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 A Novel Prototype Offset Multi Tubular Photoreactor (OMTP) was developed. 

 

 The OMTP is a simple modification of the compound parabolic collector (CPC).  

 

 The reactor volume of the OMTP is up to 80% higher than the CPC for the same footprint. 

 

 OMPT achieve significantly higher degradation efficiency of organic contaminant that CPC 

reactor.  

 

 The OMTP should outperform the CPC in environmental and renewable energy 

applications. 
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Abstract 

The design and operation of a new solar photoreactor prototype named Offset Multi Tubular Photoreactor 

(OMTP) is presented. The OMTP advances over the compound parabolic collector (CPC) photoreactor, 

which is one of the most efficient design for large-scale solar detoxification of water and wastewater. The 

OMTP design is based on a simple modification of the common CPC and included a supplementary set of 

tubes in the space occupied by the axes of intersection of the CPC reflective involutes. This new reactor 

configuration increased the irradiated reactor volume by 79% and the fluid residence time by up to 1.8-

fold in comparison to the CPC, for the same solar irradiated area (footprint). The model parameters used 

for comparing and scaling the OMPT and CPC were β (reactor volume/total volume), α (area of 

absorption/total volume), αg (physical area/total volume), degradation efficiency ηα per unit area, and the 

operating volume. The total solar energy absorbed in the reactors (1.74 m
2
 footprint) was 15.17 W for the 

CPC and 21.86 W for the OMTP, which represents an overall gain of 44% for the latter. The performance 

of the OMTP and CPC were compared at the same value of solar exposure β of 0.3 with optimal 

photocatalyst loading of 0.25 g/L titanium dioxide (TiO2 P25). The degradation efficiencies of methylene 

blue, dichloroacetic acid, 4-chlorophenol (120 ppm initial concentration) in the OMTP were up to 81%, 

125%, 118% and 242% higher, respectively, in comparison to the CPC after 8000 J/m
2
 of accumulated 

solar energy. The OMTP should outperform the CPC in environmental and renewable energy applications 

of solar heterogeneous photocatalysis. 

Keywords: Solar photocatalysis, OMTP and CPC photocatalytic reactor, TiO2-P25, Six Flux Model-HG 
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1. INTRODUCTION  

The efficient utilization of renewable solar energy is essential for the development of sustainable 

processes for the production of clean energy, biofuels, hydrogen, for environmental clean-up, water 

disinfection and for the exploitation of self-cleaning surfaces. Among these processes, solar 

photocatalysis has attracted industrial interest as a sustainable process for the mitigation of the 

environmental effects associated with water pollution [1]. Different applications of photocatalysis for the 

degradation and mineralization of water contaminants, such as pesticides, herbicides, dyes, emerging 

pollutants, phenols, and halogenated compounds, have been demonstrated at pilot-scale using solar 

radiation and commercial catalysts [2–5]. The most common pilot-scale solar photoreactors include 

parabolic trough reactors (PTRs), flat plate reactors (FPRs), Heliomans reactors (HLMR), double-skin 

sheet reactors (DSSRs), and compound parabolic collector (CPC) reactors [6]. Undoubtedly, the most 

widely used commercial solar reactor is the CPC, since it combines efficient capture of solar radiation 

(Figure 1) with favorable hydrodynamics resulting in effective water treatment.     

 

Figure 1. Geometric schematic of a CPC reactor with direct incident solar radiation of 30 W/m
2
 (adapted from [7]) 
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The CPC is essentially a tubular reactor with two highly polished, semi-involute, aluminium reflectors 

located at the bottom of the tube. This photoreactor is usually a static device inclined to the sun by an 

angle which maximize the absorption of solar light [1]. Its optical advantage lies in the redirection of both 

direct and diffuse solar light by the reflectors without excessive thermal effects on the water that flows 

inside the tube. The hydrodynamic advantage is presented by operation under turbulent flows with low 

power consumption costs, which ensure perfect lateral mixing and a homogeneous suspension of the 

catalyst particles. Furthermore, its closed configuration avoids the evaporation of volatile contaminants 

[2, 6, 8–15]. The materials used for its construction are in general inexpensive such as PVC for the 

fittings and Perspex for the tubes although the highly polished aluminium for the reflectors and the 

borosilicate glass as replacement for the Perspex tubes, have a relatively higher cost. 

The design and optimization of the CPC photoreactor for water treatment has been performed using 

mathematical models that describe the incident solar radiation, the absorption and scattering of photons, 

the reaction kinetics, the hydrodynamics and the quantum efficiencies [8, 11, 16–25]. The models allow 

the selection of the optimal tube diameter and suspended catalyst concentration [6, 7, 24], the evaluation 

of the type of semiconductor materials and the flow hydrodynamics [25]. Despite the favorable properties 

of the CPC photoreactor its design presents some fundamental limitations in commercial terms including 

low operating volumes of treatment in relation to the solar footprint occupied by CPC arrays and the 

apparent difficulty in scaling-up to large bore diameters due to the fragility of the pipe and the 

requirement for larger size end connections which increase costs and are prone to leaking.  

In this study, the conceptual design and evaluation of a new prototype of an offset multi tubular solar 

photoreactor (OMTP), which mitigates the limitation of CPC and that can be adopted for industrial 

wastewater treatment is presented. The basic principle of this design is based on the removal of the costly 

CPC involute reflectors and in the introduction of a further set of tubes, which significantly increase the 

total reactor volume in relation to the solar footprint. The performance of the OMTP was evaluated and 

benchmarked against the CPC for the removal of methylene blue (MB), dichloroacetic acid (DCA), 4-

chlorophenol (4-CP), and phenol in water.  

2. DESIGN OF THE NEW SOLAR PHOTOREACTOR PROTOTYPE 

 

2.1. Photoreactor design  

 

Figure 2 schematically shows the configuration of this new prototype, which is named the Offset Multi 

Tubular Photoreactor (OMTP). The design of the OMTP solar photoreactor prototype eliminates the use 



of costly parabolic involutes of conventional CPCs (Figure 2a) and introduces a further set of offset 

parallel tubes, with their axes located at the contact points of the CPC involutes, in the space occupied by 

the involutes. An optional polished aluminium flat reflector located at the bottom of the tubes could be 

fitted to improve the capture of solar light, although this is not an essential element.  

 
Figure 2. Distribution of tubes in a conventional CPC reactor (up) (adapted from [7]) and in an OMTP configuration 

(down) 

 

The fundamental principle of this new design lies in the inclusion of (2n - 1) set of reaction tubes, located 

over the vertices of isosceles triangle. The separations between tubes are showed in the Figure 2, which in 

comparison to a conventional CPC of n tubes, significantly increase the total fluid residence time and 

operating volume of the reactor, while maintaining the same physical area (footprint) occupied by the 

solar collector (Figure 3). The further set of (n - 1) tubes in the OMTP is offset in comparison to the n set 

of CPC, which also facilitate tubes connections. Table 1 compares the specifications of the OMTP 

photoreactor with those of a CPC, which were evaluated in this study.  

 

 

 

 



Table 1. Specifications of CPC reactor and OMTP. 

Type of Reactor CPC OMTP 

Collector surface area* (m
2
) 1.74 1.74 

Collector length (m) 3.0 3.0 

Collector width (m) 0.58 0.58 

Collector height (m) 0.12 0.16 

Collector material Zinc Zinc 

Tube material Borosilicate Borosilicate 

Tube external diameter (m) 0.032 0.032 

Tube thickness (m) 0.0014 0.0014 

Exposed tube length (m) 1.2 1.2 

Number of tubes 10 18 

Absorption surface area** (m
2
) 1.2 1.1 

Exposed reactor volume (L) 8.04 14.46 

Involute material Aluminum ---- 

Involute reflector angle 90° ---- 

Involute reflectivity 0.85 ---- 

* The collector area represents the space occupied by the reactor structural metal box  

**Represents the total area of the tubes exposed to sunlight  

 

 



 

Figure 3. Proposed schematic design for the OMTP (design simulation using Sketchup®) 

 

2.2. Photoreactor performance parameters 

 

The design of an efficient photocatalytic reactor begins with its reactor geometry since this implicitly 

influences the photons paths, the optical thickness, and the optical limiting layer of the reactor [26]. In 

addition, the performance of a solar photoreactor is affected by the intensity of the incident radiation 

(direct and diffuse solar radiation), which is a function of the geographical latitude, session of year, hour 

of the day and the atmospheric conditions. 

