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Modeling the Inactivation Kinetics of Bacillus
subtilis Spores by Nonthermal Plasmas

Stefano Perni, Xutao T. Deng, Gilbert Shama, and Michael G. Kong, Senior Member, IEEE

Abstract—The inactivation performances of different nonther-
mal plasmas are often compared with each other in terms of their
decimal reduction values, typically obtained by linearizing selected
segments of their inactivation curves. However, this approach is
subjective and can result in uncertainties in the prediction of this
parameter. To overcome this, in this paper, the application of
models capable of describing inactivation curves in their entirety is
considered. The authors employ the Baranyi and Weibull models,
both commonly used for microbial inactivation by heat. An empir-
ical model based on a third-order polynomial to seek greater ac-
curacy is further proposed. Using these three inactivation models,
predictions of decimal reduction values for 11 plasma inactivation
studies of Bacillus subtilis spores are obtained and compared with
their reported values. Although the agreement obtained between
these different approaches is generally fair, the current practice of
segmented linearization is shown to be overly simplistic. A rigor-
ous model is therefore critical to capture the essentially nonlinear
character of plasma inactivation kinetics and hence allow for
an objective comparison of the performances of similar biocidal
nonthermal plasmas.

Index Terms—Bacillus subtilis spores, decimal reduction times,
inactivation models, nonthermal plasmas.

I. INTRODUCTION

HE THERMALLY induced inactivation of microorgan-

isms is widely and routinely used to ensure the micro-
biological safety of a range of products. Although generally
effective, conventional thermal processes are not suitable in
instances where the object or product to be microbially deconta-
minated is heat sensitive and may become irreversibly affected
or otherwise damaged by the treatment. There are numerous
individual examples of this, but the fresh food industry presents
a particular case in point. This sector of the food industry has
grown rapidly in recent years, reflecting changes in eating and
cooking habits in Western societies [1]. Along with the rise in
consumption of these foods have come increases in the in-
cidences of foodborne diseases [2], and reliable measures to
ensure the safety of fresh and uncooked foods would contribute
greatly to improvements in public health. Conventional thermal
treatment of such food can bring about unacceptable changes to
its textural, organoleptic, and nutrient status [3] and is therefore
unsuitable. Recently, it has been shown that nonthermal gas
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Fig. 1. Two common plasma inactivation kinetics that are sometimes de-

scribed as termed biphasic or triphasic.

plasmas may be used to inactivate the microorganisms asso-
ciated with fresh produce and present on the food surface in the
form of “biofilms” (microorganisms embedded in an adhesive
polysaccharide matrix) without affecting the physical appear-
ance of the produce [4]. Therefore, nonthermal plasmas may
have a significant role to play in the treatment of fresh and
uncooked foods.

If nonthermal plasmas are to be adopted in food decontami-
nation and other applications, it is essential that the kinetics of
inactivation of a range of common pathogenic microorganisms
are put on a quantitative basis and that the treatment times
necessary to achieve a stated reduction in microbial viability
are predictable with precision. Whereas a body of experimental
data on the use of nonthermal plasmas for inactivating a diverse
range of microorganisms is beginning to accumulate [4]-[6],
the tools that have been used to analyze these data to date are
unsophisticated and do not reflect the advances that have been
made in modeling microbial inactivation [7]-[10]. The focal
point for all such models is the microbial inactivation curve—a
kinetic plot of cell viability against treatment time. Although
plasma inactivation kinetics are essentially nonlinear [4]-[6],
[11], the current approach has been to linearize selected seg-
ments of the microbial kinetics curve. This enables values of the
decimal reduction time D—the time over which the treatment
must be applied to achieve a reduction in the viability of the
microbial population of 90%—to be obtained. This process
of what might be termed “segmented linearization” has been
extrapolated to provide evidence of a plurality of inactivation
mechanisms and of the existence of different “inactivation
phases” [12]. Fig. 1 shows two examples of common plasma
inactivation curves that are commonly referred to by the terms
“biphasic” and “triphasic.” Without prescribing to the view that
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individual phases necessarily represent separate inactivation
mechanisms, these terms will be used here for reference to
this current view. Moreover, it is clear from Fig. 1 that plasma
inactivation curves generally change in a smooth and contin-
uous fashion without exhibiting distinct boundaries between
adjacent phases [4]-[6], [11]. The identification of linear seg-
ments of inactivation curves is therefore inevitably subjective
with the result that the D values obtained are subject to uncer-
tainty. In other words, the currently favored approach of seg-
mented linearization for describing microbial inactivation using
nonthermal plasmas is mathematically unreliable, and a more
rigorous approach is therefore both necessary and desirable.

