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Abstract 
 Computer simulations of the evaporation of sessile droplets are carried 
out in a self consistent way by considering an interconnected problem of 
vapour transfer, heat transfer in vapour, liquid and solid substrate, and 
Marangoni convection inside the liquid droplet. The influence of thermal 
conductivity of the solid support on the evaporation process is evaluated. It is 
shown that the lower the thermal conductivity of the solid substrate the higher 
is the deviation from the isothermal case. However, if the mean temperature 
of the droplet surface is used instead of the temperature of the surrounding air 
for the vapour concentration on the droplet surface then the calculated 
dependences coincide with those calculated for the isothermal case. 
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1. Introduction 
 Understanding the evaporation of droplets is essential for processes 
like painting, coating, ink-jet printing, premixing of fuel with oxygen in air [1], 
particle deposition applications (formation of ring-like spots on the substrate 
during droplets evaporation), DNA chip manufacturing [2], etc. The 
measurements of evaporation rate of droplets on different solid surfaces can 
be used for production of materials providing optimal regime of work in air 
conditioners, dryers and cooling systems [3]. On the other hand the 
investigation of evaporating droplets can reveal the influence of Derjaguin 
pressure in a vicinity of the apparent three-phase contact line [4] as well as 
the effect of latent heat of vaporization and Marangoni convection [5] on 
evaporation process.  
 Evaporation starts after the deposition of a liquid droplet on a solid 
substrate in a non-saturated vapour atmosphere. In the presence of contact 
angle hysteresis the latter process occurs in three steps [6, 7]. During the first 
step evaporation proceeds with a constant radius of the droplet base, L, and 
decreasing contact angle, θ, until the contact angle reaches the static 
receding value, θr. The second stage of evaporation develops at constant 
contact angle, θr, and decreasing radius of the droplet base, L. During the 
third stage both the radius of the droplet base, L, and the contact angle, θ, 
decrease until the droplet disappears. The first stage is usually the longest 
one and lasts until the contact angle reaches, θr. The third stage is the 
shortest one and the most difficult for experimental investigation. 
 R.D. Deegan et al [8, 9] studied the distribution of vapour flux density 
over the spherical cap of a sessile droplet neglecting the latent heat of 
vaporization and the thermocapillary flow inside the droplet. Their solution for 
droplets with contact angles θ < 90° shows an increased vapour flux in the 
vicinity of the three-phase contact line. Such distribution of the flux over the 
droplet surface, according to the authors, generates flow inside the droplet, 
which transports suspended solid particles to the edge of the droplet thus 
leading to a ring-like stain formation. 
 A.M. Cazabat et al [10] showed that the vapour flux density over the 
droplet is inversely proportional to the radius of the droplet base. As a 
consequence the integration of flux density over the whole droplet surface 
gives a total vapour flux proportional to the radius of the droplet base. 
 Theoretical and computer simulation studies [5, 11–15] give the 
following equation for the evaporation rate of a sessile droplet: 

 ( ) ( )( ) ( )LθFTHcTcDM
t
V

surf ∞−−=
ρ

π2
d
d

, (1) 

where V is the droplet volume, t is time, D, ρ, and M are vapour diffusivity in 
air, density of the liquid and the molar mass, respectively; H is humidity of the 
ambient air, Tsurf is the temperature of the droplet-air interface and T∞ is the 
temperature of the ambient air, c(Tsurf) and c(T∞) are the molar concentrations 
of saturated vapour at the corresponding temperature; ( )θF  is a function of 

the contact angle, θ, with value 1 at 2
π=θ . Eq. (1) was obtained for a model 

of evaporation which takes into account diffusion only of the vapour in the 
surrounding air and ignores the temperature distribution along the droplet-air 
interface. In the case of θ independent of L (second stage of evaporation) Eq. 



