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In this paper we study the acoustic field backscattered from a plane slab of spherical scatterers. The work is 
motivated by the need to model the reflected field received from porous regions of composite materials when 
using ultrasonic NDE techniques. Here, we simulate the field received from the spherical scatterers, using a 
semi-analytical model for the response of single realizations of scatterer configurations, together with the 
coherent field for the equivalent homogeneous medium. The degree of incoherence of the simulated field 
response from the scatterers is calculated and its dependence on scatterer radius, concentration and frequency are 
determined.

1 Introduction 
The investigation of the characteristics of acoustic and 

shear wave propagation through heterogeneous materials 
has been the subject of many studies and has a substantial 
heritage. It is well established that under certain conditions, 
the wave propagation appears equivalent to that in a 
homogeneous medium; this is termed the coherent field. 
The existence of a coherent field in such materials under 
certain conditions has been established by a variety of 
techniques, variously termed homogenization theories, and 
multiple scattering theories. Many such methods rely on an 
averaging process over all possible configurations of 
“scatterer” locations, where the “scatterer” may be cavities, 
inclusions etc. This averaging process is called ensemble 
averaging. The coherent field emerges from the summed 
scattered fields on application of the ensemble average. 
Hence the coherent field relies on sufficient averaging over 
many realizations of scatterer configurations. 

In a measurement system, such as an NDE application, 
the signal received from a particular region may not be 
coherent, since it is a sample of a particular configuration 
rather than averaged over many configurations. Although 
averaging can be implemented at the transducer surface this 
may not be sufficient to result in a coherent field response. 
The simulations reported in this paper were designed to 
explore the emergence of the coherent field from the 
response of a planar slab of spherical scatterers. We report 
the conditions under which the response approaches 
coherence, and also demonstrate the degree of incoherence 
of the response and its dependence on parameters such as 
scatterer radius, concentration and frequency.  

2 The models 
The models have been reported elsewhere [1]-[2] and 

only a brief summary is presented here.  

2.1 Discrete scatterer model 
The configuration of the model is shown in Figure 1a. 

Spherical scatterers, each of radius a are distributed 
randomly in a solid homogeneous matrix in the slab region 
defined as shown. Scatterers are located by a random 
distribution as if they were point scatterers, no volume 
exclusion is applied. A planar transmitting and receiving 
device is coupled directly to the solid matrix material, and 
transmits a plane wave, which is assumed to be the incident 
wave at each scatterer. The signal received at a single point 
on the transducer surface is obtained from the normal 
displacement of the scattered fields from each scatterer, 
taking the far-field scattering amplitude. The amplitude and 
angular distribution of the scattered field are determined 
from the Ying and Truell formulation [3] based on the 
Rayleigh partial wave analysis in the long wavelength 
region, in order to represent the field scattered by spherical 

cavities in a solid matrix. In the discrete scatterer model, 
there are no interfaces at front and back of the slab region, 
the matrix is the same material in all regions. A number of 
single realisations of scatterer locations are simulated using 
the model, with various number of scatterers and cavity 
radii. The volume fraction is obtained from the number 
density of scatterers at a particular radius. 

2.2 Ensemble average model 
The coherent field is obtained when an average over all 

possible configurations of scatterer locations is taken. This 
could be simulated by taking multiple simulations of the 
discrete scatterer model (each being a single realisation of 
scatterer locations) and obtaining the average scattered 
field. Another approximate limit is to take an integral over 
the scattered field using random scatterer locations 
approximated using a uniform probability. This 
approximation is possible in this case because of the 
assumption of an identical incident field at each scatterer, 
rather than taking the coherent incident field. However, the 
integrated solution allows us to check the limit of the  
discrete scatterer model. 

 

Figure 1: Configuration of system modeled (a) (above 
dashed line) discrete scatterer model (b) (below dashed 

line) effective medium model. The coordinates (z,R) of a 
cavity relative to the receiving point are shown. 

2.3 Effective medium model 
The effective medium model treats the slab region as a 

homogeneous material (see Figure 1b) with properties 
derived from homogenization or multiple scattering 
theories. These theories have derived the equivalent 
homogeneous properties of the material which gives rise to 
the coherent field. We use the multiple scattering theory of 
Foldy to obtain the wavenumber of the slab, using the 
scattering coefficients determined using the Ying and Truell 
formulation, as noted earlier. The effective density of the 
slab is a volume average density (using cavities). The signal 
received back from the slab is calculated using simple 
reflection and transmission coefficients, based on the 
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effective impedance of the slab calculated from the 
effective wavenumber and density. 

