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Abstract 

Fluorescent staining techniques were used for a systematic examination of methods 

used to cryopreserve microbial cell banks.  The aim of cryopreservation here is to 

ensure subsequent reproducible fermentation performance rather than just post thaw 

viability. It is clear that Bacillus licheniformis cell physiology post thaw is dependent 

on the cryopreservant (either, Tween 80, glycerol or dimethyl sulphoxide) and that 

whilst this had a profound effect on the length of the lag phase, during subsequent 5L 

fed-batch fermentations, it had little effect on maximum specific growth rate, final 

biomass concentration or α-amylase concentration. Tween 80 was found not only to 

protect the cells during freezing but also to help them recover post thaw resulting in 

shorter process times. 

 

Introduction 

Within the fermentation industry there is a need to understand and optimise current 

methods for the preservation of microbial cell banks. From the production of yoghurt 

to the most advanced recombinant therapeutics, the generation and subsequent 

maintenance of an optimal cell bank is a critical task in the successful 

commercialisation of any product made by fermentation (Gnoth et al., 2007; Hornbæk 

et al., 2002, 2004; Webb et al., 1993). It is therefore surprising that relatively little 

systematic work has been published concerning the choice of preservation methods 

and their optimisation. Some generally early work (Lovelock et al., 1959; Polge et al., 

1949; Morgan et al., 2006) has resulted in the formulation of two routinely used 

preservation methods, both of which are largely unsubstantiated with respect to final 

productivity. Both freeze-drying and cryogenic preservation rely on the prevention of 

the formation of ice crystals (Fuller, 2004; Hubálek, 2003; Kirsop and Snell 1984), a 
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process known to disrupt the delicate membrane structures within cells and hence 

compromise their viability. Starting from a liquid suspension of cells or spores, freeze 

drying involves the sublimation of water at low temperatures and pressures and is 

generally considered inferior to cryogenic preservation, where cells are suspended in 

an appropriate medium supplemented with 20% v/v glycerol and rapidly frozen at -

80°C (Polge et al., 1949). A brief literature search shows that there are few variations 

on these themes. Other cryoprotectants, such as Tween 80 (Beal et al., 2001; Endo et 

al., 2006; Smittle et al., 1974), yeast and malt extract (Hubálek, 2003; Johannsen, 

1972) and more defined agents such as DMSO (Lovelock et al., 1959) have also been 

studied. However, there is little informed or systematic work to back up their use, 

while the current industrial practice of testing working cell banks through productivity 

measurements in small scale process representations of production scale often leads to 

the discovery of a poor cell bank which must then be discarded. Therefore it would 

seem that there is a real need for a systematic examination of the methods used to 

preserve cell banks to ensure subsequent reproducible fermentation performance. 

Measurable effects on ‘sensitivity’, defined here as a loss of productivity rather than 

just cell viability, may be subtle so appropriate techniques to measure the effects are 

required.  

 

Multi-parameter flow cytometry has many advantages over conventional 

microbiological analyses such as dilution plating (c.f.u. per ml) and these have been 

extensively reviewed elsewhere (Nebe-von-Caron et al., 2000; Hewitt and Nebe-von-

Caron 2001, 2004).  Briefly, using various mixtures of fluorescent dyes, it is possible 

to resolve an individual microbial cell’s physiological state beyond culturabilty, in 

‘real-time’, based on the presence or absence of an intact polarised cytoplasmic 
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membrane and the transport mechanisms across it. The presence of both an intact 

polarised cytoplasmic membrane and active transport are essential for a fully 

functional (healthy) cell. The speed and sensitivity of this technique was used here to 

discover those preservation/recovery combinations resulting in the correct 

physiological state post thaw, which could correlate to final process productivity. In 

this way candidate preservation/recovery methods were investigated and tested on a 

standard process model, namely the use of Bacillus licheniformis to produce the 

commercially important enzyme α-amylase (Hewitt and Solomons  1996) in 5L fed-

batch fermentation processes. 

