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Abstract 

In the present study, the effect of Hydroxy Propyl Methyl Cellulose (HPMC) on the 

crystallization of ortho-aminobenzoic acid (OABA) was investigated by seeded and unseeded 

cooling crystallization experiments. The influence of HPMC on the induction time, crystal 

shape of Forms I and II of OABA and the polymorphic transformation time was studied. 

Furthermore, the capability of HPMC to inhibit growth of Form I was evaluated 

quantitatively and modelled using population balance equations (PBE) solved with the 

method of moments. The additive was found to strongly inhibit nucleation and growth of 

Form I as well as to increase the time for the polymorphic transformation from Form II to I. 

Solvent was also found to influence the shape of Form I crystals at equal concentrations of 

HPMC. In situ process analytical technology (PAT) tools, including Raman spectroscopy, 

focused beam reflectance measurement (FBRM) and attenuated total reflectance (ATR) UV-



Vis spectroscopy were used in combination with off-line techniques, such as optical 

microscopy, scanning electron microscopy (SEM), Raman spectroscopy, Malvern 

Mastersizer and differential scanning calorimetry (DSC) to study the crystals produced. The 

results illustrate how shape, size and stability of the two polymorphs of OABA can be 

controlled and tailored using a polymeric additive. 
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1. Introduction 

Impurities in a crystallizer can have an incredibly large effect on the properties of the crystals 

produced in term of size distribution, shape and aspect ratio, polymorphic form and purity. 

They can inhibit crystal growth and delay nucleation as well as induce the nucleation of a 

different polymorphic form. A common model to describe the rate of crystal growth in 

solution in the presence of impurities was proposed in the late nineties by Kubota and 

Mullin  [1] [4]. The equations are based on the pinning mechanism of Cabrera and Vermilyea 

for the inhibition of step advancement considering one-dimensional adsorption of the 

impurities on the step lines. The model has been successfully used to quantitatively describe 

the growth rate of organic and inorganic compounds in the presence of impurities  [4] [10]. 

While growth kinetic in the presence of impurities is a relatively well-understood 

phenomenon  [11]- [12] the effect on nucleation is still being studied  [13]- [15]. Impurities can 

induce nucleation of a different polymorphic form  [16]- [18] and have an effect on the time of 

polymorphic transformation  [19]. The nucleation of the stable polymorph can be strongly 

inhibited by the presence of the impurity allowing the formation and growth of a metastable 



form  [19]- [21]. Tailor-made and structurally related additives can promote nucleation of 

certain polymorphs because of structural similarities between them  [22] [23]. Additives can be 

absorbed on surfaces (templates) and induce heterogeneous nucleation of the target 

polymorph without the risk of incorporation in the crystal structure  [24] [29]. They can also 

delay nucleation  [30] and promote the formation of very small crystals  [31], sometimes in an 

amorphous form  [14]. More often, polymeric additives (HPMC, PEG, PVP, PAA etc.), most 

of which are commonly used as excipients, have been used to modify nucleation and growth 

rates of several drugs. The use of common excipients to control polymorphism, shape and 

size of crystals is particularly convenient as they do not need to be removed or washed away 

after filtration. Vetter et al. (2011) used the surfactant Pluronic F127 to slow down the growth 

of ibuprofen  [32]. Similar studies were conducted by Alonzo et al. (2012) and Oucherif et al. 

(2013) who analysed and modelled the growth and nucleation kinetics of felopidine in the 

presence of HPMC  [33],  [34]. The same research group also used HPMC to nucleate 

amorphous flutamide  [14] and several other polymeric additives to inhibit growth of ritonavir 

[35-37]. In some cases polymers can promote growth: in particular, it was found that a very 

small amount of ethylene dinitrotetraacetic acid disodium salt (EDTA) could accelerate the 

growth of potassium dihydrogen phosphate (KDP) crystals by forming molecular complexes 

with adventitious impurities in solution and eliminating their inhibiting effect  [38]. Recently, 

a mathematical description of the effect of one or more additive on the shape of KDP crystals 

was developed using population balance equations with the purpose of controlling the shape 

of the produced crystals  [6] [7]. 