(1) gives an evaporation rate directly proportional to the radius of the droplet 
base, L. 
 Investigations of evaporation of droplets with contact angles θ < 120° 
were performed by F. Girard et al [5, 12–15] and H. Hu and R.G. Larson [16–
18]. The former investigated the influence of substrate heating [14–15], air 
humidity [14] and Marangoni convection [5]. They concluded that the 
contribution of Marangoni convection to the total vapour flux is negligible, 
whereas heating the substrate is significant. The other authors investigated 
the process of particle deposition and ring-like stain formation during droplet 
evaporation. 
 In all mentioned publications either only vapour diffusion was taken into 
account and both the latent heat of vaporization and Marangoni convection 
were ignored, or a special form of the vapour flux was postulated and, based 
on that, other phenomena were investigated. 
 There we investigate the evaporation process in a self consistent way: 
we study the interconnected problem of vapour transfer, heat transfer in 
vapour, liquid and solid substrate, and Marangoni convection inside the liquid 
droplet. 
 
2. Mathematical modelling and approximations 
 The system under consideration is a pinned sessile droplet of a liquid 
on a solid substrate open to ambient air. To simplify the problem is taken 
axisymmetric with a cylindrical system of coordinates r and z (Fig. 1). To 
further simplify we focus attention on relatively small droplets, that is, L << a, 

where 
g

a
ρ
γ

=  is the capillary 

length, γ is the liquid-air interfacial 
tension, ρ the liquid density and g 
is the gravitational acceleration. 
Hence, in our case here, the 
static Bond number, Bo, is very 

small: 
γ

ρ 2

Bo gL
= <<1. For 

aqueous droplets: ρ = 103 kg/m3, 
m/N 073.0=γ , m 001.0=L , 

2m/s 10≈g  and 11.0Bo <<≈ . 
Thus the droplet is a spherical segment or better a semicircle cross-section 
with a fixed contact angle, θ. 
 The local evaporation rate is limited by the diffusion rate to the ambient 
air in the vicinity of the evaporating surface and by the transfer rate of 
molecules from the liquid phase to the gaseous phase [13]. The time scale 
required for a molecule to move from the liquid to the gaseous phase, trt , can 
be estimated as vl / , where l is the width of the transition zone between the 
phases, and v  is the mean square velocity of molecules. If we estimate the 
width of the transition zone, l, between two phases equal to several mean free 
molecular paths, then s10~ 10−

trt . The time scale required for diffusion, dift , of 

a molecule over the distance L is s10~/ 22 −= DLtdif , where D is the molecular 

Fig. 1. Evaporating droplets. 
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diffusion coefficient. As diftr tt <<  the process of transition of molecules across 
the interface is much faster than the vapour diffusion. Hence, the evaporation 
process is governed by diffusion in the ambient air. On the other hand, the 
time scale of molecular diffusion, dift , is much smaller than the characteristic 
time scale of droplet evaporation, evapt , which is usually about 102 s [19]. 
Consequently, the diffusion process can be considered as a quasi-steady 
process. 
 The characteristic time scales of heat, theat, and momentum, tmom, 
transfer processes inside the droplet are approximately 

evapheat t.Lt ⋅= 10~s 10~/2 κ , where κ  is the thermal diffusivity of water and 

L=10–3 m as above, evapmom t.Lt ⋅= 010~s 1~/2 ηρ , where η  is the dynamic 
(shear) viscosity of water. Those characteristic time scales, theat and tmom, are 
smaller than the droplet evaporation time at least by one order of magnitude. 
For this reason all those processes are taken as steady state processes.  
 Convection in air is neglected, because the experiments [19] did not 
reveal any difference in evaporation regimes with and without forced 
convection in the ambient air. Such assumption is justified below. 
 
