
 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



Pilkington Library 

I • Lo~gh~orough 
., Umverslty 

Author /Filing Title ....... h~.J61:\.T..A..fl.:?~~. ~.!'~.,., ..... ~.~.a.: .. . 

Accession/Copy No. 

Vol. No. ................ Class Mark ............... 1 ............................ . 

0402085299 

lllllllllllllllllllllllllllllllllllllllllllllll 





This Thesis is dedicated to : 

Mrs. K. Nassehi and Mrs. S. Ghaemi (Saeedi) 



A General Global 
Approximation Method For 
The Solution Of Boundary 

Value Problems 

by 

M.R.Mokhtarzadeh M.Sc. 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements for 
the award of degree of Doctor of Philosophy of 

Loughborough University 

August 11, 1998 

@ by M.R.Mokhtarzadeh 1998 





Abstract 

A general global approximation scheme is developed and its generality is 

demonstrated by the derivation of classical Lagrange and Hermite interpo

lation and finite difference and finite element approximations as its special 

cases. It is also shown that previously reported general approximation tech

niques which use the idea of moving least square are also special cases of 

the present method. The combination of the developed general global ap

proximation technique with the weighted residual methods provides a very 

powerful scheme for the solution of the boundary value problems formulated 

in terms of differential equations. Although this application is the main 

purpose of the this project, nevertheless, the power and flexibility of the de

veloped approximation allows it to be used in many other areas. In this study 

the following applications of the described approximation are developed: 

1- data fitting (including curve and surface fitting) 

2- plane mapping (both in cases where a conformal mapping exists and for 

non-conformal mapping) 

3- solution of eigenvalue problems with particular application to spectral ex

pansions used in the modal representation of shallow water equations 

4- solution of ordinary differential equations (including Sturm-Liouville equa

tions, non-homogeneous equations with non-smooth right hand sides and 4th 

order equations) 

5- elliptic partial differential equations (including Poisson equations with 

non-smooth right hand sides) 

A computer program which can handle the above applications is developed. 

This program utilises symbolic, numerical and graphical and the program

ming language provided by the Mathematica package. 

Key words: Diffuse Approximation, Boundary Value Problems, 

Weighted residual methods, General Global Approximation, 

Semi-Discritised and Fully Discritised Schemes. 
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Abstract 

A general global approximation scheme is developed and its generality is 

demonstrated by the derivation of classical Lagrange and Hermite interpo

lation and finite difference and finite element approximations as its special 

cases. It is also shown that previously reported general approximation tech

niques which use the idea of moving least square are also special cases of 

the present method. The combination of the developed general global ap

proximation technique with the weighted residual methods provides a very 

powerful scheme for the solution of the boundary value problems formulated 

in terms of differential equations. Although this application is the main pur

pose of this project, nevertheless, the power and flexibility of the developed 

approximation allows it to be used in many other areas. In this study the 

following applications of the described approximation are developed: 

1- data fitting (including curve and surface fitting) 

2- plane mapping (both in cases where a conformal mapping exists and for 

non-conformal mapping) 

3- solution of eigenvalue problems with particular application to spectral ex

pansions used in the modal representation of shallow water equations 

4- solution of ordinary differential equations (including Sturm-Liouville equa

tions, non-homogeneous equations with non-smooth right hand sides and 4th 

order equations) 

5- elliptic partial differential equations (including Poisson equations with 

non-smooth right hand sides) 

A computer program which can handle the described applications is devel

oped. This program utilises the symbolic language and numerical and graph

ical capabilities of the Mathematica package. 
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Chapter 1 

Introduction 

Mathematical modelling of realistic physical processes usually depends on the 

formulation of a set of governing differential equations in conjunction with 

appropriate boundary conditions. In general, the level of complexity of the 

governing equations in these boundary value problems is such that they can 

not be solved analytically. Therefore the development ofrobust and accurate 

numerical solution schemes for differential equations is of prime importance 

in most areas of physical sciences. Almost all of the well established numer

ical solution methods for the differential equations depend on the discreti

sation of the problem domain into sub-regions. Despite the basic simplicity 

of formulating piecewise approximations within well defined and finite size 

sub-regions the process of domain discretisation imposes severe restrictions 

on the flexibility of these numerical solution schemes. For example, the order 

of continuity of the approximation depends on the type of the discretisation 

used and it cannot be improved by mesh refinement. Therefore it is desirable 

to develop alternative numerical solution strategies for the differential equa

tions which avoid the domain discretisation and instead rely on the global 

approximation of the unknown functions. In this way suitable approximating 
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functions which can satisfy required accuracy of the numerical solution can 

be found in a straightforward manner. 

In this project we describe a general global approximation scheme which 

in conjunction with the weighted residual method provides a very powerful 

scheme for the numerical solution of differential equations. The power and 

flexibility of this approximation technique means that it can also be used in 

a number of other areas besides differential equations such as data fitting, 

space mapping and eigenvalue problems. 

The approximation technique developed in this project is based on the gen

eralisation of the moving least-square method. In recent years a number of 

'meshless' numerical solution methods for differential equations have been 

reported in the literature which also use the moving least square technique. 

The most notable, and first to appear, amongst these methods are the 'Dif

fuse Element Method' and the 'Element Free Galerkin Method'. We show 

that both these methods are special cases of the present 'General Global 

Approximation scheme'. We further show that the basic finite difference and 

finite element approximations can also be derived as the special cases of the 

generalised method described in this thesis. 

· The present thesis is divided into five chapters. The outline of these chapters 

is as follows. 

Chapter one is an introductory section which briefly describes the main ob

jectives and the achievements of this project. 

In chapter two, we review previously reported applications of the moving 

least-square method and briefly describe the techniques which have been used 

by other investigators to extend this method to the solution of differential 

equations. This review provides the basic background for the introduction 

of our general global approximation scheme. 
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Chapter three is devoted to the explanation of the mathematical basis of 

our approximation technique and it includes a thorough description of the 

development of the present scheme and its associated approximation space. 

Using theoretical analysis, we show that Lagrange and Hermite interpolation 

models, finite difference and finite element approximations and previously 

developed diffuse element and element free Galerkin methods are all special 

cases of the present scheme. These analyses provide a more fundamental 

insight about the mathematical basis of these approximation techniques. In 

chapter three we also describe the details of the computational strategy which 

is used to carry out the above case studies. 

In chapter four we present a number of benchmark case studies to illustrate 

the applicability of the developed scheme. These applications are as follows: 

1. Data Fitting 

The developed approximation method is applied to solve a number 

of curve and surface fitting problems. The flexibility of the scheme 

is demonstrated by the fitting of non-smooth and discontinuous data. 

We have proved the accuracy of the approximation by obtaining super

convergent solutions for complex curve fitting problems. 

2. Numerical Mapping 

We have extended our data fitting algorithms to create a robust plane 

mapping scheme. This scheme is applied to obtain smooth boundary 

fitting and domain mappings with high order of continuity. The accu

racy of the present mapping scheme is illustrated by the generation of 

super-convergent mappings in cases where an analytic mapping relation 

exits. 
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3. Solution of Differential Equations 

The combination of the present general global approximation scheme 

with the weighted residual techniques provides a powerful method for 

the solution of differential equations. We have used the Galerkin method 

to create such a scheme. This scheme is used to solve the following 

problems 

~ . Sturm-Liouville equations with smooth and non-smooth right 

hand sides subject to essential (Dirichlet) and mixed boundary 

conditions, 

n . Eigenvalue problems with particular application to the formula

tion of mathematical models for tidal dynamics based on modal 

expansions 

m Fourth order ordinary differential equations 

lV Transformation of Non-Homogeneous Poisson boundary value 

problems to homogenous equations using trace theorem 

v . Solution of two and three dimensional Poisson equations with 

homogeneous boundary conditions. 

v~ . Solution of biharmonic equations with homogeneous boundary 

conditions. 

In chapter five the conclusions of this research are discussed and a number 

of suggestions for further extensions of the developed scheme are presented. 

The text of the thesis ends with the listing of the references. 

The computer programs developed in this research are given as an appendix 

in this thesis. 
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Chapter 2 

A Survey of the Meshless 

Approximations 

The origin of meshless approximations can be traced back to more than 20 

years ago to a paper by L.B.Lucy (1977) who used it to model phenomena 

without boundaries such as exploding stars and dust clouds. However, be

cause of the limitations of the available computer power at that time the 

full potential of this concept was not realised until the present decade. In 

1991 Nayroles et al developed a method whose aim was the generalisation of 

the finite element method in a way that it can be used to solve differential 

equations without relying on domain sub-division. This work was followed by 

other investigators and a number of approximation techniques which do not 

depend on the traditional concept of the division of the problem domain to 

a computational mesh appeared in recent years. In this chapter we present a 

brief survey of the previously reported meshless approximations and outline 

their common mathematical background. These approximation methods can 

be listed in a historical order as 
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1. 'Diffuse Element Method' developed by (Nayroles, et a!, 1991, 1992) 

2. 'Element-Free Galerkin Method (EFG)' developed by (Belytschko, et 

a!, 1994-a) 

3. 'Reproducing Kernel Particle Methods' (RKPM) developed by (Liu, et 

a!, 1995) 

4. 'Hp-clouds' developed by (Duarte and Oden, 1995) 

5. 'Partition of Unity Finite Element Method' (PUFEM) developed by 

(Melenk and Babuska, 1996) 

6. 'Finite Point Method' developed (Onate et al, 1996) 

Despite the apparent diversity and completely different outlooks of the above 

methods, it is shown by Belytschko et a! (1996) that all of these methods 

are essentially identical. The only differences is that the partition of unity 

method provides a more direct route for the generation p-adaptivity (i.e. 

high order) approximations. However, this is only important for discretised 

approximations and when a global approach is used, all types of meshless 

methods can generate approximations with a high degree of smoothness. Be

cause of the theoretical similarity of these methods it can be argued that, 

essentially, they all have the same basic characteristics. To understand these 

characteristics it is sufficient to give an analysis of the common mathemati

cal background of these methods. Therefore in this chapter we focus on the 

explanation of the mathematical foundation of existing meshless approxima

tions. This makes it possible to compare these methods in a general manner 

with the method developed in this project without being distracted by the 

details of the individual techniques. Such a comparison is given in chapter 

three of this thesis. 

6 



The main idea under-pinning all meshless approximations is the moving least 

square method. The moving least square method was developed by Barnhill 

(1977), Mclain (1978), Gordon and Wixom (1978) and Lancaster and Salka

uskas (1981). These investigators used the moving least square method to 

solve curve and surface fitting problems. This method is based on the min

imisation of the discrete weighted square of error. Since the weight function 

can change from point to point in a problem domain, it is called a moving 

least square technique. In order to develop an approximation scheme on the 

basis of this method the following procedure was used by Nayroles and his 

eo-workers (1991). 

After the selection of points of interest (i.e. nodes) on a problem domain !1 

(!1 r:;;)Rk a global approximation of a function u u : fi ---> R over the nodal 

points in this domain is formulated by the minimisation of the following 

functional 

n 

J[a(x)] = L w(x, x;)[pT(x;).a(x)- u;] 2 (2.1) 
i=l 

In equation (2.1) x, x; E Rk and p(x) represents the set of base functions, 

a(x) is the M-dimensional array of unknown functions ([a1(x), ... , aM(x)]T) 

and n is the number of points in the neighbourhood of x for which the 

weight function w(x, x;) I' 0 and u; is the nodal value of u at x = X;. This 

neighbourhood of x where w(x, x;) I' 0 is called the domain of influence of 

X. 

The process of the minimisation of J with respect to a(x) is shown as 

oJ[a(x)] = 0 
oal(x) 

l = 1,2, .. . M. 

This leads to the formation of the following set of linear equations 

A(x)a(x) = B(x)U 

7 
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------------------------------------------

Here A(x) and B(x) are M x M and M x N matrices, respectively, and are 

expressed as 

A(x) = [ars(x)] and B(x) = [,Br;(x)] (2.4) 

where 

N 

O<rs(x) = ,E w(x, :x;)pr(:x;)p8 (X;) r, s = 1, ... , M (2.5) 
i==l 

and 

.Br;(x) = w(x, x;)Pr(x;) r = 1, ... , M i = 1, , N (2.6) 

The diffuse approximation of u, may now be defined as 

(2.7) 

where h represents the discretisation of u using a finite step size h. The 

substitution of a(x) from equation (2.3) into equation (2.7) gives 

N 

uh(x) = ,E r/J;(x)u; (2.8) 
i=l 

Equation (2.8) is the analogous shape function representation of the derived 

approximation. The incorporation of this approximation with a weighted 

residual technique provides a variational formulation for field problems. 

Nayroles et a! (1991, 1992) presented the above method as a generalisation of 

the finite element technique for the solution of the partial differential equa

tions calling it 'The Diffuse Element Approximation'. This method preserves 

the local character of finite elements required for getting sparse stiffness ma

trices. The main disadvantage of this approach is that weight functions with 

strictly compact support must be used which limits the stability of the nu

merical solutions. Its main advantages are: no meshing is required, it can 
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cope with complex geometry of the problem domain generating field variables 

with regularity, and it is possible to use direct collocation methods due to 

this regularity. 

Following this work, an essentially similar method, was developed by Be

lytschko et al (1994-a) again as an alternative to the traditional finite element 

techniques. They called their scheme 'The Element Free Galerkin method'. 

This method is also applicable to domains with arbitrary shapes and requires 

only nodal data. The dependent variable and its gradients are assumed to 

be continuous in the entire domain. The key differences of the element free 

Galerkin method with the previous formulation introduced by Nayroles and 

his eo-workers are 

1. The use of Lagrange multipliers to enforce the essential boundary con

dition 

2. More accurate evaluation of the derivatives 

3. The use of higher order quadrature in space 

The element free Galerkin method was applied to the solution of a number of 

problems in heat conduction and elasticity. It was found that the method is 

very effective for crack growth problems in solid mechanics and results with 

1% accuracy were obtained for an example fracture problem. This is because 

that progressively growing cracks can be easily modelled by an element free 

method. 

Nayroles and his eo-workers (1991) and Lu et a! (1994) carried out conver

gence and stability analyses for the mesh!ess approximation techniques. The 

methods used by these teams of investigators differ in the sense that Nayroles 

et a! based their convergence analysis on the Taylor series expansions and Lu 

et al. employed Fourier series expansions. Both these analyses showed that 
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the stability of the meshless approximation schemes mainly depends on the 

used weight functions. 

The following gives the list of weight functions recommended by these in

vestigators. These functions are based on the following definition of the 

geometrical metric 

d;(x) =11 x- X; 11 

z . Conical Weight Function 

{ 

1 _ [d;(x)j2k 

w;(x) = wi(ll X- X; Ill = 0 dm, 

n . Exponential Weight Function 

where k, c and dm, are scalar parameters. 

iii . Gauss-Like Weight Function 

e drni 

{ 

ln(d;(x))P 

w;(x) = wi(ll x- X; Ill = 
0 

iv . Triangular Weight Function 

if di(x) :S dm, 

if di(x) dm, 

if d;(x) :S dm 

if d;(x) dm, 

if d;(x) :S dm, 

if d;(x) dm; 

(2.9) 

(2.10) 

' (2.11) 

(2.12) 

{ 

(1- d;(x) (1- c))k 
Wi(x) = wi(!l X- Xi Ill = O dm; 

if d;(x) < dm 
- ' (2.13) 

if d;(x) dm, 

where k, c,and dm, are scalar parameters. 

Belytschko et a! (1994-a) found that exponential weight function, which is 

essentially the truncated Gauss distribution, performs far better than other 
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types of weight function. This can be explained by considering the sensitivity 

of each function to the changes of its domain of influence represented by the 

value of parameter dm;. 

In a later work Belytschko and eo-workers (1994-b) extended their approx

imation technique to incorporate discontinuous derivatives in meshless for

mulations. The technique is based on adding an approximation function 

(shape function) which has a discontinuous first derivative at the discontinu

ity. The strength of the discontinuity is represented by additional unknowns. 

In multidimensional problems, the strength of discontinuity is interpolated 

over the discontinuity line (or surface in three dimensions). The discontinu

ous approximation has been constructed so that it has compact support, and 

consequently the resulting discrete equations are sparse and banded. Com

parison of the results obtained by this technique with closed-form solutions 

showed good agreement in both the strength of the discontinuity and the 

solution away from the discontinuity. 

Reproducing kernel moving least-square meshless technique developed by Liu 

et a! (1995) improved the procedure of constructing moving least square in

terpolation functions. This is based on using the notion of a reproducing 

kernel which is able to generate any mth order polynomial exactly on an 

irregular node distribution. These workers also developed an interpolation 

error estimate to assess the convergence rate of their approximation. They 

showed that for sufficiently smooth functions the interpolant expansion in 

terms of sampled values will converge to the original function in the Sobolev 

norm. An advantage of the incorporation of a reproducing kernel in meshless 

approximations is that it builds a bridge between the traditional interpo

lation methods and the spectral methods. This is very important for the 

construction of modern (next generation) finite element methods. The corn-
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bination of this procedure with the moving least square creates a powerful 

facility for the generation of finite elements with C2 or higher orders of con

tinuity. The main difficulty with the reproducing kernel technique is that it 

is not computationally efficient. 

The extension of the main ideas of the meshless approximation to methods 

based on partition of unity and hp-clouds are straightforward. Although 

these methods cannot yet be regarded as mature computational tools, nev

erthless, they provide new insight about the capabilities of the meshless ap

proximation. Moreover the use of window functions and wavelets as the 

weight functions in conjunction with these methods provides promising new 

techniques for generating convenient solutions for problems involving discon

tinuities and fast moving fronts. 

The main advantages of the described meshless methods can be summarised 

as 

1. In contrast to the traditional numerical approximation methods they 

do not require preprocessing. In recent years, it has become clear that 

in linear analysis, mesh generation is a far more time-consuming and 

expensive task than the assembly and solution of the approximation 

equations. 

2. Because they can generate solutions with a high degree of smoothness 

they do not need additional postprocessing for the output of field data 

which are derivatives of the primary-dependent variables. For example 

in solid analysis very smooth strains and stresses are found directly, 

whereas in finite element methods, various types of postprocessing, 

such as £ 2 projection, are necessary in order to obtain a smooth stress 

field suitable for contour plotting. 
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3. They offer a very powerful method for the accurate incorporation of 

various types of discontinuities in the solution of wide ranges of prob

lems. 

4. These methods have faster rates of convergence than the traditional 

approximation methods. 

In the following chapter we present the generalisation of the approximation 

scheme based on the moving least square technique. It is self-evident that the 

present method preserves all of the advantages of the described techniques. 

Furthermore the developed generalised scheme is computationally efficient 

and can be implemented using easily-affordable computers. 
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Chapter 3 

General Global Approximation 

and Approximation Space 

In this chapter the mathematical background of the present general global 

approximation technique and the creation of its corresponding general ap

proximation space are explained. We explore the special cases of this tech

nique and show that the classical interpolation models and mesh-dependent 

approximations such as the finite difference and the finite element techniques 

can be derived from this approximation space. We further show that pre

viously reported meshless approximations which are based on moving least 

square technique can also be derived from the present scheme. These deriva

tions are particularly important from a computational point of view, since 

they show that a common environment for the implementation of all of the 

above approximations can be developed. Therefore our developed compu

tational strategy is essentially based upon the concept of the general ap

proximation space which can be easily extended to include other types of 

numerical schemes. 
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3.1 Definition of the General Global Approx

imation Scheme 

Let n ~ Rk, k 2: 1, be an open bounded simply connected domain with a 

sufficiently smooth boundary an and n = n u an, called the domain of ap

proximation. 

A general approximation space (or simply an approximation space) is a triple 

of the form 

(3.1) 

where P is a set of M -linearly independent functions in n, called the base 

functions, and W : Rk ---> R+ (real positive numbers), W E £2(n), is a 

weight function generator. Base functions usually consist of polynomials 

or more generally 'nearly polynomials'. Therefore if we assume that the 

elements of P are complete polynomials of degree D, at the most, then using 

the multi-index notation 

and 

Pj(x) = L CaXa, 

[a[:5D 

(3.2) 

(3.3) 

where ea represents multi-index variable coefficients of the polynomial base 

functions, a is a k-dimensional array of integers and 

(3.4) 
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To define the present general approximation scheme, we consider the follow

ing functional 

J[a(x)] = 1 W(x, ~)[p(~f a(x)- u(~Wdst (3.5) 

where u is a function such that u E L2 (S1), p is the array of base functions, 

and a(x) is an M -dimensional array offunctions in L2 (S1), and W is a weight 

function generated using W. Therefore the approximation scheme based on 

functional (3.5) can be defined as 

Find a(x) such that J[a(x)] is a minimum. (3.6) 

Assuming that such an approximation exists, and a(x) is unique, we define 

(3.7) 

where the super-script a in u" means that ua is the approximation of u in 

the approximation space of (n, P, W), subject to the approximation scheme 

defined by expression (3.6). On the basis of definition (3.6), functional (3.5) 

may be called a weighted least square of error in L 2 (n) sense. In line with the 

functional (3.5) another functional can be defined which contains the function 

u, and its first derivatives. In this case we may call it the weighted least 

square of error in Sobolev sense. Since the weight function W, and functional 

(3.5), vary from point to point in n, the scheme defined by the expression 

(3.6) may be called a 'Global Moving Least-Square Approximation'. 

The first consequence of expression (3.6) is that when u E Span(P), then 

ua = u, where Span(P) is the set of all linear combinations of the members 

ofP. 

In order to find an extermal value for functional (3.5) in a rigorous manner, 

we use the notion of strong or Frechet derivative (Linz,1979). Assuming 
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oa(x) E (L2(f1))M to be an increment of the variable a(x), we have 

J[a(x) + oa(x)]- J[a(x)] = Toa(x) + E(oa(x)) (3.8) 

where 

T<la(x) - 21 W(x,~)p(~f a(x)p(~foa(x)dn 
21 W(x,~)p(~foa(x)u(~)dfl (3.9) 

and 

(3.10) 

It can be easily shown that T is a bounded linear operator. Using Cauchy

Schwarz inequality (Linz, 1979), it can also be shown that 

E(oa(x)) = o(lf oa(x) Ill (3.11) 

Therefore, functional (3.5) is strongly differentiable. The sufficient condition 

for the extremum of J is 

T<la(x) = 0 (3.12) 

for all oa(x) E (L2 (0))M. Therefore we have 

1 W(x, ~)p(~f a(x)p(~f dO= 1 W(x, ~)u(~)p(~f dfl (3.13) 

Equation (3.13) represents a system of (M x M) linear equations in terms of 

the unknown function a(x). This system of equations can be written as 

1 W(x, ~)p(~)p(~f a(x)dfl = In W(x, ~)u(~)p(~)dO (3.14) 

or 

A(x)a(x) = b(x) (3.15) 
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where 

Let 

and 

A(x) = k W(x, .;)p(.;)p(.;f d!l 

b(x) = 1 W(x, .;)u(.;)p(.;)d!l 

A(x) = [ii;j(x)], b(x) = [bl(x), ... ,bM(x)f, 

a(x) = [a1(x), ... , aM(x)f, 

Equation (3.15) can now be written as 

M 

where 

L ii;j(x)a;(x) = bj(x) j = 1· ··M. 
i=l 

ii;j(x) = 1 W(x, .;)p;(.;)pi(.;)d!l 

bi(x) = k W(x, .;)pj(.;)u(.;)d!l 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

It is obvious that system of equations (3.15) is symmetric. We will refer to 

this system as the 'General Global Approximation System' or for simplicity 

the 'Approximation System'. 

3.2 Non-Singularity of the Derived 

'Approximation System' 

Assuming v E RM is an M -dimensional vector, we have 

VT A(x)v = VT (k W(x, .;)p(.;)p(.;f d!l)v · 
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-1 W(x, .;)(vT p(.;))(p(.;f v)dfl) 

- l W(x,.;)[vrp(.;WdD) (3.23) 

which is non-negative (2 0). Therefore, for all X E n, the matrix function 

A(x) is a positive semi-definite matrix. Provided that the selected weight 

function generator is continuous in Rk, we can easily show that the matrix 

function A(x) is positive definite. This states that the derived general global 

approximation exists. 

Since the approximation of the function u depends on the created approxi

mation space (0, P, W) and the approximation scheme defined by expression 

(3.6), (i.e. the system of equations (3.15)-(3.17)) it may symbolically be writ-

ten as 

(n,?, w,u) q.., u" (3.24) 

in which u" is the generalised global approximation of u in the approximation 

space of (O,P, W). Equation (3.14) (or its equivalent system (3.15)-(3.17)), 

provides a theoretical global approximation scheme. Using this system, in 

practical problems by the application of a quadrature we can derive a useful 

approximation scheme. This application can be restricted only to the right 

hand side of equation (3.15) or it may be extended to the entire equation. 

The evaluation of the integrals in the governing equations of the present 

scheme by numerical quadrature imposes a discretisation on these equations. 

However, the difference between this discretisation ,which preserve the global 

character of the technique, and the domain discretisation, required in mesh 

dependent approximations, should be emphasised. 
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3.3 Semi-Discretised and Fully Discretised Schemes 

Let Q (or more precisely Q0 ) be a numerical quadrature operator defined on 

n as 
Q 

Q(f) = 2:::: wd(t;) (3.25) 
i=l 

If only the right hand side of equation (3.15) (i.e. b(x) term) are discre

tised we obtain a semi-discretised approximation scheme. Assuming that 

(€;,w;), i = 1, ... Q, are the integration points and weights of the used 

quadrature, we have 

Q 

b(x) = 2:::: W; W(x, €;)u(t;)P(€;) (3.26) 
i=l 

This equation can be written as 

(3.27) 

where Pa is the Grammian matrix (i.e. a symmetric square matrix), W D is 

a diagonal matrix with diagonal elements w;W(x,t;) and 

(3.28) 

is the array of the values of u at the integration points. 

In the fully discretised scheme both sides of equation (3.15) are approximated 

by a numerical quadrature. Thus the fully discretised scheme corresponding 

to equation (3.15) becomes 

Q 

A(x) = l::w;W(x,t;)p(t;)p(t;f (3.29) 
i=l 

and 
Q 

b(x) = 2:::: w; W(x, t;)u(t;)p(t;) (3.30) 
i=l 
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A(x) can be factorised to give 

....... - ........ T A(x) = PaWvPa (3.31) 

where Pc is a (M x Q) Grammian matrix formed by the base functions, W D 

is a ( Q x Q) diagonal matrix consisting of the weight functions and weights 

of the quadrature, and Pb which represents the transpose of P a ,is a ( Q x M) 

matrix. 

In the special case of M= Q, the non-singularity of the matrix A(x) and the 

existence of its inverse is guaranteed by the regularity (i.e. all of their com

ponents are smooth) of the square Grammian matrix and its transpose, and 

the positiveness of the weight function. Therefore in this case, at the least, 

the system defined by equation (15) can be solved to obtain the unknown 

function a(x) and hence u" exists. After the discretisation of the original 

equation by the quadrature operator the approximation space takes the form 

...... h ....... - .......... 
(!1 ,P, W,Q) (3.32) 

The approximation generated through expression (3.32) is symbolically shown 

as 

-h --........ h (!1 ,P,W,Q,u)9->u (3.33) 

where uh is the general discretised diffuse approximation of function u in 

terms of base functions (analogous to equation 3. 7). 
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3.4 Special Cases of the Defined 

Approximation 

3.4.1 Lagrange Interpolation 

Let us consider a domain n s; Rk, k 2: 1 and let N be the set of nodal points 

on fl. In this case the approximation space becomes (N, P, W, Q). We need 

to determine a relationship for uh which can provide all information on N. 
Therefore we choose a Reimann sum (Rudin, 1964) as the required quadra

ture. This automatically transforms all of the information from quadrature 

points to the nodal points and uh is defined by 

(3.34) 

where p(x) = [p1(x), ... ,PN(x)JY. Equation (3.34) provides nodal informa

tion for the approximated function and hence it is the Lagrange interpolation 

model. 

3.4.2 Hermite Interpolation 

In a generalised Hermite interpolation (Linz, 1979) the values of function 

and its derivatives up to a certain order must be interpolated at the nodal 

points. We therefore, need to define a general approximation scheme which 

is based on a global weighted least square of the error in Sobolev sense. This 

can be done by the definition of a system of functionals as follows. 

Let J0 , J1 be two functionals defined as 

lo[a(x)J = 1 Wo(x, ~)[p(~f a(x)- u(~Wdn 

Jt[a(x)] = 1 Wt(x,~)[p'(~)T a(x)- u'(OJ 2drl · 
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where W0 , and W1 are two weight functions generated from their correspond

ing weight function generators W0 , and W1. Therefore the approximation 

scheme which is based on functionals (3.35) and (3.36) may be defined as 

Find a(x), such that J0[a(x)J + J1[a(x)J, are both minima. (3.37) 

or 

Find a(x), such that J0[a(x)J, and J1[a(x)J, are a minimum. (3.38) 

Assuming that such minimisation exits and a(x) is unique, then we define 

u"(x) = p(x)T a(x) (3.39) 

In this section we use an approximation scheme which is based on formu

lation (3.38) because it is more robust than the alternative scheme defined 

by expression (3.37). In expression (3.38) the minimisation of J0 forces u" 

to be "close" to u at the same time that the minimisation of J1 forces the 

derivative of u" to be "close" to the derivative of u. Again using the notion 

of Frechet derivative we derive two sets of equations analogous to equation 

(3.15). Thus a global approximation scheme similar to the approximation 

scheme given by equations (3.16) and ( 3.17) can be written as 

where 

Ao(x)a(x) = bo(x) 

Ao(x) = 1 Wo(x, ~)p(~)p(~f dfl 

A1(x) = 1 W1(x, ~)p'(~)p'(~f dfl 
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ho(x) = k Wo(x, Ou(~)p(~)d!l (3.44) 

(3.45) 

A discretisation technique identical to the full discretisation method de

scribed in section (3.4), can now be applied to obtain 

Q 

Ao(x) = 2.)J;Wo(x, €;)P(€;)P(€;) (3.46) 
i=l 

Q 

A1(x) = _Ew;WI(x,€;)p'(€;)p'(€;) (3.47) 
i=l 

Q 

ho(x) = L w;Wo(x, €;)u(€;)P(€;) (3.48) 
i=l 

Q 

b1(x) = _Ew;W1(x,€;)u'(€;)p'(€;) (3.49) 
i=l 

An approximation system can now be defined by the following assembly 

A(x) = [Ao(x),AI(xJr (3.50) 

and 

b(x) = [ho(x), h1(x)Y (3.51) 

We now consider an approximation space based on the nodal arrangement 

Nas 

(3.52) 

- ....... 2M-l where N = {xi, ... , XN} and P = {1, x, ... , x }. It should be noted that 

in this case f3 is an assembly shown as [Po, PI]. Again using a Reimann sum 
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as a quadrature operator, we can set up a suitable discretisation scheme in 

this case as 

uh(x) = Po(x)a(x) (3.53) 

and 

(3.54) 

The above equations give an approximation for the function and its 

derivative on the nodes and hence they represent the Hermite interpolation 

model. 

3.4.3 The Finite Element Approximation and Finite 

Element Space 

Before we derive the finite element approximation as a special case of the 

described general global approximation technique we present a brief outline 

of the basic principles of the finite element procedure. Using this approach 

a more fundamental insight about the nature of the finite element approxi

mation is gained which makes its relation with the present method clearer. 

In order to maintain the simplicity of this derivation, without loss of gener

ality, we restrict ourselves to the finite element approximation based on the 

Lagrange interpolation model. 

In a local elemental sense a finite element is a triple ( e, rr•, E•), which is 

characterised by 

fe 1. The component e in the above triple is a closed subset of Rk with non

empty interior and smooth boundary. The geometrical space of e is 

called an element or an element domain 
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fe 2. The component n•, in the above triple is a space of real-valued functions 

defined over the set e. This function space is called the space of shape 

functions. 

fe 3. The third component L:• is a finite set of linearly independent linear 

functionals ii> j, j = 1, · · · , n•, defined over the space n•. These function

als are called nodal variables or the degrees of freedom. 

