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ABSTRACT 

 

O/W emulsions with the smallest spans of particle size distribution (span = (d90-d10)/d50) 

reported till now for ceramic α-alumina membranes (0.42-0.56) were prepared using a 

1.4-µm membrane cleaned thoroughly after use in an ultrasonic bath. The smallest span 

values of 0.42-0.48 were achieved at the transmembrane pressures 2.6-3.5 times greater 

than the capillary pressure. A narrow particle size distribution with the span of 0.48-

0.49 was even obtained at the wall shear stress of 0.55 Pa, provided that the dispersed 

phase flux was not above 4.6 l m2 h-1. The span and mean droplet size were remarkably 

constant over the range of dispersed phase content of 1-10 vol. %. The membrane 
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cleaning by ultrasonication was one of the critical conditions for a successful operation. 

If the membrane was cleaned only by the cleaning in place (CIP) method the emulsions 

with a span value in the range of 0.7-1.4 were obtained.   

 

INTRODUCTION 

 

Membrane emulsification (ME) is a simple method developed by Nakashima et al. (1) 

for preparing monodispersed emulsions with the mean droplet size ranging from less 

than 1 µm to several tens of µm. In a ME system, dispersed phase is permeated through 

the membrane pores into a moving continuous phase under the driving force of 

transmembrane pressure differential (Fig. 1). The droplets are formed at the end of the 

pores at the membrane/continuous phase interface and carried away by the recirculating 

flow or stirring. The resulting particle size distribution (PSD) is primarily dictated by 

the membrane properties (surface wettability, mean pore size and pore size distribution), 

but it can be finely adjusted by the magnitude of process flow parameters, such as shear 

stress at the membrane surface and transmembrane pressure (2). Until now, the best ME 

results with regard to PSD were obtained using microporous glass membranes, such as a 

Shirasu porous glass (SPG) membrane developed by Nakashima and Shimizu (3). If the 

SPG membrane is not wetted with the dispersed phase and if process conditions and a 

surfactant type are properly chosen, the span of PSD of 0.26-0.45 can be typically 

obtained in the preparation of both W/O and O/W emulsions (4-9). The span of PSD is 

given by an equation: span = (d90−d10)/d50, where dx0 is the diameter corresponding to 

x0 vol. % on a relative cumulative PSD curve.  
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One of the disadvantages of SPG emulsification is a low dispersed phase flux, due to 

thick membrane wall and a small proportion of active pores. The direct microscopic 

observations of the SPG emulsification process revealed that only 0.3-0.5 % of the 

pores were simultaneously active at the dispersed phase flux of 2.8-28 l m-2 h-1 (10). In 

order to increase the production rate, some improvements of the conventional ME 

process were proposed, such as premix ME in which a pre-emulsion is pressed through 

the membrane instead of pure dispersed phase (11). However, a broader PSD was 

obtained with the span in the range of 0.4-0.65. Another possibility of increasing 

membrane productivity is the use of asymmetric porous glass membrane recently 

developed by Kukizaki et al. (12). The new applications of SPG technology in the 

synthesis of monodispersed microspheres and the preparation of drug delivery systems 

and food emulsions are reviewed by Nakashima et al. (13). 

 

Apart from microporous glass membranes, other porous membranes were also used in 

ME, such as a microengineered silicon membrane (14), polymeric membranes (15-17), 

and ceramic α-alumina or zirconia membranes (18-21). Due to high dispersed phase 

flux and the resulting droplet-droplet interactions before detachment, polydispersed 

emulsions were obtained with a microengineered silicon membrane, although the pores 

were highly uniform (14). It shows that to obtain monodispersed emulsions, choosing a 

uniform membrane is not sufficient (14). In premix ME a narrower PSD was obtained 

using SPG than PTFE membranes (17).  
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The aim of this work is to show that monodispersed emulsions with a span of PSD of 

0.42-0.56 measured by a light scattering particle size analyzer can be produced using α-

Al2O3 membrane under the wide range of operating conditions. For the purpose of this 

work, emulsions will be regarded as monodispersed if the PSD span is smaller than 0.6. 