 

MATERIALS AND METHODS 

Organism and growth conditions. 
 

Cell banks of an industrial production strain (Novozymes A/S, Bagsværd, Denmark) 

of B. licheniformis SJ 4628, an asporulating alpha-amylase overproducing strain, were 

maintained in 1 mL vials at an OD600nm of 1 at -80oC in Yeast Malt Extract Broth 

(Oxoid, UK) supplemented with 20% v/v  glycerol, 25% v/v glycerol, 15% v/v 

DMSO or 20% v/v Tween 80.  

 

Inocula were prepared by diluting a 1 mL aliquot from the cell  bank into 9 mL M9 

buffer (composition gL-1: KH2PO4, 3; Na2HPO4, 6; NaCl, 5) made up in distilled 

water. 1 mL of 1M MgSO4 was added after sterilisation. The cells were then grown in 

a static 500 mL Erlenmeyer flask on 50 mL yeast malt agar (composition gL-1: malt 

extract powder, 40; yeast extract powder, 20; M Lab agar powder, 20) made up in 

distilled water.  After 16 h of incubation at 37 °C, 20 mL of M9 buffer was added 

aseptically to the surface of the agar and the culture mixed to re-suspend the cells. 
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For shake flask toxicity experiments cells were grown in 50 mL of yeast malt broth in 

a 500ml baffled Erlenmeyer shake flasks at 37°C and 200rpm. For all shake flask 

experiments a 2% inoculum (prepared from cryopreserved stocks as above) with an 

optical density at 600 nm of 1.0 was used.  

 

For laboratory scale fed-batch experiments cells were grown in yeast malt extract 

medium (composition gL-1: (NH4)2HPO4, 16; malt extract powder, 40; yeast extract 

powder, 20; glucose, 5; KH2PO4, 1.5; MgSO4.7H2O, 0.5; CaCl2.2H2O, 0.45; 

MnSO2.4H2O, 0.04; ZnSO4.7H2O, 0.02; FeSO4.7H2O, 0.02; Na2MoO4.2H2O, 0.002; 

CuSO4.5H2O, 0.01) made up in distilled water with 3 mL of polypropylene glycol 

2025. A feed solution (composition gL-1: (NH4)2HPO4, 16; malt extract powder, 40; 

yeast extract powder, 20; glucose, 500; KH2PO4, 1.5; MgSO4.7H2O, 0.5; CaCl2.2H2O, 

0.45; MnSO2.4H2O, 0.04; ZnSO4.7H2O, 0.02; FeSO4.7H2O, 0.02; Na2MoO4.2H2O, 

0.002; CuSO4.5H2O, 0.01) was made up in distilled water. The fed batch 

fermentations were carried out in a 5 L cylindrical glass bioreactor (160 mm diameter 

and 300 mm total height), with a working volume of 4 L. The vessel was fitted with 

two 82 mm, six flat bladed paddle type impellers which were 80 mm apart, with the 

lowest impeller situated 80 mm from the bottom of the vessel. The vessel was also 

fitted with four 90° baffles of 15 mm width spaced equidistantly around the vessel. 

The fermentation vessel was equipped for the measurement of DOT, pH and 

temperature. DOT was maintained at 90% saturation by varying the impeller speed 

from 0 to 1000 rpm, pH was maintained at 7.0 by addition of 2 M NaOH and 2 M 

H3PO4 on demand and temperature was maintained at 37 °C. Foaming was controlled 

by addition of 2% polypropylene glycol 2025 on demand. For all fed batch 

fermentations a 5% inoculum was used with an optical density of 1.0. Fed batch 
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fermentations were started as batch cultures and an exponential feeding profile was 

calculated from the following equation (Strandberg et al., 1994), 
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Where S= 500g/L, Yx/s = 0.5, m= 0.02 and Xo =5g and µ = 0.3h-1.  

 

Feeding was started when the initial glucose was exhausted as measured by a sudden 

rise in DOT (spike). When the DOT reached the 20% saturation level the feed rate was 

held constant for the remainder of the experiment.  

