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Abstract 

Membrane Emulsification  was used to encapsulate yeast cells and form microparticles. W/O 

emulsions were produced using a Dispersion Cell; the aqueous phase consisted of 

gelatin/chitosan, or pure gelatin solution, containing yeast cells, the continuous phase was 2 

wt.% of SPAN 80 in kerosene. Varying the dispersed phase flux (from 70 to 350 L h
-1 

m
-2

) and 

the shear stress (from 17 to 1 Pa) applied on the membrane surface droplet sizes of between 60 to 

340 µm were produced, with a coefficient of variation of 17% under the best operating 

conditions. The liquid drops were loaded with increasing amount of yeast (3.14 x 10
7
to 3.14 x 

10
8
 cells/ mL). The stability and uniformity of the emulsions was independent of the cell 

concentration. PTFE coated hydrophobic membrane  produced smaller W/O drops compared to 

FAS coated membranes. The liquid polymeric droplets were solidified in solid particles using 

thermal gelation and/or ionic crosslinking, obtaining yeast encapsulated particles sized ~100 µm. 

The pH sensitive polymer, Eudragit S100, was used as a  coating to create  gastro resistant 

particles suitable for intestinal-colonic targeted release. Viability of the released yeast cells was 

demonstrated using fluorescence probes and checking cell glucose metabolism with time. 

Abbreviations 

W/O emulsion, water in oil emulsion; G, gelatin; CS, chitosan; SPAN 80, Sorbitan monooleate 

80; CV, Coefficient of Variation; Dav, median average drop diameter, SHMP, sodium hexameta-

phosphate; Tween 20, Polyethylene glycol sorbitan monolaurate; PTFE, Polytetrafluoroethylene; 

FAS, (Fluoro Alkyl Silane); ME, membrane emulsification; SPG membrane, Shirasu-porous-

glass membrane.  
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1. Introduction 

The encapsulation of living microorganisms as well as cells, for the purpose of a therapy, is a 

relatively recent and promising technique relevant to a broad range of sectors, from medicine to 

the food industry. The technology of cell encapsulation is applied as a method to deliver thera-

peutics in a desired rate and for longer period, by controlled or triggered release of an active in-

gredient. Unlike the encapsulation of proteins, encapsulated cells can be used to synthetize the 

therapeutic product, giving a physiological concentration of an active ingredient with time[1]. 

Furthermore, due to the in-situ manufacture of the active ingredient the risk of a toxic release of 

a therapeutic is avoided in the case of unexpected breaking of the encapsulated particles[1]. The 

immobilization of cells in particles is widely discussed in tissue engineering; the possibility to 

encapsulate non-human cells reduces the host’s immune system response, facilitating transplan-

tation as an alternative to the limited donor tissues available[1]. The technique of cell encapsula-

tion is being used for the production of “Bio artificial Pancreas”[2], immunobarrier for islet cells 

transplantation[2–4], and the encapsulation of stem cells [5,6]. Encapsulation of living cells was 

also suggested for the production of chemicals such as alcohol, organic acids, steroids, antibiot-

ics, vaccines[7]. In the brewing industry immobilized cells (yeast cells) are used to increase the 

productivity in fermentation and maturation[8,9]. Immobilized yeast are also reported for wine 

and cider production[2,10], giving an overall costs reduction[10]. The increase in productivity is 

a consequence of the continuous operations practicable with encapsulated cells[11], increased 

cell density, facilitated cell recovery and re-use, enhanced yeast stability, increased yeast toler-

ance to ethanol and acetic acid, increased fermentation time, protection from harsh environ-

ments, reduced contamination[2,11]. Encapsulated yeast in alginate and carregeean beads are 

also reported as biocatalysts in organic solvents for complex reduction reactions[12]. There are 

reports[13] of the use of immobilized yeast in a polyacrylamide hydrogel for the production of 

L-phenylacetyl carbinol; an intermediate in the synthesis of L-ephedrine (used as an anti-

asthmatic and decongestant). Yeast cells were also encapsulated in colloidosomes, preserving 

their metabolic activity[14]. S. Graff et al. work[15] reported that the yeast species S. Boulardii 

has proven probiotic activity, and is being used for the treatment of enteritis, colitis and as anti-

diarrhoea agent. S. Boulardii is sensitive to the acidic environment in the stomach and by encap-

sulating in alginate beads it is a possible to protect the cells and increase the intestinal delivery. 

To achieve a targeted drug release in the intestinal area, it is also possible to coat the microparti-
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cles using a proprietary coating material, resistant to the acidic stomach environment but which 

is soluble in basic-neutral conditions: Eudragit S100[16]. The pH dependent polymer Eudragit 

S100 is used in drug delivery for the production of colonic delivery systems[17]; it is an anionic 

copolymer based on methacrylic acid and methyl methacrylate which dissolves above pH 7. Eu-

dragit coated microparticles were produced for the colonic release of therapeutics[16,18] or pro-

teins[19], but it has not yet been applied for the coating of encapsulated cells. A variety of mate-

rials have been tested for the encapsulation of living cells; alginate[4,6,8,12,15,20–23] is the 

most common and versatile, chitosan[9,23], gelatin[22,24], cellulose[23,25], agarose[23,26], 

dextran[1], carrageenan[9,12,27], poly(lactide-co-glycolide) (PLGA)[1,23], Poly (Ethylene Gly-

col)[23,28] all have been used individually, and in blends[1,27]. Chitosan is a proven biocompat-

ible natural polymer produced from natural sources (crustacean shells, fungi, and insects), which 

has been widely used for cell encapsulation and other pharmaceutical purposes[23,29]. Its popu-

larity is due to the possibility to prepare the hydrogel under relatively mild gelation 

conditions[30] using negatively charged ions and molecules, such as tripolyphosphate[31] or 

hexametaphosphate[32]. Chitosan is particularly advantageous as a material for the encapsula-

tion of delicate compounds such as cells. In some cases the presence of positive charges of chi-

tosan can interfere with the function of some cells and ionically crosslinked chitosan is not as 

mechanically stable as polymerized materials. To improve the mechanical and biological pro-

prieties, chitosan is often used in association with other polymers, such as gelatin[23,33]. Gelatin 

presents many advantages as a material for cell encapsulation: it is non-toxic and biodegradable, 

and it is extensively used in the pharmaceutical industry as an excipient[33]. A further advantage 

of gelatin is its ability to form hydrogels by thermal gelation, by decreasing the temperature be-

low 20°C, and that it will melt again at body temperature (~37°C)[34]. In other work, glutaralde-

hyde crosslinked chitosan/gelatin microparticles were produced and tested, providing reported 

good biocompatibility and cytotoxicity of the two materials[33]. 

