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Abstract. A combined computational fluid dynamics (CFD) and population balance model (PBM) 

approach has been applied to the simulation of gas-liquid stirred tanks agitated by (i) a Rushton 

turbine or (ii) a CD-6 impeller, operating at aeration numbers from 0.017 to 0.038. The multiphase 

simulations were realised via an Eulerian-Eulerian two-fluid model and the drag coefficient of 

spherical and distorted bubbles was modelled using the Ishii-Zuber equations. The effect of the void 

fraction on the drag coefficient was modelled using the correlation by Behzadi et al. (2004). The local 

bubble size distribution was obtained by solving the PBM using the quadrature method of moments 

(QMOM). The local kLa was estimated using both the Higbie penetration theory and the surface 

renewal model. The predicted gas-liquid hydrodynamics, local bubble sizes and dissolved oxygen 

concentration were in good agreement with experimental measurements reported in the literature. A 

slight improvement in the prediction of the aerated power number was obtained using the non-uniform 

bubble size distribution resulting from the coupled CFD-PBM simulation. Evaluation of the 

prospective scale-up approaches indicates a higher probability of maintaining a similar level of mass 

transfer in a larger tanks by keeping the Pg/V and VVM constant. Considering its predictive 

capability, the method outlined in this work can provide a useful scale-up evaluation of gas-liquid 

stirred tanks.
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1. INTRODUCTION

There are many industrial processes that involve gas-liquid dispersion in stirred tanks, e.g. in 

fine-chemicals manufacturing, or in biochemical fermentations. For economic and safety 

reasons, reliable models are needed for the scale-up and design of such reactors. One of the 

most important problems in modelling gas-liquid dispersions is the prediction of bubble size 

and gas-liquid interfacial area. As shown experimentally by many researchers (e.g. Montante 

et al., 2008; Barigou and Greaves, 1992; Laakkonen et al. 2005; 2007a) the distribution of 

bubble sizes varies inside the stirred tank depends on the spatial position. Generally, bubble 
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sizes around the impeller discharge stream are the smallest due to breakage caused by high 

local energy dissipation rates. Furthermore, knowledge of bubble sizes is necessary in a two-

phase CFD model to calculate momentum exchange by drag. Hence, the population balance, 

phase continuity and momentum equations are coupled and should in principle be solved 

simultaneously. In addition, local bubble sizes and the local gas volume fraction are required 

for the calculation of the interfacial area, which is an important variable in designing an 

aerated stirred tank to achieve a required rate of gas-liquid mass transfer.

Many modelling studies on the gas-liquid stirred tanks have been performed in recent 

years, mostly using a uniform, mono-dispersed bubble size throughout the tank (e.g. Khopkar 

and Ranade, 2006; Sun et al., 2005; Wang et al., 2006; Morud and Hjertager, 1996; Deen et 

al., 2002; Scargiali et al., 2007). Generally, the CFD predictions of gas hold-up and mean 

flow are in fair agreement with experimental data, except around the impeller discharge. 

Previous studies have applied a variety of methods with uniform bubble sizes such as grid 

refinement, different drag laws and various turbulence models, but without complete success. 

Deen et al. (2001) evaluated the effects of different drag laws and grid refinement and found 

good predictions of the mean radial velocity but poor predictions of the gas axial velocity. 

Others such as Sun et al. (2005) and Wang et al. (2006) employed a k--Ap turbulence model 

without a complete success in predicting the two-phase flow. Scargiali et al. (2007) studied 

the influence of turbulent dispersion force, virtual mass, grid refinement and the prescribed 

bubble size on the holdup in a gas-liquid flow. They concluded that the grid size may 

significantly affect the prediction, but effects of the turbulent dispersion force and virtual 

mass were not very significant in determining the distribution of gas holdup. Khopkar and 

Ranade (2006) studied a gas-liquid stirred tank operating at different flow regimes and 

obtained a reasonable predictions of the gas hold-up and gassed power number, but only by 

employing the turbulent drag correlations by Brucato et al. (1998): their work showed over 

prediction of gas hold-ups around the lower and upper circulation loops. 

Whereas it is possible to predict correctly the mean flow in a single phase stirred tank 

using any RANS based turbulence model, this performance has not yet been replicated for 

gas-liquid stirred tanks. The common practice of employing a uniform bubble size throughout 

the tanks is suspected to be the main reason for the poor prediction of the two-phase flow in 

stirred tanks. Of course, other factors such as the drag model for distorted and dense bubbles,  

turbulent drag laws, lift and other forces also cannot be ruled out. However, their effects 

appear to be secondary compared to that of an assumed uniform bubble size on the 
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predominant momentum exchange mechanism of inter-phase drag coefficient, which directly 

affects the prediction of the local mean velocities and gas hold-up.

Early attempts to predict the local bubble size were performed using the population 

bubble density model (BDM) and a one-way coupled approach, e.g. as in the model of Bakker 

and Van den Akker (1994). In recent years, a coupled CFD-BDM has been employed to 

predict the local bubble size in gas-liquid stirred tanks by Lane et al. (2002, 2005), Kerdouss 

et al. (2006) and Moilanen et al. (2008). In most cases, the BDM is reported to give a 

satisfactory prediction of the local bubble size, but only by adjusting some of the empirical 

constants within the model. This practice is thought to be inappropriate because the model is 

unlikely to be fully predictive and hence cannot be applied to cases where the experimental 

data are not available. Lane et al. (2005), for example, introduced a correction factor of up to 

3.5 for the turbulence dissipation rate, while Kerdouss et al. (2006) adjusted constants in the 

breakage and coalescence term in order to get good agreement with measurements reported by 

Alves et al. (2002). Lane et al. (2005) argue that the turbulent dissipation rate is not predicted 

well by the RANS k-ε turbulence model. However, the correction factor that was applied is 

too large, considering the under prediction of turbulent dissipation rate by k-ε model is only 

around than 30% (Ducoste and Clark, 1999).  The formulation of the BDM itself is also 

questionable, since proper bubble breakage and coalescence kernels are not included. Instead 

all equations related to the bubble size are lumped together as a function of the critical Weber 

number and energy dissipation rate, without considering the probability and rate of bubble-

bubble and bubble-eddy collisions. As a consequence, the BDM is not thought to be a fully 

predictive model for simulation of gas-liquid dispersions in stirred vessels.