From a geometrical point of view, in most applications e is either a n-simplex, 

or a n-quadrilateral. Accordingly, the finite elements corresponding to them 

are called simplex or tensor product finite elements. 

The set r:•, should have one of the following forms 

z. 'I>j(P) = p(aJ), p E n• 

where the points aj, r = 0, 1, 2, belong to the element e and the non-zero 

vectors ~],r, ~J.r, and ~],s are either constructed from the geometry of the fi

nite element, or they are fixed vectors in Rk. The points aj, r = 0, 1, 2, are 

called nodes of the finite element and in general are denoted by N•. When all 

of the degrees of freedom of a finite element are of the form ( i) the associated 

finite element is called a Lagrange element. If they are of the forms (ii), or 

( iii), they are called Hermite elements. 

On a finite element ( e, n•, r:•) a sufficiently smooth function u can be ap

proximated as 

n' 

r·u = :z= 'I>j(u)pj. 
j=l 
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The function feu is called 1re- interpolation or the local interpolation of the 

function u. 

A global finite element space and its corresponding finite element approx

imation can now be constructed using the described interpolation scheme. 

This global approximation is characterised by 

fes 1. The first aspect of a global finite element space (which is its most 

important aspect) is that the set fl = n U 811 usually represents a 

division into a finite number of finite subsets. 

fes 2. In a global finite element space 1re contains polynomials or 'nearly poly

nomial' functions. 

fes 3. There exits at least one canonical basis in the global finite element 

space Xh that its corresponding basis has a minimal support. 

Let 

(3.56) 

where Ne denotes the set of nodes of e, and Nh is the set of all nodes on fl, 
and 

(3.57) 

Usually fl f U{;1 e;, except in the case where fl itself is a polyhedral. How

ever, in general the domain fl is not a polyhedral and is approximated by a 

polyhedral flh, flh = U{;1 e;. The approximated domain flh is called the dis

cretised domain. This shows that even the use of an accurate finite element 

interpolation on fl does not mean that the order of error is guaranteed to 

remain equal to the order of the error of interpolation. Now let (flh, Ph, Wh) 
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be the discretised global approximation space. We consider the following sets 

of discrete base and weight functions 

(3.58) 

(3.59) 

where P;h, and Wih are the base and the weight function generators for the 

element ei, respectively. Therefore over an element the triple 

i = 1, ... ,K (3.60) 

defines elemental approximation space. The comparison of equation (3.60) 

with equation (3.1) reveals essential similarity of the approximation space. 

Therefore we consider the following functionals 

J[a(x)] = 1 W(x, ~)[p(~f a(x)- u(~Wd!t (3.61) 

and 

where !th is the interior of the fih. We now define an elemental scheme as 

Find a(x) such that Jh[a(x)] is a minimum. (3.63) 

We can choose a discrete weight function such as 

w~(x,~) = { ~ 
Thus we have 
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if xff.ei 
(3.64) 

(3.65) 



Therefore the approximation scheme can be simplified to 

Find a(x) such that Jih[a(x)] is a minimum. (3.66) 

In general the use of a numerical quadrature say Qi gives a discretised ap

proximation scheme. Thus the use of Reimann sum at nodal points Ne', 

which forces the integration points to coincide with nodal points, satisfies 

the basic properties of the finite element approximation. The result is again 

an approximation based on a local Lagrange interpolation. 

3.4.4 The Finite Difference Approximation 

In the development of general global approximation when both sides of equa

tion (3.15) are found by quadrature,the approximated form of a function can 

be written as a linear combination of function values as 

N 

uh(x) = L 1/!i(x)ui (3.67) 
1 

where 1/Ji, i = 1, ... , N, are called shape functions. This is known as a shape 

function representation of the approximate function. In the finite element 

approach a similar linear combination of shape functions is used to represent 

the function approximations. The main difference between these two tech

niques is that in the finite element scheme the shape functions originate from 

interpolating polynomials but as it is shown in the section dealing with the 

derivation of the general scheme, in the latter scheme the shape functions 

are found by the minimisation of the originally formed functional. However, 

because of this similarity the application of both of these approximations 

to a problem gives a discretised equivalent of the original problem which is 

transformed to a linear combination of finite dimensional spaces (or sets). 

There are other types of discretisation in which the discrete approximation 
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does not lie in a set (or space of functions). The primary example of such 

approximations is the finite difference scheme where the approximate func

tion lies in RK. 

To illustrate this point let us consider the following analysis. 

Let X, Y be two Banach spaces and L : X --> Y be a linear operator. Con

sider the following problem 

Find u E X such that Lu = a, a E Y (3.68) 

In general the approximate solution uh lies in a finite dimensional space Xh 

hence the discretised equivalent of the problem defined by expression (3.68) 

is 

(3.69) 

where Lh : Xh --> Xh is a linear operator. In this analysis the space Xh is 

not necessarily a subspace of X and the relationship between them must be 

rigorously defined. This can be done by the use of 'restriction' and 'prolon

gation' operators (Linz, 1979). 

For simplicity, let us assume that Z is a Banach space and X, Y are two suh

spaces of Z and L: X--> Y is a linear operator. The sequence of spaces Xn 

will be assumed to be finite dimensional with dim(Xn) = n. The linear oper

ators r n : Z --> Xn and Pn : Xn --> Z are called restriction and prolongation, 

respectively, provided that they satisfy the following conditions 

sup 11 Tn II:S: r, rE R+ 
n 

sup 11 Pn II:S: p, PER+ 
n 

11 TnX IHI X 11 
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An example of these operators are: 

Z = C[a, b], Xn = Rn 

Linear interpolation provides a definition for Pn, that is , PnXn is a piecewise 

linear function such that PnXn ( tj) = Xn ( tj). 

The above analysis indicates that, unlike the finite element approximation, 

the derivation of the finite difference scheme from the present general global 

approximation space cannot be regarded as straightfoward and requires the 

approximation of the differential operators. Therefore, as it is shown in 

the following, the basic finite difference formulas such as the forward and 

central differences can only be derived from the general approximation space 

provided that we use appropriate input. 

We consider the approximation of the functions Du, u E C1[a, b] and D2u, 

u E C2[a, b]. 

In the case of the first function we have the following 

(Du(x))a = p(x)T a(x) (3.70) 

where a(x) is found by equation (3.15). We again define an approximation 

space by (0, P, W) the required input data for this approximation are given 

as 

O=[a,b], P={1}, M=1, 

{ 

1/h 
w(x, I;)= 

0 

if I;E(x0 ,xo+h) 

if I; if. (xo, Xo +h) 
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The substitution of above input in equation (3.15) gives A(x) = 1 and 

b(x) = ro+h u'(x) dx = u(xo +h)- u(xo) 
lxo h h 

which is the forward difference formula. 

In the case of the central difference formula we have 

and again a(x) is found from equation (3.15). The required input for the 

approximation space of (fi, P, W) are 

D=[a,b], P={1}, M=1, 

w(x,~) = 

if ~ E ( Xo - h, X a) 

if ~ E (xo,xo+h) 

0 if ~ rt ( Xo - h, xa + h) 

The insertion of these data into equation (3.15) gives A(x) = 1 and 

1
xo+h 

b(x) = W(x, ~)u"(x)d~ 
xo 

Integration by part gives 

l
xo+h 

b(x) =- W'(x, ~)u'(x)d~ 
xo 

and 

b(x) = u(xo +h) - 2u~~o) + u(x0 - h) 

which is the central difference formula. 
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3.4.5 Meshless Schemes based on the Moving Least 

Square Approximation 

A thorough description of the previously developed meshless methods is given 

in chapter two of the present thesis. The most notable, and first to ap

pear, amongst these methods are the 'Diffuse Element ' and 'Element Free 

Galerkin' schemes. Both these techniques are based on the moving least 

square method and therefore their relation with the present global approx

imation is obvious. The derivation of these schemes from the present tech

nique is hence a trivial matter and only requires the application of the Rie

mann sum to functional (3.5). However, it is important to investigate the 

consequences of such an approach. Therefore, the following gives a compari

son between these methods and the general approach adopted in the present 

study. 

Previously developed meshless methods start from the minimisation of a 

functional represented as the summation of pointwise functions instead of 

an integral of weighted least square of error in £ 2
. It can hence be said 

that they are seeking an approximation in 12 (i.e. discrete £ 2 space of real 

sequences). This apparently minor difference with the present scheme has 

fundamental implications which severely restrict the generality of the above 

methods. These limitations can be summarised as: 

1. The use of the pointwise sum for the original functional imposes a 

pre-determined discretisation on the working equations of the scheme 

and therefore semi-discretised technique cannot be derived from it. In 

conjunction with this loss of generality, in the pre-discretised schemes 

the existence of the approximation is not assured and theoretically it 

should always be based on the use of smooth weight and base functions. 
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In the present method, however, one can base the entire scheme on £ 2 

functions. This significantly improves the availability of information 

required for the convergence and error analyses of the scheme. 

2. In order to prove the generality of the present scheme we have consid

ered a number of special cases. Amongst these cases, the derivation 

of the finite difference operators is particularly significant. The finite 

difference method represents an entirely distinct type of approximation 

from the methods which yield function approximations and the deriva

tion of its formulas depends on the integration of the non-discretised 

form of equation (3.15). Therefore pre-discretised meshless methods, 

which do not start with the integral form of the original functional, 

cannot generate finite difference formulas. 

A tentative result of the derivation of the finite difference operators 

from the moving least square scheme is that it may be possible to de

velop a new and direct proof for the Taylor series expansion on the 

basis of this analysis. 

3. Depending on the extent of the support for the selected weight functions 

the general approximation can yield a global or a local scheme. If 

weight functions with compact support are used the scheme generates 

a localised approximation. Starting from a pre-discretised functional 

one can only obtain a discrete local technique if weight functions with 

compact support are used. However, the use of weight functions with 

compact support in the context of a continuous functional results in a 

continuous local approximation. This can be utilised to develop a more 

flexible practical scheme. 
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4. Although after full discretisation we obtain an apparently identical 

scheme to the 'Diffuse Element' or 'Element Free Galerkin' approxi

mations, nevertheless, the fundamental difference between these meth

ods and the present scheme remain in force. This is because that de

spite discretisation we can still use a wider range of weight and base 

functions. This facility is particularly important in the application of 

the diffuse approximation to the solution of non-homogenous differen

tial equations requiring generalised solutions. The use of non-smooth 

weight and base functions, necessary for the generation of singular or 

generalised solutions for differential equations, cannot be justified in 

the pre-discretised schemes. 

5. Starting from a pre-discretised functional the analysis of the relation

ship between various nodal arrangements and the accuracy of the final 

result becomes impossible. Previous investigators using such methods 

have noticed this problem concluding that the best choice in all prob

lems is a uniform node distribution. The reason for this becomes clear 

if we consider that the working equations of the discretised scheme is 

obtained after converting the original relationship expressed in terms 

of an integral to a summation. Therefore the result obtained using uni

formly spaced sampling points can be as accurate as using any other 

type of nodal distributions in a summation operation. 

6. In the present technique we are free to choose the quadrature method 

before discretisation. Therefore we can select a technique which is most 

suitable to a particular problem. In the pre-discretised schemes this is 

not possible because the initial discretisation of the original functional 

excludes the use of any quadrature method other than Reimann sum. 
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At the practical level, after the definition of the original functional as a · 

summation and its subsequent minimisation, we obtain the pre-discretised 

approximation as 

(3.71) 

where superscript d in ud is used to distinguish this result from equation 

(3.33). 

3.5 Implementation of the Developed Approx

imation 

In order to generate the diffuse approximation of a function u i.e. uh the 

following set of input data is required: 

1. Total number of nodes (N) and the co-ordinates of each node on 0 

2. The algebriac dimension of the base functions (M), and 

3. The weight function generator (fV) and the generated weight function 

(W). 

In the computational algorithm developed in this work we can use the fol

lowing options regarding the necessary input data 

1. Total number of nodes (N) in conjunction with the following nodal 

arrangements 

2. Uniformly distributed nodes. 

22. Nodes located at positions corresponding to the roots of Legendre 

polynomials. 
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iii. Nodes located at positions corresponding to the roots of Cheby

shev polynomials. 

2. Algebraic dimension of the base functions (M) in conjunction with 

z. Complete polynomials of degree D. 

zz. Complete polynomials of degree D, with values zero on 80.. 

iii. Polynomials combined with other types of functions such as trigono

metric, Logarithmic, unit step function etc. 

3. Weight functions generated using appropriate weight function genera

tors 

z. Unit weight function, generated from W(x) = 1. 

ii. Power weight functions, generated from 

(3.72) 

m. Gauss-like weight functions, generated by 

(3.73) 

where dm ER+, k ER+. 

zv. Rational weight functions, generated by 

(3.74) 

In the above definitions 11, 11, denotes the Euclidean norm of the space Rk. As 

it is described in section 3.2 the existence and the smoothness of the diffuse 
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approximations primarily depend on the selected weight functions which are 

positive, i.e. W : Rk --> R+. If this condition is fulfilled then it can be 

shown that there exists at least one family of weight functions which can be 

used to generate a diffuse approximation for the unknowns. In practice, in 

order to increase the efficiency and of the computations and the smoothness 

of the approximation we also impose the following conditions on the weight 

functions. 

a. The weight functions should be normalised, i.e. W(O) = 1 

b. The weight functions should be smooth enough to ensure the continuity 

of the approximation, i.e. the required continuous differentiability of 

uh should be guaranteed. 

3.6 General Diffuse Approximation Method 

The generality of the present approximation scheme means that it can be 

used in a number of different families of problems. These applications are 

listed in the introductory chapter and they are explained in detail in chapter 

four of this thesis. However, the main application of the developed diffuse 

approximation scheme is in the solution of differential equations representing 

boundary value problems. Therefore in this section we describe the incor

poration of this technique and the weighted residual schemes which results 

in the creation of a very powerful numerical solution method for differential 

equations. This method is explained through the following abstract varia

tional problem. 

Consider the general variational problem defined as (Ciarlet, 1978), 

Find u E V, such that a(u, v) = F(v) for all, v E V (3.75) 
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where V is a Hilbert space with inner product < ., . >, a is a continuous 

V-elliptic bi-linear form on V x V and F is a continuous linear form on V. 

The existence and uniqueness of the variational problem is guaranteed by the 

Lax-Milgram theorem (Kesavan, 1989). The discretised variational problem 

corresponding to the problem defined by the expression (3.80) can be defined 

as 

(3.76) 

where Vh is a sub-space of V. Again the existence and uniqueness of the 

discretised variational problem can be proved by the Lax-Milgram theorem. 

In most realistic problems the hi-linear form a, contains the derivatives of uh, 

and vh. Therefore to solve problem (3.76) a closed form for the evaluation of 

the derivatives of uh is required. We recall the following equations derived 

in chapter 3 

uh = p(x)a(x) and A(x)a(x) = B(x)U 

Let us, for simplicity, consider the one-dimensional case we have 

a(x) = A(x)-1B(x)U (3.77) 

and 

(3.78) 

The differentiation of the right hand side of equation (3.78) involves finding 

the derivative of A(x)- 1. This derivative can be found indirectly by the 

differentiation of the product A(x)A(x)- 1 =I as 

(3.79) 
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A more rigorous approach based on the use of the strong or Frechet differen

tiation yields an identical result for the derivative of A(x)-1. Therefore the 

function uh, and its succesive derivative is expressed as 

and 

and 

Assuming that 

N 

uh(x) = L if>J(x)ui 

d d N 
-uh(x) =-""if> (x)u 
dx dxL...J 3 3 

j=1 

Vh =Span{ rPJ,j = 1, ... , N} 

the discretised variational problem can now be written as 

N 

L a(if>;, <t>1) = F(<t>1) j = 1, .. . ,N 
j=l 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

(3.84) 

Equation (3.83) is the working equation of the present diffuse approximation 

method. In cases where the original variational problem involves differen

tial operators equation (3.83) represents a weak formulation describing a 

weighted residual statement. For example if v is selected to be identical 

to the shape functions (1>1(x)) equation (3.83) gives the standard Galerkin 

method (Ciarlet, 1978). In general, the integration of the discretised differ

ential operators in such cases involves the application of a quadrature. We 

refer to this integration as the secondary quadrature. In the present scheme 

the secondary quadrature can be based on a different method to the quara

ture required in the generation of the approximation itself. · 
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The symmetry and positive definiteness of the coefficient matrix in the work

ing equation (3.83) is assured by the symmetry and positive definitness of 

the hi-linear form in definition (3.75). This means that the described method 

is guaranteed to give a unique solution for the unknowns ui. 

3. 7 Computational Strategy 

The diffuse approximation scheme offers a wide range of options for the use 

of different combinations of base and weight functions in conjunction with 

various nodal point arrangements in any desired application. The availability 

of many degrees of freedom, implied in the definition of the diffuse approx

imation space as ( fi, P, W), enhances the attraction and usefulness of the 

scheme. In practice, however, the use of trial and error to find a combination 

of (fi, P, W, Q) which can be sure to provide the most suitable input for a 

given problem becomes very tedious. Our aim in the present work has been 

to develop a computational strategy which resolves this problem. Such a 

strategy enables the user to find the best combination of input parameters 

with certainty and ease in every application. Therefore the designed com

putational algorithm includes an automatic checking routine. This routine 

is based on a nested loop algorithm for the random selection and combina

tion of the parameters during the implementation of the scheme. The user 

initiates the test loops by assigning the problem category and the range of 

the parameters in (fi, P, W, Q). These computations are terminated after a 

prescribed number of tests. At the end of this routine the account of the 

performance of the scheme is given as the output. Guided by this output the 

user can make a decision either to continue the application by further inter

active refinement of the input parameters or he can abandon the application 

41 



and start with a new set of (fl, P, W, Q). 

In cases where an analytical solution is known the main reason for the im

plementation of the scheme is the evaluation of the accuracy of the diffuse 

approximation. In these applications the described checking algorithm shows 

the numerical errors found by particular combinations of the model parame

ters. This gives a simple guide to judge the performance of the scheme. We 

have used discrete uniform , discrete and discrete norms of error to give more 

than one measure for the accuracy of the computations. In general, however, 

the analytical solutions are not known and in order to have a logical basis 

for the evaluation of the performance of the scheme a different approach is 

adopted. The main idea is to compare the results found using the formulated 

equation for uh(x) with those found directly through the minimisation of the 

original functional. This approach consists of the following steps. 

Stepl. Shown symbolically as 

(N, ?, w, u) q.., (Nu A, R) 

where represents additional points in which using equation (2.6) the 

results are calculated. 

Step2. Shown symbolically as 

(N, ?, w, u) q.., (Nu A, R) 

Step3. The convergence criteria is found as 11 R1 - R 11 

If it is required the above steps can be repeated for a number of cycles. 

The described computational environment provides a simple data input fa

cility and yields the output both in numerical and graphical forms. An 

additional advantage of the random checking algorithm is that it enables the 
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user to test the applicability and accuracy of the scheme with relative ease 

in a large number of different types of practical problems. 

In order to implement the described computational strategy in the present 

study we required an environment capable of providing facilities for symbolic, 

numerical and graphical manipulations as well as a language for program

ming. Such an environment can be created by Mathematica or any other 

computer package specially designed to have these facilities. We have utilised 

Mathematica to develop the computer codes required in this research. The 

main structure of the developed program is shown in figure (3.1). 
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Chapter 4 

Applications of the Diffuse 

Approximation Scheme, 

Computational Results and 

Disscusion 

In this chapter details of the application of the developed diffuse approxima

tion technique to various problems are explained. In all of these applications 

it has been shown that one of the following three different cases may occur. 

Case 1. The use of the diffuse approximation leads to a super- convergent 

result. This means that by using sufficient precision in computations the 

numerical error of approximation can be made to be as small as desired. In 

the special case that the computations are based on the rational mode cal

culations, the approximation yields analytical solutions. 

Case 2. When the real mode calculations are used the magnitude of the 

numerical error depends on the input data, e.g. N, N, etc. However, it is 

important to note that in this case the outcome of the approximation can be 
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controlled and depending on the avai!ibility of the computer power by the 

selection of appropriate input, an acceptable solution can be found. 

Case 3. There are instances where the use of the diffuse approximation in its 

standard form fails to generate a correct solution. However, using the general 

approximation method developed in this work, we can always find theoretical 

reasons for such failures. In this chapter a number of benchmark problems 

have been included to demonstrate the failure of the standard scheme. It 

is shown that by the extension of the present scheme it is still possible to 

generate satisfactory results for these problems. 

4.1 Data Fitting 

After the construction of a diffuse approximation space any data fitting prob

lem in this space can be defined in the form of the following object 

object= { das, data, rda) ( 4.1) 

In this definition das = (N, P, W), is the diffuse approximation space con

sisting of the ordered set of distinct nodal points, the set of the base functions 

and the weight function generator, respectively. data = fJ, is the given nu

merical data in the problem (i.e. function values). rda = {X, R}, is the 

result of the approximation consisting of the nodal point co-ordinates and 

the computational results, respectively. We can choose a wide variety of 

nodal point arrangements, base functions and weight functions to carry out 

the described approximation. However, these selections should not be made 

arbitrarily and the nature of the problem to be solved should be used as a 

guide to make the most appropriate choices. This does not restrict the flexi

bility of the technique and as it is shown later, a large number of options are 
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always available which make it possible to find a good solution in majority 

of cases. 

Using symbolic notations the entire data fitting scheme can be shown as 

(N, ?, w, u) "~-> {x, R} (4.2) 

where X represents the points at which a result for the function is sought and 

R is the set of the values of the fitted function at these points. The insertion 

of one, two or three-dimensional nodal data into N in symbolic relationship 

( 4.2) leads to curve, surface, and volume fittings, respectively. 

Test Problem No. 1 Application of the diffuse approximation technique 

for obtaining a fit for 

(4.3) 

Based on the described computational procedure the following options are 

used to solve this problem: 

W = power function 

P = polynomial finctions 

N=l5 

(4.4) 

After the refinement of the nodal array the diffuse approximation results 

are found in 29 nodes. Figure 4.la shows the comparison of the numerical 

results with the analytical curve using polynomial base functions of degree 

4. The use of the other types of weight functions does not affect the results. 

However, as it can be seen in figure 4.1b the numerical results improve very 

significantly after using polynomials of degree 9 as the base functions. This 

test gives a simple example in which the sought result is smooth. 
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Test Problem No. 2 Application of the diffuse approximation technique 

for obtaining a fit for 

(4.5) 

This problem represents a difficult case in which the sought result is not 

smooth and at point x = ~ it has a discontinuity. Therefore, the use of stan

dard diffuse approximation based on the polynomial base functions cannot 

yield an acceptable solution in this case. 

Figure 4.lc shows the comparison of the diffuse approximation results with 

the analytical curve using the same input as in the previous test with poly

nomial base functions of degree 9. In order to obtain a super-convergent 

result in this case a set of base functions formed by the addition of unit 

step function with polynomials of degree 4 were used. Figure 4.1d shows the 

super-convergent result obtained by the application of the diffuse approxi

mation technique in this problem. The main purpose of this example is to 

demonstrate the power of the diffuse approximation method in dealing with 

non-regular and discontinuous functions. 

The generalised solution of most types of differential equations representing 

boundary value problems are expected to have non-regular forms. 
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Test Problem No. 3 Application of the diffuse approximation technique 

for obtaining a fit for 

(4.6) 

Figure 4.le shows the defined surface. 

Fig. 4.1 
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The problem specifications and options used to solve this problem are shown 

in table 4.1. This table is directly printed from the computer screen and 

provides an example for the information which in addition to the numerical 

and graphical results is yielded by the developed program. 

Table4.1: Problem Specifications, Error nonns and Computations time. Test Problem No. 3 

MINIMUM VALC'E OF THE VAlUABLE [X] minxl:= 

MA..1:IMUM VALUE OF 'rHE VAlUABLE [X] maxxl:=-

M:tN!:MUM VALUE OF THE VAJUABLE[x] minx2: = 

MAXIMUM VALUE OF = VAJUABLE[x) ma.xx2:= 

dom.:=-({0, 1), (0, 1)) 

TOTAL NOMBEl!. OF NODES ON x1 D:tlU:C'r:tON [tmlx1] t:cnxl:= 

'rO'rAL NUMBER OF NODES ON x2 D:tlU:C'r:tON [tmlx2] tnnx2:= 

t.:c.n: = 12 

REF:tNEMEN'r FACTOR FOR THE GENERA'r:tON OF NEW NODES [$reff] 

$reff:={$reffxl,$reffx2) $reff:= {2, 2} 

0 

l. 

0 

l. 

3 

4 

DEGltEE OF BASE FUNC'!'::tONS WJ:'r!! RESPECT '1'0 x.l (degxl.] degxl: :z 2 

DEGREE OF BASE FO'NC'!'::tONS WJ:'l'H RESPECT '1'0 x2 [degx2] degx2:• 2 

d.im:=9 
SELECTED WE:tG!I'r FUNCT:tON [wf) :tS: pwf 
EXPL:tC:tT FORM OF THE FUNCT:tON [f] XS: 

2 2 
f[xl,x2J := xl + xl x2 + x 

-13 
ou-error:=4.94049 10 

-13 
PU-dlerror:=9.76996 10 

-12 
DU-d2error:=l.47904 10 

-8 
mindet:=7.486S2 10 

1186.18 Second 
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In order to give a clearer comparison between the numerical and the actual 

results, in figures 4.lf-4.1j we show the cross sections of the above surface 

with the points found by the diffuse approximation scheme. As it can be 

seen from table 4.1 the super-convergent results are found using the base 

functions formed by the tensor product of quadratic polynomials in x1 and 

t. o.a: xl:= 0 
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If we use linear polynomials in x1 and x2 the obtained fit becomes very 

inaccurate. Figures 4.1k-4.1m give examples of the latter results. The facility 

to use symbolic manipulations in all stages of the developed program provides 

a very convenient means to carry out the required trial and error procedures 

for obtaining more accurate results in a very short time. 
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4.2 Numerical Mapping 

There are many instances in the numerical modelling of engineering problems 

that the transformation (mapping) of the problem domain to another sys

tem provides a means for obtaining a better and more accurate solution for 

the governing equations of the model. However, it is seldom possible to find 

explicit analytical transformations for the generation of mappings from an 

original problem domain to a suitable solution space. Numerical techniques 

offer an alternative method for the construction of useful transformations 

required in most types of engineering problems. Using these methods the 

numerical values of the mapping functions are found and a point-wise trans

formation between the original and the target domains is established. 

The development of reliable numerical mapping schemes which can trans

form irregular physical domains to simpler computational domains has been 

an important topic of research for many investigators in the past. A substan

tial review article by Thompson and Warsi (1982) list more than 300 research 

papers published on this subject during the three decades before the 80 s. 

Apparently, the wide-spread application of the finite element method which 

through the use of isoparametric elements can cope with curved boundaries 

has been a disincentive for research in this area in more recent years. How

ever, previously developed methods have continued to be used in numerical 

grid generation schemes (Han et al, 1992). 

Isoparametric finite elements are the most commonly used numerical tools 

for dealing with irregular problem domains. In the context of the finite el

ement technique these elements are generated by a non-conformal mapping 
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between an element with curved boundaries and a master element of regular 

shape (Zienkiewicz and Taylor, 1994). However, in the majority of finite ele

ment applications the used isoparametric mapping is based on the Lagrange 

elements which have a low order of smoothness. The complexity of the de

velopment of similar transformations by Hermite elements has prevented the 

wide-spread utilisation of smoother mappings in the finite element context. 

Theoretical analysis of C1 continuous isoparametric Hermite elements are 

given by Ciarlet and Raviart (1972), Ciarlet (1978) and Brenner and Scott 

(1994). However, these investigators do not propose a practical algorithm for 

the generation of these elements. Lapidus and Pinder (1982) give an explicit 

representation for a type of isoparametric Hermite element which is only C0 

continuous. Thus it is doubtful that this element can be used to construct 

smooth mappings. Petera and Pittman (1994) combined a Lagrange map

ping with a minimisation to develop a numerical method for the generation 

of continuous isoparametric Hermite elements. The technique proposed by 

these investigators is complicated and only gives a transformation for the in

terior of a problem domain. On the boundaries of the domain the numerical 

values of the functions and their derivatives should be found by the use of a 

mollifier. This presents an additional difficulty and imposes a restriction on 

the ease of the application of the method. 

In this section we present a new method for the generation of smooth nu

merical mappings which is based on the use of the diffuse approximation 

technique. This technique is directly based on the described data fitting 

scheme. 

In order to simplify the explanation of the application of the described data 

fitting scheme in mapping problems we introduce the following operator equa-
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tion 

(4.7) 

Therefore the set of the results, R, can be interpreted as the values of the 

function uh generated by the approximation at every point of the set X 
(corresponding to data fitting scheme represented by equation 4.2). Consider 

a domain such as rls defined over a k dimensional space (rls ~ Rk). we refer 

to rls as the source domain. We also define a corresponding target domain 

called rlr, ( rlr ~ Rk). The boundaries of rls and rlr are denoted by 8rls and 

8rlr, respectively. The mapping between the source and the target domains 

is defined in terms of a node-to-node transformation. If we wish to generate a 

boundary-fitted transformation then we choose an identical number of nodal 

points on 8rls and 8rlr. These nodes are designated, respectively, as Ns 

and Nr according to a pre-specified order. This is achieved by the repeated 

implementation of the data fitting operator (4.7). In this operation, N = Ns 

and U is the jth component of the desired map. The described mapping can 

be shown symbolically as 

j=l, ... ,k. (4.8) 

A similar approach should be adopted if the aim of the mapping is to generate 

a computational grid which covers the target domain. In this case the source 

and the target nodes i.e. Ns and Nr should be selected to be within rls and 

rls as well as on 8rls and 8rls. In plane mapping problem, k = 2, and hence 

we need to apply the operator twice. Similarly in the volume fitting problems 

the operator is used three times (k = 3). The most important application of 

the described mapping technique is in the generation of computational grids 

which represent the entire problem domain and boundary fitting is only en

visaged to have a limited use in the solution of boundary integral problems. 

56 



The freedom to use smooth weight functions is the most important aspect of 

the present scheme which allows the generation of smooth mappings. This 

becomes specially important in the generation of space mapping of order C1 

and higher. 

Test Problem No. 1 Application of the diffuse approximation technique 

in plane mapping. 

We consider an annular domain as is shown in figure 4.2a with its corre

sponding target domain shown in figure 4.2b. 
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After the definition of the source and the target domains in order to evaluate 

the effects of the nodal refinement on the accuracy of the results, different 

arrangements of the source and the target nodes (or if boundary fitting is 

desired the source and the target boundary nodes) are automatically gener

ated and used by the program. 