2.1. Evolution equations 
 Let us start considering the particular case of contact angle 2/πθ = . In 
this case we can solve the problem of evaporation of a spherical droplet in 
three dimensions and a half of the droplet gives a solution for a droplet on a 
solid substrate with a zero flux through the solid because of symmetry (Fig. 2) 
and contact angle 2/πθ = . In this case the equation, which governs the 

evaporation, is: 01 2
2 =
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rr
, with boundary conditions: 

( ) ∞=∞= ccTcLc surfsat )(,)( , where ( )surfsat Tc  is the concentration of the 
saturated vapour on the droplet surface and we neglect the deviation of the 
latter from the actual one (according to the Kelvin’s equation [20]). c∞ denotes 
a value in the ambient air far away from the droplet. The solution of the latter 

equation with its boundary conditions is ( )( )
r
LcTccrc surfsat ∞∞ −+=)( . The 

local normal vapour flux from the droplet surface is 

 ( )( )
L

cTcDTLj surfsatsurf

1),(2 ∞−=π . (2) 

The latter equation shows that the local flux is constant along the surface and 
inversely proportional to L. The total flux through the surface of the droplet 
with contact angle 2/πθ =  (half of the droplet in Fig. 2) is 
 ( ) ( )( )LcTcDTLJ surfsatsurf ∞−= ππ 2,2 , (3) 
that is proportional to the radius of the droplet (not to the area of its surface) in 
spite of the invariance of the local normal flux ( )surfTLj ,2π  with respect to the 
position at the surface. This analytical solution, obtained for 2/πθ = , is used 
to validate the computer simulations below. 
 Let us show that there is inverse proportionality of the local flux to L 
similar to (2) and the proportionality of the total flux to L similar to (3) remains 



valid in the general case of an arbitrary contact angle and has nothing to do 
with flux distribution over the droplet surface.  
 Under steady state conditions the distribution of vapour concentration 
in the ambient air, c(z, r) is described by 
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The local normal flux, j, on the surface of the droplet  
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where α is the angle shown in Fig. 1. Let us introduce dimensionless variables 
using the same symbols as the original dimensional ones but with an over-
bar: LhhcccLrrLzz /,/,/,/ ==== ∞ , then  
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Hence, according to Eqs. (5) and (6), the 

local flux is 
L

j 1~  and the total flux is LJ ~ . 

The latter property does not depend on the 
increase or decrease of the vapour flux in a 
vicinity of the three-phase contact line. 
 
 Now let us estimate the influence of 
air convection on the evaporation process. 
The air velocity will have both tangential 
(caused by no-slip boundary condition at 
the liquid-air interface) and normal (due to 
evaporation components at the droplet surface). Consequently, the tangential 
component depends on the thermal Marangoni convection in the droplet (~10–

3 m/s according to computer simulations), and the normal component is 
defined by the local evaporation rate j:  

aa
an

Mjj
u

ρρ
ρ ≈=, , 

where un,a is the normal air velocity at the droplet surface, jρ is the normal local 
mass flux due to evaporation, ρa is the density of air, j is the normal local 
molar flux of vapour, M is the molar mass of vapour. For the case of contact 
angle 2/πθ = , humidity H = 70%, droplet base radius L = 10–3 m and surface 

Fig. 2. Evaporating spherical 
droplet. 
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temperature Tsurf = 293 K we can estimate the local vapour flux jπ/2 using Eq. 
(2). The result is un,a ~ 10–4 m/s. Hence, the characteristic convection velocity of 
air ua = 10–3 m/s. Using that characteristic velocity, characteristic droplet size 
L = 10–3 m, as well as the vapour diffusion coefficient D = 2.4⋅10–5 m2/s and the 
thermal diffusivity of air κ = 2.0⋅10–5 m2/s, we can calculate the thermal, Peκ, and 
the diffusive, PeD, Peclet numbers: Peκ = Lu/κ = 0.05; PeD = Lu/D ≈ 0.04. Such 
low values of Peclet numbers mean that the convective fluxes of heat and 
mass are negligible in comparison with diffusive ones. 
 From the above estimations we can conclude that air convection can 
be neglected. A numerical experiment was conducted to cross-check it by 
considering evaporation of a sessile droplet with air convection and without it. 
The result shows that the change of temperature at the droplet apex (minimal 
temperature in the system) is very small: 

01.0<
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−

∞ apex

apex
conv

apex

TT
TT

, 

where conv
apexT  and apexT  are the temperature of the droplet apex with and without 

air convection, respectively, ∞T  is the ambient temperature far away from the 
droplet. 
 
