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This paper reports a study of the backscattering behavior of a solid layer containing randomly

spaced spherical cavities in the long wavelength limit. The motivation for the work arises from a

need to model the responses of porous composite materials in ultrasonic NDE procedures. A com-

parison is made between models based on a summation over discrete scatterers, which show inter-

esting emergent properties, and an integral formulation based on an ensemble average, and with a

simple slab effective medium approximation. The similarities and differences between these three

models are demonstrated. A simple quantitative criterion is established which sets the maximum

frequency at which ensemble average or equivalent homogeneous medium models can represent

echo signal generation in a porous layer for given interpore spacing, or equivalently, given pore

size and concentration. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3598461]

PACS number(s): 43.35 Cg, 43.35 Zc [PEB] Pages: 122–134

I. INTRODUCTION

The rapidly increasing use of fiber reinforced compo-

sites, particularly in the aerospace sector, brings with it

requirements for nondestructive evaluation (NDE), which is

likely to be based on ultrasonic pulse-echo scanning. Devel-

opment, formal evaluation, and understanding of these tech-

niques requires mathematical/computational models of

ultrasonic wave propagation in stratified structures in which

each layer is a multiphase medium. Many such models exist

in the literature,1–3 and these have their basis in earlier work

in geophysical imaging.4,5 The mechanical properties of the

individual layers in such models are, typically, based on

equivalent medium theories for mixtures of fiber, resin, and

sometimes porous inclusions.6–8 Here, porosity is significant

because it reduces the shear strength of the composite

approximately in proportion to its volume concentration, at

least at low concentrations. It is therefore important that

porosity is detectable and quantifiable in NDE procedures.

An early demonstration of such detection was achieved by

Nair et al.9 and Adler et al.10 who used the additional attenu-

ation due to scattering from cavities to determine porosity in

a solid material. More recently a basic porosity detection

scheme was developed for layered composites which incor-

porated porosity-induced attenuation into the layered propa-

gation model on the basis of scattering theory.11

Historically, porosity was incorporated into equivalent

medium models for fiber-reinforced composites for engi-

neering applications by use of the elastostatic case, in

which its effect is to reduce the density and elastic moduli

of the resin component;6–8 as such, results were only valid

in the very long wavelength limit. Somewhat separately

from these developments which were tailored to engineer-

ing applications, methods were introduced by key workers

such as Eshelby,12 Hill13 and Budiansky,14 to obtain effec-

tive elastic properties for composite materials in the static

case. The limits within which the effective elastic moduli

must exist were defined over a wide concentration range by

the so-called Hashin-Shtrikman bounds.15 Later, the search

for effective properties was extended to the elastodynamic

case by a number of schemes, termed homogenization

methods by Parnell et al.16 These schemes include the self-

consistent and effective medium methods for which a sub-

stantial literature may be found, among them the work of

Sabina and Willis17 and Kanaun and Levin;18 further exam-

ples are cited by Kim.19 Although variants on the models

exist, these methods often consider each inclusion or scat-

terer to be located in a homogeneous medium which has

the effective properties of the material; the average scat-

tered field from all such inclusions must vanish, by self-

consistency arguments. Application of this criterion leads

to determination of the effective properties of the material.

An alternative homogenization scheme has been proposed

by Parnell and co-workers,16 which adopts an integral

equation approach, using the static Eshelby tensor12 to

relate the strain in the inclusion to that in the matrix. A use-

ful comparison of the wave propagation parameters derived

from various effective medium models and multiple

scattering theories has been carried out by Kim,19 for the

two-dimensional case of randomly distributed circular cyl-

inders. In general, the homogenization literature has been

concerned with the derivation of effective elastic proper-

ties, and the resulting wave propagation parameters, but not

with the reflected and transmitted waves which are of inter-

est in the present work.
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A second body of literature on the determination of

effective properties of inhomogeneous materials adopts scat-

tering theory, based on the foundational studies by Foldy,20

Lax21,22 Twersky,23 Waterman and co-workers,24,25 and

Varadan.26 In these studies, the scattered fields from each

scatterer are summed, and then ensemble-averaged over all

possible (usually) random configurations of scatterer posi-

tions. A solution to the equations can only be obtained by

making an assumption about the incident field at each scat-

terer—the so-called closure assumption. The most common

approximations are those due to Foldy20 (the Foldy closure

approximation) and later Lax21,22 (the quasicrystalline

approximation, QCA), still widely adopted in both the

acoustic and electromagnetic scattering literature. While the

effective wavenumber due to scattering theory is well-estab-

lished for dilute systems, its application to more concen-

trated systems is still the subject of development. However,

there has been a recent emergence of interest in the effective

properties of inhomogeneous materials derived from scatter-

ing theory; in particular a number of workers27–33 have

attempted to obtain properties other than the elastic moduli,

such as effective density, effective viscosity and the effec-

tive reflection and transmission coefficients of both a semi-

infinite half-space, and a slab.

A number of recent papers have presented new formula-

tions of multiple scattering theory, based on the earlier mod-

els, in order to obtain effective wavenumber and other

properties, in particular systems. They follow either the

Waterman and Truell24,27 or Fikioris and Waterman25,28,29

formulations, expressing the scattered field either as a multi-

pole expansion, based on the Rayleigh partial-wave

method,27,28 or through the transition-matrix description of

Varadan.26,29 While two of the studies apply to nonviscous

fluids,27,29 the other is applicable to cylinders in solids,28

considering both longitudinal and shear wave propagation.

Maurel30 took a slightly different approach, applying the

Born approximation to terminate the scattering field equa-

tions, rather than applying a closure assumption, and using a

Green’s function description rather than the multipole

expansion for the scattered fields. Linton and Martin34 have

shown a new derivation of the effective wavenumber, using

a multipole expansion and following Foldy,20 with the Lax

QCA;21,22 they confirm the results obtained by Fikioris and

Waterman,25 and Lloyd and Berry.35 Based on these newer

effective wavenumber derivations, or on the older versions,

various workers have identified a set of effective properties

for the material, for example, density, modulus, and viscos-

ity.31–33

Of greater interest in the present work, is the determina-

tion of the reflection characteristics of a layer, or slab, of ma-

terial containing scatterers, which has been derived by a

number of the same workers, based on the scattering theory

formulations described above.27–30,36 In summary, what has

been established is as follows: (a) The effective material

properties of a slab or layer are the same as the effective ma-

terial properties of a half-space. (b) The effective (ensemble-

averaged) reflected and transmitted fields from the slab have

the same form as the summed multiple reflections from a ho-

mogeneous layer.27,30 (c) The effective reflection and trans-

mission coefficients define an effective impedance which

relates to the effective density and wavenumber of the

material in the same way as for a homogeneous mate-

rial.29,31,32 While some of these works are applicable to cyl-

inders, and some only to nonviscous fluids, these principles

appear to be of general applicability.