 

Analytical Techniques 

Biomass was measured turbidimetrically by optical density at 600 nm in a double 

beam spectrophotometer and measurements of dry cell weight, gL-1 and plate counts, 

c.f.u. mL-1 were taken. Glucose concentration was measured using a Cecil HPLC 

system with an AminexHPX-87P carbohydrate analysis column (Bio-rad, UK) with a 

Cecil 4700 refractive index (RI) analyser (Cecil Instruments, Cambridge, UK). α-

amylase concentration was determined spectrophotometrically using the method 

determined by the International Federation of Clinical Chemistry and Laboratory 

Medicine (Lorentz, 1998).  

 

Fluorescent measurements were made using a Coulter (High Wycombe, UK) EPICS 

ELITE flow cytometer with 488 nm excitation from an argon-ion laser at 15 mW.  

Samples taken from the culture were immediately diluted (at least 1:2000 v/v) with 
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phosphate buffer solution (PBS, pH 7.0) and stained with a mixture of propidium 

iodide and bis-(1, 3-dibutylbarbituric acid (DiBAC4(3)) Samples were kept in a 

sonication bath for 10 s prior to analysis, in order to avoid problems associated with 

cell aggregation. Stock solutions of each dye were prepared as follows: DiBAC4(3), 

was made up at 10 mg ml-1 in DMSO and PI was made up at 2 mg ml−1 in distilled 

water. The working concentrations of DiBAC4(3) and PI were 0.6 g ml-1 and 3 g 

ml−1, respectively in Dulbecco's buffered saline (pH 7.2, DBS). All solutions were 

passed through a 0.2 m filter, immediately prior to use, to remove particulate 

contamination. Additionally, software discriminators were set on both the forward and 

right angle light scatter signals to further reduce electronic and small particle noise. 

The optical filters were set up so that PI fluorescence was measured at 630 nm and 

BOX fluorescence at 525 nm. Where there was spectral overlap the systems software 

compensation was set up to eliminate any interference 

 

RESULTS AND DISCUSSION 

 

Shake flask experiments were carried out using B. licheniformis SJ 4628 inocula 

derived from different cryopreserved cell banks namely 20% v/v glycerol, 25% v/v 

glycerol, 15% v/v DMSO or 20% v/v Tween 80. Cell banks frozen without a 

cryopreservant were also used as a control. In all cases cell banks had >98% viability 

(as measured by PI exclusion) prior to freezing. Triplicate reproducible measurements 

of OD600nm were made (Figure 1) and cell physiology was monitored throughout the 

fermentations using multi-parameter flow cytometry (Figure 2). In order to look at the 

effect of cryopreservant on α-amylase productivity further fed-batch fermentations 

were carried out in 5 L bioreactors by growing the same cell banks,  with and without 
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the 16 h incubation pre-inoculation step on yeast malt extract agar, to an OD600 nm of 

1.0 prior to inoculation. Duplicate reproducible measurements of OD600nm, DCW (gL-

1), CFUmL-1, glucose concentration (gL-1) and α-amylase concentration (µKatL-1) 

were made (Figure 3, not all data shown). Cell physiology was monitored throughout 

the fermentation using multi-parameter flow cytometry (Figure 4).  

 

During the shake flask fermentations (Figure 1) both the lag phase and subsequent 

cell physiology (Figure 2, not all data shown) were affected by the choice of 

cryopreservant used. The cell banks prepared with 20% v/v Tween 80 had the shortest 

lag phase (~ 3.5 h) presumably because Tween 80 provides better protection from the 

damaging effects of freezing than the other cryopreservants. Oleic acid is a 

component of the Tween 80 molecule and has been shown to enhance the ratio of 

unsaturated fatty acids in the cytoplasmic membrane of lactic acid bacteria allowing 

them to resist damage during freezing (Beal et al., 2001; Endo et al., 2006; Smittle et 

al., 1974). Oleic acid is considered necessary for the formation of the cytoplasmic 

membrane and studies performed with various Lactobacillus spp. strains showed that 

growth was stimulated in the presence of Tween 80 (Endo et al., 2006). Cell banks 

prepared with 15% v/v DMSO showed the longest lag phase (~ 8.5 h) indicating that 