Microbial inactivation, by whatever means it is brought
about, can in principle be analyzed by using empirical, mecha-
nistic, or statistical models. Empirical models are simply math-
ematical equations that offer acceptable fits of the inactivation
data. The segmented linearization method described above falls
under this category. Mechanistic models are based to a greater
or lesser extent on some concept of what effect the lethal treat-
ment has on the cell or its individual components, whereas the
statistical approach views the process of inactivation as being
based on probabilities that individual cells within a population
will be killed by the treatment in question. The latter two
methodologies have been used to analyze microbial inactivation
by thermal and other conventional methods [7]-[10] but have
not been applied to the case of nonthermal plasma inactivation.

In this paper, we compare the fitting of the three funda-
mentally different types of inactivation model to both our
own and previously published inactivation data for spores of
the bacterium Bacillus subtilis by nonthermal plasmas, either
generated in a vacuum chamber or in open air at atmospheric
pressure. We employ the Baranyi model as a representative
mechanistic model [7] and the Weibull model as a represen-
tative statistical model [9]. Both models have three parameters
with which to fit experimental inactivation data. In an attempt to
enable a better and more accurate fit, we propose an empirical
model with four parameters based on a third-order polynomial
function. The remainder of the paper is organized into an
explanation—in Section II—of the theoretical basis of each of
the three inactivation models used. In view of the fact that most
authors seem to favor the quotation of D values, we also present
the derivation of this parameter from the individual model para-
meters. The application of all three models to the experimental
data is presented in Section III, and our conclusions are given
in Section IV.

II. BASIS OF THE INACTIVATION MODELS

A detailed description is presented here for each of the
three inactivation models. The majority of inactivation curves
obtained using nonthermal plasmas—whether in vacuum or at
atmospheric pressure—are triphasic as earlier defined [4]-[6],
[11]. Alternatively, their shape may be described as resembling
an inverse-S shape. Notwithstanding similarities in form, it
should not necessarily be inferred that the same, or even similar,
inactivation mechanisms prevail when using different types of
plasma systems. Whereas it is currently unclear whether this
similarity in response stems from a commonality in the micro-
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bial target(s) affected by the various plasma species, it seems
logical, in the first instance, to seek to develop inactivation
models using data accumulated for a single species of organism.
This approach should eliminate effects arising from differences
in microbial structure between different species. In this paper,
our focus is on spores of the bacterium B. subtilis for which
there exists a large body of plasma inactivation data [11]-[14].
Each set of experimental data was fitted with the three models
using DATAFIT 7.1 software (Oakdale Engineering, USA).

We chose to indicate the “goodness of fit” of all three
models to the experimental data by recourse to the coefficient
of multiple determination (R?), which is also known as the
“Fisher” parameter [15]. This is defined as

R’=1-8/T (1)

where S is the sum of the squared differences between values
predicted by a model and its corresponding experimental data,
and 7T is the sum of the squared differences between the
experimental data and the average value of all experimental
data. A perfect fit is achieved when R? equals 1.

In an attempt to correlate to decimal reduction values derived
from the segmented linearization method, we employ the fol-
lowing definition of the D value:

N({t+ D)= 1—10N(t) (2)

where N (¢) is the cell concentration at time ¢.

A. Baranyi Model

The mechanistic model we used is based on the Baranyi
inactivation model [7], which was itself developed from the
widely used Baranyi—Roberts growth model [16]. Inactivation
curves often display approximately horizontal sections—or
“shoulders”—at low treatment times. Shoulders are those re-
gions found at early treatment times and can be thought of as
representing some threshold value of damage that must be ex-
ceeded before inactivation occurs. Such shoulders are modeled
here by recourse to a so-called “critical component,” denoted
as C, which may or may not be a real substance present either
inside or outside cells and, which, in this case, may be thought
of as decaying in response to plasma treatment. Immediately
after the shoulder section, the threshold for significant damage
is reached, and the inactivation kinetics exhibit an exponential
reduction in the number of viable cells. The Baranyi model
describes this through an exponential function as detailed in
(3). It can also account for the phenomenon of “tailing,”
where the inactivation curves essentially form a plateau at long
treatment times. Tailing is generally a manifestation either of
a heterogeneous population where some individual cells are
more resistant than others or of physical phenomena such as cell
clumping where those cells at the exterior of a clump effectively
protect those at the interior. However, this is neglected in the
form of the model that is used here and that was expressed by
Greenacre et al. [8] as

