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Abstract  

The viable mechanisms for O3 generation via the electrocatalytic splitting of H2O over β-

PbO2 catalyst were identified through Density Functional Theory calculations.  H2O adsorbed 

onto the surface was oxidized to form OH then O; the latter reacted with a surface bridging O 

to form O2 which in turn reacted with another surface O to form O3. The final step of the 

mechanisms occurs via an Eley-Rideal style interaction where surface O2 desorbs and then 

attacks the surface bridging oxygen, forming O3. A different reaction pathway via an O3H 

intermediate was found less favoured both thermodynamically and kinetically.   
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 1. Introduction 

Ozone (O3) is a strong oxidant with wide applications across many disciplines related to 

advanced oxidation technologies.  Due to its strong oxidizing nature O3 is often used in 

disinfection processes at wastewater treatment facilities. It has relevance in removing 

unwanted odours, wood pulp bleaching and more recently in healthcare [1-6]. For practical 

uses, O3 must be produced in an efficient and environmentally friendly manner, which to date 

has proven to be the greatest challenge.  At present O3 is produced industrially via the Cold 

Corona Discharge (CCD) method.  This process involves two electrodes with alternating 

current, similar to an electric spark, with pure oxygen (O2) or dry air passing between them.  

Current efficiency (CE) values tend to be low at between 2-12 wt% depending on the source 

of O2 [7, 8].  

Through the use of electrochemistry and in particular, electrocatalysis, a superior O3 yield 

can be achieved via water splitting. In electrolysis, H2O undergoes decomposition at the 

anode through either a 4 or 6 electron process shown in reactions 1 and 2 [9]: 

 

 2H2O                O2 + 4H
+
 + 4e

-
         E

o
 = 1.23 V 

 

(1) 

 

 3H2O               O3 + 6H
+
 + 6e

-
         E

o
 = 1.51 V (2) 

 

Reaction (1) shows the competing reaction, the formation of O2 that can occur instead of the 

formation of O3 in reaction (2).  This can be quantified using thermodynamics. In comparison 

to O3, O2 is thermodynamically superior in terms of stability and thus will readily form.  To 

combat this, the inhibition of O2, and hence the formation of O3 is of paramount importance.  

By running at a high onset potential with a large applied overpotential the thermodynamic 

barrier can be bypassed, resulting in O3 formation. In selecting a suitable catalyst for the 

anode, the overpotential required for oxygen evolution reaction (OER) can be increased. 

During the production of O3, the increased overpotential required for OER results in partial 

inhibition of the oxygen evolution when compared to a material with a lower overpotential 

for OER [10, 11]. Extensive research on catalyst suitability has been studied with varying 

degrees of success.  Among the most common catalysts used are β-PbO2 [10-12], Pt [13], 

dimensionally stable anodes (DSAs) [14], boron-doped diamond [15, 16] and SnO2 based 
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catalysts [17-19]. Foller et al., one of the pioneering groups in the study of electrochemical 

O3 formation, used β-PbO2 as the catalyst of choice.  Using new and innovative methods O3 

was produced electrochemically. Foller summarised his research into four points: 

 The anion must be resistant to further oxidation, or oxidize into a species that doesn’t 

decrease the yield 

 The cation must undergo no cathodic reduction, nor be influenced by pH change 

 Salt combinations must have sufficient solubility 

 No reactions with the ozone produced must occur 

Previous methods produced O3 in low yield, resulting in low CEs.  β-PbO2 was the first to 

achieve a better CE than the CCD method, with values as high as 13 % at room temperature 

[10].  Higher efficiencies were possible with the addition of a fluorinated anion; yielding CEs 

as high as 50 %, although this occurred at 0 
⁰
C.  As the goal is to produce highly efficient 

anodes whilst being as green as possible, the use of fluorine or other halogens are 

disapproved. 

Although in these studies a significant amount of understanding has been gained there are 

still questions that need to be answered: 

 Is the mechanism postulated correct or will it proceed via an alternative pathway? 

 Are there any surface oxidants present? 

 What role do these oxidants/adsorbents play? 

The focus of this research is to address these questions within the parameters that can be 

studied using theoretical methods, with the aim to gain a reasonable yet computationally 

affordable approach to understanding the electrochemical O3 production system, which has 

proven difficult to achieve in the past, and thus difficult to model.  With this work being 

novel as a first theoretical study, simulations had to be run in order to determine the most 

stable facet of the PbO2 anode, along with the optimal surface oxygen coverage.  From this a 

phase diagram can be constructed which aids in determining surface oxidant coverage, which 

in turn is important for modelling the reaction.    