The scattering theory formulations described in the pre-

vious paragraphs define effective properties for a material

containing scatterers, taking a statistical average over scat-

terer positions (ensemble average). The result, an effective

impedance relating to the scatterer (cavity) properties, is

convenient for implementation in models of layered compo-

sites. However, in an experimental measurement, a snapshot

is taken with a single realization of scatterer locations.

Although some reduction in the incoherent field may be

achieved by use of a large area transducer, the snapshot still

pertains only to one sample of scatterer locations (for a solid

matrix). Hence, in this paper we wish to investigate the con-

ditions in which an ensemble-average model is a valid

description of the reflected signal obtained in a single snap-

shot experimental measurement, and to establish the validity

of the ensemble-average models by numerical modeling. By

stochastic modeling, and by taking a simple ensemble-aver-

age using numerical integration, we explore the emergence

of the effective properties of a matrix containing cavities,

and confirm the validity of the effective properties obtained

from published ensemble averaged scattering models. Few

numerical studies of the scattered field response for a layer

of scatterers exist; the one-dimensional computation of

Maurel30 and the finite-difference time domain simulation of

Dubois et al.37 validate their ensemble-average formulation,

but no investigation was made of the application to a single

snap-shot measurement.

Our models are each based on the multipole expansion,

partial-wave method for the scattering by a single spherical

cavity, originating in the work of Rayleigh.38 The method is

based on an analysis of incident and scattered waves in terms

of partial wave modes; the scattered amplitude of each mode

is obtained by the application of boundary conditions at the

surface of the obstacle. The basic method was developed and

updated to the current commonly used form by Epstein and

Carhart,39 Allegra and Hawley,40 and Ying and Truell.41 The

three formulations pertained to different physical states of

the scattering object and surrounding media, namely, fluid in

fluid, solid in fluid and any material in solid (neglecting ther-

mal effects) respectively. The relationships between them

have been discussed by Challis et al.,42 see also Challis

et al.43 Our numerical models use these scattered fields,

either for individual scatterers summed or averaged as

appropriate, or to obtain the ensemble-averaged effective

properties of the layer.

In summary, we aim to establish the validity of the en-

semble-average results for the effective properties of a layer

containing cavities by numerical experiment, and to investi-

gate the emergence of the effective properties from the inco-

herent wave fields. In order to address these issues we

imagine the arrangement shown on Fig. 1 (top half), which

illustrates a layer of spherical cavities embedded in a solid

(e.g., resin) and which scatter signals back to an
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interrogating transducer. We compare representations of this

arrangement by three related models. The first (Model A,

Sec. II A) is a stochastic one which simulates a single

realization of cavity positions, such as would be found in

an experimental sample. The second (Model B, Sec. II B)

provides a simple ensemble averaged response, obtained

numerically by integrating over the scatterer positions of

Model A. We simulate a range of concentrations of scatter-

ers in order to explore the conditions under which the ensem-

ble averaged result represents the single configuration of

model A. The third (Model C, Sec. II C) represents the layer

of scattering cavities by an equivalent homogeneous medium

(Fig. 1, bottom half) with properties derived by previous

workers. Our numerical experiment provides a validation of

the effective medium formulation by comparison of the

numerically simulated ensemble-averaged results with the

effective medium model. However, our primary aim here is

to investigate the conditions under which such a formulation

can represent an ultrasonic echo signal that might be

obtained in a single snap-shot measurement. The results of

the models are investigated and compared in Sec. V, and the

conditions for validity of the effective medium description

are discussed in Sec. VI.

II. THE MODELS

A. Discrete scatterer model A

We consider the scattered field received from a number

of cavities located in a region of the material, those cavities

having fixed positions. We investigate how that received sig-

nal is affected by the number or concentration of cavities

present, and under what conditions the signal approaches

that reflected from a homogeneous material. The configura-

tion under consideration for the scattering model was shown

in the top half of Fig. 1. A transducer is coupled directly to a

solid medium, in which a number of spherical cavities are

distributed in the region zmin to zmax from the transducer

(parallel to the axis of the transducer). There is assumed to

be no “interface” either between the transducer and the me-

dium, or between the homogeneous region and the region of

scatterers. In the latter case, the absence of an interface is

due to the fact that the matrix surrounding the scatterers is

assumed to have the same properties as the homogeneous

region. Its wavenumber k¼x/c(x)þ ia(x), where c(x),

a(x) are the wave speed and the attenuation respectively and

x is the angular frequency. The transducer is assumed to be

of infinite extent to avoid complications due to diffraction at

the transducer, and its response is considered to be propor-

tional to the normal displacement at a point on the surface of

the transducer. The incident field on the system is a plane

wave of infinite lateral extent. We obtain the transducer

response to the signals scattered by the cavities by summing

the normal displacement at a point on the transducer result-

ing from the scattered field from the individual cavities.

1. Scattering coefficients for a spherical cavity

We adopt the Rayleigh method to obtain the scattered

wave potential for the propagational mode resulting from a

planar incident wave in the z direction; it is given by a sum

over all scattered partial wave modes,38–42 thus

/R ¼
X1
n¼0

in 2nþ 1ð ÞAnhn krð ÞPn cos hð Þ (1)

using spherical polar coordinates (r,h,u) with origin at the

center of the scatterer. Note that the convention i ¼
ffiffiffiffiffiffiffi
�1
p

has been used throughout. hn is a spherical Hankel function

of the first kind determining the radial distributions, and Pn

are the Legendre polynomials, representing the angular dis-

tributions, An is the scattering coefficient for the nth partial

wave order. The result is written in spherical polar coordi-

nates with origin at the center of the scatterer. In the long

wavelength region, for which the wavelength of the propaga-

tional mode is considerably longer than the radius of the ob-

stacle, only the first few orders are significant, typically up

to n¼ 2.