A full PBM has been employed to predict the local bubble size in stirred tanks, mostly 

using a discretisation based on the method of classes (MOC). Venneker et al. (2001) 

performed a one-way coupled PBM via MOC for a stirred tank bioreactor. Recently, a 

coupled CFD-PBM simulation using the MOC also has been performed by Montante et al. 

(2008), Moilanen et al. (2008) and Kerdouss et al. (2008). Moilanen et al. (2008) showed 

reasonable agreement for the predicted and measured local bubble size, based on fitted model 

constants in the breakage and coalescence terms from a previous multi-block study. Montante 

et al. (2008) presented a good prediction of the number mean bubble size without adjusting 

the constants of the kernels, however the Sauter mean diameter was consistently 

underpredicted by approximately 50%. No comparison on the predicted bubble size were 

presented by Kerdouss et al. (2008). A fully predictive model should not require the tuning of 

model parameters for each case considered. One downside of the MOC is its computational 
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demand since it requires more than 30 classes to get a good level of accuracy in the prediction 

of the evolution of the moments of the bubble size distribution.

The quadrature method of moments (QMOM) is based on solving equations for the 

moments of the bubble size distribution; the quadrature approximation overcomes the 

difficulties in obtaining a closed form solution for population balance equations involving 

breakage and coalescence. The QMOM requires considerably less computational effort than 

the MOC and also is capable of providing an accurate prediction with a relatively small 

number of quadrature points.  Hence it is suitable for coupling with simulations of the two-

phase hydrodynamics. The QMOM has been applied previously to breakage and aggregation 

problems (e.g. Marchisio et al., 2003). Recently, Petitti et al. (2007) have employed the 

QMOM to solve the bubble dynamics for gas-liquid dispersion. In their work, bubble 

coalescence is not considered and only a simple breakage kernel is employed instead of one 

based on the physics of bubble breakup. No comparisons with experimental measurement 

were presented by Petitti et al. (2007). In the interest of a reduced computational effort, the 

QMOM method was selected to solve the population balance equation for bubble dynamics in 

aerated stirred tanks in this work.

The first part of this work focuses on the development of a modelling approach for gas-

liquid stirred tanks. For an initial comparison, the CFD simulation was performed assuming a 

constant bubble size throughout the tank. A coupled CFD-PBM was then performed to 

account for the spatially non-uniform bubble sizes inside the tank. The CFD prediction of the 

two-phase flow field was compared to experiments by Deen et al. (2002), whereas the results 

using the CFD-PBM approach were compared against measurements by Laakkonen et al.

(2007a and b). After validation, the model was used to evaluate the local mass transfer 

coefficients inside the tank, and to study the reactor scale-up, especially from the mass 

transfer perspective, which is often vital in aerobic fermentations.

2. MODELLING APPROACH

2.1 CFD modelling of two-phase flow

The Eulerian-Eulerian approach is employed for gas-liquid stirred tanks simulation in this 

work, whereby the continuous and disperse phases are considered as interpenetrating media, 

identified by their local volume fractions. The volume fractions sum to unity and are 

governed by the following continuity equations:
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where αl is the liquid volume fraction, ρl is the density, and lu


is the velocity of the liquid 

phase. The mass transferred between phases is negligibly small and hence is not included in 

the right hand-side of eq.(1).  A similar equation is solved for the volume fraction of the gas 

phase by replacing the subscript l with g for gas. The momentum balance for the liquid phase 

is: 
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where l is the liquid phase stress-strain tensor, lliftF ,


is a lift force, g


is the acceleration due 

to gravity and lvmF ,


is the virtual mass force. A similar equation is solved for the gas phase. 

lgF


is the interaction force between phases, mainly due to drag. As pointed out by Scargiali et 

al. (2007) the effects of the turbulent dispersion, virtual mass and lift are almost negligible, 

despite a significant increase in computational expenses and convergence difficulties. 

Scargiali et al. (2007) found a minimal increase of the overall gas hold-up from 4.36% to 

4.60% and from 4.36% to 4.67% by adding the effect of virtual mass and lift force 

respectively. They concluded that the effect of the drag force largely predominates in aerated 

stirred tanks. A similar conclusion was also drawn by many previous studies, e.g. Bakker and 

Van Den Akker, 1994; Morud and Hjertager, 1996; Lane et al., 2002; Kerdouss et al., 2006). 

It was therefore decided not to include the effect of the virtual mass and lift force in this work. 

Hence, lgF


is represented by a simple interaction term for the drag force, given by:
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where CD is a drag coefficient and db is the Sauter mean bubble diameter.

The drag model employed has a significant effect on the flow field of the aerated flow, as 

it is related directly to the bubble terminal rise velocity. Bubbles have a tendency to form a 

non-spherical shape, especially those with a diameter > 3 mm. Therefore, the drag model of 

Ishii and Zuber (1979) was selected in this work, as it takes into account the drag of distorted 

bubbles:
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where the Reb and EO are the bubble Reynolds number and Eotvos number, respectively. The 

drag for the ellipsoidal bubble regime is dependent on the bubble shape through the Eotvos 

number, which represents the ratio of gravitational to surface tension forces; for the spherical 

cap regime the drag coefficient is approximately 8/3. The effect of the local bubble volume 

fraction on the drag coefficient is estimated using Behzadi et al.’s (2003) correlation as 

follows:

 864.064.3
,   eCC DdenseD (5)

where the CD is the drag coefficient for isolated bubble estimated using eq.(4), whereas 

denseDC , is for the dense dispersion of bubbles. The drag model described above is not 

available as a standard option in FLUENT and hence it has been implemented via a user-

defined subroutine.

The stirred tank grid was prepared with a headspace to accommodate liquid expansion 

due to aeration. The liquid surface was modelled as a freely expandable liquid surface and the 

top of the headspace region was set as a pressure outlet, rather than using a fictitious 

‘degassing boundary condition’. The mass balance between the gas outflow at the outlet 

boundary (above the headspace region) and the gas inflow at the sparger was satisfied. The 

PBM and mass transfer calculations did not include the headspace region.