The models attempt to simulate relatively large-scale 
systems, in particular the response of a plane slab region of 
scatterers. As such, they include simplifications such as the 
assumption of the simplest form of the incident field at the 
scatterers, and the use of the Foldy approximation for 
wavenumber [4]. Smaller-scale simulations such as those 
using finite difference methods, are able to use higher order 
approximations but are constrained to a much smaller 
length scale [5]-[6]. In the current calculations, the response 
is observed at a single point on the receiving surface, to 
remove any effects of receiver area averaging.  

2.4 Numerical calculations 
Calculations were carried out in Matlab, using the 

parameter set given in Table 1. The solid matrix was 
assigned properties typical of an averaged fibre/resin 
composite; longitudinal sound speed 3035 ms-1, density 
1564 kg m-3 and shear modulus 3.6 GPa. Simulations were 
carried out in the frequency domain, using a sampling 
frequency of 50 MHz with 1024 samples. In order to 
produce time-domain results, the response of a transmitter-
receiver pair of 10 MHz centre-frequency transducers was 
measured in pitch-catch configuration in water. A simulated 
5 MHz centre-frequency signal was produced by sub-
sampling that measured signal. Table 1 shows the cavity 
radii used in the simulations, from 5-20 µm, and the 
corresponding number of cavities in the simulated region at 
20% concentration. It should be noted that in each 
simulation all cavities have the same radii. Although the 
simulation aims to represent a planar slab of scatterers, the 
region must be limited in the radial dimension R (see Figure 
1a). Test showed that Rmax=20 mm was sufficient to 
represent the response of the full plane. All effective 
medium calculations were carried out at 1% by volume of 
cavities. Discrete scatterer model results were first scaled 
by concentration in order to compare them with the 
effective medium results. Frequency domain results were 
also smoothed by windowing in the time-domain. Fuller 
details of the simulations are given in [1]-[2]. 

Table 1: System parameters. 

Distance zmin /mm 2  

Layer thickness / mm 1  

Cavity conc / v/v% 1,2,5,10,20  

Cavity radius / µm 5.0, 7.9, 10.0, 15.9, 20.0 

Millions of cavities at 
20 v/v% (respectively 
with radius) 

480, 120, 60, 15, 7.5  

3 Results 

3.1 Time-domain results 
The signal received from the scatterers in a single 

realization, according to the discrete scatterer model, is 

shown in Figure 2 (in black), together with the coherent 
field obtained from the effective medium model (in red). 
The simulations were for a cavity radius of 10 µm at 2%v/v 
(plotted results are scaled by concentration) with a 10 MHz 
centre-frequency signal. In these conditions the received 
field shows a high degree of incoherence, with little 
similarity to the coherent field, with its reflected signals 
from the front and back of the layer. However, under 
different conditions, using 5 µm radius cavities at 10%v/v 
concentration, and with a 5 MHz centre-frequency signal 
(Figure 3) the discrete scatterer response is almost identical 
to the coherent field.  

 

Figure 2: Time-domain results for discrete scatterer model 
(black) and effective medium model (red) for 10 µm radius 
cavities at 2%v/v with a 10 MHz centre-frequency signal 

(scaled by concentration). 

 

Figure 3: Time-domain results for discrete scatterer model 
(black) and effective medium model (red) for 5 µm radius 
cavities at 10%v/v with a 5 MHz centre-frequency signal 

(scaled by concentration). 

3.2 Frequency-domain results 
Although the degree of coherence is readily observed in 

time-domain plots, more information is obtained from 
frequency-domain data. The results of each model are 
plotted against frequency for a cavity radius of 10 µm in 
Figure 4 (scaled by concentration). The coherent field 
calculated from the effective medium model shows the 
resonant behavior typical of the response from a layer, and 
is in close agreement with the integrated ensemble average 
field. The discrete scatterer results are shown for a 
concentration of 5% (scaled by concentration), and 
compared with the effective medium and ensemble average 



results at 1% concentration. At low frequencies, the single 
realization represented by the discrete scatterer model 
produces almost identical backscattered signal to the 
effective medium and ensemble average limits. Hence, even 
for a single realization of a planar slab of scatterers, at low 
frequencies the backscattered field approaches the coherent 
field. At higher frequencies, the discrete scatterer model 
deviates increasingly from the coherent field. 
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Figure 4: Frequency-domain results for discrete scatterer 
model (black) at 5% concentration (scaled), effective 

medium model (red), and integrated ensemble average 
model (blue) for 10 µm radius cavities at 1%v/v. 