DMSO is not as efficient at protecting cells during freezing when compared with the 

other cryoprotective compounds, or had some alternative deleterious effect. The 

‘beneficial’ cryoprotective effects of DMSO were discovered early in the science of 

cryopreservation and it has since become a popular cryoprotective agent (Lovelock et 

al., 1959). It is claimed that DMSO protects cells by entering the cytoplasmic 

membrane and directly interacting with the lipid bilayer.  Indeed, DMSO has been 

shown to increase membrane fluidity which is consistent with positive cryoprotective 
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effects (Gurtovenko et al., 2007). These benefits would not seem to have been 

reproduced here. Interestingly, the cell banks prepared with 20 % v/v glycerol and 

25% v/v glycerol show similar lag phase lengths when compared with cell banks 

prepared with no additional cryoprotectant ( ~ 4 h). Glycerol was also an early 

development in the science of cryopreservation and since then has been used widely 

to protect cells during freezing (Polge et al., 1949). As a small poly hydroxylated 

molecule glycerol can enter cells and hydrogen bond to water molecules (Fuller, 

2004) preventing ice crystal formation.  It is also less toxic to cells than DMSO 

(Simione, 1998). These results suggest that the addition of glycerol to the yeast malt 

extract medium surrounding the cells has little effect. This may be because yeast and 

malt extract themselves are known to be good cryoprotectants for lactic acid bacteria 

and are often included in freezing protocols (Hubálek, 2003; Johannsen 1972). The 

medium used for these experiments also contained polypropylene glycol 2025 (as an 

antifoam) which may have helped to protect the cells as both propylene glycol and 

ethylene glycol have been shown to work as effective cryopreservants (Hubálek, 

2003). Surprisingly, the degree of cell death during the freezing process as measured 

by PI positive staining did not correlate well with length of lag phase. For example 

15% v/v DMSO had the same degree of cell death (~47%) post thaw, as 2% v/v 

glycerol although it took longer for the culture to recover (Figure 5). Indeed there was 

a considerable proportion of cells (~40%) having depolarised cytoplasmic membranes 

(i.e. DiBAC4(3) positive) 2 hrs after incubation in the growth medium. This was not 

observed in any other case but is consistent with a longer lag phase in the case of 15% 

v/v DMSO. Further, 20% v/v Tween 80 had a higher degree of cell death (~ 20% post 

thaw) than 25% v/v glycerol (~13% DiBAC4(3)) with the degree of death in cell 

banks with no cryopreservant being ~38%. In all cases the viable population outgrew 
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the dead cell population and the cells were all viable when the culture reached an 

OD600nm of 1.0 although the length of time to get there was different in each case.  It is 

clear therefore that there isn’t a simple correlation between cell viability post thaw 

and length of lag phase; the freezing effects are more complicated than that. 

 

When each of the shake flask cultures derived from the different cryopreserved stocks 

reached an OD600nm of 1.0 they were used to inoculate 5L fed batch fermentations to 

determine if the method of cryopreservation affected fermentation process 

performance as indicated by yield of α-amylase (Figure 3). In all cases no difference 

was seen in terms of overall growth characteristics (max DCW ~ 27 g L-1 at 17 h), cell 

physiological state or concentration of α-amylase (max ~106 μKat L-1 at 50 h) when 

using inocula derived from each of the different cell banks and with or without the 

overnight incubation step on yeast extract malt extract agar (Figures 4 and 5, not all 

data shown). It is clear therefore that in this case inoculum pre-history had no bearing 

on final process outcome, despite the use of the same number of propagation steps as 

exploited at the larger scale.  However, it is recognised that this may not always be so. 