In all previous studies dealing with α-Al2O3 or Zr2O3 ME (18-21), the reported spans of 

PSD were about 0.83 (18) and in some cases above 0.87 (19). We have conducted many 

experiments resulting in the span of PSD of less than 0.5, which is some 40 % less than 

the smallest span reported till now. One of the possible explanations is a relatively large 

mean pore size of 1.4 µm used in our experiments, while in previous investigations the 

mean pore size was mainly 0.1-0.5 µm. According to our SPG emulsification results (6), 

a larger mean pore size often yields a smaller span. However, we have also conducted 

an experiment with 0.5-µm α-Al2O3 membrane, which resulted in the span of PSD of 

0.59. We believe that it was due to careful membrane cleaning by ultrasonication after 

each experimental series. One of the objectives of this work is to investigate the range 

of operating parameters under which such a narrow PSD can be obtained.    

 

EXPERIMENTAL 

 

Materials 

 

Emulsions were prepared using rapeseed oil (Floreal GmbH, Germany) as the dispersed 

phase and 2 wt. % Tween 80 (polyoxyethylene (20) sorbitan monooleate, Merck GmbH, 

Germany) dissolved in demineralized water as the continuous phase. The vegetable oil 

was treated before usage with 60 g l-1 silica gel (Silica gel 60, Merck GmbH) to remove 
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impurities which could cause membrane fouling. This treatment involved the adsorption 

of impurities on silica particles in a stirring vessel for 24 h, followed by centrifugation 

at 9000 rpm for 2 × 30 min. The physical properties of both phases at 298 K determined 

using a Carri-Med model CSL-100 controlled stress rheometer and a Prolabo model 

T.D. 2000 tensiometer-densimeter are given in Table 1. 

 

Membranes and Membrane Module   

 

Ceramic α-Al2O3 membranes (250 mm length × 7 mm inner diameter) were supplied 

from Membraflow GmbH & Co. KG (Aalen, Germany) with a mean pore size of 1.4 

and 0.5 µm. These membranes are composed of a skin layer with the thickness of 20-30 

µm and porosity of 0.35, supported by a 2-mm thick porous substructure. The effective 

membrane area in the module was 50.0 cm2. 

 

Experimental Set-up and Procedure 

 

Emulsions were prepared using a cross-flow ME system described elsewhere (6). The 

continuous phase/emulsion was recirculated inside the membrane tube using a Netzsch 

model NL 20 Mohno-pump (Waldkraiburg, Germany). This pump is a low shear type 

and causes no droplet break-up while the emulsion is recirculating through the 

equipment. The oil phase was placed in a pressure vessel and introduced at the annular 

space of the module with compressed air. The weight of oil phase permeated through 

the membrane was measured by a balance on which the pressure vessel rested. The 

balance was interfaced to a PC computer to continuously collect time and mass data.  
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The experiments have been carried out over a wide range of shear stress at the 

membrane wall of 0.55-139 Pa, which corresponded to crossflow velocity of the 

continuous phase in the membrane tube of 0.34-6.9 m/s and tube Reynolds number of 

1,700-34,000 (Fig. 2). The wall shear stress was calculated using the expression:  

 

)L/p)(4/d( friw ∆=σ                      (1) 

 

where di is the inner diameter of the membrane tube and ∆pfr is the pressure drop for 

overcoming friction resistance in the membrane tube over a length L. In the special case 

of laminar flow inside the membrane tube (Ret < 2300), Eq. (1) is simplified to: σw = 

8µcvt/di, where vt is the mean velocity of continuous phase inside the membrane tube 

and µc is the continuous phase viscosity given in Table 1. In the case of turbulent flow, 

Eq. (1) has the following form: 

 

)8/v( 2
tcw ρλ=σ   

 

where ρc is the continuous phase density (Table 1) and λ is the Moody friction factor, 

which is at 2,500 < Ret < 100,000 given by the well-known Blasius equation:  

 

25.0
tRe3164.0 −=λ  
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Transmembrane pressure was in the range of 52-170 kPa, which was 2.3-7.4 times 

greater than the capillary (Laplace) presssure. The transmembrane pressure was 

calculated as a difference between the dispersed phase pressure and the mean pressure 

of continuous phase. In most experiments, the mean pore size was 1.4 µm and the final 

dispersed phase (oil) content was 1 vol. %.    