The main purpose of this research involved the modelling of a 4 step mechanism where water 

can be split to form O3 under the suitable electrochemical conditions.  The modelling was 

carried out using Density Functional Theory (DFT).  β-PbO2, the experimentally approved 



  

4 
 

catalyst of choice for this reaction, was chosen.  It is a relatively simple system where the 

results gained could then be applied to more complex catalysts. 

2. Theoretical Methods 

 2.1. Surface Adsorption Calculations 

The adsorption energy (Eads) was calculated using the following equation: 

 

 Eads (adsorbate) = E (adsorbate on surf.) – E (surf.) – E (free adsorbate in the 

gas phase) 
(3) 

 

Equation 3 shows that the more negative the adsorption energy is, the greater the adsorption 

to the surface.  In this instance it can be a clean surface or an oxide surface, depending upon 

the study. Each term in the equation must correspond to the same surface coverage, whether 

this is a pure metal or metal oxide. 

 

Geometric optimization was obtained by performing electronic structure calculations using 

the Vienna Ab-initio Simulation Package (VASP), using plane wave basis set [20-22]. 

Electron exchange and correlation terms were described using the Perdew-Burke-Ernzerhof 

(PBE) functional [23].  Electron-ion interactions were modelled using the projected 

augmented wave (PAW) potential with system converging with cut-off energy of 500 eV 

[24]. 

 

The ground state was determined using Methfessel-Paxton smearing of 0.05 eV [25]. The 

most stable β-PbO2 system was a (110) surface.  This was modelled as a (2x2) unit cell on 

surface coverage’s barring the 0.125 ML (ML = mono-layer) coverage.  This coverage 

employed the use of a super cell modelled as a (4x2) unit cell.  The k-points for the surfaces 

with (2x2) unit cell were sampled using a 3x3x1 Monkhorst-Pack grid [26] with the super 

cell having k-points 1x3x1.  A four-layered slab was employed, with the bottom two layers 

fixed in geometry, whereas top two layers were allowed to relax.  Slab separation was 

provided normal to the surface by use of a 15 Å vacuum region. Transition state (TS) 

searching was implemented using a constrained minimisation method [27-29].  

 

3.Results and Discussion 
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 3.1. Determination of the most stable facet of PbO2 

PbO2 can exist in two crystalline forms; the alpha version which is orthorhombic and the beta 

version which is tetragonal in shape.  It has been suggested that the beta version is the more 

favoured structure for O3 evolution.  The alpha form is said to have better contact between 

particles, due to its more compact structure in comparison with the beta form. This 

compactness results in difficulty with discharge.  For these reasons the beta form is often 

used when carrying out O3 evolution [30] .  

Although studies on other surfaces were carried out, Foller and Tobias focused on exploring 

β-PbO2 as their catalyst of choice for O3 evolution.  Other groups have also studied this 

system experimentally; however there are no examples in the literature studied on a 

theoretical level.  Before modelling the reaction, the most stable surface facet had to be 

calculated.  As this work is the first theoretical attempt, data on surface stability or 

morphology was lacking, so some common surface geometries were tested. The surface of β-

PbO2 is analogous to SnO2, which has been studied previously.  The (110) facet is reported as 

the most stable for SnO2, so this was chosen as a sensible starting point. The four 

arrangements tested were (110), (111), (100) and (211) mono-atomic step edge facets. 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A diagram showing β-PbO2 (110), the most stable surface facet, modelled as a 

four layer system.  The grey atoms represent lead, and the red atoms represent oxygen.  
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Upon calculation of these different facets, the most stable one was found to be the (110) facet 

(Figure 1) and therefore this is the surface that the mechanism was modelled upon. 

 3.2. Surface oxidants 

After calculating a stable facet, formation of surface oxidants from water adsorption and 

activation can be calculated which in turn can be useful in constructing a phase diagram 

(Figure 2).  β-PbO2 (110) has four lead sites on its surface, two on the top site region and two 

on the bridging region.  It is therefore possible to have 0.25, 0.50, 0.75 and 1 ML surface 

oxidant coverage. 

The main surface oxidants expected are either O or OH or both at the same time.  As this is 

oxidation reaction, it is loss of electrons and therefore a proton is released in step 1 of the 

mechanism.  Although unlikely, there is the possibility of surface H
+
 and this must also be 

taken into account. 