For the specific case of interest in the current work, i.e.,

cavities in a solid matrix, simplification of the model is pos-

sible: no wave modes exist inside the cavity and the stress at

the surface must be zero. As a further simplification, the

thermal effects can be neglected since these are generally

small in solid systems. The coefficients can be derived from

the generalized matrix equation set out in Ref. 42 and

described in Ref. 43. [It should be noted that the matrix

Eq. (9) of Ref. 43 has a missing minus sign multiplying the

right hand side of the matrix equation.] However, at low fre-

quency (where both longitudinal and shear wavelengths are

long compared with the cavity radius), simplified solutions

can be obtained for the scattering coefficients. Ying and

Truell’s41 results for the zero, first and second order coeffi-

cients have been derived in updated notation using the Maple

algebraic software44 [and correcting a factor of � 1 in the

original paper, Eq. (34) of Ref. 41], thus

FIG. 1. System configurations for the discrete scatterer model A and ensem-

ble average model B (both in top half, above dashed line), and effective me-

dium model C (bottom half, below dashed line). For models A and B (top

half, above dashed line), spherical cavities are embedded in solid material in

the region zmin< z< zmax. For the effective medium model (bottom half,

below dashed line) a homogeneous solid material is present in the region

zmin< z< zmax. In both cases, the transducer is directly in contact with the

medium in the region z< zmin which has the same properties as the matrix

surrounding the cavities, and the material in the region z> zmax.
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A0 ¼ i kað Þ3
1� 4ĉ2=3
� �

4ĉ2
� 2

3
i kað Þ3; (2)

A1 ¼ �
1

9
i kað Þ3; (3)

A2 ¼ i kað Þ3 4ĉ2

3 9� 4ĉ2
� � � 1

24
i kað Þ3; (4)

where ĉ ¼ k=kS is the ratio of shear wave speed to compres-

sional wave speed. The approximated results have been

obtained by using the assumption ĉ � 1=2. The coefficients

are dominated by the imaginary part (relating to sound

speed); the smaller real part (which affects attenuation)

results from the imaginary part (intrinsic attenuation) of the

wavenumber k. In physical terms, the scattering coefficients

can be understood to relate to the monopole, “breathing”

motion of the cavity (A0), and the variation of the local field

around the surface of the cavity which affects its motion at

dipole and higher orders.

2. Incident field

The wave transmitted by the transducer is assumed to be

a longitudinal plane wave of infinite lateral extent propagat-

ing in the positive z direction, in common with many studies

of effective medium properties. Using a scalar displacement

potential / for longitudinal waves of the form u ¼ �r/
(where u is the displacement), the incident field at any loca-

tion is given by

/inc xð Þ ¼ Uie
ikz: (5)

We have adopted the e�ixt convention for time-dependence,

in accordance with Refs. 39, 40, 42, and the majority of

physical acoustics references. The corresponding time-

domain description is obtained by Fourier transformation.

In this convention, the Fourier transform is defined by

F xð Þ ¼
Ð

f tð Þeixtdt, and the frequency-domain representa-

tion of a time delay is eþixt. It should be noted that this is the

opposite sense from the engineering convention for Fourier

transforms, including those implemented in MATLAB. The am-

plitude Ui has dimensions of length squared.

The exciting wave at any scatterer is assumed to be

identical to the incident wave, Eq. (5); no modification of

the incident wave is made to incorporate the scattered fields

from other scatterers. This is a lower order approximation

than that of Foldy,20 who assumed that the exciting field was

equal to the total ensemble-averaged field in the medium and

Lax,21,22 who assumed that the exciting field with one scat-

terer fixed was the same as that with two scatterers fixed (the

quasicrystalline approximation). We make our assumption

for simplification of the numerical simulation; inclusion of

scattered fields by all other scatterers would add consider-

able complexity to the simulation. The assumption does,

however, constrain our results to low concentrations,

although we simulate up to 20% concentration under this

assumption to explore the emergence of the effective me-

dium properties.

When the transducer is transmitting or receiving, we

assume that its response is proportional to the normal dis-

placement at the transducer face (at z¼ 0), which, for the

incident field, is

uz;inc ¼ �
@/
@z

����
z¼0

¼ �ikUi: (6)

In the numerical calculations which follow, we have simu-

lated a typical transducer response by multiplication (in the

frequency domain) by an experimentally-measured pulse-

echo response obtained in water.

3. Field at the transducer: Received signal

We assume that the field incident on the scatterer is pla-

nar, propagating in the z direction, and identical to the trans-

mitted wave for all scatterers. Moreover, we now assume

that the transducer is a “large” distance from the scatterer

(greater than a wavelength), so that the scattered field can be

expressed in its far-field form

/! f hð Þ e
ikr

r
as r !1 (7)

for unit incident field.45 The scattering amplitude f(h) defines

the angular variation of the scattered field, and is independ-

ent of the azimuthal angle in this case. It is related to the

scattering coefficients of the partial wave orders, An (defined

in Sec. II A 1), Eq. (1) as follows:

f hð Þ ¼ 1

ik

X1
n¼0

2nþ 1ð ÞAnPn cos hð Þ: (8)

We now consider the normal displacement (which deter-

mines the transducer response) of the scattered field received

at a point O on the transducer surface from a single scatterer

located at cylindrical coordinates (R,z) relative to O. First,

we evaluate the field at a point Q located at (0,f) (see Fig. 2),

second obtain the normal displacement by taking the deriva-

tive of the potential with respect to the receiving point posi-

tion, f, with the scatterer position fixed, and then evaluate at

f¼ 0 to obtain the normal displacement at the transducer

surface.

FIG. 2. Configuration for the derivation of the normal displacement at the

transducer from a single scatterer in the discrete scatterer model A and en-

semble average model B.
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The potential of the scattered wave at the point Q is

given by

/Q;sgle ¼ Uie
ikzf hð Þ e

ikr

r
(9)

with

r2 ¼ R2 þ z� fð Þ2;

h ¼ p� cos�1 z� f
r

� �
;

so that the normal displacement at the transducer due to a

single scatterer at (R,z) is given by

uz;sgle ¼ �ikUið Þeikz � e
ikr0

ikr2
0

� �@f hð Þ
@h

����
h0

sin h0 � ikz � f h0ð Þ 1� 1

ikr0

� 	" #
;

(10)

where the subscript 0 denotes evaluation at the position

f¼ 0. The reflection coefficient, defined as the ratio of the

normal displacement of the received and transmitted signals,

at the front of the scatterer region,

Rref ¼
uz;rec

uz;inc

e�2ikz (11)

is given by

Rsgle¼ e�2ikz uz;sgle

uz;inc

¼ eik r0�zð Þ

ikr2
0

�@f hð Þ
@h

����
h0

sinh0� ikz � f h0ð Þ 1� 1

ikr0

� 	" #
:

(12)

The response has a number of features which are worth

observing. The propagation delay combines the outward dis-

tance and inward distance, to give a phase shift which

depends on both z and R coordinates of the scatterer. All

terms scale with scatterer-transducer distance faster than 1/r
which implies that the signal received from the scatterer

decreases as the scatterer moves to a larger radial coordinate

position. This is partly due to the fact that the signal arrives

at the transducer at an increasingly oblique angle as R
increases, so that the component of displacement normal to

the transducer is reduced. For isotropic scatterers, the first

term in the brackets vanishes.

