

Weight of potato sample = 10.50g 

Weight of moisture in potato sample (W) = 8.13g 

Initial percentage of total sugar (SI) = 0.240% 

Final percentage of total sugar in potato (5) = 0.092% 

Percentage of total sugar lost from potato sample 

to blanch water after 1800s (S ) = 0.161% o 
Weight of blanch medium (W ) = 50g w 

The fraction of total sugar remaining in the potato (E) was calcu

lated from the following equation: 

where: C = total sugar concentration (weight of sugar (M t ) divided 

by weight of moisture) in potato cubes at time t 

C
l

= tota I suga r con cent rat i on of unb I anched potato cubes 

(weight of sugar at time t = 0 (Mo) divided by weight 

of moisture 

Co= total sugar concentration of blanch water (weight of 

total sugar in blanch water at time t (M ) divided by 
w 

weight of the blanch water} 
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In this case the percent total sugar content (5) of the total 

weight of potato sample was actually measured, rather than the 

concentration of sugar in the cell solution. So in order to 

calculate values of E, the values of initial .(5
1

) and final (S) 

sugar content were first converted to concentration of sugar 

solution as follow: 

M 
- 0 - 5 Cl - W - 1 x 

Sample weight of potato 
Potato moisture content x 100 

10.50 = 0.240 x 8.13 x 100 = 0.00309 

M 
c= wt =Sx 

Sample weight of potato 
Potato moisture content x 100 

= 0.092 x 
10.50 

= 0.00119 8.13 x 100 

M 10.50 
C 

w o. 161 0.0003381 = - = x = 
0 ww 50 x 100 

As the total sugar concentration in blanch water may vary from say Col 

initially to Cot at the end of the blanch time, a mean concentration 

was est imated from: 

C 01 + C 
Co 

ot 
= 2 

C = 0.0003381 = 0.00017 2 0 

E = 0.00119 - 0.00017 
0.00309 - 0.00017 

E = 0.349315 

= .".0.;..;. 0",0".,1 0;.;;2 
0.00292 
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In order to get E for diffusion from two parallel faces (i.e. diffu

sion from slab) 

E = 3/0.349315 

E = 0.7043 

From the E value, the corresponding value of 
'" Oat obtained t =- was 

from the relevant chart (see Figures 2. I, 2.2 a2 
2.3) and 

'" Oat 
t = -- = 0.066 

Knowing t (blanch time) and a (half thickness of the slab) the 

apparent diffusion coefficient was then calculated. 

° a 
= 0.066 x (0.005)2 = 9.2 x 10-10 m2s-1 

60 x 30 
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APPEND IX VIII 

PHOTOGRAPHIC REPRESENTAT ION OF VARIOUS OPERATIONS AND SAMPL ING 

PO INTS IN POTATO CRISPS PRODUCT ION (COI1MERCI AL SCALE ) 

(See Fi gu re 4 . 2) 

FIGU RE I: Potato eme rg ing from dry cleaning operation 

FIGURE 2: Potalo emer g in g from the pee ler 
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FIGURE 3: Potato slices i n Blanch 1 

FIGURE~ : Potato sl ices emerg ing from Blanch 1 
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FIGURE 5: Potato s li ces pass ing through Spray I 

,IGURE 6: Potato 51 ices emcrqing from Blanch 2 



271 

FIGURE 7: Potato sl ices passing through Sp ray 2 

FIGURE 8: Potato crisp eme rging from the fryer 
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APPENDIX IX 

% Dry matter contents of different samples of Home Guard, Maris 
Bard and Record potato varieties 

Sample 
Dry matter content % 

Home Guard Mari s Bard Record 

1 16.6 18.6 26.4 

2 16.3 19.7 26.6 

3 16.3 19.9 25.8 

4 17.9 18.6 22.5 

5 17.3 18.8 24.9 

6 16.7 20.1 23.6 

7 18.6 18. 1 24.5 
8 15.2 20.2 26.3 

9 17.0 - 24.4 

10 16.6 - -

Mean 16.9 19.3 25.0 

% Alcohol insoluble solids of Record, Home Guard and Maris Bard 
potatoes 

, Alcohol insoluble sol ids 
Sample 

I Home 
, 

Guard I Mar; s Bard Record 

i 
i 

1 10.7 I 15.2 I 13.0 I 

I 2 11.4 17.4 14.5 

3 - 16.0 16.0 

Mean 11. 1 16.2 14.5 
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APPENDI X X 

MEASUREMENT OF DENSITY OF RECORD POTATOES 

I. Method: 

Potato cylinders 2.2 cm in diameter and 6.0 cm in length were 

accurately prepared for measurement of specific heat (see page 245, 

Table 5.14). At equil ibrium the samples were removed from the 

dewar flask, placed in a covered petri dish and weighed. Density 

was calculated from the ratio of mass divided by the computed 

vol ume. 

2. Results: 

The sample numbers shown in the table correspond to those in 

Table 5.14 (page 245). 

Density (p) of Record potato at different temperatures and moisture 
contents used in the calculation of thermal conductivity (k6 

Cond i- Condi -
tions tions 1 2 

~ '\30 1 .0755 1 .0887 
u 

0 40 1.1281 1 .1268 ~ 

(l) 50 
L. 

1 .1062 1 .1369 
::J 

uO 1.1237 1 .1176 ... .. 
L. 

1 .1189 (l) 70 1.0935 a. 
E 

80 1. 1163 1.1294 (l) 
I-

90 1.1014 1.1049 
(l) 
L. 

78.8,\ 1.1623 I. 1632 ::J ...... 
'" c: 75.410\ 1.1394 .- ., 1 .1337 
0'" 
>: c: 

72.31<>" 1.111 1 .0822 0 <wu 

* Diameter:2.2 cm and length 6.0 cm 
1:-/; Oiameter:2.1 cm and length 6.0 cm 

Density (p) g/cm3 

3 4 .. Mean 

1 .0965 1. 1049 1.0900 

- 1 .1275 1 .1275 

1 .1207 1 .1027 1 • 11 66 

1 .1207 - 1 .1207 

1.0957 1 .1097 1.1045 

1 . 1040 1 .0790 1 .1072 

1.1079 1 .0969 1.1028 

1.1500 1 .1873 1.1657 

1.1524 1.1308 1.2320 

1 . 0879 1 .0720 1 .0883 
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