 

After each experimental series, the whole crossflow system was cleaned in place with 1 

wt. % cleaning agent P3-ultrasil 53 (Henkel KGaA) at 323 K for 1 h. However, cleaning 

in place (CIP) was not enough to restore the initial membrane permeability. Therefore, 

the module was dismantled and the membrane was additionally cleaned in an ultrasonic 

bath at 343 K for at least several hours using a commercial detergent solution. The 

detergent solution was then removed from the membrane pores by ultrasonication with 

demineralized water.  

 

Determination of Mean Droplet Size and Particle Size Distribution (PSD) 

 

Particle size distribution was measured by a Coulter LS 230 light scattering particle size 

analyser using Polarization Intensity Differential Scattering (PIDS) technology, which 

allowed the measurement of particles in the size range of 0.04-2000 µm using 116 size 

channels. The mean droplet size was expressed as the Sauter mean diameter, d3,2, which 

is the diameter of a spherical particle having the same area per unit volume as that of the 

total collection of particles in the emulsion (22). 

 

RESULTS AND DISCUSSION 
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Rate of Oil Permeation through the Membrane 

 

The typical oil mass vs. time data collected during the experiments are shown in Fig. 3. 

Except at 60 kPa, the time interval of 8-40 min was enough to reach the oil content in 

emulsion of 1 vol. %. Virtually no changes in the permeation rate with time were 

observed, since the experiments were short. In a much longer experiment, in which the 

oil content in emulsion of 20 vol. % was reached, the oil flux increased with time, as 

found in earlier investigations (19, 20). As expected, the rate of oil permeation increased 

with transmembrane pressure.  

 

Oil fluxes, Jd, were calculated from the slope of the mass vs. time lines and shown in 

Fig. 4 as a function of transmembrane pressure, ∆ptm. The slope of Jd vs. ∆ptm lines 

increased with ∆ptm for each σw value, indicating that the proportion of simultaneously 

active pores increased with increasing the transmembrane pressure. The capillary 

pressure of pcap = 23 kPa was estimated by extrapolating the Jd vs. ∆ptm lines to Jd = 0. 

According to the Laplace equation: 

     

p
cap d

cos4p θγ
= ∞  

 

where γ∞ = 8 × 10-3 N/m is the equilibrium interfacial tension between the continuous 

and dispersed phase, dp = 1.4 × 10-6 m is the mean pore size of the membrane and θ is 

the contact angle between the dispersed phase and membrane surface. Assuming that 
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the membrane surface was totally wetted with the continuous phase (θ = 0), one obtains 

pcap = 23 kPa, which is equal to the experimentally found pcap value. The dispersed 

phase flux increased with increasing the wall shear stress, which was found earlier for a 

0.8-µm α-alumina membrane (20).  

 

Influence of Process Parameters on the Mean Droplet Size and PSD 

 

Influence of transmembrane pressure 

 

As shown in Fig. 5, the mean droplet size diminished initially with the transmembrane 

pressure, and then increased with continued increase in ∆ptm. The initial decrease in 

mean droplet size by 0.9-1.2 % can be explained by the assumption that in the vicinity 

of capillary pressure only the largest pores are active. Therefore, the mean droplet size 

is then larger than at the higher pressures, at which the smaller pores also take part in 

droplet formation. Transmembrane pressure at which the mean droplet size was minimal 

was the optimum transmembrane pressure with regard to droplet size uniformity. In our 

experiments this optimum pressure increased with the wall shear stress and it was 60-80 

kPa, i.e. the optimum ∆ptm/pcap ratio was 2.6-3.5. The wall shear stress of 0.55 Pa was 

too small for the droplets to detach fast enough at ∆ptm > 90 kPa and as a result, a strong 

increase of the mean particle size due to uncontrollable droplet grow and coalescence at 

the membrane surface was observed under these conditions. At the wall shear stress of 

