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1.  Research highlight: What is functional nanoparticle?

Functional nanoparticles (NPs) are scientifically defined
as solid, colloidal particles or carriers in the range 10-
1000 nm [1] with numerous functions such as; (i)
protections of active ingredients (drugs) against
degradation, (ii) targeting of drugs to specific sites of
action (organ or tissue), and (iii) delivery of biological
molecules such as proteins, peptides and
oligonucleotides depending upon their administration
routes either orally, parenterally or locally [2].

References: [1] Charcosset, et al. (2010). Ind. Eng. Chem. Res. 49, 5489−5495, [2]. Konno & Taylor (2008). Pharm. Res. 25, 969−978.
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4. NPs physical characterisations & images 
2. New advancement techniques:

Membrane system & nanoprecipitation method

5. Conclusions

Fig. 3: Schematic diagram of the experimental setup.

Subjects Materials/Properties Compositions/Remarks

Aqueous phase Mili-Q-water + surfactant (Depending on Vaq/Voq)

Organic phase
Dissolved mixture of 
polycaprolactone (PCL) + 
drug (rapamycin) in acetone

6 g/l PCL + 40 w/w% 
rapamycin (RAPA)

Membrane Pore size = 10 μm
Stainless steel (SS) 
membrane

Optimum
exp. parameters

(i) Volume ratio (Vaq/Vor)
(ii) Stirring speed (rpm)
(iii) Injection rate (ml/min)

(i) 10.0
(ii) 1300 rpm
(iii)  5 ml/min 

Table 1. Experimental materials/parameters.
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3. Materials and parameters setting

Fig. 1: Functional NPs administration route mechanism depending on their 
particle size without causing an embolism.

Fig. 5: Attenuated total reflectance Fourier transform infrared (ATR-FTIR) 
spectrums elucidated that rapamycin , RAPA (drug) was successfully embedded 

(encapsulated) onto NPs polymer matrix with 98.9 % encapsulation efficiency.

 Micro-engineered membrane system is shown to be convenient for
production of highly controllable size of NPs that can be applied as a
drug carrier with any substitution elements (eg: drug or nanofillers).

 The higher the aqueous-to-organic volume ratio, the higher the
dilution factor of the polymer in the liquid phase and the lower the
rate of particle growth after nucleation, resulting in smaller particle
size.

A new advanced membrane technique for the formation of highly 
uniform functional nanoparticles with tailored properties suitable for 

high-value pharmaceutical applications
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NPs were produced instantaneously by fast diffusion (nanoprecipitation)
once the organic phase is introduced through the membrane pores
coming into contact with the aqueous phase that flows tangentially to the
membrane surface.

Membrane mechanism

NPs

Fig. 4: Solvent removal mechanism of final polymeric NPs product.

Fig. 6: Transmission electron microscopy (TEM) images of uniform spherical 
RAPA-encapsulated PCL NPs within particle size < 200 μm, polydispersity

index (PDI) < 0.1 (highly monodispersed particles) produced at the optimum 
experimental conditions (refer to Table 1). 
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