Typical examples of such arrangements are shown in figures 4.2c-4.2h. 
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Using bilinear polynomials in x1 and x2 as the base functions and the power 

function as the weight function the result of the diffuse approximation map

ping from Ns to NT, respectively, corresponding to figures 4.2c and 4.2d is 

shown in figure 4. 2i. In this figure we have used lines connecting the intended 

target nodes to their corresponding points found by the numerical scheme to 

give a graphical measure of the error of the computations. 
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u2 

..... 
I 

To improve this result we have used biquadratic base functions and at the 

same time reduced the number of nodes while keeping the other parameters 

constant. In this case the result of the mapping corresponding to the source 

and the target nodes, shown in figures 4.2e and 4.2f, is given in figure 4.2j. 
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Next the number of nodes is increased but all other parameters are kept 

constant. This result is shown in figure 4.2k. 
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The comparison of the figures 4.2j and 4.2k shows that the increasing of the 

number of nodes on their own does not improve the result. Finally we have 

combined a moderate increase in the number of nodes with using the base 

functions found by the tensor product of cubic polynomials in x1 and x2 to 

carry out the diffuse approximation mapping from the annular section to the 

square domain. The super-convergent result found using this input is shown 

in figure 4.21. In this figure we have used clear circles to show the points 

found by the scheme which exactly coincide with the predetermined target 

nodes. The error norms for this calculation are also shown in figure 4.21. 
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The described automatic trial and error procedure is also used to generate a 

mapping which only includes the boundary nodes in the source and the target 

domains. In figure 4.2m we show the result obtained by the use of biquadratic 

base functions in conjunction with a 5 x 4 arrangement for the boundary 

nodes. The improved super-convergent result found using tensor product of 

3rd order polynomials in x1 and X2 as the base function in combination with 

the 6x5 nodal array is shown in figure 4.2n. 
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The validity of the calculated mapping along the entire boundary of the 

problem domain can be proved by the trace theorem (Kesavan, 1989). How

ever, it is crucial to note that a node-by-node numerical mapping which is 

used to generate a boundary fitting cannot give an overall mapping for the 

problem domain. To demonstrate this point we have calculated the nodal 

positions inside the domain via equation (3.34) and compared them with 

their corresponding target nodes. This result is shown in figure 4.2o which 

indicates that the mapping is not valid for the interior nodes. Therefore the 

recommended use of the boundary mapping is in problems which only involve 

boundary operations such as the calculation of the boundary integrals. 
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Test Problem No. 2 Application of the diffuse approximation technique 

in plane mapping. 

In the previous test problem a conformal mapping between the source and 

the target domains can be constructed. Therefore it may be considered as a 

straightforward mapping problem which may not be adequate for exploring 

the strength and weaknesses of the developed method to a full extent. In the 

present test we consider the mapping of a triangular domain with a curved 

boundary to a triangle with straight sides. 

Such a mapping changes the angles and therefore there is no equivalent con

formal transformation in this case. This calculation is carried out for two 

cases. In case 1 we considered the mapping of a quarter of a circle to a 

triangle. Thus in the source triangle, the intersection points of the curved 

side with the straight sides are ordinary points. In case 2 we analysed a very 

complex situation in which the curved side in the source triangle is tangent 

to the straight sides and hence the corresponding vertices are not ordinary 

single points. 

In the generation of finite element meshes based on triangular elements the 

only possibility to cope with a situation such as this example is to simplify 

the problem by assuming that the sides of the element are not tangent to 

each other. The degree of discretisation error resulting from this assumption 

depends on the overall shape of the problem domain and in some cases it 

may be significant. The first case is a special form of the second problem 

and presents a simplified situation therefore in this discussion we only con

sider the second case. 

In order to be sure that the source nodes in our calculations exactly corre

spond to the true geometry of the problem domain we start with the regen

eration of the entire domain as the arrangement of a very high number of 
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nodal points. Figures 4.2p and 4.2q show two successive nodal arrangements 

converging towards the selected source domain. The total number of nodes 

in figure 4.2p is 1275 and in figure 4.2q is 5050, respectively. After finding 

a sufficiently large number of nodes which can be said to preserve the main 

characteristics of the source domain we choose a limited number of nodes 

from that arrangement to carry out the diffuse approximation mapping. 
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The complexity of this problem is such that we needed to consider many 

different combinations of input parameters in order to obtain accurate results. 

The precision of the numerical calculations also proved to be very important 

in this case and we needed to operate with 20 significant places after the 

decimal point to obtain accurate results. However, the flexibility of the 

diffuse approximation technique and its main strength in the generation of 

high order smooth mappings was demonstrated through this problem and we 

were able to find super-convergent results in many cases. This is achieved 

by using base functions which include transcendental as well as polynomial 

terms. This represents a modification of the standard diffuse approximation 

thchnique which is based on the use of polynomial base functions. 

An example which includes 7 nodes is shown in figures 4.2r (the source nodes) 

and 4.2s (the target and the calculated nodes). The best weight function in 

this case was again found to be the power function and the selected base 

function is 

........ 1 1 1 1 

P = {l,x1,x2,x[,x,i,x[x,i,x1x2} (4.9) 

This combination gave a mapping which has the following error norms : 

Discrete uniform error in u1 direction=8.6327 4 x 10-9 

Discrete uniform error in u2 direction=9.13834 x 10-9. 

Wherein the discrete uniform norm represents maximum absolute magnitude 

of error found at nodal points. 
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Test Problem No. 3 Application of the diffuse approximation technique 

in generating transformations in boundary value problems. 

The developed mapping scheme may be used as a preliminary step for the 

simplification of the solution of the boundary value problems. In general, a 

boundary value problem can be expressed as 

{ 

Lu=f 

Bu=g 

in n 
on on 

(4.10) 

where L is a differential operator and B stands for the boundary operator. 

Using the diffuse approximation scheme the mapping function and its deriva

tives for a desired transformation which maps the physical domain n, to a 

simpler domain n·, is found. 

We apply the developed mapping scheme to a number of examples based on 

the described boundary value problem which have a known analytic trans

formation in a specific target domain. Thus we can generate a corresponding 

numerical transformation for the problem and compare it with its analytic 

counter-part. 

We consider the following Poisson equation defined in the source domain 

shown in figure 4.2t, 

.6.v = 8( -x1 +xi + xD ( 4.11) 

subject to homogeneous Dirichlet boundary conditions. The analytical solu

tion of this equation is 

v = (xt- xz)(Xt + xz)(l- Xt + xz)(l- Xt - xz) 

Using the following transformation 

{ 

Ut= Xt- Xz 

Uz = Xt +xz 
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we find the corresponding transformed equation in the mapped target do

main, shown in figure 4.2.u, as 

( 4.14) 
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Equation (4.14) is again subject to homogeneous Dirichlet boundary con

ditions. The analytical solution of the transformed equation in the target 

domain is 

( 4.15) 

By the application of the diffuse approximation technique to the analytical 

solution given by equation (4.12) we find the numerical counter-part of the 

equation ( 4.15). The comparison of these results is used to investigate the 

accuracy of the numerical transformation of the boundary value problem. In 

the above problem this comparison shows the same order of accuracy as the 

super-convergent mapping which transforms the source domain onto the tar

get domain (the discrete uniform error in both transformations is of the order 

of 10-15
). However, the main factor affecting the accuracy of the mapping of 

the boundary value problem is the smoothness of its solution. This is proved 

by considering different examples in which the source and the target domains 

remain the same (i.e. as are shown in figures 4.2u and 4.2v) but the right 

hand side of equation ( 4.11) is changed to generate non-smooth solutions. 

In the case that the analytical solution of the equation is the square root of 

the solutions given in the above example the discrete uniform error of the 

transformation is found to be of the order of 10-8 . This is 7 orders of magni

tude larger than the error of the domain mapping itself. This error is further 

increased to be of the order of 10-3 in another problem which its analytical 

solution is the 5th root of the original solution shown as equation (4.12). We 

also investigated the effects of a small perturbation in the domain mapping 

on the transformation of the boundary value problem. In this case again 

if the boundary value problem has a smooth solution, a small error in the 

domain mapping has a negligible effect on its transformation. However, in 

cases that the solution is non-smooth a very small error in the domain map-
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ping gives a large transformation error for the problem. This has significant 

implications for the solution of complicated problems by numerical methods 

such as the finite element technique which mainly rely on an approximate 

C0 continuous isoparametric mapping of the curved elements. 

4.3 Solution of Ordinary Differential Equa

tions 

4.3.1 Numerical Solution of Sturm-Liouville Problems 

Sturm-Liouville equations are one of the most frequently used class of or

dinary differential equations in physical science. The most important char

acteristic of these equations is that they represent generalised eigen-systems 

arising in spectral expansions. These expansions provide a very powerful 

technique for the solution of the mathematical models of a wide range of 

engineering processes. Numerous examples of such applications in structural 

analysis and computational fluid dynamics can be found in the literature. 

In recent years, in addition to the previously established applications of the 

spectral expansion methods, new avenues for the utilisation of these tech

niques have also been developed. The application of the spectral expansions 

to the governing equations of tidal dynamics by Smith (1995, 1995, 1997), 

which gives a set of modal equations for water velocity and concentration of 

pollutants in estuaries, is such an example. These modal equations can be 

used to create robust and very cost effective pollutant dispersion models in 

tidal water systems under realistic conditions without using costly full three

dimensional computations. However, the Sturm-Liouville equations arising 
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in tidal dynamics, as well as many other realistic problems, cannot be solved 

analytically. Therefore the development of accurate and robust numerical 

schemes for the solution of this type of ordinary differential equations is es

sential in problems involving spectral expansions. 

We have used the diffuse approximation technique to develop a convenient 

and robust scheme for the solution of Sturm-Liouville equations. An impor

tant new aspect of our work is the utilisation of the power of the diffuse 

approximation method in combining different types of weight and base func

tions for the solution of singular Sturm-Liouville problems. The accuracy of 

the developed method is demonstrated by obtaining super-convergent solu

tions in a number of test problems in which analytical solutions are known. 

Consider the standard form of the Sturm-Liouville equation expressed as 

d [ du] - dx p(x) dx + q(x)u(x)- ..\w(x)u(x) = J(x); a<x<(J (4.16) 

subject to the following 'unmixed type' boundary conditions 

(4.17) 

and 

( 4.18) 

where ..\ is a scalar and, 

i. p, p', q, and ware real-valued and continuous functions in (a, (3), and 

ii. p, and w are positive in (a, (3) (Renardy, and Rogers, 1993). 

A Sturm-Liouville problem is called regular if a and (3 are finite and the 

conditions i and ii are also true at the end points of the domain. Otherwise 

the problem is called singular. In the following sections the solution of the 
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regular Sturm-Liouville problems by the diffuse approximation method is 

described. It is shown that this method can be extended to singular problems. 

We define the following operator 

1 [ d du ) £u = w - dx[p(x) dx + q(x)u(x) 

Therefore equation (4.16) can be written as 

f £u-Au=
w 

The domain of £ is defined as 

(4.19) 

( 4.20) 

( 4.21) 

Using the above definitions the solution of a regular Sturm-Liouvil!e prob

lem can be regarded as an eigenvalue analysis in which the scalar A is the 

eigenvalues of the operator £. Therefore the existence and uniqueness of the 

solution of equation (4.16) depends on A (Renardy, and Rogers, 1993). 

The weak variational formulation of equation (4.16) can be expressed as 

Find u E D(£), such that a(u, v) = F(v) for all v E D(.C) ( 4.22) 

where 

l fJ [ du dv ) lfJ a(u,v)= " p(x)dxdx +Q(x)uv dx+p(u,v)" ( 4.23) 

and 

F(v) = lfJ vfdx ( 4.24) 

and 

Q(x) = q(x)- AW(x) (4.25) 
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Equation ( 4.23) can be discretised in different ways. In this study we have 

used the standard Galerkin method (Brenner and Scott, 1994) to carry 

out the required discretisation. Therefore assuming that Vh is a finite

dimensional sub-space of the defined operator domain we have 

Find uh E Vh, such that 

a(uh, vh) = F(vh) for all, vh E Vh 

(4.26) 

Therefore the substitution of uh from the described diffuse approximation 

technique as 

gives 

N 

N 

uh = LcfJ;u; 
j=! 

L a(cf;;, c/J;)u; = F(cf;j) j = 1, ... , N 
i=l 

( 4.27) 

(4.28) 

Equation ( 4.28) is the working equation of the present scheme which corre

sponds to the standard Galerkin method where vh = c/J;,j = 1, ... , N. 

Test problem No. 1 The following regular Sturm-Liouville problem is 

considered 

_.!!_ [(1 + x2
) du] + xu = -x2(x4

- 31x3 + 20x2
- 20x + 12) 

dx dx 
( 4.29) 

subject to u(O) = 0 and u(1) = 0. This represents a regular problem with a 

smooth right hand side. To solve this problem we used the following set of 

input parameters 

N=8 
P = {(1- x)x, ... , (1- x)6x} 

w = (1- lif)2 
Q =Newton-Cotes order=13 
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In figure 4.3.1a the numerical results obtained by the diffuse approximation 

method and the analytical solution of this problem are compared. As it can 

be seen from figure 4.3.1a the diffuse approximation method easily generates 

a super-convergent result for this problem. The computations are carried out 

using the rational mode in order to show the perfect accuracy of the results. 

In this case all three error norms were found to be 0 (integer). This solution 

was found after 50.5 s using a SUN SPARC work-station. 

u,dau - u, . dau 
0.08 

(a) 

0.06 

0.04 

0.02 

0.2 0.4 0.6 0.8 

DLl-error(f] := 0 

DL2-error(f] := 0 

DU-Error[f]:=O 

Fig. 4.3.1 
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Test problem No. 2 Sturm-Liouville problems arising in practical appli

cations such as the representation of the velocity and concentration modes 

in an estuary, generally depend on the imposition of the natural boundary 

condition on the free surface of the water. We used the following problem 

to impose essential and natural conditions at the boundaries of the solution 

domain 

(4.31) 

subject to u(O) = 0 and u'(l) = 0. The following sets of input were used 

N=8 
~ { 6 p = x, .. . ,x} 

W- (1- J4x2)2 
- 15 

(4.32) 

Q = Gauss-Legendre order=20, order=50, order=78 

In this test the results were obtained by the real mode computations with 

a precision of 30 significant places. These solutions and their corresponding 

error norms are shown in figures 4.3.lb, 4.3.1c and 4.3.1d and compared with 

the analytical solution of the problem. In this case, since one of the boundary 

conditions is included within the weak statement of the problem, the accuracy 

of the results is mainly dependent on the order of the quadrature. As it is 

shown in figures 4.3.1b-4.3.1d at this boundary only after using a very high 

order quadrature the numerical and the analytical solutions converge. It 

took about 90 s in our work-station to generate the solution shown in figure 

4.3.ld. 
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Test problem No. 3 In this test we considered the following regular 

problem with a non-smooth right hand side 

d [ du] - dx - dx +u=5x+6xLnx+x
3
Lnx, O<x<1 (4.33) 

subject to u(O) = 0 and u(1) = 0. Despite the apparent form of the equation 

(4.33), in which the coefficient p(x) is negative, this equation still represents 

a regular problem since its sides can be multiplied by -1 to show that it 

satisfies all of the conditions of the regularity. To solve this problem we used 

the following set of input parameters 

N=10 

P = {(1- x)x, ... , (1- x)x7 } 

w = (1- 1;~2)2 

Q = Gauss-Legendre order=20 

(4.34) 

The results of this test problem, obtained using real mode computations with 

a precision of 50 significant places, and the corresponding error norms are 

shown in figure 4.3.le. 
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Test problem No. 4 In this test we again considered a regular problem 

with non-smooth right hand side, expressed as 

d [ du] -- -- +u=U1(x) dx dx 2 
(4.35) 

where 

0 ifO::Ox<~ 

Ul(x) = .!. if X=~ 
2 2 

(4.36) 

1 iq<x:S::1 

subject to u(O) = 0 and u(1) = 0. In this case an analytical solution is 

found using the Green function. Different combinations of input parameters 

were used to generate the diffuse approximation solution for equation ( 4.35). 

Polynomial base functions were proved to be inadequate for the solution of 

this equation. Therefore we used the following sets of input parameters 

N = 8and6 

P = {(1- x)x, (1- x)x2
, usinx, 

()"sin x(1 - cos(x- mu~ (x),- cos(x- ~)U~ (x)} 

W _ (1- 14x
2

)2 
- 15 

Q =Newton-Cotes order=13, Gauss-Legendre 

order=10, order=22, order=78 

(4.37) 

In the selection of the above base functions we were guided by the form of the 

analytical solution of the problem. In this set of base functions the coefficient 

u is a constant. The diffuse approximation results in this test correspond to 

a generalised solution of a Sturm-Liouville equation with highly non-smooth 

right hand side. The numerical results obtained by various combinations of 

the input options given in expression ( 4.37) are shown in figures 4.3.1f to 

4.3.1i. 
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Test problem No. 5 We finally considered the following singular Sturm-
. 

Liouville problem 

d [ 2 du] 1 " 2 -- -x- +xu=--x,(4x +31x-15) 
dx dx 4 

( 4.38) 

subject to u(O) = 0 and u(1) = 0. 

It should be noted that by the multiplication of the sides of equation 3.10 one 

cannot show that it is a regular equation. This is because that the coefficient 

of the second order derivative in this equation does not satisfy the conditions 

of regularity at the boundaries. We used the following set of input to find 

the solution of this problem 

........ - ~ 7 P- {x2,(1- x)x, ... , (1-x)x} 

w = (1- 11~')2 
( 4.39) 

Q = Newton-Cotes order=20 

In this test we used real mode computations with a precision of 50 significant 

places. The comparison of the numerical and the analytical results and the 

error norms are shown in figure 4.3.1j. The analytical solution of equation 

(4.38) is u = x~(l- x). The uniqueness of this solution can be proved using 

Frobenius theorem (Coddington and Levinson, 1955). 
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As it is indicated by the above results in the solution of Sturm-Liouville 

equations we always could generate accurate solutions by using power weight 

functions. Therefore it seems that this type of weight function is adequate 

in these problems. However, the selection of other types of weight functions 

may prove to be necessary in the solution of partial differential equations by 

the diffuse approximation method. 

4.3.2 Eigenvalue Problems 

In the previous section the application and importance of the Sturm-Liouvi!le 

equations in the solution of eigenvalue problems are described. We recall that 

an eigenvalue problem is of the form 

where 

Find (.\, u) such that 

Lu = .\u, u E D(L) u ¥ 0 and .\ E R 

d [ du] Lu =- dx p(x) dx + q(x)u a< x < f3 

( 4.40) 

( 4.41) 

subject to the boundary condition u(a) = 0 and u(/3) = 0 or u(a) = 0 and 

u'(/3) = 0. 

There is an infinite sequence of real eigenvalues which satisfy the problem 

defined by expression (4.40). These can be shown as 

( 4.42) 

Associated with these eigenvalues there is a complete set of orthonormal 

eigenfunctions expressed as 

(u;, uj) = 1!3 u;(x)ui(x)dx = O;i ( 4.43) 
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These eigenfunctions are also orthonormal in the 'energy inner product' sense 

i.e. 

Using the bilinear form we have 

a( Uj, uk) = J: (puju/, + qujuk)dx = AAk 

Consider the Rayliegh quotient, defined by 

R(v) = a(v, v) = j[p(v')2 + qv2
] 

(v,v) Jv2 

(4.44) 

(4.45) 

(4.46) 

Using strong or Frechet derivative the stationary functions of functional R( v) 

are found which are identical with the eigenfunctions of the standard eigen

. value problem defined by expression (4.40). Alternatively we have 

Find(A,u) uEVandAER 

such that a(u,v) = A(u,v) for allv E V 

(4.47) 

where V is the space of admissible functions and A( u, v) represents an inner 

product multiplied by A. 

The fundamental (or leading) frequency At and its associated normal mode, 

are found as the stationary point (or minimum) and hence 

At= minR(v) 
vEV 

(4.48) 

If we assume that Ez-t is the space spanded by the eigenfunctions Ut, ... , Uz-t 

then 

A!= min R(v) 
vl.Et-1 

(4.49) 

The discretised eigenvalue problem corresponding to expression (4.47) is 

Find (Ah,uh) uh E Vh, A ER 

such that a(uh, vh) = >.h(uh, vh) for all vh E Vh 
(4.50) 
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Using the diffuse approximation scheme the approximate function uh can be 

written in terms of the shape functions as 

N 

uh = LifJPi (4.51) 
j;l 

Therefore equation ( 4.50) becomes 

N N 

L a(I/J;, 1/Ji)U; = >..h L(I/J;, 1/Jj)U; j = 1, ... , N ( 4.52) 
i=l i=l 

or 

( 4.53) 

which represents a generalised algebriac eigenvalue problem. The solution of 

this system of equations yields the approximate eigensystems which are used 

to generate spectral expansions in problems such as tidal dynamics (Smith, 

1995). The essential step in the solution of eigenvalue problems is to find 

>..h by setting the characteristic polynomial of equation ( 4.53) to zero. Af

ter the insertion of the eigenvalues found by the solution of characteristic 

equation into the standard eigenvalue problem it becomes identical to the 

solution of the Sturm-Liouville equations. However, it should be noted that 

equation ( 4.53) is in general sensitive to small perturbations of its coeffi

cients. Therefore small errors in the calculation of eigenvalues may give rise 

to unacceptably large errors in the calculation of eigenfunctions. In the fol

lowing examples the standard eigenvalue problem is solved using Dirichlet 

and Neumann boundary conditions and in each case by the comparison with 

the analytical eigenvalues the error of the numerical solutions are found. 

Test problem No. 1 Consider standard eigenvalue problem given as 

_.:!:._ [du] - >..u = 0 
dx dx 

(4.54) 
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subject to the boundary conditions u(O) = 0 and u(1) = 0. To solve this 

problem the following set of input were used 

Precision = 50 

R = {o,o.1, ... , L} 

P={x(1-x), ... ,(1-x)9x} 

W = (1. - 0.907029x2
)

2 

Q = Gauss-Legendre order= 18 

(4.55) 

By the comparison of the analytical and numerical eigenvalues we have 

Error[.X.1] := 9.9458210-12 

Error[.X.2] := 4. 7614810-8 

Error[.X.3] := 0.000191657 

Error[.X.4] := 0.0432937 

Error[.X.5] := 1.70621 

Error[.X.6] := 21.1687 

Error[.X.7] := 135.23 

Error[.X.8] := 666.435 

Error[.X.9] := 4174.58 

The increasing error of eigenvalues renders the members of eigenfunctions 

corresponding to eigenvalues beyond the first three leading values useless. 

However, in most practical eigenfunction expansions only leading members 

are used. As it is shown in the solution of Sturm-Liouville equations, if it is 

needed, we can reduce the error of the intermediate and final calculations in 

this application by increasing the order of qudrature. 

Test problem No. 2 Solution of standard eigenvalue problem given as 

- .!!._ [du] - .X.u = 0 
dx dx 

( 4.56) 
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subject to the mixed boundary conditions of u(O) = 0 and u'(1) = 0. To 

solve this problem the following set of input were used 

Precision = 50 

R = {o, 0.142875, ... , o.857143, L} 

-- 2. 7 P-{x,x, ... ,x} (4.57) 

W = (1. - 0.907029x2)
2 

Q = Gauss-Legendre order=78 

In this case again the leading eigenfunctions were found with sufficient accu

racy. The corresponding error for eigenvalues are 

Error[.\!] := 0.000332956 

Error[.\2] := 0.00206973 

Error[.\3] := 0.0650484 

Error[.\4] := 1.36772 

Error[.\s] := 24.2389 

Error[.\6] := 161.331 

Error[.\1] := 1263.99 

This test problem corresponds to the generation of the eigenfunctions re

quired in the modal expansion of tidal dynamics equations. Under practical 

conditions only two or at most three modal tidal flow equations are used and 

hence only the error of the first three eigenvalues affect the outcome of the 

spectral expansions in these problems. 

4.3.3 Numerical Solution of Fourth Order Ordinary 

Differential Equations 

Consider the standard fourth order differential equation expressed as 

d
2 

[ d
2u] dxz p(x) dxz + q(x)u(x) = f(x), X E [a, ,13) (4.58) 
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subject to boundary conditions 

u(a) = u'(a) = 0, u(/3) = u' ((3) = 0 ( 4.59) 

In classical case, where the right hand side, i.e. the function f, is smooth we 

define 

a(u,v) = 1~ [d~2 [p(x)~~] +q(x)u]vdx ( 4.60) 

integration by part gives 

1~ [ d2 [ d
2u] 

a dx2 p(x) dx2 vdx = ( 4.61) 

1~ [ d [ ~u] dv d
2 

[ d2u] ~~ 
- a dx p(x) dx2 dx dx dx2 p(x) dx2 V a 

After the application of the boundary conditions and simplification and again 

using integration by part we have 

(4.62) 

Again using boundary conditions we have 

a(u,v) = t [p(x)~:~~~ +q(x)uv]dx (4.63) 

Using bilinear form defined by equation ( 4.63) and the following linear func-

tional 

F(v) = 1~ vfdx (4.64) 

the variational formulation of the defined bondary value problem is now 

represented as 

Find u E HJ(a, (3), such that 

a(u, v) = F(v) for all v E Hg(a, (3) 
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which after the discretisation in usual manner gives the following working 

equations 

N 

L a(rj;;,rf;j)c; = F(rf;j) j = 1, ... ,N (4.66) 
j=l 

Test problem No. 1 Solution of a fourth order O.D.E. with a smooth 

r.h.s. 

d
2 

[ d
2u] dx2 (1 + x2

) dx2 + xu = x2(360- 1680x + 2580x2- 3528x3 + (4.67) 

3136x4 + x5 
- 2x6 + x7

) 

subject to u(O) = u'(O) = 0 and u(1) = u'(1) = 0. To solve this problem the 

following set of input were used 

Precision = 50 

R = {o., 0.166667, ... , 0.833333, L} 

P = {(1- x) 2x2, ••• , (1- x) 2x6 } 

W = (1 - 1.4166666x2)2 

Q = Gauss-Legendre order=10 

The discerete uniform norm of error for this approximation is 

DU-Error= 0. 

(4.68) 

( 4.69) 

This corresponds to the super-convergent result shown in figure 4.3.3a. 
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Test problem No. 2 Solution of a fourth order O.D.E. with r.h.s. corre

sponding to a function with a singular point 

d2 [~u] , 
dx2 dx2 + u = x- 2 ( -15- 210x + 945x2 + 16x4

- 32x5 + 16x6
) (4.70) 

subject to u(O) = u'(O) = 0 and u(1) = u'(1) = 0. To solve this problem the 

following set of input were used 

Precision = 50 

R = {o.,o.166667, ... , o.s33333, L} 

P = {(1- x)2x2, .•. , (1- x) 2x6 } 

W = (1 - 1.4166666x2) 2 

Q = Gauss-Legendre order=10 

The result of this approximation is shown in figure 4.3.3b. 
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The discrete uniform error for this solution is 

DU-Error = 0.0000523096 (4.72) 

This error can be reduced by replacing the base function (I - x) 2x6 with 

(1- x)2x~ and increasing the order of quadrature to 15 which gives 

DU-Error= 0.0000218514 (4.73) 

Test problem No. 3 Solution of a fourth order O.D.E. with r.h.s. corre

sponding to a function with two singular points 

d2 [d2u] 1 ' ' dx2 dx2 +u= 
16

x- 2 (I-xt2 (-15-360x+4320x2 -9600x3 +(4.74) 

5776x4 
- 64x5 + 96x6 

- 64x7 + 16x8
) 

subject to u(O) = u'(O) = 0 and u(l) = u'(1) = 0. To solve this problem the 

following set of input were used 

Precision = 50 

fJ = {o., 0.166667, ... , o.833333, 1.} 

P = {(1- x) 2x2
, .•. , (1- x) 2x6} 

W = (1- 1.4166666x2) 2 

Q = Gauss-Legendre order=lO 

The analytical solution of the given differential equation is 

7 5 
u=(l-x)>xz 

(4.75) 

(4.76) 

As it is clear from the input parameters in this problem we used the standard 

diffuse approximation method with polynomial base and weight functions 

and a relatively low order quadrature. However, despite the existence of two 

singular points an accurate result with the following small error was obtained. 

DU-Error= 0.0000642917 (4.77) 
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The numerical and the analytical solutions of this test problem are compared 

in figure 4.3.3c. 

u,dau 

0.015 

0.0125 

0.01 

0.0075 

0.005 

0.0025 

- u, . dau 

-lL-..,.-,--,-...,.-,....,.--?-...x 
0.2 0.4 0.6 0.8 1 

Fig. 4.3.3c. 

Test problem No. 4 Solution of a fourth order O.D.E. with r.h.s. corre

sponding to a function with strong singularity 

( 4.78) 

subject to u(O) = u'(O) = 0 and u(l) = u'(l) = 0. The right hand side is 

given as 

f (x) = 

1375000 (1-lx) 2 {-l+x):t 20000 (-l+X) 2 60000 (-l+x) (-1+2X) 

{13-50x+50x2 )' (13-50x+50x2 )
3 (l3-50x+SOx2) 3 

7500000 (-l+x)' C-1+2x)' (ArcTan[S] +Arc'ran[10 (--i-•x)]) 

(13- 50 X+ S0x4) 4 

400000 (l- 2 x)' ( -l + x) (Arc'ran[S] + Arc'ran[ 10 (- -i" + x)]) 

(13- so x+ sox2 )
3 

300000 (-1+x) 2 (-l+2x) (Arc'ran[S] +Arc'ran[lo (--i-•x)]) 

(13-S0x+50x2 )
3 

• 

+ 

600 ·-------:-
(13-50x+50x2)2 

BOOO (-1+x) (ArcTan[S] +ArCTan[10 (--i-•x)]) 6000 (-l+2x) (Arc'ran[S] +ArcTan[lO (--i"•x}]) 

(13- SOx+ sox:z):t (13- so x +so x2) 2 

(-l+x) 2 (Arc'I'an[S] ..,Arc'l'an[lo (-~ +x)Jf 
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The analytical solution of equation ( 4. 78) is 

1 
u = (1- x)2(ArcTan[5] + ArcTan[10(x- 2')])2 (4.79) 

Using the following input corresponding to the standard diffuse approxima

tion method a numerical result which is very close to the analytical solution 

is found (DU-Error= 0.). As it can be seen from the following data a very 

high order quadrature was used to find such an accurate result. 

Precision = 50 

R = {o., 0.166667, ... , 0.833333, 1.} 

P = {(1- x) 2x2, ••• , (1- x) 2x6 } 

W = (1 - 1.4166666x2) 2 

Q = Gauss-Legendre order=78 

(4.80) 

The numerical and the analytical solutions of this test problem are compared 

in figure 4.3.3d. 

u,dau - u, . dau 

0.05 

0.04 

0.03 

0.02 

0.01 

¥--,;--,-,.-,~-,-....,_....,-~X 
0.2 0.4 0.6 0.8 1 

Fig. 4.3.3d. 

4.4 Approximation of the Trace Operator 

The trace of a smooth function u is denoted by ulan, which defines the 

restriction of u on the boundary given by 8f2. The main applications of this 
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operator are in the theory of partial differential equations, derivation of the 

Green's formula and in the characterisation of the Hilbert spaces such as 

H 1(r!) and H 2(r!). Mathematically rigorous definition of the trace operator 

is based on the following expression which characterises the operator as a 

continuous linear mapping (Ciarlet, 1978) 

(4.81) 

In order to develop a diffuse approximation for the trace operator we consider 

the following problem. 

Find u : fl -+ R such that 'You = g ( 4.82) 

This is similar to the mapping problem described earlier in this chapter. 

Therefore the approximation of the trace operator can essentially be treated 

as a surface fitting application. The details of the generation of the diffuse 

approximation scheme for a surface fitting problem is described in section 

4.1 and is not given here. However, in this section we give a new application 

for this scheme which can be used to solve differential equations with non

homogeneous boundary conditions. For simplicity we describe this technique 

in the context of the solution of the Poisson equation with non-homogeneous 

Dirichlet boundary conditions and hence we restrict ourselves to the trace of 

the function value itself. Consider the following Poisson equation 

{ 

-t..u(x) = f 

u = g on an 
(4.83) 

where g E Ht(ar!) and f E L2 (r!). 

According to the trace theorem there exists u E H 1(r!) such that 

ii.lan = 'Yo( u) = g ( 4.84) 
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Now we define 

( 4.85) 

It can be easily shown that K is a closed convex set in H 1(D) (Kesavan, 

1989). The corresponding weak fomulation of this problem is 

Find u E H 1(D) such that ( 4.86) 

a(u, v) = F(v) for all v E HJ(n) 

where 

a(u,v) = k 'Vu'Vvdn (4.87) 

and 

F(v) = k fvdn ( 4.88) 

The solution depends on the continuity of u with respect to f and g. We 

assume that g E H!(an) therefore there exits a constant C independent of 

g such that 

11 u III,n::; C(l/lo,n + IYI!,anl ( 4.89) 

The required continuity of u in terms of the f and g, is stated by inequality 

( 4.89). This inequality is always true, in Hadamared sense(Stoer and Bulirsch 

1980), and hense the described variational problem is well posed and the 

existence and uniqueness of its solution is guaranteed. The application of 

the trace operator to the right hand side of the variational problem (i.e. 

equation 4.88) gives 

Fo(v) = k fvdD.- k 'Vu.'VvdD. ( 4.90) 
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which corresponds to a problem with homogeneous boundary conditions. 