B. licheniformis SJ4628 as an industrial production strain is extremely robust in 

nature and the AmyE gene which encodes for the α-amylase protein is located on the 

chromosome of the organism rather than on a plasmid. So plasmid instability, which 

may be affected by cryopreservation, was not an issue here. Other commercially 

important systems which use plasmid technology may be more sensitive to 

cryopreservation technique so the results presented here should be used cautiously.  
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CONCLUSIONS 

It is not unreasonable to conclude that any of the cryopreservation techniques 

described here could be used for productive industrial fermentations of B. 

licheniformis SJ4628 and probably other Bacillus spp. too. It is also recognised that 

there will be little motivation to introduce a new cryopreservation protocol if the 

existing protocol is adequate, especially since this work has demonstrated that it is 

unlikely that poor cryopreservation is responsible for poor working cell banks which 

do not have the same process performance as the key strain. So, provided the 

inoculum is grown up to the same OD and percentage viability, the subsequent 

production process ought to be robust. It is therefore more likely that the 

physiological condition or history of the organisms prior to preservation is responsible 

for the incidence of poor working cell banks. However, if difficulties are being 

experienced with a particular cryopreservation protocol then Tween 80 may be worth 

consideration, as it not only protects the cells during freezing but also helps them to 

recover post thaw resulting in shorter process times. 

 

NOMENCLATURE 

F feed rate (Lh-1) 

S substrate concentration in the feed solution (gL-1) 

µ desired specific growth rate (h-1) 

Yxs maximum biomass yield with a limiting substrate (g/g) 

X0 initial amount of cells at the start of feeding (g) 

m maintenance coefficient (gg-1h-1) 

t  time after feeding commences (h) 
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Figure 1. OD600nm profile for Bacillus licheniformis SJ4628 during shake flask 

fermentations post thaw following cryopreservation with either 20% v/v glycerol, 

25% v/v  glycerol, 15% v/v DMSO, 20% v/v Tween 80 or no cryopreservant as a 

negative control. Error bars represent the range of data collected from three replicates. 

 

Figure 2. Flow cytometric analysis of Bacillus licheniformis SJ4628 stained with 

DiBAC4(3)/PI taken at 0 h (i) and 2 h (ii) during shake flask fermentations post thaw 

following cryopreservation with: (a) 20% v/v glycerol and (b) 25% v/v glycerol. Up 

to four subpopulations can be identified, these correspond to cells with an intact 

polarised cytoplasmic membrane, not stained (A), cells with an intact depolarised 

cytoplasmic membrane, stained with DiBAC4(3) (B), cells with a permeablised 

depolarised cytoplasmic membrane stained with PI/ DiBAC4(3)/and(C)/or PI only 

(D).  

 

Figure 3. Flow cytometric analysis of Bacillus licheniformis SJ4628 stained with 

DiBAC4(3)/PI taken at 0 h (i) and 2 h (ii) during shake flask fermentations in yeast 

malt broth following cryopreservation with different treatments: (a) 15% v/v DMSO, 

(b) 20% v/v Tween 80 and (c) no cryopreservant as a negative control. Sub-

populations can be identified as in Figure 2. 

 

Figure 4. (a) DCW (gL-1) and (b) alpha-amylase activity (µKatL-1) profiles for 

Bacillus licheniformis SJ4628 5L  fed-batch fermentations post thaw, with the 16 hrs 

overnight incubation step, following cryopreservation with 20% v/v glycerol, 25% v/v  

glycerol, 15% v/v DMSO, 20% v/v Tween 80 and no cryopreservant as a negative 

control. Error bars represent the range of data collected from two replicates. 
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Figure 5. Flow cytometric analysis of Bacillus licheniformis SJ4628 stained with 

DiBAC4(3)PI taken at 0 h (i), 3 h (ii) and 4 h (iii) during fed-batch 5L fermentations 

post thaw after the 16 hrs overnight incubation step following cryopreservation with 

20% v/v glycerol. Sub-populations can be identified as in Figure 2. 

 