47-139 Pa, the increase in d3,2 with increasing ∆ptm above the optimum level was much 

less pronounced. The increase in mean droplet size with transmembrane pressure was 

also found by other authors (23, 20).  
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Fig. 6 shows that with increasing the transmembrane pressure, the PSD curve becomes 

broader and broader. At a very high wall shear stress of σw = 139 Pa the emulsion was 

monodispersed at ∆ptm ≤ 170 kPa corresponding to Jd ≤ 43.8 l m2 h-1. As ∆ptm increases, 

the membrane productivity increases but the droplet size uniformity decreases, which 

means that in practical applications a balance must be found between these two 

opposing requirements. 

  

Influence of wall shear stress 

 

The mean droplet size decreased exponentially with increasing the wall shear stress, as 

shown in Fig. 7. At higher wall shear stress the droplets are sooner detached from the 

pore openings and the average distance between two neighbouring droplets increases. 

Therefore, the likelihood of droplet-droplet interactions at the membrane surface 

decreases and both smaller and more uniform droplets are formed. At the high 

transmembrane pressure of 120-140 kPa, the mean droplet size decreased sharply as σw 

increased from 0.6 to 47 Pa and then it became more or less independent of σw. At 

smaller transmembrane pressures the decrease in d3,2 with σw was less pronounced. 

Scherze et al. (23), using microporous glass membranes (MPG) with dp = 0.2-0.5 µm 

and milk proteins as emulsifiers, found that as σw exceeded 10 Pa the mean droplet size 

was only slightly influenced. Joscelyne and Trägårdh (19), using α-alumina and 

zirconia membranes with dp = 0.2-0.5 µm for the preparation of mothers’ milk 

replacement model emulsions, observed a strong affect of σw on the mean droplet size at 

σw < 30 Pa, which is similar to our results. However, Katoh et al. (24), using a MPG 



-11- 

membrane with dp = 0.57 µm to prepare food emulsions, found that when σw ≥ 0.5 Pa 

the mean droplet size was independent on the wall shear stress.    

 

As shown in Fig. 8, the span of PSD at the optimum pressure difference of 60-70 kPa 

ranged from 0.48 to 0.42 and decreased as σw increased. As a comparison, Williams at 

al. (18) obtained a span of PSD of 0.82 at σw = 6 Pa and Jd = 8 l m-2 h-1 using α-alumina 

membranes with dp = 0.2-0.5 µm. At low wall shear stresses and high transmembrane 

pressures (e.g., the dotted line in Fig. 8) the droplets grow and coalesce at the membrane 

surface before finally being carried away.  

 

Influence of dispersed phase content, i.e. emulsification time 

 

The influence of dispersed phase content on PSD during a single experiment at σw = 68 

Pa and ∆ptm = 100 kPa is shown in Fig. 9. Here, it was more convenient to plot the 

particle size in a logarithmic axis, while the total range of particle sizes was more than 

one order of magnitude. It can be seen that the mean droplet size (3.79 ± 0.06 µm) and 

the span (0.51 ± 0.01) were remarkably constant up to 10 vol. %, i.e. for about 5 hours 

of operation. However, as dispersed phase content increased from 10 to 15 vol. %, the 

mean droplet size and the span increased due to the occurance of larger droplets in 

emulsion. It can be attributed to the wetting of membrane pores with the oil phase but 

the additional experiments are needed to confirm this statement. Using α-Al2O3 and 

MPG membranes, some authors reported that mean droplet size and span were nearly 

constant up to a dispersed phase content of 20-25 vol. % (18, 24).            
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Comparison with SPG Membranes, and the Results of Other Authors  

 

The O/W emulsions prepared with Shirasu porous glass (SPG) and α-alumina 

membranes under the same operating conditions and using the same emulsion 

formulation were compared in Fig. 10. It can be seen that for the same pore size the 

better droplet size uniformity was achieved using SPG membranes (the span of PSD 

was 0.3-0.45 for SPG emulsification and 0.51-0.59 for α-alumina membranes).   