 

For an adequate comparison of the performance of solar photoreactors under variable solar conditions, the 

following scaling parameters have been considered: 
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where 𝛼 is the ratio of the surface area (ST) to the volume (VR) of the transparent reactor tubes exposed to 

solar light; 
g  is the ratio of the total area occupied by the collector structure (AT,Collector) and the total 

operating liquid volume (VT); 𝛽 is the ratio of reactor volume to total liquid volume; tWS is the standard 

treatment time, 𝐼    
  is the standard global average irradiance [3]; 𝐼     𝑡  is the incident UV radiation at 

time t;    is the degradation efficiency per unit area per unit treatment volume; 𝐶    𝑡      is the initial 

TOC concentration of the contaminant in the water at the initial time; 𝐶    𝑡      is the final TOC 

concentration of the contaminant after a total time in which solar energy has been accumulated; and VDZ is 

the volume of the dark zone of the reactor usually also comprising a recycling system. The standard 

treatment time considers the variations in solar irradiance due to atmospheric changes. 

 

3. METHODOLOGY 

The common water contaminants phenol, dichloroacetic acid (DCA), 4-chlorophneol (4-CP) (all 99.9% 

analytical grade from Merck®), and commercial-grade Methylene Blue (MB) typically used for kinetic 

studies in large-scale photocatalytic reactors [2] were used to evaluate the performance of the OMTP with 

respect to the CPC. Evonik-Degussa TiO2-P25 was used as the suspended catalyst, and commercial HCl 

(0.2 M) was used to change the pH of the water. The overall concentration of the water contaminants was 

monitored with a total organic carbon (TOC-V CPH Shimadzu) and a UV-vis spectrophotometer 

(Labomed Spectro UV-2650). The instantaneous and accumulated solar radiation (Figure S1, Supporting 

Information) was monitored with a Delta Ohm 210.2 radiometer with an LP-UVB probe (300-360 nm) 

and the pH was measured with a Consort pH-meter C931. 

 

The hydrodynamic performance was adjusted using the β parameter (Eq. 3) with the volumetric flow in 

turbulent regime (Reynolds number > 20,000) to avoid sedimentation of the catalyst. One inch PVC 

fittings were used to connect the borosilicate tubes. The water was circulated with a IWAKI-VMD-

40RLXT magnetic pump with a nominal power of 0.5 HP and 35 L/min maximum flowrate.  
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3.1 Experimental Evaluation of the OMTP Using Methylene Blue 

 

The removal of MB (10 ppm) by adsorption was evaluated with four catalyst concentrations (0.20, 0.25, 

0.30, and 0.35 g/L) at natural pH (7.45 ± 0.18). The tests were done using 100 ml samples, which were 

continuously agitated in the dark for 4 hours in conical flasks. Aliquots were collected from these every 

15 minutes to measure the residual concentration of MB by UV-Vis spectrophotometry.  

 

The photocatalytic degradation of MB in the OMTP, at an initial concentration of 10 ppm was evaluated 

at the catalyst concentrations (0.00, 0.20, 0.25, 0.30, 0.35 g/L), at a volumetric flow rate of 24 L/min and 

using a 𝛽 factor of 0.3 (VR = 9.7 L, see Table 1). The range of catalyst concentrations investigated was 

established considering the optimization of tubular solar photoreactors which determined that for 32-mm 

diameter borosilicate glass tubes, the optimal operating concentration of TiO2-P25 should be between 

0.20 and 0.40 g/L [16]. 

 

The reactor set-up comprised the OMTP and the water recycle system, which included a stirred tank, 

where the solutions were made and samples were collected, a centrifugal pump and two control valves to 

control the recirculation flowrate.  

In a typical experiment, the stirred tank was initially loaded with 29 L of tap water and the photocatalyst 

was added to form a slurry suspension and circulated in the reactor system for 10 min. Then, 1 L of 

contaminant aqueous solution, at the required concentration, was added in the reactor system and the 

suspension was recirculated under darkness for 30 min to establish adsorption/desorption equilibrium 

conditions. Then a sample was taken and the reactor was exposed to solar light at (tSW = 0). In situ 

measurements of dissolved oxygen, pH and temperature were monitored during the experiments (Table 

S1, Supporting Information). The reactor was exposed to solar light until a cumulative UV-B total energy 

of 8000 J/m
2
 was reached.  Samples were collected every 1000 units of accumulated energy, they were 

filtered, centrifuged, and analyzed by UV-Vis spectrophotometry. The same procedure was followed to 

monitor the contaminants degradation in the CPC reactor under solar light. 

 

3.2 Comparison of OMTP and CPC in the Degradation of Organic Pollutants 

 

The results of the degradation of phenol, DCA, and 4-CP were used to compare the performance of the 

OMTP and CPC photoreactors on a solar pilot scale with suspended TiO2-P25, at catalyst concentrations 

of 0.10 g/L for phenol, 0.35 g/L for DCA, and 0.5 g/L for 4-CP. These values of catalyst concentrations 

were optimized in previous investigations carried out in a CPC reactor operated under identical 



experiment conditions and total incident solar radiation [16].  The initial pH of the water was 3.0 for 

phenol, 3.2 for DCA, and 3.5 for 4-CP, as recommended by [27]. The initial concentration of each 

contaminant in the water was 120 and 60 ppm [26].  

 

The 𝛽 factor in the CPC and OMPT reactor systems was held constant at 0.3, and the volumetric flow rate 

in both systems was set at 24 L/min to ensure a turbulent flow regime (Re = 21140) and uniform 

suspensions of the catalyst. In such way, the number of passes of the water through the reactors were the 

same, allowing a direct comparison of the two reactor systems. The physical area of the collector was 

constant (one reactor module, AT,Collector = 1.74 m
2
), while the total operating volumes were 36 L for the 

CPC and 65 L for the OMTP, respectively.  

 

Continuous air bubbling in the recirculation stirred tank was provided to maintain the water under oxygen 

saturation conditions during the oxidation reaction which was carried out at the operating temperature of 

33°C ± 0.3. The effect of molecular adsorption or direct photolysis of the contaminants tested were 

negligible and did not directly affect the photocatalytic process as previously shown [16]. 

 

The operating procedure for the solar heterogeneous photocatalysis tests were as described for the MB 

with sample collected every 1600 units of accumulated energy up to 8000 J/m
2
. The samples after 

filtration and centrifugation were analyzed by TOC.  

 

3.3 Mathematical Evaluation of OMTP and CPC Performance 

 

The formulations of the modeling equations of the OMTP and CPC reactors are based on the generalized 

methodology (Fig. 4) for heterogeneous pilot-scale solar reactors, TiO2-P25 and natural solar radiation 

proposed by [16].  

 



 

Figure 4. Methodological structure of the model. Adapted from [16]. 

 

Both OMTP and CPC reactors were modeled as flow-through reactors with total recycling, thus, the 

material balance could be described as an integral-differential equation as a function of the cumulative 

incident solar energy ξAE, the average total concentration of the contaminant, and the generalized kinetic 

model for the heterogeneous photocatalytic degradation of organic contaminants in the presence of TiO2-

P25, under the concept of constant isotropic global parameters throughout the reactor volume (Фg is 

quantum yield (mol/Einstein);          
  is Effective Volumetric Rate of Energy Absorption, VREA 

(Einstein/s.m
3
); α1 is the kinetic reaction rate constant (mol/m

2
·s); κP is the constant of particle (m

3
/m

2
) 

and k
L-H

A is absorption constant of the L-H model (m
3
/mol)) [16]: 
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where ξAE is the slope of the experimental data relationship of the cumulative incident solar radiation vs. 

time for each experimental test, and ξt is the inverse slope of the relationship of the incident radiation and 

standard treatment time. The ξt function is proposed to account for the fluctuation of the incident solar 

irradiance due to atmospheric phenomena and time of the day. The model parameters in equation (7) have 

been reported in [16]. 



 

The incident solar radiation I0 arriving on the reactors was modeled using the methodology reported by 

[15], which considers constant solar radiation in the longitudinal axis of the tubular reactors, corrected for 

the geographic position and time of the year of Cartagena-Colombia (10°25’25” N. L – 75°31’31” W). At 

this latitude the upper tubes did not produced shadows to the lower tubes during the experimental time.  

The local volumetric rate of photon absorption (LVRPA), which describes the effect of photon absorption 

and scattering in the reactor, was quantified using the SFM-HG model [24]: 
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The values of the absorption (κ) and scattering (σ) coefficients were as those in [28] and the probabilities 

of forward, backward and side scattering for TiO2-P25 were pf = 0.754, pb = 0.133 and ps = 0.027 [24]. 

The model parameters l
w
corr

depend on the ray pathlenghs δ (Figure 1), which for tubular and CPC 

reactors were evaluated using the methodology of [7] and [15].  

 

Finally, the hydrodynamic performance of the reactor was that of perfectly mixed batch reactor due to the 

large circulation ratio and small conversion per pass. The mass balance of the batch reactor (Eq. 7) is an 

equation in grouped parameters, independent of the geometrical coordinates. Therefore, the properties of 

the reaction suspension (fluid + suspended particles) were assumed as a pseudo-homogeneous mixture. 