It is also important to consider the formation of the bubble cavity behind the impeller 

blade. According to Lane et al. (2005), it is possible to model the gas cavity in the Eulerian-

Eulerian framework, providing a certain modification is made to the interphase exchange 

coefficient: the drag coefficient is set to turn into that for isolated bubble when the void 

fraction is higher than 0.7, i.e. the cavity behind the blade behaves in a manner similar to an 

isolated bubble, rather than the dense bubble case. An attempt to use the dense drag bubble 

model for the cavity region has been tested, resulting in the disappearance of the bubble 

cavity behind the blade and an over-prediction of the gassed power number by more than 

60%. The mean radial velocity was also found to be over predicted. However, this issue has 

been successfully addressed by treating the cavity as an isolated bubble.

2.2 Turbulence modelling

The turbulence modelling uses the two-phase realizable k- model, in which both k and 

are allowed to have different values for each phase. The transport equations for the realizable

two-phase k-ε model are given in the Fluent manual (2006) and the standard values of the 

model parameters have been applied. The realizable k-ε is considered to be a better model 
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than the standard k-ε for stirred tank flows (Gimbun, 2009), as it better accounts for flow 

features such as strong streamline curvature, vortices and rotation. The realizable k-ε differs 

from the standard k-ε model in two important ways: first it has a new formulation of turbulent 

viscosity and second it employs a new transport equation for the dissipation rate incorporating 

different model constants.

2.3 Population balance modelling

2.3.1  QMOM formulation

The QMOM is employed to solve the PBM and predict the evolution of the moments of the 

bubble size distribution. For breakage and coalescence only, the QMOM equation for the kth

moment of  a single well-mixed system is given by: 
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where  ji LL , , a(Li) and  iLkb , are the coalescence kernel, breakage kernel and daughter 

bubble distribution function, respectively. Full details of the QMOM can be found elsewhere 

e.g. McGraw (1997) and Marchisio et al. (2003).  In this implementation, the solution of the 

weights (w) and abscissas (L) from the moments was obtained using the product difference 

algorithm of Gordon (1968).  To reduce computation cost of these simulations a QMOM 

based on two quadrature points was applied.

There are many breakage and coalescence kernels available for bubbly flow, but they are 

essentially written in a similar form except some minor differences in the model constants or 

assumptions. The Prince and Blanch (1990) model has been proven to give a good prediction 

of bubble size in bubble columns (e.g. Shimizu et al., 2000; Podila et al., 2007). Some 

researchers (e.g. Chen et al., 2005; Bordel et al., 2006; Podila et al., 2007) made a 

comparison of the prediction of various kernels combinations including those proposed by 

Prince and Blanch (1990), Luo and Svendsen (1996), Luo (1993), Chesters (1991), Martinez-

Bazan et al. (1999) and Lehr et al. (2002). Their findings suggest that there is no great 

difference between the mean flow, gas hold-up and bubble Sauter mean diameter (d32) 

predicted using different kernels although, there are some differences in the predicted bubble 

size distribution. The Luo and Svendsen (1996) breakup kernel was found to generate 
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excessively small and large bubbles, due to its U-shaped daughter bubble distribution function 

(Podila et al., 2007). Podila et al. also pointed out the problem of the Luo (1993) coalescence 

kernel, which tends to yield large bubbles due to its high coalescence rates. Laakkonen et al. 

(2007a) and Moilanen et al. (2008) employed a modified version of Prince and Blanch’s 

(1990) model for their work on gas-liquid stirred tanks, and they reported a good agreement 

with experimental measurement. Laakkonen et al. (2007a) has compared the prediction of two 

different kernels i.e. Lehr et al. (2002) and a modified version of Prince and Blanch models. 

Their findings suggest that Lehr model tends to under predict the local bubble size in gas-

liquid stirred tanks, even though it has been reported to produce an excellence prediction for 

bubble columns (Lehr et al., 2002). Based on these previous studies, the Prince and Blanch 

(1990) model has been employed to predict the bubble dynamics in this work.

2.3.2 Modelling of bubble coalescence

Bubble collisions may occur due to a variety of mechanisms, e.g. Prince and Blanch (1990) 

consider collisions arising from turbulence, buoyancy and laminar shear. In turbulent flow, 

bubble collisions are driven mainly by random motion of bubbles due to turbulent eddies. 

Bubbles of different sizes also have different rise velocities which may lead to collision. 

There is also a possibility for bubbles from a high liquid velocity region to collide with 

bubbles in slower section of the velocity field. The bubble collision frequency for a 

Newtonian fluid can be modelled following the approach proposed by  Prince and Blanch 

(1990):

   
    

bouyancy

ji
ji

turbulent

jtit
ji

ji LuLu
LL

LuLu
LL

LL )()(
22

)()(
22

,
2

5.022

2

 
















 

(7)

where ut (L) is the turbulent velocity in the inertial range of isotropic turbulence (Rotta, 1972) 

and u (Li) is the rise velocity of bubble given as a function of bubble size (Clift et al., 1978).

The bubble collision efficiency,  ji LL , , is the probability of coalescence during a 

bubble-bubble collision between sizes Li and Lj. For Prince and Blanch’s model, the bubble 

collision efficiency is given as a function of film drainage and bubble-bubble contact times:
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where   1112  jiij LLL , ho is the initial film thickness and hf is the final thickness at which 

the film rupture occur. The value of 10-4 m for ho and a value of 10-8 m for hf from Prince and 

Blanch (1990) was used throughout this work. The bubble coalescence kernel,  ji LL , , is a 

product of bubble collision efficiency, from eq.(7), and collision frequency from eq.(8).

     jijiji LLLLLL ,,,   (9)

2.3.3 Modelling of bubble breakage

Prince and Blanch (1990) considered the bubble break-up to be caused by collisions with 

turbulent eddies of sizes equal to, or smaller than, the bubble size. They argued that eddies 

smaller than 0.2 times the bubble diameter are unlikely to contribute significantly to the 

overall break-up rate and set the lower limit of the effective turbulent eddies as 0.2L. They 

considered only eddies having a velocity larger than the critical velocity, uci, where the 

disruptive force due to the kinetic energy of the eddy and the cohesive force due to surface 

tension balance each other. The break-up rate is given as a product of the collision rate of 

bubbles with turbulent eddies, ie , and the break-up efficiency, i . According to Prince and 

Blanch (1990), the bubble break-up rate is given by the expression:

  iieiLa  (10)

The collision rate of bubbles with turbulent eddies is given by Kennard (1938):

  5.022
tetiieeiie uuSnn  (11)

where ni, ne and Sie are the number of bubbles per unit volume, number of eddies per unit 

volume and collision cross-sectional area, respectively. The uti is the turbulent velocity in the 

inertial range of isotropic turbulence (Rotta, 1972) and the eddy velocity, ute, of a size Le is 

also calculated analogously to Rotta (1972). The eddy size may be expressed using 

Kolmogorov’s (1941) theory of isotropic turbulence as   4/13 le vL  .