 The following equations are solved numerically during the simulation of 
the steady state process of droplet evaporation: 
1) Eq. (4) describing vapour diffusion in the ambient air; 
2) The Navier-Stokes equations together with the continuity equation in the 
liquid bulk: 
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where u and v are radial and vertical components of the velocity vector, 
respectively, p is the pressure, and η  is the dynamic (shear) viscosity; 
3) The heat transfer Fourier equation in all three phases (solid support, liquid 
droplet, and the ambient air): 
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where T is the temperature, κ  is the thermal diffusivity of the corresponding 
phase. Note that u = v = 0 inside vapour and solid phases. 
 
2.2. Boundary conditions 
 At the liquid-solid boundary no-penetration and no-slip boundary 
conditions are used for Navier-Stokes equations:  
 0=u , 0=v ;   
and continuity conditions for the temperature and heat fluxes:  
 sl TT = ,  (10) 



 ( ) ( ) slssslll nTknTk ,,

⋅∇−=⋅∇− ,  (11) 

where subscripts l and s refer to liquid and solid phase, respectively, k is the 
thermal conductivity, T∇  is the temperature gradient, sln ,

  is the unit normal 
vector, to the liquid-solid interface.  
 At the air-solid boundary the no-penetration condition is used for the 
diffusion equation:  
 0, =⋅ sanj 

,  (12) 
where the subscript a means air phase, san ,

  is the unit vector, normal to the 
air-solid interface; continuity for the temperature and the heat fluxes is 
assumed: 
  sa TT = , (13) 
  ( ) ( ) sasssaaa nTknTk ,,


⋅∇−=⋅∇− .  (14) 

Symmetry demands: 
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At the outer boundaries of the system the following conditions are applied:  
 ∞=∞ cc )( ,  ∞=∞ TT )( .  (16) 
 Under steady state conditions the velocity component normal to the 
liquid-air boundary is zero: 
  0, =⋅ alnu  ,  (17) 
where aln ,

  is the unit normal vector to the liquid-air interface. 
 The thermal Marangoni stress condition is used at the liquid-air 
interface:  
 TnKn surfTalal ∇′+−=⋅ γγ ,,

τ ,  (18) 
where τ  is the full stress tensor, γ  is the liquid-air interfacial tension, K  is 
the curvature of the liquid-air interface (positive for a droplet), Tγ ′  is the 

derivative of γ  with temperature, lasurf s
z
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r
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surface gradient of the temperature, las ,
  is the unit tangent vector at the liquid-

air interface.  
 The concentration of saturated vapour, csat, at the droplet surface is 
defined by the local temperature according to the Clausius-Clapeyron 
equation and the ideal gas law: 
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 RTcp satsat = ,  (20) 
where psat is the pressure of saturated vapour at temperature T, psat∞ is the 
pressure of saturated vapour at temperature T∞, Λ  is the latent heat of 
vaporization of the liquid and R is the universal gas constant. The value of csat 
is noticeably affected by the curvature of the droplet surface according to the 
Kelvin’s equation only at a relatively small size of the droplet: the change 
constitutes more than 1% if the droplet size is less than 10–7 m. The latter is 
four orders magnitude smaller than that of the droplet sizes under 



consideration. Therefore the influence of curvature on the concentration of 
saturated vapour is neglected below. 
 The temperature at the liquid-air interface is continuous: 
 al TT = .  (21) 
However the heat flux experiences discontinuity because of the latent heat of 
vaporization: 
 ( ) ( ) Λ⋅=⋅∇−⋅∇ jnTknTk alllalaa ,,

 . (22) 
 