3

N(t)zNoekmaxt< 1+ C.(0) >

1 —+ CC (O)e*kmaxt
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where N is the initial bacterial concentration, k. iS the
maximum inactivation constant, and C.(0) is the initial con-
centration of the critical component C.. Equation (3) has three
fitting parameters (i.e., Ny, C.(0), and kyax), and these will
be numerically varied to achieve a best fit to a given set of
experimental data. From a mechanistic point of view, these
three parameters can be related directly to bacterial properties.
With the definition of the decimal reduction time in (2), the
above equation can be easily manipulated to yield the decimal
reduction time at t = 0 as follows:

1
Dy =

In[10 + 9C.(0)]. )
max

In some plasma inactivation studies, attempts have been made

to describe the midsection of the inverse-S-shaped inactivation

curve with a second decimal reduction value, or “D5,” as it is

often referred to [12]. Mathematically, this can be derived by

first determining the time at which the inflection occurs from

d*N(t)

Sl A I (5)
- |,_

to

Since t = t5 occurs at the midpoint of the inflection section,
or the midsection of the inverse S, the value of D5 is obtained
from

1
N(t2 +0.5Dy) = 75N (t2 — 0.5D5). (6)

A close examination of the Baranyi model in (3) suggests that it
can never satisfy the condition imposed by (5). In other words,
the Baranyi model may have too few parameters to allow for
the estimate of D.

B. Weibull Model

The Weibull distribution function was originally formulated
to predict the time to failure of mechanical components, but it
has come to be widely applied to microbial inactivation by a
variety of lethal agents. In this context, the model accounts for
biological variation with respect to inactivation times. We take
the following format of the model:

N(t) = No10~ /9" )

where the parameter p is commonly referred to as the shape pa-
rameter, and ¢ is the time required—measured from ¢ = 0—to
reduce the viability of the cell population by 90%. Therefore,
0 is effectively the D value at ¢t = 0, and this can readily be
confirmed from (7). The shape parameter accounts for upward
concavity of a survival curve (p < 1), a linear survival curve
(p = 1), and downward concavity (p > 1). Although the model
is essentially of an empirical nature, a link can be made
with physiological effects. A value for p < 1 indicates that
the remaining cells have the ability to adapt to the applied
stress, whereas p > 1 indicates that the remaining cells become
increasingly damaged [17]. Similar to the Baranyi model, the
Weibull model has three fitting parameters, namely: 1) N,
2) p, and 3) §, and these can be varied until (7) achieves the
best possible fit to any given set of experimental inactivation
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data. In practice, there is little room to vary N since it is
related to the initial bacterial density—a quantity that has an
unambiguous physical meaning with a definitive value in any
given experiment.

The decimal reduction value for the inflection section of
the inactivation curve can again be derived using (5) and (6).
Similarly to the Baranyi model, the Weibull model of (7) was
found to be incapable of satisfying (5). It appears that the
Weibull model has too few parameters to obtain a second
decimal reduction value for the inflection section. It is worth
mentioning that both the Baranyi and Weibull models have
three fitting parameters and, therefore, their ability to achieve
good fits of experimental data should be mathematically similar.

C. Third-Order Polynomial-Based Empirical Model

From a mathematical standpoint, the inverse-S shape of the
plasma inactivation curve can be modeled empirically using
polynomials. Since both the Baranyi and Weibull models have
three parameters, it is useful to consider a third-order polyno-
mial that can potentially provide four fitting parameters. Our
empirical model takes the following general format:

logio N(t) =y = at® + bt* + ct + d. (3)
By setting ¢t = 0, one is left with
d = log,o N(0) = log;o No. )

Using (2), (8), and (9), one obtains the decimal reduction value
at t = 0 that satisfies

aD? +bD? +¢D; +1=0. (10)

Although this expression can be solved analytically, it is in
practice more convenient to solve it numerically after the four
parameters, i.e., a, b, ¢, and Ny, are determined from a best fit
of (8) to a given set of experimental data.