However, in general it is not possible to find the trace function u to carry 

out such a simplification. Accurate calculation of a numerical function uh by 

the diffuse approximation technique resolves this problem. In the following 

section we describe the diffuse approximation solution of partial differential 

equations with homogeneous boundary conditions. The combination of the 

approximation of trace operator with such solutions provides an algorithm 

for the solution of differential equations with non-homogeneous boundary 

conditions. 

Test problem No. 1 Let 11 be a unit square domain with a function g 

defined on its boundary 811 as 

g: 811 -t R 

where 

1 
g(x) = x1(1- x1)(1- x2)[ArcTan(15) + ArcTan(30(x2- 2))] (4.91) 

The approximation of the trace operator is based on a diffuse approximation 

mapping carried out using the following input data 

Precision = 50 

lf={{0,0},{0,~}, ... ,{1,~},{1,1}} 
~ { . j } P= xtx2 , i,j=0,2 

(4.92) 

w = (1- 0.565685 11 X 11
2

)
2 

In order to make this approximation accurate the mapping is not restricted 

to the boundary nodes (see section 4.2, test problem no. 1). However, this 

does not result in loss of generality the present solution. This is because that 

according to expression ( 4.82) the only objective to be satisfied is to make 

the traced function ( u) equal to g on the boundary of the domain and in the 
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interior nodes it can take arbitrary values. In this example in the interior 

nodes u is assumed to be one. As it can be seen in figure 4.4a, although, the 

defined function has a sharp bend in the interior of the domain, neverthless 

it is smooth along the boundary (it is uniformly zero on the boundary). In 

this case a very accurate result for this mapping (trace approximation) is 

generated which its error on random points located on the boundary is of 

the order of 10-14 • We considered a counter example in which 

1 
g(x) = (1- x1)(1- x2)[ArcTan(15) + ArcTan(30(x2- '2))] ( 4.93) 

This function corresponds to figure 4.4b and as it can be seen it has a sharp 

knee on the boundary as well as bending within the domain. The maximum 

error on random points located on the boundary in this case, using the same 

input as before, is 0.55. A conclusion which can be drawn from this example 

is that in the solution of nonhomogeneous boundary value problems by the 

present method it may be necessary to use two different sets of input for 

trace approximation and the solution of the resulting homogeneous problem. 

4.5 Numerical Solution of Partial Differential 

Equations 

Let n ~ Rk be an open bounded domain with a sufficiently smooth boundary 

an and D = n u an. We consider the problem 

( 4.94) 

u = 0 on an (4.95) 
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The variational formulation corresponding to this equation can be expressed 

as 

where 

and 

Find u E HJ(n) such that 

a(u, v) = F(v) for all v E HJ(n). 

k k 

1[ ~ 8uav ~ au ] 
a(u, v) = L.. a;1'{):'{): + L.. a;~v + a0uv dn n .. _

1 
x, x3 ._

1 
ux, 

'I.,J- '1.-

F(v) = 1 fvdn 

( 4.96) 

( 4.97) 

( 4.98) 

The bilinear form a( u, v) cannot, in general, be assumed to be symmetric 

and hence the existense and uniqueness of a solution for this equation is not 

guaranteed. However, the investigation of the solution of this equation in 

its most general form is out side the scope of this project and to avoid the 

existense and uniqueness problems we only focus on the solution of elliptic 

equations. 

4.5.1 Poisson Equation with Homogeneous Boundary 

Conditions 

The Poisson equation is a special case of the problem given by equation ( 4.94) 

and is expressed as 

n a 8u -I: -(a;j-l + aou = 1 in n 
.. !OX; axj 
't,J;; 

( 4.99) 

subject to the following boundary condition 

u = 0 on an ( 4.100) 
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In equation ( 4.97) the coefficient a;j E C1 (D) satisfies the ellipticity condition 

and a0 E C(D). If f E L2 (n) then a weak solution of this problem is 

u E HJ (n) satisfying 

a(u, v) = F(v), for all u E HJ(n) (4.101) 

where 

(4.102) 

and 

F(v) = 1 fvdn (4.103) 

To derive the working equation of the present scheme we consider 

{ 

-.6.u(x) = f in n 
u = 0 on an 

(4.104) 

where n ~ R2
, k :::0: 1 is a bounded open set with a smooth boundary an. 

It can be shown that if an is smooth enough and f E L2 (n) then u E 

H2 (n) n HJ(n) and if f E Hm(n), then u E Hm+2(n) (Kesavan 1989). In 

this case there exists a constant C > 0 depending on n such that 

(4.105) 

Inequality (4.105) gives the continuity of u in terms of f. Because the exis

tence, uniqueness and continuity of the solution are always quaranteed there

fore the stated problem is 'well-posed' in Hadamared sense (Stoer and Bu

lirsch 1980). 

Analogous to the ordinary differential equations the main steps in the deriva

tion of the working equation of the partial differential equations are (i) the 

discretisation of variational problem by a weighted residual technique such 
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as the Galerkin method and (ii) substitution of uh in the weak formulation 

in terms shape functions given as 

uh = L </J;juii 
ij 

(4.106) 

This leads to the derivation of the working equation of the diffuse approxi

mation method for the Poisson equations expressed as 

L a(</Jij> <Prs)Uij = F(!/>rs) 
iJ 

(4.107) 

Test problem No. 1 Solution of a Poisson equation with a smooth right 

hand side subject to homogeneous boundary condition 

{ 

-flu( X) = -2(xi +X~ - X1 - X2) in f! 
(4.108) 

u=O on 8!1 

where x = {x1, x2} and f! = [0, 1] x [0, 1]. The analytical solution of this 

equation is 

In this test problem the given input data are 

Precision = 10 

~ 1 2 { !V= {{0,0},{0,3}, ... ,{1,3}, 1,1}} 

P = {xt(l- xt)~(1- x2), i,j = 1, 2} 

W = (1 - 0.222222 /1 X /1 2
)

2 

Q = Gauss-Legendre orderx1=4, orderx2=4 

(4.109) 

(4.110) 

where the two dimensional quadrature is constructed by the use of two 

quadratures of orders orderx1 and orderx2. The discrete uniform error norm 

in this solution is 

DU- Error[u] := 0.0100796 (4.lll) 
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The numerical and the analytical solutions in the interior nodes of this do

main are compared in the following table 

NODE NO. ANALYTICAL SOLUTION NUMERICAL SOLUTION 
1 0.0493827 0.0393030 
2 0.0493827 0.0413390 
3 0.0493827 0.0413390 
4 0.0493827 0.0434812 

Test problem No. 2 Solution of a Poisson equation with two singular 

points subject to homogeneous boundary conditions. Consider the following 

equation 

{ 
-D.u(x) = f(x) 

u=O on 8!1 
(4.112) 

where X= {x1, Xz}, (} = [0, 1] X [0, 1] and the r.h.s. is 

f(x): -(4(-10x1(-l+x2)3x2l+(-l+:Kl)2x24+x1' (l;l0x2\10x2'-): 
s l l.Sx2 Jlx22 +1Sxi3) +xl2x22 (20-l00x2+13Sx2 -64x2 +10x2) + 

~=~3 ~(;_SO~+ 108x2l _ 81x2l + 1Sx2') +"-1' (1- 30 x2 + 135x22 -162x23 
+ 54x2"))) I 

) '") (9 ((-l+xl) xl (-1+x2) x2 (x1+x2) 
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The analytical solution of this equation is 

In this test problem the given input data are 

Precision = 50 

fir= {{0,0},{0,!}, ... ,{1,~},{1,1}} 
P = {xi(1- xt)~(1- x2), i,j = 1, 2} 

W = (1- 0.222222 Jl X [[ 2)2 
~ 

(4.113) 

( 4.114) 

Q = Gauss-Legendre orderx1=4 or 10, orderx2=4 or 10 

Because of the existence of two singular points this equation is more difficult 

to solve than the previous problem. However, as it is shown in the following 

table the diffuse approximation result can be improved by increasing the or

der of quadrature. 

NODE NO. ANALYTICAL SOLUTION NVMERICAL SOLUTION NUMERICAL SOLUTION 
order of quadrature - ~x_, order of Quadrature =IOxiO 

I 0.010551~ I 0.01077~ 0.0108028 
2 0.0181175 0.0168931 0.0170962 
3 0.0181175 0.0168931 0.0170962 
4 0.0265879 0.0236961 0.02~0897 

The improvement of the result of the numerical solution by increasing the 
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order of the quadrature is reflected on the discrete uniform error norm for 

the solutions shown in the above table. These norms of error are 

DU- Error[u] := 0.00289178 

and 

DU - Error[u] := 0.00249819, 

respectively. 

Test problem No. 3 Generalised solution of the Poisson equation subject 

to homogeneous boundary conditions. To show the flexibility of the diffuse 

approximation method in solving Poisson equations with highly non-smooth 

right hand sides we consider the following problem. This problem was orig

inally proposed by Rachford and Wheeler, (1974) to test the convergence 

property of the H-1-Galerkin method, and was used again by Babuska et al. 

(1977) to test the mixed-hybird finite ·element method. 

{ 

-6.u(x) = f(x) 

u = 0 on an 
in n 

{4.115) 

where X= {x1,x2} and fl = [0, 1] X [0, 1] and 

f (x) = 

-l8l(-150+145xl-28Bxl2 +264xl.3 -144xl' -+-4Bxl5 +145x2+260lClx2-l92x1
2

x2+176x.l
3

x2-

96x1' x2 + 32xl5 x2- 28Sx22 -192xlx22 + 264x23 + 176xl:IC23
-

1 
144 x2"' - 96 xl x2' + 48 x2 5 + 32 xlx25 ) ArcTan( 2 J -

(-1+x1} (5-4x1+4x12)
2 (3+2:x2)Are'l'a.n[~-xl]-

(3 • 2x1) (-l•x2) (5- 4x2 • 4x2')' ArcTo.n( ~ -x2J)) / 

((5-4X1+4x12 )
2 

{5-4x2+4x22 )
2

) 
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The analytical solution of this equation is 

1 1 
u = (1- x1)(1- xz)(ArcTan[

2
vJ- ArcTan[v(2- x1)]) 

1 1 
(ArcTan[

2
vJ- ArcTan[v("2- xz)]) 

In this test problem the given input data are 

Precision = 50 

- 1 2 } f{ = {{0,0},{0,3}, ... ,{1,3},{1,1} 

P = {xi(l-x!)~(l- xz), i,j = 1,2} 

W = (1 - 0.222222 11 X 11 2) 2 

Q = Gauss-Legendre orderx1=8, orderx2=8 

(4.116) 

(4.117) 

where the two dimensional quarature is constructed form two quadratures of 

orders orderxl and orderx2. The result of this approximation for v = 1 is 

given in the following table 

NODE NO. ANALYTICAL SOLUTION NUMERICAL SOLUTION 
1 0.0163479 0.0353117 
2 0.1172240 0.1653911 
J 0.1172240 0.1653911 
4 0.8405630 0.5665346 
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In order to show the improvement of the numerical results by increasing 

the order of quadrature we solved a more 

which v = 10. Improved numerical results 

ture for this equation are shown in the foil 

difficult equation of this type in 

obtained using a 10 x 10 quadra

owing table 

NODE NO. ANALYTICAL SOLUTIO N NUMERICAL SOLUTION 
1 0.0396007 0.0393402 
2 0.0417100 0.0413617 
3 0.0417100 0.0413617 
4 0.0439316 0.0434875 
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4.5.2 Biharmonic Equation with Homogeneous Bound

ary Conditions 

Let n E R2 be an open bounded domain with boundary an and D = nU an. 
We consider the problem 

inn 

on an 
(4.118) 

where f E L2(n) is a given function. We define the following bilinear form 

a(u, v) = L t::. 2uvdrl. (4.119) 

Using Green's formula twice and simplifying the result by the application of 

boundary conditions we have 

a(u, v) = L t::.ut::.vdrl. (4.120) 

We define the linear functional F as 

F(v) = 1 fvdrl. (4.121) 

The weak formulation corresponding to the biharmonic problem (4.118) is 

Find u E Hg(n) such that 

a(u, v) = F(v), for all u E H~(rl.) 

(4.122) 

( 4.123) 

The regularity of the weak solution of the biharmonic problem depends on 

the geometry of domain n. If n belongs to the class of coo domains then 

u E H6(n). However for a polygonal domain (or generally for a Lipschitz 

domain) u E HJ(n) (Konderatev, 1967). Using the described diffuse approx

imation uh is expressed in terms of shape functions as 

uh = 2: </J;iuii 
ij 
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The substitution of uh from equation (4.124) into the discretised form of 

expression ( 4.123) and carrying out the weighted residuals procedure, such 

as the Galerkin method, gives the working equation of the present scheme 

expressed as 

L a(<Pij, <Prs)Uij = F(<Prs) 
i,j 

(4.125) 

There is an alternative way in which a weak formulation for the biharmonic 

equation can be developed. This method is suggested by Ciarlet and Raviart 

(1974) and is based on an earlier work by Glowinski (1973). Using this 

method the solution of biharmonic problem can be reduced to a sequence of 

discrete Poisson equations with homogeneous and nonhomogeneous Dirichlet 

boundary conditions. However, in practice the application of this method in

volves the handling of nonhomogeneous boundary conditions which in general 

is not a trivial matter. In the context of the present diffuse approximation 

method we can use this technique through the method described in section 

4.4 for the approximation of the trace operator. 

Test problem No.1 Solution of the biharmonic equations with smooth 

right hand side subject to homogeneous boundary conditions. Consider the 

example 

{ 
6.2u = 8(1- 6x~ + ... + 3x~) m n 
u = ~~ = 0 on an 

The analytical solution of this problem is 
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In this test problem the given input data are 

Precision = 50 
........ - 1 3 N- {{0, 0}, {0, ;j}, ... , {1, 4}, {1, 1}} 

P ={xi(!- xt)~(1- x2), i,j = 2, 3} 

W = (1- 0.395061711 X 11 2) 4 

( 4.128) 

Q = Gauss-Legendre orderx1=20 or 35, orderx2=20 or 35 

The analytical and the numerical solutions found in the interior nodes of 

the problem domain using 20 x 20 and 35 x 35 quadrature are shown in the 

following table. As it is expected by increasing the order of quadrature the 

numerical solution is improved. 

NODE NO. ANALYTICAL SOLUTION NUMERICAL SOLUTION NUMERICAL SOLUTION 
order or auadrature -20x20 order or auadrature =35x35 

1 0.0012359 0.0021264 0.0009819 
2 0.0021972 0.0018199 0.0031134 
3 0.0012359 0.0021264 0.0009819 
~ 0.0021972 0.0018199 0.0031134 
5 0.0039062 0.0089011 0.0048196 
6 0.0021972 0.0018199 0.0031134 
7 0.0012359 0.0021264 0.0009819 
8 0.0021972 0.0018199 0.0031134 
9 0.0012359 I 0.0021264 0.0009819 
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4.5.3 Three Dimensional Poisson Equation 

with Homogeneus Boundary Conditions 

The derivation of the working equation of the diffuse approximation scheme 

for the three dimensional Poisson equation with homogeneous bounbary con

ditions is very similar to the two dimensional case and is not repeated here. 

The main purpose of the following example was to evaluate computational 

time requirement for a benchmark three dimensional problem. 

Test problem No.1 Consider the following equation 

{ 

-b.u(x) = f(x) on n 
u = 0 on an 

where X= {x1,X2,X3} and f! = [0, 1] X [0, 1] X [0, 1] and 

a2u a2u a2u 
b.u = a 2 + a 2 + a 2 

and 

xi x2 x3 

f(x) = 2(( -1 + x2)x2(-1 + x3) + xi(-x2 + x~ + 

( -1 + X3)X3) + X1(X2- X~+ X3- xD) 

The analytical solution of this equation is 

In this test problem the given input data are as 

Precision = 50 

fiT= {{O,O},{O,t}, ... ,{l,~},{1,1}} 
- .. k 
P = {xi~x3 (1- xJ)(1- x2)(1- x3), i,j, k = 1, 2} 

W = (1 - 0.480000 11 X 11
2

)
2 

Q = Gauss-Legender 

orderx1==4, or 10 orderx2=4, or 10 orderx3=4 or·lO 
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where the three dimensional quarature is constructed form three 1-dimensional 

quadratures of orders orderxl, orderx2 and orderx2. The anlytical and the 

numerical results for this problem using 4 x 4 x 4 and 10 x 10 x 10 quadratures 

for the interior nodes in the cubical domain are given in the following table. 

The computational time for these runs were 2.5 and 46 hours, respectively. 

This indicates that for practical problems it may be necessary to use sparse 

matrix techniques in conjunction with parallel processing to obtain accurate 

diffuse approximation results. 

The comparison of results obtained using 4 x 4 x 4 and 10 x 10 x 10 quadra

tures indicates that the accuracy of solution cannot simply be increased by 

only increasing the order of the quadrature used. In order to achive better 

results order of quadrature, number of nodes and degree of polynomial base 

function should be changed in combination. 

4 

5 
6 

7 0. 
g 

o.olo97Rt • 
o.onooo9 

0.0110009 
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Chapter 5 

Conclusions and Suggestions 

for Further Developments 

The main topic of the present research has been the generalisation of the 

diffuse approximation technique and its application to the derivation of a 

meshless scheme for the boundary value problems. These objectives have, 

essentially, been fulfilled and the theoretical foundation of the 'General Dif

fuse Approximation' has been established. 

A consequence of the theoretical generalisation of the diffuse approxima

tion scheme is the derivation of the classical interpolation models and the 

finite difference and the finite element procedures as the special cases of this 

method. Therefore the effort has been focused on the development of a com

putational environment where by the utilisation of appropriate algorithms 

any of the described approximations, as well as the general scheme itself, 

can be used. The potential benefit of adopting such an approach is that, in 

any given problem, the most suitable approximation technique can be readily 

generated. Fundamental requirements for the establishment of such an en

vironment are: the definition of a general approximation space in which, by 
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the manipulation of the input, the nature of the approximation scheme can 

be determined, and the use of symbolic programming to achieve the required 

flexibility in the computational algorithms. The general diffuse approxima

tion technique developed in this project satisfies these conditions and hence 

the research has lead to the creation of a powerful practical scheme which 

has a very wide range of applicability. 

The applications of this scheme to data fitting, plane mapping, solution of 

ordinary differential equations, eigenvalue problems and the solution of ellip

tic partial differential equations have been investigated. The analyses of the 

results obtained by the described applications provide the basis for the main 

conclusions of this project. These conclusions are as follows. 

1. The developed diffuse approximation scheme provides a robust tech

nique for dealing with non-smooth and irregular functions in all of the 

above described problems. The flexibility of the scheme allows the 

utilisation of weight and base functions with any desired order of con

tinuity which makes it particularly appropriate for irregular problems. 

Therefore in addition to the generation of highly accurate solutions for 

regular examples in each category of described applications the capa

bilities and the suitability of the developed scheme in these problems 

is demonstrated by: 

i. Generation of super-convergent fit for discontinuous functions 

ii. Obtaining very accurate mappings between geometrically complex 

source domains and regularly shaped target domains 

iii. Obtaining accurate generalised solutions for non-smooth and sin

gular Sturm-Liouville equations 

iv. Obtaining accurate solutions for fourth order ordinary differential 
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equations with non-smooth right hand sides 

v. Obtaining accurate generalised solutions for Poisson equations 

with non-smooth right hand sides. 

2. The application of the diffuse approximation to the mapping of bound

ary value problems shows an inherent difficulty associated with the 

use of mesh dependent methods such as the finite element technique. 

The underlying reason for this difficulty is the inability of piecewise 

polynomials, used in the mesh dependent methods, to generate smooth 

transformations for the unknown functions between source and target 

domains. The numerical tests show that the transformation errors for 

irregular functions can be orders of magnitude higher than the error 

of the geometrical mapping itself. Unlike the ordinary discretisation 

error, which can be reduced by mesh refinement, this problem cannot 

be resolved if a domain sub-division is used. 

3. Although the facility to use different combinations of weight and base 

functions and the quadrature method is the core reason for the power 

of the diffuse approximation technique, nevertheless, without the use of 

symbolic programming, in practical problems the full potential of the 

method cannot be realised. 

4. The detailed comparison of the present general diffuse approximation 

scheme with the previously reported meshless methods has showed the 

weaknesses of the latter methods. These weaknesses mainly stem from 

the use of specific techniques to formulate the meshless approximation 

which restrict the general applicability of the developed method. At a 

practical level, however, in cases where the mathematical modelling of 

a complicated problem is the immediate objective of the approximate 
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solution it may be more convenient to use a less general approach to 

generate solutions. It is envisaged that by further developments of 

the computational tools, such as the computer hardware and symbolic 

programming, this option may become totally redundant in near future. 

Suggestions for Further Work . 

In this project the main focus has been on the development of the general 

diffuse approximation technique and its immediate applications in different 

classes of problems of practical interest. However, there are important as

pects of this techniques which need further investigations. The most impor

tant items amongst these aspects of the developed scheme which should be 

addressed in future are as follows. 

In chapter two, the previous works related to the stability and convergence 

analyses of the meshless methods are mentioned. Obviously a more general 

approach is needed to provide such analyses for the present scheme. This will 

inevitably give a theoretically more rigorous error analysis for the generalised 

scheme. This is because that, as it is shown in chapter three, the process of 

generalisation itself provides a theoretical facility for these analyses. 

The speed of computations required in general diffuse approximation solu

tions can be enhanced using following techniques: 

1. Development of computer programs based on using a combination of 

the symbolic language with other languages, such as extended FOR

TRAN or C++, in a way that purely numerical calculations can be 

done by specifically written efficient algorithms, 

ii. The utilisation of parallel processing algorithms in the development of 

computer programs 
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iii. The application of numerical procedures such as the sparse matrix tech

niques to increase the speed of calculations. 

A consequence of the generalisation of the diffuse approximation technique 

has been the possibility of developing a semi-discrete method in which the 

left hand side on the working equation of the approximation scheme is not 

discretised. The development of such a method will provide a scheme with in

herently better accuracy. It is also self-evident that a semi-discretised scheme, 

properly implemented, will enhance the speed of computations. 

In this project we have only considered the solution of elliptic boundary value 

problems, however, there is no theoretical reason to restrict the method only 

to this type of partial differential equations. The method can easily be ex

tended to parabolic and hyperbolic equations and initial value problems. 
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Appendix 

Program Lists 

APPLICATION OF DIFFUSE APPROXIMATION 

DESIGNED AND WRITTEN BY: 

M.R.MOKHTARZADEH 

ON THE BASIS OF A RESEARCH 

PROJECT SUGGESTED AND SUPERVISED BY: 

DR.V.NASSEHI 

JUNE 1998 

VERSION 1 
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Program: adam 

Application of the Diffuse Approximation Method 

The running of this program depends on the following steps: 

%. Load Mathematica (version 3) 

ii. Enter adam 

iii. Choose an application by entering one of the following application 

codes: 

bhb = Solution of Biharmonic Equation Subject to Homigeneous Bound

ary Conditions 

cfp = Curve Fitting 

evp = Solution of Eigenvalue Problems 

ode = Solution of Fourth Order O.D.E. 

phb = Solution of Poisson Equation Subject to Homogeneous Bound

ary Conditions 

phb3 = Solution of Three Dimensional Poisson Equation Subject to 

Homogeneous Boundary Conditions 

pnh = Solution of Poisson Equation Subject to Non-homogeneous 

Boundary Conditions 

pmpb = Plane Mapping Using Boundary Nodes 

pmpn =Plane Mapping Using All Nodes 

sfp = Surface Fitting 

slp = Solution of Sturm-Liouville Equation 

tap = Approximation of Trace Operator 
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zv. Enter the required functions in each application 

The following is the list of the available functions 

1. lib = load library of the defined applications 

2. init = define the problem and initialise problem parameters 

(these parameters are given at the end of this section) 

3. das = show the defined diffuse approximation space 

4. pdp = show the defined problem 

5. obj == show the defined object 

6. gsn == show the source nodes (graphic) 

7. gsnn == show the refined source nodes (graphic) 

8. gsnb == show the nodes and the boundary of the source domain (graphic) 

9. gtn == show the target nodes for mapping (graphic) 

10. gtnn = show the refined target nodes for mapping (graphic) 

11. gwf = show the selected weight functions (graphic) 

12. gda =show the result of the diffuse approximation (graphic) 

13. eda = show the error norms of the diffuse approximation 

14. dap = run the loaded applications 

15. chk = check the defined problems 

16. sys = program algorithm information (Graphical representation of the 

program algorithm is given in section 3.7, and also in the program listing, 

which shows the number of options available within each application) 

17. txt = description of the loaded application 

18. rpg = random problem generator for testing 

List of problem parameters required for the initialisation and run

ning of the program 
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mode = Rational or Real 

preci = Precision of the calculations 

Domain description for 1-D problems 

minx= e.g. 0 

maxx =e.g. 1 

dam={ minx, maxx} 

Domain description for 2-D problems 

minxl = 

minx2 = 

maxxl = 

maxx2 = 
dam={ {minx1, maxx1}, {minx2, maxx2}} 

Domain description for 3-D problems 

minxl = 

minx2 = 

minx3 = 

maxxl = 

maxx2 = 

maxx3 = 

dam ={{minx1, maxx1},{ minx2, maxx2}, {minx3, maxx3}} 

In the mapping application the source domain is given as the problem do

main. The target domain is defined as a unit square by default. 

exp = function definitions (depends on the object of the loaded application) 

tnn = total number of nodes 

(sufficient for 1-D problems) 

tnnxl = total number of nodes in x1 direction 

tnnx2 = total number of nodes in x2 direction 

3-P 



tnn = (tnnx1) x (tnnx2) 

(in 2-D problems) 

tnnxl = 

tnnx2 = 

tnnx3 = 

tnn = (tnnx1) x (tnnx2) x (tnnx3) 

(in 3-D problems) 

dim = algebraic dimension of the selected base functions 

(sufficient for 1-D problems) 

degxl = degree of the base functions w.r.t. x1 

degx2 =degree of the base functions w.r.t. x2 

dim = ( degxl+ 1) x ( degx2+ 1) 

(in 2-D problems) 

degxl = 

degx2 = 

degx3 = 

dim = ( degxl+ 1) x ( degx2+ 1) x ( degx3+1) 

(in 3-D problems) 

(base functions themselves are defined within the function 'lib') 

$ pwf = array of parameters in the defined power weight functions generator 

$reff = refinement factor 

(sufficient for 1-D problems) 

(e.g. $ reff=2 re-solve the problem using twice the number of nodes) 

$reffx1 = 

$reffx2 = 

$reff = ref /x1,reffx2 

(in 2-D problems) 
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Similarly for 3-D problems 

$reff = { $reffxl, $ reffx2, $ reffx3 } 
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init.nb 

• Master Program List 

Load Special Functions Created by Mathematics 

<<showtime.m; 
<<gaussian.m; 
<<newtonco.m; 
<<NumericalMath'Listintegrate' 

Unix Commands 

beep:=Print[FromCharacterCode[7]]; 
af:=Print[FileNames[]]; 
dd:=Print[Directory[JJ; 
del:=DeleteFile[FileNames["*%"]]; 
delc:=DeleteFile["core"]; 
lib:= («lib); 
swdh:=SetDirecto~["/home"]; 
swdc:=SetDirectory["/home/Dalek/cgmrn"]; 
swda:=SetDirecto~["/home/Dalek/cgmrn/adam•]; 
swdal:=SetDirectory["/home/Dalek/cgmrn/all/alists•]; 
swdqaw:=SetDirecto~["/home/Dalek/cg.mrn/adam/qaw•]; 
swdc; 
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Main Program [adam][List for Ph.D. Thesis] 

adam:=Module[{}, 
swda; 
swdcfp: =SetDirectory[ ''/home/Oalek/cgmrn/adam/cfp"]; 
swdevpl:=SetDirectory("/home/Dalek/cgmrn/adam/evpl"]; 
swdevp2:=SetDirectory["/home/Dalek/cgmrn/adam/evp2"]; 
swdsfp:=SetDirectory["/home/Dalek/cgmrn/adam/sfp"]; 
swdtap: =SetDirectory [ '' /home/Dalek/cgm.rn/adam/tap"]; 
swdpdeb:=Setoirectory["/home/Dalek/cgmrn/adam/pdeb"]; 
swdpmpb: =SetDirectory [ "/home/Dalek/ cgmrn/ adam/pmpb"] ; 
swdpmpn: =SetDirectory[ "/home/Dalek/cgmrn/ada..m/pmpn"]; 
swdpmptl: =SetDirectory [ "/home/Dalek/cgmrn/adam/pmptl•]; 
swdpmpt2:=Setoirectory["/home/Dalek/cgmrn/adam/pmpt2"]; 
swdpmpt3:=Setoirectory["/home/Dalek/cgmrn/adam/p~pt3"]; 
swdpmpt4: =Setoirectory [ ''/home/Dalek/ cgmrn/ adam/pmpt4 "1 ; 
swdslpO:=SetDirectory["/home/Dalek/cgmrn/adam/slpO"]; 
swdslpl:=SetDirectory["/home/Dalek/cg.mrn/adam/slpl"]; 
swdslp2:=Setoirectory["/home/Dalek/cgmrn/adam/slp2 11