This work constitutes a comprehensive study of the effect of the polymeric additive HPMC 

on the growth and nucleation mechanisms of two polymorphs of ortho-aminobenzoic acid. A 

combination of PAT tools and off-line solid state characterization techniques was used to 

understand the action of HPMC on the shape and size of the crystals of both Form I and II of 



the studied compound. The results of this study show how common excipients can be used to 

tailor morphology and polymorphism of organic compounds with significant impact on the 

manufacturing of pharmaceuticals in particular. 

 

2. Materials and methods 

Ortho-aminobenzoic acid (OABA) was purchased from Sigma-Aldrich (purity >98 %). 

Isopropyl alcohol (IPA 99.97 % grade, Fisher Scientific), and ultrapure water obtained via a 

Millipore ultra-pure water system were used as solvents. OABA has three known different 

polymorphic forms: (i) Form I is the stable form at room temperature, (ii) Form II is the most 

metastable at low temperature and it is usually obtained by cooling crystallization; it is 

enantiotropically related to Form I (transition temperature around 60 °C) and monotropically 

related to the more stable Form III; (iii) Form III it is usually very difficult to nucleate during 

cooling crystallization from solution, and is normally produced by sublimation or by 

polymorphic transformation of Form I at high temperatures. Forms I and III are 

enantiotropically related with a transition temperature around 50 °C  [39]- [41]. The solubility 

of Form I and II in water and 10% w/w IPA and pure water were measured with the 

Avantium Crystal16 which uses turbidity measurement to detect the dissolution and 

nucleation points of a solution during temperature cycling. The measured solubility of Form I 

in pure water is: 

𝑆𝑆𝐼𝐼,𝑤𝑤 = 5.11 ∙ 10−7𝑒𝑒0.031𝑇𝑇          (1) 

while the solubility of the same polymorph in 10% w/w IPA and water can be expressed as: 

𝑆𝑆𝐼𝐼,10%𝐼𝐼𝐼𝐼𝐼𝐼 = 7.70 ∙ 10−10𝑒𝑒0.053𝑇𝑇        (2) 

Form II solubility in pure water and water and 10% w/w IPA were measured as: 



𝑆𝑆𝐼𝐼𝐼𝐼,𝑤𝑤 = 9.08 ∙ 10−8𝑒𝑒0.037𝑇𝑇         (3) 

𝑆𝑆𝐼𝐼𝐼𝐼,10%𝐼𝐼𝐼𝐼𝐼𝐼 = 1.56 ∙ 10−9𝑒𝑒0.051𝑇𝑇        (4) 

where 𝑇𝑇 is the temperature expressed in K and 𝑆𝑆 is the solubility in g/g solvent.  

An RXN2 Hybrid Raman analyser with immersion probe and 785 nm laser (Kaiser with iC 

Raman 4.1 software) was used, together with a D600L Lasentec FBRM probe (with FBRM 

software V 6.7.0), an MSC651 Carl Zeiss UV spectrophotometer with Hellma ATR (type 

661.820-UV) probe (in-house LabView software). A 400 mL stirred and jacketed vessel 

fitted with a retreat curve impeller was used for the experiments. The temperature was 

controlled using a PT-100 temperature probe connected to a Huber Ministat 230 

thermoregulator. The data from the FBRM, ATR-UV/Vis and the Huber were transmitted in 

real-time to the CryPRINS software (Crystallization Process Informatics System). This 

allows real-time monitoring of the FBRM counts, ATR-UV/Vis signal and the temperature, 

as well as setting a temperature profile and performing supersaturation control. The 

schematic of the rig is shown in Figure 1. Off-line analysis of the nucleated crystals was 

performed using a DXR 780nm Raman microscope (Thermo Scientific equipped with 

OMNIC 8 software). 