In contrast to the Baranyi and Weibull models, the empirical
model of (8) can satisfy the conditions imposed by (5) and,
thus, can be formulated to give the decimal reduction value
for the inflection section of the inverse-S-shaped inactivation
curve. Although not difficult to derive, the analytical expression
of this second decimal reduction value is fairly cumbersome,
and therefore, we calculated it numerically.

III. RESULTS AND DISCUSSION

Table I shows the sources and details of 11 sets of exper-
imental plasma inactivation data used to compare the three
models and model predictions of the Fisher coefficient R? of
(1). In general, all three models lead to a satisfactory fit to
experimental data, with R? being above 0.95 for most cases
and only falling below 0.85 on three occasions overall. This
suggests that all three models reproduce plasma inactivation
kinetics faithfully and reliably.

It is interesting to recall that the empirical model was intro-
duced to provide additional fitting parameters than the other two
models, so that it may offer a better fit to the experimental data.
This is clearly the case for the second data set and is illustrated
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TABLE 1
DETAILS OF 11 PLASMA INACTIVATION EXPERIMENTS AND THEIR R? AS PREDICTED WITH THE THREE MODELS
Dataset Details of plasma inactivation conditions R? value
Gas Gas pressure (torr) No Shape of inactivation curve Ref Baranyi Weibull | Empirical
1 Ar 7 1x10° biphasic [13] 0.98 0.98 0.95
2 Ar+5%0n 7 1x10° triphasic [13] 0.83 0.82 0.98
3 No+2%0; 2 1x10° biphasic [13] 0.96 0.95 0.98
4 Ny+15%0, 2 1x10° triphasic [13] 0.94 0.95 0.99
5 Ny 5 1x10° biphasic [12] 0.99 0.99 0.99
6 N2+0.7%0, 5 1x10° triphasic [12] 0.96 0.96 0.97
7 No+1.5%0, 5 1x10° triphasic [12] 0.97 0.96 0.99
8 CO, 0.01-0.1 3x10° biphasic [14] 0.97 0.97 0.86
9 CO, 0.01-0.1 1x107 biphasic [14] 0.98 0.97 0.89
10* He 760 5 x 107 biphasic [11] 0.97 0.98 0.97
111 He 760 5x 107 biphasic [11] 0.99 0.99 0.98

* spores produced at 22 °C T spores produced at 47 °C

7

---- Baranyi
—-—- Weibull
—— Cubic

logyg (N)
N w H

0 5 10 15 20 25 30 35 40
treatment time (min)

Fig.2. Plasma inactivation data in the second data set and their modeling with
all three proposed inactivation models.

8
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Fig. 3. Plasma inactivation data in the eighth data set and their modeling with
all three proposed inactivation models.

in Fig. 2. Nevertheless, this is by no means always the case. For
the eighth and ninth data sets, the fit by the empirical model
is seen to be poorer than for the other two models, and this is
shown in Fig. 3. Therefore, the additional parameter introduced
in the empirical model of (8) does not necessarily lead to a more
accurate representation of experimental inactivation data. For
all other data sets, all three models result in similarly excellent
fits to relevant experimental data. The overall conclusion is that
all three inactivation models are similarly good.

A closer assessment of Table I reveals which inactivation
model most closely fits each data set. It is intriguing to note

that for inactivation curves not displaying a third phase, the fits
achieved using the Baranyi and Weibull models are particularly
good (the third, tenth, and 11th data sets) and, in some cases,
even better than the polynomial equation (first, eighth, and
ninth data sets). Van Boekel anticipated difficulties in modeling
the thermal inactivation of spores with the Weibull model
[17]. This was because heat both stimulates spore outgrowth
and ultimately results in spore inactivation. However, thermal
effects were insignificant in all cases considered in this paper,
and our results show that for nonthermal microbial inactivation,
the Weibull model is, on the whole, very adequate. Our findings
therefore extend the application of the Weibull model to the
description of microbial inactivation by nonthermal plasmas
alongside those of other nonthermal inactivation techniques
such as pulsed electric fields, ionizing radiation, and high-
pressure gases [17]. Equally, it is interesting to note that when
the empirical model is applied to curves displaying a third phase
(the second, fourth, sixth, and seventh data sets), the fitting is
markedly improved, suggesting that, in these cases, the new
approach presented here is mathematically better suited for
dealing with this kind of inactivation curves as illustrated in
Fig. 1 for the second data set.