The parameters in the mass balance were modeled as constant isotropic global parameters and in 

consequence a hydrodynamic model became redundant. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Evaluation of the optical and hydrodynamic performance of the reactor 

 

The optical comparison of the OMTP with respect to the CPC was quantified using the overall volumetric 

rate of photon absorption (OVRPA) [16] (Eq. 10). 
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The reactor to total volume ratio β, is a scaling parameter that is indirectly related to the performance of 

the pumping system. In order to maintain optimal pump operation (suction and discharge), turbulent flow 

conditions and uniform suspension of the catalyst [12], the minimum β ratio was 0.27. The reactor 

systems were therefore operated with an overshoot factor of 10% (β = 0.3) and with total volumes of 32 L 

for the CPC and 58 L for the OMTP. 

 

Figure 5 shows the LVRPA distribution on a cross section of the CPC and OMPT calculated using the 

SFM-HG model and 0.25 g/L TiO2-P25, on a clear sunny day. The equivalent values of the OVRPA were 

1887.94 W/m
3
 for the CPC and 1511.07 W/m

3
 for the OMTP, and the total solar power absorbed in the 

CPC and OMPT collectors were 15.17 W for the CPC (1887.94W/m
3 
 0.00804 m

3
) and 21.86 W for the 

OMTP (1511.07W/m
3 
 0.01446 m

3
), representing an optical gain of 44% for the latter. The OMTP 

advantage is reflected in increased system degradation efficiencies and larger operation volumes (VT). 

These values are consistent with previous reports [24].  

a b 

Figure 5. Distribution of LVRPA using SFM-HG: a) CPC reactor and b) OMTP for a TiO2-P25 catalyst 

loading of 0.25 g/L. 

 

4.2 OMTP and CPC footprints and process economics 

 

The primary limitations of the CPC reactor are the treatment volume capacity and the area occupied by 

each collector module, particularly considering that large exposure areas are required to ensure the 

treatment of industrially relevant operating volumes [1]. A second advantage in the operation of large-

scale reactors with the new prototype compared with the CPC is that the ratio of the physical area 

occupied by the collector to the total volume of treatment (
g ) could be lower, which would demonstrate 



its viability in the scaling of photocatalysis processes for industrial wastewater applications on a 

commercial scale. This means that for smaller 
g  factors, fewer solar reactors and smaller footprint 

would be required for a given volume of treatment, which would thereby improve the costs of initial 

investment, maintenance, and operating costs. Table 2 shows the 
g ratios for the pilot-scale CPC 

reactors reported in the literature. 

 

From the point of view of irradiated volume, four OMTPs are equivalent to seven CPCs but with higher 

photon efficiencies than that of the latter, as discussed below. The hydraulic optimization of the system 

shows that the energy consumption per liter of treated wastewater would be lower in the designed OMTP 

and that to maintain the turbulent flow with a flow rate higher than 24 g/L, a 0.30-HP magnetic pump is 

theoretically required as opposed to a 0.24-HP pump for a CPC. The difference in the energy cost is 

compensated in treating higher volumes with efficiency increases. 

Table 2. Ratio of the physical area of the collector per treatment volume for solar CPC reactors and 

OMPT. 

Reference AT,Collector (m
2
) VT (m

3
) 

g (m
2
/m

3
) 

OMTP 1.74 0.058 29 

CPC 1.74 0.032 53 

[29] 4.5 0.060 80 

[30] 1.37 0.025 60 

[31] 2.12 0.050 40 

[32] 3.08 0.035 90 

 

 

Moreover, the initial investment costs for the construction of an OMTP module, although slightly higher 

than that of the CPC, are compensated for by its implementation with smaller numbers of arrays of CPC 

modules in series with the same arrangement and distribution. If the arrangements of the same type are 

considered, the cost of the construction area will be 1.8 times lower than that of the CPC. Table 3 presents 

the costs in US dollars at the current exchange rate for the construction of a reactor module.  

 

Table 3. USD costs for construction of a CPC reactor and an OMTP in Colombia (Reference year 2014). 

Concept CPC OMTP 

Borosilicate tubes 130 235 

Collector and supports 550 550 



Reflectors (involutes) 100 --- 

Recycling tanks 15 15 

Magnetic pump  100 100 

PVC tubing and accessories 85 120 

Seals, resins, adhesives, and Teflon 80 90 

Labor 200 250 

Total 1260 1360 

Operation/day* 13 14 

* Energy, catalyst and maintenance based on 12 hours of operation, power of pump and volume of 

treatment.  

 

 

4.3 Evaluation of heterogeneous photocatalytic degradation of organic compounds  

 

4.3.1 Degradation of methylene blue 

 

The performance of the heterogeneous photocatalytic degradation of methylene blue with suspended 

TiO2-P25 using natural solar radiation in the OMTP is shown in Figure 6. This is reported as the 

percentage of degradation %Deg as a function of the accumulated UV-B energy: 
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The reaction rates of methylene blue were the highest for accumulated energies of less than 2000 units, 

under optimal catalyst loading (0.25 g/L). The rate increased at lower catalyst loadings and then 

decreased at higher catalyst loadings (> 0.25 g/L) as a result of the increase of the photon shielding 

effects. The photon scattering and shielding effects are a function of the optical thickness of the 

suspension, which in turn depend on the catalyst concentration, the optical properties of the catalyst 

suspension (absorption and scattering coefficients and scattering phase function) and the geometrical 

thickness of the suspension. The optical thickness at the higher catalyst concentration (0.35 g/L) was 2.06, 

while at the lower catalyst concentrations (0.2 g/L) it was 1.18. These results are consistent with previous 

simulation results reported in the literature [7].  

 



However, for all four concentrations of TiO2-P25 used, degradation greater than 99% were reached for an 

accumulated energy of 8000 J/m
2
 and for treatment times of less than 70 minutes. This is primarily due to 

the direct effects of increased residence time, illuminated reactor volume and overall absorbed solar 

energy, and the contribution of direct photolysis. 

 

 

Figure 6. Performance of methylene blue degradation in a pilot-scale OMTP solar reactor at different 

TiO2-P25 catalyst concentrations (0.2, 0.25, 0.3, and 0.35 g/L). 

 

The effect of direct photolysis of MB in the OMTP showed a degradation of 46% at an accumulated 

energy of 8000 J/m
2
, which compares to only 10% in the CPC reactor operated under identical conditions 

(see Figure 7.a). This improvement in performance evidences the effect of favourable reactor geometry in 

the OMPT and the corresponding increase of the surface area and reactor volume exposed to the sun with 

respect to the CPC. Literature studies have reported degradation of methylene blue in the absence of a 

catalyst, obtaining values of less than 10% for CPC reactors and up to 20% in a small-scale rotary reactor 

using UV lamps [33–36]. Considering that this compound is highly recalcitrant and exhibits resistance to 

biodegradation, the effect of photolysis on the heterogeneous solar photocatalysis process may be 

beneficial and may decrease the contact time in large-scale treatment systems. In contrast, adsorption 

experiments under darkness in the pilot plant showed reductions in the initial loading of the contaminant 

of less than 2% during the homogenization time, therefore, these can be neglected on the effect of 

heterogeneous solar photocatalysis of MB.  

 

4.3.2 Degradation of phenol, DCA, and 4-CP 
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Heterogeneous photocatalytic degradation of phenol, DCA, and 4-CP was performed in a heterogeneous 

photocatalytic solar platform at the University of Cartagena, Colombia (10°25’25” N – 75°31’31” O) on 

sunny and clear days at a specific hour to ensure that environmental atmospheric conditions did not 

significantly affect the process. The incident solar radiation measured during the experiment period 

(2016) and the slopes of the linear relationship with the accumulated UV-B radiation during the treatment 

time is presented in Supplementary Information (Figs. S1-S5). The observed conversion of TOC at 8000 

J/m
2
 of energy accumulated for these three compounds at different initial TOC concentrations in both the 

OMTP and CPC are presented in Table 4 by applying Eq. (11). 

 

Table 4 Percentages of heterogeneous photocatalytic degradation for Phenol, DCA, and 4-CP in OMTP 

and CPC solar reactors for total accumulated energies of 8000 J/m
2
. 