3.3 Deviation from coherence 
The deviation of the response of the discrete scatterer 

model from the coherent field was calculated by using the 
sum of the squared residuals (RSS) between the two model 
responses (having scaled the discrete scatterer response by 
concentration). The RSS value was calculated up to each 
frequency in turn, giving a result as a function of bandwidth 
or maximum frequency. Figure 5 shows the RSS plotted 
against frequency (or bandwidth) for various radius/ 
concentration pairs. The plot indicates that there are 
systematic variations in the deviation from coherence with 
both radius and concentration, and that the deviation (as 
quantified by the RSS) increases with frequency.  
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Figure 5: Sum of the squared residuals of a single 
realization of the discrete scatterer model compared with 
the effective medium model for selected cavity radius and 

concentration. Lines styles denote 1% (dashed), 2% (solid), 
and 10% (dotted) concentration. Colours denote 5 µm 

(black), 10 µm (red) and 15.9 µm (blue). 

3.4 Incoherence with lengthscale 
The criterion for the emergence of the coherent field 

from a single realization of scatterers is related to the 
principal length scaling in the system. If the controlling 
length parameter is denoted by q  then coherence is 
expected to be obtained when   q λ <<1, that is, where the 
wavelength is much longer than the length scale in the 
system [7]. For distributed spherical scatterers, we expect 
the relevant lengthscale to be related to the average distance 
between particles, since it represents the lengthscale of the 
heterogeneity. We take this length to be  

 1 3l r φ=  (1) 

We rescale the results for the deviation of the single 
realization response from coherence (using RSS) as a 
function of the parameter l λ , shown in Figure 6. All of 
the frequency, radius and concentration dependence is now 
incorporated into the dimensionless length ratio. However, 
some systematic dependencies on radius and concentration 
remain, since the curves do not reduce to a single line. 
Although the quantity of data means not all curves can be 
distinguished visually in Figure 6, the systematic variations 
can be detected. This implies that the parameter l λ  does 
not account fully for the degree of incoherence of the 
response. Some spread in the curves is still to be expected 
since each represents the response of one single realization 
at the given radius and concentration; different realizations 
for the same radius and concentration will produce different 
responses. However, we expect to remove all systematic 
variation with these variables. 
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Figure 6: RSS plotted against length scale parameter l λ  
for all sets of radii and concentration for the discrete 

scatterer model single realizations. Radii 
[5,7.9,10,15.9,20 μm] are denoted by colours in sequence 

[red, green, blue, magenta, black] and symbols 
[+,o,*,.,x]denote concentrations [1,2,5,10,20%].    

A fitting process was carried out, as described in [2], to 
determine the relationship between the variables. A cut-off 
value for RSS was chosen based on the apparent coherence 
condition for various radii and concentrations in the time 
domain with the two centre frequencies of 5, 10 MHz. The 
frequency, radius and concentrations at this value of RSS 
were fitted to power law dependencies, resulting in a 
relationship which indicated the parameter 



 ( )2 3l λ  (2) 

as determining the relevant scaling. This is no longer a 
dimensionless parameter; and the units of length were taken 
in microns. Replotting the RSS data for the full frequency 
range against this new scaling parameter results in a 
considerably narrower spread of data, shown in Figure 7. 
Although some spread remains in the data, the obvious 
systematic trends have been removed, which is particularly 
clear for the different colours denoting the various radii. 
The remaining spread may be due to the differences 
between individual realizations with the same radius and 
concentration. This is evidenced by plotting the mean of 
multiple simulations at the same conditions, which results 
in a very narrow spread of curves when using the parameter 
in Eq. (2) (not shown here). The variation in the degree of 
incoherence for the same radius and concentration will be 
explored in a further publication. 
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Figure 7: RSS plotted against length scale parameter 
2 3l λ  (micron units) for all sets of radii and concentration 
for the discrete scatterer model single realizations. The 

legend is identical to Figure 6 

Our results indicate that our measure of incoherence 
(RSS) cannot be accounted for solely by the relative size of 
the wavelength compared with a length scale parameter 
based on the mean distance between scatterers. There are a 
number of possible explanations for this. Firstly, this 
measure of incoherence may not relate linearly to a more 
rigorous mathematically-defined degree of incoherence. 
Secondly, there may be other relevant length scales in the 
system which contribute to incoherence, but which are not 
included in the analysis, or are constant in all simulations. 
According to our fitting results, the mean distance between 
particles accounts only partially for the degree of 
incoherence.  

5 Conclusion 
Simulations of the response of single realizations of 

spherical scatterers (cavities) in a slab have been used to 
demonstrate the emergence of the coherent field in such 
cases. The degree of incoherence was found to increase 
with increasing radius, decreasing concentration, and 
increasing frequency. This is consistent with the 
requirement that the wavelength should be much longer 
than the relevant length scale of the system, assumed to be 

the mean distance between scatterers. However, fitting a 
measure of the degree of incoherence to the parameter set 
has suggested that the mean distance between particles only 
partially accounts for the incoherence. 
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