Associated with the right material, the choice of the right encapsulation technique is fundamental 

for the success of an encapsulation process. Many techniques for cell encapsulation have been 

reported, including interfacial polymerization[12] and solvent evaporation[7], sol-gel pro-

cess[35], photolithography[28], ionic crosslinking[27]. In some cases, these techniques involve 

the prior formation of polymeric droplets in an oil-organic phase. The use of: organic solvents; 

harsh environments; high shear stress and high temperature, are all disadvantages for the encap-
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sulation of delicate organic material such as cells. Thus, the process of particle formation has to 

be carefully selected. Droplet production can essentially be classified in to two types: single or 

series drop formation techniques (extrusion- laminar jet break-up[15]; microfluidic devices[21]), 

and bulk or parallel techniques (stirring[7,36]; Membrane Emulsification (ME)[20])). To-date, 

Song et al.[20] is the only work reported for the encapsulation of cells using an SPG membrane. 

In that work there were no details of cell density used. ME is not an obvious choice for cell en-

capsulation: the microfilters used would be expected to filter out the suspended cells, rather than 

allow the passage of the cells from one side of the membrane to the other. ME being a method to 

produce emulsions that consists of injecting the dispersed phase for the emulsion through the 

pores of a membrane into another phase[37]. The detachment of the drops is produced by apply-

ing a shear over the membrane surface[38]. The method applies in a variety of emulsion types: 

oil-in-water (O/W), water-in-oil (W/O) and double or multiple emulsions[39]. The method over-

comes some of the disadvantages typical for other techniques of emulsions production (high 

pressure homogenization, rotor-stator systems) including poor droplet size uniformity, problem-

atic scale-up, application of high mechanical forces (high shear)[40]. With ME it is possible to 

produce reasonably uniform emulsions with the desired droplet size by modifying the operating 

parameters of the process. It uses low shear conditions and requires low energy input[38,41]. ME 

is easier to scale up and has a higher productivity compared to the other “drop-by-drop” methods 

of emulsion production (microchannel and microfluidic devices)[42]. All these characteristics 

make ME particularly advantageous for the encapsulation of shear sensitive, temperature sensi-

tive and delicate compounds such as drugs, proteins and cells, provided that it can be shown that 

the membrane used for the emulsification does not filter out the cells to be encapsulated. The tor-

tuous pore channel microfilters (porous glass and ceramic) are most likely to deposit particulate 

matter (i.e. cells) within the membrane matrix over a period of time.  

An alternative ME system, used in this work, employs a flat disk membrane with straight recti-

linear[29] pores in a regular array[37]. The lack of a tortuous pore channel minimizes membrane 

fouling, or cell filtration, during the process of encapsulation. In this work the Dispersion Cell 

Membrane Emulsification device[29,37,40,42] is used for the production of W/O emulsions con-

taining yeast cells using micro-sieve type metal membranes made hydrophobic by a process of 

surface coating. The performance of hydrophobic membranes coated with different methods 

(PTFE and FAS fluorinated compounds) is shown. Compared to SPG and ceramic membranes, 
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the micro-sieve metal membranes can be cleaned more easily and tolerate higher fluxes[43]. The 

micro-sieve metal membranes are appropriate for cell encapsulation, as conditions that may 

cause membrane blockage, or cell filtration, can be avoided. Microparticles made of blended chi-

tosan with gelatin, or pure gelatin, were produced for the encapsulation of yeast and the simulat-

ed release of yeast into the intestine-colon was investigated. To prevent the premature release of 

the yeast in the stomach, an acid resistant coating agent (Eudragit S100) was used.  

2. Experimental 

2.1 Materials  

The oil phase (O) of the W/O emulsion was 2 wt.% Sorbitan monooleate, SPAN 80 (Sigma Al-

drich, UK) in low odor kerosene (Sigma Aldrich, UK). The emulsion water phase (W) was com-

posed of blended chitosan (CS) (MW 50.000–190.000 g/mol Sigma Aldrich, UK) and gelatin (G) 

from porcine skin, gel strength 300, Type A (Sigma Aldrich, UK), or gelatin in deionized water 

without CS. Chitosan and gelatin solutions were prepared separately and mixed together after-

wards; chitosan is soluble in acetic acid solution (Fisher Scientific, UK) with a pH below 6[29]. 

CS was dissolved in warm (50-60ºC) 2 wt.% glacial acetic acid in water. Gelatin solution was 

prepared by dissolving gelatin in warm water (50-60ºC). For the preparation of the blend, the two 

polymeric solutions were mixed together in an appropriate ratio and stirred for at least 2 hours, at 

40ºC to avoid the gelatin coagulation. Where appropriate, the dispersed phase contained Baker’s 

yeast cells (Saccharomyces cerevisiae) purchased from a supermarket (Sainsbury’s Fast Action 

Dried Bread Yeast). The median size of the yeast cells was 4 µm, determined using the Java-

based image processing package ImageJ on microphotographs taken using an optical/fluorescent 

microscope (GXML3201, GX microscope) with an attached Retiga 6000 colour camera. To 

make a yeast suspension 3.5 g of the dried yeast powder was added to 200 mL of ultrapure water 

and stirred for at least 10 minutes, after complete dissolution the suspension was centrifuged at 