%Deg Phenol DCA 4-CP 

Reactor 
CTOC,0  

60 ppm 

CTOC,0  

120 ppm 

CTOC,0  

60 ppm 

CTOC,0  

120 ppm 

CTOC,0  

60 ppm 

CTOC,0  

120 ppm 

OMTP 24.15 29.69 55.58 72.86 20.68 22.19 

CPC 20.31 19.36 53.41 68.26 28.17 21.42 

CCat 0.10 g/L 0.35 g/L 0.50 g/L 

 

The results show that for the established operating conditions, the percentages of TOC degradation favor 

the OMTP with respect to the CPC. The advantage of the OMTP over the CPC lies in the higher 

operating volume per footprint exposed to sunlight. The lower degree of phenol and 4-CP degradation in 

comparison to DCA, does not depend on the geometry of the reactor, but results from the highly 

recalcitrant intermediates that are generated during the mineralization process [12, 37, 38]. 4-CP primarily 

produces 4-chlorocatechol (4-CC), hydroquinone (HQ), 1,4-benzoquinone (BQ), acetylene, and maleic 

acid, during the treatment, however, these are consumed with the reagent by effect of the high attack of 

hydroxyl radicals due to high photonic performance of the reactor [23, 31, 38]. Phenol, instead generates 

p-benzoquinone (p-BQ), HQ, and catechol (CC), which, similarly to the 4-CP intermediates, suffer high 

molecular adsorption on the surface of TiO2 that competes with the multilayer adsorption of H2O, thus 

reducing the probability of photogenerated electron capture, decreasing OH* production, and increasing 

surface recombination [39, 40].  

 

In contrast, the photocatalytic degradation of DCA proceeded at much higher rates compared to phenol 

and 4-CP, which results from the simultaneous attack by photogenerated holes (h+) and hydroxyl radicals 



on the dissociated dichloroacetate ions in aqueous phase [12, 41]. The direct attack of dichloroacetate ions 

by the photogenerated holes form dichloroacetate radicals and then CO2 and dichloromethyl radicals by 

decarboxylation. These react with molecular oxygen adsorbed on the surface of the catalyst, forming 

dichloromethylperoxyl radicals. These two molecules together form H2O2 and phosgene. H2O2 enhances 

electron capture on the photocatalyst surface, which thereby benefits the formation of hydroxyl radicals, 

while phosgene is hydrolyzed to HCl and CO2 [41]. Simultaneously to the above mechanism, the 

hydroxyl radicals formed by the oxidation of water /protons at the surface of the photocatalyst may also 

attack DCA and the reaction intermediates [12, 17]. 

 

4.3.3 Effect of geometry  

 

Although contaminants reaction mechanisms are intrinsic to the nature of the reagent and its interaction 

with the photocatalyst, the rate of generation of the oxidant species is a function of the rate of photon 

absorption in the reactor, which in turn depends on the reactor geometry. The degradation efficiency of 

MB, phenol, DCA, and 4-CP, respectively, per unit area and per unit treatment volume, ηα, as a function 

of the accumulated energy ξAE in both OMTP and CPC is shown in Fig. 7. The OMTP displayed much 

higher efficiencies than in the CPC. After 8000 J/m
2
 of accumulated solar energy, the ηα for MB 

degradation was 81% higher in the OMTP (Figure 7a). At higher initial concentrations (120 ppm) the ηα 

degradation for phenol was 242% higher (Figure 7b), 125% higher for DCA (Figure 7c), and 118% higher 

for 4-CP (Figure 7d) in the OMTP in comparison to the degradation efficiency in the CPC. At lower 

contaminant concentration (60 ppm), the ηα percentages were 151% (phenol), 150% (DCA), and 55% (4-

CP) higher in the OMTP than in the CPC. In general, the results shown that at high initial concentration 

of contaminants the degradation performance always is much better in compare of low initial 

concentration, this is due to the reaction order which is higher than zero on evaluated systems and 

therefore a faster rate is expected at higher initial concentrations. 

 

These results represent a fundamental contribution to the scaling processes of solar heterogeneous 

photocatalysis applications because higher efficiencies in the OMTP were obtained using the same 

physical installation area of collector (1.74 m
2
). In addition, the OMTP worked with a volume 1.8 times 

greater than the CPC volume. For multiple solar reactor panels these advantages will scale linearly. 

 

 

 

 



 

 

a 

 

b 

 

c 

 

d 

Figure 7. Efficiency of photocatalytic degradation at OMTP and CPC solar reactors per unit area and 

volume of operation: a) Methylene Blue b) Phenol, c) DCA and, d) 4-Chlorophenol. 

 

 

4.4 Mathematical evaluation of OMTP and CPC photoreactor performance 

 

Mathematical modeling of the photoreactor systems by combining the mass balances, the solution of the 

radiation balance (LVRPA), the reactor hydrodynamics and the reaction kinetics, permits to evaluate the 

concentrations of contaminants as a function of the accumulated energy. The model is also required for 

the design of solar water detoxification plants. The performance of the heterogeneous photocatalytic 

degradation processes in both OMTP and CPC was quantified by the solution of the photoreactor model 

(Eq. 7 coupled with Eq. 9) using the 4th-order Runge-Kutta method and the optimization algorithm of 

Nelder and Mead [42] for the determination of the kinetic parameters, which fits the model to the 

experimental results. The robustness of the mathematical model generated high predictions of the 

experimental data with average total error of less than 1.6% and with deviations close to zero (Figure 8).  
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Figure 8. Predictive capacity of the model for the description of heterogeneous solar photocatalytic 

degradation in the OMTP and CPC reactor for a) phenol, b) DCA, and c) 4-CP with suspended TiO2-P25 

and natural solar radiation in Cartagena, Colombia 

 

The determined kinetic parameters α1,  κA
L-Hand

 and η are shown in Table 5. For the three compounds 

evaluated, the overall reaction rate efficiencies in the OMTP were 40% (average) higher than in the CPC 

due to the higher rate of photon absorption and larger reactor volume. The longer mean residence time in 
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the illuminated zone of the OMTP as a result of a greater number of tubes results in higher rates of 

contaminants mineralization incorporating the intermediates formed during the reactions (Figure 8) [1]. 

 

Table 5. Overall kinetic parameters of the model and η* parameter for photocatalytic degradation of 

phenol, DCA, and 4-CP.  

Compound 

OMTP CPC  

α1x10
4
 κA

L-H
 x10

4
 η x10

4
 α1x10

4
 κA

L-H
 x10

4
 η x10

4
           

    
 

Phenol 8.18 1.41 2.934 5.75 0.96 1.960 0.4969 

DCA 9.47 1.63 2.847 9.05 1.56 1.804 0.5782 

4-CP 3.87 0.63 1.810 3.57 0.56 1.730 0.462 

*η is the degradation per unit of collector area and per treatment volume. 

 

The kinetic performance is affected for the molecular absorption mechanisms. The generalized kinetic 

model used in this evaluation (Eq. 7) was based on Turchi and Ollis mechanism [8, 16, 17]. The 

absorptive processes in the solid-liquid interface are strongly competitive on molecular transportation of 

the reactive species and the kinetic of reaction rate [16]. The competition of molecular absorption of 

contaminant over TiO2 surface in the OMTP is also affected by the reactor geometry. The constants κA
L-H

 

of the model also have higher values in the OMTP. This result is consistent due that the molecular 

absorption of the process is not an equilibrium process because it is a kinetic constant of adsorption. The 

dynamic of the competitive molecular absorption is affected by the longer residence time and the total 

volume of operation, whereby the effects of molecular transport of the substrates to the catalyst surface 

and their adsorption increase. Finally, these kinetic contributions favor photonic efficiencies η (ppm/J) 

[2], which are higher in the OMTP in comparison to the CPC reactor (Table 5), because of the higher 

reaction volume and total solar power absorbed in this reactor. 

 

CONCLUSIONS 

 

This study has presented a new solar reactor prototype (OMTP) which addresses some of the limitations 

of current CPC solar reactors used in industrial wastewater treatment.  The OMTP increase the total 

treatment volume, the residence time, decrease the footprint, and simplify scale-up in comparison to the 

CPC. This new reactor includes an additional arrangement of tubes in the space occupied by the CPC 

involutes. The fluid residence time in the OMPT increased by up to 1.8 times. The net solar global energy 

absorbed in the OMPT increased by up to 44%, which translated in MB, DCA, 4-CP and phenol 



degradation efficiencies up to 81%, 125%, 118% and 242% higher, respectively, in comparison to the 

CPC after 8000 J/m
2
 of accumulated solar energy. Optimization of the reaction volume/volume ratio was 

achieved by obtaining a minimum β factor of 0.27, which guaranteed turbulent conditions with Re > 

20,000, perfect mixing of particles, and avoided the sedimentation of the catalyst. In addition, this 

condition is the requirement for the hydrodynamic operation of the pumping system. The overall net 

energy, i.e., OVRPA, associated with the operation of the two reactors was calculated, and a greater 

availability of radiant energy was found in the reaction phase space for the OMTP, 412.3 W/m
3 

for the 

CPC (10 tubes) and 653.04 W/m
3 

for the OMTP (18 tubes), which is consistent with the experimental 

results of the degradation of organic pollutants studied. The efficiencies per unit area and volumetric unit 

of treatment demonstrated the absolute superiority of the OMTP for larger overall volumes, which 

indicated that the reactor is potentially better for scaling and requires a smaller number of collectors for 

large volumes of wastewater. Finally, the costs of OMTP was competitive and comparable with 

conventional CPC solar photoreactor.  Further improvements on the performance of the OMTP for water 

treatment and purification, should include the use of efficient solar responsive photocatalysts.   
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Abstract 