 

3. Methodology 

3.1. Nucleation experiments for polymorphs I and II of OABA 

The aim of this set of experiments was to investigate the effect of HPMC on the kinetics of 

nucleation of OABA Forms I and II. In order to nucleate Form I, four aqueous solutions at 

0.0097 g OABA/g water (saturation temperature around 49 °C) were prepared and HMPC 

was then added to reach concentrations of 0, 5, 10, 15 ppm. The temperature was raised to 



50 °C, kept constant for 30-40 min and then decreased at a cooling rate of -1 °C/min to 10 °C, 

for each solution. The complete dissolution of the solids at high temperature as well as the 

nucleation temperature were detected by the FBRM, while the polymorphic outcome was 

identified by the online Raman, monitoring a peak at 770 cm-1 typical of Form II, and peaks 

at 1038 cm-1 and at 800 cm-1 for Form I. The whole temperature profile was repeated three 

times for each solution in order to check the consistency of the nucleation temperature 

detected. A 5 mL sample was taken after nucleation to confirm the polymorphic form 

nucleated off-line with the Raman microscope and DSC and to analyse the morphology of the 

crystals with an optical microscope. Further images were taken using a Hitachi TM3030 table 

top scanning electron microscope (SEM). Sputter coating consisted in 80% gold and 20% 

palladium and was realized applying 2.5 kV for about 2 min in an argon atmosphere. 

The analysis of the nucleation kinetics of Form II of OABA was carried out in solutions of 10% 

IPA and 90% water w/w at 0.0133 g/g solvent OABA concentration (corresponding to a 

saturation temperature of around 40 °C in respect to Form I). The amount of HPMC used was 

0, 3, 5, 10 and 15 ppm and a new solution was prepared for each concentration of the additive. 

The procedure used was identical to the one described in the previous section, samples were 

taken and analysed off-line. 

 

3.2. Transformation experiments 

The effect of several concentrations of HPMC on the kinetics of the polymorphic 

transformation from Form II to Form I of OABA was investigated with this set of 

experiments.  

Four solutions of 10% IPA and 90% water w/w at OABA concentration of 0.0133 g/g solvent 

were prepared (saturation temperature around 40 °C). HPMC was added in different 

concentrations: 0, 3, 5 and 10 ppm. After the solution was prepared, the temperature was 



raised to 50 °C and kept for 30-40 min to allow a complete dissolution of the solid. After that, 

the temperature was decreased to 20 °C with a -0.5 °C/min cooling rate allowing nucleation 

of OABA Form II, and then kept constant at 20 °C until complete transformation to Form I. 

Each transformation experiment was repeated at least twice using a new solution. The 

polymorphic transformation times were determined by tracking two specific Raman peaks 

corresponding to Forms I and II of OABA, respectively. Form I was associated to the 1038 

cm-1 peak while Form II to the 770 cm-1 peak. The height to zero of the peaks was monitored 

during the experiment. After nucleation, 5 mL samples were taken during the polymorphic 

transformation and at the end of the experiment. The solids were analysed off-line to check 

the morphology and confirm the polymorphic composition. 

 

3.3. Form I growth experiments 

Isothermal seeded growth experiments were performed in water at additive concentrations of 

0, 0.1, 0.75, 5 and 10 ppm. The seeds were obtained by cooling crystallization of OABA 

Form I in water (polymorphic outcome checked by off-line Raman analysis and DSC). 

Subsequently, metallic sieves were used to produce different size fractions; in particular, the 

size fraction chosen for these seeded growth experiments was 53-75 µm.  

The solutions were prepared adding solid OABA and HPMC to water in order to obtain a 

saturation temperature of 30 °C (around 0.0055 g OABA/g solvent). The temperature was 

raised and held at 40 °C for 20 min and then dropped to 20 °C. The seeds were added after 

the solution reached the temperature of 20 °C. The total amount of seeds was about 10% of 

the OABA concentration in solution in order to promote growth and avoid secondary 

nucleation. The seeds were left growing for about 15 hours after seeding. FBRM was used to 

check the complete dissolution of the solids in the supersaturated solution and the absence of 

secondary nucleation after seeding, while an ATR-UV/Vis probe was used to monitor the 



concentration of OABA in solution. Simple linear calibration functions (one for each 

different HPMC concentration) were determined using the height of the second derivative 