The break-up efficiency, i , is given by (Kennard, 1938; Prince and Blanch, 1990):

 22exp tecii uu (12)

where the uci is the critical eddy velocity necessary to break a bubble of diameter Li, given by 

Shimizu et al. (2000).

Prince and Blanch’s (1990) break-up model does not include the daughter bubble size 

distribution. The daughter bubble distribution function,  ,Lb , determines the number and 
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size of the daughter particle, L, after the breakage event of particle size . Here, a uniform 

breakage function was selected with binary breakage to form similar particle sizes.

  3

26
|


 L

Lb  (13)

There is a high possibility of non-binary breakage for liquid-liquid systems where the 

internal viscosity of the dispersed phase can lead to multiple daughter drops (Andersson and 

Andersson, 2006). However the assumption of binary break-up is considered valid for 

bubbles, since the air viscosity is low. Furthermore, a recent study by Andersson and 

Andersson (2006) revealed that more than 95% of bubble break-ups involved binary 

breakage.

The population balance model was solved using user-defined scalars to represent the 

moments, weights and abscissas and was implemented via user-defined subroutine written in 

C language. All the breakage and coalescence kernel were implemented without adjusting any 

of the model constants. The user-defined subroutine was compiled within the commercial 

CFD code, FLUENT 6.3 and was available as an add-on program after the compilation; hence 

a fully coupled CFD-PBM simulation could be performed.

2.4 Modelling of kLa and oxygen transfer rate

Many empirical scale-up rules and correlations have been developed to calculate the 

volumetric mass transfer coefficient, kLa, in aerated stirred tanks. However, the existing 

correlations are only capable of calculating the average kLa value in the tank and not the local 

values. Information about the local kLa is important in the study of gas-liquid stirred tanks to 

spot the occurrence of ‘dead zones’, where very little mass transfer occurs. Ideally, achieving 

a uniform kLa and uniform driving force is desirable during scale-up of aerated stirred tanks. 

Whilst this maybe the case for laboratory scale stirred tanks, it is not always true for larger 

scale tanks, which can suffer from zones of oxygen depletion, particularly where there is an 

oxygen sink, e.g. through chemical reaction. 

Assuming a spherical bubble, the local interfacial area per unit volume may be calculated 

from


i

iib nda 2
, (14)

where db,i is the bubble size and ni is number of bubbles of size db,i per unit volume of 

dispersion. The bubble sizes and numbers of bubble used in the calculation of the interfacial 

area were obtained from the CFD-PBM simulation, directly from the weights and abscissas 
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used in the QMOM. Bubbles with diameters greater than around 3 mm (for air-water) are 

ellipsoidal, with an aspect ratio which may be calculated as a function of the Eotvos number 

from the correlation of Wellek et al. (1966)

757.0163.01 OER  (15)

which was developed originally for liquid–liquid dispersions. Guet et al. (2005) compared 

eq.(15) with their experimental measurements obtained using a four-point optical fibre probe 

and reported that Wellek et al.’s (1966) correlation is applicable for bubbles. In this work the 

interfacial area for small bubble (db ≤ 1 mm) was estimated from eq.(14), whilst the bigger 

bubbles (db > 1 mm) were assumed to be as oblate spheroids and their surface area was 

calculated using R from eq.(15). Even larger bubbles (db > 5 mm) may not form perfect oblate 

ellipsoids in turbulent flow, however, eq.(15) is a step towards improved bubble shape 

prediction.

Penetration theory (Higbie, 1935) and the surface renewal model (Danckwerts, 1951) are 

two common methods of calculating kL when the bubble size is known.  Higbie’s (1935) 

penetration theory results in an average mass transfer coefficient for each bubble size given 

by:

ib

slipl
iL d

uD
k

,
,

2


 (16)

where uslip and Dl are the bubble slip velocity and diffusion coefficient, respectively. The slip 

velocity can be obtained from the difference in phase velocities from an Eulerian-Eulerian 

two-fluid CFD simulation. Thus local values of  kLa were calculated from:

  
i

islipiblL nudDak 5.05.1
,

5.0π2 (17)

Danckwerts (1951) suggested a refinement of the penetration model by assuming that kL is 

related to the average surface renewal rate resulting from exposure of the bubble interface to 

turbulent eddies with a variable contact time. Danckwerts suggested the surface renewal 

model as follows:

sDk lL  (18)

where s is the fractional rate of surface-element replacement. Lamont and Scott (1970) 

assumed that the small scale turbulent motion, which extends from smallest viscous motion to 

inertial ones, affects the rate of mass transfer. Consequently, s can be calculated using 

Kolmogorov's theory of isotropic turbulence. They suggested the eddy cell model as follows:
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where εl is the turbulence dissipation rate in the liquid phase, vl is the liquid dynamic viscosity 

and K = 0.4 is the model constant. Combining kL and a gives another equation for calculating 

the volumetric mass transfer coefficient:
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The local oxygen transfer rate can be estimated from the following relations once the local 

kLa has been determined,

oooLo rCCakN  )( * (21)

where *
oC is the oxygen solubility in the liquid phase, Co is the oxygen concentration in the 

liquid phase and ro is the specific oxygen consumption rate. The transport equation for 

dissolved oxygen mass fraction was also solved as a user-defined scalar implemented as a 

user-defined subroutine, with the sink terms given in the right had side of eq.(21) above.

2.5 Tank geometry and numerical strategy

Two scales, 14L and 200L, of aerated stirred tanks containing a Rushton turbine, studied by 

Laakkonen et al. (2007a) were considered for the CFD-PBM modelling. Gas was injected 

through a sparger ring at a flow rate ranging from 0.29 to 0.7 vvm which is treated as a 

continuous source of gas (velocity inlet) in the CFD simulation. First, a two-phase CFD 

simulation was performed assuming a uniform bubble diameter throughout the tank. The 

interphase drag coefficient was estimated using the standard Schiller-Naumann drag model. 