The design and operation of a new solar photoreactor prototype named Offset Multi Tubular Photoreactor 

(OMTP) is presented. The OMTP advances over the compound parabolic collector (CPC) photoreactor, 

which is one of the most efficient design for large-scale solar detoxification of water and wastewater. The 

OMTP design is based on a simple modification of the common CPC and included a supplementary set of 

tubes in the space occupied by the axes of intersection of the CPC reflective involutes. This new reactor 

configuration increased the irradiated reactor volume by 79% and the fluid residence time by up to 1.8-

fold in comparison to the CPC, for the same solar irradiated area (footprint). The model parameters used 

for comparing and scaling the OMPT and CPC were β (reactor volume/total volume), α (area of 

absorption/total volume), αg (physical area/total volume), degradation efficiency ηα per unit area, and the 

operating volume. The total solar energy absorbed in the reactors (1.74 m
2
 footprint) was 15.17 W for the 

CPC and 21.86 W for the OMTP, which represents an overall gain of 44% for the latter. The performance 

of the OMTP and CPC were compared at the same value of solar exposure β of 0.3 with optimal 

photocatalyst loading of 0.25 g/L titanium dioxide (TiO2 P25). The degradation efficiencies of methylene 

blue, dichloroacetic acid, 4-chlorophenol (120 ppm initial concentration) in the OMTP were up to 81%, 

125%, 118% and 242% higher, respectively, in comparison to the CPC after 8000 J/m
2
 of accumulated 

solar energy. The OMTP should outperform the CPC in environmental and renewable energy applications 

of solar heterogeneous photocatalysis. 

Keywords: Solar photocatalysis, OMTP and CPC photocatalytic reactor, TiO2-P25, Six Flux Model-HG 
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1. INTRODUCTION  

The efficient utilization of renewable solar energy is essential for the development of sustainable 

processes for the production of clean energy, biofuels, hydrogen, for environmental clean-up, water 

disinfection and for the exploitation of self-cleaning surfaces. Among these processes, solar 

photocatalysis has attracted industrial interest as a sustainable process for the mitigation of the 

environmental effects associated with water pollution [1]. Different applications of photocatalysis for the 

degradation and mineralization of water contaminants, such as pesticides, herbicides, dyes, emerging 

pollutants, phenols, and halogenated compounds, have been demonstrated at pilot-scale using solar 

radiation and commercial catalysts [2–5]. The most common pilot-scale solar photoreactors include 

parabolic trough reactors (PTRs), flat plate reactors (FPRs), Heliomans reactors (HLMR), double-skin 

sheet reactors (DSSRs), and compound parabolic collector (CPC) reactors [6]. Undoubtedly, the most 

widely used commercial solar reactor is the CPC, since it combines efficient capture of solar radiation 

(Figure 1) with favorable hydrodynamics resulting in effective water treatment.     

 

Figure 1. Geometric schematic of a CPC reactor with direct incident solar radiation of 30 W/m
2
 (adapted from [7]) 
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The CPC is essentially a tubular reactor with two highly polished, semi-involute, aluminium reflectors 

located at the bottom of the tube. This photoreactor is usually a static device inclined to the sun by an 

angle which maximize the absorption of solar light [1]. Its optical advantage lies in the redirection of both 

direct and diffuse solar light by the reflectors without excessive thermal effects on the water that flows 

inside the tube. The hydrodynamic advantage is presented by operation under turbulent flows with low 

power consumption costs, which ensure perfect lateral mixing and a homogeneous suspension of the 

catalyst particles. Furthermore, its closed configuration avoids the evaporation of volatile contaminants 

[2, 6, 8–15]. The materials used for its construction are in general inexpensive such as PVC for the 

fittings and Perspex for the tubes although the highly polished aluminium for the reflectors and the 

borosilicate glass as replacement for the Perspex tubes, have a relatively higher cost. 

The design and optimization of the CPC photoreactor for water treatment has been performed using 

mathematical models that describe the incident solar radiation, the absorption and scattering of photons, 

the reaction kinetics, the hydrodynamics and the quantum efficiencies [8, 11, 16–25]. The models allow 

the selection of the optimal tube diameter and suspended catalyst concentration [6, 7, 24], the evaluation 

of the type of semiconductor materials and the flow hydrodynamics [25]. Despite the favorable properties 

of the CPC photoreactor its design presents some fundamental limitations in commercial terms including 

low operating volumes of treatment in relation to the solar footprint occupied by CPC arrays and the 

apparent difficulty in scaling-up to large bore diameters due to the fragility of the pipe and the 

requirement for larger size end connections which increase costs and are prone to leaking.  

In this study, the conceptual design and evaluation of a new prototype of an offset multi tubular solar 

photoreactor (OMTP), which mitigates the limitation of CPC and that can be adopted for industrial 

wastewater treatment is presented. The basic principle of this design is based on the removal of the costly 

CPC involute reflectors and in the introduction of a further set of tubes, which significantly increase the 

total reactor volume in relation to the solar footprint. The performance of the OMTP was evaluated and 

benchmarked against the CPC for the removal of methylene blue (MB), dichloroacetic acid (DCA), 4-

chlorophenol (4-CP), and phenol in water.  

2. DESIGN OF THE NEW SOLAR PHOTOREACTOR PROTOTYPE 

 

2.1. Photoreactor design  

 

Figure 2 schematically shows the configuration of this new prototype, which is named the Offset Multi 

Tubular Photoreactor (OMTP). The design of the OMTP solar photoreactor prototype eliminates the use 



of costly parabolic involutes of conventional CPCs (Figure 2a) and introduces a further set of offset 

parallel tubes, with their axes located at the contact points of the CPC involutes, in the space occupied by 

the involutes. An optional polished aluminium flat reflector located at the bottom of the tubes could be 

fitted to improve the capture of solar light, although this is not an essential element.  

 
Figure 2. Distribution of tubes in a conventional CPC reactor (up) (adapted from [7]) and in an OMTP configuration 

(down) 

 

The fundamental principle of this new design lies in the inclusion of (2n - 1) set of reaction tubes, located 

over the vertices of isosceles triangle. The separations between tubes are showed in the Figure 2, which in 

comparison to a conventional CPC of n tubes, significantly increase the total fluid residence time and 

operating volume of the reactor, while maintaining the same physical area (footprint) occupied by the 

solar collector (Figure 3). The further set of (n - 1) tubes in the OMTP is offset in comparison to the n set 

of CPC, which also facilitate tubes connections. Table 1 compares the specifications of the OMTP 

photoreactor with those of a CPC, which were evaluated in this study.  

 

 

 

 



Table 1. Specifications of CPC reactor and OMTP. 

Type of Reactor CPC OMTP 

Collector surface area* (m
2
) 1.74 1.74 

Collector length (m) 3.0 3.0 

Collector width (m) 0.58 0.58 

Collector height (m) 0.12 0.16 

Collector material Zinc Zinc 

Tube material Borosilicate Borosilicate 

Tube external diameter (m) 0.032 0.032 

Tube thickness (m) 0.0014 0.0014 

Exposed tube length (m) 1.2 1.2 

Number of tubes 10 18 

Absorption surface area** (m
2
) 1.2 1.1 

Exposed reactor volume (L) 8.04 14.46 

Involute material Aluminum ---- 

Involute reflector angle 90° ---- 

Involute reflectivity 0.85 ---- 

* The collector area represents the space occupied by the reactor structural metal box  

**Represents the total area of the tubes exposed to sunlight  

 

 



 

Figure 3. Proposed schematic design for the OMTP (design simulation using Sketchup®) 

 

2.2. Photoreactor performance parameters 

 

The design of an efficient photocatalytic reactor begins with its reactor geometry since this implicitly 

influences the photons paths, the optical thickness, and the optical limiting layer of the reactor [26]. In 

addition, the performance of a solar photoreactor is affected by the intensity of the incident radiation 

(direct and diffuse solar radiation), which is a function of the geographical latitude, session of year, hour 

of the day and the atmospheric conditions. 

 

For an adequate comparison of the performance of solar photoreactors under variable solar conditions, the 

following scaling parameters have been considered: 
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where 𝛼 is the ratio of the surface area (ST) to the volume (VR) of the transparent reactor tubes exposed to 

solar light; 
g  is the ratio of the total area occupied by the collector structure (AT,Collector) and the total 

operating liquid volume (VT); 𝛽 is the ratio of reactor volume to total liquid volume; tWS is the standard 

treatment time, 𝐼    
  is the standard global average irradiance [3]; 𝐼     𝑡  is the incident UV radiation at 

time t;    is the degradation efficiency per unit area per unit treatment volume; 𝐶    𝑡      is the initial 

TOC concentration of the contaminant in the water at the initial time; 𝐶    𝑡      is the final TOC 

concentration of the contaminant after a total time in which solar energy has been accumulated; and VDZ is 

the volume of the dark zone of the reactor usually also comprising a recycling system. The standard 

treatment time considers the variations in solar irradiance due to atmospheric changes. 