 3.2.1. Construction of a phase diagram showing surface oxidant formation 

Each calculation will yield an energy value; this is the total energy of the system. When 

constructing a phase diagram, it is the free energy that is required.  The free energy change 

(ΔG) of the system can be calculated using equation 4: 

 ΔG = ΔE + ZPE –TΔS (4) 

 

ΔE is the total energy change, ZPE is zero-point energy and the TΔS is the temperature and 

the change of the entropy of the system.  The free energy change of the system accounts for 

the zero-point energy and the entropy associated. Temperature is also factored into this, along 

with a pH correction factor, as experimentally the reaction is carried out in acidic electrolyte.   
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Figure 2.  Plot of ∆G of formation of surface oxidants against applied potential (vs. SHE) on 

the β-PbO2 surface. The blue line (line A) represents the stability of adsorbed OH with 

potential and the red line (line B) represents the stability of adsorbed O with potential. The 

white area (∆G > 0) represents the potential region where no surface oxidants are present 

and the red area (∆G < 0) represents the potential region in which O is the predominant 

surface oxidant.  

 3.3. A comparison of the formation of O3 via two different pathways 

The mechanism being modelled has four steps that involve the splitting of H2O to O2 (ads) 

intermediate before forming O3 through the interaction with further surface O.  This is better 

illustrated in reactions 5-8: 

 H2O                OH(ads) + H
+
 + e

-
 (5) 

 OH(ads)               O(ads) + H
+
 + e

-
 (6) 

 2O(ads)               O2(ads)             O2 (7) 

 O2(ads) + O(ads)              O3(ads)     O3 (8) 

 

The first two steps (reactions 5 and 6) happen almost simultaneously as a fixed potential is 

applied across the anode surface.  The main focus of this study is steps 3 and 4 (reactions 7 

and 8).  Step 3 is the formation of O2 as shown in Figures 3 and 4, and step 4 is the formation 

of O3 from the O2 formed in step 3 and further surface O, as shown in Figure 5. 
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Figure 3. A flow mechanism showing steps 1 to 3 of the overall mechanism. (a) is the clean 

surface, (b) shows the adsorption of H2O, (c) shows the deprotonation of one H, (d) shows 

the deprotonation of the second H and (e) shows the formation and subsequent desorption of 

O2 back to the clean surface 

  3.3.1. Step 3 – The formation of O2 via the combination of two surface O atoms 

In this step there are two oxygen atoms on the surface that combine to form O2. 

 2O(ads)              O2(ads)               O2(gas) (9) 
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In all chemical reactions there is an initial state (IS), transition state (TS) and final state (FS).  

The initial state is the starting point, the transition state is when the surface adsorbates are 

highest in potential energy and the final state is one in which the desired reaction has reached 

completion.  In this case the IS was the adsorbed O along with bridging O, and the FS will be 

surface adsorbed O2.  Upon completion of the calculations a reaction profile can be 

constructed: 

Initial state of reaction 

The initial mechanistic step involves two bridging oxygen atoms on the original surface and 

0.50 ML coverage of oxygen present on the top site region.  The bond distance between top-

site and bridging is 2.199 Å.  The energy associated with its stable configuration was 

calculated to be -258.95 eV. 

Transition state 

The TS was identified as the point that is highest in energy.  In this case it can be described as 

the point in which the two adjacent O atoms are closest without bond formation taking place.  

By using computational methods a suitable TS can be identified.  After calculating an 

adsorbates most stable geometry, i.e., a geometry optimization, a frequency calculation can 

be run. The outcome of these calculations should result in a number of determined frequency 

values, depending on the level of surface coverage.  Of these frequency values, at least one 

should be an imaginary frequency (f/i).  If all frequencies calculated are real then the 

configuration tested is, in fact, not a TS and so adjustments need to be made, the most 

common of which is to configure the bond distances.  
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Figure 4. Energy profile for step 3 of the mechanism: the formation of surface O2 from two 

adsorbed oxygen atoms.  The atoms highlighted in yellow are the interacting O atoms in the 

mechanism.  The initial state shows the adsorbed O and bridging surface O, the transition 

state shows both these atoms in a closer proximity to one another, and the final state shows 

both atoms bonded to form surface O2.    