1200 RPM for 3 minutes. The supernatant was discarded and the washing procedure was repeat-

ed 3 times. The final volume of water removed was 175 mL. Considering the yeast cell as having 

a spherical shape with an average diameter of 4 µm and a dry mass density of 1.33 g mL
-1

, the 

calculated maximum concentration of yeast in the suspension was 3.14 x 10
9
 cells mL

-1
. The ini-

tial cell suspension was subsequently diluted for use by factors of 10 and 100, giving cell con-

centrations of 3.14 x 10
7 

and 3.14 x 10
8
 cells mL

-1
. Cell counting was also performed as a check, 
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and a number higher than 3.18 x 10
9
 cells mL

-1
 for the stock suspension was measured, thus the 

lower cell density calculated from the initial weighed yeast was considered more reliable for cell 

density characterization. The yeast cell density used for the reported tests is in accordance, or 

higher than, the generally accepted required dose of probiotics having health benefits (10
6
- 10

7
 

cells/ mL[44]). For the G:CS blend crosslinking was performed using a solution of sodium hex-

ametaphosphate, SHMP (Fisher Scientific, UK) in water.  

Polymer Eudragit S100 (Evonik Industries, Germany) was used for coating the microparticles: 

Eudragit S100 was dissolved in a solution of ethanol: acetone (4:1) (Fisher Scientific, UK) with 

zinc stearate (Sigma Aldrich, UK) added. The Eudragit solution was emulsified in 2 wt.% paraf-

fin oil (Sigma Aldrich, UK). For washing of the particles either 2 wt. % polyethylene glycol sor-

bitan monolaurate (Tween 20) (Sigma Aldrich, UK) in water, or hexane (Sigma Aldrich, UK) 

was used. The released yeast cells viability was checked using yeast glucose (D(+)-Glucose an-

hydrous, Fisher Scientific, UK) consumption with time, and using the LIVE/DEAD® Viabil-

ity/Cytotoxicity Kit, for mammalian cells, Molecular Probes, Invitrogen (California, US). The 

glucose concentration was measured using a glucose analyzer (G5, Analox Instruments Ltd., 

UK). The densities of both continuous and dispersed phases were measured using a glass density 

bottle. The viscosity of the phases were measured with a Rheometer AR100-N (TA instrument, 

USA), at 40ºC, using a cone-plate configuration. The cone geometry was 6 cm in diameter, 0.59º 

with a truncation of 27 µm. The equilibrium interfacial tensions existing at the W/O interface 

were measured using the Du Nouy ring method on a White Electric Instrument tensiometer 

(model DB2KS). All the physical measurements performed on the continuous and dispersed 

phase used are shown in Table 1.  

2.2 Dispersion Cell Membrane Emulsification  

The W/O emulsion was prepared using a flat disk metal membrane in a Dispersions Cell sup-

plied by Micropore Technologies Ltd (Redcar, UK). Above the membrane a paddle blade impel-

ler was driven by a DC power supply (INSTEK, model: PR3060). The rotation of the impeller 

(200-1500 RPM) generates a shear stress (1- 17 Pa) for droplet detachment at the membrane sur-

face. Wetting of the membrane with the dispersed phase (W) needs to be avoided, or the dis-

persed phase will spread over the membrane surface, so nickel membranes treated to be hydro-

phobic were used. The hydrophobicity of the membranes was obtained by a coating, either PTFE 
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or FAS were used. Coated membranes were supplied by Micropore Technologies Ltd (Redcar, 

UK). Both membranes had 30 µm pore diameter with 200 µm pore spacing (30/200 µm).  

2.3 Experimental procedure  

2.3.1 W/O emulsion production  

In the Dispersion Cell the disk membrane is placed in the base, underneath a glass cylinder on 

which an impeller is mounted, see Fig.1. The continuous phase of the emulsion is poured into the 

glass cylinder submerging the impeller and the membrane surface. The dispersed phase was in-

jected into the system using a syringe pump (World Precision Instrument Inc., AL-1000, UK) 

forcing it to permeate through the membrane pores. The dispersed phase injection rate was be-

tween 1 to 5 mL min
-1 

corresponding to a transmembrane flux between 70 and 350 L h
-1

m
-2

. In 

order to increase the membrane hydrophobicity, the membrane was soaked at least 30 minutes in 

kerosene with no surfactant present. The glass cylinder was filled with just less than 100 cm
3
 of 

continuous phase, and the amount of dispersed phase injected was 10 cm
3
 (10 vol.% concentra-

tion emulsion). The whole Dispersion Cell was placed in a water bath and the emulsification 

process run at 40ºC. When the emulsification was completed the pump and the stirrer were 

switched off and the produced emulsion was poured from the glass cylinder into a beaker (with 

stirring) and analyzed. The Dispersion Cell was subsequently disassembled and the membrane 

washed. The membrane washing procedure consisted of removing the kerosene by washing the 

membrane with running water and using soap. Afterwards, the membrane was soaked in soapy 

water and sonicated for a maximum of 30 seconds using an ultrasonic bath. The membrane was 

then rinsed with water and dried with compressed air. The sizes of the aqueous phase drops in 

kerosene and size distribution were determined using the software ImageJ on microphotographs 

of the emulsions, and at least 300 drops per sample were measured. The droplet size was report-

ed as Dav , mean average droplet diameter using the following formula:  

 





n

i

ii
av

N

dn
D

1

 
(1) 

 

Where di is the i
th

 diameter of the droplet, ni is the number of drops in the size range and N is the 

total number of the droplets counted. The uniformity of the emulsion is reported as a value of 

Coefficient of Variation % (CV%) calculated as follows:  
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2.3.2 Microparticle solidification 

To obtain solid microparticles, the liquid drops in emulsion were solidified using either a thermal 

gelation process, or ionic crosslinking using SHMP. For the dispersed phase composed by the 

blend of G:CS in a ratio of 5:2 (G:CS (5:2)) the emulsion was initially cooled with ice for 30 

minutes to set the gelatin, subsequently 10 mL of a 10 wt.% SHMP solution was gently dripped 

into the emulsion to crosslink the chitosan. The reaction occurred under continuous stirring for 3 

hours. When pure gelatin (5 wt.% gelatin in water) was used as dispersed phase, the drop solidi-

fication was obtained by thermal gelation: cooling the emulsion using an ice bath, under contin-

uous stirring for 4 hours. In both cases the obtained solid particles were washed using 2 wt.% 

Tween 20 in water to remove any remaining kerosene phase.  