]; 

swdslp3:=SetDirectory["/home/Dalek/cg.mrn/adam/slp3"]; 
swdslp4:=Setoirectory["/home/Dalek/cgmrn/adam/slp4"]; 
swdslpS:=SetDirectory["/home/Dalek/cg.mrn/adam/slpS"]; 
swdslp6: =SetDireetory [" /home/Dalek/ cgmrn/adam/ slp6"] ; 
swdslp7:=SetDirectory["/home/Dalek/cgmrn/adam/slp7"]; 
swdslp8:=Setoirectory["/home/Dalek/cgmrn/adam/slp8•]; 
swdslp9:=Setoirectory["/home/Dalek/cgmrn/adam/slp9"]; 
swdode41:=Setoirectory["/home/Dalek/cgmrn/adam/ode41"]; 
swdode42: =SetDirectory [ "/home/Dalek/ cgmrn/ adam/ ode42 •] ; 
swdode43:=SetDirectory["/home/Dalek/cgmrn/adam/ode43"]; 
swdode44:=SetDirectory["/home/Dalek/cgmrn/adam/ode44•]; 
swdode4 5: =Setoirectory [ "/home/Dalek/ cgmrn/ adam/ ode45'"] ; 
swdphbl:=SetDirectory["/home/Dalek/cgmrn/adam/phbl"]; 
swdpbb2: =SetDireetory [ 11 /h.ome/Dalek/ cgmrn/ adam/phb2"] ; 
swdphb3 : =SetDirectory [ '1 /home/Dalek/ cgmrn/ adam/phb3 •] ; 
swdphb4:=SetDirectory["/home/Dalek/cgmrn/adam/phb4"]; 
swdphbS:=SetDirectory["/home/Dalek/cgmrn/adam/phbS"]; 
swdpnh:=SetDirectory["/home/Dalek/cgmrn/adam/pnh"]; 
swdpnhl:=SetDirectory["/home/Dalek/cgmrn/adam/pnhl"]; 
swdpnh2:=SetDirectory["/home/Dalek/cgmrn/adam/pnh2"]; 
swdpnh3:=SetDirectoryt"/home/Dalek/cg.mrn/adam/pnh3"]; 
swdpnh4:=SetDirectory["/home/Dalek/cgmrn/adam/pnh4"]; 
swdpnh5:=SetDirectory["/home/Oalek/cgmrn/adam/pnh5"]; 
swdphb3l:=SetDirectory["/home/Dalek/cgmrn/ad~/phb31"1 
swdphb32:=SetDirectory["/home/Dalek/cgmrn/adam/phb32"] 
swdphb33:=SetDirectory["/home/Dalek/cgmrn/adam/phb33•] 
swdphb34:=Setoirectory["/home/Dalek/cgmrn/adam/phb34"] 
swdpb.b35:=SetDirectory["/home/Dalek/cgmrn/adam/phb35 11 ] 

swdbhbl:=SetDirectory["/home/Dalek/cgmrn/adam/bhbl"] 
swdbhb2:=SetDirectory["/home/Dalek/cgmrn/adam/bhb2"] 
swdbhb3: =SetDirectocy t" /home/Dalek/ cgmrn/adam/bhb3 •] 
swdbhb4:=SetDirectory["/home/Dalek/cgmrn/adam/bhb4"] 
swdbhbS:=Setoirectory["/home/Palek/cg.mrn/adam/bhbS"l 
cfp:=Module[{},swdcfp;capp;<<lib;init]; 
evpl:=Module[{},swdevpl;capp;<<lib;init]; 
evp2:=Module[{},swdevp2;capp;<<lib;init]; 
pde:=Module[{},swdpde;capp;<<lib;init]; 
pmpb:=Module[{},swdpmpb;capp;<<lib;init]; 
pmpn:=Module[{},swdpmpn;capp;<<lib;init]; 
pmptl:=Module[{},swdpmptl;capp;<<lib;init]; 
pmpt2:=Module[{},swdpmpt2;eappJ<<lib;init]; 
pmpt3:=Module[{},swdpmpt3;capp;<<lib;init]; 
pmpt4:=Module[{},swdpmpt4;capp;<<lib;init]; 
sfp:=Module[{},swdsfp;capp;<<lib;init]; 
tap:=Module[{},swdtap;capp;<<lib;init]; 
slpO:=Module[{},swdslpO;capp;<<lib;init]; 
slpl:=Module[{},swdslpl;capp;<<lib;init]; 
slp2:=Module[(},swdslp2;capp;<<lib;init]; 
slp3:=Module[{},swdslp3;capp;<<lib;init]; 
slp4:=Module[{},swdslp4;capp;<<lib;init]; 
slpS:=Module({},swdslpS;capp;<<lib;init]; 
ode4l:=Module[{},swdode41;capp;<<lib;init]; 
ode42:=Module[{},swdode42;capp;<<lib;init]; 
ode43:=Module[{},swdode43;capp;<<lib;init]; 
ode44:=Module[{},swdode44;capp;<<lib;init]; 
ode45:=Module[{},swdode45;capp;<<lib;init]; 
phbl:=Module[(},swdphbl;capp;<<lib;init]; 
phb2:=Module[{},swdphb2;capp;<<lib;init]; 
phb3:=Module[{},swdphb3;capp;<<lib;init]; 
phb4:=Module({},swdphb4;capp;<<lib;init]; 
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phbS:=Module[(},swdphbS;capp;<<lib;init]; 
pnh:=Module[(),swdpnh;capp;<<lib]; 
pnhl:=Module[{},swdpnhl;capp;<<lib;init]; 
pnh2:=Module[{},swdpnh2;capp;<<lib;init]; 
pnh3:=Module[{},swdpnh3;capp;<<lib;init]; 
pnh4:=Module[{},swdpnh4;capp;<<lib;init]; 
pnhS:=Module[{},swdpnhS;capp;<<lib;init]; 
phb3l:=Module[{},swdphb3l;oapp;<<lib;init]; 
phb32:=Module[{},swdphb32;capp;<<lib;init]; 
phb33:=Module[{},swdphb33;capp;<<lib;init]; 
phb34:=Module[{},swdphb34;capp;<<lib;init]; 
phb35:=Module[{},swdphb35;capp;<<lib;init]; 
bhbl:=Module[(},swdbhbl;capp;<<lib;init]; 
bhb2:=Module[(},swdbhb2;capp;<<lib;init]; 
bhb3:=Module[(},swdbhb3;capp;<<lib;init]; 
bhb4z=Module[(},swdbhb4;capp;<<lib;init]; 
bhbS:=Module[(},swdbhbS;capp;<<lib;init] 

l ; 
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Optional Colours for Graphics 

aquamarine=RGBColor[0.44, 0.86, 0.58]; 
black~RGBColor[O., 0.~ 0.]; 
blue=RGBColor[O.,O.,l.]; 
blueviolet=RGBColor[0.62, 0.37, 0.62]; 
brown=RGBColor[O. 65, 0 .16, 0.16]; 
cadetblue=RGBColor[0.37, 0.62, 0.62]; 
coral=RGBColor[l., 0.5, 0.]; 
cornflowerblue=RGBColor[0.26, 0.26, 0.44]; 
cyan=RGBColor[O., 1., 1.]; 
darkgreen=RGBColor[l-0.18,1-0.31,1-0.18]; 
darkolivegreen=RGBColor[0.31, 0.31, 0.18]; 
darkorchid=RGBColor[0.6, 0.2, 0.8]; 
darkslateblue=RGBColor[0.42, 0.14, 0.56]; 
darkslategray=RGBColor[O.lS, 0.31, 0.31]; 
darkturquoise=RGBColor[0.44, 0.58, 0.86]; 
dimgray=RGBColor[0.33, 0.33, 0.33]; 
firebrick=RGBColor[0.56, 0.14, 0.14]; 
forestgreen=RGBColor[0.14, 0.56, 0.14]; 
gold=RGBColor[O.S, 0.5, 0.2]; 
goldenrod=RGBColor[O.S6, 0.86, 0.44]; 
gray=RGBColor[0.75, 0.75, 0.75]; 
green=RGBColor[1-0.,1-1.,1-0.]; 
greenyello~RGBColor[0.58, 0.86, 0.44]; 
indianred=RGBColor[0.31, 0.18, 0.18]; 
khaki=RGBColor[0.62, 0.62, 0.37]; 
lightblue=RGBColor[0.75, 0.85, 0.85]; 
lightgray=RGBColor[0.66, 0.66, 0.66]; 
lightsteelblue=RGBColor[0.56, 0.56, 0.74]; 
limegreen=RGBColor[0.2, 0.8, 0.2]; 
magenta=RGBColor[l., 0., 1.]; 
maroon=RGBColor[0.56, 0.14, 0.42]; 
midnightblue=RGBColor[0.18, 0.18, 0.31]; 
navy=RGBColor[0.14, 0.14, 0.56]; 
navyblue=RGBColor[0.14, 0.14, 0.56]; 
orange=RGBColor[0.8, 0.2, 0.2]; 
orangered=RGBColor[1., 0., 0.5]; 
orchid=RGBColor[0.86, 0.44, 0.86]; 
palegreen=RGBColor[0.56, 0.74, 0.56]; 
peach=RGBColor[0.44, 0.26, 0.26]; 
pink=RGBColor[0.74, 0.56, 0.56]; 
plum=RGBColor[0.92, 0.68, 0.92]; 
prussianblue=RGBColor[0.18, 0.18, 0.31]; 
purple=RGBColor[0.31, 0.18, 0.31]; 
red=RGBColor[1.,0.,0.]; 
salmon=RGBColor[0.44, 0.26, 0.26]; 
sandybrown=RGBColor[0.96, 0.64, 0.38]; 
seagreen=RGBColor[0.14, 0.56, 0.42]; 
sienna=RGBColor[0.56, 0.42, 0.14]; 
skyblue=RGBColor[0.2, 0.6, 0.8]; 
slateblue=RGBColor[O., 0.5, 1.]; 
springgreen=RGBColor[O., 1., 0.5]; 
steelblue=RGBColor[0.14, 0.42, 0.56]; 
thistle=RGBColor[0.85, 0.75, 0.85]; 
turquoise=RGBColor[0.68, 0.92, 0.92]; 
violet=RGBColor[0.31, 0.18, 0.31]; 
violetred=RGBColor[0.8, 0.2, 0.6]; 
wheat=RGBColor[O.SS, 0.85, 0.75]; 
white=RGBColor[1., 1., 1.]; 
yellow:RGBColor[1., 1., 0.]; 
yellowbrown=RGBColor[0.86, 0.58, 0.44]; 
yellowgreen=RGBColor[0.6, 0.8, 0.2]; 
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• Solution of Biharmonic Equation with Homogeneous 
B.C.- Program List · 

bhb :=Module[{}, lib := 
Module[{}, ri := Random[Integer, #1] & ; r := Random[Real, #1] & ; 

rcol := RGBColor[r[{O, 1}], r[{O, 1}], r[{O, 1)]]; 
iel[n_] := 
Module[{iii), iii[O] := ""; 
iiiU_] := iiiUl = StringJoin[iiiU- 1], "In"]; 
Return[Print[iii[n]]]]; 

condinp[cond_, def_, txt_] := 
Module[{inp}, inp = lnput[txt]; 
lf[cond[inp], Return[inp], Return[def], Return[def]]]; 

dap :=Module[{}, init; swdqaw; datal = Get[nquadxl]; 
data2 = Get[nquadx2]; swdbhbl; 
qdata := 
Flatten[Table[ {datal [[i]][[l]], data2[U]][[l]], 

datal[[i]][[2]]*data2[UJ][[2]]}, {i, 1, Length[ datal]), 
[j, 1, Length[data2]}], 1]; << "dapp"; 

udu= 
(Append[res[#l[[l]], #1[[2]], anodes], #1[[3]]] & ) /@ qdata; 

udu >> "udu"; bb[j_] := 
Sum[ udu[[ rr ]][[8]]*udu[[rr ]][[ 6]]*udu[[rr ]][[ 6]][U]] + 

udu[[ rr ]] [[8]] *udu [[ rr]] [ [ 6]] *udu[[ rr]] [[7]] [U ]], 
udu[[rr]][[8]]*udu[[rr]][[7]]*udu[[rr]][[6]][UJ], 
udu[[rr ]][[8]]*udu[[rr ]][[7]]*udu[[rr ]][[7]][U]], 

{rr, 1, Length[udu]}]; 
CM= Table[bbUJ, [j, 1, Length[inodes])]; 
b[j_] := 
Sum[ udu[[ s ]][[8]]*( exp /. 

{xl -> udu[[s]][[l]], x2 -> udu[[s]][[2]]})* 
udu[[s]][[3Jl[[j]], {s, 1, Length[udu]}]; 

RHS = Table[bUJ, [j, 1, Length[inodes])]; 
sol= NN[LinearSolve[CM, RHS]]; sol>> "sol.out"; eda]; 

das :=Module[{}, iei[S]; 
Print["THE CREATED DIFFUSE APPROXIMATION SPACE IS:"]; 
Print["MODE OF COMPUTATIONS:"]; Print["mode:= ",mode]; 

1 

Print["PRECISION OF CALCULATIONS precision:=", preci]; Print["TOTAL NUMBER OF NO 
Print["DEGREE OF BASE FUNCTIONS WITH RESPECT TO xl degxl:= ", 
degxl]; Print["DEGREE OF BASE FUNCTIONS WITH RESPECT TO x2 degx2:= ", degx2]; Print["ALG 
Print["THE PARAMETER [nquad] IS EITHER [ncaw3,ncaw4, ... ,ncaw101] OR"]; Print[" 
Print["nquad:=", nquad]; iel[S]]; 

dbp :=Module[{}, base= 
Union@@ 
Table[(!- xl)'2*(1- x2)'2*xl '(i + l)*x2'(j + 1), 
{i, 1, degxl}, [j, 1, degx2)]]; 

dfp :=- Module[{}, ulinel = asol/. x2 -> 0; 
uline2 = asol/. xl -> 1; uline3 = asol/. x2 -> 1; 
uline4 = asol/. xl -> 0; dom ={{minx!, maxxl}, {minx2, maxx2}}; 
bcond = 
{ dom, { uOminxl, ulminxl, uOmaxxl, ulmaxxl, u0minx2, ulminx2, 

u0maxx2, u1maxx2}}; difeq = {1, 2, 1, exp}; 
auval= 
(StringJoin["u", ToString[#l[[l]]], ToString[#1[[2]]]] & ) /@ 
aindex; buval = 
(StringJoin["u", ToString[#1[[1]]], ToString[#1[[2]]]] & ) /@ 
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bindex; cuval = 
(StringJoin["u", ToString[#1[[1]]], ToString[#1[[2]]]] & ) /@ 

cindex; iuval = 
(StringJoin["u", ToString[#1[[1]]], ToString[#1[[2]]]] & ) !@ 

iindex]; dnp := 
Module[{}, aindex = 

Sort[Union @@ 

Table[{k1, k2}, {k1, 0, tnnx1- 1}, {k2, 0, tnnx2- 1)]]; 
iindex = 
Sort[Union @@ 

Table[{k1, k2}, {k1, 1, tnnx1 - 2}, {k2, 1, tnnx2- 2)]]; 
cindex= 
Sort[{{O, 0}, {tnnx1- 1, 0}, {tnnx1-1, tnnx2- 1}, 
{0, tnnx2- 1))]; 

bindex = Sort[Complement[aindex, Union[cindex, iindex]]]; 
sshx1 = NN[(maxx1- minx1)/(tnnx1- 1)]; 
sshx2 = NN[(maxx2- minx2)/(tnnx2- 1)]; 
anodes= 
({minxl + #1[[1]]*sshx1, minx2 + #1[[2]]*sshx2} & ) /@ aindex; 

inodes = 
({minxl + #1[[1]]*sshx1, minx2 + #1[[2]]*sshx2} & ) /@ iindex; 

cnodes = 
({minxl + #1[[1]]*sshx1, minx2 + #1[[2]]*sshx2} & ) /@ cindex; 

bnodes = 
({minxl + #1[[1]]*sshx1, minx2 + #1[[2]]*sshx2} & ) /@ bindex; 

ann= Length[ anodes]; bnn = Lengtb[bnodes]; cnn = Lengtb[cnodes]; 
inn= Length[inodes]]; iel[1]]; 

init :=Module[{}, capp; << "lib"; mode= "Real"; preci =50; 
NN := N[#1, preci] & ; norm= norm2[#1] & ; 
norm2 := (#1. #1)A(112) & ; minx1 = 0; maxx1 = 1; minx2 = 0; 
maxx2 = 1; asol = x1 A2*x2A2*(1- x1)A2*(1- x2)A2; 
exp = D[asol, x1, x1, x1, x1] + 2*D[asol, x1, x1, x2, x2] + 

D[asol, x2, x2, x2, x2]; u0minx1 = 0; u1minx1 = 0; u0maxx1 = 0; 
u1maxx1 = 0; u0minx2 = 0; u1minx2 = 0; u0maxx2 = 0; u1maxx2 = 0; 
uminx2 = 0; umaxx2 = 0; tnnx1 = 5; tnnx2 = 5; Inn= tnnx1*tnnx2; 
degx1 = 2; degx2 = 2; dim= degx1*degx2; wfn = "pwf''; 
$pwf = {{"k", "a"}, 4, 9/2}; $reffx1 = 1; $reffx2 = 1; 
nquadx1 = "gqaw20"; nquadx2 = "gqaw20"; nquad = {nquadx1, nquadx2)]; 

dapp :=Module[{}, res[zl_, z2_, nodes_]:= 

2 

Module[{}, iel[1]; Print["SOLVER PROGRAM FOR BIHARMONIC EQ WITH HBC IS RUNNING NOW"]; 
Sum[(wflnodes, ii, xx1, xx2]/, {xx1 -> z1, xx2 -> z2})* 

(base[[rr]]/. 
{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]]})* 

(base[[ ss]]/. {x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]]})\ 
, {ii, 1, Length[nodes])]; cm := 

Table[Table[alpha[rr, ss], {rr, 1, Length[base])], 
{ss, 1, Length[base])J; det =Del[ cm]; 

Print[" de![ cm]:=", N[det]]; icm =Inverse[ cm]; 
beta[ss_, ii_] := 
(wf[nodes, ii, xx1, xx2]/. {xx1 -> z1, xx2 -> z2})* 
(base[[ss]]/. {x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]]}); 

rhsm := 
Table[Table[beta[rr, ii], {ii, 1, Length[nodes]}], 
{rr, 1, Length[base])]; rhsv := rhsm. auval; aa = icm, rhsv; 

vuh = Simplify[(base/. {x1 -> z1, x2 -> z2}). aa]; 
d1alpha[rr_, ss_] := 
Sum[(d1wf1nodes, ii, xx1, xx2]/. {xx1-> z1, xx2 -> z2})* 

(base[[rr]]/. 
{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]]})* 
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(base[[ss]] /. {d -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]]})\ 
, {ii, 1, Length[nodes]}]; d1cm = 

Table[Table[d1alpha[rr, ss], {rr, 1, Length[base])], 
{ss, 1, Length[base])]; 

d1beta[rr_, ii_] := 
(d1wf[nodes, ii, xx1, xx2]/. {xx1-> z1, xx2 -> z2})* 
(base[[rr]]/. {x1 -> nodes[[ii])[[1)], x2 -> nodes[[ii]][[2]]}); 

d1rhsm = 
Table[Table[d1beta[rr, ii), {ii, 1, Length[nodes]}], 
{rr, 1, Length[base])]; d1rhsv = d1rhsm. auval; 

d1base = D[base, x1]; rhsvll = d1rhsv- d1cm. aa; 
d1aa = icm. rhsvll; vd1uh = 
Simplify[(d1base /. {x1 -> z1, x2 -> z2}). aa + 

(base/. {x1 -> z1, x2 -> z2}). d1aa); 
d2alpha[rr_, ss_] := 
Sum[(d2wf[nodes, ii, xxl, xx2]/. {xx1 -> z1, xx2 -> z2})* 

(base[[rr]] /. 
{x1 -> nodes[[ii]][[l]], x2 -> nodes[[ii]]([2)]})* 

(base[[ss)] /. {x1-> nodes[[ii]][[1)], x2 -> nodes[[ii])[[2)]})\ 
, {ii, 1, Length[nodes]}]; d2cm = 

Table[Table[d2alpha[rr, ss), {rr, 1, Length[base]}], 
{ss, 1, Length[base])]; 

d2beta[ rr _, ii_] := 
(d2wf[nodes, ii, xx1, xx2)/. {xx1 -> z1, xx2 -> z2})* 
(base[[rr]] /. {x1 -> nodes[[ii])[[l]), x2 -> nodes[[ii]][[2]]}); 

d2rhsm= 
Table[Table[d2beta[rr, ii], {ii, 1, Length[nodes])], 
{rr, 1, Length[base]}]; d2rhsv = d2rhsm. auval; 

d2base = D[base, x2]; rhsv21 = d2rhsv- d2cm. aa; 
d2aa = icm • rhsv21; vd2uh = 
Simplify[(d2base/. {x1-> z1, x2 -> z2}). aa + 

(base/. {x1 -> z1, x2 -> z2}). d2aa]; 
uh = (Coefficient[vuh, #1] & ) /@ inval; 
d1uh := (Coefficient[vd1uh, #1] & ) /@ iuval; 
d2uh := (Coefficient[vd2uh, #1] & ) /@ iuval; 
dllalpha[rr_, ss_]:= 
Sum[(dllwf[nodes, ii, xx1, xx2]/. {xx1 -> z1, xx2 -> z2})* 

(base[( rr ]]/. 
{x1-> nodes[[ii]][[l)], x2 -> nodes[[ii]][[2]]})* 

(base[[ ss]]/. {x1 -> nodes[[ii]][[l)], x2 -> nodes[[ii]]([2)]})\ 
, {ii, 1, Length[ nodes]}]; dllcm = 

Table[Table[dllalpha[rr, ss], {rr, 1, Length[base]}], 
{ss, 1, Length[base])]; 

dllbeta[rr_, ii_] := 
(dllwfinodes, ii, xx1, xx2]/. {xxl -> z1, xx2 -> z2})* 
(base[(rr)]/. {x1 -> nodes[[ii])[[l)], x2 -> nodes[[ii]][[2)]}); 

dllrhsm = 
Table[Table[dllbeta[rr, ii], {ii, 1, Length[nodes]}], 
{rr, 1, Length[base])]; dllrhsv = ddrhsm. oval; 

dllbase = D[d1base, x1]; 
rhsv2 = dllrhsv- 2*d1cm. d1aa- dllcm. aa; dllaa = icm. rhsv2; 
vdlluh= 
Simplify[(dllbase /. {x1 -> z1, x2 -> z2}). aa + 
2*(dlbase /. {x1 -> zl, x2 -> z2}). d1aa + 
(base/. {x1 -> z1, x2 -> z2}) • dllaa]; 

d22alpha[rr_, ss_] := 
Sum[(d22wf[nodes, ii, xx1, xx2]/. {xx1 -> z1, xx2 -> z2})* 

(base[[rr]] /. 
{x1 -> nodes[[ii]][[l)], x2 -> nodes[[ii]]([2)]})* 

3 
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(base[[ss]]/. {xl-> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]})\ 
, {ii, 1, Length[nodes]}]; d22cm = 

Table[Table[d22alpha[rr, ss], {rr, 1, Length[base]}], 
{ss, 1, Length[base]}]; 

d22beta[rr_, ii_] := 
(d22wf[nodes, ii, xx1, xx2]/. {xx1 -> z1, xx2 -> z2})* 
(base[[rr]]/. {x1-> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]])); 

d22rhsm= 
Table[Table[d22beta[rr, ii], {ii, 1, Length[nodes])], 
{rr, 1, Length[base]}]; d22rhsv = ddrhsm. uval; 

d22base = D[d2base, x2]; 
rhsv2 = d22rhsv- 2*d2cm . d2aa - d22cm • aa; d22aa = icm • rhsv2; 
vd22uh= 
Simplify[(d22base /. {x1 -> z1, x2 -> z2}). aa + 

2*(d2base /. {x1 -> z1, x2 -> z2}). d2aa + 
(base/. {x1 -> z1, x2 -> z2}). d22aa]; 

uh = (Coefficient[vuh, #1] & ) /@ iuval; 
d1uh := (Coefficient[vd1uh, #1] & ) /@ iuval; 
d2uh := (Coefficient[vd2uh, #1] & ) /@ inval; 
dlluh = (Coefficient[vdlluh,#1] & ) /@ iuval; 
d22uh = (Coefficient[vd22uh, #1] & ) /@ iuval; 
Return[{z1, z2, uh, d1uh, d2uh, dlluh, d22uh)]]]] 

4 
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• Curve Fitting-Program List 

cfp := Module[{),lib := 
Module[{}, usf[a_, x_] ::::: Which[x <a, 0, x =a, 1/2, x >a, 1]; 

iel[n_J := 
Module[{iii}, iii[O] := ""; 

iiiU_j := iiiUJ = StringJoin[iiiU -1], "In"]; 
Retum[Print[iii[ n ]]]] ; 

condinp[cond_, def_, txt_] := 
Module[{inp}, inp = Input[txt]; 

If[cond[inp ], Retum[inp], Retum[def), Retum[def)]]; 
prompt:= 
Module[{inputmain}, inputmain[countermain_] := 

inputmain[countermain] = 
InputString[StringJ oin["ln", "In<CFP>[", 
ToString[countermain], "]:="]]; 

Module[{countermain =I, conditionmain = "1"}, 
While[ !conditionmain == "Xit", 
conditionmain = inputmain[countermain]; 
ToExpression[conditionmain]; countermain = countermain + 1]]]; 

dap ::::Module[{},<< "dapp"; rda = (resl[#l, nodes] & ) /@ nnodes; 
rda >> "rda.out"; << "eda"]; 

das :=Module[{), iel[S]; 
Print["THE CREATED DIFFUSE APPROXIMATION SPACE IS:"]; 
Print["MODE OF COMPUTATIONS:"]; Print["modc:= ",mode]; 
Print["PRECISION OF CALCULATIONS precision:= ", 
preci]; Print["TOTAL NUMBER OF NODES [Inn]; \ 

tnn:= ", tnn]; Print["NODAL COORDINATES [dom] IS nodes:="]; Print[nodcs]; 
Print["REFINEMENT FACTOR FOR THE GENERATION OF NEW NODES\ 

[nnodes]:"]; Print["$reff:= ", $reff]; 
Print["ALGEBRIAC DIMENSION OF BASE FUNCTIONS [dim] dim:=", 
dim]; Print["SELECTED BASE FUNCTIONS [base] ARE"]; 

Print["base:= ",base]; 
Print["SELECTED WEIGHT FUNCTION [wf] IS:", wfn]; ie\[5]]; 

dbp :=Module[{}, base= Table[x•i, {i, 0, dim- 1}]]; 
pwf :=Module[{}, k = $cwf[[2]]; a= $cwf[[3]]; dm = a*ssh; 

wfn = "pwr•; cwexp := (1- ((ni- x)/dm)'2)'k; 
dcwexp :::: D[cwexp, x]; 
wf[nodes_, i_, xx_] := cwexp /. {ni -> nodes[[i]], x -> xx}; 
dwf[nodes_, i_, xx_] := dcwexp /. {ni -:> nodes[[i]], x -> xx}]; 

dfp :=Module[{}, dexp = D[exp, x]; 
vf= (exp /. x -> #1 & ) /@nodes; 
nvf= (exp /. x -> #l & ) /@ nnodes; 
vdf = (dexp /. x -> #1 & ) /@ nodes; 
nvdf = (dexp /. x -> #1 & ) /@ nnodes]; 

dnp :=Module[{}, ssh = (maxx- minx)/(tnn- 1); 
nodes= Table[minx + k*ssh, {k, 0, tnn -1}]; 
nnodes =Table[ minx+ (k*ssh)/$reff, (k, 0, $reff*(tnn- 1) }]]; 

pdp :=Module[{}, iel[S]; 
Print["MINIMUM VALUE OF THE INDEPENDENT VARIABLE [x] minx:= ", 
minx]; Print["MAXIMUM VALUE OF THE INDEPENDENT VARIABLE [x] \ 

maxx:= ", maxx]; Print["EXPILICIT FORM OF THE FUNCTION [f) IS:"]; 
Print[" fix]:=", exp]; 
Print["PROBLEM DOMAIN dom:= ", dom]; ie\[5]]; 

eda :=Module[{}, daf= (#1[[2]] & ) /@ « "rda.out"; 
dadf= (#1[[3]] & ) /@ « "rda.out"; 
mindet = Min[Abs /@ (#1[[4]] & ) /@ « "rda.out"]; 
error= Max[Abs /@ (daf- nvt)]; 
derror = Max[Abs/@ (dadf- nvdt)]; 
dll2e[dat_] := 
Module[( datal, intl, data2, int2}, 
datal= ((#1[[1]], Abs[#l[[2]]]} & ) I@ dat; 
intl = Listlntegrate[datal,lO]; 
data2 = ((#1[[1]], #1[[2]]'2} & ) /@ dat; 
int2 = Listlntegrate[data2,10]; 
Print["DLl-error[f):= ", NN[intl]]; 
Print["DL2-error(f):= ", NN[int2]]]; iel[3]; 

Print["DU-Error[f] ::::",error]; Print["DU-Error[ df]:==", derror ]; 

I 
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dl12e[<< "rda.out"- ({0, #1, 0, 0) & ) /@ nvf]; 
Print["min[det]:=", mind et]; iel[3]]; 

gda :=Module[{), mplot[exp_, rda_] := 
Module[{data, !data, pdata, txtl, txt2), 
SetOptions[Graphics, AspectRatio -> 1, Axes-> True, 

AxesLabel-> {"x", "f,dar'}, AxesOrigin ->Automatic, 
AxesStyle ->Automatic, Background-> GrayLevel[1], 
ColorOutput -> Automatic, DefaultColor -> GrayLevel[O], 
Epilog -> {}, Frame-> False, FrameLabel-> None, 
FrameStyle -> Automatic, FrameTicks -> Automatic, 
Grid Lines-> None, ImageSize -> {400, 400}, 
PlotLabel-> " - f,. daf', PlotRange -> All, 
PlotRegion ->Automatic, Prolog -> {}, RotateLabel-> True, 
Ticks-> Automatic, DefaultFont :> $DefaultFont, 
DisplayFunction :>$Display Function, 
FormatType :> $FormatType, TextStyle :> $TextStyle]; 
data:= 
({#1, exp /. x -> #1) & ) /@ 
Table[minx + (k*(maxx- minx))/100, {k, 0,100}]; 

!data:= Graphics[Line[data]]; 
pdata := 
Graphics[ ({Gray Level[O], AbsolutePointSize[3], 

Point[#!]} & ) /@ ({#1[[1]], #1[[2]]} & ) /@ rda]; 
txtl := Graphics[Text["- r•, {maxx, maxx)]]; 
txt2 := Graphics[Text[" . daf', {maxx, maxx- 0.1)]]; 
Show[ldata]; Return[Show[ldata, pdata]]]; 

mplot[exp, << "rda.out"]]; 
gwf :=Module[{}, SetOptions[Plot, AspectRatio -> 1, Axes-> True, 

AxesLabel-> {"x,', 11wr'}, AxesOrigin ->Automatic, 
AxesStyle ->Automatic, Background-> GrayLevei[O], 
ColorOutput -> Automatic, Compiled-> True, 
DefaultColor -> rcol, Epilog -> {},Frame-> False, 
FrameLabel-> None, FrarneStyle ->Automatic, 
Frame Ticks-> Automatic, GridLines ->None, 
lrnageSize -> Automatic, MaxBend -> 10., PlotDivision -> 30., 
PlotLabel-> "GRAPHICS OF [wf]", PlotPoints ->50, 
PlotRange ->All, PlotRegion ->Automatic, 
PlotStyle -> Automatic, Prolog -> {}, RotateLabel-> True, 
Ticks-> Automatic, DefaultFont :> $DefaultFont, 
Display Function:> $Display Function, FormatType :> $FormatType, 
TextStyle :> $TextStyle]; 
Plot[Evaluate[{wf[nodes,1, xx], wf[nodes, 2, xx], 

wf[nodes, 3, xx], wf[nodes, 4, xx]}J, {xx, minx, maxx)]]; iel[1] 
]; init :=Module[{}, capp; «"lib"; preci = 20; NN := N[#l, preci] & ; 

mode= Real; minx= 0; maxx = 1; dom ={minx, maxx}; 
exp = Sin[Pi*x"2]; tnn = 10; dim= 5; 
$cwf= {{"k", "a"}, 2, tnn + 1/2}; $reff= 2; << "dnp11

j << "dbp"; 
<< 11 dfp"; << "dcwp"; object= 
{dom, nodes, base, wf, wfn, data, "rda.out", error, nulll, null2, 
null3, null4, nullS, null6, exp}]; 

dapp :=Module[{}, ClearAll[res1, alpha, cm, det, icm, beta, rhsm, rhsv, 
vfb, aa, dalpha, dcm, dbeta, drhsm, drhsv, vdfb, daa]; 

resl[z_, nodes_] := 
Module[{alpha, beta, rhsm, rhsv, det, sol}, 
Print["OK.processor-1 "]; 
alpha[rr _,ss_] := 
Sum[(wfTnodes, ii, xx] /. xx -> z)* 

(base[[rr]]/. x -> nodes[[ii]])* 
(base[[ ss]]/. x -> nodes[[ii]]), {ii,1, Length[nodes]}J; 

cm:= 
Table[Table[alpha[rr, ss], {rr,l, Length[base]}J, 
{ss,1, Length[base])]; del= N //@ Det[cm]; 

Print["det[cm}:= ", det]i icm = Inverse[cm]; 
beta[rr _, ii_] := 
(wf[nodes, ii, xx]/. xx -> z)*(base[[rr]]/. x -> nodes[[ii]]); 
rhsm := 
Table[Table[beta[rr, ii], {ii, 1, Length[nodes])], 
{rr,1, Length[base])]; 

rhsv := rhsm. NNI(exp /. x -> #1 & ) I@ nodes]; aa = icm. rhsv; 
vfh =(base/. {x -> z)). aa; Print["vfh:=", N[vfh]]; 
Print[''nvf:='', Short[N[nvf]]]; iel[1]; Print[''OK.processor-2"]; 
dalpha[rr_, ss_]:= 
Sum[(dwf[nodes, ii, xx]/. {xx -> z))* 

2 
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(base[[rr]]/, {x -> nodes[[ii]]})* 
(base[[ss]]/, {x -> nodes[[ii]]}), {ii, 1, Length[ nodes]}]; 

dcm= 
Table[Table[dalpha[rr,ss], {rr, 1, Length[base]}l, 
{ss, 1, Length[base]}]; 

dbeta[rr_, ii_] := 
(dwf[nodes, ii, xx]/. {xx -> z})* 
(base[[rr]]/. {x -> nodes[[ii]]}); 

drhsm= 
Table[Table[dbeta[rr, ii), {ii, 1, Length[ nodes]}], 
{rr, 1, Length[base]}]; 

drhsv = drhsm. NN[(exp /, x -> #1 & ) /@ nodes]; 
dbase = D[base, x]; daa = icm. (drhsv- dcm. aa); 
vdlll = (dbase /. {x -> z}). aa +(base/. {x -> z}). daa; 
Print["vdlll:=", N[vdlll]]; Print["nvdf:=", Short[N[nvdf]]]; 
Return[{z, vfh, vdlll, det)]]]] 

3 
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• Evaluation of Eigenvalues-Program List 

evp :=Module[{), lib := 
Module[{}, usf(a_, x_] := Which[x <a, 0, x ==a, 1/2, x >a, 1]; 

refine[ set_] :;: 
Module[{), Return[Union[Table[(set[[i]] + set[[i + 1]])/2, 

{i, 1, Length[set]-1}], set]]]; 
iel[n_J := 
Module[{iii}, iii[O] := ""; 

iii[j_J := iii[j] = StringJoin[iii[j -1], "In"]; 
Return[Print[iii [ n ]]]] ; 

dap :=Module[{), init; swdqaw; data= Get[nquad]; swdevp1; 
supp = (#1[[1]] & ) /@data; 
isupp = Complement[supp, {First[supp], Last[supp])]; 
omega= (#1[[2]] & ) /@data;« "dapp"; 
udu = (res2[#1, nodes] & ) /@ supp; 
bb[j_] := 
Sum[(exp1/. x -> supp[[r]])*omega[[r]]*udu[[r]][[2]]* 

udu[[r]][[2]][[j]] + 
(exp2/. x -> supp[[r]])*omega[[r]]*udu[[r]][[1]]* 
udu[[r]][[1]][[j]], {r, 1, Length[supp]}]; 

b[j_J := 
lambda *Sum[ omega [[ r]] *ud u[[ r]] [[1]] *udu[[ r ]] [[1]] [[j]], 
{r, 1, Length[supp])]; BBBB = Table[bb[j], [j, 1, Inn- 2}]; 

BBB := BBBB /. lambda-> 0; 
eval = 
NN[Eigenvalues[NN[Inverse[BBBB -lambda*BBB /.lambda-> 1.]. 