ATR-UV/Vis peak at 365 nm to measure the OABA solute concentration during the seeded 

experiments. At the end of each experiment, the solution was filtered and the crystals 

obtained were dried. A Malvern Mastersizer 2000 (with a Hydro 2000SM dispersant unit) 

allowed the determination of the crystal size distribution of both the seeds and the crystals at 

the end of the experiment. A saturated aqueous solution of OABA at ambient temperature 

was used as dispersant for the Mastersizer. 

The growth kinetic constants at 20 °C for each experiment at different HPMC concentrations 

were estimated using the data from the ATR-UV/Vis (solute concentration of OABA) and the 

initial crystal size distribution of the seeds measured with the Mastersizer.  

A population balance model (PBM) based parameter estimation approach was used to 

determine the kinetic parameters for the system. For a seeded experiment in a batch stirred 

reactor, neglecting secondary nucleation, agglomeration and breakage, the population balance 

equation (PBE) can be written as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝐺𝐺𝜕𝜕)
𝜕𝜕𝜕𝜕

= 0           (5) 

where 𝑓𝑓  is the average particle number density function, 𝑡𝑡  is time, 𝐿𝐿  is the particle 

characteristic length and 𝐺𝐺 is the growth rate which can be defined as: 

𝐺𝐺 = 𝐾𝐾𝑔𝑔(𝑆𝑆 − 1)𝑎𝑎           (6) 

where 𝐾𝐾𝑔𝑔 is the growth kinetic constant (function of the temperature), 𝑆𝑆 is the supersaturation 

level defined as the ratio between solute concentration and equilibrium concentration at the 

considered temperature, and 𝑎𝑎 is the order of the growth kinetics.  

In this work the method of moments was used to solve the PBE. Moments can be defined as a 

function of 𝑓𝑓 in the following way: 



µj(t) = ∫ Lj𝑓𝑓(L, t)dL∞
0           (7) 

Using the moments, equation (5) can be converted to a system of ordinary differential 

equations which can be easily solved. The first three moments (zeroth, first and second) were 

used for the parameter estimation: 

𝑑𝑑𝜇𝜇0
𝑑𝑑𝜕𝜕

= 0            (8) 

𝑑𝑑𝜇𝜇1
𝑑𝑑𝜕𝜕

= 𝐺𝐺𝜇𝜇0            (9) 

𝑑𝑑𝜇𝜇2
𝑑𝑑𝜕𝜕

= 2𝐺𝐺𝜇𝜇1            (10) 

The mass balance equation on OABA is written as: 

𝑑𝑑𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑𝜕𝜕

= −3𝑘𝑘𝑣𝑣𝜌𝜌𝑐𝑐𝐺𝐺𝜇𝜇2           (11) 

where 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙 is the solute concentration, 𝑘𝑘𝑣𝑣 is the shape factor (𝜋𝜋/6 for spherical particles) and 

𝜌𝜌𝑐𝑐 is the density of the crystals. 

The parameters 𝐾𝐾𝑔𝑔  and 𝑎𝑎  will be estimated iteratively for all performed experiments by 

minimizing the following objective function: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑂𝑂𝑡𝑡𝑂𝑂𝑓𝑓𝑓𝑓 = ∑�𝐶𝐶𝑠𝑠𝑙𝑙𝑠𝑠 − 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒�
2
        (12) 

The function ode15s in Matlab R2013a was used to solve the system of equations (8)-(11) 

and a combination of fminsearch and fmincom optimization factions was used to estimate 𝐾𝐾𝑔𝑔 

and 𝑎𝑎 by minimizing the objective function (12). 