2.3.3 Microparticle coating  

Coating was performed on gelatin particles using the oil in oil (O1/O2) solvent evaporation meth-

od previously described by L. Zhang et al [16]. The polymeric coating solution (O1) was pre-

pared using 2 wt.% Eudragit S100 dissolved in a solution of ethanol:acetone at a volume ratio of 

4:1. To prevent microparticle aggregation during the subsequent coating process, 20 mg of zinc 

stearate was added to the organic phase which acted as an anti-sticking agent. The zinc stearate 

was not completely soluble in the coating solution therefore, to minimize the zinc stearate parti-

cle diameter the coating mixture was homogenized using an homogenizer (IKA® T 10 ULTRA- 

TURRAX®, Germany) at maximum speed (30,000 RPM) for 3 min. 3 mL of gelatin microparti-

cles suspension was added to 10 mL to the coating solution (O1) and stirred for 2 minutes provid-

ing a uniform dispersion of the particles. Coating solution (O1) containing the microparticles was 

gently poured in to 50 mL of 2 wt.% SPAN 80 in Paraffin (O2). The O1/O2 emulsion was stirred 

using the Dispersion Cell impeller at 5V (corresponding to 800 RPM) for 4 hours. The process of 

solvent evaporation was checked every hour; samples of the O1/O2 emulsion were withdrawn and 

examined under the optical microscope. Reduction of the O1 droplet size was observed until 

complete solvent evaporation and Eudragit polymer deposition on the gelatin microparticles oc-
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curred. The coated microparticles were washed using hexane and dried at room temperature 

overnight.  

2.3.4 Yeast loaded microparticles – dissolution study 

Simulation of the gastro-intestinal transit conditions was obtained varying the pH of the dissolu-

tion medium over time: the acidic stomach fluid was reproduced using a pH 1.2 for 2 hours, af-

terwards a pH 7 (or pH 8) medium was used to mimic the intestinal-colon area for a maximum 

period of time of 3 hours (or up to complete particle dissolution)[18]. The dissolution medium 

was prepared from a phosphate buffer saline (PBS, Sigma Aldrich, UK) solution (pH 7), adjust-

ing the pH with hydrochloric acid (Sigma Aldrich, UK), or sodium hydroxide (Sigma Aldrich, 

UK). An initial amount of 15 mg of dried particles was added to 1 mL of dissolution medium at 

pH 1.2 and shaken in an incubator at 37ºC for 2 hours. After 2 hours in an acidic environment, 

the microparticles were observed under the microscope and subsequently collected from the 

acidic buffer and resuspended in 1 mL of pH 7 buffer for maximum 3 hours with shaking. Again 

the microparticles were recovered and observed, then re-suspended in pH 8 buffer. Microphoto-

graphs of the microparticles were taken at regular time intervals, until dissolution of the particles 

and complete cell release.  

2.3.5 Released yeast viability determination 

The viability of the released cells from the microparticles was tested using two methods: yeast 

glucose metabolism with time was measured, and dyeing the yeast cells using a Live/Dead fluo-

rescent kit and observation under the fluorescent microscope. Once released from the microparti-

cles, the yeast cells were centrifuged using an Eppendorf centrifuge at 1000 RPM for 2 minutes 

and re-suspended in a 6 mM Glucose solution. The glucose solution with the yeast cells was sub-

sequently placed in an orbital incubator (Sartorius Certomat BS-1, Sartorius AG, Germany) at 

37ºC and rotation speed of 150 RPM. At predetermined time intervals the cell suspension was 

centrifuged and 50 µl of the glucose solution was withdrawn and analyzed for glucose concentra-

tion. Fluorescent probes were also used to determine the fraction of live/dead cells. Component 

A of the LIVE/DEAD ® Viability/Cytotoxicity Kit (Calcein AM) is retained in living cells giv-

ing a bright green fluorescence if excited using a fluorescein optical filter (485 ± 10 nm). In dead 

cells component B (Ethidium homodimer-1) enters in cells with a damaged membrane and binds 
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to the nucleic acid giving a bright red fluorescence when excited under a typical rhodamine opti-

cal filter (530 ± 12.5 nm). The samples were prepared by addition of the two probes to the yeast 

suspension and incubation at 37ºC for 40 minutes, prior to the observation with the epifluores-

cence microscope Nikon Ti Eclipse.  

3. Results and discussion  

3.1 Influence of emulsification process parameters and cells presence on droplet size and 

uniformity  

Variation of droplet average diameter and uniformity with dispersed phase flux and shear stress 

was investigated using a dispersed phase containing either 5 wt.% gelatin mixed with 2 wt.% 

chitosan, or 5 wt.% of pure gelatin in water. The continuous phase for all the experiments was 2 

wt.% SPAN 80 in kerosene. Emulsions were produced with, or without, addition of yeast cells to 

the dispersed phase and the results are shown in Fig. 2. Initially a dispersed phase flux of 350 L 

h
-1

 m
-2

 was used and the stirrer rotation speed was changed from 2 to 9 V giving a shear stress 

from 1 to 17 Pa. The corresponding average droplet diameter, Dav is reported in Fig. 2(a), it is 

shown that Dav decreases with increasing shear stress. This trend is in accordance with data 

reported previously [29,37,42]. Modifying the shear stress applied it was possible to produce 

droplets sized between 60 µm to 340 µm using the 30 µm membrane. The corresponding CV% 