The CFD simulation was performed using a half-tank domain consisting of about 225k 

hexahedral cells. A finer mesh was employed around the impeller up to 15 nodes placed along 

the impeller blade height. According to Derksen et al. (1999), a grid with eight or less nodes 

along the impeller blade height may not be able to resolve the vortex core structure correctly 

and hence can give errors in the predicted mean flow field. The impeller movement was 

modelled using a multiple reference frame and the Eulerian-Eulerian approach was employed 

for the multiphase modelling. The turbulence was modelled using the two-phase realizable k-ε

model described in a previous section. Transient solvers with a second-order spatial 

interpolation scheme were also applied for the final simulation in order to minimise the 

amount of numerical diffusion. The iteration residual was set to fall below 110–4 at each time 
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step to achieve good convergence. The volume average of the gas void fraction at the rotating 

zone (impeller region) was also monitored and the iterations were only halted once a constant 

value was observed.  A grid sensitivity study was performed prior to the final grid selection 

using three different meshes: coarse (165k with 6 nodes at impeller blade height), 

intermediate (225k with 11 nodes at impeller blade height) and fine (335k with 13 nodes at 

impeller blade height). It was found that a domain consisting of 225k cells yielded a grid 

independent solution (see Fig. 1). 

3. RESULTS AND DISCUSSION 

3.1 Prediction of Gas-Liquid Hydrodynamics

First, the CFD simulations were validated against experimental data using the two-phase PIV 

measurements reported by Deen et al. (2002) for a stirred tank with Flg = Qg/ND3 = 0.0296. 

The impeller speed for Laakkonen’s geometry was set to 513 rpm to ensure the aeration 

number stayed at Flg = 0.0296 so that a sensible comparison between the CFD prediction and 

the experimental measurement from Deen et al. (2002) could be made.

The simulation was performed initially by assuming a constant bubble size of 3.5 mm 

throughout the tank. The bubbles were assumed to be spherical and the Schiller and Naumann 

(1935) drag model was employed to estimate the drag coefficient. The CFD results were time-

averaged over all blade angles and compared with Deen et al.’s (2002) PIV measurements. 

For easier comparison, the results for the mean velocities were normalised using the impeller 

tip velocity (Vtip). Despite the assumption of a constant bubble size and spherical bubbles, the 

predictions (marked as CFD constant) shown in Figs. 2 and 3 are reasonably close to the 

experimental data. The differences can be explained by the neglect of bubble coalescence and 

break-up caused by the turbulent flow induced by the rotating impeller. These mechanisms 

are not considered in the case where a uniform bubble size is assumed throughout the tank.

A simulation using a non-uniform bubble size was next performed to evaluate these effects on 

the CFD predictions. The local bubble sizes were estimated using the population balance 

model, which tracks the moments of the bubble size distribution. The local Sauter mean 

diameters, obtained from the ratio of the third and second moments, were then passed into the 

CFD simulation and used for the two-phase flow modelling. The CFD-PBM simulations were 

performed using two different drag models: (i) the hard sphere drag model of Schiller and 

Naumann (1935) (a default FLUENT model) and (ii) another that takes into account the drag 

of distorted bubbles (Ishii and Zuber, 1979) and dense bubble effect (Behzadi et al., 2003). As 

expected, results obtained from the CFD-PBM modelling were slightly better compared to 
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those obtained using a constant bubble size. The prediction of axial gas velocities below the 

impeller (2z/W < 1) and the peak liquid radial velocities were in fair agreement with Deen et 

al.’s (2002) data. Using the non-spherical drag model (CFD-PBM-IZ) in the CFD-PBM 

approach further improved the results. This is due to the fact that the effect of local bubble 

sizes on the two-phase flow is mainly via the inter-phase exchange coefficient, which  

depends on the drag model. The Schiller-Naumann model is suitable for spherical rigid 

bubbles, but in comparison, the Ishii-Zuber model predicts drag coefficients for the spherical, 

ellipse and cap bubble regime. The difference observed between the flow fields predicted 

using a spherical drag model and the one that accounts for distorted bubbles is small for the 

cases considered in this paper, due to the proximity of the analysed region to the impeller tip. 

In this region, the bubble size is mainly below 3 mm and hence bubbles can be assumed to be 

approximately spherical. However, because of the better prediction of the gas and liquid mean 

velocities, the CFD-PBM-IZ was selected and used for the remainder of this work. The 

remaining discrepancy in the result predicted by CFD-PBM-IZ method might be due to minor 

differences in the tank geometry used by Deen et al. (2002) and Laakkonen et al. (2007a) (the 

geometry used for the CFD work reported here). For instance Deen et al. (2002) used a dished 

bottom tank and had a slightly different impeller geometry (W = LD = 0.25D) whereas 

Laakkonen’s work used a flat bottomed tank and a standard Rushton turbine. The inherent 

limitation of the Eulerian-Eulerian model which can only use a single bubble size (d32) at any 

spatial location at any given time is also thought to affect the accuracy of CFD prediction. A 

more accurate modelling approach of the gas-liquid flow would employ the real bubble size 

distribution at each spatial position inside the tank, however such model would require a 

higher implementation complexity and would be computationally more intensive to run. 

Therefore, a combined CFD-PBM model employing only the d32 is thought to be a more 

efficient solution for a gas-liquid flow at present with the aim of employing the developed 

approach as a practical design tool.

3.2 Prediction of the Aerated Power Number

Prediction of the gassed power input by integrating the dissipation rate over the tank volume 

is known to provide an underestimate of the power input (in the cases shown here, by between 

35–44 %). Therefore the Pg in this work was calculated from the moment acting on the shaft 

and impeller or baffles and tank wall. The calculated torque, , is then related to the power 

input by,
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 NPg 2 (22)

For a Rushton turbine Bujalski et al. (1987) suggested the following correlation for 

estimation of the ungassed power number:
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where t is the impeller thickness and T is the tank diameter (m). Smith (2006) proposed the 

following correlation for the relative power draw, Pg/P0, for stirred tanks agitated by a 

Rushton turbine, based on the measurements of Warmoeskerken and Smith (1982) and 

Gezork et al. (2000):

25.02.0
0 18.0  gg FlFrPP , (24)

where Fr and Flg are the Froude number and the aeration number, respectively. Myers et al. 

(1999) performed extensive experiments in single phase and aerated stirred tank with a CD-6 

impeller; they reported that, on gassing, the Pg/P0 of a Rushton turbine drops significantly 

compared to that of a CD-6 impeller. In this study the CFD predictions were compared with 

measured Pg/P0 obtained from Myers et al. (1999) for the CD-6 impeller, and using eq.(24) 

for the Rushton turbine, together with eq.(23).