 

The progression from IS to TS will have an activation energy (Eact) associated with it.  This 

barrier can be determined by taking IS away from the TS: 

 Eact = ETS – EIS = (-258.90) – (-258.95) = 0.05 eV (10) 

 

For step 3 the activation barrier was calculated at only 0.05 eV.  Thermodynamically the 

progression from IS to TS will occur with ease.  Both the TS and IS have similar properties 

and so there is little change structurally, barring the bond lengths between the two states 

(Figure 4).  
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Final state of reaction 

 The FS of step 3 shows the formation of surface adsorbed O2.  This occurs via the reaction of 

the same top site-bridging oxygen interaction seen in the IS.  The resulting structure shows 

the successful formation of O2, with the non-interacting oxygen atoms forming O2 on the 

surface.  As a result little O2 remains adsorbed whereas the majority will desorb.  This is what 

is expected to happen as for β-PbO2, CE values struggle to reach 10 %.  This suggests that for 

every one hundred O2 formed only ten will remain adsorbed.   

The enthalpy change (∆H) associated with the overall reaction from the IS to the FS was 

calculated in equation 11: 

 ∆H = EFS – EIS = (-262.61) – (-258.95) = -3.66 eV (11) 

 

A value of -3.66 eV would suggest that the FS is more stable than the IS and thus the reaction 

from IS to FS is exothermic. 

After formation of surface O2 the adsorption energy can be calculated to determine the 

strength of adsorption (equation 12). 

 Eads (O2) = E (surface O2) – E (clean surface) – E(O2) 

               = (-252.69) – (-242.77) – (-9.85) = -0.11 eV 
(12) 

                        

The adsorption energy for O2 was calculated at -0.11 eV.  This shows a weak adsorption of 

O2 to the surface.  Although modelling was carried out in the gas phase, experimentally an 

acidic electrolyte was used, so is in actual fact a liquid phase reaction.  Bearing this in mind it 

is assumed the aqueous electrolyte will have a stabilisation effect of around -0.30 eV 

associated with it [31, 32]. If the reaction had therefore been modelled as liquid phase then 

the adsorption energy would be around -0.40 eV therefore significantly increasing its 

stability.  To further explain this stabilization effect, imagine that the H2O/electrolyte solution 

is acting as a cage of hydrogen bonding over the surface.  If the O2 is continually desorbing, 

this will disrupt the hydrogen bonding network associated with the liquid phase and so O2 

will be more likely to stay adsorbed to the surface with less O2 rupturing through this 

network. 
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 3.3.2. Step 4- The association of surface O2 and O
•
 to form O3 

Step 4 of the reaction is the interaction of surface O2 and surface O.  This step is the most 

challenging of the 4 steps.  The formation of O2 is thermodynamically favoured over O3 

formation.  Experimentally, a high potential is required to drive the reaction towards the 

formation of O3.  Initial calculations proved unsuccessful.  Although O3 was formed the 

activation barrier was found to be 1.56 eV.  MD (molecular dynamic) calculations in the 

presence of H2O were carried out to try to further assess the activation barrier.  These 

calculations are time consuming and a minimum of 10,000 iterations are needed to reach 

converge.  Calculations in this case yielded little success and thus were not investigated 

further. 

Rather than forming O3 via an OH intermediate, the OH was deprotonated prior to the 

interaction with surface O2 forming O3.  Step 4, unlike step 3 was carried out in the presence 

of four H2O molecules positioned above the β-PbO2 surface. Instead of running more MD 

calculations, the basic principles were adopted and geometry optimization calculations 

determined instead. 

1
st
 step: The adsorption of H2O 

Further surface O, which could be achieved by adsorption of H2O onto the surface at either 

the free top or bridging site (see below), is still required for step 4 (Reaction 13).   

 O2 + O
•
            O3 (13) 

 

 The adsorption energy of H2O can be calculated using equation 14: 

 Eads (H2O) = E(surface-H2O) – E(clean surface) – E(H2O) 

                  = (-326.49) – (-311.69) – (-14.22) = -0.59 eV 
(14) 

 

The bridging water was found to be more stable than its top-site counterpart.  The adsorption 

energy was calculated at -0.59 eV, suggesting that adsorption was viable and could continue 

to the deprotonation step.  
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2
nd

 step- The deprotonation to OH and subsequently to O 

Upon adsorption of H2O, a subsequent deprotonation to OH, followed by a second 

deprotonation to O takes place.  The Gibbs free energy change of reaction (ΔGrxn) for each of 

the deprotonations was calculated using equation 15: 

 ΔG
0

rxn = G(OH) + G(H
+
+e

-
) – G(H2O) 

             = (-321.29) + (-3.44) – (-325.90) = 1.17 eV 
(15) 

 

The ΔG
0

rxn requires free energy which can be obtained by calculating the frequency.  The 

ΔG
0

rxn for this deprotonation is calculated at 1.17 eV.  This value can be used to determine   

the minimum potential of 1.17 V required for this deprotonation to occur [33], which is in 

agreement with an experimental onset potential of 1.80 V or above [9].  