(Fig. 2(b)) was in a range between 17 to 30%. The same set of experiments were repeated adding 

yeast cells in the dispersed phase; for comparable values of shear stress and dispersed phase flux 

the mean droplet size and uniformity did not change significantly suggesting that the presence of 

the cells did not influence the emulsion characteristics. The dotted line within Fig. 2 (a) reports 

the theoretical values of droplet size calculated using the following equation[45]:  

 

max

22

max

244

max

22

max

3

481218



 ppp rrr
D
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

 

(3) 

 

Equation (3) represents the model used for the calculation of the theoretical droplet diameter (D) 

as a function of the shear stress applied (max ), the membrane pore radius (rp) and the interfacial 

tension () existing between the phases. As demonstrated in another work[37] the shear stress is 

not uniform on the membrane surface, the maximum shear reachable is at radial distance (rtrans) 
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from the center of the membrane and the maximum shear is normally used in equation (3). The 

maximum shear is calculated as 
 /825.0max transc r

 where μc represents the continuous 

phase viscosity, ω is the angular velocity and δ is the boundary layer thickness cc  /
. In 

Fig. 2 (a) the results obtained using a dispersed phase flux of 70 L h
-1

m
-2 

 were much closer to 

the theoretical values calculated using the model. The shear-capillary model does not include the 

dispersed phase flux as a parameter affecting the droplet size, it is the theoretical ‘smallest’ drop 

size formed at zero flux rate, therefore reducing the transmembrane flux the divergence between 

real and theoretical droplet size decreases. The literature does contain models that add a volume 

to the drops caused by the injection volume flow rate (J) and the drop formation time (t): 

 tJVV o   (4) 

where Vo  is the volume of the drop predicted by a force balance, e.g. equation (3), and tJ is the 

extra volume of the drop caused by operating at a high injection rate and the finite time required 

for droplet formation[46]. However, in order to apply equation (4) the drop formation time has to 

be assessed and this will depend on the fraction of pores that are actively generating drops, 

which is rarely a known value. Thus, for the purpose of illustrating the key parameters 

influencing the drop formation in the system studied here the simple force balance model, as 

represented by equation (3), is presented.  

Fig 3 shows images of emulsions produced using the same dispersed phase flux (350 L h
-1

m
-2

) 

and varying the shear stress. The dispersed phase was G:CS (5:2) and continuous phase was 2 

wt.% SPAN80 in kerosene. The Dav reduced gradually with increasing shear stress from 1 to 17 

Pa and the uniformity of the size distribution was comparable for the 4 samples reported. Size 

and emulsion uniformity were investigated as a function of the amount of yeast cells added to the 

dispersed phase. The initial yeast dispersion (3.14 x 10
9 

cells mL
-1

) was prepared using dried 

yeast powder. For the preparation of the dispersed phase, a calculated volume of the initial yeast 

dispersion was added to the polymeric dispersed phase. The dispersed phase was stirred for few 

minutes at 40ºC until uniform dispersion of the cells within the phase was reached. The dispersed 

phase containing the cells was subsequently injected into the emulsification apparatus. The 

amount of yeast dispersion injected was gradually increased up to 3.14 x 10
8 

cells mL
-1

. During 

the emulsion production, the operating parameters were: dispersed phase flux 350 L h
-1

m
-2

, shear 
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stress 17 Pa. Fig. 4 (a) shows the mean droplet size as a function of the yeast concentration: it is 

possible to see that the amount of cells did not affect the size of the emulsion produced. Using 

these operating parameters, drops sized ~66 µm were obtained, a good uniformity was achieved 

with a CV between 19 and 23% as reported in Fig. 4 (b). A cell concentration of 3.14 x 10
8
 cells 

mL
-1

 was the maximum used in order to avoid membrane damage, formation of cell 

agglomerates was observed at higher yeast concentration. The agglomerates could potentially 

block the membrane. Images of the produced emulsions containing yeast cells are shown in Fig. 

5; microphotographs were taken using a magnification of 20X and 40X objective lenses to show 

the cells trapped in the liquid drops. Uniform distribution of the cells within the drops was 

achieved; the cells did not agglomerate; shape and color were normal. Although the number of 

cells per drop was high (especially at 3.14 x 10
8 

cells mL
-1

), no yeast cells were found in the 

continuous phase, suggesting that the cells were successfully trapped within the droplets. The 

passage of the cells through the membrane, i.e. no filtering effect, was checked by injecting the 

cell suspension with the highest cell density used (14 x 10
8 
cells mL

-1
)
 
through a FAS coated 

membrane. For this test the yeast suspension in aqueous phase was injected through the 

membrane in the absence of any organic phase. After 10 mL of the cell suspension passed 

through the membrane, i.e. the same volume used in the ME, the pump was switched off and the 

suspension passed through the membrane was recovered and observed under the microscope. To 

check no cells were filtered, and remained below the membrane, the membrane was turned 

upside down and the cell suspension injected again. This is termed ‘back-flushed’ in Fig. 6, 

which shows: (a) the cell suspension before the injection through the membrane; (b) the cell 

suspension injected through the membrane; and (c) the cell suspension using the membrane 

turned upside down and back-flushed. It is possible to observe that the number of cells for the 

three images does not appreciably change and it is reasonable to deduce that they have the same 

cell concentration. Similar tests were done at the lower cell concentrations used and identical 

results were found: no membrane fouling observed. Hence, the non-tortuous pore channel 

membrane used did not appear to retain any of the yeast cells at the cell densities used in this 

work, and, therefore, the encapsulation efficiency of the yeast cells will be 100%. 