Where there are many scatterers located in the region,

the scattered fields are summed at the transducer giving

uz;mult ¼ �ikUið Þ
XNsc

j¼1

eikzj � e
ikrj

r2
j

� �@f hð Þ
@h

����
hj

sin hj � ikzj � f hj

� �
1� 1

ikrj

� 	" #
;

(13)

where the subscript j denotes an individual scatterer. We

term this the discrete scatterer solution, model A.

Although effective medium properties are frequently

derived for slabs of infinite lateral extent, for the purposes of

numerical simulation the problem must be constrained to a

finite region. Hence, we consider a domain defined by the

coordinates zmin � z � zmax, R � Rmax in which centers of

the scatterers are located. The decay of the signal strength

with radial coordinate R for single scatterers implies that a

slab of infinite lateral extent may be approximated by such a

finite domain—provided that the radius of the domain con-

taining scatterers is chosen to be sufficiently large that the

contribution from scatterers located at larger R is negligible.

B. Ensemble average model B

Effective medium properties are often derived by taking

an ensemble average over scatterer positions, whereas the

result given above represents the signal received from a sin-

gle realization of scatterer positions. Since we are interested

in both the single-realization case, and the emergence of

effective medium behavior, we now derive the correspond-

ing ensemble-average result for identical scatterers which

are randomly distributed in the region. For simplicity, the

scatterers are treated as points for geometrical purposes,

allowing use of a uncorrelated, uniform distribution for their

locations, but retain the scattering properties of a sphere

of given radius. Such approximations are common in

the effective medium literature.27,30 Taking the sum over

all scatterers from Eq. (13), using volume elements dV
¼ 2pRdRdz¼ 2prdrdz the ensemble average is given by

uz;ave ¼
ðzmax

z¼zmin

ð1
r¼z

2pNuz;sglerdrdz (14)

with a number density N, and dropping the subscripts from

Eq. (10). This ensemble average is not rigorously derived

but is obtained as a simple single-scattering, low concentra-

tion extension to the multiple-discrete scatterer result, by

integrating over random, uncorrelated scatterer positions. It

is made possible by the assumption that the exciting field at

each scatterer is identical to the incident field from the trans-

ducer. Under that approximation, the order in which the spa-

tial derivative (for normal displacement) and the integration

(for the ensemble average) are taken does not affect the

result; this is not necessarily the case in a full statistical treat-

ment under the Foldy or Lax closure approximations. Nu-

merical simulation will be used to establish its validity as the

limit of the multiple discrete scatterer formulation and its

correspondence with the effective medium model. For nu-

merical simulation, the limits of the integral over r must be

finite, and as for the discrete scatterer model the region is

defined by the limit R � Rmax. The decrease in the magni-

tude of the normal displacement for scatterers located as R
increases is faster than 1/r, resulting in a smaller contribution

from ring elements of larger radius even accounting for the

greater number of scatterers in those areas (2prNdrdz).

Hence it is possible to approximate the integral by a finite

region R � Rmax.
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C. Effective medium model C

Thus far we have established the solution for the signal

backscattered by a single cavity (scatterer) and by multiple

discrete cavities (model A). We have also taken the ensem-

ble averaged response of the region under the same formu-

lation (model B). Our final model (model C) treats the

region containing scatterers as an equivalent homogeneous

medium (see Fig. 1, bottom half), with properties defined

by an effective medium model published in the litera-

ture.27,31,32 We term this the effective medium model—

model C. Our aim is to confirm the validity of this effective

medium model by comparison within numerical simula-

tions with the discrete scatterer and ensemble average mod-

els A and B. Our simulations will also explore the

emergence of the effective medium behavior to establish

the conditions under which it may be applied in typical

measurement situations.

The configuration considered in the effective medium

model is shown in the bottom half of Fig. 1. Whereas for the

discrete scatterer and ensemble-averaged models A and B

(Fig. 1, top half), the scatterers were embedded in a matrix

identical to the scatterer-empty region and there were no

interfaces in the system, now we consider the equivalent ho-

mogeneous medium in the region previously occupied by the

scatterers, and with interfaces at the front and back of the

region. No individual scatterers are considered to be present

in the effective medium.

For a homogeneous medium, the signal received at the

transducer can be simply written in terms of the reflection

and transmission at each interface, accounting for multiple

reflections in the layer,46

uz;eff xð Þ ¼ e2ikzmin � r12 1� t12t21e2ikdH xð Þ

 �

; (15)

where rij,tij are the displacement reflection and transmission

coefficients at the interface from medium i to medium j,
d ¼ zmax � zmin is the thickness of the layer and the multiple

reverberation term is

H xð Þ ¼ 1� r2
12 e2ikd


 ��1
: (16)

If the ratio of the impedance in the layer to the solid matrix

is Ẑ then

r12 ¼ �
Ẑ � 1

Ẑ þ 1
; t12 ¼

2Ẑ

Ẑ þ 1
; and t21¼

2

Ẑ þ 1
: (17)

Note that the reflection coefficient is defined with the oppo-

site sign to that in Ref. 46; it is specified here in accordance

with the definition of reflection coefficient given in Eq. (11).