 



4. Results and discussion 

4.1. Nucleation of Form I (water) 

A lower nucleation temperature was recorded with increasing concentration of HPMC as 

shown in Figure 2. The addition of 10 ppm of additive to the solvent generated a decrease in 

the nucleation temperature of more than 7 °C, which indicates that HPMC has an inhibitory 

effect on the nucleation of OABA Form I. It was also found that this additive can modify the 

shape of the crystals; therefore, it also inhibits growth of the stable polymorph. Figure 3 

shows SEM images of crystals of Form I nucleated at different concentrations of HPMC. The 

shape changes from large plates at 0 ppm of HPMC to long irregular needles at 15 ppm of 

additive. A further experiment was performed nucleating Form I from water at very high 

concentration of HPMC (around 50 ppm) in order to investigate the peculiar shape obtained 

at 15 ppm and study it in more detail using SEM. Images of the crystals obtained at 50 ppm 

are shown in Figure 4. The presence of several steps of which growth has been stopped by the 

additive is clearly visible. Since HPMC is characterized by long polymeric molecules with 

multiple functional groups, even in low concentration it can have a strong inhibitory effect on 

the growth of OABA. In fact, the same polymeric chain can form multiple hydrogen bonds 

with many OABA molecules on several surfaces of the crystals and inhibit further growth of 

those faces. The result of this type of inhibition is the production of irregular needles such as 

the ones shown in Figure 3d and Figure 4. 

 

4.2. Nucleation of form II (90% water and 10% IPA w/w) 

Similar nucleation experiments at several concentrations of HPMC were performed in 90 % 

water and 10 % IPA in order to study the effect of the additive on the kinetics of nucleation 

of the metastable Form II. Figure 5 shows the nucleation temperature of Form II at increasing 



concentration of HPMC. Dissimilarly to the case of Form I, nucleation of Form II does not 

seem to be affected by the presence of the additive; the nucleation temperatures do not 

change significantly with the addition of HPMC. However, the additive has clearly an effect 

on the growth of Form II crystals as shown in the SEM images in Figure 6. Form II nucleated 

from 10 % IPA and 90 % water w/w usually has a flat needle shape (see Figure 6a). With the 

addition of HPMC the edges of the crystals become more irregular with a similar effect that 

was noticed on Form I. 

 

4.3. Polymorphic transformation kinetics of Form II OABA crystals into Form I 

Although the nucleation temperature of Form II is not affected by the presence of HPMC in 

solution, a longer transformation time from Form II to I was observed. Table 1 shows the 

times of transformation from Form II to I in 10 % IPA and water solutions at several amounts 

of HPMC dissolved. The transformation was completed in around 400 minutes in the absence 

of HPMC, while it took at least three times longer with the addition of only 3 ppm of additive; 

during the longest experiment performed at this concentration the transformation was about 

seven times longer compared to 0 ppm of HPMC. The average transformation time at 3, 5 

and 10 ppm is very similar and a larger variability compared to the absence of HPMC can be 

noticed. While at 0 ppm the average transformation time was 364+51 minutes, with only 51 

minutes of standard deviation, for the experiments carried out at 3 ppm the average 

transformation time increases to 1789 min with a much larger standard deviation of 1110 

minutes. The average transformation time slightly increases at 5 and 10 ppm of HPMC while 

the standard deviation remains large, around 1100 min. 

Figure 7 shows the normalized trend of the Raman peak for Form II during the 

transformation experiments at several HPMC concentrations. The slower transformation time 

at higher HPMC concentrations is partly due to the inhibition effect that HPMC has on the 



nucleation and growth of Form I, as shown in the previous sections. Form I nucleates later 

and grows slower in the presence of HPMC and, therefore, generates a delay in the 

completion of the transformation from Form II to I. It is worth noticing that crystals of Form I 

obtained after complete transformation from Form II in 10 % IPA and water presents a 

considerably different shape compared to crystals of the same polymorph grown from water 

from both seeded and unseeded experiments. Figure 8 shows SEM pictures of Form I 

obtained after polymorphic transformation at different amounts of HPMC, indicating that 

these crystals present a three dimensional prismatic shape, which differs greatly from the flat 

irregular needles obtained from water. At 0 ppm of HPMC crystals of Form I are flat prisms 

less elongated compared to the ones obtained from water. As the amount of HPMC in 

solution increases, the width of the crystals increases as shown in Figure 8 (b and c). In 

conclusion, the shape of Form I crystals seems to be affected by both the presence of HPMC 

in solution but also by the combination solvent used and additive amount. 