 

3. METHODOLOGY 

The common water contaminants phenol, dichloroacetic acid (DCA), 4-chlorophneol (4-CP) (all 99.9% 

analytical grade from Merck®), and commercial-grade Methylene Blue (MB) typically used for kinetic 

studies in large-scale photocatalytic reactors [2] were used to evaluate the performance of the OMTP with 

respect to the CPC. Evonik-Degussa TiO2-P25 was used as the suspended catalyst, and commercial HCl 

(0.2 M) was used to change the pH of the water. The overall concentration of the water contaminants was 

monitored with a total organic carbon (TOC-V CPH Shimadzu) and a UV-vis spectrophotometer 

(Labomed Spectro UV-2650). The instantaneous and accumulated solar radiation (Figure S1, Supporting 

Information) was monitored with a Delta Ohm 210.2 radiometer with an LP-UVB probe (300-360 nm) 

and the pH was measured with a Consort pH-meter C931. 

 

The hydrodynamic performance was adjusted using the β parameter (Eq. 3) with the volumetric flow in 

turbulent regime (Reynolds number > 20,000) to avoid sedimentation of the catalyst. One inch PVC 

fittings were used to connect the borosilicate tubes. The water was circulated with a IWAKI-VMD-

40RLXT magnetic pump with a nominal power of 0.5 HP and 35 L/min maximum flowrate.  
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3.1 Experimental Evaluation of the OMTP Using Methylene Blue 

 

The removal of MB (10 ppm) by adsorption was evaluated with four catalyst concentrations (0.20, 0.25, 

0.30, and 0.35 g/L) at natural pH (7.45 ± 0.18). The tests were done using 100 ml samples, which were 

continuously agitated in the dark for 4 hours in conical flasks. Aliquots were collected from these every 

15 minutes to measure the residual concentration of MB by UV-Vis spectrophotometry.  

 

The photocatalytic degradation of MB in the OMTP, at an initial concentration of 10 ppm was evaluated 

at the catalyst concentrations (0.00, 0.20, 0.25, 0.30, 0.35 g/L), at a volumetric flow rate of 24 L/min and 

using a 𝛽 factor of 0.3 (VR = 9.7 L, see Table 1). The range of catalyst concentrations investigated was 

established considering the optimization of tubular solar photoreactors which determined that for 32-mm 

diameter borosilicate glass tubes, the optimal operating concentration of TiO2-P25 should be between 

0.20 and 0.40 g/L [16]. 

 

The reactor set-up comprised the OMTP and the water recycle system, which included a stirred tank, 

where the solutions were made and samples were collected, a centrifugal pump and two control valves to 

control the recirculation flowrate.  

In a typical experiment, the stirred tank was initially loaded with 29 L of tap water and the photocatalyst 

was added to form a slurry suspension and circulated in the reactor system for 10 min. Then, 1 L of 

contaminant aqueous solution, at the required concentration, was added in the reactor system and the 

suspension was recirculated under darkness for 30 min to establish adsorption/desorption equilibrium 

conditions. Then a sample was taken and the reactor was exposed to solar light at (tSW = 0). In situ 

measurements of dissolved oxygen, pH and temperature were monitored during the experiments (Table 

S1, Supporting Information). The reactor was exposed to solar light until a cumulative UV-B total energy 

of 8000 J/m
2
 was reached.  Samples were collected every 1000 units of accumulated energy, they were 

filtered, centrifuged, and analyzed by UV-Vis spectrophotometry. The same procedure was followed to 

monitor the contaminants degradation in the CPC reactor under solar light. 

 

3.2 Comparison of OMTP and CPC in the Degradation of Organic Pollutants 

 

The results of the degradation of phenol, DCA, and 4-CP were used to compare the performance of the 

OMTP and CPC photoreactors on a solar pilot scale with suspended TiO2-P25, at catalyst concentrations 

of 0.10 g/L for phenol, 0.35 g/L for DCA, and 0.5 g/L for 4-CP. These values of catalyst concentrations 

were optimized in previous investigations carried out in a CPC reactor operated under identical 



experiment conditions and total incident solar radiation [16].  The initial pH of the water was 3.0 for 

phenol, 3.2 for DCA, and 3.5 for 4-CP, as recommended by [27]. The initial concentration of each 

contaminant in the water was 120 and 60 ppm [26].  

 

The 𝛽 factor in the CPC and OMPT reactor systems was held constant at 0.3, and the volumetric flow rate 

in both systems was set at 24 L/min to ensure a turbulent flow regime (Re = 21140) and uniform 

suspensions of the catalyst. In such way, the number of passes of the water through the reactors were the 

same, allowing a direct comparison of the two reactor systems. The physical area of the collector was 

constant (one reactor module, AT,Collector = 1.74 m
2
), while the total operating volumes were 36 L for the 

CPC and 65 L for the OMTP, respectively.  

 

Continuous air bubbling in the recirculation stirred tank was provided to maintain the water under oxygen 

saturation conditions during the oxidation reaction which was carried out at the operating temperature of 

33°C ± 0.3. The effect of molecular adsorption or direct photolysis of the contaminants tested were 

negligible and did not directly affect the photocatalytic process as previously shown [16]. 

 

The operating procedure for the solar heterogeneous photocatalysis tests were as described for the MB 

with sample collected every 1600 units of accumulated energy up to 8000 J/m
2
. The samples after 

filtration and centrifugation were analyzed by TOC.  

 

3.3 Mathematical Evaluation of OMTP and CPC Performance 

 

The formulations of the modeling equations of the OMTP and CPC reactors are based on the generalized 

methodology (Fig. 4) for heterogeneous pilot-scale solar reactors, TiO2-P25 and natural solar radiation 

proposed by [16].  

 



 

Figure 4. Methodological structure of the model. Adapted from [16]. 

 

Both OMTP and CPC reactors were modeled as flow-through reactors with total recycling, thus, the 

material balance could be described as an integral-differential equation as a function of the cumulative 

incident solar energy ξAE, the average total concentration of the contaminant, and the generalized kinetic 

model for the heterogeneous photocatalytic degradation of organic contaminants in the presence of TiO2-

P25, under the concept of constant isotropic global parameters throughout the reactor volume (Фg is 

quantum yield (mol/Einstein);          
  is Effective Volumetric Rate of Energy Absorption, VREA 

(Einstein/s.m
3
); α1 is the kinetic reaction rate constant (mol/m

2
·s); κP is the constant of particle (m

3
/m

2
) 

and k
L-H

A is absorption constant of the L-H model (m
3
/mol)) [16]: 
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where ξAE is the slope of the experimental data relationship of the cumulative incident solar radiation vs. 

time for each experimental test, and ξt is the inverse slope of the relationship of the incident radiation and 

standard treatment time. The ξt function is proposed to account for the fluctuation of the incident solar 

irradiance due to atmospheric phenomena and time of the day. The model parameters in equation (7) have 

been reported in [16]. 



 

The incident solar radiation I0 arriving on the reactors was modeled using the methodology reported by 

[15], which considers constant solar radiation in the longitudinal axis of the tubular reactors, corrected for 

the geographic position and time of the year of Cartagena-Colombia (10°25’25” N. L – 75°31’31” W). At 

this latitude the upper tubes did not produced shadows to the lower tubes during the experimental time.  

The local volumetric rate of photon absorption (LVRPA), which describes the effect of photon absorption 

and scattering in the reactor, was quantified using the SFM-HG model [24]: 
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The values of the absorption (κ) and scattering (σ) coefficients were as those in [28] and the probabilities 

of forward, backward and side scattering for TiO2-P25 were pf = 0.754, pb = 0.133 and ps = 0.027 [24]. 

The model parameters l
w
corr

depend on the ray pathlenghs δ (Figure 1), which for tubular and CPC 

reactors were evaluated using the methodology of [7] and [15].  

 

Finally, the hydrodynamic performance of the reactor was that of perfectly mixed batch reactor due to the 

large circulation ratio and small conversion per pass. The mass balance of the batch reactor (Eq. 7) is an 

equation in grouped parameters, independent of the geometrical coordinates. Therefore, the properties of 

the reaction suspension (fluid + suspended particles) were assumed as a pseudo-homogeneous mixture. 