2.3. Numerical simulations 
 The solution of the steady state problem described above was 
performed using the commercial software COMSOL Multiphysics v 3.5a. The 
numerical technique used by that software is the Finite Element Method 
(FEM). The shape functions, chosen for the simulation, are Lagrange 
quadratic shape functions.  
 The shape of the air domain is chosen to be a hemisphere above the 
droplet with boundary conditions at its outer boundary Eq. (16). The radius of 
this hemisphere is chosen to be one hundred times bigger than the droplet 
base radius L. This choice prevents numerical artefacts caused by the 
proximity of the outer boundary [14], and provides a good approximation (less 
than 1% error bar) for the problem of droplet evaporation into a semi-infinite 
space.  
 The mesh generated consists of triangular elements, whose size is 
changing gradually from the smallest value at the droplet edge to the biggest 
one at the outer boundary of the air domain.  
 The evaporation flux and viscous stress both diverge to infinity at the 
droplet edge (for 2πθ ≠ ), which is due to the incompatibility of the boundary 
conditions at the liquid-air interface and those of the liquid-substrate and gas-
substrate interfaces. Therefore, to reduce the influence of singularities on the 
problem solution the size of mesh elements at the droplet edge is chosen to 
be one hundred times smaller than the droplet base radius, L. In all our 
computer simulations the liquid used is water and the solid substrate is made 
of copper if other materials are not mentioned. T∞=20ºC is used below. 
 
3. Results and discussion 
 Unlike lab experiments computer simulations allow to switch off and on 
any physical effects in the system under consideration. Initially we switch off 
both the Marangoni convection and the effect of latent heat of vaporization. It 
allows comparing our simulation results with earlier published results on 
evaporation of droplets.  
 
3.1. Local normal vapour flux over the droplet surface 
 The distribution of local normal vapour flux, j, over the droplet surface 
is shown in Fig. 3. It is done using a rescaled, normalised vapour flux 

( )∞TLjj ,2π , where ( )∞TLj ,2π  is the flux when 2/πθ =  and Tsurf = T∞ 
according to Eq. (2), when only diffusion of the vapour is taken into account. 
In Fig. 3 three different cases are presented: 1) evaporation with both the 
Marangoni convection (MC) and latent heat of vaporization (LHV) included; 2) 
evaporation with LHV included but without MC; 3) evaporation without both 
MC and LHV. The latter corresponds to the above mentioned analytical 



solution, ( )∞TLj ,2π , Eq. (2). The line with triangles (Fig. 3), gives the result, 
which coincides with the analytical solution (the straight line): 

( ) 1,2 =∞TLjj π  within the simulation error bar. 
 LHV reduces the 
local flux of evaporation, j, 
over the whole surface 
except at the droplet edge, 
where it increases (squares 
in Fig. 3). The latter is 
caused by a redistribution of 
vapour concentration over 
the surface according to the 
surface temperature. The 
temperature decrease over 
the whole droplet is caused 
by the heat consumption by 
the evaporation (Fig. 4). 
However, the lower is 
temperature the lower is the 
saturated vapour 
concentration, csat(Tsurf). The 
temperature at the droplet 
edge remains equal to the 

ambient temperature because of the proximity of highly heat conductive 
substrate (Fig. 4). A redistribution of the vapour concentration over the droplet 
surface causes a redistribution of vapour concentration in the ambient air. As 
a result there is up to 10% decrease of j over the droplet surface (due to 
temperature decrease), and up to 30% increase of j at the droplet edge (due 
to constant temperature and vapour concentration redistribution), as 
illustrated in Fig. 3. 

 

r / L 

T – T∞, K 

Fig. 4. Calculated temperature distributions 
over the droplet surface: θ = π/2, L = 1 mm. 
T∞ is the ambient temperature. Circles - MC 
and LHV are taken into account; squares - 
LHV is included, but MC is excluded; 
triangles - both MC and LHV are excluded. 