 

4.4. Growth kinetics OABA Form I (water) 

A change in shape of the crystals of Form I in the presence of HPMC was observed in both 

water and 10% IPA and water, indicating that this additive has an effect on the growth 

kinetics of the stable polymorph. In order to quantitatively study this effect, further seeded 

isothermal experiments were conducted and a population balance model was used to estimate 

the growth kinetics of Form I at different amounts of HPMC in solution. Seeds of Form I 

crystals were added to supersaturated solutions at 20 °C and left to grow for about 15 hrs. 

After that time the suspension was filtered, the crystals dried and then measured with the 

Malvern Mastersizer. The final crystal size distributions (CSD) from the Malvern Mastersizer 

for each different amount of HPMC in solution are shown in Figure 9 a. The CSD of the 

seeds used for all the experiments is also shown in the figure for comparison. It can be 



noticed that for 0.75 and 5 ppm of HPMC the final CSD is very close to the one of the seeds 

indicating very small growth for those concentrations of additive (the distribution of the 

crystals obtained at 10 ppm is not shown since no significant difference was noticed in 

comparison to the initial seeds). The growth inhibition seems to be exponentially related to 

the amount of HPMC as shown by the trend of the volume mean diameter in Figure 9b. The 

same figure shows the standard deviation of the final crystal size distribution as a function of 

the concentration of HPMC in solution; an increase in this value, compared to the initial 

distribution of the seeds, can be observed for low concentrations of HPMC (0 and 0.1 ppm). 

This trend is typical of size dependent growth systems that can’t be described using the 

method of moments to solve the population balance equations  [42]. However, as shown in 

Figure 10, the simulated concentrations at different amounts of HPMC in solution follow 

reasonably well the experimental values, meaning that the model used, although very simple, 

is sufficient to represent the studied system, especially at high concentrations of additive. 

The FBRM probe was used during the growth experiments to ensure the absence of 

secondary nucleation, breakage and/or agglomeration. Figure 11 shows the trend of the total 

counts during the seeded experiments: after an initial sudden increase due to seeding the 

vessel the number of counts remained stable, indicating that significant agglomeration and 

secondary nucleation or breakage were not occurring.  

The kinetic constant and growth order at 20 °C for different amounts of HPMC in solution 

were estimated using the solute concentration data from the seeded desupersaturation 

experiments and the initial CSD of the seeds measured with the Malvern Mastersizer. The 

results of the parameter estimation are shown in Table 2 and Figure 10. The value of 𝐾𝐾𝑔𝑔 

decreases exponentially as the amount of HPMC increases. Additionally, also the order of the 

growth rate decreases with higher concentrations of additive.  



The simulated solute concentration profiles for the seeded, isothermal desupersaturation 

experiments at several HPMC concentrations are shown in Figure 12. The same initial 

conditions (solute concentration and seeds CSD) were used in the simulations for a better 

comparison of the effect of different amounts of additive. The solute concentration decreases 

slower and slower as the HPMC amount in solution increases as a result of the growth 

inhibition generated by the additive. 

5. Conclusions 

In the present work a complete study on the effect of HPMC on nucleation and growth of two 

polymorphs of OABA was conducted. It was found that the additive inhibits nucleation of 

Form I but not for Form II. Additionally, because of the nucleation inhibition for the stable 

Form I, also the transformation time from Form II to Form I was found to be longer in the 

presence of HPMC.  

Changes in shape for both Forms I and II were observed in the presence of the additive 

suggesting an inhibition of the growth rate for both polymorphs. It is worth noticing that the 

final shape of Form I strongly depended not only on the amount of HPMC in solution but 

also on the solvent used. Form I crystals grown from water presented a flat needle shape with 

edges that became more and more irregular as the amount of HPMC increased. Crystals of 

Form I grown from 10% IPA and water instead presented a flat prismatic shape in the 

absence of HPMC with increasing width as the additive was added to the solution. 