A second deprotonation will simultaneously occur after the first and so the minimum 

potential is again calculated using equation 15: 

  

= (-316.20) + (-3.44) – (-321.29) = 1.65 eV 
 

    

The ΔG
0

rxn for this deprotonation is calculated at 1.65 eV.  Again this value corresponds to 

the minimum potential of 1.65 V required for deprotonation to surface O.As aforementioned 

this is below the experimental onset 1.80 V and so will readily take place. 

3
rd

 step- The reaction of O2 and O to form surface O3 

At this point there are both surface O2 and O present.  Like step 3, there will be an IS, TS and 

FS associated with the step.  The IS was surface O2 and O, the TS shows O2 and O in close 

proximity to one another without any bonding and the FS corresponds to surface adsorbed 

O3.  

Initial state of reaction 

In this step the bond distance between O2 and O was 3.34 Å.  Upon completion stable 

geometric configuration was determined with a total energy of -316.22 eV.   

Transition state 
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In this step the bond distance shortened from 3.34 Å in the IS to 1.77 Å in the TS.  The 

energy associated with the TS is -315.81 eV. A frequency calculation was performed to 

determine if there is an imaginary frequency (f/i).  There is one f/i, suggesting the TS is 

suitable. 

The energy barrier (Eact) from IS to TS was determined by Equation 16:  

 Eact= ETS – EIS 

Eact= (-315.81) – (-316.22) = 0.41 eV 

 

(16) 

The barrier of 0.41 eV can be bypassed with relative ease. Considering the value for O2 

adsorption calculated earlier (equation 12), one would assume that this large difference in 

energy would prevent the reaction with surface O shown in step 4.  When you take into 

account the water stabilization effect discussed previously, the adsorption of O2 becomes 

more substantial (~0.40 eV), thus increasing the time for surface O2 to react with surface O 

before desorption.  The CE for this system is low, thus only a small portion of O2 will stay 

adsorbed long enough to react and form O3. 

In a comparison of O3H vs O3, the O3 pathway is heavily favoured.  At 1.56 eV, the O3H 

barrier is 1.15 eV higher than for O, which in itself is a massive reduction.  This shows the 

importance of choosing a suitable intermediate; and by deprotonating first before forming O3 

is much more favourable.  The major difference is that the reaction of O2 + O was carried out 

in the presence of 4H2O, whereas the O3H pathway was not.  To make this a viable study, the 

O3H pathway was run in the presence of 4H2O and the barrier was lowered to 1.17 eV.  This 

was still much too high and so for this particular catalyst, the O2 + O pathway (having a 

barrier of 0.41 eV) will always be favoured. 

Final state of reaction  

The final state is the formation of O3 from O2 and O. The enthalpy change from IS to FS was 

calculated using equation 17: 

 ∆H = EFS – EIS 

= (-316.29) – (-316.22) = -0.07 eV 

 

(17) 
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The enthalpy change from IS to FS is -0.07 eV, suggesting the FS is therefore slightly more 

stable than the IS in this exothermic reaction (Figure 5). 

 

 Figure 5. Energy profile for step 4 of the mechanism: the transformation from O2 and O to 

O3.  The atoms highlighted in yellow are the interacting O atoms in the mechanism.  The first 

shows surface O2 and O, the second shows the O2 desorbed with O still adsorbed, and the 

third shows O3 adsorbed on the surface 

 

 

4. Conclusions 

This work represents a first theoretical attempt at gaining an insight into O3 production from 

water splitting via electrochemistry.  Using Density Functional Theory calculations we were 

able to model possible ozone formation pathways and verify a favourable mechanism. By 

taking a β-PbO2 (110) surface as a model catalyst, we have identified a feasible path where 

H2O adsorbed onto the surface and was oxidized to form surface OH then O, the latter 
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reacted with a surface bridging O to form O2 which in turn reacted with further surface O to 

form O3. 
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Highlights 

 

•    Mechanisms for ozone production via splitting of water identified by DFT modelling 

•    H2O adsorbed onto the electrode was oxidized to form surface OH then O 

•    Eley-Rideal style interaction between O2 and surface O to form O3 

•    A different reaction pathway via an O3H intermediate was less favoured 

 

 