3.2 Effect of membrane coating on droplet size and uniformity 
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The importance of membrane wettability was demonstrated by Nakashima et al.[47], who 

showed that membrane wetting by the dispersed phase should be avoided for successful 

production of monodispersed emulsions. Therefore, in the production of W/O emulsions, the 

membrane should be thoroughly wetted by the continuous oil phase, in order to minimize the 

spreading of the dispersed phase on the membrane. Hydrophobic membranes can be produced by 

a process of coating of a surface with different materials[48,49]. The PTFE coated nickel 

membrane used gave reasonably monodispersed emulsions Fig. 7 (a). Under the best operating 

conditions a CV of the 17% was achieved. However, a PTFE coated membrane requires a 

delicate washing procedure to avoid membrane coating damage: warm soapy water and an 

ultrasonic bath for a maximum of 30 s was used for the washing. The PTFE coated membrane 

had a thermally bonded polymer coating on the metal surface, which made recoating the 

membrane (to maintain its hydrophobicity with multiple use) troublesome. To overcome this 

disadvantage, a FAS coated membrane was also tested for the production of the W/O emulsion. 

The results obtained using the two membranes are compared in Fig. 7, where emulsions 

produced using a new PTFE and FAS coated membranes are shown. For both systems the 

dispersed phase flux was 350 L h
-1-

m
-2

, and the shear stress was 17 Pa. The dispersed phase was 

composed by 5 wt.% gelatin in water, with a yeast concentration of 3.14 x 10
7
 cells mL

-1
. The 

continuous phase was made of 2 wt.% SPAN 80 in kerosene. Fig. 7 (a.1) shows the surface of 

PTFE coated membrane while Fig. 7 (b.1) the surface of the FAS coated membrane. Both used 

membranes had 30 µm pore diameter, 200 µm pore spacing. The emulsion produced with the 

PTFE coated membrane was characterized by an average droplet size of 62 µm with a CV% of 

18%. For the emulsion produced with the FAS coating the average droplet size measured was of 

82 µm while the calculated CV% was 22 %. The drops produced using the FAS coated 

membranes were noticeably larger in size than the ones produced using the PTFE coated 

membrane, suggesting that the PTFE coated membrane has a greater degree of hydrophobicity 

than the FAS coated membrane, when new. However, the simplicity of FAS coating may make it 

more practical for membranes intended for multiple uses.  

3.3 Process of drop solidification: thermal gelation and ionic crosslinking. 

For the dispersed phase composed by G:CS (5:2) the solidification process consisted of two 

steps: initially the emulsion was placed in ice to decrease the temperature to approximatively 



15 
 

0ºC, this induced the hardening of gelatin. After 30 minutes in ice, 10 mL of 10 wt.% sodium 

hexametaphosphate solution was gently dripped in to the emulsion. The mixture was stirred for 4 

hours to complete the solidification of the two polymers keeping the temperature at 0ºC. The 

addition of the phosphate salt induced a gelation of the chitosan present in the polymeric 

mixture; hexametaphosphate anions provide strong electrostatic interactions with the positively 

charged amino groups of chitosan, acting as a physical crosslinker[32]. The combination of 

thermal gelation and ionic crosslinking produced solid microparticles; no difference in size was 

observed between the liquid droplets and the solidified microparticles re-suspended in water. 

Once dried at room temperature, the microparticles formed a free flowing powder. The yeast 

cells were immobilized into the solid polymeric material. Gelatin microparticles were also 

produced (with no CS present), several concentrations of gelatin in water were tested (1 to 5 

wt.%). For the solidification of this formulation, thermal gelation in ice was exploited. It was 

seen that if gelatin concentration was below 5 wt.% the particles did not form, even after 

increasing the gelation time. The selected concentration for the production of the gelatin particles 

was, therefore, 5 wt.%. Unlike the G:CS (5:2) particles, the pure gelatin particles did not survive 

the drying process, the particles collapsed forming clusters of polymer and losing their spherical 

shape. For that reason the gelatin particles were washed and directly re-suspended in water. The 

gelatin microparticles re-suspended in water showed an increase of average diameter when 

compared to the diameter of the drops in the kerosene phase. For gelatin drops sized 76±2 µm on 

average, gelatin microparticles (re-suspended in water) had a diameter of 100± 2 µm. This effect 

could be due to water absorption and swelling of the gelatin particles once re-suspended in water 

after the process of washing.  

3.4 Influence of the Eudragit coating on the physical proprieties of the gelatin microparticles  

To protect the particles form an acidic environment coating of the particles formed by Eudragit 

S100 was performed. The coating was not performed on the G:CS particles as they did not 

dissolve within the gastro-intestine timeframe; i.e. they did not need to be protected. The coating 

reaction occurred in 4 hours, the reaction was monitored by observation of the particles in the 

O1/O2 emulsion during the formation of the Eudragit shell. Fig. 8 (a) shows an uncoated gelatin 

particles suspended in water, an image of the early stage of the reaction (t= 0 minutes) is shown 

in Fig. 8 (b): a liquid shell surrounding the gelatin drop surface composed by the organic phase 
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containing the coating material dissolved is visible. With the evaporation of the solvent, the 

Eudragit polymer gradually formed a solid layer; visible in Fig. 8 (c). The reaction was stopped 

and considered complete once the O1 drops were almost invisible leaving the solid Eudragit 

polymer. The particles were washed and dried at room temperature, giving a white powder. A 

small sample of coated particles was re-suspended in water and observed under a microscope. 

Fig.8 (d) shows one of the coated particles re-suspended in water. Compared to the un-coated 

microparticles, the coated ones are smaller in size: the mean size of un-coated particles (in water) 

was 100±2 µm, and water wet coated microparticles were 70±2 µm in diameter. The water is 

extracted from the particles by the O1 phase during the process of coating producing shrinkage. 

When re-suspended in water the coating layer prevents water absorption, thus swelling is 

reduced. 

3.5 Un-coated and coated particles: dissolution pH and temperature dependence release of the 

yeast cells. 

