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1. Research highlight: What is functional nanoparticle?

Functional nanoparticles (NPs) are scientifically defined
as solid, colloidal particles or carriers in the range 10-
1000 nm [1] with numerous functions such as; (i)
‘ . ; protections of active ingredients (drugs) against
g p— r i degradation, (ii) targeting of drugs to specific sites of

il D= action (organ or tissue), and (iii) delivery of biological
molecules such as proteins, peptides and
oligonucleotides depending upon their administration
routes either orally, parenterally or locally [2].
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Fig. 5: Attenuated total reflectance Fourier transform infrared (ATR-FTIR)
spectrums elucidated that rapamycin , RAPA (drug) was successfully embedded
(encapsulated) onto NPs polymer matrix with 98.9 % encapsulation efficiency.
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Fig. 3: Schematic diagram of the experimental setup.
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coming into contact with the aqueous phase that flows tangentially to the
membrane surface. Fig. 6: Transmission electron microscopy (TEM) images of uniform spherical

. 1 RAPA-encapsulated PCL NPs within particle size < 200 um, polydispersity
3. Materials and parameters settmg index (PDI) < 0.1 (highly monodispersed particles) produced at the optimum

experimental conditions (refer to Table 1).

Table 1. Experimental materials/parameters. 5. Conclusion
5 1
Subjects Materials/Properties Compositions/Remarks . : GG _ = X
» ) » Micro-engineered membrane system is shown to be convenient for
LCUELIEN L ECI Mili-Q-water + surfactant (Depending on V,¢/V,q) production of highly controllable size of NPs that can be applied as a
Dissolved mixture of drug carrier with any substitution elements (eg: drug or nanofillers).

(o] F-1yI[} <), -1 polycaprolactone (PCL) + 6 g/l PCL + 40 wiw% : . . .
e rapamycin (RAPA) > The higher the aqueous-to-organic volume ratio, the higher the
drug (rapamycin) in acetone

dilution factor of the polymer in the liquid phase and the lower the

Pore size = 10 ym Stainless steel (SS) r:inte of particle growth after nucleation, resulting in smaller particle

membrane size.
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