The impedance of a medium is usually expressed in the form

Z ¼ qc (18)

with density q, and longitudinal sound speed, c.
A number of workers have shown that the effective, en-

semble-averaged reflected field from a layer of scatterers,

takes the same form as that given above for a homogeneous

layer,27,29,30,36 with a generalized definition for the effective

impedance of

Z ¼ xqeff

Keff

(19)

although Le Bas et al.29 retain the original definition, using

the real part of the effective wavenumber in the denominator

(to obtain effective wave speed). Since we are working at

low concentrations, we work to first order in volume fraction

only, taking the Foldy20 result for the effective, ensemble-

averaged wavenumber, K,

K2

k2

� �
¼ 1þ 3/

k2a3
f 0ð Þ; (20)

where / is the volume fraction of cavities and k is the wave-

number in the matrix. The effective density, derived from

ensemble-averaged scattering theory models,27,31,32 can be

written to first order as

qeff ¼ q 1þ 3/
2k2a3

f 0ð Þ � f pð Þf g
� 


; (21)

which, using the results for cavities from Sec. II A [Eqs. (8)

and (3)] simplifies in the long wavelength limit to

qeff ¼ q 1þ 3/
2k2a3

6A1

ik

� 	� 

� q 1� /ð Þ: (22)

This is equivalent to the static case, and also agrees with the

effective density derived by Parnell et al. by an alternative

homogenization scheme.16 Thus, for our effective medium

model, we adopt an effective impedance, Eq. (19), using the

Foldy effective wavenumber, Eq. (20) and the effective den-

sity given by the right hand side of Eq. (22).

The impedance ratio of the effective medium corre-

sponding to randomly distributed cavities is therefore

Ẑ ¼ Zeff

Z
� 1� /ð Þ k

K
� 1� /ð Þ 1� 39

48
/

� �

� 1� 87

48
/ (23)

at low frequency, and low concentration of cavities. Clearly

the impedance ratio is independent of frequency at the low-

est frequencies.

III. ANALYTICAL COMPARISON OF MODELS

Before we discuss the numerical simulations using the

three models, we establish the analytical correspondence

between our ensemble average of the discrete scatterer

model (model B) and the published effective medium mod-

els, adopted in our model C. Many effective medium studies

focus on isotropic scatterers, since this simplifies the formu-

lation greatly, and we take the same restriction here to obtain

an analytical solution to Eq. (14) for our ensemble averaged

result. However, isotropic scattering implies that only the
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zero-order scattering coefficient is nonzero, which is only

possible for scatterers whose density is equal to that of the

surrounding medium. Hence, for the purposes of this com-

parison, the scatterers are no longer considered to be cav-

ities, which cannot be isotropic scatterers, but to be

scattering objects whose density is matched to that of the

surrounding medium.

First, we consider the reflection coefficient for the effec-

tive medium for a semi-infinite half-space, using isotropic,

density-matched scatterers, in Eqs. (17) and (23), obtaining

Reff;iso;1 �
K � k

K þ k
� 3/fiso

4a3k2
¼ pN

k2
fiso (24)

in accordance with Parnell et al.16 [Eq. (4.10)]. For the layer,

the effective medium model with isotropic scatterers has a

reflection coefficient of

Reff;iso �
pN

k2
fiso 1� e2iKd

 �

(25)

using Eqs. (23), (17), (15). These results are all obtained

using the effective impedance from the published ensemble-

average scattering models (see previous section for details).

Now we derive the equivalent results for our ensemble-

averaged discrete scatterer model, Eq. (14) for density-

matched, isotropic scatterers.

Rave;iso ¼ e�2ikzmin
uz;ave

uz;inc

¼ 2pNe�2ikzmin

ðzmax

z¼zmin

ð1
r¼z

�ikzð Þfiso

� eikz eikr

r
1� 1

ikr

� 

drdz;

Rave;iso ¼ 2pNfisoe�2ikzmin

ðzmax

z¼zmin

e2ikz

ik

� 

dz

¼ pNfiso

k2
1� e2ikd

 �

(26)

and for an infinite half-space (zmax !1) only the first term

in the square bracket remains, the second being the echoes

from the distal boundary of the layer. A comparison of Eqs.

(26) and (25) shows that the reflection coefficient obtained

from our far-field scattering ensemble-averaged model is

almost identical to that obtained from published effective

medium models for isotropic scatterers.27,31,32 The differ-

ence is in the propagation speed across the layer, which in

this case is expressed through the wavenumber of the matrix

medium, k and in the effective medium models is given

through the effective wavenumber of the scattering medium,

K. The latter is the more realistic result, and the difference

probably arises in the approximation of uniform incident

field, and that the scattered waves travel only through the

matrix medium in our model. However, the correspondence

of the two models builds confidence in the discrete scatterer

formulation as a means of validating the effective medium

models by numerical simulation.

IV. NUMERICAL CALCULATIONS

Numerical simulations were carried out to compare the

results of the three model systems whose responses have

been formulated in the preceding sections. The aim of the

simulations was three-fold: First to investigate the response

of a region of scatterers with a single realization of scatterer

locations such as might be measured in an experimental sys-

tem, second to validate the ensemble averaged limit for such

scattering responses and finally, to validate the effective me-

dium model as a representation of that ensemble-average

scattering response. Our ultimate aim is to identify whether,

and under what conditions, a simple effective medium model

could be used to reproduce the effects of backscatter for cav-

ities in a solid medium.

Calculations were executed in MATLAB
47 using double

precision complex arithmetic. By their nature, the calcula-

tions were done in discrete-time, discrete-frequency space.

The sampling frequency applied in the simulations was

50 MHz over a record length of 1024 samples, giving a

time-domain resolution of 20 ns and a window length of

20.48 ls. All calculations of the system response under mod-

els A-C were carried out in the frequency domain, and were

converted into simulated transducer signals by convolution

with a typical transducer response. The signal used as input

to the simulations was that obtained experimentally using a

pair of identical transducers of 10 MHz center frequency

(c.f.) (V311-SU, Olympus NDT, Waltham, USA) in a pitch-

catch arrangement with 25 mm path length through water.

The transducer waveform was digitized initially at 400 MHz

using a LeCroy 9450A oscilloscope (LeCroy Corp., Chestnut

Ridge, NY) and then subsampled down to the simulation

sampling frequency of 50 MHz. An additional simulated

transducer transmit-receive response with a center frequency

of around 5 MHz was obtained by subsampling the measured

(10 MHz c.f.) response in the frequency domain. Figure 3

shows the transmit-receive responses in the time domain for

the initial measurement with the 10 MHz transducer and the

subsampled 5 MHz result. Results in the time domain were

obtained by Fourier transformation. For the purpose of

FIG. 3. Transmit-receive time-domain response for the simulated transducer

signals with center frequencies 10 MHz (dotted) and 5 MHz (solid).
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graphical clarity, all of the time-domain functions shown on

the results which follow have been up-sampled to 200 MHz

using a conventional sin x=x interpolation; they have been

time-shifted so that the temporal origin coincides with the

first received signal (2zmin/c).