The parameters in the mass balance were modeled as constant isotropic global parameters and in 

consequence a hydrodynamic model became redundant. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Evaluation of the optical and hydrodynamic performance of the reactor 

 

The optical comparison of the OMTP with respect to the CPC was quantified using the overall volumetric 

rate of photon absorption (OVRPA) [16] (Eq. 10). 
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The reactor to total volume ratio β, is a scaling parameter that is indirectly related to the performance of 

the pumping system. In order to maintain optimal pump operation (suction and discharge), turbulent flow 

conditions and uniform suspension of the catalyst [12], the minimum β ratio was 0.27. The reactor 

systems were therefore operated with an overshoot factor of 10% (β = 0.3) and with total volumes of 32 L 

for the CPC and 58 L for the OMTP. 

 

Figure 5 shows the LVRPA distribution on a cross section of the CPC and OMPT calculated using the 

SFM-HG model and 0.25 g/L TiO2-P25, on a clear sunny day. The equivalent values of the OVRPA were 

1887.94 W/m
3
 for the CPC and 1511.07 W/m

3
 for the OMTP, and the total solar power absorbed in the 

CPC and OMPT collectors were 15.17 W for the CPC (1887.94W/m
3 
 0.00804 m

3
) and 21.86 W for the 

OMTP (1511.07W/m
3 
 0.01446 m

3
), representing an optical gain of 44% for the latter. The OMTP 

advantage is reflected in increased system degradation efficiencies and larger operation volumes (VT). 

These values are consistent with previous reports [24].  

a b 

Figure 5. Distribution of LVRPA using SFM-HG: a) CPC reactor and b) OMTP for a TiO2-P25 catalyst 

loading of 0.25 g/L. 

 

4.2 OMTP and CPC footprints and process economics 

 

The primary limitations of the CPC reactor are the treatment volume capacity and the area occupied by 

each collector module, particularly considering that large exposure areas are required to ensure the 

treatment of industrially relevant operating volumes [1]. A second advantage in the operation of large-

scale reactors with the new prototype compared with the CPC is that the ratio of the physical area 

occupied by the collector to the total volume of treatment (
g ) could be lower, which would demonstrate 



its viability in the scaling of photocatalysis processes for industrial wastewater applications on a 

commercial scale. This means that for smaller 
g  factors, fewer solar reactors and smaller footprint 

would be required for a given volume of treatment, which would thereby improve the costs of initial 

investment, maintenance, and operating costs. Table 2 shows the 
g ratios for the pilot-scale CPC 

reactors reported in the literature. 

 

From the point of view of irradiated volume, four OMTPs are equivalent to seven CPCs but with higher 

photon efficiencies than that of the latter, as discussed below. The hydraulic optimization of the system 

shows that the energy consumption per liter of treated wastewater would be lower in the designed OMTP 

and that to maintain the turbulent flow with a flow rate higher than 24 g/L, a 0.30-HP magnetic pump is 

theoretically required as opposed to a 0.24-HP pump for a CPC. The difference in the energy cost is 

compensated in treating higher volumes with efficiency increases. 

Table 2. Ratio of the physical area of the collector per treatment volume for solar CPC reactors and 

OMPT. 

Reference AT,Collector (m
2
) VT (m

3
) 

g (m
2
/m

3
) 

OMTP 1.74 0.058 29 

CPC 1.74 0.032 53 

[29] 4.5 0.060 80 

[30] 1.37 0.025 60 

[31] 2.12 0.050 40 

[32] 3.08 0.035 90 

 

 

Moreover, the initial investment costs for the construction of an OMTP module, although slightly higher 

than that of the CPC, are compensated for by its implementation with smaller numbers of arrays of CPC 

modules in series with the same arrangement and distribution. If the arrangements of the same type are 

considered, the cost of the construction area will be 1.8 times lower than that of the CPC. Table 3 presents 

the costs in US dollars at the current exchange rate for the construction of a reactor module.  

 

Table 3. USD costs for construction of a CPC reactor and an OMTP in Colombia (Reference year 2014). 

Concept CPC OMTP 

Borosilicate tubes 130 235 

Collector and supports 550 550 



Reflectors (involutes) 100 --- 

Recycling tanks 15 15 

Magnetic pump  100 100 

PVC tubing and accessories 85 120 

Seals, resins, adhesives, and Teflon 80 90 

Labor 200 250 

Total 1260 1360 

Operation/day* 13 14 

* Energy, catalyst and maintenance based on 12 hours of operation, power of pump and volume of 

treatment.  

 

 

4.3 Evaluation of heterogeneous photocatalytic degradation of organic compounds  

 

4.3.1 Degradation of methylene blue 

 

The performance of the heterogeneous photocatalytic degradation of methylene blue with suspended 

TiO2-P25 using natural solar radiation in the OMTP is shown in Figure 6. This is reported as the 

percentage of degradation %Deg as a function of the accumulated UV-B energy: 
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The reaction rates of methylene blue were the highest for accumulated energies of less than 2000 units, 

under optimal catalyst loading (0.25 g/L). The rate increased at lower catalyst loadings and then 

decreased at higher catalyst loadings (> 0.25 g/L) as a result of the increase of the photon shielding 

effects. The photon scattering and shielding effects are a function of the optical thickness of the 

suspension, which in turn depend on the catalyst concentration, the optical properties of the catalyst 

suspension (absorption and scattering coefficients and scattering phase function) and the geometrical 

thickness of the suspension. The optical thickness at the higher catalyst concentration (0.35 g/L) was 2.06, 

while at the lower catalyst concentrations (0.2 g/L) it was 1.18. These results are consistent with previous 

simulation results reported in the literature [7].  

 



However, for all four concentrations of TiO2-P25 used, degradation greater than 99% were reached for an 

accumulated energy of 8000 J/m
2
 and for treatment times of less than 70 minutes. This is primarily due to 

the direct effects of increased residence time, illuminated reactor volume and overall absorbed solar 

energy, and the contribution of direct photolysis. 

 

 

Figure 6. Performance of methylene blue degradation in a pilot-scale OMTP solar reactor at different 

TiO2-P25 catalyst concentrations (0.2, 0.25, 0.3, and 0.35 g/L). 

 

The effect of direct photolysis of MB in the OMTP showed a degradation of 46% at an accumulated 

energy of 8000 J/m
2
, which compares to only 10% in the CPC reactor operated under identical conditions 

(see Figure 7.a). This improvement in performance evidences the effect of favourable reactor geometry in 

the OMPT and the corresponding increase of the surface area and reactor volume exposed to the sun with 

respect to the CPC. Literature studies have reported degradation of methylene blue in the absence of a 

catalyst, obtaining values of less than 10% for CPC reactors and up to 20% in a small-scale rotary reactor 

using UV lamps [33–36]. Considering that this compound is highly recalcitrant and exhibits resistance to 

biodegradation, the effect of photolysis on the heterogeneous solar photocatalysis process may be 

beneficial and may decrease the contact time in large-scale treatment systems. In contrast, adsorption 

experiments under darkness in the pilot plant showed reductions in the initial loading of the contaminant 

of less than 2% during the homogenization time, therefore, these can be neglected on the effect of 

heterogeneous solar photocatalysis of MB.  

 

4.3.2 Degradation of phenol, DCA, and 4-CP 
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Heterogeneous photocatalytic degradation of phenol, DCA, and 4-CP was performed in a heterogeneous 

photocatalytic solar platform at the University of Cartagena, Colombia (10°25’25” N – 75°31’31” O) on 

sunny and clear days at a specific hour to ensure that environmental atmospheric conditions did not 

significantly affect the process. The incident solar radiation measured during the experiment period 

(2016) and the slopes of the linear relationship with the accumulated UV-B radiation during the treatment 

time is presented in Supplementary Information (Figs. S1-S5). The observed conversion of TOC at 8000 

J/m
2
 of energy accumulated for these three compounds at different initial TOC concentrations in both the 

OMTP and CPC are presented in Table 4 by applying Eq. (11). 

 

Table 4 Percentages of heterogeneous photocatalytic degradation for Phenol, DCA, and 4-CP in OMTP 

and CPC solar reactors for total accumulated energies of 8000 J/m
2
. 

%Deg Phenol DCA 4-CP 

Reactor 
CTOC,0  

60 ppm 

CTOC,0  

120 ppm 

CTOC,0  

60 ppm 

CTOC,0  

120 ppm 

CTOC,0  

60 ppm 

CTOC,0  

120 ppm 

OMTP 24.15 29.69 55.58 72.86 20.68 22.19 

CPC 20.31 19.36 53.41 68.26 28.17 21.42 

CCat 0.10 g/L 0.35 g/L 0.50 g/L 

 

The results show that for the established operating conditions, the percentages of TOC degradation favor 

the OMTP with respect to the CPC. The advantage of the OMTP over the CPC lies in the higher 

operating volume per footprint exposed to sunlight. The lower degree of phenol and 4-CP degradation in 

comparison to DCA, does not depend on the geometry of the reactor, but results from the highly 

recalcitrant intermediates that are generated during the mineralization process [12, 37, 38]. 4-CP primarily 

produces 4-chlorocatechol (4-CC), hydroquinone (HQ), 1,4-benzoquinone (BQ), acetylene, and maleic 

acid, during the treatment, however, these are consumed with the reagent by effect of the high attack of 

hydroxyl radicals due to high photonic performance of the reactor [23, 31, 38]. Phenol, instead generates 

p-benzoquinone (p-BQ), HQ, and catechol (CC), which, similarly to the 4-CP intermediates, suffer high 

molecular adsorption on the surface of TiO2 that competes with the multilayer adsorption of H2O, thus 

reducing the probability of photogenerated electron capture, decreasing OH* production, and increasing 

surface recombination [39, 40].  