Fig. 5. Calculated distributions of local 
normal vapour flux, j, over the droplet 
surface, L = 1 mm, both LHV and MC are 
taken into account. Circles - θ = π/2;  
squares - θ = 2π/3; triangles - θ = 2π/9. 

r / L 

j / jπ / 2(L,T∞) 

Fig. 3. Calculated distributions of local normal vapour 
flux, j, over the droplet surface, θ = π/2, L = 1 mm. 
Circles - both Marangoni convection (MC) and latent 
heat of vaporization (LHV) are taken into account; 
squares - LHV is included, but MC is excluded; 
triangles - both MC and LHV are excluded. The 
insertion represents the shaded rectangle with a 
changed scale. 

j / jπ / 2(L,T∞) 

r / L 



 Inclusion of Marangoni convection inside the droplet (Fig. 6) provides a 
convective heat flux in addition to the conductive flux. The flow along the 
surface from the edge of the droplet, where the temperature is higher, to the 
apex increases the temperature at the droplet surface. However, the 
convective heat flux from the droplet apex down to the substrate decreases 
the temperature of the apex. Such temperature change (Fig. 4) results in a 
corresponding vapour concentration change and, as a consequence, the local 
vapour flux changes (Fig. 3). 
 The distribution of the local vapour flux, j, is affected by the contact 
angle θ (Fig. 5). When 2/πθ < , the local flux increases towards the three-
phase contact line. However, if 2/πθ > , the situation is the opposite. These 
results are in a qualitative agreement with the result of Deegan et al [9], who 
calculated the vapour flux taking into account the vapour diffusion only in an 
isothermal case. 

 
 To check the validity of the above given relationship for the local 
vapour flux, j~1/L, Eq. (5), the ratio of fluxes japex/jπ /2(L,T∞) was plotted against 
the inverse value of L (Fig. 7) for the case θ = π/2. Equation (5) is valid 
according to Fig. 7 only when the Marangoni convection is neglected: the 
presence of the Marangoni convection makes non-linear this dependence 
(circles in Fig. 7). 
 
3.2. Total vapour flux from the droplet surface 
 Let us now study the dependence of the total vapour flux, J, on the 
radius of the droplet base, L, and the contact angle, θ (Fig. 8). It appears that 
J increases nonlinearly with contact angle. All calculations were performed 
with both LHV and MC included. The results (Fig. 8) were obtained for 
substrates made of different materials and compared to those calculated for 
the isothermal case by H. Hu and R.G. Larson [16] and F. Schonfeld et al 
[21]. In the case of highly heat conductive solid support (copper) the 
difference between the present simulations and the results from [16, 21] for 
isothermal case do not exceed 3%. The latter is because of a small 

Fig. 6. Velocity field inside the 
droplet with θ = π/2 and L = 1 mm. 
Both LHV and MC are taken into 
account. 
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L Fig. 7. Calculated dependences of a local 
vapour flux at the droplet apex, japex, on 
radius of the droplet base, L; θ = π/2. 
Circles - MC and LHV are taken into 
account; squares - LHV is included, but 
MC is excluded; triangles - both MC and 
LHV are excluded. 
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temperature change at the droplet surface, which is close to isothermal 
conditions (Fig. 4). However, if other materials are used with lower heat 
conductivity (down to the heat conductivity of air), then the evaporation flux is 
substantially reduced (Fig. 8). Such flux reduction is connected to the 
noticeable temperature reduction of the droplet surface.  
 Let us now introduce the mean temperature of the droplet surface: 

∫=
S

av TdS
S

T 1 , where S is the droplet surface area. We have plotted the 

dimensionless total flux J/Jπ /2(L,Tav), (Fig. 9). All calculated total fluxes for all 
substrates are on one universal dependence of total vapour flux, J, versus 
contact angle, θ. Accordingly, the variation of the surface temperature is the 
major phenomenon influencing the evaporation rate.  