BBB]]]; eval » "eval"; eda]; 
eda :=Module[{), iel[S]; 

Print[" COMPUTATIONAL ERRORS FOR SUCCESSIVE EIGENV ALUES:"]; 
error= 
Abs/@ 
(Sort[Table[NN[kA2*PiA2],{k, 1, Length[« "eval"])]]
Sort[<< "eval'']); 

Do[Print[" Error[lambda", ToString[i], "]:= ", error[[i])]; 
iel[O], {i, 1, Length[ error])]]; 

pwf :=Module[{), k = $pwf1[2]]; a= $pwf[[3]]; dm = a*ssh; 
cwexp := (1 - ((ni- x)/dm)A2)A k; 
dcwexp := D[(1- ((ni- x)/dm)A2)Ak, x]; 
wf[nodes_, i_, xx_] := cwexp /. {ni -> nodes[[i]], x -> xx}; 
dwflnodes_, i_, xx_] := dcwexp /. {ni -> nodes[[i]], x -> xx}]; 

pdp :=Module[{), init; iel[S]; 
Print["THE EIGENVALUE PROBLEM IS OF THE FORM:"]; iel[1]; 
Print["-d/dx[(", expl, ")du/dx] + (", exp2, ") u = ", exp3, ","]; 
Print["u[", minx,"]=", um.inx, ", u[", maxx, "] =", umaxx, "."]; 
iel[S]]; iel[1]]; init := 

Module[{}, mode= "Real"; precision= 50; NN := N[#l, precision] & ; 
minx= 0; maxx = 1; dom ={minx, maxx}; expl = 1; exp2 =lambda; 
exp3 = 0; uminx = 0; umaxx = 0; tnn = 11; dim= 9; wfn = "pwr•; 
$pwf = {"nul,nu2,mul,mu2", 2, 21/2}; $reff = 2; nul= 2; 
nquad = "gqawlO"; << "dfp"; << "dnp"; << "dbp"; Get[wfn]; 
object= 
{difeq, bcond, trans, tdifeq, tbcond, nodes, base, wf, wfn, rdea, 
fel, fe2, fe3, fe4, feS, fe6, fe7, feS, fe9, asol}]; 

dapp :=Module[(}, res1[z_, nodes_] := 
Module[{ alpha, det, beta, rhsvl, a, da}, 
alpha[rr_, ss_]:= 
Sum[(wfTnodes, ii, xx] /. xx -> z)* 

(base[[rr]]/. x -> nodes[[ii]])* 
(base[[ss]]/. x -> nodes[[ii]]), {ii, 1, Length[nodes]}]; 

cm= Table[Table[alpha[rr, ss], {rr, 1, Length[base])], 
{ss, 1, Length[base]}]; del:= Det[cm]; 

Print["det[cm]:=",N[det]]; icm =Inverse[ cm]; 
beta[rr _, ii_] := 
(wf[nodes, ii, xx]/. xx -> z)*(base[[rr]]/. x -> nodes[[ii]]); 
rhsm= 
Table[Table[beta[rr, ii], {ii, 1, Length[ nodes]}], 
{rr, 1, Length[base]}]; rhsv = rhsm. uval; 

vuh = Simplify[(base/. x -> z). icm. rhsv]; 
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Return[{ cm, icm, rhsm, rhsv, uh}]; iel[l]]; 
res2[z_, nodes_] := 
Module[{dalpha, dbeta, rhsv1, dbase}, 
resl[z, nodes]; dalpha[rr_, ss_]:= 
Sum[(dwf[nodes, ii, xx]/. xx -> z)* 

(base[[rr]]/, x -> nodes[[ii]])* 
(base[[ ss]]/. x -> nodes[[ii]]), (ii, 1, Length[nodes]J]; 

dcm= 
Table[Table[dalpha[rr,ss], (rr, 1, Length[base]}], 
(ss, 1, Length[base]J]; 

dbeta[rr_, iU := 
(dwf[nodes, ii, xx]/, xx -> z)*(base[[rr]]/, x -> nodes[[ii]]); 

drhsm= 
Table[Table[dbeta[rr,ii], {ii, 1, Length[nodes]J], 
{rr, 1, Length[base]}]; drhsv = drhsm. uval; dbase = D[base, x]; 

vduh= 
Simplify[(dbase/. x -> z). icm. rhsv + 

(base/. x -> z) • icm. (drhsv- dcm. icm. rhsv)]; 
uh := (Coefficient[vuh,#1] & ) /@ iuval; 
dub:= (Coefficient[vduh,#l] & ) /@ iuval; Return[{ub, dub}]]]] 
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• Solution of Fourth Order Ordinary Differential 
Equations- Program List 

ode4 :=Module[{}, init := 
Module[{}, capp; << "lib"; mode= "Real"; precision= 50; 
NN := N[#l, precision] & ; minx = 0; maxx = 1; dom = {minx, maxx}; 
expl = 1; exp2 = 1; asol = xA6*(1- x)"2; 
exp3 = Simplify[D[expi*D[asol, {x, 2)], {x, 2}] + exp2*asol]; 
uOminx = 0; uOmaxx = 0; ulminx = 0; ulmaxx = 0; tnn = 7; dim= 5; 
wfn = "pwr•; $pwf= {"k,a", 4, 17/2}; $reff= 2; nul= 2; 
nquadl = "ncaw6"; nquadr = "ncaw7"; nquad = "gqawlO"; << "dnp"; 
<< "dbp"; << "dfp"; Get[wfn]; 
object= 
{ difeq, bcond, trans, tdifeq, tbcond, nodes, base, wf, wfn, rdea, 
fel, fe2, fe3, fe4, feS, fe6, fe7, fe8, fe9, asol}]; 

lib :=Module[{}, r := Random[]; ri[a_, b_] := Random[Integer, {a, b }]; 
rcol := RGBColor[r, r, r]; 
usf[a_, x_] := Which[x < a, 0, x ==a, 1/2, x > a, 1]; 
refine[set_] := 
Module[{}, Return[Union[Table[(set[[i]] + set[[i + 1]])/2, 

{I, I, Length[ set]- 1)], set]]]; 
iel[n_] := 
Module[{iii}, iii[O] := ""; 
iii(j_] := iii[j] = StringJoin[iii[j -I], "\n"]; 
Return[Print[iii[n]]]]; 

chk :=Module[{}, text:= 
(iel[2]; Print[" THE ANALYTIC SOLUTION OF THE PROBLEM IS I 

NOT KNOWN OR"]; Print[" THERE IS SOMETHING WRONG WITH THE PROBLEM."]; 
ie1[2]); diff[p_, q_, r_, u_] := 

D[p*D[u, {x, 2}], {x, 2}] + q*u- r; 
deq = Simplify[ExpandAII[diff[expl,exp2, exp3, asol]]]; iel[2]; 
If[deq == 0, iel[l]; Print[""OK. eq.""], text, text]; 
If[{dom, {asol /. x ->minx, D[asol, x] /. x ->minx, 

asol /. x -> maxx, D[asol, x] /. x -> maxx}} = bcond, 
Print["OK. be.''], text; beep, text; beep]; iel[2]]; 

das :=Module[{}, iel[S]; 
Print["THE APPROXIMATION SCHEME IS BASED ON THE FULLY DISCRETISED I 

TECHNIQUE"]; Print["USING THE FOLLOWING APPROXIMATION SPACE:"]; 
Print["mode:=", mode]; Print["precision:=", precision]; 
Print[""tnn:="", Inn]; Print[""nodes:="", N[Short[nodes]]]; 
Print[''dim:='', dim]; Print[''base:='', Short[base]]; 
Print["wf:=", wfn]; Print[" REFINE FACTOR OF NODES [$reff] I 

$reff:="', $reff]; Print["THE PARAMETER [nquad] IS EITHER I 
[ncaw3,ncaw4, ... ,ncaw77] OR "]; 

Print[" [gqaw3,gqaw4, ••. ,gqaw77] I 
OR"]; Print[" [rsaw3,rsaw4, ... ,rsaw101]. \ 
'']; Print[''nquadl:='', nquadl]; Print[''nquadr:='', nquadr]; 

Print["nquad:=", nquad]; iel[S]]; 
base= Table[x'(i + 1)*(1- x)'2, {i, I, dim}]; 
dfp :=Module[{}, dom ={minx, maxx}; difeq = {expl, exp2, exp3}; 

bcond ={dam, {uOminx, ulminx, uOmaxx, ulmaxx}}; 
uval = 
To Expression/@ Table[StringJoin["u", ToString[i]], {I, I, Inn}]\ 

; iuval = Complement[uval, {First[uval], Last[uval]}]; 
vval := 
ToExpression /@ Table[StringJoin["v", ToString[i]], {i, I, tnn}]]\ 

; dnp :=Module[{}, ssh = NN[(maxx- minx)/(tnn -1)]; 
nodes= Table[minx + k*ssh, {k, 0, tnn -1}]; 
bnodes ={First[ nodes], Last[nodesl}; cnodes = bnodes; 
inodes =Complement[ nodes, bnodes]; nnodes = refine[nodes]; 
bnnodes = {First[nnodes], Last[nnodes]}; cnnodes = bnnodes; 
innodes = Complement[nnodes, bnnodes]]; 

eda :=Module[{}, dasol = (asol/. x ->#I & ) /@ inodes; 
error:= Max[Abs !@ (<< "sol.out"- dasol)]; 
Print["THE ERROR OF THIS APPROXIMATION IS:"]; 
Print[''DU-Error[fl:='',N[error]]]; 



pode4.nb 

gda :=Module[{}, mplot[exp_, rda_) := 
Module[{data, !data, pdata, txtl, txt2}, 
SetOptions[Graphics, AspectRatio -> 1, Axes-> True, 
AxesLabel-> {''x", "u,dau"}, AxesOrigin ->Automatic, 
AxesStyle ->Automatic, Background-> GrayLevei[O], 
ColorOutput ->Automatic, DefaultColor -> rcol, 
Epilog -> {},Frame-> False, FrameLabel-> None, 
FrameStyle -> Automatic, FrameTicks ->Automatic, 
GridLines -> None, lmageSize -> {200, 200}, 
PlotLabel->" ... u,. dau", PlotRange ->All, 
PlotRegion ->Automatic, Prolog -> {}, RotateLabel-> True, 
Ticks-> Automatic, DefaultFont :> $DefaultFont, 
Display Function :>$Display Function, 
FormatType :> $FormatType, TextStyle :> $TextStyle); 
data:= 
({#1, exp /. x -> #1} & ) /@ 
Table[minx + (k*(maxx- minx))/100, {k, 0, 100}]; 

!data:= Graphics[Line[data]]; 
pdata := 
Graphics[((yellow, AbsolutePointSize[2], Point[#l]} & ) I@ 

Union[((#l[[1)], #1[[2))} & ) /@ rda, {{0, 0}, {1, 0} }]]; 
txtl := Graphics[Text["- u", {maxx, maxx}]]; 
txt2 := Graphics[Text[" • dau", {maxx, maxx- 0.1}]]; 
Return[Show[ldata, pdata))); mplot[asol, « "rda.out")]; 

gwf :=Module[{}, SetOptions[Plot,AspectRatio -> GoldenRatio'(-1), 
Axes-> Automatic, AxesLabel-> {"x", "wr'}, 
AxesOrigin ->Automatic, AxesStyle ->Automatic, 
Background -> GrayLevel[O], ColorOutput -> Automatic, 
Compiled-> True, DefaultColor ->reo!, Epilog -> {}, 
Frame-> False, FrameLabel-> None, FrameStyle ->Automatic, 
Frame Ticks-> Automatic, GridLines ->None, MaxBend ->· 10., 
PlotDivision -> 30., PlotLabel-> None, PlotPoints ->50, 
PlotRange ->Automatic, PlotRegion ->Automatic, 
PlotStyle -> Automatic, Prolog -> {}, RotateLabel-> True, 
Ticks-> Automatic, DefaultFont :> $DefaultFont, 
Display Function:> $DisplayFunction]; 

Plot[Evaluate[Table[ wf[nodes, k, xx), {k, 1, 3}]], 
{xx, minx, maxx}]]; 

pdp := Module[(), iel[S); 
Print["THE BOUNDARY VALUE PROBLEM IS OF THE FORM:"]; iel(1); 
Print[d"2, "/", dx"2, "[(", exp1, ")", d"2, "!", dx"2, "] + (", 
exp2, ") u = "]; Print[exp3); iel[1); 

Print["u[", 0, "] = u'[", 0, "] = u[", 1, "] =u'[", 1, "] =", 0]; 
iel[S]]; pwf := 

Module[(}, k = $pwf[[2)]; a= $pwf[[3]); dm = a*ssh; 
pwexp := (1- ((ni- x)/dm)'2)'k; 
dpwexp := D[(1- ((ni- x)/dm)'2)Ak, x); 
ddpwexp := D[(1- ((ni- x)ldm)'2)'k, (x, 2}); 
wf[nodes_, i_, xx_J := pwexp/. {ni -> nodes[[i)], x -> xx}; 
dwflnodes_, i_, xx_] := dpwexp /. {ni -> nodes[[i]], x -> xx}; 
ddwf[nodes_, i_, xx_) := ddpwexp /. {ni -> nodes[[i)], x -> xx}); 

rpg :=Module[{}, capp; <<"lib"; minx= 0; maxx = 1; 
dom ={minx, maxx}; exp1 = 1 + x"2; exp2 = 2*x; 
asol = Sum[x'ri[l, 5), (i, 0, ri[I, 5)}]*(1- x); 
exp3 = Simplify[-D[expl*D[asol,x], x] + exp2*asol]; uminx = 0; 
umaxx = 0; tnn = 7; dim= tnn- 2; $pwf= {{"k", "a"}, 2, 1112}; 
$rnf = 2; object= 
{ difeq, bcond, trans, tdifeq, tbcond, nodes, base, wf, wfn, rdea, 
fel, fe2, fe3, fe4, feS, fe6, fe7, fe8, fe9, asol}]; ]; 

dap :=Module[{}, swdqaw; data= Get[nquad]; swdode41; 
supp = (#1[(1]] & ) !@ data; 
isupp = Complement[supp, (First[supp), Last[supp]}]; 
omega= (#1[[2]] & ) /@ data;« "dapp"; 
udu = (res[#l, nodes] & ) /@ nodes;<< "dapp"; 
udu = (res[#1, nodes] & ) /@ supp; 
bb[j_J := 
Sum[(exp1/. x -> supp((r)))*omega[(r)]*udu[[r))[[2)]* 

udu[[r))[[2])[[j)]+ 
(exp2/. x -> supp[[r)))*omega[[r))*udu[[r))[[1)]* 
udu[[r))[[1))[[j)),{r, I, Length[supp]}]; 

BBBB = Table[bb[j], U, 1, Inn- 2}); 
b[j_J := 
Sum[(exp3/. x -> supp((r)))*omega[[r ))*udu[(r]][[1]][[j)], 
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{r, I, Length[supp])]; BB= Table[b[j], U, I, tnn- 2}]; 
sol== LinearSolve[BBBB, BB]; sol>> "sol.out"; 
MapThread[{#I, #2} & , {inodes, sol}]» "rda.out"; 
Print["sol:=", sol]; << "eda"]; 

dapp :=Module[{}, Clear All[ res, res2, det]; 
res[z_, nodes_]:= 
Module[{ alpha, beta, dalpha, dbeta, ddalpha, ddbeta, rhsv, rhsvi, 
rhsv2, aa, daa, ddaa, cm, dcm, ddcm, rhsm, drhsm, ddrhsm, vuh, 
vduh, vdduh}, alpha[rr_, ss_] := 
Sum[(wflnodes,ii, xx] /. xx -> z)* 

(base[[rr]]/. x -> nodes[[ii]])* 
(base[[ss]]/. x -> nodes[[ii]]), {ii, 1, Length[ nodes])]; 

cm= Table[Table[alpba[rr, ss], {rr, 1, Length[base)}], 
{ss, 1, Lengtb[base]}]; det := Det[cm]; 

Print["det[cm]:=",N[det]]; icm =Inverse[ cm]; 
beta[rr _, iU := 
(wf[nodes, ii, xx]/. xx -> z)*(base[[rr]]/. x -> nodes[[ii]]); 
rhsm= 
Table[Table[beta[rr, ii], {ii, 1, Length[ nodes]}], 
{rr, 1, Length[base]}]; rhsv = rhsm. oval; aa = icm. rhsv; 

vuh = Simplify[(base /. x -> z) • aa]; 
dalpha[rr_, ss_]:= 
Sum[(dwflnodes, ii, xx] /. xx -> z)* 

(base[[rr]]/. x -> nodes[[ii]])* 
(base[[ss]]/. x -> nodes[[ii]]), {ii, 1, Length[ nodes]}]; 

dcm= 
Table[Table[dalpha[rr, ss], {rr, 1, Length[base]}], 
{ss, 1, Length[base]}]; 

dbeta[rr_, ii_] := 
(dwf[nodes, ii, xx]/. xx -> z)*(base[[rr]]/. x -> nodes[[ii]]); 

drhsm= 
Table[Table[dbeta[rr, ii], {ii, I, Length[ nodes])], 
{rr, 1, Length[base])]; drhsv = drhsm. uval; dbase = D[base, x]; 

rhsvl = drhsv- dcm. aa; daa = icm. rhsvl; 
ddalpha[rr_, ss_]:= 
Sum[(ddwf[nodes, ii, xx]/. xx -> z)* 

(base[[rr]]/. x -> nodes[[ii]])* 
(base[[ ss]]/. x -> nodes[[ii]]), {ii, 1, Lengtb[nodes]}]; 

ddcm= 
Table[Table[ddalpha[rr, ss], {rr, 1, Lengtb[base])], 
{ss, 1, Length[base])]; 

ddbeta[rr_, ii_] := 
(ddwf[nodes, ii, xx]/. xx -> z)*(base[[rr]]/. x -> nodes[[ii]]); 

ddrhsm= 
Table[Table[ddbeta[rr, ii], {ii, 1, Length[ nodes]}], 
{rr, 1, Length[base]}]; ddrhsv = ddrhsm. uval; 

ddbase = D[dbase, x]; rhsv2 = ddrhsv- 2*dcm. daa- ddcm. aa; 
ddaa = icm. rhsv2; vdduh = 
Simplify[(ddbase/. x -> z). aa + 2*(dbase /. x -> z). daa + 

(base/. x -> z). ddaa]; 
uh = (Coefficient[vuh,#l] & )/@ iuval; 
dduh = (Coefficient[vdduh,#l] & ) /@ iuval; Return[{ ob, dduh}]]]] 
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• Solution of Poisson Equation with Homogeneous 
B.C.- Program List 

phb :=Module[{), lib := 
Module[(), ri := Random[Integer, #I] & ; r := Random[Real, #1] & ; 
reo!:= RGBColor[r[[O,l}], r[[O,l)], r[[O,l}]]; 
iel[n_] := 
Module[{iii}, iii[O] := ""; 

iii[j_] := iii[j] = String.Join[iii[j -1], "In"]; 
Return[Print[iii[n]]]]; 

condinp[cond_, def_, txt_] := 
Module[{inp }, inp = Input[txt]; 

If[cond[inp], Return[inp], Return[def), Return[def)]]; 
dap :=Module[{)< swdqaw; datal = Get[nquadxl]; 

data2 = Get[nquadx2]; swdphbl; 
qdata := 
Flatten[Ta ble [ {data 1 [[i]] [[ 1]], data2[[j ]] [[1]], 

datal[[i]][[2]]*data2[[j]][[2]]}, [i, 1, Length[ datal]), 
[j, 1, Length[data2])],1]; « "dapp"; 

udu= 
(Append[res[#l[[l]], #1[[2]], anodes], #1[[3]]] & ) /@ qdata; 

udu >> "udu.out"; bb[j_] := 
S urn[ udu[[ rr]] [[ 6]] *ud u [[ rr]] [[ 4]]*udu[[ rr ]][[ 4]][[j]]+ 

udu[[ rr]] [[ 6]]*ud u[[ rr ]][[ S]]*ud u [[ rr]] [[ S]][[j]], 
{rr,l, Length[udu]}J; 

CM= Table[bb[j], [j, 1, Length[inodes]}]; 
b[j_] := 
Sum[ udu[[s ]][[ 6]]*( exp /. 

{xl-> udu[[s]][[l]], x2 -> udu[[s]][[2]]})* 
udu[[s]][[3]][[j]], [s,l, Length[udu]}]; 

RHS = Table[b[j], [j,l, Length[inodes]}]; 
sol= NN[LinearSolve[CM, RHS]]; sol>> "sol.out"; eda]; 

das :=Module[{}, iel[S]; 
Print["THE CREATED DIFFUSE APPROXIMATION SPACE IS:"]; 
Print["MODE OF COMPUTATIONS:"]; Print["mode:= ",mode]; 
Print["PRECISION OF CALCULATIONS precision:=\ 

", preci]; Print["TOTAL NUMBER OF NODES ON xl DIRECTION [tnnxl] tnnxl:= \ 
", tnnxl]; Print["TOTAL NUMBER OF NODES ON x2 DIRECTION [tnnx2] tnnx2:= \ 
", tnnx2]; Print["TOTAL NUMBER OF NODES IS tnn:= \ 
", tnn]; Print["REFINEMENT FACTOR FOR THE GENERATION OF NEW NODES\ 
[nnodes]"]; Print["$reff:={$reffxl,$reffx2} $reff:= ", $reff]; 

Print["DEGREE OF BASE FUNCTIONS WITH RESPECT TO xl degxl:= ", 
degxl]; Print["DEGREE OF BASE FUNCTIONS WITH RESPECT TO x2 \ 

degx2:= ", degx2]; Print["ALGEBRIACDIMENSION OF BASE FUNCTIONS [base] IS \ 
dim:=", dim]; Print[" SELECTED WEIGHT FUNCTION [wf) IS: ", wfn]; 

Print["THE PARAMETER [nquad] IS EITHER [ncaw3,ncaw4" •• ,ncaw101]\ 
OR"]; Print[" [gqaw3,gqaw4, ••• ,gqaw101] OR\ 
"];Print[" [rsaw3,rsaw4, ... ,rsawl01] OR"]; 

Print["nquad:=", nquad]; iel[SJ]; 
dbp :=Module[{}, base= 

Union@@ 
Table[(l- x1)*(1- x2)*x1Ai*x2Aj, {i,1, degx1}, [j, 1, degx2}]]\ 

; dfp :=Module[(), uline1 = asol /. x2 -> 0; uline2 = asol /. x1 -> 1; 
uline3 = asol/. x2 -> 1; uline4 = asol/. xl-> 0; 
bcond= 
{{{minxl, maxx1}, {minx2, maxx2}}, 
{ ulinel, uline2, uline3, uline4} }; 

dom = {{minx1, maxxl}, {minx2, maxx2}}; difeq = {exp}; 
auval= 
(String.Join["u", ToString[#l[[l]]], ToString[#l[[2]]]] & ) /@ 
aindex; buval = 
(String.Join["u", ToString[#1[[1]]], ToString[#1[[2]]]] & ) /@ 
bindex; cuval = 
(String.Join["u", ToString[#l[[l]]], ToString[#1[[2]]]] & ) /@ 
cindex; iuval = 
(String.Join["u", ToString[#l[[l]]], ToString[#1[[2]]]] & ) /@ 
iindex]; dnp := 

Module[{}, aindex = 
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Sort[Union @@ 
Table[{kl, k2}, {kl, 0, tnnxl- 1}, {k2, 0, tnnx2 -1}]]; 

iindex = 
Sort[Union @@ 
Table[{kl, k2}, {kl, I, tnnxl- 2}, {k2, I, tnnx2- 2}]]; 

cindex = 
Sort[{{O, 0}, {tnnxl-1, 0}, {tnnx1-1, tnnx2- 1}, 

{0, tnnx2- 1}}]; 
bindex = Sort[Complement[aindex, Union[cindex, iindex]]]; 
sshx1 = NN[(maxx1- minx1)1(tnnxl- !)]; 
sshx2 = NN[(maxx2- minx2)/(tnnx2- 1)]; 
anodes= 
({minx!+ #1[[1]]*sshx1, minx2 + #1[[2]]*sshx2} & ) /@ aindex; 
inodes = 
({minx!+ #1[[1]]*sshxl, minx2 + #1[[2]]*sshx2} & ) /@ iindex; 

cnodes = 
({minx!+ #1[[1]]*sshx1, minx2 + #1[[2]]*sshx2} & ) /@ cindex; 

bnodes = 
({minx!+ #1[[1]]*sshx1, minx2 + #1[[2]]*sshx2} & ) /@ bindex; 
ann= Length[anodes]; bnn = Length[bnodes]; cnn = Length[cnodes]; 
inn= Length[inodes]]; 

eda :=Module[{}, dasol = 
(asol /. {xl-> #1[[1]], x2 -> #1[[2]]) & ) /@ inodes; 
error:= Max[Abs /@ (« "sol.out"- dasol)]; iel[2]; 
Print["DU-Error[u]:=",N[error]]; ie1[2]]; 

gnp :=Module[{}, SetOptions[Graphics, AspectRatio -> 1, 
Axes ->True, AxesLabel-> {"xl", "x2"}, 
AxesOrigin ->Automatic, AxesStyle ->Automatic, 
Background -> GrayLevel[O], ColorOutput ->Automatic, 
DefaultColor -> rcol, Epilog ->{},Frame-> False, 
Frame Label-> None, FrameStyle ->Automatic, 
Frame Ticks-> Automatic, GridLines ->None, 
ImageSize ->Automatic, PlotLabel-> "NODAL POINTS", 
PlotRange ->All, PlotRegion -> Automatic, Prolog -> {}, 
RotateLabel-> True, Ticks-> True, 
DefaultFont :> $DefaultFont, 
Display Function :> $Display Function, FormatType :> $FormatType, 
TextStyle :> $TextStyle]; 
cpoly := {navyblue, Polygon[{{O, 0}, {1, 0}, {1, 1}, {0, 1}}]}; 
ccnod :=({yellow, Point[#!]) & ) /@ cnodes; 
cinod := 
({GrayLevel[l], AbsolutePointSize[O.l], Point[#!]} & ) /@ inodes\ 

; cbnod :=({red, AbsolutePointSize[l], Point[#l]} & ) /@ bnodes; 
Show[Graphics[{cpoly, ccnod, cinod, cbnod}J]]; 

pdp :=Module[{), iei[S]; 
Print["THE POISSON EQUATION WITH HOMOGENEOUS DIRICHLET BOUNDARY\ 

CODITION"]; Print[" ON THE DOMAIN [dom) IS GIVEN AS:"]; iel[1]; 
Print["-(",Subscripted[U[xlxl]]," + ", Subscripted[U[x2x2]], 
") := ", Simplify[ExpandAII[exp]]]; iel[l]; 

Print["IN dom:= ", dom]; iel[l]; 
Print[" u:= ", ulinel," ON Ll"]; 
Print[" u:= ", uline2," ON L2"]; 
Print[" u:= ", uline3, " ON L3"]; 
Print[" u:= ", uline4," ON L4"]; iel[2]]; 

pwf :=Module[{), k = $pwf[[2]]; a= $pwf[[3]]; 
ssh = norm[{sshxl, sshx2}]; dm = a*ssh; 
pwexp := (1 - (norm[{nil, ni2}- {xl, x2)]/dm)'2)'k; 
dlpwexp := D[pwexp, xl]; d2pwexp := D[pwexp, x2]; 
wf[nodes_, i_, xxl_, xx2.J := 
pwexp/. 
{nil -> nodes[[i]][[l]], ni2 -> nodes[[i]][[2]], xl -> xxl, 
x2 -> xx2}; dlwf[nodes_, i_, xxl_, xx2_] := 

dlpwexp/. 
{nil-> nodes[[i]][[l]], ni2 -> nodes[[i]][[2]], xl -> xxl, 
x2 -> xx2}; d2wf[nodes_, i_, x.d_, xx2_] := 

d2pwexp /. 
{nil -> nodes[[i]][[l]], ni2 -> nodes[[i]][[2]], xl -> xxl, 
x2 -> xx2}]]; init := 

Module[{}, ea pp;<< "lib"; mode= "Real"; preci = 10; 
NN := N[#l, preci] & ; norm= norm2[#1] & ; 
norm2 := (#1. #1)'(112) & ; minx!= 0; maxxl = 1; minx2 = 0; 
maxx2 = 1; asol = xl *x2*(1 - xl)*(l- x2); 
exp = -D[asol, xl, xl]- D[asol, x2, x2]; uminxl = 0; umaxxl = 0; 
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uminx2 = 0; umaxx2 = 0; tnnxl = 4; tnnx2 = 4; tnn = tnnxl *tnnx2; 
degxl = 2; degx2 = 2; dim= degxl*degx2; 
wfn = "pwr'*$pwf= {{"k", "a"}, 2, 9/2}; $reffxl = 1; $reffx2= 1; 
nquadxl = ''gqaw4''; nquadx2 = ''gqaw4''; nquad = {nquadxl, nquadx2}; 
<< "dnp"; << "dfp"; << "dbp"; << "pwr'; 
object= 
{nodes, cnodes, bnodes, inodes, base, wf, wfn, rdea, error, nulll, 
nu112, null3, null4, nullS, asol}]; 

dapp :=Module[{}, Clear AD[ res, alpha, cm, det, icm, beta, rhsm, rhsv, 
vfh, aa, dlalpha, diem, dlbeta, dlrhsm, dlrhsv, vdlth, dlaa, 
d2alpha, d2cm, d2beta, d2rhsm, d2rhsv, vd2fh, d2aa]; 
res[zl_, z2_, nodes_]:= 
Module[{}, iel[l]; Print["SOL VER PROGRAM FOR POISSON EQ WITH HBC IS\ 