 

In contrast, the photocatalytic degradation of DCA proceeded at much higher rates compared to phenol 

and 4-CP, which results from the simultaneous attack by photogenerated holes (h+) and hydroxyl radicals 



on the dissociated dichloroacetate ions in aqueous phase [12, 41]. The direct attack of dichloroacetate ions 

by the photogenerated holes form dichloroacetate radicals and then CO2 and dichloromethyl radicals by 

decarboxylation. These react with molecular oxygen adsorbed on the surface of the catalyst, forming 

dichloromethylperoxyl radicals. These two molecules together form H2O2 and phosgene. H2O2 enhances 

electron capture on the photocatalyst surface, which thereby benefits the formation of hydroxyl radicals, 

while phosgene is hydrolyzed to HCl and CO2 [41]. Simultaneously to the above mechanism, the 

hydroxyl radicals formed by the oxidation of water /protons at the surface of the photocatalyst may also 

attack DCA and the reaction intermediates [12, 17]. 

 

4.3.3 Effect of geometry  

 

Although contaminants reaction mechanisms are intrinsic to the nature of the reagent and its interaction 

with the photocatalyst, the rate of generation of the oxidant species is a function of the rate of photon 

absorption in the reactor, which in turn depends on the reactor geometry. The degradation efficiency of 

MB, phenol, DCA, and 4-CP, respectively, per unit area and per unit treatment volume, ηα, as a function 

of the accumulated energy ξAE in both OMTP and CPC is shown in Fig. 7. The OMTP displayed much 

higher efficiencies than in the CPC. After 8000 J/m
2
 of accumulated solar energy, the ηα for MB 

degradation was 81% higher in the OMTP (Figure 7a). At higher initial concentrations (120 ppm) the ηα 

degradation for phenol was 242% higher (Figure 7b), 125% higher for DCA (Figure 7c), and 118% higher 

for 4-CP (Figure 7d) in the OMTP in comparison to the degradation efficiency in the CPC. At lower 

contaminant concentration (60 ppm), the ηα percentages were 151% (phenol), 150% (DCA), and 55% (4-

CP) higher in the OMTP than in the CPC. In general, the results shown that at high initial concentration 

of contaminants the degradation performance always is much better in compare of low initial 

concentration, this is due to the reaction order which is higher than zero on evaluated systems and 

therefore a faster rate is expected at higher initial concentrations. 

 

These results represent a fundamental contribution to the scaling processes of solar heterogeneous 

photocatalysis applications because higher efficiencies in the OMTP were obtained using the same 

physical installation area of collector (1.74 m
2
). In addition, the OMTP worked with a volume 1.8 times 

greater than the CPC volume. For multiple solar reactor panels these advantages will scale linearly. 

 

 

 

 



 

 

a 

 

b 

 

c 

 

d 

Figure 7. Efficiency of photocatalytic degradation at OMTP and CPC solar reactors per unit area and 

volume of operation: a) Methylene Blue b) Phenol, c) DCA and, d) 4-Chlorophenol. 

 

 

4.4 Mathematical evaluation of OMTP and CPC photoreactor performance 

 

Mathematical modeling of the photoreactor systems by combining the mass balances, the solution of the 

radiation balance (LVRPA), the reactor hydrodynamics and the reaction kinetics, permits to evaluate the 

concentrations of contaminants as a function of the accumulated energy. The model is also required for 

the design of solar water detoxification plants. The performance of the heterogeneous photocatalytic 

degradation processes in both OMTP and CPC was quantified by the solution of the photoreactor model 

(Eq. 7 coupled with Eq. 9) using the 4th-order Runge-Kutta method and the optimization algorithm of 

Nelder and Mead [42] for the determination of the kinetic parameters, which fits the model to the 

experimental results. The robustness of the mathematical model generated high predictions of the 

experimental data with average total error of less than 1.6% and with deviations close to zero (Figure 8).  
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Figure 8. Predictive capacity of the model for the description of heterogeneous solar photocatalytic 

degradation in the OMTP and CPC reactor for a) phenol, b) DCA, and c) 4-CP with suspended TiO2-P25 

and natural solar radiation in Cartagena, Colombia 

 

The determined kinetic parameters α1,  κA
L-Hand

 and η are shown in Table 5. For the three compounds 

evaluated, the overall reaction rate efficiencies in the OMTP were 40% (average) higher than in the CPC 

due to the higher rate of photon absorption and larger reactor volume. The longer mean residence time in 
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the illuminated zone of the OMTP as a result of a greater number of tubes results in higher rates of 

contaminants mineralization incorporating the intermediates formed during the reactions (Figure 8) [1]. 

 

Table 5. Overall kinetic parameters of the model and η* parameter for photocatalytic degradation of 

phenol, DCA, and 4-CP.  

Compound 

OMTP CPC  

α1x10
4
 κA

L-H
 x10

4
 η x10

4
 α1x10

4
 κA

L-H
 x10

4
 η x10

4
           

    
 

Phenol 8.18 1.41 2.934 5.75 0.96 1.960 0.4969 

DCA 9.47 1.63 2.847 9.05 1.56 1.804 0.5782 

4-CP 3.87 0.63 1.810 3.57 0.56 1.730 0.462 

*η is the degradation per unit of collector area and per treatment volume. 

 

The kinetic performance is affected for the molecular absorption mechanisms. The generalized kinetic 

model used in this evaluation (Eq. 7) was based on Turchi and Ollis mechanism [8, 16, 17]. The 

absorptive processes in the solid-liquid interface are strongly competitive on molecular transportation of 

the reactive species and the kinetic of reaction rate [16]. The competition of molecular absorption of 

contaminant over TiO2 surface in the OMTP is also affected by the reactor geometry. The constants κA
L-H

 

of the model also have higher values in the OMTP. This result is consistent due that the molecular 

absorption of the process is not an equilibrium process because it is a kinetic constant of adsorption. The 

dynamic of the competitive molecular absorption is affected by the longer residence time and the total 

volume of operation, whereby the effects of molecular transport of the substrates to the catalyst surface 

and their adsorption increase. Finally, these kinetic contributions favor photonic efficiencies η (ppm/J) 

[2], which are higher in the OMTP in comparison to the CPC reactor (Table 5), because of the higher 

reaction volume and total solar power absorbed in this reactor. 

 

CONCLUSIONS 

 

This study has presented a new solar reactor prototype (OMTP) which addresses some of the limitations 

of current CPC solar reactors used in industrial wastewater treatment.  The OMTP increase the total 

treatment volume, the residence time, decrease the footprint, and simplify scale-up in comparison to the 

CPC. This new reactor includes an additional arrangement of tubes in the space occupied by the CPC 

involutes. The fluid residence time in the OMPT increased by up to 1.8 times. The net solar global energy 

absorbed in the OMPT increased by up to 44%, which translated in MB, DCA, 4-CP and phenol 



degradation efficiencies up to 81%, 125%, 118% and 242% higher, respectively, in comparison to the 

CPC after 8000 J/m
2
 of accumulated solar energy. Optimization of the reaction volume/volume ratio was 

achieved by obtaining a minimum β factor of 0.27, which guaranteed turbulent conditions with Re > 

20,000, perfect mixing of particles, and avoided the sedimentation of the catalyst. In addition, this 

condition is the requirement for the hydrodynamic operation of the pumping system. The overall net 

energy, i.e., OVRPA, associated with the operation of the two reactors was calculated, and a greater 

availability of radiant energy was found in the reaction phase space for the OMTP, 412.3 W/m
3 

for the 

CPC (10 tubes) and 653.04 W/m
3 

for the OMTP (18 tubes), which is consistent with the experimental 

results of the degradation of organic pollutants studied. The efficiencies per unit area and volumetric unit 

of treatment demonstrated the absolute superiority of the OMTP for larger overall volumes, which 

indicated that the reactor is potentially better for scaling and requires a smaller number of collectors for 

large volumes of wastewater. Finally, the costs of OMTP was competitive and comparable with 

conventional CPC solar photoreactor.  Further improvements on the performance of the OMTP for water 

treatment and purification, should include the use of efficient solar responsive photocatalysts.   
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