The simulations required intensive use of numerical

integration of functions which contained oscillatory compo-

nents with, potentially, nonzero and varying baselines. These

were done using the MATLAB function “quadgk,” which is

optimized for oscillatory integrands and which has proved to

be more accurate than the standard MATLAB functions “quad”

and “quadl.” In addition, the accuracy of integration is

strongly affected by the way the integrand is expressed, and

so all integrands were cast in forms of unity order to achieve

maximum accuracy. The MATLAB pseudorandom number

generator function “rand,” based on the Mersenne Twister

algorithm,48 was used to generate scatterer positions when

considering randomly placed individual scatterers. The pairs

of coordinates (R,z) were generated from two sets of uni-

formly distributed values taken from the same pseudo-ran-

dom number stream (same seed). The z values were

distributed uniformly over the layer thickness, whereas the R
coordinate values were calculated to obtain uniform scatterer

distribution over the area, thus R ¼ Rmax

ffiffiffi
x
p

, where x is the

uniformly distributed random number. When using different

numbers of scatterers, the smaller ensembles are subsets of

the larger ensembles—a new random position generation

was not used for each ensemble.

The medium modeled is a representation of an epoxy-

based composite with carbon reinforcing fibers, typical of

aerospace applications. The composite is considered to be a

homogeneous material for the purposes of these calculations,

and its properties have been estimated from its constituents,

shown in Table I. The shear modulus was estimated by spec-

ifying the ratio of longitudinal:shear wave speed to be 2:1.

For the purposes of the present calculations, the attenuation

of longitudinal waves in the composite was taken to be zero,

in order to explore the physical aspects of the backscatter

and effective medium models independently of the expected

viscoelastic losses characteristic of resin polymer matrices.

The parameters of the system configuration are summar-

ized in Table II, and were chosen to represent a typical ultra-

sonic measurement on composite with a 5 or 10 MHz center-

frequency transducer, measuring at a depth of 2 mm; this is

the distance from the transducer surface to the front of the

scatterer region. The radius of the spherical cavities is

10 lm. The thickness of the region in which scatterers are

distributed, or of the layer of the effective medium, is 1 mm.

Since we are considering the scattering problem in the long

wavelength limit, the order n of the partial waves can be lim-

ited and we have set nmax ¼ 2. Here the wavelength at

10 MHz is �300 lm and the cavity radius 10 lm.

V. RESULTS

A. Discrete scatterer model A

First we explore the system response for a small number

of cavities present in the defined region, using model A, the

discrete scatterer model. The frequency response for a single

cavity is shown in Fig. 4, and varies as the square of fre-

quency, through the far-field amplitude for the cavity, f(h),

Eqs. (8), (2)–(4). When two cavities are present in the sys-

tem (at randomly selected locations), the signals from the

two cavities interfere with each other, resulting in interfer-

ence peaks in the frequency response, overlaid on the trend

in the square of frequency due to the scattering amplitude.

Increasing the number of cavities to 1000 (at random loca-

tions within the defined region) results in a number of spikes

and nodes in the frequency response on Fig. 4, which are not

regularly spaced. These features are the consequence of the

interference between signals from each pair of scatterers

(cavities). However, the undulating pattern is still superim-

posed on the underlying trend in the square of frequency due

to the scattering amplitude. The amplitude of the peaks also

increases with frequency for the same reason, from the con-

structive interference between pairs of scatterers. The

TABLE I. Physical properties of the composite matrix materials used in

calculations.

Sound speed (longitudinal) 3035 m s�1

Density 1564 kg m�3

Shear modulus 3.6 GPa

Attenuation 0

TABLE II. The system parameters used in the calculations.

Distance zmin 2 mm

Layer thickness 1 mm

Radius of scatterer region Rmax 20 mm

Cavity radius (spheres) 10 lm

Volume fraction of cavities 1%

Transducer center frequencies 10 MHz, 5 MHz

Sampling frequency 50 MHz

Number of samples 1024

FIG. 4. Frequency-domain response for a small number of discrete spherical

cavities of 10 lm radius in the defined region; single cavity (dashed, black),

two cavities (solid, black), 1000 cavities (solid, gray, right hand axis).
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corresponding time-domain response with a 10 MHz center

frequency transducer, shown in Fig. 5, is a long duration sig-

nal, with apparently random amplitude, relating to the sig-

nals received from the multiple cavities. In contrast, the

response from a single cavity is almost identical to the trans-

mitted signal.

Having identified how the interference between scat-

tered fields causes irregular fluctuations in the frequency

response, with an underlying trend in the square of frequency

due to the scattering amplitude, we now show the response

for a larger number of discrete scatterers, at concentrations

by volume ranging from 1%–20%. The corresponding num-

ber of cavities located in the defined region is from 3� 106

(1% v/v) to 60� 106 (20% v/v) cavities. We reiterate here

that each simulation with the discrete scatterer model A is

with a single realization of scatterer positions. As the con-

centration is increased, more scatterers were added to the

system, retaining those already present; thus the response at

1% is obtained for a subset of the cavities modeled at 20%

concentration. Figure 6(a) shows the frequency response at

concentrations of 1% and 2% by volume. The same features

as already seen with 1000 scatterers can be identified in the

response: A trend in the square of frequency, with overlaid

random waviness, whose amplitude also increases with fre-

quency. However, another trend is beginning to emerge; at

the lowest frequencies (up to around 5 MHz) clear resonance

peaks can be seen, with the peak amplitude independent of

frequency. At higher concentrations (10% and 20% by vol-

ume), Fig. 6(b), the increasing amplitude of the response at

higher frequency seems to be less than the previous trend in

the square of frequency, and the undulations are of lower

amplitude. In addition, the emerging trend at the lower fre-

quencies for resonance peaks with an amplitude independent

of frequency, extends to higher frequency, almost 10 MHz in

this case. Note that the responses have been scaled in ampli-

tude by the scatterer concentration for ease of comparison.

Similar resonance peaks occur in the response from a

layer of homogeneous material due to interference between

reflections from its front and back interfaces. What is seen

from the results of the discrete scatterer model is the effect

of the interference between scattered signals from individual

cavities, leading to a response which has similar features to

that of a homogeneous layer. Interestingly, the interference

effects transform a trend in the square of frequency, to reso-

nance peaks with amplitude independent of frequency.