In-vitro release studies were performed on the particles to test the yeast release with time at 

different pH of the medium. All the experiments were carried out at 37ºC. Three formulations 

were used for this test and compared. Fig. 9 shows images of the particles at different pH and 

time intervals. The yeast encapsulated particles made of G:CS (5:2) did not show any cell 

release; this formulation was extremely resistant to the acidic environment (pH 1.2) and to 

neutral (pH 7) conditions even after 5 days. The crosslinked matrix did not dissolve as shown in 

Fig. 9 (a). The trapped yeast cells were immobilized within the polymeric matrix and the 

formulation failed to release the cells. Behavior of the G:CS formulation at the tested pH can be 

explained by the formation of a strong ionically crosslinked polymeric matrix. A complex 

coacervation occurs between proteins and the polyanion [50] preventing the dissolution of the 

two polymers in the release medium. No further analyses were conducted on this formulation. 

Fig. 9 (b) shows the gelatin microparticles that were initially placed at pH 1.2, to mimic the 

stomach conditions. Unlike the previous formulation, the pure gelatin particles released very 

rapidly; they did not resist the acidic environment and released their contents after 5 minutes. 

The test was also conducted at neutral pH (pH 7), in this case the gelatin particles dissolved 

slower, after 15 minutes the yeast particles were swollen and almost invisible, but the 

encapsulated yeast was still retained inside the polymer. After a time of 30 minutes, the gelatin 
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particles were completely dissolved and the content released in the surrounding medium. The 

pure gelatin microparticles did not meet the requirements for a gastro-resistant formulation: they 

did not protect the yeast cells from the acidic environment of the stomach for a period of at least 

2 hours[18]. Therefore, the Edudragit S100 coating was added to the gelatin particles to preserve 

the gelatin polymer during the residence at pH 1.2; allowing dissolution of the particles only in a 

neutral, or basic, environment (pH between 7 and 8) typical of the intestinal-colonic area[17]. 

Eudragit coated microparticles were tested and the results are shown in Fig. 9 (c). In the images, 

background debris of the coating material is present. At pH 1.2, after two hours, the 

microparticles still encapsulate the yeast without alteration of their shape, or swelling. The 

coated microparticles were removed from the acidic medium and transferred to a neutral 

environment at pH 7; no change was visible after 30 minutes, but a significant modification is 

noticeable after 2 hours: the coating gradually dissolve, for some particles a visible breaking of 

the Eudragit shell exposing the gelatin internal part is noticeable. At this stage, however, the cells 

were not released from the internal gelatin matrix. After 3 hours the microparticles were 

completely dissolved and the structure was no longer visible, the yeast cells were released and 

they are visible as small spots on the background of the image. In a basic environment the release 

was faster: it is possible to see that after 15 minutes at pH 8 the external coating was almost 

dissolved, but the particle shape is still visible. In 30 minutes the microparticles released 

completely the content, some residual part of the particles is still visible. Although the yeast cells 

were already released, the complete dissolution of the residual polymer was observed after 1 

hour. The Eudragit S100 methacrylic polymer is insoluble in acids, protecting the microparticles 

from dissolution in the stomach environment. However, the formed Eudragit S100 layer on the 

gelatin microparticles dissolves at pH above 7, leaving the gelatin material exposed, and simple 

melting of the gelatin at 37°C produced the release of yeast cells in this medium. 

3.6 Yeast cell viability test 

3.6.1 Glucose consumption analysis  

Yeast cells released from Eudragit S100 coated gelatin microparticles (Fig. 9 c) were collected 

and transferred into a 6mM glucose solution. The glucose concentration was measured at regular 

time intervals to check for yeast cell viability. Fig. 10 shows the reduction in glucose 

concentration measured with time, in terms of glucose consumed. The test was repeated for three 
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samples. In the graph, the glucose consumed is reported as the percentage of the initial glucose 

amount consumed by the free yeast; calculated using the formula: 

  
(3) 

 

Where      is the initial glucose concentration (6 mM),      is the amount of glucose measured 

in the sample. The glucose was metabolized by the released cells with time reaching 90% 

consumption in 24 hours. This data shows that the encapsulation process did not damage the 

cells and that they were successfully protected from an acidic environment (pH 1.2), equivalent 

to the conditions of the stomach, and after release when the conditions are no longer acidic the 

cells are still viable. 

3.6.2 Fluorescent analysis  

Two Fluorescent probes for cell dyeing were used to distinguish living cells from dead cells. 

Using an epifluorescence microscope the yeast cells encapsulated in the Eudragit coated particles 

(Fig. 9 c) and the yeast released from the particles (Fig. 9 c) were observed. In Fig. 11 (a) 

microparticles encapsulating the yeast is shown. From the image it is possible to see yeast cells 

coloured in green and a small number of cells coloured in red. The number of living cells is 

higher than the dead cells; however, the result may not be reliable as the cells are still held within 

a gelatin matrix. For this reason the yeast cells released, as described above, were also dyed and 

checked by fluorescence: Fig. 11 (b) shows these results. According to this analysis, the living 

cells are far greater in number compared to dead ones, showing that the encapsulation process 

was successful, the cells survived a period of time (2 hours) in acidic conditions and were 

successfully released (and viable) on returning the particles to a neutral aqueous environment. 

These conditions mimic what would be expected to occur during the passage of the encapsulated 

particles through the human gastric system. Thus successfully delivering living cells to the colon.  

4. Conclusions  

Dispersion Cell ME was used for the production of W/O emulsions with hydrophobic 

membranes of 30 µm pore diameter and 200 µm pore spacing. The aqueous dispersed phase 

composed of a mixture of gelatin and chitosan, or just gelatin with yeast cells, used as an 

                    
(          )     
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example of encapsulating a living organism. The oil continuous phase used to inject the 

encapsulated cells in to was 2 wt.% SPAN 80 in kerosene. The dispersed phase flux was from 70 

to 350 L h
-1

m
-2

 and the maximum shear stress at the membrane surface was between 1 to 17 Pa. 