 
 Let us check if the singularity at the droplet edge affects the 
dependence, presented in Fig. 9. The following procedure was adopted: the 
singularity region (close to the three-phase contact line) was excluded from 
the integration of the local vapour flux, j. That is the integration was performed 
over the part of the surface corresponding to the following range of radial 
coordinate values: Lr 95.00 <≤ ; after that the total vapour fluxes J and 
Jπ /2(L,Tav) were calculated by integration over a truncated area of the droplet. 
As a result a deviation from the dependence, presented in Fig. 9 was found to 
be not more than 2%. That means that the influence of the singularity in the 
present simulations is negligible. 
 The total vapour flux, J, varies linearly with L only in the case of 
absence of Marangoni convection. That can be seen from Fig. 10, where the 
triangles show the ratio J(L)/Jπ /2(L,T∞) to be constant for the isothermal model 
while the squares illustrate the constancy for the model with LHV and without 
MC. The difference between these two is only quantitative: the total 
evaporation rate is smaller, if LHV is included into the model.  
 The addition of Marangoni convection changes the character of the 
above dependence. It becomes non-linear (circles in Fig. 10). For any value of 
L the evaporation is enhanced if Marangoni convection is included. This 
evaporation enhancement is due to surface temperature increase (Fig. 4). 
 As the size of the droplet decreases, the total evaporation flux, J, tends 
to the value attained without Marangoni convection. To understand such 

Fig. 8. Rescaled dependence of the total 
vapour flux from the droplet surface, J, on 
contact angle θ, L = 1 mm. Both LHV and 
MC are taken into account. 

θ, rad 

J/Jπ /2(L,T∞) 
(θ < π/2)[16] 

 [21] 

θ, rad 

J/Jπ /2(L,Tav) 
(θ < π/2)[16] 

 [21] 

Fig. 9. Rescaled dependence of the total 
vapour flux from the droplet surface, J, on 
contact angle θ, L = 1 mm. Both LHV and 
MC are taken into account. 



behaviour let us compare the two types of heat transfer in the system: 
conductive and convective. 
 In the first approximation, when convection is absent, the conductive 
heat flux from the substrate to the droplet surface is spent on evaporation 
(see Eq. (22)). If the heat flux to air is neglected, then we get from Eq. (22) 

( ) Λ⋅=⋅∇− jnTk alll ,
 , that is 

l
apex

apex

k
j

L
TT Λ−∞ ~ , where Tapex is the temperature 

and japex is the local vapour flux at the droplet apex. According to (5) 
L

japex
1~ . 

Comparing the latter two equations we conclude that apexTT −∞ does not 
depend on the droplet size L. However, that latter is true only for the case of 
no MC (Fig. 11). 

 
 According to the Newton’s law of viscous flow, the velocity gradient in 
the droplet is proportional to the surface stress, Eq. (18): 

L
TT

L
uu apex

T
subsurf −

′
− ∞γ~ , where usurf is the velocity at the droplet surface, 

and usub = 0 is the velocity at the solid substrate. Consequently, 
apexsurf TTu −∞~ , which does not depend on the droplet size L. 

 Thus, in the first approximation the velocity inside the droplet is 
constant, leading to a constant convective heat flux. At the same time the 

conductive heat flux is proportional to the temperature gradient 
L
TT apex−∞ . 

Therefore as the droplet size decreases the conductive regime of heat 
transfer becomes dominant. As a result (Fig. 10) the reduction of the droplet 
base radius, L, changes the value of total vapour flux, J, to that corresponding 
to the regime of heat conduction only. 
 Evaporation of a droplet placed on a heated substrate reveals similar 
dependencies of the total vapour flux, J, on the contact angle, θ, as shown in 
Fig. 12. In this case the total vapour flux, J, is related to the theoretical value, 

L, mm 

Tapex – T∞, K 

Fig. 11. Dependence of the 
temperature at the apex of the droplet, 
Tapex, on the radius of the droplet base, 
L, at θ = π/2. Circles - MC and LHV are 
taken into account; squares - LHV is 
included, but MC is excluded; triangles 
- both MC and LHV are excluded. 