The Pg/P0 ratio is shown to be predicted reasonably well using the assumption of a 

constant bubble sizes throughout the tank (see Tables 1 and 2). There is a small improvement 

in the prediction of Pg/P0 when a non-uniform bubble size is employed using the CFD-PBM 

method, especially for cases 1, 4, 5 and 6 for which the uniform bubble sizes used for the 

initial simulation differed significantly from those calculated using the PBM. The bubble 

sizes for cases 2 and 3 were known from Laakkonen et al. (2007a), and mean values were 

used for these initial CFD simulations. Consequently, the CFD predictions using uniform 

bubble sizes for cases 2 and 3 are much closer to the values estimated from eq.(24). The 

results suggest that the Pg/P0 can be predicted reasonably well using the uniform bubble size 

assumption with bubble size close to the experimental mean values. However, the CFD-PBM 

method is a more suitable approach for predicting the relative power number in cases when 

the mean bubble size is not known beforehand.

3.3 Prediction of Local Bubble Size and Mass Transfer Coefficient

CFD-PBM simulations were performed using a user-defined subroutine compiled within 

FLUENT. The Prince and Blanch (1990) breakage and coalescence kernels were employed to 

predict the bubble dynamics throughout the tank, using literature values of the model 
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constants. The volume-average Sauter mean diameter, d32, in the impeller region was used as 

a convergence indicator in these simulations.

Figures 4 and 5 show that the local bubble sizes predicted by the CFD-PBM simulation 

for both the smaller and the larger tanks are in good agreement with the experiments by 

Laakkonen et al. (2007a). The smallest bubbles can be observed around the impeller, where 

the dissipation rates are a maximum, whereas the largest bubbles are found below the 

impeller, just above the sparger, due to the combination of a high void fraction and low 

dissipation rates. Some discrepancies in the local bubble size predictions can be observed, 

possibly due to the well-known under-prediction of the energy dissipation rates by the k-ε

model—the evolution of the bubble size depends mainly on the dissipation rates and the gas 

void fraction. The CFD-PBM approach is also capable of responding to changes in operating 

conditions. For instance,  case 1, which considers a lower impeller speed, produces larger 

bubbles compared to case 2, where the impeller speed is higher (see Table 1).

Using the local bubble size obtained, the local kLa can be estimated using Higbie’s 

penetration theory, or the surface renewal model of Danckwerts. The latter gave a 

significantly higher value of kLa around the impeller region (see Fig. 6) due to its sensitivity 

towards high dissipation rates. Higbie’s method return a higher local kLa in the bulk region, 

where the dissipation rates were very low; the two methods show slightly different 

sensitivities to the local dissipation rate and bubble size. The maximum local kLa values for 

the larger tank were significantly smaller (roughly 50% less) than for the smaller tank due to 

the larger mean bubble size, which consequently reduced the interfacial area. The local kLa

contour map also revealed a large dead zone in the bottom region of the tank due to the poor 

gas dispersion produced by the Rushton turbine. This can be addressed by employing a better 

gas dispersion impeller such as the CD-6, as shown in Fig. 7A. The CD-6 impeller is a 

concave type impeller which is available commercially from Chemineer and has been studied 

extensively by many researchers (e.g. Myers et al., 1999). There are several reason why the 

CD-6 disperses bubbles much better than the Rushton turbine. Firstly, the CD-6 pumps the 

fluid slightly downward around the impeller discharge region, whereas the Rushton turbine 

pumps slightly upward (see Fig. 7A), which then contributes to poor circulation of bubbles in 

the lower region. Secondly, the concave shape of the CD-6 is designed to produce a smaller 

gas cavity behind the impeller blade (see Fig. 7B) leading to less reduction in the aerated 

power number in comparison to the Rushton turbine.



17

By analogy with experimental measurements, which often assume a well-mixed liquid 

phase, a global mean akL was estimated by monitoring the volume-averaged oxygen 

concentration, Co(t), throughout the simulation, from
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where *
oC is the oxygen solubility in water. In the cases discussed here, estimated mixing 

times from the correlation by Grenville and Nienow (2004), were about one order of 

magnitude greater than 
1

akL , indicating the liquid phase was well-mixed. Values of akL

were obtained from the slopes of the graphs obtained by plotting the left hand side of eq.(25) 

against time. Fig. 8 shows the evolution of the dissolved oxygen concentration, [DO], 

calculated using the Higbie and Danckwerts methods, respectively. The predicted Co(t) profile 

is in good agreement with the experimental measurement from Laakkonen et al. (2007b) 

especially when an oblate spheroid shape is considered for the larger bubbles. As expected, 

the discrepancy is much bigger when bubbles assumed to be in spherical shape throughout the 

tank which may not be correct for diameters > 3 mm. Furthermore, the Eulerian-Eulerian 

simulation works with a single slip velocity, despite the existence of a range of bubble sizes; 

this may introduce some discrepancy in the local kLa and the [DO] evolution. However, this 

simplification is necessary in order to keep the computational demand minimal. Moreover, the 

two-phase model can get excessively complicated and expensive to compute when individual 

bubble sizes with separate slip velocities are considered. Due to its better prediction of the 

[DO] evolution, the combined spherical and oblate spheroid model is applied for the 

remainder of this work.

Higbie’s method is consistently found to have a slightly faster oxygen transfer rate than 

the Danckwerts’s method for a smaller vessel (see Fig. 9A), where the mean bubble size is 

less than 3 mm, but the difference becomes almost insignificant for the larger vessels (see Fig. 