In the time domain, the received signals with a 10 MHz

center frequency transducer are shown in Fig. 7(a), and for

the 5 MHz case in Fig. 7(b). At 10 MHz [Fig. 7(a)], with 1%

v/v concentration of cavities, the time-domain signal is appa-

rently random apart from the vestigial oscillatory response

of the transducer; it is formed from the addition of signals

from many cavities. At the higher concentration of 20%, the

signal has two main wave packets, suggesting an emerging

layer-like behavior, but the second of the packets is of larger

amplitude than the first, resulting from incomplete destruc-

tive interference between scattered signal components within

the layer (the incoherent signal). The resonance peaks in the

frequency domain response [Fig. 6(b)], even at 20% concen-

tration, did not extend as far as 10 MHz, so the layer-like

behavior is not complete at this frequency. In contrast, in the

FIG. 5. Time-domain response at 10 MHz for a single cavity (black) and

1000 cavities (gray).

FIG. 6. Frequency response from the discrete scatterer model with varying

concentrations of cavities (a) at 1% (black) and 2% (gray) concentration by

volume, (b) at 10% (black) and 20% (gray) concentration by volume, scaled

by volume fraction to facilitate comparison.
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5 MHz case, the time-domain responses clearly have features

of a homogeneous layer, Fig. 7(b). These features corre-

spond to the resonance peaks in the frequency response seen

in Fig. 6(a)–6(b); these are present at 5 MHz at all concentra-

tions shown. Even at a concentration of 1%, the time-domain

response has two clear wavepackets, similar to a front and

back wall reflection. At 20% the waveform has a shape

almost identical to the transmitted transducer signal, with

inversion in the first received group, and not the second.

These numerical experiments using the discrete scatterer

model have demonstrated a number of significant features.

First, with only a small number of cavities, the response has

a trend in the square of frequency, with interference effects

causing peaks in the frequency domain, and a signal of ran-

domly varying amplitude and long duration in the time do-

main. Second, at higher concentrations of cavities, the

interference causes the emergence at the lowest frequencies

of resonance peaks with amplitude independent of fre-

quency. Third, as the concentration of cavities is increased,

these resonance peaks appear up to higher frequencies.

Fourth, the time-domain response has similarities to that of a

homogeneous layer if the transducer center frequency is

below the upper limit of the region containing resonance

peaks in the frequency response.

B. Ensemble average model B

The ensemble average model B represents the response

averaged over all possible realizations of scatterer positions;

in our single-scattering approximation, this is taken to be

equivalent to integration over uniformly distributed scatter-

ers (see Sec. II B). One reason for the numerical calculation

of the ensemble average result is to establish that it is indeed

the limit of the summed signals from discrete scatterers as

the number of scatterers is increased. The second is to estab-

lish its correspondence (as the numerically integrated limit

of signals received from randomly distributed scatterers)

with the effective medium model, which uses equivalent ho-

mogeneous properties. Our results for the ensemble average

model B are shown in Fig. 8 in the frequency domain and

Fig. 9 in the time-domain with the two different transducer

signals.

Small amplitude oscillations on the frequency response

of the ensemble average model at 1% due to the finite radius

of the region containing scatterers (a diffraction effect, simi-

lar to edge waves) have been smoothed out by a moving av-

erage (Fig. 8); the corresponding delayed signal in the time-

domain is beyond the range of the time-domain response

shown (Fig. 9). We established that the radius of the region,

Rmax¼ 20 mm, was sufficient by calculating a second set of

results from the ensemble average model B with a larger ra-

dius of Rmax¼ 25 mm. We found no significant change in

the smoothed response. Although the small oscillations were

reduced in amplitude, they were still present, and appear to

be slow to die away as Rmax is increased. Hence the maxi-

mum radius of the region of Rmax¼ 20 mm was adequate for

FIG. 7. Time-domain response from the discrete scatterer model with vary-

ing concentrations of cavities (a) with 10 MHz center frequency transducer

at 1% v/v (dotted, black) and 20% v/v (solid, black) concentration (b) with

5 MHz center frequency transducer at 1% (dotted, black), 10% (solid, gray),

and 20% (solid, black) concentration.

FIG. 8. Frequency response for ensemble average model B, smoothed by a

three-point moving average (dashed, gray) and the effective medium model

C (solid, black) at 1% volume fraction of cavities, and for the discrete scat-

terer model at 20% volume fraction of cavities (dotted, black), scaled by

concentration for ease of comparison.
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both the ensemble average and discrete scatterer models, B

and A, respectively.

In the frequency domain, the ensemble average response

has regularly spaced resonance peaks over the entire fre-

quency range, at intervals corresponding to the thickness of

the defined region (1 mm). The amplitude of the peaks is

almost independent of frequency. These features match those

seen emerging at the lowest frequencies in the discrete scat-

terer model (Fig. 6), but here they are present over the entire

frequency range. Hence, the squared frequency-dependence

of the scattering amplitude for a single cavity is transformed

into a frequency-independent resonance peak amplitude as a

result of interference, in the ensemble average case. We saw

for isotropic scatterers, for which an analytical result is

obtainable, Eq. (26), that the ensemble average model pre-

dicts a frequency-independent reflection coefficient, except

for the layer resonance effects, through the cancellation of

the frequency-dependence of the scattering amplitude fiso by

the k2 term in the denominator.

A comparison of the results of the ensemble average

model B with those of the discrete scatterer model A in the

frequency domain (Fig. 8) demonstrates that at low frequen-

cies, model B is indeed the correct limit for the scattered

field for many discrete scatterers. However, at higher fre-

quencies, the contributions of the scattered fields from indi-

vidual scatterers result in sharply varying frequency

response, as the interference effects are incomplete. It may

be observed that the discrete scatterer model frequency

response converges to the ensemble-average limit faster (i.e.,

at lower concentration) for lower frequencies. This effect

will be further explored in Sec. VI.

In the time domain, Fig. 9, the system response has two

signals separated in time, by an interval corresponding to the

round-trip time in the layer. Thus, the average over scatterer

positions results in a response in which all scattered fields

destructively interfere except for those near the front and

back boundaries; the response is similar to that of a homoge-

neous medium. The first signal is inverted relative to the

transmitted signal, whereas the second is not, implying that

the equivalent impedance of the layer is lower than the sur-

rounding matrix. With a 10 MHz center frequency trans-

ducer, Fig. 9(a), the discrete scatterer model at 20%

concentration of cavities, agrees well with the ensemble-

averaged result for the apparent front-face reflection, but is

rather different for the second, back-face reflection. How-

ever, using a 5 MHz center frequency transducer signal

results in very good agreement between the discrete scatterer

results and the ensemble-average model. We conclude that,

although the ensemble-average model does indeed predict

the response at sufficiently high concentration of scatterers

(within the low concentration assumption required for the

single scattering formulation), and sufficiently low trans-

ducer frequency, the actual response observed for a single

realization of cavity locations may be far from the ensemble-

average predictions. We explore the conditions under which

the ensemble average may be applied to a single realization

of scatterers in Sec. VI.