Fig. 10. Dependence of the total vapour 
flux from the droplet surface, J, on 
radius of the droplet base, L, at θ = π/2. 
Circles - MC and LHV are taken into 
account; Squares - LHV is included, but 
MC is excluded; Triangles - both MC 
and LHV are excluded from the model. 

L, mm 

J(L)/Jπ /2(L,T∞) 



Jπ/2, according to Eq. (3), at a surface temperature equal to the temperature of 
the heated substrate. As before the result in the case of a copper substrate is 
close to the theoretical curve because of the high heat conductivity of copper 
and, consequently, the small difference in the temperatures of the droplet 
surface and the heated substrate. But for poorly heat conductive materials the 
deviation from the isothermal curve is even bigger than that in case of 
absence of substrate heating (Fig. 8). 

 
 Fig. 13 shows the same simulation results as shown in Fig. 12, but 
comparing with the theoretical value (Eq. (3)), Jπ/2, calculated with the mean 
temperature of the droplet surface, Tav. It is clearly seen that all curves fall on 
one universal relationship. Thus, it can be concluded that the mean surface 
temperature of the droplet, Tav, is an important parameter to prescribe the 
evaporation rate together with droplet base radius, L, and contact angle, θ. 
 
4. Conclusions 
 The evaporation of sessile droplets has been investigated in a self 
consistent way by considering an interconnected problem of vapour transfer, 
heat transfer in vapour, liquid and solid support, and Marangoni convection 
inside the liquid droplet. The influence of thermal conductivity of the solid 
support on the evaporation process has been analyzed. The calculated total 
evaporation flux is compared with the result in the case of isothermal 
evaporation. It has been shown that the lower the thermal conductivity of the 
solid support the higher the deviations appear from the isothermal case. 
However, if the mean temperature of the droplet surface is used instead of the 
temperature of the surrounding air for the vapour concentration on the droplet 
surface then the calculated dependences coincide with those calculated for 
the isothermal case.  
 It has also been found that the latent heat of vaporization does not 
change the qualitative dependence of the total vapour flux, J, on the droplet 
size, L. The dependence remains linear: LJ ~ . The latent heat of 
vaporization affects only the distribution of the local flux over the droplet 
surface due to temperature changes and reduces the value of the total vapour 

θ, rad 

J/Jπ /2(L,Ts) 
(θ < π/2) T = const [16] 
T = const [21] 

Ts = T∞+5K 

Fig. 12. Dependence of total vapour flux 
from the droplet surface, J, on contact 
angle, θ, in the case of substrate heating, 
L = 1 mm. Both LHV and MC are taken into 
account. Normalized by Jπ /2(L,Ts). Ts is the 
temperature of the substrate far from the 
droplet. 

(θ < π/2) T = const [16] 
T = const [21] 
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J/Jπ /2(L,Tav) 

Ts = T∞+5K 

Fig. 13. Dependence of total vapour flux 
from the droplet surface, J, on contact 
angle, θ, in the case of substrate heating. 
L = 1 mm. Both LHV and MC are taken into 
account. Normalized by Jπ /2(L,Tav). Ts is 
the temperature of the substrate far from the 
droplet. 



flux, J. This effect however does not change the proportionality of the local 
normal vapour flux at the apex of the droplet to the inverse value of droplet 
size: Ljapex 1~ . 
 The presence of the thermal Marangoni convection inside the droplet 
makes all the dependences non-linear. Consequently, the proportionality of 
the rate of change of the droplet volume to the radius of the droplet base, L, is 
affected by the thermal Marangoni convection inside the droplets.  
 If we plot the rescaled dimensionless total flux J/Jπ /2(L,Tav), where avT  is 
the mean surface temperature, then all calculated total fluxes for substrates of 
different heat conductivity fall on one universal relationship between the total 
vapour flux, J, and the contact angle, θ. Accordingly, the variation of the 
surface temperature is the major element influencing the evaporation rate.  
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