9B) when the mean bubble size is about 4 mm. This is reflected in the calculated values of  

the mean akL shown in Tables 3, for cases 2 and 4.  Furthermore, Danckwerts’ model tend 

to have a faster oxygen transfer rate than the Higbie model when the mean bubble size is 

larger than 5 mm (see Fig. 8). This phenomenon can be explained by the sensitivity of the 

Higbie’s model to small bubble sizes which are formed in great numbers for the smaller 

vessel.
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The [DO] evolution was recorded at three different locations inside the tank namely the 

dead zone below the sparger, the impeller region and bulk region above the impeller. Only a 

small amount of variation was found between the akL value estimated using the [DO] 

evolution recorded at these three different locations (see Fig. 10), hence the remaining 

discussion focuses only on the data recorded at impeller discharge, where the majority of 

experimental measurements have been obtained. In eq. (25), and often in experimental 

measurements of the mass transfer coefficient, it is assumed that the dissolved oxygen

concentration, [DO] is uniform. Results from the CFD-PBM simulation suggests that this 

assumption is applicable for these lab and pilot scale gas-liquid vessels, without the presence 

of oxygen sink (i.e. reaction or micro-organism respiration). It is important to note that, the 

assumption of uniform [DO] may not be valid in a gas-liquid bioreactor even at small scale, 

depending on the local rate of consumption of dissolved oxygen. In such a case, the [DO] may 

fall towards zero in some dead regions leading to a severe mass transfer limitation. The well-

mixed assumption is also less likely to be correct with increasing scale of operations 

(Schuetze and Hengstler, 2006), especially when dealing with industrially sized vessels.  Thus 

in practice, the [DO] may be non-uniform, being almost saturated in some locations where 

there is a high local kLa, and having a low [DO] in regions with poor gas dispersion.  It may 

be concluded that simple volume averages of kLa from CFD simulations, without knowledge 

of their correlation with local driving forces, are of little practical use; they would tend to be 

larger than the akL values obtained by experiment, or from eq.(25). However, a CFD 

calculation which solves the oxygen transport equation, coupled with local values of kLa takes 

this effect into account, and can serve as a more correct framework for the design and scale-

up of aerated stirred tanks than methods that use eq.(25) with volume averaged quantities.

Generally, the akL for air-water stirred tanks is given in the following form:

  b
g

a
gakL vVPCak

L
 (26)

For air-water system van’t Riet (1979) suggested a value of akL
C = 0.026, a = 0.4 and b = 0.5 

obtained from a fit to experimental measurements. These constants have been the subject of 

many studies and their values vary from author to author depending on the tank size and gas 

loading. The correlations in eq.(26) are reported to be able to predict satisfactorily the akL

of similar size vessels, but they do not necessarily apply for scale-up to an industrially sized 

tank (Lines, 2000; Stenberg and Andersson, 1988). 
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Comparison between the akL estimated using the eq.(26) and the model evaluated in 

this work (using the [DO] evolution at the impeller region) is presented in Table 3. Higbie’s 

model was found to give a closer prediction of akL compared to the value estimated using 

eq.(26), while Danckwerts’s model consistently gave a slightly smaller akL value except for 

case 5 where the mean bubble size is larger than 5 mm. The relative error from the akL

value obtained from eq.(26) and the CFD simulations ranged from 3% to 35%, with a larger 

error shown for the bigger vessel. The correlations in eq.(26) are known to be problematic 

when applied to tanks of different size from that of the original experiments. For instance, 

Garcia-Cortes et al. (2004) reported a deviation up to 18% from their experimental 

measurement; earlier Zhu et al. (2001) reported about 20% discrepancy. The differences in 

the CFD simulations might also be attributed to the poor prediction of  by the k- turbulence 

model employed in this study, especially in the highly anisotropic region around the impeller. 

The dissipation rate can affect the mass transfer prediction in two ways: firstly, it affects the 

bubble interfacial area because  is used in the breakage and coalescence kernel and secondly, 

kL is directly affected when the surface renewal model is applied.

The akL obtained from eq. (26) is also consistently shown to be somewhat smaller than 

the volume averaged kLa (see Table 3). These two quantities are in fact a different measure of 

the mass transfer coefficient, since as noted above akL takes into account the effect of the 

driving force on the overall mass transfer rate, whereas the volume averaged value does not.

The PBM and mass transfer calculations are reasonably successful, despite the inherent 

difficulties of underprediction of the dissipation rate by k- turbulence models.  It should be 

noted however, that the kinetics of breakage and coalescence (and the mass transfer 

coefficient) depend on a, where the exponent |a| is small (0.25 or 0.33).  So a, say, 30% error 

in  gives rise to only about a 10 % error in the kinetic rates.  Single phase studies on the same 

grid using realizable k– (Gimbun, 2009), show that k values near the impeller blades were 

fairly well predicted, even though the volume integrated  was underestimated by 30%.  

Application of a uniform scaling factor for local values of dissipation , e.g. as used by Lane et 

al. (2005), may then lead to an overestimate of  in regions of high breakage rate and hence 

was not considered approproiate in the current work.

The akL for an advanced gas dispersion impeller like the CD-6 appear to be slightly 

lower than the RDT operated at a similar Pg/V, VVM or vg (in the same size of tank —
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compare cases 2 and 7 in Table 3). This finding is in agreement with the experimental work 

reported earlier by Zhu et al. (2001) who concluded the RDT appears to give a slightly higher 

akL than the CD-6 at the same power input. This lower akL obtained with the CD-6 may 

be attributed to several factors. The gassed power drop by CD-6 impeller is much lower than 

the RDT, which means it requires a lower impeller speed to achieve a similar Pg/V. The CD-6 

impeller also has a slightly higher (2.3 %) gas hold-up compare to RDT (1.7 %) and this 

promotes slightly more bubble coalescence resulting in a smaller interfacial area and 

consequently lower akL . However, the CD-6 impeller is less prone to flooding compared to 

the RDT.

The effect of scale-up on the mass transfer rate in gas liquid stirred tanks was also 

evaluated. It is impossible to keep all quantities constant at different scales, but it is feasible to 

maintain a couple of variables i.e. a combination of Pg/V and either Flg, VVM or vg. It is 

generally accepted that constant Pg/V should be maintained, since it directly affects the local 

energy dissipation rate, which is the key hydrodynamic variable in the breakage and 

coalescence kernels. Three combinations of scale-up approaches were applied going from the 

14L to the 200L vessels, namely constant Pg/V and constant Flg, VVM or vg.  Table 3 shows 

that for all 3 cases, approximately the same values of the global akL were obtained from the 

CFD-PBM caluclation. If the Higbie’s model is employed for the evaluation purpose, a 

similar akL level is more likely to achieved by keeping the Pg/V and VVM constant, i.e. this 

rule provides a more conservative design. This might explain why in many cases of bioreactor 

scale-up, constant VVM yields a more favourable result. None of the scale-up approaches 

evaluated in this work could maintain the akL perfectly at the same level if the Danckwerts 

model was employed: maintaining constant vg gave a slight reduction in akL , whereas 

constant VVM led to a slight increase. The approach outlined by eq.(26) which is based on 

keeping the Pg/V and vg constant (case 6) does not necessarily yield a similar akL for a 

larger tank; the CFD predictions shown here give around a 10-20% lower akL value for 