Seeded isothermal desupersaturation experiments were also performed in water in order to 

quantitatively estimate the growth kinetics of Form I at different amount of HPMC. It was 

found that the additive exponentially inhibit growth of Form I in the chosen solvent in good 

accordance with experimental data. 



This work shows the effectiveness of a polymeric additive in tailoring both the morphology 

and the polymorphism of an organic compound. Polymers can be used to modify shape and 

size of the crystals in order to improve the properties of the final drug as well as the 

downstream operations. The main advantages of this type of additives are their intrinsic 

safety (many are already used as excipients in pharmaceutical formulations) and the 

decreased likelihood of significant incorporation in the API crystal structure due to their large 

molecular size, thus having significant effect on morphology and polymorphism often 

without detectable effect on purity. 
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Table 1: Polymorphic transformation times of OABA from Form II to I in the presence of HPMC in solution. 

HPMC content 
(ppm) 

Transformation time (min) 

0 364±51 

3 1789±1110 

5 1871±1076 

10 1903±1141 

 

  



Table 2: Estimated growth kinetic parameters of OABA Form I crystals for the seeded desupersaturation 
experiments  

HPMC 

(ppm) 

ln(𝑲𝑲𝒈𝒈) 𝒂𝒂 𝑲𝑲𝒈𝒈 Objective function 

value 

0 -17.5 1.4 2.5E-08 5.45E-05 

0.1 -18.3 1.1 1.2E-08 2.31E-04 

0.75 -18.8 0.9 6.8E-09 1.27E-04 

5 -19.6 0.6 3.1E-09 4.43E-05 

10 -19.9 0.5 2.2E-09 1.14E-04 
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Figure 1: Schematic of the rig used for the experiments indicating the Crystallization Process Informatics System 

(CryPRINS) and composite PAT array. 
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Figure 2: Nucleation temperature of Form I in water as a function of the concentration of HPMC. 
  

10

12

14

16

18

20

22

24

0 5 10 15

Te
m

pe
ra

tu
re

 (°
C

) 

ppm HPMC 



 

 

  

(a) (b) 

(c) (d) 

Figure 3: SEM images of OABA Form I nucleated from water in the presence of different concentrations of HPMC 

(a) 0 ppm (b) 5 ppm (c) 10 ppm and (d) 15 ppm. 



 

 

  

Figure 4: SEM images of crystals of OABA Form I grown in water in the presence of 50 ppm of HPMC in 

solution. 



 

Figure 5: Nucleation temperatures of Form II in water as a function of the concentration of HPMC. 
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Figure 6: SEM images of OABA Form II nucleated in 10% IPA and water solvent and at three different 

concentrations of HPMC (a) 0 ppm (b) 3 ppm (c) 15 ppm. 
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Figure 7: Polymorphic transformation times as a function of the concentration of HPMC measured using Raman 

spectroscopy. 
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Figure 8: SEM images of Form I crystals obtained after complete transformation of OABA Form II nucleated in 10 % 

IPA and water solutions at different concentrations of HPMC (a) 0 ppm (b) 3 ppm and (c) 15 ppm. 
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Figure 9: (a) Final crystal size distribution of OABA form I crystals for seeded growth experiments at constant 

temperature and different HPMC concentrations; (b) Standard deviation and volume mean diameter D[4,3] of the 

distribution measured with the Malvern Mastersizer at different HPMC concentrations. 
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Figure 10: Experimental and simulated OABA solute concentration during the seeded growth experiments in the 

present of (a) 0 ppm (b) 0.1 ppm (c) 0.75 ppm (d) 5 ppm and (e) 10 ppm of HPMC dissolved in solution. 
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Figure 11: Total counts trends during the seeded growth experiments 
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Figure 12: Simulated concentration profiles for seeded desupersaturation experiments of OABA at different 

concentrations of HPMC. 
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