RUNNING"]; alpha[rr_, ss_]:= 
Sum[(wf[nodes, ii, xxl, xx2] /, {xxl-> zl, xx2 -> z2})* 

(base[[rr]] /. 
{xi -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]})* 

(base[[ ss]]/. 
{xi-> nodes[[ii]J[[l]], x2 -> nodes[[ii]][[2]]}), 

{ii, 1, Length[nodes]}]; 
cm:= 
Table[Table[alpha[rr, ss], {rr, 1, Length[base]}], 
(ss, 1, Length[base]}]; det = Det[cm]; 

Print[" de![ cm]:=", N[det]]; icm =Inverse[ cm]; 
beta[ss_, ii_] := 
(wf[nodes, ii, xxl, xx2] /. {xxl-> zl, xx2 -> z2})* 
(base[[ ss]]/. {xi -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]}); 

rhsm := 
Table[Table[beta[rr, ii], {ii, 1, Length[nodes]}], 
{rr, 1, Length[base]}]; rhsv := rhsm. auval; aa = icm. rhsv; 

vuh = Simplify((base/. {xi-> zl, x2 -> z2}). aa]; 
dlalpha[rr_, ss_]:= 
Sum[(dlwf[nodes, ii, xxl, xx2]/. {xxl-> zl, xx2 -> z2})* 

(base[[rr]] /. 
{xi -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]})* 

(base[[ss]]/. 
(xi -> nodes[[ii]J[[l]], x2 -> nodes[[ii]][[2]]}), 

(ii, 1, Length[nodes]}]; 
diem= 
Table[Table[dlalpha[rr, ss], (rr, 1, Length[base]}], 
(ss, 1, Length[base]}]; 

dlbeta[rr_,ii_] := 
(dlwf[nodes, ii, xxl, xx2]/. (xxl-> zl, xx2 -> z2})* 
(base[[rr]]/. (xi -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]}); 

dlrhsm= 
Table[Table[dlbeta[rr, ii], (ii, 1, Length[ nodes]}], 
(rr, 1, Length[base]}]; dlrhsv = dlrhsm. auval; 

dlbase = D[base, xl]; rhsvll = dlrhsv- dlcm. aa; 
dlaa = icm. rhsvll; vdluh = 
Simplify[(dlbase/. {xl-> zl, x2 -> z2}). aa + 

(base/. {xi-> zl, x2 -> z2}). dlaa]; 
d2alpha[rr _,ss_] := 
Sum[(d2wf[nodes, ii, xxl, xx2]/. (xxl-> zl, xx2 -> z2})* 

(base[[rr]]/. 
{xi -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]J)* 

(base[[ ss]]/. 
{xl-> nodes[[ii]][[l]],x2 -> nodes[[ii]][[2]]}), 

{H, 1, Length[nodes])]; 
d2cm= 
Table[Table[d2alpha[rr, ss], (rr, 1, Length[base]}], 
(ss, 1, Length[base])]; 

d2beta[rr _, ii_] := 
(d2wf[nodes, ii, xxl, xx2]/. (xxl-> zl, xx2 -> z2})* 
(base[[rr]]/. (xi -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]}); 

d2rhsm= 
Table[Table[d2beta[rr, ii], {ii, 1, Length[nodes]}], 
(rr, 1, Length[base]}]; d2rhsv = d2rhsm. auval; 

d2base = D[base, x2]; rhsv21 = d2rhsv- d2cm. aa; 
d2aa = icm. rhsv21; vd2uh = 
Simplify[(d2base/. (xl-> zl, x2 -> z2}). aa + 

(base/. {xi -> zl, x2 -> z2}) • d2aa]; 
uh = (Coefficient[vuh, #I] & ) /@ iuval; 
dluh := (Coefficient[vdluh,#l] & ) /@ iuval; 
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d2uh := (Coef!icient[vd2uh, #1] & ) /@ iuval; 
Return[{zl,z2, uh, dluh, d2uh}]]]] 
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• Solution of Three Dimensional Poisson Equation with 
Homogeneous B. C.- Program List 

phb3 :=Module[{}, lib := 
Module[{}, ri := Random[Integer,#1] & ; r := Random[Real, #1] & ; 

reo!:= RGBColor[r[{0,1}], r[{O, 1}], r[{O, 1}]]; 
iel[n_] := 
Module[{iii}, iii[O] := '"'; 
iii[j_] := iiiUJ = StringJoin[iii[j- 1], "In"]; 
Return[Print[iii[n]]]]; 

dap :=Module[(}, swdqaw; datal= Get[nquadxl]; 
data2 = Get[nquadx2]; data3 = Get[nquadx3]; swdphb31; 
qdata :=Fiatten[Fiatten[ 

Table[{ datal[[i]][[1]], data2(U]][[l]], data3[[k]][[1]], 
datal[[i]][[2]]*data2[[j]][[2]]*data3[[k]][[2]]}, 

{i, 1, Length[ datal]}, [j,1, Length[data2]}, 
{k,l, Length[data3])]],1],1]; « "dapp"; 

udu= 
(Append[res[#l[[l]], #1[[2]], #1[[3]], anodes], #1[[4]J] & ) /@ 
qdata; udu >> "udu.out"; 

bb[j_] := 
S urn[ udu[[ rr ]][[8]] *ud u[[ rr]] [[ S]]*udu[[ rr ]][[ S]][[j]]+ 

ud u[[ rr]] [[S]]*udu[[ rr ]][[ 6]] *udu[[ rr]] [[ 6]] [[j]] + 
udu [[ rr ]] [[S]]*ud u[[ rr ]][[7]]*ud u[[ rr ]] [[7]] [[j]], 
{rr,l, Length[udu]}]; 

CM= Table[bb[j], [j,l, Length[inodes])]; 
b[j_] := 
Sum[ udu[[s]][[8]]*( exp /. 

{xl-> udu[[s]][[l]],x2 -> udu[[s]][[2]], 
x3 -> udu[[s]][[3]]))*udu[[s]][[4]][[j]], 

{s,1, Length[udu]}]; 
RHS = Table[bOJ, [j, 1, Length[inodes])J; 
sol = NN[LinearSolve[CM, RHS]]; sol>> "sol.out"; eda]; 

das :=Module[(), iei[S]; 
Print["THE CREATED DIFFUSE APPROXIMATION SPACE IS:"]; 
Print["MODE OF COMPUTATIONS:"]; Print[" mode:=", mode]; 
Print["PRECISION OF CALCULATIONS precision:=\ 

", preci]; Print["TOTAL NUMBER OF NODES IN xl DIRECTION [tnnxl] tnnxl:= \ 
", tnnxl]; Print["TOTAL NUMBER OF NODES IN x2 DIRECTION [tnnx2] tnnx2:= \ 
", tnnx2]; Print["TOTAL NUMBER OF NODES IN x3 DIRECTION [tnnx3] tnnx3:= \ 
", tnnx3]; Print["TOTAL NUMBER OF NODES tnn:= \ 
", tnn]; Print["REFINEMENT FACTOR FOR THE GENERATION OF NEW NODES\ 
[nnodes]"]; Print["$reff:={$reffxl,$reffx2} $reff:= ", $refl1; 

Print["DEGREE OF BASE FUNCTIONS WITH RESPECT TO x1 degx1:= ", 
degxl]; Print["DEGREE OF BASE FUNCTIONS WITH RESPECT TO x2 \ 

degx2:= ", degx2]; Print["DEGREE OF BASE FUNCTIONS WITH RESPECT TO x3 \ 
degx3:= ", degx3]; Print["ALGEBRlAC DIMENSION OF BASE FUNCTIONS [base] IS \ 
dim:=", dim]; Print["SELECTED WEIGHT FUNCTION [wf] IS:", wfn]; 

Print["THE PARAMETER [nquad] IS EITHER [ncaw3,ncaw4, ••• ,ncaw91]\ 
OR"]; Print[" [gqaw3,gqaw4" .. ,gqaw91] OR\ 
"]; Print[" [rsaw3,rsaw4, ... ,rsaw91] OR "]; 

Print["nquad:=", nquad]; iel[2]]; 
dbp :=Module[{), base= 

Union@@ 
Union@@ 
Table[(!- xl)*(l- x2)*(1- x3)*xl 'i*x2'j*x3'k, {i, 1, degxl}, 
[j, 1, degx2), {k,1, degx3)]]; 

dfp :=Module[{), bcond = 
{{{minxl, maxxl}, {minx2, maxx2}, {minx3, maxx3)), 
{0, 0, o, 0, 0, 0} }; 

dom = {(minxl, maxxl}, {minx2, maxx2), {minx3, maxx3}); 
difeq = {expll, exp12, exp22, expO}; 
bcond ={dam, {uminxl, umaxxl, uminx2, umaxx2, uminx3, umaxx3}}; 
auval = 
(StringJoin["u", ToString[#l[[l]]], ToString[#1[[2]]]] & ) /@ 
aindex; buval = 
(StringJoin["u", ToString[#l[[l]]], ToString[#1[[2]JJ] & ) /@ 
bindex; cuval = 
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(StringJoin["u", ToString[#l[[l]J], ToString[#l[[2]JJ] & ) /@ 
cindex; iuval = 
(StringJoin["u", ToString[#l[[l]J], ToString[#l[[2]JJ] & ) /@ 
iindex]; dnp := 

Module[(), aindex = 
Sort[Union @@ 

Union@@ 
Table[{kl, k2, k3}, {kl, 0, tnnxl-1}, {k2, 0, tnnx2 -1}, 
{k3, 0, tnnx3 -1}]]; 

iindex = 
Sort[Union @@ 

Union@@ 
Table[{kl, k2, k3}, {kl, 1, tnnxl- 2}, {k2, 1, tnnx2- 2}, 
{k3, 1, tnnx3- 2}]]; 

cindex = 
Sort[{{O, 0, 0}, {tnnxl- 1, 0, 0}, {tnnxl-1, tnnx2 -1, 0}, 

{0, tnnx2- 1, 0}, (0, 0, tnnx1 - 1}, 
{tnnxl- 1, 0, tnnxl-1}, {tnnxl-1, tnnx2 -1, tnnxl-1}, 
{0, tnnx2 -1, tnnxl-1}}]; 

bindex = Sort[Complement[aindex, Union[cindex, iindex]]]; 
sshxl = NN[(maxxl- minxl)/(tnnxl- 1)]; 
sshx2 = NN[(maxx2- minx2)/(tnnx2-l)]; 
sshx3 = NN[(maxx3- minx3)/(tnnx3 -1)]; 
anodes= 
({minxl + #l[[l]]*sshxl, minx2 + #l[[2]]*sshx2, 

minx3 + #1[[3]]*sshx3} & ) /@ aindex; 
bnodes = 
({minx!+ #l[[l]]*sshxl,minx2 + #1[[2]]*sshx2, 

minx3 + #1[[3]]*sshx3} & ) /@ bindex; 
cnodes = 
({minx!+ #l[[l]]*sshxl, minx2 + #1[[2]]*sshx2, 

minx3 + #1[[3]]*sshx3} & ) /@ cindex; 
inodes = 
({minxl + #l[[l]]*sshxl, minx2 + #1[[2]]*sshx2, 

minx3 + #1[[3]]*sshx3} & ) /@ iindex; ann= Length[ anodes]; 
bnn = Length[bnodes]; cnn = Length[cnodes]; inn= Length[inodes]]; 

eda :=Module({}, sol=<< "sol.out"; 
dasol:::: 
(asol/. {xl -> #1[[1]], x2 -> #1[[2]], x3 -> #1[[3]]) & ) /@ 
inodes; error := Max[Abs /@ ( « "sol.out"- dasol)]; iel[2]; 

Print["DU-Error[u]:=", N[error]]; iel[2]]; 
pwf :=Module[{}, k = $pwt1[2]]; a= $pwt1[3]]; 

ssh = norm[{sshxl, sshx2, sshx3}]; dm = a*ssh; 
pwexp := (1 - (norm2[{nil, ni2, ni3} - {xl, x2, x3)]/dm)•2)Ak; 
dlpwexp := D[pwexp, xl]; d2pwexp := D[pwexp, x2]; 
d3pwexp := D[pwexp, x3]; 
wf[nodes_, i_, xxl_, xx2_, xx3_] := 
pwexp/. 
{nil-> nodes[[i]][[l]], ni2 -> nodes[[i]][[2]], 
ni3 -> nodes[[i]][[3]], xl -> xxl, x2 -> xx2, x3 -> xx3}; 

dl wf[nodes_, i_, xxl_, xx2_, xx3_] := 
dlpwexp/. 
{nil-> nodes[[i]][(l]],ni2 -> nodes[[i]][[2]], 
ni3 -> nodes[[i]][[3]], xl -> xxl, x2 -> xx2, x3 -> xx3}; 

d2wf[nodes_, i_, xxl_, xx2_, xx3_] := 
d2pwexp/. 
{nil-> nodes[[i]][[l]], ni2 -> nodes[[i]][[2]], 
ni3 -> nodes[[i]][[3]], xl -> xxl, x2 -> xx2, x3 -> xx3}; 

d3wf[nodes_, i_, xxl_, xx2_, xx3_] := 
d3pwexp/. 
{nil -> nodes[[i]][[l]]; ni2 -> nodes[[i]J[[2]], 
ni3 -> nodes[[i]][[3]], xl -> xxl, x2 -> xx2, x3 -> xx3}]]; 

init :=Module[{}, capp; <<"lib"; mode= "Real"; preci =50; 
NN := N[#l, preci] & ; norm= norm2[#1] & ; 
norm2 := (#1. #1)'{1/2) & ; minx!= 0; maxxl =I; miax2 = 0; 
maxx2 = 1; minx3 = 0; maxx3 = 1; 
asol = xl*x2*x3*(1- xl)*(l- x2)*(1- x3); 
exp = -D[asol, xl, xl] - D[asol, x2, x2]- D[asol, x3, x3]; 
uminxl = 0; umaxxl = 0; uminx2 = 0; umaxx2 = 0; uminx3 = 0; 
umaxx3 = 0; tnnx1 = 4; tnnx2 = 4; tnnx3 = 4; tnn = tnrnd *tnnx2*tnnx3; 
degxl = 2; degx2 = 2; degx3 = 2; dim= degxl*degx2*degx3; 
wfn = "pwr•; $pwf= {{"k", "a"}, 2, S/2}; Sreffxl = 1; $reffx2 = 1; 
$reffx3 = 1; nquadx1 = "gqaw6"; nquadx2 = "gqaw6"; nquadx3 = "gqaw6"; 
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nquad = {nquadxl, nquadx2, nquadx3}; << "dnp"; << "dfp"; << "dbp"; 
<< "pwr'; object= 
{nodes, cnodes, bnodes, inodes, base, wf, wfn, rdea, error, nulll, 
null2, nul13, null4, nuiiS, asol}; 

Clear All[ res, alpha, cm, det, icm, beta, rhsm, rhsv, vfb, aa, 
d1alpha, d1cm, d1beta, d1rhsm, d1rhsv, vd1flt, d1aa, d2alpha, d2cm, 
d2beta, d2rhsm, d2rhsv, vd2flt, d2aa]]; 

dapp :=Module[{}, res[z1_, z2_, z3_, nodes_]:= 
Module[{}, iel[1]; alpha[rr_, ss_]:= 

Sum[(wf[nodes, ii, xx1, xx2, xx3]/. 
{xx1-> z1, xx2 -> z2, xx3 -> z3})* 

(base[[rr ]]/. 
{x1-> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]]))* 

(base[[ss]]/. 
{x1-> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]]}), {ii, 1, Length[ nodes])]; 

cm= Table[Table[alpha[rr,ss], {rr, 1, Length[base])], 
{ss, 1, Length[base])]; det := Det[cm]; 

Print["det[cm]:= ", N[det]]; icm =Inverse[ cm]; 
beta[ss_, ii_] := 
(wf[nodes, ii, xxl, xx2, xx3] /. 

{xx1-> z1, <X2 -> z2, xx3 -> z3})* 
(base[[ss]]/. 
{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]])); 

rhsm := 
Table[Table[beta[rr, ii], {ii, 1, Length[nodes])], 
{rr, 1, Length[base]}]; rhsv := rhsm. auval; aa = icm. rhsv; 

vuh = Simplify[(base/. {xl-> zl, x2 -> z2, x3 -> z3}). aa]; 
uh = (Coefficient[vuh,ll1] & )/@ iuval; 
d1alpha[rr~ ss_J := 
Sum[(dlwf[nodes, ii, xxl, xx2, xx3] /. 

{xx1 -> z1, xx2 -> z2, xx3 -> z3})* 
(base[[rr]]/. 
{x1-> nodes[[ii]][[1]],x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]]))* 

(base[[ ss]]/. 
{x1-> nodes[[ii]][[1]],x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]])), {ii, 1, Length[ nodes])]; 

d1cm= 
Table[Table[d1alpha[rr, ss], {rr, 1, Length[base]}], 
{ss, 1, Length[base])]; 

d1beta[rr_, ii_] := 
(dlwf[nodes, ii, xxl, xx2, xx3] /. 

{xx1 -> z1, xx2 -> z2, xx3 -> z3})* 
(base[[rr]]/. 
{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]])); 

d1rhsm= 
Table[Table[d1beta[rr, ii], {ii, 1, Length[ nodes])], 
{rr, 1, Length[base])]; d1rhsv = dlrhsm. auval; 

d1base = D[base, x1]; rhsvll = d1rhsv- dlcm. aa; 
d1aa = icm. rhsvll; vdluh = 
Simplify[(d1base/. {xl-> z1, x2 -> z2, x3 -> z3}). aa + 
(base/. {xl -> z1, x2 -> z2, x3 -> z3}) • dlaa]; 

d1uh := (Coefficient[vd1uh, #1] & ) /@ iuval; 
d2alpha[rr_, ss...]:= 
Sum[(d2wf[nodes, ii, xxl, xx2, xx3] /. 

{xxl -> zl, xx2 -> z2, xx3 -> z3})* 
(base[[rr]]/, 

{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]]})* 

(base[[ ss]]/. 
{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]])), {ii, 1, Length[ nodes]}]; 

d2cm= 
Table[Table[d2alpha[rr, ss], {rr, 1, Length[base]}], 
{ss, 1, Length[base])]; 

d2beta[rr_, ii_l := 
(d2wf[nodes, ii, xxl, xx2, xx3] /. 

{xxl-> z1, xx2 -> z2, xx3 -> z3})* 
(base[[rr]]/, 
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{x1 -> nodes[[ii]][[1]), x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]]}); 

d2rhsm= 
Table[Table[d2beta[rr, ii], {ii, 1, Length[ nodes]}], 
{rr,1, Length[base]}]; d2rhsv = d2rhsm. auval; 

d2base = D[base, x2]; rhsv21 = d2rhsv- d2cm. aa; 
d2aa = icm. rhsv21; vd2uh = · 
Simplify[(d2base/. {xl-> zl, x2 -> z2, x3 -> z3}). aa + 

(base/. {x1 -> z1, x2 -> z2, x3 -> z3}). d2aa]; 
d2uh := (Coefficient[vd2uh,#1] & ) /@ iuval; 
d3alpha[rr_, ss_j := 
Sum[(d3wf[nodes, ii, xxl, xx2, xx3] /. 

{xx1 -> z1, xx2 -> z2, xx3 -> z3})* 
(base[[rr])/. 

{x1 -> nodes[[ii]][[1]), x2 -> nodes[[ii]][[2]), 
x3 -> nodes[[ii]][[3]]})* 

(base[[ ss]]/. 
{x1 -> nodes[[ii]][[1]), x2 -> nodes[[ii]][[2]], 
x3 -> nodes[[ii]][[3]])), {ii, 1, Length[nodes]}]; 

d3cm= 
Table[Table[d2alpha[rr,ss], {rr,1, Length[base]}], 
{ss,1, Length[base]}]; 
d3beta[rr~ ii_] := 
(d3wf[nodes, ii, xx1, xx2, xx3]/. 

{xx1 -> z1, xx2 -> z2, xx3 -> z3})* 
(base[[rr ]]/. 

{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]), 
x3 -> nodes[[ii]][[3]]}); 

d3rhsm= 
Table[Table[d3beta[rr, ii], {ii,1, Length[ nodes]}], 
{rr,1, Length[base]}]; d3rhsv = d3rhsm. auval; 

d3base = D[base, x3]; rhsv31 = d3rhsv- d3cm. aa; 
d3aa = icm. rhsv31; vd3uh = 
Simplify[(d3base/. {x1-> zl, x2 -> z2, x3 -> z3}). aa + 

(base/. {x1-> z1, x2 -> z2, x3 -> z3}). d3aa]; 
d3uh := (Coefficient[vd3uh,#1] & )/@ iuval; 
Return[{z1, z2, z3, uh, d1uh, d2uh, d3uh)]]]] 
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• Plane Mapping Using Boundary Nodes- Program List 

pmb := Module[{}, lib := 
Module[{}, ri := Random[Integer, #1] & ; r := Random[Real, #1] & ; 

reo!:= RGBColor[r[{0,1}], r[{0,1}], r[{0,1}]]; 
iel[n_j := 
Module[{iii}, iii[O] := ""; 
iii(j_] := iii(j] = StringJoin[iii(j -1], "In"]; 
Return[Print[iii[n]]]];norm1 :=Plus@@ Abs/@ #1 & ; 

norm2 := NN[(#1 . #1)'(1/2)] & ; normi := Max[Abs /@ #1] & ; 
condinp[cond_, def_, txt_] := 
Module[{inp}, inp = Input[txt]; 
If[cond[inp], Return[inp], Return[def],Return[def]]]; 

prompt:= 
Modulel{inputmain}, inputmain[countermain_] := 

inputmain[countermain] = 
InputString[String.Join[''\n'', ''ln<PMP>['', 
ToString[countermain], "]:="]]; 

Module[{countermain = 1, conditionmain = "1 "}, 
While[ !conditionmain == ''Xit'', 
conditionmain = inputmain[countermain]; 
ToExpression[conditionmain]; countermain = countermain + 1]]]; 

dsn :=Module[{), nodess = NN[mapf /@ nodes!]; 
cnodess = NN[mapf /@ cnodest]; bnodess = NN[mapf/@ bnodest]; 
inodess = NN[mapf /@ inodest]; nnodess = NN[mapf /@ nnodest]; 
cnnodess = NN[mapf /@ cnnodest]; bnnodess = NN[mapf /@ bnnodest]; 
innodess = NN[mapf /@ innodest]]; 

dtn :=Module[{}, sshx1 = (maxx1- minx1)/(tnnx1- 1); 
sshx2 = (maxx2- minx2)/(tnnx2- 1); ssh = normi[{sshx1, sshx2}]; 
cnodest = 
{{minx!, minx2}, {maxx1, minx2}, {maxx1, maxx2}, {minx1, maxx2} }\ 

; nodest = Union @@ 
Table[{minx1 + k1*sshx1, minx2 + k2*sshx2}, 
{k1, 0, tnnx1- 1}, {k2, 0, tnnx2- 1}]; 

inodest = 
Union@@ 
Table[{minx1 + k1*sshx1, minx2 + k2*sshx2}, 
{k1, 1, tnnx1 - 2}, (k2, 1, tnnx2- 2)]; 

bnodest = Complement[nodest, inodest]; 
nnodest= 
Union@@ 
Table[(minx1 + (k1*sshx1)/$reffx1, 

minx2 + (k2*sshx2)/$reffx2}, (k1, 0, $reffx1*(tnnx1- 1)}, 
{k2, 0, $reffx2*(tnnx2- 1)}]; 

innodest = 
Union@@ 
Table[(minx1 + (k1*sshx1)/$reffx1, 

minx2 + (k2*sshx2)/$reffx2}, 
(k1, 1, $reffx1*(tnnx1-1)- 1}, 
{k2,1, $reffx2*(tnnx2-1) -1}]; 

bnnodest = Complement[nnodest, innodest]]; 
dap :=Module[(},« "dapp"; 

rda := (res[#1[[1]], #1[[2]], bnodess, bnodest] & ) I@ nodess; 
rda >> "rda.out"; << "eda,.]]; 

init :=Module[{}, capp; «"lib"; preci =50; NN := N[#1, preci] & ; 
norm= norm2[#1] & ; minxl = 0; maxxl = 1; minx2 = 0; maxx2 = 1; 
z = x1 + I*x2; iexp = Exp[z]; u1exp = Re[iexp]; u2exp = Im[iexp]; 
mapf= (u1exp /. (x1-> #1[[1]], x2 -> #1[[2]]), 

u2exp /. {x1 -> #1[[1]], x2 -> #1[[2]])} & ; tnnx1 = 4; tnnx2 = 3; 
tnn = tnnxl *tnnx2; degxl = 1; degx2 = 1; 
dim= (degx1 + 1)*(degx2 + 1); $cwf= (("k", "a"}, 2, tnn- 0.5); 
$reffx1 = 1; $reffx2 = 1; 
object= 
{nodess, cnodess, bnodess, inodess, nodest, cnodest, bnodest, 
inodest, base, wf, wfn, rdea, error, null!, null2, null31 null4, 
nullS, ulexp, u2exp}]; 

dapp :=Module[{}, ClearAll[res, alpha, det, icm, beta, rhsm, rhsvl, 
rhsv2, aal, aa2, vulh, vu2h]; 

res(zt_, z2_, nodes_, nod et_] := 
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Module[{), iel[1]; Print[" OK. PROC_1"]; 
alpha[rr_, ss_] := 
Sum[(wf[nodes, ii, xx1, xx2]/, (xx1-> z1, xx2 -> z2})* 

(base[[rr]]/. 
{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]]))* 

(base[[ss]]/. 
{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]])), 

{ii, 1, Lengtb[nodes]}]; 
cm:= 
Table[Table[alpha[rr, ss], {rr, 1, Lengtb[base]}], 
{ss, 1, Lengtb{base]}J; icm :=Inverse[ cm]; 

beta[ ss_, ii_] := 
(wf[nodes, ii, xx1, xx2]/. {xx1-> z1, xx2 -> z2})* 
(base[[ ss]]/. {x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]])); 

rhsm := 
Table[Table[beta[rr, ii], {ii, 1, Lengtb[nodes])], 
{rr, 1, Lengtb[base]}]; rhsv1 := rhsm. (111[[1]] & ) /@node!; 

rhsv2 := rhsm . (111[[2]] & ) /@ node!; aa1 := icm. rhsv1; 
aa2 := icm. rhsv2; vu1h :=(base/, {x1-> z1, x2 -> z2}). aa1; 
vu2h :=(base/. {x1-> z1, x2 -> z2}). aa2; 
Return[{z1, z2, vu1h, vu2h, det}]]]] 

2 
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• Plane Mapping Using All Nodes- Program List 

pmn :=Module[{), lib:= 
Module[{}, r := Random[Real, #1] & ; 

reo!:= RGBColor[r[{O, 1}], r[{O, 1}], r[{O, 1)]]; 
iel[n_] := 
Module[{iii}, iii[O] := ""; 

iii[j_] := iii[j] = String.Join[iii[j -1], "In"]; 
Return[Print[iii[n]]]l: norm! :=Plus @@ Abs /@ #1 & ; 

norm2 := NN[(#l. #1)'(112)] & ; normi := Max[Abs/@ #1] & ; 
condinp[cond_, def_, txt_] := 
Module[{inp }, inp = Input[txt]; 

It1cond[inp], Return[inp], Return[def], Return[def]]]; 
prompt:= 
Module[{inputmain}, inputmain[countermain_j := 

inputmain[countermain] = 
InputString[String.Join(''\n '', ''ln<PMP>['', 

ToString[countermain], "]:="]]; 
Module[{ countermain = 1, conditionmain = "1 "}, 
While[ !conditionmain == "Xit", 
conditionmain = inputmain[countermain]; 
ToExpression[conditionmain]; countermain = countermain + 1]]); 

dap :=Module[{},« "dapp"; 
rda := (res[#l[[l]], #1[[2]], nodess, nodes!] & ) /@ nnodess; 
rda >> "rda.out"; << "eda"]; 

das :=Module[{), iel[S]; 
Print["THE CREATED DIFFUSE APPROXIMATION SPACE IS:"]; 
Print["MODE OF COMPUTATIONS : "]; Print[" mode:=", mode]; 
Print["PRECISION OF CALCULATIONS precision:=", 
preci]; Print["TOTAL NUMBER OF NODES IN x1 DIRECTION [tnnxl] I 

tnnxl:= ", tnnxl]; Print["TOTAL NUMBER OF NODES IN x2 DIRECTION [tnnx2] I 
tnnx2:= ", tnnx2]; Print["TOTAL NUMBER OF NODES [tnn] Inn:=", Inn]; 

Print["DEGREE OF THE BASE FUNCTIONS IN xl [degxl] degxl:= I 
", degxl]; Print["DEGREE OF THE BASE FUNCTIONS IN x2 [degx2] degx2:= I 
", degx2]; Print[" ALGEBRAIC DIMENSION OF THE BASE FUNCTIONS [dim] dim:= I 
",dim]; Print["SELECTED WEIGHT FUNCTION [wf] IS:", wfn]; iel[S]]; 

dbp :=Module[{), base= 
Union@@ Table[ xi 'i*x2'j, {i, 0, degxl}, U, 0, degx2}]]; 

dfp :=Module[{}, eqtb[t_] := 
Which[O <= t <= 1, (1 - t)*cnodest[[l]] + t*cnodest[[2]], 
1 <= t <= 2, (2- t)*cnodest[[2]] + (t- l)*cnodest[[3]], 
2 <= t <= 3, (3- t)*cnodest[[3]] +(I- 2)*cnodest[[4]], 
3 <= t <= 4, ( 4- t)*cnodest[[ 4]] +(I- 3)*cnodest[[l]]]; 

eqsb[t_] := mapf[eqtb[t]]; vul = (#1[[1]] & ) /@nodes!; 
vu2 = (#1[[2]] & ) /@ nodes!; nvul = (#1[[1]] & ) /@ nnodest; 
nvu2 = (#1[[2]] & ) /@ nnodest; nodess = NN[mapf /@ nod est]; 
cnodess = NN[mapf /@ cnodest]; bnodess = NN[mapf /@ bnodest]; 
inodess = NN[mapf /@ inodest]; nnodess = NN[mapf /@ nnodest]; 
cnnodess = NN[mapf /@ cnnodest]; bnnodess = NN[mapf /@ bnnodest]; 
innodess = NN[mapf /@ innodest]; 
sshxl = (maxxl - minxl)/(tnnxl- 1); 
sshx2 = (maxx2- minx2)/(tnnx2- 1); ssh = normi[{sshxl, sshx2}]; 
cnodest = 
{{minxl, minx2}, {maxxl, minx2}, {maxxl, maxx2}, {minxl, maxx2}}\ 

; nodest = Union @@ 
Table[{ minx!+ kl*sshxl, minx2 + k2*sshx2}, 
{kl, 0, tnnxl- 1}, {k2, 0, tnnx2- l}l; 

inodest = 
Union@@ 
Table[{minxl + kl*sshxl, minx2 + k2*sshx2}, 
{kl, 1, tnnxl- 2}, {k2, 1, tnnx2- 2}]; 

bnodest = Complement[nodest, inodest]; 
nnodest = 
Union@@ 
Table[{minxl + (kl*sshxl)/$reffxl, 

minx2 + (k2*sshx2)/$reffx2}, {kl, 0, $reffxl*(tnnxl-l)}, 
{k2, 0, $reffx2*(tnnx2- 1)}]; 

innodest = 
Union@@ 
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Table[{minx1 + (k1*sshx1)/$reffx1, 
minx2 + (k2*sshx2)/$reffx2 }, 