Higbie and Danckwerts models, but this is within the likely experimental error of the 

empirical correlations. 
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4. CONCLUSION

A comprehensive method via CFD-PBM for modelling aerated stirred tanks has been 

developed. The CFD-PBM method with a drag model suitable for spherical and distorted 

bubbles is shown to be a better approach for modelling the gas-liquid flows in stirred tanks, 

than simply assuming a uniform bubble size. The power number, local bubble sizes, dissolved 

oxygen concentration and the mean velocities of the two-phase flow have been predicted 

satisfactorily in correspondence with experimental data taken from the literature. There is no 

significant difference between the akL estimated using the [DO] evolution at the impeller 

region, compared to those obtained at other spatial positions, for the sizes of tank studied in 

this work (up to 200L). The akL predicted using correlation, such as eq.(26), which suggest 

a dependence on Pg/V and vg must be used with care because they may not be applicable for 

vessels of a different size to those from which the original correlation was derived. The scale-

up of gas-liquid stirred tanks remains a very challenging task. For the small scale up factor 

used here (linear scaling by 2.4, or volume scaling by 14), all three rules gave 

approximately similar akL values.  The most conservative approach was to keep both the 

Pg/V and VVM constant, which in the CFD-PBM computations discussed here led to a slightly 

larger value of akL at larger scale; in contrast, constant Pg/V and vg led to a slight reduction 

in the rate of mass transfer at larger scale.
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Notation
a interfacial area per unit volume
 iLa breakage kernel

 iLkb , daughter bubble distribution function
*
oC oxygen solubility in water

CD drag coefficient
Co oxygen concentration in water
D impeller diameter
[DO] dissolve oxygen concentration
d32 sauter mean diameter
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32d volume averaged d32

db bubble size (taken as sauter mean diameter)
Dl diffusion coefficient
EO Eotvos number =  bO dgE 
Flg aeration number

lgF


interaction force mainly due to drag

liftF


lift force

Fr Froude number

vmF


virtual mass force

g gravity acceleration
hf final film thickness
ho initial film thickness
K model constant for Danckwerts’ model
k turbulent kinetic energy
Kgl interphase momentum exchange coefficient
kL liquid side mass transfer coefficient
kLa local mass transfer coefficient

akL global mass transfer coefficient

L abscissa for QMOM
LD impeller blade length
N rotation speed
ne number of eddies per unit volume
ni number of bubbles per unit volume
Np0 single phase power number
P pressure
P0 single phase power input
Pg gassed power input
Qg gas flow rate
ro specific oxygen consumption rate
R aspect ratio of major and minor elipsoids bubble radius
Reb Reynolds number =  bslipb duRe 
s fractional rate of surface-element replacement in Danckwerts model
Sie collision cross-sectional area
T tank diameter
t time
u, v velocity components

slipu slip velocity

u∞ (Li) bubble rise velocity = 
5.0
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ut (Li) turbulent velocity = 3/13/14.1)( iit LLu 

ute (Le) eddy velocity = 3/13/14.1)( eet LLu 
vg superficial gas velocity
VVM volume per unit volume
w weight for QMOM
W impeller blade width
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Greek
vl kinematic viscosity

ie collision rate of bubbles with turbulent eddies

i break-up efficiency

 ji LL , bubble collision eficiency

 ji LL , bubble collision frequency

k moments of the bubble size distribution
 ji LL , coalescence kernel

 turbulent dissipation rate
 torque

t impeller thickness

Subscripts
b bubble
dense dense bubble
g gas
l liquid
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0.024 0.019 0.015 0.021 0.016



Fig 1a.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12569&guid=151fe4d6-0b35-4b79-b716-8689081c8041&scheme=1


Fig 1b.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12570&guid=6c0615b2-7fe6-406f-8095-8e45cb80d380&scheme=1


Fig 2

http://ees.elsevier.com/cherd/download.aspx?id=12587&guid=b800a9a1-1e3a-434d-a468-9d744c58e9b4&scheme=1


Fig 3

http://ees.elsevier.com/cherd/download.aspx?id=12588&guid=03a87d91-8562-4343-8a0f-fcab919d4bb2&scheme=1


Fig 4a.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12571&guid=f86a1d64-fbf8-471e-8158-feaf39e64d8e&scheme=1


Fig 4b.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12572&guid=990d854f-0b32-49a9-9eb6-4a498046c228&scheme=1


Fig 5a

http://ees.elsevier.com/cherd/download.aspx?id=12589&guid=51f3d605-3917-450d-b199-667210f9e852&scheme=1


Fig 5b.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12573&guid=ab489f17-66dc-48ac-98fc-100db01e14ab&scheme=1


Fig 6a.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12574&guid=d8659dd0-3880-4661-96c9-51cdac5c3b5b&scheme=1


Fig 6b.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12575&guid=f8a1ca79-4dd0-4ed7-b2e7-ee223456318b&scheme=1


Fig 7a.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12576&guid=46bd5c80-2034-419e-a5c3-713d2d482122&scheme=1


Fig 7b.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12577&guid=a6ba12c2-456d-458a-b650-f1c235cd43af&scheme=1


Fig 8

http://ees.elsevier.com/cherd/download.aspx?id=12590&guid=a88a065b-3698-4e57-ad7e-c181cc989552&scheme=1


Fig 9a.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12578&guid=051b52c0-7c8d-43f4-b99e-f7849d26731f&scheme=1


Fig 9b.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12579&guid=23ed0f73-2f57-49af-a64d-de6f6f0aac0d&scheme=1


Fig 10.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12580&guid=b276019c-9197-4278-939a-1d83ad52b1c4&scheme=1


Fig 11a.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12581&guid=dc586290-e188-431a-ad99-5ea59ca5a3bd&scheme=1


Fig 11b.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12582&guid=9a518d28-5d2e-48ba-99b7-1f0eff74b34d&scheme=1


Fig 12a.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12583&guid=2b416218-df0b-457a-84de-545aca2c824e&scheme=1


Fig 12b.TIF

http://ees.elsevier.com/cherd/download.aspx?id=12584&guid=7372bc18-4ba8-4254-91fe-539584ef8ff9&scheme=1