Given that plasma inactivation kinetic curves are characteris-
tically continuous and free of distinct boundaries between sup-
posedly different inactivation phases, use of either of the three
inactivation models is mathematically justified over the entire
range of plasma treatment times. From a practical standpoint,
it is interesting to establish whether the three models can be
simplified to provide a single-parameter yardstick for charac-
terizing and comparing different plasma inactivation curves.
Segmented linearization with its predicted decimal reduction
time provides one such yardstick, albeit a questionable one;
where the inactivation curves are biphasic, two values of D
are quoted, and where they are triphasic, three values of D
are given. To evaluate how reliable, both quantitatively and
qualitatively, this commonly used yardstick is, we calculate D
values using the three models and compare the predictions with
values cited in the literature.

Table II summarizes the decimal reduction values of the first
phase, D1, predicted using all three models and also reported
previously using segmented linearization. In general, the empir-
ical third-order polynomial model offers the closest predictions
to those obtained using segmented linearization, whereas the
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TABLE 1I
COMPARISON OF EXPERIMENTAL AND PREDICTED D VALUES
Dataset Experimental D (min) l?redictéd D (min) _
Dy Dy Ds Baranyi | Weibull | Empirical
1 4 30 N/A 3.7 3.5 6.8
2 2.9 23 1.7 3.5 15 2.5
3 3.6 26 N/A 2.6 2.4 4.6
4 3.6 26 35 6.9 16.8 5.5
5 not given 45 N/A 37.1 36.9 37.6
6 2.3 10.3 1.6 0.74 1.6 2.1
7 2.3 10.3 1.8 1.7 4.03 2.6
8 3-6 40 N/A 0.38 0.27 8.1
9 3-6 40 N/A 1.7 2.08 13.9
10 0.6 not given 0.02 0.21 0.66
11 1.05 0.84 0.99 1.22

values yielded by the Weibull model show the greatest discrep-
ancies. In particular, predictions of the empirical model agree
well with those of the segmented linearization technique for
triphasic inactivation curves (e.g., second, fourth, sixth, and
seventh data sets) and for atmospheric plasmas (e.g., tenth and
11th data sets). On the other hand, the Baranyi and Weibull
models are generally in good agreement with segmented lin-
earization. There are, however, exceptions, in particular, the
eighth and ninth data sets, for which all three models predict
markedly different D, values to those obtained by segmented
linearization. This may be partly due to a somewhat approx-
imate nature in the prediction of the D value in the original
plasma inactivation study [14].

As was explained in Section II, the Baranyi and Weibull
models do not support a mathematical derivation of D val-
ues for the second and subsequent phases of the inactivation
kinetics curve. The empirical model is, however, capable of
predicting the second and third decimal reduction values. For all
11 cases in Table II, its predictions were found to be at variance
with those obtained by segmented linearization method and,
thus, are not included in Table II. It should be emphasized
that segmented linearization makes subjective assumptions over
the location of the boundary points of different inactivation
phases and that, as a result, errors made in demarcating the first
inactivation phase are essentially passed onto the second and,
if it exists, the third phases. This explains why, on the whole,
all three inactivation models provide similar predictions of the
first decimal reduction value, whereas those for the second and
subsequent values of D were widely at variance.

The above discussion suggests that the segmented lineariza-
tion technique is reasonable in its prediction of the first decimal
reduction value but that doubt must attach to values given for
Dy and D3 due to the accumulation of errors arising in the
estimation of D; being transferred to both of these values.
Interestingly, large errors induced in the prediction of Ds and/or
D3 have been independently reported [12]. By contrast, the
polynomial-based empirical technique enables mathematically
rigorous and reliable predictions of Dy and D3 to be made. It
should be noted, however, that the value of t; deduced from (5)
and (8) can in principle be either negative or even complex, thus
leading to nonphysical interpretations. In other words, D» and
D3 are not always physically reliable yardsticks for describing
the second and third phases of the inactivation curves. This
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highlights the inherent difficulties in attempting to use a single
parameter, namely, the decimal reduction value, as one that
is capable of representing the nonlinear nature of the second
and subsequent phases of the inactivation curves. It is our con-
tention that this can only be achieved using properly constituted
mathematical models, exemplified by the inactivation models
featured here.