Using these operating parameters monodispersed, CV below 25% for most of the emulsions, 

were obtained with drops sized between 70 to 340 µm. Tests with and without cells showed that 

the emulsion drop size, and uniformity, was not affected by the addition of the cells in the 

disperse phase. Tests were performed up to a maximum yeast cell concentration in the 

encapsulated in the drops of 3.14 x 10
8
 cells mL

-1
. The yeast cell encapsulation efficiency was 

100%, checked by ascertaining that the non-tortuous pore channel membrane used did not filter 

any yeast cells when operating under the flow rate and yeast cell concentration conditions used 

in the emulsification process, and by observation of no cells occurring in the organic continuous 

phase. The performance of hydrophobic membranes coated with PTFE and FAS fluorinated 

compounds was compared showing that the PTFE coated membrane gave smaller drops than the 

FAS coated membrane. From this result it is concluded that the PTFE coated membrane is 

characterized by a higher degree of hydrophobicity, but the coating method makes it less 

favourable for repeated use after cleaning. FAS coated membranes are promising for repeated 

production of W/O emulsions due to the simplicity to recoat the same membrane. The process of 

solid microparticle formation consisted of a thermal gelation and/or ionic crosslinking using 

sodium hexametaphosphate. Eudragit S100 coating was performed on gelatin microparticles 

encapsulating cells using the oil in oil solvent evaporation method. The dissolution of the yeast 

loaded particles was checked at different time intervals in acidic (pH 1.2), neutral (pH 7) and 

slightly basic (pH 8) environments to mimic the transit conditions through the gastro-intestinal 

tract. The Eudragit coated particles did survive the acidic environment for 2 hours without 

dissolving, or releasing, the yeast cells. After surviving acidic conditions, dissolution of the 

particles occurred at pH 7 within 3 hours, and within 1 hour at pH 8, with subsequent yeast 

release. A targeted pH dependent release of cells in simulated intestine-colon conditions was 

achieved. The cell viability after the release was demonstrated by the ability of the yeast to 

metabolize up to 90% of glucose added to the growth medium in 24 hours. A confirmatory test 

was performed using a live/dead cell staining with two fluorescent probes which showed that 

living yeast cells predominated. Yeast cells were chosen as a proof of concept showing that ME 

is a promising method for cell encapsulation; the process can be applied to a variety of micro-
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organisms according to the cell type and specific requirements, notably cell density and flow 

rate, provided that the membrane structure is non-tortuous as this does not filter the yeast cells 

from the injected phase within the matrix of the membrane.  
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Fig. 1 Schematic representation of the Dispersion Cell device for Membrane Emulsification 
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Fig.2 Influence of transmembrane flux and shear stress on size distribution. The hollow square marks represent experiments 
performed using a dispersed phase of G:CS (5:2) with and without yeast respectively. Hollow circle and triangle marks represent 
experiments performed using a dispersed phase of G 5 wt.% with and without yeast respectively. 
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Fig. 3 Microphotographs of emulsions produced using 350 L h
-1

m
-2

 as dispersed phase flux and shear stress from 1 to 17 Pa. 
Dispersed phase: G:CS (5:2), Continuous phase: 2 wt.% SPAN 80 in kerosene. 

 

Fig.4 Average droplet size and CV at different cell concentrations. Dispersed phase: G 5 wt.%, Continuous phase: 2 wt.% SPAN 
80 in kerosene.  
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Fig. 5 Microphotographs of emulsions produced increasing the concentration of cells in the dispersed phase; 3.14 x 10
7
 cells mL

-

1
 (a), 9.42 x 10

7
 cells mL

-1
(b), 1.88 x 10

8
 cells mL

-1
(c), 3.14 x 10

8
 cells/ mL(d). Dispersed phase: G 5 wt.%, Continuous phase: 2 

wt.% SPAN 80 in kerosene. Transmembrane flux= 350 L h
-1

m
-2

, shear stress= 17 Pa.  

a b 

c d 
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Fig. 6 Microphotograps of the cell suspension with the highest cell density (3.14 x 10
8
 cells/ mL) used as dispersed phase; (a) 

starting cell suspension, (b) filtered cell suspension and (c) back flushed cell suspension. 

 

a b
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Fig. 7 (a) Emulsion produced using (a.1) standard nickel membrane PTFE coated 30/200 µm, (b) emulsion produced using (b.1) 
standard nickel membrane FAS coated 30/200 µm 
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Fig. 8 (a) Uncoated microparticle in water (b) O1/O2 emulsion during the coating process after 0 minutes and (c) 4 hours, (d) 
microparticle re-suspended in water after washing in hexane and drying at room temperature.  
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Fig. 9 Microparticles dissolution test with time at different pH; (a) G:CS (5:2) microparticles encapsulating yeast, (b) Un-coated 
G 5 wt.% microparticles encapsulating yeast, (c) Eudragit S100 coated- G 5 wt.% microparticles containing yeast. 
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Fig.10 Released yeast glucose consumption with time as percentage of the initial amount of glucose consumed. 

 

  

Fig. 11 Fluorescent microphotographs of (a) yeast cell still entrapped into the particles and (b) the released cell from the parti-
cles. Green-yellow colored cell are living, red-orange colored cell are dead.  

a b 
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Table 1 Viscosities, densities and interfacial tensions measured for the continuous and dispersed phases used 

 

Continuous phase   Dispersed phase    

 Viscosity 

(mPa s)  

Density 

(kg m
-3

) 

 Viscosity 

(mPa s) 

Density 

(kg m
-3

) 

Interfacial 

tension (mN 

m
-1

) 

2 wt.% SPAN80  in 

kerosene  

1.99 808 5 wt.% G + 2 wt.% CS 46.30 1026 3.8 

  5 wt.% gelatin  4.56 1011 3.1 

 

 

 

 

Highlights  

 W/O emulsion drops produced by membrane emulsification contained up to 3x10
8
 

cells/mL 

 PTFE coated metal membrane, had high hydrophobicity and produced small drops.  

 Gelatin and gelatin/chitosan microparticles were used to encapsulate yeast cells 

 Eudragit S100 coated particles provided targeted release in neutral/ basic conditions 

 Glucose consumption with time and live/dead staining confirmed cell viability 
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