 

In Fig. 11, a typical PSD curve in this work is compared with the PSD curves obtained 

by Schröder (20, 21, 25) using the same 1.4-µm α-alumina membrane. In this work, the 

membrane was cleaned by the CIP method followed by cleaning in an ultrasonic bath, 

while in the Schröder’s experiments only the CIP method was used. In the latter case the 

broader PSD curves were obtained, especially if Tween 20 was used as emulsifier, since 

it adsorbs at newly formed water-oil interfaces much slower than SDS (21).  

 

CONCLUSIONS 

 

Monodispersed O/W emulsions with a span value of 0.42-0.56 were prepared using a 

1.4-µm α-alumina membrane over a wide range of transmembrane pressures and wall 

shear stresses. The mean droplet size decreased initially with the transmembrane 

pressure, due to gradual activation of smaller pores, and then increased with the further 

pressure increase. The smallest mean droplet sizes and span values were obtained at the 

highest wall shear stress of 139 Pa. A narrow particle size distribution with the span of 

0.48-0.49 was even obtained at the wall shear stress of 0.55 Pa, provided that ∆ptm/pcap ≤ 
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3.9. In order to control droplet size at ∆ptm/pcap ≥ 5.2, a wall shear stress of at least 47 Pa 

was necessary. Using the same emulsion formulation, the α-alumina membranes gave a 

broader PSD than Shirasu porous glass (SPG) membranes. 

   

LIST OF SYMBOLS 

 

d particle diameter, m 

di inner diameter of membrane tube, m 

dp mean pore size of membrane, m 

d3,2 Sauter mean diameter, m 

Jd dispersed phase flux, m s-1  

L length of membrane tube, m 

pcap capillary pressure, Pa 

∆ptm transmembrane pressure, Pa 

∆pfr pressure drop for overcoming friction resistance in membrane tube, Pa 

Ret Reynolds number in membrane tube 

t time, s 

vt mean velocity of continuous phase in membrane tube, m s-1 

µc viscosity of continuous phase, Pa⋅s 

ρc density of continuous phase, kg m-3 

σw shear stress in continuous phase at membrane surface (wall shear stress), Pa 

ϕ volume proportion of dispersed phase in emulsion, vol. % 

γ∞ equilibrium interfacial tension between dispersed and continuous phase, N m-1 
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θ contact angle between dispersed phase and membrane surface wetted with 

continuous phase, rad 
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TABLES 

 

Table 1. The density and viscosity of the dispersed and continuous phase used in this 

work 

 

 
ρ / kg m-3 µ / mPa⋅s 

Dispersed phase 920 58 

Continuous phase 1005 1.42 
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Figure 1. Schematic diagram of crossflow membrane emulsification. 
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Figure 2. The variation of wall shear stress in our experiments with the Reynolds 

number and mean velocity of continuous phase in the membrane tube. 
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Figure 3. Typical permeation oil mass vs. time curves (ϕmax = 1 vol. %). 
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Figure 4. Influence of transmembrane pressure on the dispersed phase flux at different 

wall shear stresses. 
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Figure 5. Influence of transmembrane pressure on the mean droplet size and the span of 

PSD at different wall shear stresses. 
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Figure 6. Influence of transmembrane pressure on the PSD. 
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Figure 7. Influence of wall shear stress on the mean droplet size and the span of PSD at 

different transmembrane pressures. 
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Figure 8. Influence of wall shear stress on the PSD. 
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Figure 9. Influence of dispersed phase content, i.e. emulsification time on the PSD. 
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Figure 10. Influence of membrane structure (SPG and α-alumina) on the PSD. 
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Fig 11. Comparison of PSDs obtained in this work with those reported by Schröder 

(25). 
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