Although not mathematically rigorous, the technique of as-
signing a decimal reduction value to each apparent inactivation
phase may be thought of as intuitive and providing for a quali-
tative, rather than quantitative, comparison of different plasma
inactivation curves. As it is a simpler indicator than the math-
ematical formulas of (3), (7), and (8), it can nonetheless play
a useful role when applied to a group of plasma inactivation
studies having vastly different timescales of inactivation. This
is true for the first inactivation phase, but not for any subsequent
phase.

The difficulty of the empirical model in providing physically
meaningful values of D, and D3 highlights that its anticipated
mathematical superiority over the Baranyi and Weibull models
is unjustified. Adding to the comparison of all three models
in terms of their R? value and their prediction of D; (see
Tables I and II), the Baranyi model appears to be a good model
overall in terms of both accuracy and mathematical simplicity.
Equally important is its capability to correlate its parameters
(No, C.(0), and kpax) to quantities that carry either physical
or biological significance. The Baranyi model is therefore an
appropriate model for microbial inactivation by nonthermal
plasmas and as a base to unravel the physical and biological
mechanisms in future microbial inactivation studies using non-
thermal plasmas.

Although the three inactivation models are proposed as a
reference tool relating one plasma inactivation study to another,
their further development could potentially lead to a correlation
of the model parameters to key biological properties and phys-
ical features of nonthermal plasmas. This would ultimately al-
low the model parameters to be used as simple and measurable
indicators of underpinning plasma physics or/and bacteriology.
While this ultimate benefit requires many substantial research
programs in the future, links of the model parameters to micro-
biological parameters can already be suggested. In the case of
the Baranyi model, the shoulder, the exponential decay, and the
tail phases of a typical inverse-S-shaped inactivation curve are
discussed in Section II-A. This links bacterial properties to the
D1, Dy, and D3 parameters and, consequently, to the model
parameters No, kmax, and C.(0) through (4)—(6). The fact that
all inactivation data exhibit a very short shoulder phase suggests
that the initial threshold of bacterial resistance is relatively
easy for species of nonthermal plasmas to overcome. This is
illustrated in the model by the k.« parameter. After this, most
bacteria are sufficiently damaged and susceptible for rapid inac-
tivation by plasma species. Hence, the exponential decay phase
follows. Similar case can also be made for the Weibull model.

It is also possible to relate model parameters to physical
parameters of nonthermal plasmas, such as charged particles,
free radicals, excited species, and electric field [18]. It is,
however, interesting to note that the shapes of all studied inac-
tivation curves for B. subtilis spores show a common inverse-S
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shape, although nonthermal plasmas considered are produced in
different gases and at different gas pressures. Therefore, model
parameters are likely to represent damages by potential plasma
inactivation agents, most likely to be synergistic, rather than
specific plasma agents. Future studies are therefore required to
substantiate this.

IV. CONCLUSION

Justification for linearizing selected segments of microbial
inactivation curves obtained using nonthermal plasmas was
shown to be associated largely with practical simplicity. Al-
though this approach does have the advantage of yielding a
single parameter to characterize plasma inactivation using rela-
tively uncomplicated procedures, it has been shown to be reli-
able only for the first inactivation phase but not for subsequent
phases. Since the essentially nonlinear microbial inactivation
curve does not normally display distinct and unambiguous
boundary points between different inactivation phases, its ac-
curate description can ultimately only be achieved by recourse
to more rigorous mathematical models. To this end, three inac-
tivation models were proposed for characterizing nonthermal
plasma inactivation, namely: 1) the Baranyi model; 2) the
Weibull model; and 3) a third-order polynomial empirical
model. For B. subtilis spores, these models were shown to
reproduce experimental inactivation data reliably and faithfully.
These mathematically accurate models are therefore essential
for a quantitatively accurate comparison of different plasma
inactivation curves already reported and for the design of future
and improved plasma inactivation studies. The Baranyi model
was recommended as the appropriate basis to unravel physical
and biological mechanisms of plasma microbial inactivation.
Previous attempts to correlate apparent phases in the process
of microbial inactivation to the generation of certain plasma
species have met with only partial success. However, what must
be the ultimate objective of such studies of identifying those
biological processes that are affected by the various plasma
species currently remains unfulfilled. It is only when this has
been achieved that there will be any justification for segmenting
inactivation curves.
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