{k1,1, $reffx1*(tnnx1-1) -1}, 
{k2, 1, $reffx2*(tnnx2- 1)- 1}]; 

bnnodest = Complement[nnodest, innodest]]; 
eda :=Module[{}, dau1 = (#1[[3]] & ) /@ « "rda.out"; 

dau2 = (#1[[ 4}] & ) /@ « "rda.out"; 
nodesth = MapThread[{#1, #2} & , {dau1, dau2}]; 
errorl = Max[Abs /@ (dau1- (#1[[1]] & ) /@ nnodest)]; 
error2 = Max[Abs/@ (dau2- (#1[[2]] & ) /@ nnodest)}; 
mindet = Min[Abs /@ (#1[[5]] & ) I@ « "rda.out"]; iel[2]; 
Print["DU-errorl :=",error!]; Print["DU-error2:=", error2]; 
Print["DU-error:=", Max[{ errorl, error2} ]]; 
Print["mindet:=", mindet]; iel[2]]; 

gwf :=Module[{}, Set0ptions[Plot3D, AmbientLight -> GrayLevel[O], 
AspectRatio ->Automatic, Axes-> True, AxesEdge -> Automatic, 
AxesLabel-> None, AxesStyle ->Automatic, 
Background-> GrayLevel[O], Boxed-> True, 
BoxRatios -> {1, 1, 0.4}, BoxStyle ->Automatic, 
ClipFill-> Automatic, ColorFunction ->Automatic, 
ColorOutput ->Automatic, Compiled-> True, 
DefaultColor ->Automatic, Epilog -> {}, FaceGrids ->None, 
HiddenSurface ->True, ImageSize ->Automatic, Lighting-> True, 
LightSources -> 
{((1., 0.,1.), RGBColor[l/2, 0, 0]), 
{{1.,1.,1.), RGBColor[0,1, 0]), 
((0.,1.,1.}, RGBColor[O, 0,1]}}, Mesh-> False, 

MeshStyle ->Automatic, Plot3Matrix -> Automatic, 
PlotLabel-> None, PlotPoints -> 30, PlotRange ->All, 
PlotRegion -> Automatic, Prolog -> {},Shading-> True, 
SphericaiRegion -> False, Ticks-> Automatic, 
ViewCenter ->Automatic, 
ViewPoint-> {1.3, -2.399999999999999, 2.), 
View Vertical-> (0., 0.,1.}, DefaultFont :> $DefaultFont, 
Display Function:> $Display Function, FormatType :> $FormatType, 
TextStyle :> $TextStyle]; ClearAII[trnn]; 
trnn = Table[ri[{1, Length[nodess}}}, {i, 1, 10}]; 
Plot3D[wf[nodess, trnn[(1]], xx1, xx2], {xx1, minx1, maxxl}, 
{xx2, minx2, maxx2)]; 
Plot3D[wf[nodess, trnn[[2]], xx1, xx2], {xx1, minx!, maxx1}, 
{xx2, minx2, maxx2}]; 

Plot3D[wf[nodess, trnn[[3]], xx1, xx2], {xx1, minxl, maxxl}, 
{xx2, minx2, maxx2}]; 

Plot3D[wf[nodess, trnn[[4]], xx1, xx2], {xx1, minx1, maxxl}, 
{xx2, minx2, maxx2}]; 

Plot3D[wf(nodess, trnn[[S]], xx1, xx2], {xx1, minx1, maxxl}, 
{xx2, minx2, maxx2)]}]; 

init :=Module[{}, preci = 30; NN := N[#1, preci] & ; 
norm= norm2[#1] & ; minx1 = 0; maxx1 = 1; minx2 = 0; maxx2 = 1; 
z = x1 + I*x2; iexp = (1 + l)*z; u1exp = Re[iexp]; u2exp = Im[iexp]; 
mapf= {u1exp /. {x1-> #1[[1]], x2 -> #1[[2]]), 

u2exp /, {x1 -> #1[[1]], x2 -> #1[[2]]}} & ; tnnx1 = 4; tnnx2 = 4; 
tnn = tnnx1*tnnx2; degxl = 1; degx2 = 1; 
dim= (degx1 + l)*(degx2 + 1); $cwf= {{"k", "a"}, 2, tnn- 0.5}; 
$reffxl = 1; $reffx2 = 1; << "dtn"; << "dsn"; << "dfp"; << "dbp"; 
<< "dcwp"; object= 
{nodess, cnodess, bnodess, inodess, nodest, cnodest, bnodest, 
inodest, base, wf, wfn, rdea, error, null!, null2, null3, null4, 
nuns, ulexp, u2exp}]; 

dapp :=Module[{}, Clear All[ res, alpha, det, icm, beta, rhsm, rhsvl, 
rhsv2, aal, aa2, vulh, vu2h]; 
res[ zl_, z2_, nodes_, nodet_] := 
Module[(), alpha[rr_, ss_]:= 

Sum[(wf[nodes, ii, xxl, xx2]/. {xx1 -> zl, xx2 -> z2})* 
(base[[rr ]] /. 
{x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][(2]]})* 

(base[[ ss]]/, 
{x1-> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]])), 

{ii, 1, Length[nodes]J]; 
cm:= 
Table[Table[alpha[rr, ss], {rr,1, Length[base]J], 
{ss,1, Length[base]}]; det := Det[cm]; Print["det[cm]:= ", det]; 

icm :::Inverse[ cm]; beta[ss_, ii_] ::: 

2 
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(wf[nodes, ii, xx1, xx2]/. (xx1 -> z1, xx2 -> z2})* 
(base[[ss]]/. (x1 -> nodes[[ii]][[1]], x2 -> nodes[[il]][[2]])); 

rhsm := 
Table[Table[beta[rr, ii], (ii, 1, Length[ nodes]}], 
(rr, 1, Length[base]}]; rhsv1 := rhsm. (111[[1]] & ) /@node!; 

rhsv2 := rhsm. (111[[2]] & ) /@ node!; aa1 := icm. rhsv1; 
aa2 := icm. rhsv2; vu1h := (base/. (x1 -> z1, x2 -> z2}) • aa1; 
vu2h :=(base/. (x1-> z1, x2 -> z2}). aa2; iel[2]; 
Return[(z1, z2, vu1h, vu2h, det}]]]] 

3 
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• Surface Fitting-Program List 

sfp :=Module[{}, lib := 
Module[{), po :=Print[ object]; 

iel[n_] := 
Module[{iii}, iii[O] := ""; 
iiiU_J := iii[j] = StringJoin[iiiU -1], "In"]; 
Return[Print[iii[n]]]];r :=Random[]; 

ri := Random[Integer, #1] & ; rcol := RGBColor[r, r, r]; 
usf(a_, x_] := Which[x <a, 0, x ==a, 1/2, x >a, 1]; 
iel[n_] := 
Module[{iii}, iii[O] := ""; 
iiiU_] := iii[j] = StringJoin[iiiU- I], "In"]; 
Return[Print[iii[n]]]]; norm! := NN //@ Plus @@ Abs /@ #I & ; 

norm2 := NN //@ ((#1 , #I)A(l/2)) & ; 
normi := NN //@ Max[Abs /@#I] & ; 
condinp[cond_, def_, txt_] := 
Module[{inp }, inp = Input(txt]; 

If(cond[inp], Return[inp], Return[def], Return[ del]]]; 
sshxl = (maxxl - minxl)/(tnnxl- 1); 
sshx2 = (maxx2- minx2)/(tnnx2- 1); 
nodes= Union @@ 
Table[{ minx!+ kl*sshxl, minx2 + k2*sshx2}, {kl, 0, tnnxl-1}, 
{k2, 0, tnnx2 -I}]; 

nnodes= 
Union@@ 
Table[{minxl + (kl*sshxl)/$reffxl, minx2 + (k2*sshx2)/$reffx2}, 
{kl, 0, $reffd*(tnnxl-1)}, {k2, 0, $reffx2*(tnnx2 -1)}]; 

base= Union@@ Table[x1Ai*x2Aj, {i, 0, degxl}, U, 0, degx2}]; 
dlexp = D[exp, xi]; d2exp = D[exp, x2]; 
f = exp /, {xi -> #1, x2 -> #2} & ; 
dlf = dlexp /, {x1-> #1, x2 -> #2} & ; 
d2f = d2exp /. (xi -> #1, x2 -> #2} & ; vf = (f@@ #1 & ) /@ nodes; 
nvf= (f@@ #1 & )/@ nnodes; vdlf= (dlf@@ #I&)/@ nodes; 
vd2f= (d2f@@ #1 &)/@nodes; nvdlf= (dlf@@ #1 & )/@ nnodes; 
nvd2f = (d2f @@ #1 & ) /@ nnodes; k = $cwf([2]]; a= $cwf([3]]; 
ssh = norm[{sshxl, sshx2}]; dm = a*ssh; wfn = "pwr•; 
cwexp := (1- (norm[( nil, ni2}- (xl, x2}]/dm)A2)Ak; 
dlcwexp := D[cwexp,xl]; d2cwexp := D[cwexp, x2]; 
wf[nodes_, i_, xxl_, xx2_] := 
cwexp/. 
(nil -> nodes[[i]J[[l]J, ni2 -> nodes[[i]][(2]], x1 -> xx1, 
x2 -> xx2}; dlwflnodes_, i_, xxl_, xx2_) := 

dlcwexp/. 
{nil-> nodes[[i]J[[1]], ni2 -> nodes[[i]J[[2]], xl-> xxl, 
x2 -> xx2}; d2wflnodes_, i_, xxl_, xx2_] := 

d2cwexp/. 
{nil -> nodes[[i]J[[l]J, ni2 -> nodes[[i]J[[2]], x1 -> xxl, 
x2 -> xx2}; eda := 

Module[{), daf= (#1[[3]] & ) /@ « "rda.out"; 
dadlf= (#1[[4]] & ) /@ « "rda.out"; 
dad2f= (#1[[5]] & )/@ « "rda.out"; 
mindet = Min[Abs /@ (#1[(6]] & ) /@ « "rda.out"]; 
error= Max[Abs /@ (daf- nv!)]; 
dlerror = Max[Abs/@ (dad If- nvdll)]; 
d2error = Max[Abs /@ (dad2f- nvd2!)]; iel[2]; 
Print[''DU-error:=", error]; Print[''DU-d1error:='', d1error]; 
Print["DU-d2error:=",d2error]; Print["mindet:=", mindet]; iel[2]]J\ 

; init :=Module[{}, ea pp; preci = 10; NN := N[#l, preci] & ; mode= Real; 
norm= norrn2[#1] & ; minxl = 0; maxxl:: 1; minx2 = 0; maxx2:: 1; 
dom ={{minx!, maxx1}, {minx2, maxx2}}; exp = x1"2 + x2"2 +xl*x2; 
tnnx1:: 3; tnnx2:: 4; tnn = tnnxl*tnnx2; degxl = 1; degx2:: 1; 
dim= (degxl + l)*(degx2 + !); $cwf= (("k", "a"}, 2, 11/2}; 
$reffxl = 2; $reffx2 = 2; $reff= ($reffxl, $reffx2}; 
object= 
{ dom, nodes, base, wf, wfn, vf, "rda.out", error, nulll, null2, 
null3, null4, nuUS, null6, exp}]; 

dapp :=Module[{}, Clear All[ res, alpha, cm, det, icm, beta, rhsm, rhsv, 
vfb, aa, dlalpha, diem, dlbeta, dlrhsm, dlrhsv, vdlfh, dlaa, 
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d2alpha, d2cm, d2beta, d2rhsm, d2rhsv, vd20t, d2aa]; 
res[zl_, z2_, nodes_] :::: 
Module[{}, iel[l]; Prini["OK.procssor-1"]; 

alpha[rr_, ss_]:= 
Sum[(wf[nodes, ii, xxl, xx2]/. {xxl-> zl, xx2 -> z2})* 

(base[[rr]]/. 
{xi -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]})* 

(base[[ ss]]/. 
{xi-> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]}), 

{ii, 1, Lenglh[nodes])]; 
cm:= 
Table[Table[alpha[rr, ss], {rr,l, Lenglh[base])], 
{ss, I, Length[base])]; del= NI!@ Del[ cm]; 

Print[11 det[cm]:= ", det]; icm =Inverse[ cm]; 
beta[ ss_, ii_] := 
(wf[nodes, ii, xxl, xx2]/. {xxl -> zl, xx2 -> z2})* 
(base[[ss]]/. {xi -> nodes[[ii]][[l]], x2 -> .nodes[[ii]][[2]])); 

rhsm:= 
Table[Table[beta[rr, ii], {ii, 1, Lenglh[nodes]}], 
{rr,l, Length[base])]; rhsv := rhsm. (f @@ #1 & ) !@nodes; 

aa = icm. rhsv; vfh = (base/. {xl-> zl, x2 -> z2}) . aa; 
Prinl["vfh:=", vfh]; Prinl["nvf:=", Short[N[nvf]]]; iel[l]; 
Print[''OK.processor-2'']; 
dlalpha[rr_, ss_]:= 
Sum[(dlwf[nodes, ii, xxl, xx2]/. {xxl-> zl, xx2 -> z2})* 

(base[[rr]]/. 
{xi -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]})* 

(base[[ ss]]/. 
{xi -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]])), 

{ii, 1, Length[ nodes])]; 
dlcm= 
Table[Table[dlalpha[rr, ss], {rr,l, Lenglh[base]}], 
{ss, 1, Length[base]}]; 

dlbeta[rr_, ii_] := 
(dlwf[nodes, ii, xxl, xx2]/. {xxl-> zl, xx2 -> z2})* 
(base[[rr]]/. {xl -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]}); 

dlrhsm= 
Table[Table[dlbeta[rr, ii], {ii,l, Length[ nodes])], 
{rr,l, Length[base]}]; dlrhsv = dlrhsm. (f @@Ill & ) /@nodes; 

dlbase = D[base, xl]; dlaa = icm. (dlrhsv- diem. aa); 
vdlflt = 
(dlbase !. {xl-> zl, x2 -> z2}). aa + 
(base/. {xi -> zl, x2 -> z2}) . dlaa; Prinl["vdlfh:=", vdlflt]; 

Prinl["nvdlf:=", Shori[N[nvdlf]]]; 
d2alpha[rr_, ss_]:= 
Sum[(d2wf[nodes, ii, xxl, xx2]/. {xxl-> zl, xx2 -> z2})* 

(base[[rr]]/. 
{xi-> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]})* 

(base[[ss]]/. 
{xi-> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]}), 

{ii, 1, Length[nodes])]; 
d2cm= 
Table[Table[d2alpha[rr,ss], (rr,l, Length[base]}], 
{ss, 1, Length[base])]; 

d2beta[rr_, ii_] := 
(d2wf[nodes, ii, xxl, xx2]/. {xxl-> zl, xx2 -> z2})* 
(base[[rr]]/. {xl -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]])); 

d2rhsm= 
Table[Table[d2beta[rr, ii], {ii,l, Lenglh[nodes]}], 
{rr,l, Length[base]}]; d2rhsv = d2rhsm. (f @@ #1 & ) /@nodes; 

d2base = D[base, x2]; d2aa = icm. (d2rhsv- d2cm. aa); 
vd2fh = 
(d2base /.{xi-> zl, x2 -> z2}). aa + 
(base/. (xl-> zl, x2 -> z2}). d2aa; Prinl["vd20t:=", vd20t]; 

Prinl["nvd2f:=", Shori[N[nvd2f]]]; 
Relurn[{zl, z2, vflt, vdlfh, vd20t, del}]]]] 

2 
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• Solution of Sturm-Liouville Equation with 
Homogeneous B. C.- Program List 

sip := Module[{},lib := 
Module[{}, r :=Random[]; ri[a_, b_] := Random[Integer, {a, b)]; 

reo!:= RGBColor[r, r, r]; 
usf[a_, x_] := Which[x < a, 0, x == a, 112, x >a, I]; 
refine[set_] := 
Module[{}, Return[Union[Table[(set[[i]] + set[[i + 1]])/2, 

{i,l, Length[set]- 1}], set]]]; 
iel[n_] := 
Module[{iii}, iii[O] := ""; 

iiiU_] := iiiUJ = StringJoin[iiiU -1], "\n"]; 
Return[Print[iii [ n ]]]] ; 

dap :=Module[{}, swdqaw; data= Get[nquad]; swdslp4; 
supp = (#1[[1]] & ) /@ data; 
isupp = Complement[supp, {First[supp], Last[supp]}]; 
omega= (#1[[2]] & ) /@data;« "dapp"; 
udu = (res2[#1, nodes] & ) /@ supp; 
bbU_l := 
Sum[(expl /, x -> supp[[r]])*omega[[r]]*udu[[r]][[2]]* 

udu[(r]][[2ll!Ull + 
(exp2 /, x -> supp[[r]])*omega[[r]]*udu[(r]]([l]]* 
udu[[r]][[l]][UJ], {r,l, Length[supp]}]; 

BBBB = Table[bbUJ, [], 1, tnn- 2}]; 
bU_l := 
Sum[(exp3 /, x -> supp[[r]])*omega[[r]]*udu[(r]][[l]][U]], 
{r,l, Length[supp])]; BB= Table[bUJ, [],1, tnn- 2}]; 

sol= LinearSolve[BBBB, BB]; sol>> "sol.out"; 
MapThread[{#l, #2} & , {inodes, sol}]>> "rda.out"; << "eda"]; 

das :=Module[{}, iei[S]; 
Print["THE CREATED DIFFUSE APPROXIMATION SPACE IS:"]; 
Print[''mode:=", mode]; Print[''precision:='', precision]; 
Print[''tnn:='', Length[nodes]]; Print[''nodes:=", N[Short[nodes]]]; 
Print['' dim:='', Length[base]]; Print[''base:='', Short[base]]; 
Print["wf:=", wfn]; Print["REFlNE FACTOR OF NODES [$refll I 

$reff:=", $refll; Print["THE PARAMETER [nquad] IS EITHER I 
[ncaw3,ncaw4, ... ,ncaw77] OR "]; 

Print[" [gqaw3,gqaw4, ... ,gqaw77]. I 
"]; Print["numq:=", nquad]; iel[S]]; 

dbp :=Module[{}, base= Table[(!- x)*x'(i + 1), {i, 0, dim -1}]]; 
dfp :=Module[{}, dom ={minx, maxx}; difeq = {expl, exp2, exp3}; 

bcond = {dom, {uminx, umaxx}}; 
uval= 
ToExpression /@ Table[StringJoin["u", ToString[i]], {i,l, tnn}]l 

; iuval = Complement[uval, {First[uval], Last[uval]}]]; 
dnp :=Module[{}, ssh = NN[(maxx- minx)l(tnn -1)]; 

nodes== Table[ minx+ k*ssh, {k, 0, tnn- 1}]; 
bnodes ={First[ nodes], Last[ nodes]}; cnodes = bnodes; 
inodes = Complement[nodes, bnodes]; nnodes = refine[nodes]; 
bnnodes = {First[nnodes], Last[nnodes]}; cnnodes = bnnodes; 
innodes = Complement[nnodes, bnnodes]; 
eda:= 
Module[[}, dasol = (asol /, x -> #1 & ) /@ inodes; 

error:= Max[Abs/@ (<< "sol.out"- dasol)]; 
datal= 
MapThread[{#1, Abs[#2]} & , {inodes, « "sol.out"- dasol}]; 
intl = Listlntegrate[datal, tnn- 3]; 
data2 = 
({#1[[1]], #1[[2]]'2} & ) /@ 
MapThread[{#l, #2} & , {inodes, << "sol.out"- dasol}]; 

int2 = Sqrt[Listlntegrate[data2, tnn- 3]]; 
Print["THE RESULTS OF THIS APPROXIMATION ARE:"]; 
Print["DLI-error[f]:= ", N[intl]]; 
Print["DL2-error[f]:= ", N[int2]]; 
Print[' 'DU-Error[f]:=", N[ error]]]; 

pwf:= 
Module[{}, k = $pwf[[2]]; a= $pwf[[3]]; dm = a*ssh; 



pslp.nb 

cwexp := (1- ((ni- x)ldm)'2)'k; 
dcwexp := D[(1- ((ni- x)ldm)A2)Ak, x]; 
wf[nodes_, i_, xx_] := cwexp /. {ni -> nodes[[i]], x -> xx}; 
dwf[nodes_, i_, xx_] := dcwexp /. {ni -> nodes[[i]], x -> xx}lJ]I 

; init :=Module[{}, ea pp;<< "lib"; mode= "Real"; precision= 50; 
NN := N[#l, precision] & ; minx= 0; maxx = 1; dom ={minx, maxx}; 
exp1 = -1; exp2 = 1; solf[t_] := 
If[Inequality[O, Less, t, LessEqual, 1], tA3*Log[t], 0]; 

asol = solf[x]; exp3 = Simplify[-D[expl*D[asol,x], x]+ exp2*asol]; 
uminx = 0; umaxx = 0; tnn = 10; dim= 7; wfn = ''pwr'; 
$pwf = {"nul,nu2,mul,mu2", 2, 21/2}; $reff= 2; nul = 2; 
nquad = "ncaw20"; << "dfp"; << "dnp"; << "dbp"; Get[wfn]; 
object= 
{ difeq, bcond, trans, tdifeq, tbcond, nodes, base, wf, wfn, rdea, 
fel, fe2, fe3, fe4, feS, fe6, fe7, fe8, fe9, asol}]; 

dapp :=Module[{}, resl[z_, nodes_] := 
Module[{ alpha, det, beta, rhsvl, a, da}, 
alpha[rr_, ss_]:= 

Sum[(wf[nodes,ii, xx] /. xx -> z)* 
(base[[rr]] I. x -> nodes[[ii]])* 
(base[[ ss]]/. x -> nodes[[ii]]), {ii, 1, Length[nodes]}]; 

cm= Table[Table[alpha[rr, ss], {rr, 1, Length[base]}], 
{ss, 1, Length[base]}]; icm =Inverse[ cm]; 

beta[rr_, ii_] := 
(wf[nodes, ii, xx]/, xx -> z)*(base[[rr]]/. x -> nodes[[ii]]); 

rhsm= 
Table[Table[beta[rr, ii], {ii,l, Length[nodes]}], 
{rr, 1, Length[base]}]; rhsv = rhsm. oval; 

vuh = Simplify[(base/. x -> z). icm. rhsv]; 
Return[{cm, icm, rhsm, rhsv, uh}]; iel[l]]; 

res2[z_, nodes_] := 
Module[{dalpha, dbeta, rhsvl, dbase}, 
resl[z, nodes]; dalpha[rr_, ss_] := 
Sum[(dwf[nodes, ii, xx]/. xx -> z)* 

(base[[rr]]/, x -> nodes[[ii]])* 
(base[[ ss]]/. x -> nodes[[ii]]), {ii, 1, Length[nodes]}]; 

dcm= 
Table[Table[dalpha[rr, ss], {rr, 1, Length[base]}], 
{ss, 1, Length[base]}); 

dbeta[rr_, ii_] := 
(dwf[nodes, ii, xx]/. xx -> z)*(base[[rr]]/. x -> nodes[[ii]]); 

drhsm= 
Table[Table[dbeta[rr, ii], {ii, 1, Length[ nodes]}], 
{rr, 1, Length[base]}]; drhsv = drhsm. uval; dbase = D[base, x]; 

vduh= 
Simplify[(dbase /. x -> z) • icm. rhsv + 

(base/. x -> z). icm. (drhsv- dcm. icm. rhsv)]; 
uh := (Coefficient[•uh,#l] & ) /@ iuval; 
doh:= (Coefticient[vduh,#l] & ) /@ iuval; Return[{uh, doh}]]]] 
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• Approximation of Trace Operator- Program List 

tap :=Module[{}, lib := 
Module[{}, iel[n_J := 

Module[{iii}, iii[O] := '"'; 
iii[j_J := iii[j] = StringJoin[iii[j -1], "In"]; 
Return[Print[iii[n]J]]; 

dap :=Module[{}, ClearAII[gva, gvb, gvc, gvi, rda]; 
g = exp /. {x1-> #1, x2 -> #2} & ; 
gvb= 
(NN[(#1[[1]], #1[[2]], g[#1[[1]], #1[[2]J]}] & ) !@ NN[bnodes]; 

gvc = 
(NN[(#1[[1]], #1[[2]], g[#1[[1]], #1[[2]]]}] & ) /@ NN[cnodes]; 

gvi = (NN[(#1[[1]],#1[[2]],1}] & ) /@ NN[inodes]; 
gva = Union[gvb, gvc, gvi]; << "dapp"; 
rda = (res[#1[[1]], #1[[2]], anodes, gva] & ) /@ anodes; 
rda >> "rda.out"]; das := 

I 

Module[{}, iei[S]; Print["THE FOLLOWING DIFFUSE APPROXIMATION SPACE [das]1S \ 
CREATED FOR "]; Print["THE GENERATION OF AN APPROXIMATE FOR THE TRACE OPERATOR THIS IS SI 

iel[1]; Print["MODE OF COMPUTATIONS: \ 
mode:=", mode]; Print["PRECISION OF CALCULATIONS \ 
precision:= ", preci]; Print["TOTAL NUMBER OF NODES IN xl DIRECTION\ 
[tnnx1] tnnxl:= ", tnnx1]; Print["TOTAL NUMBER OF NODES IN x2 DffiECTION \ 
[tnnx2] tnnx2:= ", tnnx2]; Print["TOTAL NUMBER OF NODES \ 

tnn:= ", tnn]; Print["DEGREE OF BASE FUNCTIONS WlTII RESPECT TO\ 
xl degxl:= ", degxl]; Print["DEGREE OF BASE FUNCTIONS WITH RESPECT TO\ 
x2 degx2:= ", degx2]; Print["ALGEBRlAC DIMENSION OF BASE FUNCTIONS\ 
[base] IS dim:=", dim]; Print[" SELECTED WEIGHT FUNCTION [wf] IS \ 

wfn:= ", wfn]; iel[l]]; 
dbp :=Module[{}. base= 

Union @@ Table[xiAi*x2'j, {i, 0, degx1}, U, 0, degx2}]]; 
dfp :=Module[{}, ulinel = exp /. x2 -> 0; uline2 = exp /. x1 -> 1; 

uline3 = exp /. x2 -> 1; uline4 = exp /. xi -> 0; 
g1 := uline1/. {xl -> #1) & ; g2 := uline2/. {x2 -> #2} & ; 
g3 := uline3/. {x1-> #1) & ; g4 := uline4/. {x2 -> #2} & ; 
aindex = 
Sort[Union @@ 
Table[{k1, k2}, {k1, 0, tnnx1-1}, {k2, 0, tnnx2 -1}]]; 

iindex = 
Sort[Union @@ 
Table[{kl, k2}, {kl, 1, tnnx1 - 2}, {k2, 1, tnnx2- 2}]]; 

cindex = 
Sort[{{O, 0}, {tnnx1-1, 0}, {tnnx1-1, tnnx2 -1}, 

{0, tnnx2- 1}}]; bindex = Sort[Complement[aindex, iindex]]; 
ssbxl = NN[(maxx1 - minxl)/(tnnx1 -1)]; 
sshx2 = NN[(maxx2- minx2)/(tnnx2 -1)]; 
anodes= 
({minxl + #l[[l]]*sshxl, minx2 + #1[[2]]*sshx2} & ) /@ aindex; 

inodes = 
({minxl + #1[[1]]*sshxl, minx2 + #1[[2]]*sshx2} & ) !@ iindex; 

cnodes = 
({minxl + #1[[1]]*sshxl, minx2 + #1[[2]]*sshx2} & ) /@ cindex; 

bnodes = 
({minxl + #l[[l]]*sshxl, minx2 + #1[[2]]*sshx2} & ) /@ bindex; 

ann= Length[anodes]; bnn = Length[bnodes]; cnn = Length[cnodes]; 
inn= Length[inodes]]; 

eda :=Module[{}, error= 
(NN[{#1[[1]], #1[[2]], #1[[3]]}] & ) /@ « "rda.out"- gva; 

iel[2]; Print["DU-Error[g]:=",Max[(norm[#l] & ) /@ error]]; 
iel[2]]; gnp := 

Module[{}, ClearAII[cpolyl, ccnod1, cinodl, cbnodl]; 
SetOptions[Graphics, AspectRatio -> 1, Axes-> True, 
AxesLabel-> {"xl '', "x2"}, AxesOrigin ->Automatic, 
AxesStyle ->Automatic, Background -> glO, 
ColorOutput ->Automatic, DefaultColor -> rcol, Epilog -> (}, 
Frame-> False, FrameLabel -> None, FrarneStyle -> Automatic, 
Frame Ticks-> Automatic, GridLines ->None, 
ImageSize ->Automatic, 
PlotLabel-> "NODAL POINTS USED FOR TRACE APPROXIMATION", 
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icm =Inverse[ cm); beta[ ss_, ii_] := 
(wf[nodes, ii, xxl, xx2]/. {xxl-> zl, xx2 -> z2})* 
(base[[ ss]]/. {xl-> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]}); 

rhsm := Table[Table[beta[rr, ii], {ii, 1, Length[nodes]}], 
{rr,l, Length[base]}]; rhsv := rhsm. (#1[[3]] & ) /@ gva; 

aa = icm . rhsv; uh = (base/. {xl -> zl, x2 -> z2}). aa; 
dlalpha[rr_, ss_] := 
Sum[(dlwf[nodes, ii, xx1, xx2]/. {xx1-> zl, xx2 -> z2})* 

(base[[rr]]/. {x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]]})* 
(base[[ ss]]/. {x1 -> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]]}), 

{ii, 1, Length[ nodes]}]; d1cm = 
Table[Table[d1alpha[rr, ss], {rr, 1, Length[base]}], 
{ss, 1, Length[base]}]; dlbeta[rr_, ii_] := 

(d1 wf[nodes, ii, xx1, xx2]/. {xxl -> z1, xx2 -> z2})* 
(base[[rr]]/. {x1 -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]}); 

d1rhsm = Table[Table[d1beta[rr,ii], {ii,1, Length[nodes]}], 
{rr,1, Length[base]}]; dlrhsv = dlrhsm. (#1[[3]] & ) /@ gva; 

dlbase = D[base, xl]; d1aa = icm. (dlrhsv- dlcm. aa); 
d1uh = (dlbase /. {xl-> zl, x2 -> z2}). aa + 
(base/. {x1 -> zl, x2 -> z2}) • d1aa; 

d2alpha[rr_, ss_] := 
Sum[(d2wf[nodes,ii, xx1, xx2]/. {xxl-> z1, xx2 -> z2})* 
(base[[rr]]/. {x1-> nodes[[ii]][[1]], x2 -> nodes[[ii]][[2]]})* 
(base[[ss]]/. {xl -> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]]}), 

{ii, 1, Length[ nodes]}]; d2cm = 
Table[Table[d2alpha[rr, ss], {rr,l, Length[base]}], 
{ss,1, Length[base]}]; d2beta[rr_, ii_] := 

(d2wf[nodes, ii, xx1, xx2]/. {xxl -> z1, xx2 -> z2})* 
(base[[rr]]/. {xl-> nodes[[ii]][[l]], x2 -> nodes[[ii]][[2]])); 

d2rhsm = Table[Table[d2beta[rr, ii], {ii,l, Length[ nodes]}], 
{rr,1, Length[base]}]; d2rhsv = d2rhsm. (#1[[3]] & ) /@ gva; 

d2base = D[base, x2]; d2aa = icm. (d2rhsv- d2cm. aa); 
d2uh = (d2base/. {x1-> z1, x2 -> z2}). aa + 
(base/. {xl-> zl, x2 -> z2}). d2aa; Return[{zl, z2, uh, dluh, d2uh)]] 
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