C. Effective medium model C

The frequency response of the effective medium model,

C, which treats the region containing scatterers as an equiva-

lent homogeneous medium, is also shown in Fig. 8. In close

similarity to the ensemble-averaged model, B, the resonance

peaks due to the interference of signals reflected from the

front and back interfaces of the region have amplitude which

is almost independent of frequency. This is a result of the

frequency-independent effective impedance, Eq. (23)

obtained for the region from the effective medium models

used. There are small differences in the resonance peak

amplitudes and the location of the pseudonodes at higher fre-

quencies. We attribute these to our assumption of an identi-

cal exciting field at each scatterer, equal to the incident wave

from the transducer, which greatly simplified the numerical

modeling. In Sec. III, we showed by analytical comparison

of the models for isotropic scatterers, that the interference

term in the response related to the effective wavenumber of

the cavity-containing composite, K in the effective medium

FIG. 9. Time-domain response for ensemble average model B (dashed,

gray) and the effective medium model C (solid, black) at 1% volume frac-

tion of cavities, and for the discrete scatterer model at 20% volume fraction

of cavities (dotted, black), scaled by concentration for comparison) with

(a) 10 MHz center frequency transducer, (b) 5 MHz center frequency

transducer.
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model, but related to the wavenumber of the matrix, k for the

ensemble average model, resulting in a marginally different

layer resonance frequency.

In the time domain, the effective medium model C and

ensemble average model B are almost indistinguishable

(Fig. 9). In comparison with homogeneous materials, we can

now identify the inversion of the front face reflection as

being associated with the lower impedance in the layer than

in the matrix. The back-face reflection is not inverted, since

it is reflected from an interface at which the impedance

increases.

Our results have demonstrated numerically that the

averaged response from randomly located scatterers (model

B) is correctly modeled by an equivalent homogeneous me-

dium with effective properties defined by the effective wave-

number and density in the medium. Since we have also

shown that the ensemble average model B is the limit of the

discrete scatterer response for a single realization of cavity

positions, model A, under certain conditions, we can con-

clude that the effective medium model is an appropriate way

to simulate the response of regions of scatterers, under the

same conditions. We now explore those conditions under

which the effective medium model is likely to be an accurate

representation of the response from a cavity-filled matrix

with only a single realization of cavity locations, such as

would occur in a one-shot experimental measurement on a

piece of composite material.

VI. DISCUSSION

We have seen that the emergence of an effective me-

dium-style response occurs, in general terms, at low frequen-

cies, and high concentrations of cavities. In order to quantify

these conditions, we must consider the length-scale at which

the medium containing cavities can be considered to be ho-

mogeneous. The inhomogeneity of the medium is on a

length scale comparable with the average intercavity dis-

tance. When the wavelength is much larger than this length

scale (i.e., at low frequencies), the material appears as effec-

tively homogeneous, and the response approaches the

ensemble-averaged or effective-medium result. At high fre-

quencies, the wavelength is shorter than or comparable with

the intercavity distance, and the material shows characteris-

tics of an inhomogeneous medium, in which the scattered

fields from each individual cavity can be identified in the

signal.

Thus, we can express the condition for the effective me-

dium/ensemble average limit to be valid as

f < fmax¼ c= blð Þ; (27)

where l ¼ 4pa3=3/ð Þ1=3
is the average intercavity spacing,

and f is the frequency, c is the wave speed, a is the cavity ra-

dius, and / is the volume fraction of cavities. The constant b
is effectively the average number of scatterers per wave-

length above which an ensemble average model is a valid

representation of a single realization of scatterer positions.

We have estimated the value of b by comparing the

frequency domain results of models A and B and noting the

frequency at which they differed by 10%. A plot of these fre-

quencies versus scatterer concentration was then compared

with expectation on the basis of Eq. (27). This procedure

gave a value of b¼ 12; that is to, say, the ensemble average

model becomes valid at frequencies and scatterer concentra-

tions which yield an average scatterer density of 12 scatter-

ers per wavelength.

In general terms, fmax is higher at higher concentrations

[see Fig. 6(a)–6(b), 7(a)–7(b)]; alternatively, at any given

frequency, the concentration must be sufficiently large to sat-

isfy Eq. (27) (see Fig. 6).

The effective medium criterion, Eq. (27), also predicts

that a smaller radius (which leads to an increase in the num-

ber of scatterers for a given volume fraction) extends the fre-

quency range for the validity of the effective medium model.

Although the effect of cavity radius was not explored in this

numerical study, we anticipate that using a smaller radius

would have produced agreement with the effective medium

model over a wider range of frequency. However, it would

also have required many more cavities to be modeled in the

discrete scatterer model A, and the radius was chosen so as

to restrict the number of cavities in the region to achieve a

manageable simulation.

This simple expression, Eq. (27), provides a guideline

for the conditions under which the effective medium model

should be a good representation of the response of the cav-

ity-containing medium, for a single realization of cavity

locations. It is physically based, and agrees with the trends

observed in our numerical simulations.

VII. CONCLUSIONS

We have used an interpretation of the Rayleigh method

to investigate the ultrasonic pulse-echo responses that might

occur in the NDE of composites which contain porosity

flaws. A stochastic discrete scatterer model was shown to

tend to agreement with ensemble average and equivalent ho-

mogeneous medium models at higher concentrations of po-

rous inclusions, thus providing a numerical validation of the

equivalent homogeneous properties. A criterion has been

established which sets the maximum frequency at which ei-

ther ensemble average or equivalent medium models can

represent the pulse-echo behavior of a field of porous inclu-

sions. This frequency increases as the interpore spacing

reduces, or equivalently, as pore size reduces and/or pore

volume fraction increases. A similar approach would be

valid for other scatterer shapes, such as microscopic cylindri-

cal pores and ribbons.

The significant implication of this work is that the en-

semble average or equivalent homogeneous medium approx-

imations could be used in models of ultrasonic wave

propagation in composites which contain porosity flaws,

under certain conditions of frequency, pore size, and pore

concentration. This overcomes the difficulties associated

with the inclusion of scattering phenomena in stratified me-

dium propagation models, and will therefore enable simula-

tions of ultrasonic NDE procedures which are physically

realistic, and which can be used to gain understanding of the

process of porosity flaw detection and characterization.
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